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Abstract

In this thesis, we analyze intratheater airlift operations, and propose methods to improve the
planning process. The United States Air Mobility Command is responsible for the air
component of the world wide U.S. military logistics network. Due to the current conflict in Iraq,
a small cell within Air Mobility Command, known as Theater Direct Delivery, is responsible for
supporting ongoing operations by assisting with intratheater airlift.

We develop a mathematical programming approach to schedule airlift missions that pick up and
deliver prioritized cargo within time windows. In our approach, we employ composite variables
to represent entire missions and associated decisions, with each decision variable including
information pertaining to the mission routing and scheduling, and assigned aircraft and cargo.
We compare our optimization-based approach to one using a greedy heuristic that is
representative of the current planning process. Using measures of efficiency and effectiveness,
we evaluate and compare the performance of these different approaches. Finally, we adjust
selected parameters of our model and measure the resulting changes in operating performance of
our solutions, and the required computational effort to generate the solutions.
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Chapter 1 Introduction

"My logisticians are a humorless lot. They know if my campaign fails, they are the first

ones I will slay." -Alexander the Great

Logistics has always been and will continue to be an essential part of military operations.

The United States military logistics network is a complex system comprised of several major

commands and spanning countries across the globe. From large-scale strategic initiatives, to

models of individual processes, analysis has been performed on almost every aspect of this

network, trying to improve the overall system.

1.1 Research Scope - Theater Direct Delivery

This thesis takes a look at one specific piece of the United States military logistic

network, known as Transportation Command (TRANSCOM), by trying to improve intratheater

airlift. TRANSCOM is broken into air, land, and sea components. The air component, Air

Mobility Command (AMC), has the responsibility to "deliver maximum war-fighting and

humanitarian effects for America through rapid and precise global air mobility" [13]. AMC is

responsible for airlift operations that span the globe. One key delineation in airlift is intertheater

and intratheater airlift.



Intertheater airlift refers to airlift linking theaters of operations, and is under the purview

of AMC. The US definition of theater of operations is a term that refers to the administrative

command responsible for a given area. Intratheater airlift refers to airlift conducted within a

theater and is usually conducted by a geographic combatant commander using assigned assets,

instead of AMC. In the current conflict in Iraq, these lines have been blurred as AMC aircraft

and personnel have been tasked to support Central Command (CENTCOM) with intratheater

airlift. This thesis looks at how a unit within AMC, Theater Direct Delivery (TDD), supports

current operations in the Middle East by assisting with intratheater airlift.

1.2 Overview of Thesis

In this thesis we provide an overview of the current Theater Direct Delivery planning and

execution process; we present an optimization-based model to improve the theater airlift

planning process; and we conduct an analysis of our results. The remainder of this thesis is

organized as follows:

Chapter 2: Theater Direct Delivery and Current Mission Planning Process
The purpose of this chapter is to introduce theater airlift in the context of Theater Direct

Delivery. We summarize the organizational structure and hierarchy of organizations responsible

for intratheater airlift. We then describe the planning and execution process for TDD missions

supporting intratheater airlift within CENTCOM. Furthermore, we highlight the shortcomings of

the current process, concluding with important metrics and motivation for further study.

Chapter 3: Functional Analysis & Modeling Scope
In this chapter we present a functional description of the TDD mission planning process

and introduce our model. We discuss the scope of our model, including assumptions and data

generation. Last, we classify our problem and present our modeling approach in terms of our

variable definitions.

Chapter 4: Modeling
In this chapter we discuss our model in detail. We break the model down into functions

and explain each in detail. We introduce our mathematical formulation to optimize scheduled

missions and briefly describe the greedy heuristic we insert into our model. We briefly describe



the greedy algorithm we use later to compare to our optimized approach. We also discuss

possible improvements to our model as well as alternate approaches.

Chapter 5: Results and Analysis
In this chapter we discuss our results, comparing our model to a greedy heuristic,

representative of the current mission planning process. We describe the metrics, objective

functions, and parameters used in our modeling. We also analyze different parameter settings

and their effects on both operational metrics and computation time.

Chapter 6: Summary and Future Work
This chapter summarizes the work presented in this thesis and discusses areas of future

research.
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Chapter 2 Theater Direct Delivery

and the Current Mission Planning

Process

Chapter 1 provided an introduction to the overall problem and an overview of how

intratheater airlift fits into military logistics system worldwide. This chapter has three

objectives:

1. Summarize the organizational hierarchy for those organizations involved in intratheater

airlift;

2. Describe the process for planning and executing the missions of the C-17s that support

intratheater airlift operations; and

3. Discuss important operational metrics and motivation for further analysis and modeling of

the system.

In any major conflict, logistics pipelines must surge material to meet the needs of those

fighting on the front lines. The current (as of 2007) conflict in Iraq highlights the complexity



and difficulty of supplying hundreds of thousands of troops over half a world away. Theater

commanders rely on the concept of reachback to sustain operations. Reachback is defined as the

"process of obtaining products, services, and applications, or forces, equipment, or materiel from

Air Force Organizations that are not forward deployed" [1]. Theater Direct Delivery (TDD) is

an example of Central Command (CENTCOM) using the reachback concept to provide

additional airlift capacity. In this thesis, we will examine the work of TDD as one small element

of this logistics pipeline, intratheater airlift.

2.1 Organizational Hierarchy
The job of the Theater Direct Delivery (TDD) cell within the Tanker Airlift Command

Center (TACC) under Air Mobility Command (AMC) at Scott AFB, MO is to "provide

responsive airlift to support the war fighter's intratheater airlift requirements" [1]. TDD supports

airlift requirements for CENTCOM by moving intratheater cargo (PAL) and passengers (PAX).

We define intratheater airlift requirements as any movement of cargo by aircraft, such that the

origin and destination are within a single area of operations.

TDD was initially set up soon after the recent conflict in Iraq to handle oversized and

outsized cargo within CENTCOM using three aircraft. Oversized and outsized cargo is defined

as cargo that only fits on large body aircraft such as the C-17 or C-5. Later, the unit was

expanded to contain six aircraft in the hopes of reducing the number of ground convoys. As the

conflict in Iraq progressed, the existence of TDD was a factor in the decision to send reserve

units of C-130s assigned to CENTCOM back home to the states as the larger C-17s moved in to

pickup the slack. Currently, TDD contains twelve C-17s assigned through a 'verbal' agreement

with AMC to support CENTCOM requirements. However, TDD has a unique relationship with

CENTCOM in that the TACC retains both operational and tactical control of TDD in supporting

CENTCOM's needs.

2.1.1 Structure

The AMC organizational structure can be broken down into the force providers of the

18th Air Force and the major departments that support operations. The 18th AF serves as the war

fighting component of AMC. All AMC wings and groups, as well as both Expeditionary



Mobility Task Forces (EMTF), report to 18th AF. This includes more than 54,000 personnel,

both military and civilian. The TACC also falls under 18th AF and "serves as the organization's

air operations hub, planning and directing tanker and transport aircraft operations around the

world" [1]. The major departments are responsible for strategic planning, training, and

organization. These departments were recently reorganized into the standard Air Force staff

structure. This change added the A9 function: Analysis, Assessments and Lessons Learned [7]

as a full directorate and created a staff consistent with the rest of the military structure.

FORCE
TA PROV DER

...........................
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... .. .. .. ... .. .. .. .. ... .. .. .. ... .. .. .. ..

Figure 2-1: AMC Organizational Structure [1]

Within the TACC, several directorates exist to plan, manage, and execute ongoing AMC

operations. For the purposes of this paper, it is relevant to know that TDD is officially referred

to as XOCR under the Command and Control Directorate (XOC). More in-depth information

concerning the overall organizational structure of the TACC can be found in Air Force Doctrine

Document 2-6 on Air Mobility Operations [1]. As shown in Figure 2-3, it is important to note

that both planning and execution for TDD assigned aircraft fall within the TDD cell. TDD

maintains necessary coordination with the Air Mobility Division (AMD) within the Air

Operations Center in theater.



AMD Reachback

Execution -- ................

Figure 2-2: TACC Organizational Chart [1]

While TDD is organizationally under XOC, the chief of TDD operationally reports

directly to the Director of Operations (XOZ), who has control of all operations currently in

execution. As a small cell originally setup to be surge operation to assist airlift requirements in

the Middle East, it is Direct Liaison Authorized (DIRLAUTH) with personnel under the

CENTCOM Air Operations Center (CAOC), meaning that TDD has authority to consult or

coordinate actions with the CAOC, even though they operate as difference commands [4]. The

CAOC is responsible for all air operations within CENTCOM. The Air Mobility Division is

responsible for all mobility operations and has an Airlift Control Team (ALCT) that plans, tasks,

and coordinates intratheater airlift operations.

I I I

I I

DIRLAUTH

Figure 2-3: 18 th Air Force & CAOC Relationship [1]

2.1.2 Assets

As mentioned previously, TDD directly controls twelve C-17s positioned in the theater to

carry on its mission: eleven aircraft at Al Udeid, Qatar and one aircraft at Manas, Kyrgyzstan.
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Additionally, one aircraft in Turkey flies missions supporting both TDD and channel routes.

This aircraft can fly into Turkey on a channel mission and be temporarily used to fly TDD legs

into Iraq before returning to Turkey, then resume flying its channel route.

Figure 2-4: Relevant Aerial Ports within CENTCOM served by TDD [10]

Figure 2-4 illustrates a snapshot of the Middle East highlighted with the major aerial

ports served by TDD in green. Other ports exist that are not shown on the map. TDD flies

missions into Afghanistan and parts of Africa. Most TDD missions start and end at Al Udeid

(OTBH). Aircraft usually fly a positioning leg to either Kuwait or a port in Iraq and then fly a

few cargo legs before returning to Al Udeid.

The C-17 is the newest cargo aircraft in the mobility fleet. It can be used for strategic

airlift, carrying large payloads between continents or for theater airlift, landing at austere

airfields close to the fight. One of its most important capabilities is the ability to deliver all types

of cargo directly to forward bases in a deployment area. The C-17 also has a high reliability rate

of over 80% [3].
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Figure 2-5: C-17 Globemaster III [3]

The C-17 has several cargo configurations and can also be used for several other

purposes such as carrying airborne troops, aero-medical evacuation, and airdrops. It can carry up

to 189 troops/paratroops, 48 litter and ambulatory patients and attendants, or 170,900 pounds of

palletized cargo in up to 18 pallet positions. In terms of cargo, the C-17 can reach capacity either

in weight or volume. Most palletized loads carried for intratheater airlift do not max out the

weight of the aircraft, but rather max the volume by using all 18 pallet positions.

Figure 2-6: C-17 Double Row Pallet Configuration



Figure 2-7: C-17 Passenger Configuration with Middle Row of Seats

TDD also has access to other assets, both military and commercial aircraft. Additional

military (organic) aircraft scheduled by other TACC directorates may become available after

completing their given missions. The use of other assets is referred to as an in-system select, in

which an asset can be temporarily borrowed by TDD. The use of commercial aircraft, such as

the IL-76 and AN-124, are also scheduled through TDD. The IL-76 is often employed for daily

missions. The AN-124 is only used when necessary to handle excessive cargo loads in the

system. These commercial contracts require additional coordination within AMC to request and

accept bids from the commercial carriers. However, the carriers submit their schedule and the

TDD planners are only responsible for inputting these missions into the overall schedule prior to

execution [10].

2.2 Current Planning & Execution Process
The planning process for TDD begins in the CENTCOM Deployment Distribution

Operations Center (CDDOC). The DDOC concept is a fairly new concept within the US military

and is an effort to better organize and coordinate the logistics efforts within a command. The

DDOC mission is to "support the geographic combatant commander's operational objectives by

synchronizing and optimizing the intertheater and intratheater distribution aspects...of material,

and other forms of sustainment in support of the geographic combatant commander missions"



[4]. The DDOC concept was initiated in 2003 to meet the challenges of distribution within

CENTCOM and then integrated within all other commands.

The TDD planning process is still new and has yet to be codified in doctrine. The first

step within the CDDOC is to determine the PAX/PAL requirements for airlift in theater using

AMC assets, meaning large bodied aircraft such as the C-17 or C-5. Personnel input the

requirements into the Intratheater Airlift Request system (ITARS) and must validate these

requirements before giving them to the AMD [10].

2.2.1 Air Mobility Division

Within each major command there exists an air operations center. The Air Mobility

Division is responsible for planning, coordinating, tasking, and executing air mobility missions

for the air operations center. Within the AMD, the Director of Mobility, Chief of the AMD, and

ALCT determine what AMC assets are necessary to facilitate the movement of intratheater

cargo. Personnel within the AMD work with the CDDOC, USTRANSCOM, and the TACC as

necessary to coordinate efforts. Excessive backlog in the system or the nature of the cargo can

require additional assistance from AMC, in the form of large body aircraft, such as the C-17, to

carry oversized or outsized cargo.

To assign cargo on TDD aircraft, AMD creates a spreadsheet document called the cargo

tracker that identifies the loads that are to be moved on AMC assets. Each requirement entered

into the cargo tracker has several attributes:

* Priority level from 1 to 10;

* Estimated number of pallets (PAL);

* Estimated tonnage;

* Number of passengers (PAX);

* Aerial port of embarkation (APOE);

* Aerial port of debarkation (APOD);

* Available Load Day (ALD); and

* Required Delivery Day (RDD).

It is important to note that if a requirement has already been scheduled, it also contains

the day scheduled and the days left until the RDD. These attributes help the planners sort the



requirements when figuring out the next requirement(s) to plan. The cargo tracker is updated

daily and the updates can include new entries or changes to existing requirements, such as a

change in the size or delivery time window.

AMD is also responsible for de-conflicting CENTCOM C-130 movements so that

multiple aircraft are not scheduled to pick up the same load causing wasted capacity. Any lack

of coordination causes frustration both in CENTCOM and in the TACC when an aircraft arrives

at a port to pick up a load that has already been moved or is not there. Many times cargo will be

loaded on an opportune aircraft that happens to have extra capacity and is going to the desired

port. The problem arises when the cargo might not be visible in the Global Air Transportation

Execution System (GATES) as moved, which will be explained later in this chapter. When this

occurs, an aircraft can still be scheduled to pick it up from its previous location, greatly reducing

efficiency and effectiveness.

2.2.2 Theater Direct Delivery: TACC/XOCR

After requirements from AMD are received by TDD in the form of the cargo tracker,

actual mission planning begins. TDD uses several web-based tools to assist them in the mission

planning process: Global Decision Support System II (GDSS2), Consolidated Air Mobility

Planning System (CAMPS), maximum on ground (MOG) tools, and the AMC Policy Matrix.

TDD relies on a graphical representation, the TOMCAT, of all current and future planned

missions as a tool to see mission details in an organized format.

Acff 1

Acft 2

Acft 3

Acft 11

Figure 2-8: Representation of the TOMCAT
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As shown in the previous figure, the TOMCAT is broken down by day and shows

missions as blocks of time in which certain aircraft are unavailable. Each mission also contains

information describing the cargo, start times, permission to land (PPR), diplomatic clearances

(DIP), and any other necessary details, illustrated in Figure 2-9. The TOMCAT provides an

overview of all missions on the schedule. This helps TDD to organize currently scheduled

missions and help make decisions to add or adjust missions when necessary.

MW*n W~m I
I -- -.

Figure 2-9: Example of Mission Information in TOMCAT

The TDD cell within the TACC is compromised of planning and execution functions.

Both planning and execution desks are manned 24 hrs a day, with fewer personnel during the

night shift.

As shown in Figure 2-10, the current TDD mission (msn) scheduling process consists of

planning and execution, with input from several external sources. External inputs include:

1. Regularly Scheduled missions to deliver backlog cargo;

2. List of priority shipments to be scheduled;

3. Theater Data/Constraints; and

4. Higher Priority Conflicts.

\\



Figure 2-10: Current TDD Mission Scheduling Process

2.2.2.1 External Inputs

Backlog cargo levels are constantly monitored and can be accessed through an online

database system called GATES. GATES shows the cargo levels by origin/destination for each

port within the theater. However, GATES is not always accurate due to users in theater not

updating the system. For example, a shipment may sit at a port for multiple days and only be

input into the system shortly before it is scheduled to be loaded onto an arriving cargo aircraft.

Backlog levels are important to TDD as a metric of overall performance. TDD leadership

becomes concerned when backlog levels get excessively high.

TDD coordinates with the AMD to plan regularly scheduled missions to haul backlog

cargo, as shown in Figure 2-10. These missions are created based on backlog cargo levels and

historic TDD mission data. TDD schedules these missions from 1-4 weeks in advance, as

opposed to 1-7 days for missions carrying specific priority cargo. Currently, approximately three



STARS missions run daily to handle backlog cargo. TDD and AMD also coordinate to create a

list of shipments. This list contains priority shipments to be scheduled by TDD.

Several constraints, specific to CENTCOM, limit TDD planning. Each port within the

theater has unique characteristics: operating hours, MOG, and aircraft suitability. A port's

operating hours define when aircraft are allowed to land or takeoff. The MOG level at each port

describes the port's capacity to park and service aircraft. Each port might have unique

circumstances to consider that might alter its suitability for different aircraft. For example, a port

might have a gravel runway that requires re-grading following a given number of landings by

wide body cargo aircraft before operations can resume.

Higher priority external conflicts can require the use of TDD aircraft on a temporary

basis. For example, a conflict can be an aero-medical evacuation or a distinguished visitor.

2.2.2.2 Planning Function

Actual scheduling starts with the mission planners. These personnel are in charge of

adding new missions to the schedule and adjusting the schedule due to unforeseen changes, such

as execution delays, aircraft availability, or higher priority requirements. The bulk of the

planning typically occurs between two weeks and 72 hours before execution.

Similar to domestic airlines' operations, delays in execution ripple through the schedule

causing later missions assigned to the delayed aircraft to be pushed back. In some instances, this

simply changes the start time of the next mission, but sometimes later missions must be

cancelled due to current delays. Aircraft can become unavailable due to maintenance, aircrew

needs, diplomatic clearance restrictions, weather, MOG restrictions, cargo handling maintenance,

or unpredicted cargo fluctuations. Aircraft can be temporarily assigned to other higher priority

missions such as Aerial Evacuation (AE) of wounded personnel.

For example, an aircraft might be reassigned to take injured American troops from a port

in Iraq all the way to Germany. In this case, that aircraft would be unavailable for several days.

The arrival of higher priority requirements on the cargo tracker might also force a mission

planner to reschedule currently scheduled missions in order to accommodate the new cargo.

Mission planners use several rules to try to improve the scheduling process.

* Only schedule 9 of 11 aircraft;

* Leave holes in schedule until 48 hours out; and



* Plan extra slack time between missions.

Based on the historic utilization rates of C-17 aircraft, which are approximately 80% [3],

planners try to schedule a similar percentage of their aircraft. The extra aircraft are only used

when necessary, but often must be used due to unexpected changes. Also, planners try to leave

gaps in the schedule until the day before execution. This allows planners the ability to add a

mission on the day before execution in the required time slot without adjusting any other

missions. Planners try to adapt as best they can when the schedule gets overloaded with more

than the expected number of aircraft unavailable, or if the aircraft scheduled are full and

additional high priority requirements appear in the system.

Planning a new mission to cover existing requirements is accomplished with the greedy

algorithm in which the most important requirements are considered first. Planners generally sort

the cargo tracker by priority and then by time window. The planner references the TOMCAT,

which contains all schedule information for each aircraft as a graphic time line. A mission is

tentatively considered to fill an open time on the schedule, comprised of the required cargo from

the top of the list, along with any other cargo that can fit on the aircraft or be carried by

scheduling additional legs.

The planner runs through several checks to confirm that the mission is feasible. First,

considered are individual limitations for each airfield, such as the airfield's operating hours,

suitability, and any other special considerations. Aircraft can only use an airfield during its

operating hours and each airfield has unique operating hours. Planner's consider MOG at each

airfield and ensure that the mission uses each port when there is sufficient capacity at the airfield

to handle the aircraft. The planned mission time is calculated by estimating the flight times and

turn times at each port.

Planners reference a flight time calculator from CAMPS that uses historic data to

estimate flight times. Estimated port turn times are determined based on what operations are

necessary at each stop and the location of the port. For example, 2 hr 15 min is generally used as

the turn time for a C-17 at a port, but 1 hr 45 min is used for all ports within Iraq. Based on the

mission time, the planner must confirm the mission will not break the Crew Duty Day (CDD),

which is 18 hours for a standard crew and 24 hours for an augmented crew. Permission to land

at each airfield must be requested before the mission starts. Finally, any required diplomatic

clearance must be granted if necessary and planners must send requests to a specific cell within



the TACC that handles this issue. Some clearances require a few days notification and others

take longer to process depending on the specific characteristics of the cargo and the country to be

flown over.

After these steps have been taken, the planner updates the TOMCAT to reflect the newly

added mission and then enters the mission information into the GDSS2, as shown in Figure 2-10.

Planners continue to add missions to the schedule until all current requirements are covered or

aircraft are exhausted.

2.2.2.3 Execution Function

From the moment a mission is within 24 hours of takeoff, to the time the aircraft ends the

mission, the mission is monitored at the execution desk. As mentioned in Section 2.1.1, this

differs from most other aircraft scheduled by the TACC in that most planning and execution

functions are operated by different directorates. Unforeseen changes or delays in the current

missions require adjustments to the schedule. The execution desk coordinates with AMD

personnel and the TDD planner to minimize disruptions to the schedule, while delivering as

much of the required cargo as possible. For example, if an aircraft scheduled to takeoff with

high priority cargo goes down for maintenance, other aircraft scheduled to carry lower priority

cargo can be reassigned if no other options exist.

As a mission on the schedule comes closer to execution, changes require more work.

Diplomatic clearances and permission to land at an airfield must be redone. Air crews must be

notified of changes within 16 hours and flight managers responsible for monitoring individual

aircraft must be notified if changes occur within 6 hours of takeoff. Depending on the

circumstances, a planned mission might not be able to be rescheduled if changes occur. Because

TDD is a small unit, it can be flexible and adjust to the inherent uncertainty in the mission

scheduling process if necessary.

2.3 Motivation for Modeling & Analysis

The objective of TDD is to support CENTCOM and respond to needs for intratheater

airlift. From the perspective of troops in theater, it is critical to have effective airlift. This means

getting the right cargo to the right place at the right time. For TDD, planners are also concerned

with efficiency in terms of utilization rates and number of aircraft used. There is a constant



struggle to balance effectiveness and efficiency. TDD is effective when it can satisfy all of the

requirements given from the AMD in CENTCOM.

2.3.1 Important Metrics

Several metrics are reported weekly as a summary for mission planners within TDD and

the leadership of the TACC. This summary includes the scheduled requirements, scheduled

capacity, delivered requirements, and actual capacity for both passengers and pallets broken

down by day. These metrics show planners the aircraft capacity utilization rate and allow them

to compare how close their planned schedules match up with what actually gets delivered. The

number of aircraft used per day and a forecast of requirements for the next week are also

reported. Additionally, backlog cargo levels for each port are reported and leadership becomes

concerned when these levels are high.

The comparison between planned and actual capacities indicates another unspoken

metric: robustness. Another way to improve effectiveness and efficiency is to build robust plans

that are more flexible to unforeseen change in the system. Planners want to build plans that

minimize the deviation between actual and expected plans. By minimizing disruptions to plans,

some inefficiencies, such as cancelled missions, can be eliminated.

According to TDD leadership, current operations are generally effective at delivering the

given requirements, but there is plenty of room for improvements in efficiency. These

improvements would most likely be reflected as an increase in the backlog cargo delivered or

additional available capacity to haul passenger that would otherwise be assigned to C-130

aircraft.

2.3.2 Relevant Modeling Efforts

In the past year, efforts have been made to improve the planning process for intratheater

airlift. The Naval Postgraduate School built a model that has been used by personnel in the

AMD to aid planners scheduling airlift. The Air Tasking and Efficiency Model (ATEM)

provides routing and cargo decisions so that planners can better maximize utilization of

intratheater cargo aircraft. ATEM has been used to solve weeklong scenarios with up to 30

aircraft, 20 ports, two commodities, five aircraft types, and multiple aircraft configurations [15].



To further improve the model, a heuristic has been developed that has generated similar

results as the IP, but with shorter runtimes. This heuristic does not require the use of any

commercial optimization software and interfaces easily with MS Excel. ATEM still contains

some limitations. Transshipment and throughput over multiple ports is not considered. Also,

cargo is not given with any delivery time windows or priority. However, it has shown

improvements over the previous process of manually building routes.



Chapter 3 Functional Analysis &

Modeling Scope

The previous chapter presented the current TDD mission scheduling process from an

operational perspective. This chapter has four main objectives:

1. Develop a functional analysis of the current TDD mission scheduling process;

2. Describe the input and output we will use for our model;

3. Define the scope of modeling efforts presented in the remainder of this thesis; and

4. Discuss the problem classification and possible modeling approaches.

3.1 Overall Functional Analysis

Currently, the actual mission planning is a labor intensive process. Several aspects of the

mission planners' task can be captured using a mathematical model. For instance, the schedule

for TDD aircraft can be generated using this model that requires fewer flight hours to deliver

required shipments and/or takes less time for planners to create. Shorter solve times allows

planners the time to analyze further the solution and compare alternatives. The improved



solution will better meet operational objectives of efficiency and effectiveness - introduced in

Section 2.3.

The following figures illustrate how a model can simplify the TDD planning process.

Figure 3-1 illustrates an overlay of the functions within the mission scheduling process that can

be captured within a model. We then collapse these functions into a single model, as illustrated

in Figure 3-2.

Figure 3-1: Current TDD Mission Scheduling Process with Model Overlay



Figure 3-2: Improved TDD Mission Scheduling Process

If we consider our optimization model a functional "black box," we can look at the inputs

and outputs for the model. Figure 3-3 illustrates a simplified view of the model in a similar

layout as the entire process illustrated in Figure 3-2.

Figure 3-3: Model Inputs and Outputs Based on Scheduling Process



We can further simplify our functional view.

Regularly scne cule
missions for backlog

External Conflicts/
Execution Changes

List of Shipment Requests

Theater Data/Constraints

Current Schedule

Create/Update
plan of scheduled
missions for TDD

owned aircraft
using optimization

model

TDD Schedule of
Missions by Aircraft

Figure 3-4: Functional View of TDD Mission Scheduling Process

3.2 Model Input/Output Description
Our current modeling does not take into account all relevant inputs from the TDD

scheduling process, but considers the inputs that make up the core problem of scheduling organic

aircraft. The model takes a set of shipment requests and theater specific data and constraints as

inputs. It then outputs a schedule of missions selected to deliver those shipments in order to

maximize the objective. We can further define the inputs and outputs to the model.

Shipment Requests

Theater Data/Constraints

Create/Update
plan of scheduled
missions for TDD

owned aircraft
using optimization

model

TDD Schedule of
Missions by Aircraft

I

Figure 3-5: Functional View of Model

3.2.1 Shipment Requests

Each individual shipment request contains several attributes: origin/destination, priority,

size, weight, time in system (TIS), and a delivery time window. Every origin and destination

rr i I I i I I



corresponds to one of twenty aerial ports in the Middle East. We reference each aerial port by its

International Civil Aviation Organization (ICAO) airport code.

The priority of a shipment corresponds to its importance. For our model we assume

priority levels of one to three, three being the highest priority. Priority 2 and 3 correspond to

medium and high priority cargo, respectively. This cargo is important to deliver and has a

defined time window. Priority 1 cargo corresponds to low priority cargo that is considered

'backlog' cargo. This cargo does not have a defined time window.

The size of a shipment is defined by the number of pallets and total weight. All pallets

have a standard length (108 in) and width (88 in), but their height varies depending on the actual

cargo. For our model, we are interested in the C-17, whose cargo capacity is determined by a

maximum number of pallets (18) and a maximum weight (170,900 lbs). For simplicity in our

model, we only consider size and not weight. It would not be difficult to add a constraint

limiting aircraft loads by weight.

Because some of the shipment requests represent passengers, we must convert the

number of passengers to pallet positions required. AMC uses a conversion table that estimates

the number of pallet positions required for different ranges of passengers.

The time in system (TIS) corresponds to the time at which a shipment request is made

known to TDD and arrives in their system to be considered in the planning process. The delivery

time window consists of an Available Load Day (ALD) and a Required Delivery Day (RDD).

All three time metrics are measured in days. Therefore, the time windows are large compared to

the amount of time necessary to complete a single mission because no regular mission can be

longer than 18 hours, based on the normal crew duty day limit.

3.2.2 Theater Data/Constraints

There are several pieces of information concerning the theater of interest that must be

captured in our model. The flight time matrix has flight times between every port in the theater

(Table 3-1). These flight times are based on estimates derived using a flight time calculator in

GDSS.



ICAO Port 2 3 4 5 7 1 10 11 12 13 1 14 15 16 17 11 19 20

I ORAA AIAsad 0.0 0.4 0.5 0.6 0.8 0.9 1.2 0.6 0.6 0.9 0.8 1.2 1.6 2.4 1.7 1.8 4.6 0.6 3.1 3.3

2 ORAT AlTaq 0.4 0.0 0.6 0.4 0.8 0.6 0.9 0.6 0.5 0.7 0.9 11 1.5 21 1.8 1.8 45 1.3 3.1 2.9

3 ORBD: Balad 0.5 0.6 0.0 0.5 0.7 0.5 1.2 0.6 0.5 0.8 0.8 1.2 1.4 2.3 1.8 1.9 4.4 1.5 2.6 3.6

4 ORBI Baghdad 0.6 0.4 0.5 0.0 0.8 08 0.9 0.7 0.6 0.7 0.5 1.1 1.4 2.2 1.9 1.9 4.4 1.4 2.3 3.5

S ORBM Mosul 0.8 0.8 0.7 0.8 0.0 0.4 1.3 0.3 0.5 1.1 0.8 1.5 1.6 2.6 1.3 2.1 4.6 1.8 3.3 4.2

6 ORKK :lotlc 0.9 0.6 0.5 0.8 0.4 0.0 1.1 0.5 0.4 1.0 0.0 1.4 1.4 2.4 1.4 1.8 4.4 1.9 3.1 3.5

7 ORMM Basrah 1.2 0.9 1.2 0.9 1.3 1.1 0.0 1.5 0.0 04 0.7 0.5 0.5 1.5 0.0 1.1 3.5 1.2 2.1 2.5

I OROW. OWest 0.6 0.6 0.6 0.7 0.3 0.5 1.5 0.0 0.4 1.1 1.0 1.5 1.4 2.4 1.4 1.7 4.4 1.6 2.9 4.1

9 ORSH AlSahra 0.6 0.5 0.5 0.6 0.5 0.4 1.0 0.4 0.0 0.9 0.4 1.3 1.4 2.1 1.5 1.6 4.4 1.7 3.0 4.0

10 ORTL T8alil 0.9 0.7 0.8 0.7 1.1 1.0 0.4 1.1 0.9 0.0 0.4 0.6 0.7 1.7 2.1 1.4 37 1.0 20 3.3

11 ORUI Al ut 0.8 0.9 0.8 0.5 0.8 0.0 0.7 1.0 0.4 0.4 0.0 0.9 0.8 1.7 0.0 1.1 3.8 1.6 21 3.3

12 OKAS Al Salem 1.2 1.1 1.2 1.1 1.5 1.4 0.5 1.5 1.3 0.6 0.9 0.0 0.3 1.2 2.7 1.0 3.1 2.1 1.7 2.5

13 OKBK KCIA 1.6 1.5 1.4 1.4 1.6 1.4 0.5 1.4 1.4 0.7 0.8 0.3 0.0 1.2 2.7 1.1 3.0 2.3 1.6 2.5

14 OTBH AlUdeid 2.4 2.1 2.3 2.2 2.6 24 1.5 2.4 2.1 1.7 1.7 1.2 1.2 0.0 3.3 0.7 3.6 2.5 0.8 2.0

15 LTAG Incirlik 1.7 1.8 1.8 1.9 1.3 1.4 0.0 1.4 1.5 2.1 0.0 2.7 2.7 3.3 0.0 2.3 4.8 0.8 4.1 5.3

16 0S81 Bahrain 1.8 1.8 1.9 1.9 2.1 1.8 1.1 1.7 1.6 1.4 1.1 1.0 1.1 0.7 2.3 0.0 3.7 2.6 1.1 2.4

17. HDAM D)•LouUt 4.8 4.5 4.4 4.4 4.6 4.4 3.5 4.4 4.4 3.7 3.8 3.1 3.0 3.6 4.8 3.7 0.0 5.2 4.1 2.7

1s OJAM Ammon 0.6 1.3 1.5 1.4 1.8 1.9 1.2 1.6 1.7 1.0 1.6 21 2.3 2.5 0.8 2.6 52 0.0 3,0 2.9

1 OMAM Al eData 3.1 3.1 2.6 2.3 3.3 3.1 2.1 2.9 3.0 2.0 2.1 1.7 1.6 0.8 4.1 1.0 4.1 3.0 0.0 1.5

S OOTH Tunrat 3.3 29 3.8 3.5 4.2 3.5 2.5 4.1 4.0 3.3 3.3 2.5 2.5 2.0 5.3 2.4 2.0 2.9 1.5 0.0

Table 3-1: Flight Times for Relevant Ports (hours)

Each aerial port has several attributes. Every port is designated as in or out of the combat

zone. This affects mission planning, refueling capabilities, and turn times. Mission planners will

typically not plan a mission with several landings at ports within the combat zone. Combat

locations do not have refueling capabilities. The estimated turn time in a combat zone is

approximately 1 hour 45 minutes, while an aircraft outside the combat zone will take a total time

of 2 hours 15 minutes without refueling or 3 hours 15 minutes with refueling (Table 3-2).

Most ports have an unlimited capacity in terms of landings allowed per day. Maximum

on ground (MOG) constraints, however, do impact daily mission scheduling. The MOG capacity

of a port defines how many aircraft can by on the tarmac at any one time. Mission planners must

take this into consideration and stagger mission arrivals when necessary.



Airport Combat Fuel? TurnTime w/fuel

Table 3-2: Aerial Port Information Table

3.2.3 Output

The output from our model consists of a schedule of missions. Each mission consists of

several attributes: cargo, aircraft route, duration, start time, and value. The cargo consists of the

set of shipments that are covered by a given mission. The aircraft route defines the sequence of

ports that an aircraft visits during the mission. Mission duration is the total time to complete a

given mission from the moment an aircraft departs its home port to the time it returns to the

home port and is prepared to start another mission. This time includes both the flight time

between ports and the turn time at each port visited. Mission start time defines when an aircraft

is scheduled to leave the home port of OTBH. The mission value is defined as the sum of the

value of all shipments covered by a mission. Each shipment's value is determined by

multiplying its priority by size, measured in pallets.

ORAA Alasad y n 1.75
ORAT AlTaq y n 1.75
ORBD Balad y n 1.75
ORBI Baghdad y n 1.75
ORBM Mosul y n 1.75
ORKK Kirkuk y n 1.75
ORMM Basrah y n 1.75
ORQW Q-West . y n 1.75
ORSH Al_Sahra y n 1.75
ORTL Ta!lil y n 1.75
ORU1 Al_Kut y n 1.75
OKAS Al_Salem n y 2.25 3.25
OKBK KCIA n y 2.25 3.25
OTBH AL-Udeid n y 2.25 3.25
LTAG Incirlik n y 2.25 3.25
OBBI Bahrain n n 2.25
HDAM Djibouti n y 2.25 3.25
OJAM Amman n y 2.25 3.25
OMAM Al Dafra n y 2.25 3.25
OOTH Thumrait n n 2.25

ICAO



3.3 Modeling Scope

Several aspects of the TDD scenarios had to be created to use as data within our models.

We spent time discussing different issues with TDD leadership to make our assumptions and

scenarios more realistic.

3.3.1 Assumptions

To simplify the initial model, we make the following assumptions:

* no transshipment or throughput;

* aircraft configurations not considered;

* reduced priority set;

* aircraft capacity measured by pallet positions;

* normal crew duty day restrictions;

* all cargo converted to estimated pallets;

* missions begin and end at home port of OBTH; and

* no long term scheduled missions to carry backlog cargo.

Neither transshipment nor throughput is allowed in the current model. Throughput is

defined as any cargo that takes intermediate stops to get to its required destination. For example,

cargo is required over O/D pair A-C, but flies on a route over A-B-C. Transshipment is defined

as cargo moves on multiple aircraft to get to its proper destination. Again, for cargo required

over O/D pair A-C, it can travel A-B and get dropped off at B. Another aircraft can then pickup

the cargo at B and deliver it B-C.

There are multiple configurations for an aircraft in which extra seats can be carried at the

expense of pallet positions. We are not concerned with which configuration is used, but must

make sure that the cargo carried can fit onto one of the given configurations. The actual

configuration used is decided during execution.

We reduce the number of priorities down to three. Operationally, priorities range from

one to ten, but the complexity of different priority levels can be captured in the reduced set of

three priority levels. The higher two priorities represent specific requests with ALD/RDD.

Lower priority represents general backlog cargo that does not have a specific ALD/RDD. We

want to try and deliver all cargo, but it is more important to deliver higher priority cargo within



the given time windows and then deliver as much low priority cargo as possible to reduce overall

cargo levels at each port.

Aircraft capacity can be measured by volume and weight. We currently only measure

aircraft capacity by pallet positions. Eighteen pallets can fit inside a C-17. Later, we should also

consider weight.

The crew duty day (CDD) for the C-17 is 16 hrs for a normal crew and 24 hrs for an

augmented crew. An augmented crew consists of two normal crews and can therefore extend the

CDD. We are currently only considering normal crews.

Cargo consists of two types: pallets (PAL) and passengers (PAX). While we currently

use both types of cargo, we convert passengers to an estimated number of pallets using a

conversion table from AMC. Later, we should try to keep the cargo in its original form instead

of converting everything into PAL because these are only estimates.

We assume that all missions begin and end at the home port. This is not always the case

because some missions end before they get all the way to the home port. With the fleet of C-17s

based in Qatar, they require a long positioning leg to satisfy requirements in Kuwait or Iraq.

Missions can end in Kuwait, but a crew must be pre-positioned there to take the aircraft on its

next mission.

Some scheduled missions do not have specific cargo assigned, but rather carry available

backlog cargo on predetermined routes. These missions are scheduled far in advance based on

historical data. We are not considering missions of this type as input to our model.

Several of these assumptions can be relaxed or at least revisited in later models.

3.3.2 Data

One main aspect of data generation was cargo. Because the actual demand for cargo was

not available, we used historic haulage data to represent our demand.

3.3.2.1 Historic TDD Haulage Data

Using historic data from May to October of 2006 for all TDD scheduled missions, we

began to filter the data into something usable for our modeling efforts. Our first step was to filter

out all missions using the B-747, IL-76, AN-124 or C-5 aircraft because we are only considering

scheduling the C-17s. The AN-124, B-747, and C-18 flew a trivial number of mission legs with



all fewer than five legs each over the entire six month period. The IL-76 did fly a significant

percentage of all TDD missions, as illustrated in the table below, but planning these commercial

contracted aircraft is outside the scope of this thesis.

C-17 IL-76

Total 7463 1408

Days Used 184 181

Avg per Day 40.56 7.78

StDev per Day 6.96 1.27

Table 3-3: Flight Legs by Aircraft Type: May-Oct 06

Next, we filtered the data by mission ID code. All TDD missions fly using YT in the

mission ID code. Out of the 7463 mission legs flown by the C-17, we removed 161 not using the

YT designation in the mission ID.

To limit the scope of our modeling, we did not consider all ports visited by TDD aircraft.

We filtered the data by port location, noticing that TDD flew to more than 50 ports over the six

month period. Some of these ports, however, were visited few times. We eliminated all ports

with less than 10 missions for the entire period, limiting our ports to 25. Because we assumed all

missions must begin and end at OTBH, we did not consider any of the flights into and out of

Afghanistan, eliminating the corresponding five ports.

We chose two specific sets of historic hauled cargo to build scenarios. The first set is

from a week's worth of cargo hauled in August 2006 and the second is a week's worth of cargo

in September 2006. According to TDD leadership, August represented an average workload and

September was an above average workload for TDD.

Table 3-4 and Table 3-5 show pallets demanded by port of origin and broken down by

color representing different destinations. The total number of pallets in the August scenario is

2,095 compared to 2,277 in September, representing a 9% increase. Taking a quick look at the

demand data, we can see that a majority of the cargo flows through either OKAS, ORBD, or

OTBH.
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Converting Passenger Requirements to Estimated Pallet Positions

One issue with our data was that cargo came in two types, both passengers (PAX) and

pallets (PAL). For our modeling efforts, we converted all PAX requirements to estimated PAL

positions. As shown in the following table, the C-17 has several configurations that can be used

to carry differing amounts of both PAX and PAL. When carrying all pallets, the C-17 uses a

double row of pallets. When carrying a significant number of passengers, the pallets can be

placed in a single row down the center of the aircraft, allowing for passengers to sit on fold down

seats located on each side of the cargo hold. For carrying only passengers, a center row of seats

can be installed on the C-17, greatly improving passenger capacity.

Config PAX PAL

1 0 18

2 54 11

3 189 4

Table 3-6: C-17 Configurations with PAX and PAL Limits

Several combinations of passengers and pallets can be used. When carrying both

passengers and pallets, planners use tables that estimate the number of pallet positions needed for

a given number of passengers, illustrated in the table below.

PAL 1 2 3 4 5 7 8 9 10 18

PAX 1 5 25 33 43 55 61 71 79 85

Range 4 24 32 42 54 60 70 78 84 189

Table 3-7: C-17 Passenger (PAX) to Pallet (PAL) Conversion Estimates

3.3.2.3 Generating Priorities and Time Windows

For each shipment, we generated priority levels and time windows based on feedback

from TDD leadership. Both priorities and time windows were not included in the historic data

and were not available without accessing classified data. We validated our assumptions to

3.3.2.2



generate these fields with TDD, confirming with leadership that our assumptions provided a

reasonable sampling of the type of planning done within TDD.

TDD deals with priority levels ranging from 1-10. To simplify our model, but still

maintain the operational complexity of different priority levels, we reduced the number of

priority levels from ten to three. We assigned a priority level of one, two, or three to each

requirement, with three being the highest. These priorities were generated using a discrete

uniform distribution, U[1,3]. Priority 1 represents backlog cargo in the system. Priorities 2 and

3 represent higher priority requirements with specific time windows.

For the Time in System (TIS), Available Load Day (ALD), and Required Delivery Day

(RDD), we generated each using historical data, the following table, and equations (3.1).

Priority PAX PAL

1 20+ 20+

2 U[1,2] 4

3 U[1,2] 4

Table 3-8: RDD Generation based on Priority and Cargo Type

The start of each time window, the ALD, was set as the day the cargo was actually

delivered based on historical data. The end of each time window, the RDD, was then set based

on our assumptions outlined in Table 3-8.

As mentioned previously, the Priority 1 cargo represents backlog and does not have a

specific time window. Because our scenarios only cover a single week's worth of cargo, the

Priority 1 cargo effectively has no limiting time window. Based on inputs from TDD, we

modeled higher priority PAX requirements with a time window of either one or two days and

PAL requirements with a time window of four days. We assigned the TIS for each requirement

between two and four days. Each TIS was set by subtracting a randomly generated value using a

discrete uniform distribution, U[2,4], from the ALD.

ALD = HistoricDeliveryDate (3.1)
RDD = ALD + F[priority, type]

TIS = ALD - U[2,4]



3.4 Problem Classification
One key aspect of building a model is understanding how our problem relates to similar

problems that have been solved in the past. Our problem is an extension to the classic traveling

salesman problem (TSP) known as the pickup and delivery problem with time windows

(PDPTW).

3.4.1 Define TSP, VRP, PDPTW

The TSP is a classic optimization problem, defined as follows: "Given an undirected

graph G = (N, E) with n nodes, and costs ce for every edge ee E, the goal is to find a tour (a

cycle that visits all nodes) of minimum cost" [19]. In the last half century, significant progress

has been made to solve larger and larger instances of the TSP and other similar problems.

Currently, no polynomial time approximate algorithm exists for the TSP and other NP-hard

problems [19]. The core of our problem can be viewed as a TSP, assuming a single aircraft that

had infinite range and capacity.

We are interested in a problem that adds complexity to the classic TSP, namely:

* multiple vehicles;

* capacitated vehicles;

* tour duration limits;

* time windows on each load; and

* precedence constraints.

First, we are trying to build tours for multiple vehicles (aircraft) at the same time. For m

vehicles this amounts to solving m TSPs simultaneously. This is commonly referred to as the

vehicle routing problem (VRP). The limitations on our vehicles and nodes make it a capacitated

vehicle routing problem with time windows (CVRPTW). Lastly, we are not concerned with

visiting single nodes, but rather pairs of nodes (ports) that correspond to the pickup and delivery

of each load. This is known as a pickup and delivery problem (PDP).

3.4.2 Dynamic Nature of Mission Planning

As mentioned in Chapter 2, TDD is responsible for not only planning missions, but also

monitoring execution. Each day follows a similar routine. TDD personnel monitor all missions



currently in execution, while others are responsible for updating the current plan with any

necessary changes and additional missions to deliver newly available cargo.

I NewCargo

New Cargo

a I.

Figure 3-6: Daily Re-Planning within TDD

In general simplistic terms, most planning merely adds missions to the schedule to cover

new cargo being available in the system (Figure 3-6). The cargo arrives periodically and this is

known as a time-based trigger. The planning process, however, can rapidly become more

complicated (Figure 3-7) and require immediate re-planning in which currently planned missions

must be moved, adjusted, or deleted. For example, if high priority cargo arrived in the system,

other lower priority missions might need to be delayed in response. Sometimes events occur that

require immediate re-planning to adjust the schedule. These events-based triggers occur when

there is a delay in execution or other unforeseen change, such as an aircraft going down for

maintenance.
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Figure 3-7: Planning while Executing (Re-planning)

3.4.3 Missions as Composite Variables

Conventional approaches to similar problems without time windows have included arc

and path based formulations. We have decided on an approach that uses a different structure to

define our variables. We refer to our variables as composite variables in that each one represents

more information than the decision to choose a given arc, path, single commodity, and vehicle

[15]. Each composite variable represents an entire mission. We define a mission as a unique

combination of shipments and specific route to cover that set of shipments.

The number of variables considered grows exponentially with the number of shipments

considered for each mission. For our problem, the number of all combinations of shipments

considered does get large, but does not become intractable because most missions carry four or

fewer shipments. The following table illustrates a histogram of shipments contained on each

mission, based on historical data. We see that over half the missions only deliver one shipment,

and over 90% of the missions deliver four shipments or fewer.

Events:
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Table 3-9: Histogram of Shipments per Mission from May - Oct 06

Our variable choice requires a significant amount of preprocessing before solving our

problem. For each feasible shipment combination, we build a good route to cover the set of

shipments. However, this then simplifies our model by only having to assign whole missions

and their start times on the schedule. We will further explain our modeling techniques in the

following chapter.
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Chapter 4 Modeling

The previous chapter introduced a functional model and discussed the data and

assumptions used to implement that model. This chapter has three objectives:

1. Describe the our modeling approach;

2. Introduce a MIP formulation and greedy heuristic to assign missions to the schedule; and

3. Discuss improvements and extensions to our algorithm.

4.1 Theater Airlift Model

We introduced the input and output to our model in Section 3.2and now we will describe

how our 'black box' works. As shown in the previous chapter, we again illustrate the overall

model in Figure 4-1.

Shipment Requests

Theater Data/Constraints 10

Create/Update
plan of chosen

missions for TDD
owned aircraft

using optimization
model

TDD Schedule of
Missions by Aircraft

10

Figure 4-1: Functional View of Overall Model



As described in Section 3.4.3, missions are composed of a set of shipments and a specific

route to cover those shipments. The output from our model assigns missions to a specific aircraft

at a given time.

We break down the overall model into its main functions, as illustrated in Figure 4-2. If

we were to consider the entire list of shipments for scheduling at once, the problem becomes

intractable. Because the entire list of shipments is too big to consider at one time, we break the

list of shipments apart and solve a piece at a time. For each subset of shipments, we build a set

of feasible missions to serve as our variables and run an optimization model to select the

missions. The optimization approach solves a mixed integer program (MIP), selecting missions

that satisfy the constraints and maximize the objective function. The last step is to update our

master schedule and shipment list to reflect the newly chosen missions. The algorithm exits the

loop when no shipments remain to be scheduled.

Figure 4-2: Functional Components of Overall Model

4.1.1 Initialization

The first step of our model, after reading in the necessary data, is to initialize the

parameters and state variables. Some parameters deal with operational constraints, while other

parameters adjust model run times and termination conditions.

The main state variable that must be initialized is the master schedule. The schedule

contains all relevant mission data, described later in Section 4.1.3, as well as start times for each



mission, broken down by each individual aircraft on the schedule. Each aircraft's available start

time is determined by the end of the last mission scheduled. We start all scenarios with no

planned missions and all aircraft available; however, it is not difficult to start the algorithm with

some missions already on the schedule or currently in progress.

The important parameters in our model are detailed in the following sections.

Operational Parameters
The operational parameters are:

* Crew Duty Day (CDD);

* Number of Aircraft Available;

* Number of Periods;

* Size of Cargo Sets (Maximum number of Shipments per Mission); and

* Excess Slack Time between Missions.

For our modeling, we only consider normal CDD limits. The number of periods in our

algorithm refers to the number of missions that can be scheduled for an aircraft within the MIP.

A period is defined as block of time required to complete a mission. When setting the number of

periods to consider in the MIP, the number of missions assigned can be no greater than the

number of periods. By increasing the number of periods we greatly increase the size of the MIP.

The maximum size of cargo sets limits the number of shipments considered for a mission. Slack

time is additional time available for an aircraft to stay at the home port. This allows aircraft to

wait before the next mission is scheduled.

Derived Parameters
The derived parameters are:

* Schedule Time, with

ScheduleTime = NumPeriods -(CDD + HomePort _ TurnTime + SlackTime) ; and

* Working List Maximum Length, with

WorkingList _ Length = periods -aircraft -CS _ size -factor.

The schedule time defines the amount of time considered for mission scheduling beyond

an aircraft's current availability. This time is based on several parameters. For example, if we

consider the number of periods equal to two, the excess slack time equal to three, the CDD equal



to 18, and a home port turn time of 3.25 hours, as described in Section 2.2.2.2, then

ScheduleTime = 2 -(18 + 3.25 + 3) = 48.5 hours.

The maximum length of the working list is determined by the number of shipments that

can be scheduled during an iteration, multiplied by a factor larger than one. This gives us a set

of shipments to consider during each iteration, larger than the number we can actually schedule.

For example, if we consider 9 aircraft, 2 periods, 3 shipments per mission, we are able to

schedule 54 shipments. By using a factor of 1.25, then we set the maximum working list length

to be 68.

Run Time Parameter
The run time parameter is the Integer Program (IP) - Linear Program (LP) Relative Gap.

This parameter is specific to the MIP, solved using CPLEX version 10.1.0. The IP-LP relative

gap refers to the relative tolerance between the relaxed LP solution and the IP solution. For

example, if the IP-LP relative gap is set to 0.05, CPLEX will stop when a feasible integer

solution is within 5% of optimal.

4.1.2 Selecting a Subset of Shipments

The next step of the algorithm is deciding which shipments to consider in the current

iteration, illustrated in Figure 4-3. One of the parameters of our model is the maximum length of

the list of shipments, called the working list, considered at each iteration. This list is ordered

based on a shipment's time window and value. Based on all shipments remaining to be

delivered, we add a shipment to the working list if it meets certain criteria, namely:

* At least one aircraft available on the schedule after shipment available load day

(ALD);

* All shipments with earlier required delivery day (RDD) already included on

working list; and

* Current working list less than maximum length.

We continue to add shipments to the working list until we reach the maximum length or

no other shipments exist that meet our criteria. The values are then updated based on the value

function we define within the algorithm. As the deadline of a shipment approaches, it is more

important to select that shipment to be delivered in upcoming missions, reflected by higher



values. The criteria for adjusting the shipment's value can be adjusted by changing the value

function used to define a shipment's value.

Figure 4-3: Functional Description of Working List Selection

During initial experiments, we used a simple combination of a shipment's size multiplied

by its priority to determine its value. Because this value function did not take into consideration

the amount of time left until the shipment was due, our algorithm did not deliver several of the

shipments within the required time window. We have currently defined two functions to

calculate the updated value for shipments, taking into account the time until the RDD of a

shipment.

The first value function (4.1) does not consider size or priority of the shipment and

defines a shipment's value by its position in the working list multiplied by a factor of 10. We

define the following parameters:

n Length of the working list;

i Position of shipment in list from O..n-1; and

si  Shipment i, with attributes: origin, destination, size, priority, TIS, ALD, and RDD

as defined in Section 3.2.1.

si,vaue =10. (n-i) (4.1)



Using the value function (4.1), the last shipment in the list has a value of 10, with each

shipment above it increasing by 10. Because the list is ordered according to shipment RDD, this

corresponds with higher values the earlier a shipment is due.

Equation (4.2) below involves a step function based on the RDD of each shipment plus a

combination of the shipment's size and priority. We define the following parameters:

e - Earliest time an aircraft is available on schedule;

a - Value added if e - si,RDD 1 (day) after first available aircraft, with

a >- + Si,size "Si,priority Vi e WorkingList ;

/ - Value added if 2 • e - si,RDD 1 (day) after first available aircraft, with

f >- Si,size * Si,priority Vi e WorkingList .

Si,value =

e- si, RDD • 1 (4.2)

1 < e - Si,RDD  2

2 < e - si,RDD

The selection of the specific value function used within our algorithm almost surely

results in different missions and shipments scheduled. Other alternative value functions should

be explored in the future.

4.1.3 Composite Variable Generation: Feasible Mission List

After selecting the subset of shipments to be considered and defining their value, we

generate composite variables, each representing a different feasible mission, illustrated in Figure

4-4. We base each mission on a unique combination of shipments. By limiting the maximum

number of shipments that can be considered in any mission, we limit the combinatorial explosion

that will otherwise ensue if we considered all possible combinations of shipments. This

limitation on the number of shipments in any given mission is a reasonable assumption based on

historical operational data, as mentioned in Section 3.4.3, which shows that most missions

contain 4 or fewer shipments.
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Figure 4-4: Functional Description of Composite Variable Generation

Based on the current working list of shipments, we build a set containing all

combinations of shipments, referred to as a cargo set. For each cargo set we then build a route

that covers those shipments. We illustrate route building in Figure 4-5.

Figure 4-5: Building a Route for a Given Set of Shipments
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While we do consider different orderings of shipments while finding the shortest route,

one shipment must be dropped off before the next shipment is picked up. The final route chosen

is suboptimal because we do not consider all permutations of shipment sequencing and because

we are only considering one shipment on an aircraft at a time. We can build improved routes by

implementing route optimization models, which are discussed later in this chapter (Section

4.3.1).

After building the routing for a given combination of shipments, we check to see if that

route is feasible in terms of mission duration. Given normal CDD restrictions, crews cannot fly

missions over 18 hours in length. Therefore, any mission whose duration is greater than CDD

limits is not a feasible composite variable.

Each mission that is saved as a composite variable has several attributes, namely:

* Route;

* Duration;

* Shipments covered;

* Value;

* ALD; and

* RDD.

Based on the route selected, we calculate the estimated mission duration by summing the

associated flight time and port turn time estimates. Based on the shipments covered in a given

mission, we calculate the mission value, ALD, and RDD. The value gained by executing a

mission is based on the sum of all shipment values. The ALD and RDD for each mission

represent the latest ALD and earliest RDD that cover all shipments within a mission.

There are no built in checks for feasibility before an entire mission is built. Therefore,

missions are generated for each possible cargo set, defined and afterwards checked for

feasibility, in terms of mission duration. If we keep track of infeasible cargo sets, we can build

all feasible missions without having to consider the routing necessary for each cargo set. We

will discuss ways to determine a mission's feasibility before actually calculating the routing in

Section 4.3.2.



4.1.4 MIP: Assigning Missions to Aircraft Schedules

After we have generated a set of feasible missions, we must select which missions to

assign to our schedule. Each mission already contains the necessary information of aircraft

routing and which shipments to deliver. Within our constraints, we assign missions that

maximize the value and number of shipments delivered while minimizing the number of aircraft

used, total flight time, and mission finish times.

For our formulation, we use the set of missions generated as described in Section 4.1.3.

We add the null mission to this set of missions. The null mission is defined as a mission having

zero value, zero duration, an unlimited time window, and no shipments. This provides the

algorithm with the option of choosing no mission for an aircraft.

We define periods in the following formulation as "slots" on the schedule in which a

mission can be assigned and do not relate to real time. Periods are defined in such a manner that

only one mission can be assigned to any period. In our scenarios, missions are between 10-20

hours, so each period represents an arbitrary length of -20 hours.

We remind the reader that a shipment's ALD and RDD refer to the available load day

and required delivery day. Because our formulation works in hours, we convert these shipment

time window limits. For all time windows referenced in days, the time refers to 2400 at end of

the given day. For example, if we start day one at zero hours, a shipment with and ALD of five

and a RDD of 7 relates to a time window of [120,168] in hours.

The following notation describes our formulation:

Sets
A set of all aircraft a E A. Each aircraft has an available start time.

B set of all aerial ports ie B

K set of all cargo shipments k K. Each shipment is indexed by {i,j,p,w},

indicating that cargo must move from aerial port i in B to aerial port j in B, has p

priority, and has size w measured in pallets.

M set of all missions m e M where M is the set of feasible missions with respect to

operational constraints plus the null mission. Each mission has an associated

value, duration, and time window, input as data. The shipments covered by each



mission m are defined by the indicator variables 8 k equal to 1 if mission

m e M covers shipment k e K, and equal to 0 otherwise. The routing information

for each mission is not relevant for our MIP.

P set of all periods p e P from 1..n.

Decision Variables
Xm: equal to 1 if mission m M is assigned to aircraft a E A during period

p e P and 0 otherwise;

Bap start time of the mission assigned to aircraft a E A, during period p e P;

y number of shipments delivered;

z total required flight time; and

usedAcfta equal to 1 if any mission is assigned to aircraft a e A and 0 otherwise.

Data
valuem value measured by cargo moved of assigning any given mission m e M;

timem duration of mission m e M ;

ALDm ALD of mission me M defined as latest available load day for all

shipments covered;

RDDm RDD of mission m E M defined by earliest required delivery day for all

shipments covered; and

Sa Available start time of aircraft a e A.

Parameters
scenLength length of current scenario (hrs); and

0, (p, y Non-negative coefficients for different terms of the objective function that

can be adjusted to change the overall objective function.

Indicator Variables
S: equal to 1 if mission m M covers cargo k e K and 0 otherwise; and

ua: equal to 1 if aircraft a e A is assigned at least 1 mission and 0 otherwise.
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The objective of our formulation maximizes the number and value of shipments delivered

while minimizing flight time, aircraft used, and mission start time. Constraint (4.4) requires that

each shipment must be covered by at most one mission. Constraint (4.5) forces the total amount

of time assigned to each aircraft to be less than the amount of time in the scenario. The mission

assigned during the last period must finish before the end of the scenario (4.6). At most one

mission is assigned to an aircraft per period (4.7). Constraints (4.8) and (4.9) specify the order of



mission assignments. For each aircraft, missions must be assigned to the earliest open period

(4.8) and a mission with higher values must be assigned before other missions (4.9). An aircraft

is considered used if it is assigned at least one mission (4.10). For each aircraft, the start time for

each assigned mission must be greater than the start time for the mission assigned in the previous

period plus the duration of the previous mission (4.11). Constraint (4.12) ensures that an

assigned mission's finish time is before the RDD of the mission cargo and (4.13) ensures that an

assigned mission's start time is after the ALD of the mission cargo. All missions must start after

each aircraft is available (4.14). Both mission assignment variables and aircraft usage variables

are binary (4.17). Variables B, y, and z are all real positive numbers (4.18). Constraint (4.15)

with the objective function forces the variable representing shipments delivered to be no greater

than the actual number of shipments delivered. Constraint (4.16) with the objective function

ensures that the variable representing total flight time equals the actual flight time.

This MIP takes a set of missions as input with only aggregate information concerning

their time and value. It outputs the mission assignment/schedule for a set of aircraft over a short

time horizon of one to two days.

A current limitation of our model is that each feasible mission does not consider port

operating hours or MOG constraints. Because the assignment problem does not currently

consider any information 'inside' each mission, it cannot check port operating hours or MOG for

each scheduled mission. For most circumstances, MOG conflicts can be handled during

execution by shifting a mission forward or backward on the schedule to avoid congestion.

However, hard constraints that limit the number of landings during congested periods are helpful

to planners. As mentioned in Section 2.2.2.2, TDD must reference a global MOG tool when

scheduling a mission because MOG capacity is not only affected by TDD missions, but by all

incoming aircraft at a port. MOG constraints can be implemented into the MIP that determines

the scheduling of missions by taking input data from the MOG tool.

Currently, the problem considers a static assignment with no uncertainty. Operationally,

the problem is a rolling horizon with uncertainty. Due to uncertainty, strategies need to be

implemented to make the plan more flexible to change. One example would be to leave at least a

set number of aircraft open during each period.



4.1.5 Updating Schedule and Master List of Shipments

Following the selection of missions to be added to the schedule, we update both the

master schedule and shipment list, as shown in Figure 4-6.

Update: new -.
missions to schedule, - -

aircraft status,
shipments served

Input Data:
*MIP solution of
selected missions

Output Data:
*Master Schedule
*Master Shipment List

Figure 4-6: Function Description of Updating Master Problem

The master schedule contains all necessary mission information as well as the times for

each mission flown for each individual aircraft. As missions are added to the schedule, the

master shipment list is updated to reflect shipments that have already been served so they are not

considered during the following iterations. The model stops when no shipments remain to be

considered for scheduling. If additional shipments remain, the updated schedule and shipment

list is then used during the next iteration of our model to build TDD missions.

4.2 Greedy Heuristic

We have also created a greedy heuristic for comparison with our model. While there are

several ways to construct a greedy algorithm, we decided to use the same idea of composite

mission variables. Instead of using a MIP to select and schedule missions, we use a greedy

heuristic. Another approach is to use a greedy heuristic in the creation of mission variables by

ordering the set of shipments according to their value and assigning the highest valued set of

available shipments. Figure 4-7 illustrates how our greedy algorithm uses the same construct to

SUpdate schedule with
new missions assigned

to each aircraft

Update aircraft
available start time

based on new schedule

Removed served
shipments from master
list of shipments to be

considered



create mission variables, but then assigns them to the schedule individually based on value. This

approach more accurately reflects the current operational process.

Figure 4-7: Overall Model Using Greedy Heuristic

A functional description of our greedy heuristic is illustrated in Figure 4-8. The greedy

heuristic does not consider adding multiple missions to the schedule at once like the MIP.

Instead, the highest valued mission, with shipments not yet covered, is selected. We still

incorporate the idea of a working list of shipments to limit the number of composite mission

variables created.
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Figure 4-8: Functional Description of Greedy Heuristic
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4.3 Possible Improvements
There are several areas in our model where extensions and improvements can be applied

in the future. The following section discusses some of these issues.

4.3.1 Building a Route for a Mission

For each mission, we must generate a tour covering the set of shipments in that mission.

In our model, we use a heuristic to find the minimum cost sequencing for a given set of

shipments to serve with a single aircraft. We can formulate this problem as the classic minimum

cost TSP. The network flow formulation for the TSP describes our example of theater airlift.

We assume that missions must begin and end at the home port. Each shipment must be

less than the aircraft capacity and there is at most one shipment for each origin/destination pair.

This formulation assumes a non-empty set of shipments to be delivered, intermediate stops

before delivering a shipment are not allowed, and that the tour visits does not cycle through the

home port more than once. If a set of shipments exists such that the solution shuttles back and

forth between the home port and another destination to cover a set of shipments, then those

shipments can be split up such into multiple sets that can be solved sequentially.

Sets
N set of all nodes containing a source node, a sink node, and nodes representing an

aerial port corresponding to either the origin or destination of a shipment. The

source node has supply of +1 aircraft and the sink node has supply of -1 aircraft,

and all other nodes have supply of 0.

A set of all arcs (i,j) such that i, j e N. Each arc represents the flight leg between

port i and port j.

A, set of all arcs (i, j) e A such that each (ij) pair corresponds to an origin and

destination of a shipment to be delivered

O(i) set of all i e N such that an arc exists going out from node i to node j.

I(i) set of all i N such that an arc exists going in from node j to node i.

S collection of all proper subsets se S of nodes N such that each set s contains at

least two nodes



Decision Variables
fij flow along arc (i,j) representing the number of times a flight leg from port i to

portj is used

Data
to  total time to fly between arc (i,j) and turn the aircraft at the destination such that it

is ready to begin another flight leg

o source node

d sink node

Formulation
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s.t. fji - Z f 0 Vi N (4.20)
jE I(i) jE o(i)

Efoi =1 (4.21)
jEO(o)

=fid 1 (4.22)
iEl(d)

fi = 1 V(i, j) AS (4.23)

Z fl, +  fiJ >= 2 Vs e S (4.24)
iEs jEN\s ieN\s jes

{0,1 } V(i, j) eA (4.25)

Objective (4.19) minimizes the necessary time for a tour. Constraint (4.20) maintains

conservation of flow through the network. Constraints (4.21) and (4.22) enforce that the aircraft

must flow in from the source node to one of the shipment origin nodes and out from one of the

shipment destinations to the sink node. Constraint (4.23) enforces that the aircraft must cover

the given set of arcs corresponding to shipments. Constraint (4.24) ensures we eliminate

subtours. A drawback of this formulation is that there are exponentially many of these subtour

constraints. We can solve without these constraints. If a subtour is generated, we construct the

necessary constraint to eliminate the subtour and resolve. We repeat adding necessary

constraints until the solution is feasible. Finally, aircraft flows over flight legs must be binary

(4.25).



The solution to this problem gives the set of arcs, or flight legs, contained in the

minimum cost tour for an aircraft to cover a set of shipments. Because the solution is a flow

along a simple cycle, we can find the sequence order by flow decomposition [21], which in this

case is simply tracing arcs forming the cycle starting at the home port and picking each arc in the

solution in an order that connects each one and whose final destination is the home port.

4.3.2 Building Set of Feasible Missions without Generating all
possible Cargo Sets

One way to improve our model is to reconsider the brute-force method of considering all

cargo sets when building missions. Checks on cargo set feasibility can be based on the minimal

forbidden sets (MFS) instead of repeating all necessary calculations to determine feasibility for

each cargo set generated. The MFS is the collection of cargo sets such that each set is infeasible

due to resource limitations and any subset is feasible [19]. After finding a cargo set to be

infeasible, we save it to the MFS if it meets the aforementioned criteria. Any time we run across

another cargo set with any subset already included in the MFS, we immediately reject the current

cargo set as infeasible.

4.3.3 Other Improvement Strategies

One area in which different strategies can be implemented is mission generation. The

default is to consider sets of cargo combinations up to a maximum size. Additional constraints

can force shipments to have the same priority if considered as a cargo combination. This would

create high/low valued missions in terms of cargo. Then, if a mission has to be cancelled, the

low priority cargo missions are the first to be cancelled.

Different objectives can be considered in both the working list generation and the

optimization. For the working list, different value functions for shipments can be considered

based on proximity to due date. For the MIP objective function, one variant is to maximize

shipments delivered, regardless of priority. Other variants include placing different weights on

each priority level.

Mission details can be considered in the assignment problem. This introduces a large

amount of information into the assignment problem, but can ensure that MOG and port operating

hour constraints are satisfied.



4.4 Alternative Approaches

4.4.1 Building a Smaller Set of Missions to Consider

Considering all shipments at once is not tractable and creates a combinatorial explosion

in the number of (mission) variables to consider in the MIP. One approach is to filter the sample

space of missions by solving an IP over subsets of all available shipments to determine good

candidate missions. We can then save the 'good' candidate missions from each run and use this

set of 'good' candidate missions as the domain from which to choose the missions scheduled

over the entire time horizon.

This approach can use similar preprocessing steps as those described earlier to build

missions covering subsets of a set of shipments. An IP formulation of the 'knapsack problem,'

using a given set of mission variables built from subsets of shipments, can be solved to select a

set of candidate missions to add to the sample space for the actual problem. By running this

formulation over different, overlapping subsets of all shipments, we form the sample space of

candidate missions from which to select.

The following formulation solves for the best set of candidate missions to add to the

master problem sample space. Each mission contains the information of aircraft routing and

which shipments to deliver. We select candidate missions subject to limits on the amount of

available aircraft hours to cover a given set of shipments. The objective maximizes priority

shipments delivered while minimizing mission duration.

Sets

B set of all aerial ports i in B

K set of all cargo shipments ke K. Each shipment is indexed by {i,j,p,w},

indicating that cargo must move from aerial port i in B to aerial port j in B, has p

priority, and has size w measured in pallets.

M set of all missions me M where M is the set of feasible missions with respect to

operational constraints. Each mission is indexed by {R,n}, indicating that a

mission contains a unique shipment combination R and uses tour n. The tour

used for each mission is the shortest feasible path to cover all of the shipments in

a given mission.



Decision Variables

xm: equal to 1 if a mission is selected and 0 otherwise.

Data
valuem value based on amount of cargo moved of assigning any given mission

me M;

durationm length of mission m •M ;

p maximum number of candidate missions to select; and

0, V Non-negative coefficients for different terms of the objective function that

can be adjusted to change the overall objective function.

Indicator Variables

m : equal to 1 if mission m e M covers cargo k e K and 0 otherwise.

Formulation

Max 1 ("- value, - V -durationm) - xm (4.26)
mE M

s.t. Xm- P (4.27)
mEM

x {0,11} (4.28)

The objective is to selects the number of missions. The missions selected must be fewer

than the number of candidate missions desired to be added to the sample space of the master

problem (4.27) and mission variable is binary (4.28). We solve this problem by ordering the

candidate missions according to their objective value and then use a greedy selection of non-

negative to select up to p missions.

4.4.2 PDPTW Formulation

Another approach is to consider a network formulation based on the pickup and delivery

problem with time windows (PDPTW). Recent models developed by Ropke, Cordeau, and

Laporte have solved instances of the PDPTW with up to eight vehicles and 96 requests [19].



Their problem contained similar constraints dealing with vehicle capacity, pairing and

precedence based on origin/delivery of shipments, and time windows. Their algorithm uses a

branch-and-cut method. Additional inequalities are implemented to strength the bounds on the

formulation.

Using this formulation likely is not be an efficient way to solve our scenarios, which have

over 250 requests and at least nine vehicles. However, it can possibly be implemented on

subsets of shipments similar to how we have run each iteration using a working list of shipments.



Chapter 5 Results and Analysis

The previous chapter described the modeling techniques used to implement our

algorithm. This chapter has three objectives:

1. Define the metrics and objective function(s) used to analyze our models;

2. Discuss the parameter settings used in experimentation; and

3. Describe experiments performed and discuss the results.

5.1 Metrics
As mentioned in Section 2.3.1, TDD is concerned with the efficiency and effectiveness of

their operations. To gauge the performance of our models in both areas, we will use several

metrics.

5.1.1.1 Efficiency

We measure efficiency from the perspective of TDD. By decreasing the values of the

following metrics while delivering a given set of shipments, TDD is able to better utilize their

main assets, the C-17s, to either carry additional cargo or be tasked for other important

assignments. The metrics of interest to us are:

* Total flight time;



* Average aircraft finish time;

* Number of flight legs; and

* Number of positioning legs.

The metrics listed above give us several ways to measure the efficiency of our solution.

Less flight time in a solution translates to a more efficient use of aircraft. Aircraft finish time is

based on the time at which an aircraft completes all scheduled missions and the average aircraft

finish time shows when aircraft should be available for other uses, such as operating future

missions. We note that the average aircraft finish time might not vary significantly, even if all

other metrics seem to suggest a more efficient solution. The aircraft finish time is likely

constrained by certain shipments that have later availability dates.

We also look at the flight legs used in a solution. A positioning leg is defined as any

flight leg in a mission in which no shipments are carried. The aircraft is only being positioned to

pick up shipments on following flight legs or returning to its home port. Solutions with fewer

positioning legs provide less flight time spent without carrying any cargo and increase flight time

available for missions.

We have not included the aircraft capacity utilization rate in our list of metrics because it

does not vary in our modeling approach. For each mission, shipments must be delivered before

another shipment is picked up. Because only one shipment is on an aircraft at any time, the

capacity utilization rate is the same for any solution as long as all shipments are delivered. Kiel-

doesn't utilization get affected by the amount of empty repositioning that goes on? If extensions

to our model are applied that include multiple shipments on an aircraft at any one time, then it

would make sense to also track the aircraft capacity utilization as a measure of efficiency.

5.1.1.2 Effectiveness

We measure effectiveness from the perspective of the war fighter requesting airlift via

TDD. If TDD is unable to deliver all requested shipments, it will probably result in further

delays and the need to find some alternate means for delivery. The effectiveness metrics of

interest to us are:

* Percent of available shipments delivered; and

* Hold time for moved shipments.



Measures of effectiveness include the percent of available shipments moved and the hold

time for these shipments. The hold time for moved shipments within the necessary time windows

is the primary measure of effectiveness. In our models, if all aircraft are scheduled beyond a

shipment's time window, the shipment is removed from the list of shipments to be considered

and shown as not delivered in the final solution.

If all shipments are delivered, we can compare the hold time for each shipment. We

define hold time as the time starting when a shipment is available to the time it is delivered to its

destination. A shipment's hold time includes both the wait time until a shipment is picked up

and the transit time after it is picked up until the shipment reaches its destination. We calculate

the hold time for all shipments and also broken down based on shipment priority.

5.1.1.3 Additional Metrics

Planners are concerned not only with the efficiency and effectiveness of plans, but also

time necessary to actually build plans, as well as the chance that a plan will have to be adjusted

in the future. This leads to the following additional performance metrics:

* Algorithm run times;

* Slack time between missions; and

* Mission duration.

We also include additional metrics that measure computational performance and solution

robustness. Algorithm run times measure the amount of time it takes to solve our model using a

Dual Core 3.6/3.59 GHz Intel Pentium 4 processor with 1 GB of RAM.

Slack time between missions and mission duration are two metrics that can be used to

examine the robustness of a solution. Solutions with longer average slack times between

scheduled missions are less likely to need to be rescheduled due to unforeseen circumstances that

cause missions to be delayed. If the average mission duration is near the crew duty day (CDD)

limit, a delay can cause the crew to violate the CDD and warrant the use of an augmented crew

that has an extended CDD.



5.2 Objective Function
The objective function used in the MIP drives which feasible missions are added to the

schedule at each iteration of our solution algorithm. This objective, as shown again in Equation

5.1, maximizes the total value of shipments delivered as well as the number of shipments

delivered, while minimizing total flight time, aircraft used, and mission end time.

Max . (valuem . x,,~, )+ (.- y) - (y. z) -" (usedAcft a + ( ap Bap,, )
me M aE A pE P aE A

Equation 5.1: Objective function of MIP Mission Scheduler

The direct benefit of assigning a specific mission to an aircraft and period, as decision

variable x, is defined by value,. The valuem for each mission m is recalculated every iteration

using the value function and is dependent on the shipments contained within the mission. As

described in Section 4.1.2, the value of each shipment is dependent on the time remaining until

the end of the shipment's time window as well as the shipment's priority and size.

Variables y and z are derived variables based on the missions assigned. Decision variable

y defines how many shipments are being delivered. Decision variable z defines the total flight

time required.

The decision variable usedAcfta is defined to be one if any mission is assigned to a

specific aircraft a. Therefore, the model will choose to use as few aircraft as possible if not all

aircraft are needed. By minimizing mission start time, Ba,,,=n missions are all assigned as soon

as possible on the schedule.

We set the objective function so that delivering high-valued shipments and delivering

more shipments overall is much more important than efficiency , as measured by total flight

hours. However, we can modify objective function coefficients to reflect different priorities and

levels of importance for each term of the objective function.

5.3 Parameters
As described in Section 4.1.1, there are model parameters that are set at initialization.

The purpose of this section is to examine the effects of changing some of these parameters. In

our testing, we change max periods scheduled per iteration (parameter P3), max cargo set size



(parameter P4), working list percent of possible shipments (parameter P6), and working list

value function (parameter P7). The effects due to these changes are summarized in the

following sections. We change each parameter individually and compare results against the

results from the baseline setting shown in Table 5-1. We compare both operational metrics and

computational performance.

P1: CDD 18 (hrs)
P2: Aircraf Available 9
P3: Max Periods Shceduled per Iteration 1
P4: Max Cargo Set Size 4
P5: Excess Slack Time Available 2 (hrs)
P6: Working List % of Possible Shipments 125%
P7: Working List Value Function FCT-2
P8: IP-LP Relatiwe Gap 0%

Table 5-1: Model Parameter Descriptions and Baseline Settings

5.4 Greedy Heuristic Evaluated on Historic Operational
Data

We define SCENARIO-1 as the shipment data for a week of TDD historical operational

data from August 2007, as described in Section 3.3.2. Using baseline settings, we ran our

greedy heuristic GRD-1 on SCENARIO-1. We see from the results, shown in Table 5-2, that all

shipments are delivered and the mean finish time for aircraft is during the seventh day of the

scenario.



Efficiency :Greedy-2
Total Flight Time (hrs) 607.15
Mean Aircraft Finish Day (days) 7.61
Flight Legs 437
Positioning Legs 165
Effectiveness
Priority 3

Percent Delivered 100%
Mean Delay (hrs) 10.65

Priority 2 Shipments
Percent Deli~ered 100%
Mean Delay (hrs) 9.97

Priority 1 Shipments
Percent Delivered 100%
Mean Delay (hrs) 17.12

Additional Metrics
Run Time (sec) 316.20
Mean Mission Duration (hrs) i 13.94

Table 5-2: Greedy Heuristic Overall Metrics

In Figure 5-1 we show the distribution of hold time by each shipment. The lines

represent the upper and lower quartiles of responses and the boxes represent the inner quartile,

with the median show as an asterisk.
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Figure 5-1: Boxplots for each Shipment in Hours by Priority Level

5.5 Greedy Heuristic vs. Optimized Model
Hypothesis: The optimization-based model will improve operational metrics.



Results: Comparing the greedy heuristic (GRD-1) to the optimized model (OPT-1), we

see improvements in both the shipment hold time and flight times. Figure 5-2 shows that

shipment hold time improved for all priority levels with the greatest improvement in terms of

mean hold time of the lowest priority shipments. The maximum hold time for high priority

shipments dropped from 54 hours to 25 hours. All shipments were delivered in both cases.
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Low (1) Low (1) Medium (2) Medium (2) High (3) High (3)
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Figure 5-2: Comparison of GRD-1 and OPT-1 Shipment Hold Time by Priority Level

A more significant result than the decrease in shipment hold time is the improvement in

efficiency metrics for OPT-1 compared to GRD-1. Using OPT-1 we find a 20% decrease in the

number of flight legs and the corresponding total flight time. Most of this improvement is due

to the large decrease in required positioning legs.



Efficiency OPT-1 GRD-1
Total Flight Time (hrs) 480.78 607.15
Mean Aircraft Finish Day (days) 7.45 7.61
Flight Legs i 347 437
Positioning Legs 75 165
Effectiveness
Priority 3

Percent Delivered 100% 100%
Mean Delay (hrs) 8.20 10.65

Priority 2 Shipments
Percent Delivered 100% 100%
Mean Delay (hrs) 7.59 9.97

Priority 1 Shipments_ _. ....................

Percent Delivered 100% 100%
Mean Delay (hrs) 12.22 17.12

Additional Metrics
Run lime (sec) 976.46 316.20
Mean Mission Duration (hrs) 11.83 13.94
Mean Mission Slack Timei (hrs) 5.55 2.31

Table 5-3: OPT-i vs. GRD-1 Overall Metrics

5.6 Adjusting Optimization Model Parameters

In the following sections, we discuss the different results using OPT-1 with different

parameter settings.

5.6.1 Available Aircraft (P2)

Hypothesis: As this parameter for number of available aircraft is decreased, effectiveness

metrics will get worse while efficiency metrics should stay relatively constant.

Results: The decrease in the number of aircraft available had a significant effect on both

sets of metrics. As expected, shipment hold times for all priority levels increased with fewer

aircraft available (Figure 5-3). Because we put more value on higher priority shipments, the

high priority shipments were not as strongly affected as lower priority shipments.



Mean Delay for Priority 2 (rned) Shipments vs.
Available Aircraft
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Mean Delay for Priority 1 (low) Shipments vs
Available Aircraft
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Mean Ddelayfor Priority 3 (high) Shipments vs.
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Figure 5-3: Effect of Available Aircraft on Hold Time by Shipment Priority

An unexpected result was the non-monotonicity in total flight time with the decrease in

available aircraft (Figure 5-4). While there was less than a 1% change between nine and seven

aircraft, total flight time for six aircraft increased 3.5% compared to the baseline. The slight

initial decrease makes sense due to the baseline model having enough slack in the schedule to

plan missions that are more efficient, but deliver some shipments sooner than otherwise possible.

The increase in flight time for six aircraft is mainly caused by more shipments being

constrained by their RDD. This further constrains the missions that must be chosen to cover all

shipments within their time windows.
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Figure 5-4: Total Flight Time vs. Available Aircraft

Using six aircraft, our model was not able to deliver all shipments within their respective

time windows. As shown in Figure 5-5, the mean slack time between missions significantly

decreased. In real-time execution, this change could cause significant problems as mission

delays affect subsequently scheduled missions. With little slack in the schedule, more re-

planning is necessary and some missions are cancelled all together. There is a constant tradeoff

in terms of reduced slack time caused by increased aircraft utilization versus increased slack time

to increase overall schedule robustness. The most important metric is successfully delivering all

required shipments.
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Figure 5-5: Mission Slack vs. Available Aircraft

5.6.2 Max Cargo Set Size: Number of shipments considered per
mission (P4)

Hypothesis: As this control parameter is increased, more efficient composite variable

missions can be built, improving operational metrics while significantly increasing run times due

to combinatorial complexity.

___ __



Results: We were unable to examine the results of our model setting the max cargo set

size (P4) above four. When setting P4 to five, our computer ran out of memory during the first

iteration while trying to construct all possible missions during composite variable mission

generation, only producing the number of variables generated.

We can examine the number of composite variable missions generated setting P4 from

two to five. As shown in Figure 5-6, the number of possible missions grows exponentially while

the number of feasible missions grows at a slower rate. As P4 is increased, fewer missions are

feasible due to mission duration restrictions. Of the 3.5 million missions generated when P4 is

set to five, only 72,000 are feasible (Table 5-4).

2 3 4 5

Max Cargo Set Size (Shipments per Mission)

-- Generated - Feasible

Figure 5-6: Logarithmic Comparison of Generated Mission Variables vs. Feasible Mission

Variables using different Max Cargo Size (P4) during Single Iteration

Total Msns
2 253
3 6017
4 164220
5 3505050

Table 5-4: Generated vs. Feasible Missions using

Feasible Msns
247

4200
23700
72000

different Max Cargo Size (P4) during Single

Iteration



As expected, operational metrics improved as P4 increased. The improvement stemmed

from missions containing more shipments, which resulted in far fewer required positioning legs

to deliver all shipments (Figure 5-7).
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Figure 5-7: Positioning Legs vs. Max Cargo Set Size (P4)

5.6.3 Working List Percent of Possible Shipments (P6)

Hypothesis: As this control parameter, the working list percent of possible shipments, is

increased, there are more shipments and therefore missions to choose from during each iteration

of the MIP, translating into an improvement in operational metrics while increasing run times

due to a larger sample space.

Results: There were not any strong trends in performance as we increased this parameter

except for the increase in run time due to the additional model and variable generation

complexity at each iteration of the model (Table 5-5 and Figure 5-8).



Total Flight Time (hrs) 496.62 480.78
Mean Aircraft Finish Day (days) 7.49 7.45
Flight Legs 351 347
Positioning Legs 79 75
Effectiveness
Priority 3 _

Percent Delivered 100% 100%/
Mean Delay (hrs) 8.22 8.20

Priority 2 Shipments ...... ..... .
Percent Delivered 100% 100%
Mean Delay (hrs) 8.01 7.59

Piority 1 Shipmrents
P.ercent Deliwred 100% 100%
Mean Delay (hrs) 14.47 12.22

Additional Metrics
Run Time (sec) 565.34 976.46
Mean Mission Duration (hrs) 11.77 11.83
Mean Mission Slack (hrs) 5.13 5.55

486.18
7.50
346
74

100%
8.71

100%
8.46

100%
11.71

1444.60
11.71
4.97

Table 5-5: General Metrics while Adjusting Working List Percent of Possible Shipments
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Figure 5-8: Run Time vs. Working List %

Further experimentation with different value functions might produce different results

when adjusting the working list percent parameter. Using a value function with fewer weight on

shipments that have an immediate RDD, the model could pick different available shipments if

the working list percent parameter is increased above 100%.

5.6.4 Value Function: FCT-1 vs. FCT-2 (P7)

Hypothesis: As the value function is changed, there could be differences in the overall

solution due to changes in function parameters. In our case, FCT-1 only sets value based on time

until a shipment's RDD and does not take into account a shipment's priority. FCT-2 places a

i

I

I

Efficiency 100% 125% (Baseline) 150%



much higher weight on shipments due within the next 48 hours and also takes into account a

shipment's priority. FCT- 1 will result in improved efficiency metrics compared to FCT-2. FCT-

2 will result in lower hold time for higher priority shipments compared to FCT- 1.

Results: Contrary to our hypothesis, FCT-1 did not result in higher efficiency metrics in

terms of flight time or number of flight legs. As shown in Table 5-6, the efficiency metrics for

FCT-1 were actually slightly worse. Using FCT-2 did indeed lower hold time for high priority

shipments, as well as all other shipments, but not a significant amount.

Efficiency ;FCT-1 FCT-2
Total Flight Time (hrs) 490.22 480.78
Mean Aircraft Finish Day (days) 7.47 7.45
Flight Legs 352 347.00
Positioning Legs 80 75.00
Effectiveness
Priority 3 _ .

Percent Delivered 100% 100%
Mean Delay (hrs) 8.46 8.20

Priority 2 Shipments
Percent Delivered 100% 100%
Mean Delay (hrs) 7.86 7.59

Priority 1 Shipments
Percent Delivered 100% 100%
Mean Delay (hrs) 13.40 12.22

Additional Metrics
Run Time (sec) 775.64 976.46
Mean Mission Duration (hrs) 12.20 11.83
Mean Mission Duration (hrs) 5.42 5.55

Table 5-6: Value FCT-1 vs. FCT-2

FCT-1 does not place a high premium on how soon a shipment is due and does not

consider a shipment's priority level. We hypothesized this would result in more instances in

which alternate shipment combinations were considered to build missions. Although we

hypothesized that using the two different value functions would have an effect on the results of

the model, we did not observe any significant changes.

5.6.5 Max Periods Scheduled per Iteration: 1 vs. 2 periods (P3)

Hypothesis: As the maximum periods scheduled per iteration control parameter is

increased, we expect operational metrics to improve and run times to increase due to problem

complexity.



Results: We compared setting parameter P3 to one and two periods with seven aircraft

and an IP-LP relative tolerance of 1% to improve solution time for the two period case. By

changing our settings to multiple periods, we consider scheduling subsequent missions for each

aircraft, up to the number of periods, at each iteration of the model. We hypothesized that using

multiple periods for our model should improve operational metrics overall, but this was not the

case.

The change in P3 demonstrates the trade-offs between shipment hold time, flight time,

and overall aircraft finish time. As shown in Table 5-7, using two periods, as opposed to a

single period, resulted in more efficient scheduling of aircraft missions, using fewer positioning

legs, with a 5.8% reduction in overall flight time.

Efficiency
Periods

2 1
Total Flight Time (hrs) 524.67 557.12

I. . . . . . .'.····-;·;---;·- ..- - ___________________________
Mean Aircraft Finish Day' (days) 8.91 8.12

I. . . . . .. .

Flight Legs I 360 383
IPositioning Legs 1 88 1 111

Effectiveness
Priority 3

Percent Deliered 100% 100%
Mean Delay (hrs) 13.37 13.68

Priority 2 Shipments
Percent Deliered 100% 100%
Mean Delay (hrs) 14.44 12.80

Priority 1 Shipments
Percent Delivered 100% 100%
Mean Delay (hrs) 74.24 33.27

Additional Metrics
Run Time (sec) 13383.30 78.54
Mean Mission Duration . (hrs) 10.38 11.07
Mean Mission Slack - (hrs) 2.65 0.50

Table 5-7: 2 vs. I Period(s) Scheduled per Iteration

However, along with increased efficiency were additional hold times for priority 1 cargo

(Figure 5-9). Using two periods, the overall aircraft finish time increased by over half a day,

representing the amount of time during which another mission could be flown. Also important is

the significant difference in run times. Using a single period, the model took a little over a

minute to finish, while using two periods the model took nearly 4 hours.
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Figure 5-9: Comparison of Shipment Hold Time by Priority Level for P3=2 vs. P3=1

5.7 Summary
In this chapter, we discuss the benefits of using an optimized model versus a greedy

heuristic in the mission scheduling process for TDD. The optimized approach provides

improvements in both efficiency and effectiveness. We also explore how some of the possible

adjustments to the optimized model affected both operational performance and model run times.

Operationally, there are advantages to incorporating tools, such as our optimized model, into the

planning process. Our model can produce initial results much faster than can be done by hand

and with improved operational metrics. Implementing our model gives planners the opportunity

to compare different possible solutions and can improve the overall process.



Chapter 6 Summary and Future

Work

6.1 Thesis Summary

In this thesis we explore theater airlift operations for CENTCOM involving C-17 aircraft.

We describe the current mission planning and execution process used by Theater Direct Delivery

(TDD). After discussing important metrics, we introduce a model to improve the mission

planning process. This model gives planners an initial solution for the C-17 fleet stationed at

Qatar.
We analyze this model, comparing it to a greedy heuristic, and discuss the results due to

changes in model parameters. The solution to the optimized model showed improvements in

both efficiency and effectiveness metrics compared to the solution generated using a heuristic

scheduling approach.



6.2 Future Work

The contributions in this thesis only represent one step in better solving problems such as

planning military airlift. We summarize some recommendations for improvements and

extensions as future work.

* Incorporate dynamic shipment arrivals. For our models, we did not incorporate the time

in system (TIS), instead assuming that all shipments were visible in the system at the

beginning of the scenario. By incorporating TIS for each shipment and then comparing

the performance of operational metrics compared to scenarios with the assumption of

perfect information, we could determine the decrease in performance due to uncertainty

of upcoming shipments. We could test strategies to improve plans taking into account

this uncertainty.

* Implement ability to re-plan currently scheduled missions due to new information. When

shipments are given as dynamic arrivals into the system, the idea of re-planning based on

new information becomes a requirement.

* Incorporate and evaluate robustness in terms of aircraft availability. In our models, we

explore changing the number of available aircraft, but assume aircraft availability is

known a priori and does not change. However, aircraft availability is constantly

changing within TDD due to maintenance or higher priority taskings. A better approach

might be to incorporate robustness using Bertsimas/Sim [15], or other, approaches to

handle uncertainty in the number of available aircraft.

* Explore improvements in composite variable generation. Limits in variable generation

hampered our model. As mentioned in Section 4.3.2, breadth first searches incorporating

minimum forbidden sets could improve variable generation time and memory usage by

eliminating the need to generate the entire set of possible missions, of which only a small

percentage are feasible.

* Extend planning to include commercial contracts and other organic aircraft in theater.

Our model only looks at TDD scheduled C-17s. This is only a fraction of all airlift

scheduled in CENTCOM. Considering scenarios with other organic aircraft, as well as

commercial contracts, provides a much more integrated plan. Improvements in modeling

techniques are necessary to incorporate more aircraft.



* Implement additional operational constraints. Our model did not consider either

maximum on ground (MOG) capacity at each port or port operating hours. Implementing

these operational constraints into the model provides a solution that better deals with the

complexities addressed daily by TDD planners.

* Improve mission routing and shipment loading. One way to improve our model is to

consider more options during mission variable generation. We describe a simple

improvement in Section 4.3.1that finds the optimal routing given the same rules for

shipment loading. This idea can be expanded into a formulation that fits multiple

shipments onto a single aircraft at one time, if possible, and considers transshipment.



Appendix A: Glossary of Terms

ALCT

ALD

AMC

AMD

APOD

APOE

ATEM

CAMPS

CAOC

CDD

CDDOC

CENTCOM

DIRLAUTH

EMTF

GATES

GDSS

ICAO

ITARS

Msn(s)

MOG

MFS

PAL

PAX

RDD

TDD

USTRANSCOM

TACC

XOC

Airlift Control Team

Available Load Date

Air Mobility Command

Air Mobility Division

Aerial Port of Debarkation

Aerial Port of Embarkation

Air Tasking and Efficiency Model

Consolidated Air Mobility Planning System

CENTCOM Air Operations Center

Crew Duty Day

CENTCOM Deployment Distribution Operations Center

(United States) Central Command

Direct Liaison Authorized

Expeditionary Mobility Task Force

Global Air Transportation Execution System

Global Decision Support System

International Civil Aviation Organization

Intratheater Airlift Request System

mission(s)

Maximum on Ground

Minimum Forbidden Set

pallets

passengers

Required Delivery Date

Theater Direct Delivery

(United States) Transportation Command

Tanker Airlift Command Center

Command and Control Directorate (TACC)



Director of Operations (TACC)XOZ
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