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Abstract

The ability to engineer the optical properties of the semiconductor nanocrystals by controlling
their growth - size, shape, materials, coatings, etc - makes them appealing for many optical
applications. Despite the impressive development of nanocrystal manufacturing capabilities,
there are still many basic questions about how to model nanocrystals that have yet to be
adequately answered. This thesis investigates three important optical properties: 1) the
temperature dependence of the bandedge absorption energy Eabs(T), 2) the temperature
dependence of the Stokes shift, and 3) the homogeneous linewidth. We relate these properties to
various nanocrystal applications with particular focus on nanocrystal based microbead barcodes.

We present measurements of the temperature dependence of the absorption and emission spectra
from 5 sizes of CdSe/ZnS nanocrystal ensembles. Our measurements show that dEabs(T)/dT is
similar to the value for bulk CdSe for all sizes of nanocrystals, in contrast with previous
experiments. We develop a model that can explain measured values of dEabs(T)/dT in both
epitaxial quantum dots and colloidal nanocrystals of different materials. We interpret our
measurements of the temperature dependence of the Stokes shift and linewidth, along with single
nanocrystal fluorescence, from the perspective of two models based on different physical
processes: 1) the fine structure of the bandedge exciton and 2) exciton-acoustic phonon scattering.
We find that neither theory is able to adequately explain our measurements in isolation. We
conclude that a comprehensive model that includes both physical mechanisms is required to
explain our experimental results.

We present a detailed analysis of nanocrystal based microbead barcodes for high throughput
biological screening. We make design decisions for how such a system would operate, develop a
Monte Carlo simulation of the expected noise, and investigate different coding architectures. We
investigate this system from the perspective of information and coding theory. We develop a
Monte Carlo code generation algorithm to evaluate the information capacity of this system.

Thesis Supervisor: Rajeev J. Ram

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

Over the last decade scientists have developed the ability to grow semiconductor nanocrystals

with unprecedented control over size, shape, composition, and surface chemistry. Figure 1-1

shows what a nanocrystal (NC) with a capping layer looks like schematically. A nanocrystal is

typically composed of I00s to 1 000s of atoms, has a diameter of 1-10 nm, and is considered to be

a type of quantum dot. Since NCs are much larger than atoms, yet much smaller than bulk

materials, their electronic, optical, and mechanical properties are somewhere between the two

regimes. The ability to engineer the optical properties of the NCs by controlling their growth -

size, shape, materials, coatings, etc - differentiates them from organic dyes, making NCs

appealing for many optical applications.

Core-Shell Coating

Core Nanocrystal

Figure 1-1: Schematic of a nanocrystal made of two types of semiconductor, a core material and a
shell material. (from [1]) The colored spheres represent different types of atoms. Nanocrystals
are also called colloidal quantum dots.

When a direct bandgap semiconductor bulk material is illuminated with UV light,

electrons are excited from the valence band to the conduction band. The positively charged hole

that remains in the valence band is attracted to the negatively charged electron in the conduction

band via the Coulomb interaction. The electron and the hole bind together to form a quasi-
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particle called an exciton which eventually recombines and emits a photon. In bulk CdSe, an

exciton has a Bohr radius of R-5.6nm [2] and emits red light (X-680nm). However, a NC often

has a radius that is smaller than the bulk exciton radius, and this changes its optical properties

through quantum confinement.

In a NC, the quantum mechanical wavefunctions of the electron and hole are compressed

by the confining walls of the core. Because of this compression, extra energy (quantum

confinement energy) is required to generate an exciton in a NC versus in bulk. This situation is

analogous to the familiar quantum mechanical analysis of a particle in an infinite square well; As

the radius of a NC decreases, the photon energy E=2nhc/X required to create an exciton increases.

CdSe NCs can be engineered to emit light across the entire visible spectrum. Figure 1-2 shows

both the absorption and emission spectra for different sizes of CdSe NC ensembles.

0

E
-J

2.0 2.5 3.0

Energy (eV)

0

0

3.5

Figure 1-2: Absorption (solid) and emission (dashed) spectra for CdSe NCs with different radii at
T=10K. (from [3]) The Stokes shift is the peak absorption minus the peak emission energy.

Despite the impressive development of NC manufacturing capabilities, there are still

many basic questions about how to model NC optical properties that have yet to be adequately

answered. This is because the physical mechanisms that determine NC optical properties are not
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well understood. It is difficult to predict a priori the optical properties of a semiconductor NC

made of a particular material and size. What is the temperature dependence of the exciton

absorption energy? What causes the Stokes shift? What is homogeneous linewidth of a single

NC? Developing a physical model to explain these NC properties will hopefully allow for a more

intelligent NC design - in terms of core/shell material, NC size, NC shape, surrounding matrix,

etc - for specific applications. Even for CdSe NCs, the most studied of all NC technologies, the

answers to these questions have not been well established.

For example, in many current and potential NC applications - including biological

imaging, optical barcodes, and laser gain media - the spectral linewidth of the NC ensemble

emission is a critical parameter. Understanding what fraction of the ensemble linewidth at room

temperature is due to inhomogeneous and homogeneous broadening is important.

Inhomogeneous broadening refers to broadening due to differences in size, shape, impurities, and

local environment, that cause different NCs to have different energy levels and hence broaden the

linewidth of an ensemble of NCs. Homogeneous broadening refers to broadening that is caused

by processes that are intrinsic to an individual NC like electron-phonon scattering or thermal

fluctuations. Broadening due to inhomogeneities can be reduced by better manufacturing and

control of the NC's environment, but the other types of homogeneous broadening are

"fundamental" and can not easily be eliminated through superior engineering.

Chapters 2 and 3 focus on developing a physical model to explain NC optical properties

based on our experiments with CdSe/ZnS NCs (CdSe core with a ZnS capping layer). We

specifically focus on characterizing and analyzing three NC properties: 1) the temperature

dependence of the bandedge absorption energy Eabs(T), 2) the temperature dependence of the

Stokes shift, and 3) the homogeneous linewidth of a single NC. These optical properties are

important design parameters and place "fundamental" constraints on many potential NC

applications. In chapter 4 we present a detailed analysis of one potential application, NC based

microbead barcodes for high throughput biological screening.

Before continuing, we first motivate our research in section 1.1 by reviewing some

current and potential NC applications and how they relate to the physical properties of NCs.

Section 1.2 reviews the physics and the current state of understanding with respect to Eabs(T), the

Stokes shift, and the linewidth of NCs. Finally, section 1.3 reviews the need for biological

screening, what technologies are currently available commercially, and how replacing traditional

dyes with NCs in microbead barcodes might improve current technology.
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1.1 Applications of Semiconductor Nanocrystals

This section discusses some of the applications of NCs for which Eabs(T), the Stokes shift, and the

spectral linewidth are critical parameters - lighting, display, temperature sensor applications,

laser gain media, and biological imaging. Additional applications that have received attention in

the literature, but are not discussed in this section include using the emission from a single NC as

a source of single photons [4], combining NCs with organic materials to make solar cells [5], and

using the spins of singly charged NCs as qubits for quantum information processing [6].

1.1.1 Display, Lighting, and Temperature Sensor Applications

Researchers have successfully demonstrated that NCs can be used as light emitters in organic

devices [5], thus opening the door for displays based on NC emission. The benefit of a display

that uses NCs as fluorophores is that a wider range of colors can be potentially be displayed than

is possible using traditional CRT displays. The CIE diagram in Figure 1-3 shows the range of

colors that are visible to the human eye. The range of colors that can be covered by a CRT

display is shown in the black triangle, while the dots show the range of colors that could be

covered by using currently available NC ensembles as fluorophores. In a CIE diagram, pure

colors are closer to the edge of the diagram and mixtures are near the center. The homogeneous

linewidth of NCs puts a "fundamental" limit on how much the ensemble linewidth can be

narrowed by minimizing inhomogeneous broadening, and therefore places a "fundamental"

constraint on the range of colors that can potentially be displayed with improved engineering.

A related application is to simply use hybrid NC/organics as a single color illuminant

rather than a display. The range of colors produced by traditional semiconductor LEDs is limited

by the ability to produce materials that emit at desired wavelengths. Hybrid NC/organic devices

on the other hand can emit across the visible spectrum. In particular, using NCs as a yellow

illuminant in traffic signals might be an ideal application. For this application, an important

specification is the amount that the wavelength changes with temperature. Since the range of

colors that humans perceive as yellow is extremely narrow, even a small wavelength drift could

cause a person to misinterpret a yellow light. UK rail specifications released in 1999 allows no

more than a AX=2.5nm chromaticity drift from -20'C to +40'C [7], a difficult specification to

satisfy with traditional LED technology. Developing a model for dEemi(T)/dT in NCs might allow

the intelligent design of a NC technology that minimizes dEemi(T)/dT and satisfied these

14



specifications.

CIE Diagram

ote tial D LED
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x

Figure 1-3: The CIE diagram shows the range of colors that are visible to the human eye. Black
triangle - range of colors covered by CRT displays. Circles - range of colors covered by current
NC ensembles. (from [8])

Finally, the emission wavelength of NCs could be used to measure temperature on the

nanometer length scale. For instance, if a monolayer of NCs were deposited in an organic

electronic device, then the temperature of the NC layer could be inferred by exciting the NCs

with UV and measuring the spectrum. We believe that measuring temperature to within AT=2K

is reasonable. This would allow a direct measurement of how heat is transported in an organic

electronic device on a nanometer length scale, something that it is difficult to imagine using

standard techniques. Unlike the previous application, here it is desirable to design NCs with a

large dEemi(T)/dT in order to increase temperature sensitivity.

In our analysis of Chapters 2 and 3 we separately consider the temperature dependence of

both the absorption Eabs(T) and the Stokes shift Eabs(T)-Eemi(T), which together imply Eemi(T). In

conclusion, all three of the optical properties that we will analyze - Eabs(T), the Stokes shift, and

linewidth - have important implications for NC based display, lighting, and temperature sensor

applications.

1.1.2 Laser Gain Medium

Theoretically, using NCs as a laser gain medium, in place of a bulk semiconductor, will result in
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more thermal stablility (higher To), a lower threshold current, and will allow for a wider range of

wavelengths [9]. The first two advantages stem from the fact that confinement of electron and

holes leads to a sharper density of states at the band edge compared to bulk. Quantum well lasers

confine electrons and holes to a 2D slab in order to achieve these advantages, and are widely used

today. NCs, which confine the carriers in all 3 dimensions, theoretically have an even greater

advantage. NC lasers have been demonstrated experimentally [10-12], but to date they have yet

to show many of the advantages that were hoped for.

Both the Stokes shift and the emission linewidth are important parameters for modeling

the NC gain spectrum. Understanding the origin of the Stokes shift has important implications

for how intense the pumping needs to be in order to achieve gain. As the Stokes shift decreases,

the overlap of the absorption and emission spectra increases, and therefore the gain spectrum

(which is the sum of the absorption spectrum and an appropriately weighted emission spectrum)

decreases. On the other hand, the maximum gain is inversely proportional to the homogeneous

linewidth [13]. Developing a model for both the Stokes shift and homogeneous linewidth may

allow for a better design and a more realistic assessment of the potential of NC based lasers.

1.1.3 Biological Imaging

Perhaps the most common application of NCs currently is as a replacement for traditional dyes in

biological imaging applications. NCs have many advantages over traditional dyes for imaging

applications. 1) They don't bleach as quickly. So, the same piece of tissue can be imaged for

longer periods of time. 2) They are brighter, so you can image on a shorter time scale. 3) NCs

can be excited with one UV light source. With traditional dyes, each dye needs its own excitation

source which makes imaging more difficult and expensive. 4) The emission spectra of traditional

dyes tend to overlap with one another causing cross-talk between the different colors. NC

emission linewidths are very symmetric, slightly narrower, and can be chosen so that cross-talk is

minimal. Researchers have demonstrated the ability to label 4 types of tissue with different

colors of NCs [14] which is difficult to achieve with traditional dyes. Figure 1-4 shows a

multicolor image using NCs and a traditional dye.
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Figure 1-4: (from [14]) - Double-labeling of mitochondria and microtubules in NIH 3T3 cells.
The mitocondria are in red and microtubules are in green. (Nuclei are counterstained with a
traditional dye).

The emission linewidth of NCs is an important parameter to consider for biological

imaging. As the linewidth is reduced, it is possible to image more types tissue without having

significant cross-talk between different colors. Again, understanding the origin of the emission

linewidth is important. If the linewidth is primarily due to size inhomogeneities, then it may be

worth investing in methods to improve size selection and reduce the linewidth. If the linewidth is

primarily due to the homogeneous linewidth, then improved size selection will have a minimal

impact and effort should be directed elsewhere. Developing a better understanding of NC physics

may help to focus research in more productive areas. The next section reviews the current

literature models of NC physics.

1.2 Nanocrystal Physics

The applications discussed in the previous section indicate that the temperature dependence of the

emission wavelength, the Stokes shift, and the spectral linewidth are all important design

parameters. This section reviews the current state of the literature with respect to these three

parameters, although we break the temperature dependence of the emission energy Eemi(T) into

17
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two parts - the temperature dependence of the bandedge absorption Eabs(T) and the Stokes shift

Eabs(T) - Eemi(T).

1.2.1 Bandedge Absorption Energy Eas(T)

In bulk semiconductors, it is well known that the temperature dependence of the bandgap is

primarily a result of thermal expansion of the lattice and electron-phonon interactions, the later

effect being the most important for most semiconductors [15]. Since confinement in a quantum

dot (QD) changes the electronic energy levels and phonon modes, it has been argued that the

electron-phonon interaction strength may change, and as a result the temperature dependence of

the excitonic energy may change. References [16-22] all suggest that the Eabs(T) in QDs should

be or is modified from the bulk temperature dependence due to modified phonon coupling. This

reasoning was used to explain the experimentally observed size dependence of dE/dT in CdS

[21], CdSe [16], and PbS and PbSe NCs [17]. (See Figure 1-5) (Most papers do not differentiate

between Eabs(T) and Eemi(T) and seem to implicitly assume that they are the same E(T).) Ref

[18] makes the interesting observation that for epitaxial QDs (InAs, InO.6GaO4As, GaAs), the

temperature dependence dE/dT is well described by the bulk value, in contrast to colloidal

nanocrystals. (see Figure 1-6) This difference is unexpected because the physical mechanisms

that are invoked to explain the size dependence of dE/dT in NCs should also be applicable to

epitaxial QDs. Ref [18] concludes that "No detailed theory, either first principles or

semiempirical, that would allow for an accurate description of E(T), seems to be available for

QDs."

In Chapter 2, we present our own measurements of the temperature dependence of the

bandedge absorption of different sized high quality CdSe/ZnS NCs. In contrast to the literature

we find that the bulk temperature dependence accurately describes our measured dEabs/dT for all

sizes. Additionally, by considering how the temperature dependence of the effective mass affects

the confinement energy we are able to adequately explain the strong size dependence of dEabs/dT

in PbS and PbSe NCs [23].

18
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Figure 1-5: The temperature dependence of the bandedge absorption feature in PbS NCs
experimentally has a strong size dependence. The proposed explanation involves electron-
phonon scattering. (from [17])
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Figure 1-6: The temperature dependence of the emission in epitaxial InAs/GaAs quantum dots is
primarily determined by the bulk temperature dependence. (from [18])
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1.2.2 Stokes Shift

Existing theory attributes the large non-resonant Stokes shift in CdSe NCs primarily to the

exciton fine structure [3]. The fine structure is a set of discrete energy levels that is derived by

considering confinement effects within a multiband effective mass framework [3]. PLE

(photoluminescence excitation) experiments show sharp features in the absorption spectrum of

the bandedge exciton that compare reasonably well with fine structure theoretical predictions

[24]. Figure 1-7 shows the inferred single NC bandedge absorption spectrum from PLE

experiments [24]. Figure 1-8 shows how the theoretically derived fine structure compares to

experiment [24].

The fine structure model predicts a strong temperature dependence for the Stokes shift of

small CdSe NCs. In Chapter 3 we present our measurements of the temperature dependence of

the Stokes shift for five sizes of CdSe/ZnS NCs. Surprisingly, we find that the Stokes shift has a

weak temperature dependence for all sizes. We speculate that the temperature independent

Stokes shift that is implicit in exciton-acoustic phonon scattering models may offer a partial

explanation. This implication of exciton-acoustic phonon scattering has not been widely

appreciated by the research community, which instead has focused on the homogeneous linewidth

implied by exciton-acoustic phonon scattering.

(A) (E)

2(B) (F)

PC (G)
U5

(D) (H)

0 50 100 0 25 50
Energy (meV) Energy (meV)

Figure 1-7: The inferred single NC bandedge absorption (excluding optical phonon replicas) from
PLE experiments for different sizes of CdSe NCs. A-H correspond to NC radii of 15, 19, 21, 24,
27, 33, 44, and 50A. (from [24])
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Figure 1-8: Theoretical fine structure for CdSe NCs (a and c) and experimentally inferred fine
structure (b and d). (from [24])

1.2.3 Spectral Linewidth

For many of the applications discussed in section 1.1, it is desirable to make the NC ensemble

emission linewidth as narrow as possible. However, the contributions of different broadening

mechanisms to the ensemble spectrum at room temperature (the temperature regime for most

applications) have not been well established. Figure 1-9 shows that single NC emission spectra

are much narrower than ensemble linewidths at low temperature. This inhomogeneous

broadening is primarily due to the size distribution of NCs within the ensemble, although spectral

diffusion also contributes to the ensemble linewidth. Spectral diffusion refers to the experimental

observation that the spectrum of a single NC changes with time. Spectral diffusion is believed to

be the result of Stark shifts that are due to fluctuating local electric fields which result from

charges moving in the environment surrounding the NC. A direct result of spectral diffusion is

that the single NC spectrum broadens as the integration time of the spectrometer increases, as is

shown in figure 1-10. Additionally, the rate of spectral diffusion increases with temperature,

complicating the interpretation of single NC spectra at room temperature.

21
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Figure 1-9: Single CdSe NC emission spectra along with the NC ensemble spectra. (from [25])

E

0
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Figure 1-10: Single CdSe NC linewidth at T=1OK as a function of spectrometer integration time.
(from [26])

The homogeneous linewidth has been inferred from femtosecond photon echo

experiments [27] on different sizes of CdSe NCs as a function of temperature in [28]. Exciton-

acoustic phonon scattering has been invoked to explain both the inverse size and linear

temperature dependence of the echo decay rate [27]. However, the broad linewidth (-10 meV)

implied by photon echo experiments at low temperatures seems to be at odds with the narrow

(-100!eV) linewidths that are measured for single NC emission [25]. This apparent conflict is

not discussed in the literature. However, we speculate that it may be partially resolved by

considering the results of spectral hole burning experiments which show a narrow line on top of a

broad pedestal [29]. This spectrum, shown in figure 1-11, has been described as a "Prussian

helmet" and has been attributed to exciton-acoustic phonon scattering. Within this interpretation,

the broad pedestal corresponds to acoustic phonon assisted optical transitions, while the narrow

peak corresponds to a purely optical transition, and is called the zero phonon line (ZPL) [30]. In
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conclusion, there is no concensus in the literature regarding how to model the spectrum of a

single NC, nor is it clear what the experimental homogeneous linewidth is at room temperature.

Sb)

SD=4nm

to -10 -5 0 5 10
Detuning [meV]

Figure 1-11: Measured spectral hole burning spectrum for R=2nm CdSe/ZnS NCs. (from [29])

In Chapter 3 we use the temperature dependence of ensemble emission spectrum to infer

the room temperature homogeneous linewidth as a function of NC size. We compare our

experimentally measured temperature and size dependence of the Stokes shift and ensemble

linewidth to the predictions of an exciton-acoustic phonon scattering model and find adequate

agreement. However, we also present a single NC emission spectrum for a small NC which is

inconsistent with this model. We conclude that a more complete model that treats both the fine

structure and exciton-acoustic phonon scattering in the same physical framework is required to

explain our experimental data. Hopefully, this model will assist in NC design for applications

such as NC based microbead barcodes for biological assays.

1.3 Review of Biological Assay Technology

A recurring desire in many areas of biological research is to screen for the presence of many

predefined target biomolecules in large numbers of test samples in a rapid and economic manner.

Currently, the two dominant biological assay technologies are DNA planar arrays and microbead

based assays. Figure 1-12 shows schematically how microbead biological assays work. First,

different types of microbeads are created by varying the ratio of different colors of dyes that are

incorporated into the polymer microbeads. Then, a different type of molecular probe is attached

to the surface of each type of microbead. Different types of microbeads are then mixed together
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with the biological sample of interest. If a target molecule is present, then it will bind to the

exterior of the corresponding microbead. Finally, the microbeads are individually separated,

illuminated with UV light, and their individual emission spectra are recorded. The fluorescence

from the internal dye provides the optical code to differentiate between types of microbeads,

while the presence of the target analyte is indicated by its fluorescent tag. Currently 100 types of

microbeads are distinguishable using organic dyes, but the literature suggests that using

nanocrystals (NCs) instead of organic dyes could dramatically increase the number of

distinguishable microbead types, and hence increase the multiplex capability of this system.

Although the benefits of replacing organic dyes with NCs has been anticipated, there are

still very basic questions regarding how a NC based microbead barcode system should be

designed that have not yet been addressed. In chapter 4 we first develop a specific proposal for

how a NC based system might work, along with a noise model based on what is currently

achievable experimentally. A Monte Carlo simulation is used to evaluate the number of

distinguishable barcodes given an error rate for different microbead coding architectures. We

find that the best results are obtained by using a Monte Carlo code generation algorithm. Our

analysis indicates that 1 000s of types of microbead barcodes could be distinguishable using a NC

based system, a dramatic improvement over the 100 codes that are currently available

commercially, but much less than the 40,000 to 1 million that was been speculated in the

literature.

24



@00 A II
Probe #1

Target #2 F

Probe #2

Target #3 F

Probe #4

Single-bead spectroscopy

Single-bead spectroscopy

Single-bead spectroscopy
2

Single-bead spectroscOpy

Optical code
1:1:1

No -

analyte

1:1:1

Analyte

Analyte k 2:1Analyte

L (nm)

Figure 1-12: Schematic of microbead barcode technology for biological assays. Polymer
microbeads are differentiated by the ratios of internal dyes. Each type of microbead is coated
with a different type of probe. Target molecules bind to their probes. The individual spectrum of
each microbead is measured. The fluorescence from internal dyes provides an optical code that is
used to determine the type of microbead, while fluorescence from the tagged target molecules
indicate their presence. (from [31])
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Chapter 2

Temperature Dependence of the Exciton

Transition in Semiconductor Quantum Dots

As the manufacture of colloidal and epitaxial quantum dots (QDs) has matured over the last

decade, the usefulness of a physical model to predict the optical behavior of QDs has increased.

In particular, modeling the measured temperature dependence of the excitonic energy levels E(T)

has attracted attention [16-18, 20]. This is relevant for many quantum dot applications: Changing

the exciton energy moves the gain profile in laser applications, introduces chromaticity drift in

lighting applications (UK rail specifications allow only 2.5nm chromaticity drift throughout the

-20*C to +40'C temperature range for yellow railway signal illuminants. This is difficult to

achieve with current yellow LED technology.), and can be used to measure the temperature on

the nanoscale (If a monolayer of NCs can be deposited in an optically accessible area of a device

such as an organic LED, then the temperature at that layer can be inferred from the color of the

photoluminescence.). It is useful to not only characterize the temperature dependence of the

exciton energy, but to understand the physics in order to potentially design nanostructures (or

choose materials) that have the desired temperature dependence for a particular application.

In bulk semiconductors, it is well known that the temperature dependence of the bandgap

is primarily a result of thermal expansion of the lattice and electron-phonon interactions, the later

effect being the most important for most semiconductors [15]. Since confinement in a QD

changes the electronic energy levels and phonon modes, it has been argued that the electron-

phonon interaction strength may change, and as a result the temperature dependence of the

excitonic energy may change. References [16-22] all suggest that the E(T) in QDs should be or is

modified from the bulk temperature dependence due to modified phonon coupling. Ref [18]

notes that "No detailed theory, either first principles or semiempirical, that would allow for an

accurate description of E(T), seems to be available for QDs." Ref [18] also notes that for

epitaxial QDs (InAs, Ino.6GaO.4As, GaAs), the temperature dependence is well described by the

bulk value, in contrast to colloidal nanocrystals (CdS, CdSe, PbS, PbSe).

In this chapter we argue that there is no fundamental physical difference between
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epitaxial QDs and colloidal nanocrystals (NCs) with respect to E(T) and show that a first order

model that only considers changes in the confinement energy with temperature can reasonably

explain the behavior of both epitaxial QDs and colloidal NCs. In particular, we show that the size

dependence of dE/dT in PbS and PbSe NCs [17] can be attributed to the strong temperature

dependence of the effective mass, and hence the confinement energy Econt(T)~m-'(T). However,

we first present our measurements of E(T) in high quality CdSe/ZnS NCs, for which the

temperature dependence of the confinement energy is expected to be minimal. We find that E(T)

agrees well with the bulk CdSe dependence for all sizes of NCs, in contrast to previous

measurements of CdSe [16] and CdS [21] NCs.

2.1 Experiment

We measured the absorption spectra of 5 sizes of CdSe/CdS/ZnS NCs at temperatures between

T=5K and T=300K. However, when we designed our experiment we wanted to measure more

than just E(T). We wanted to measure both absorption and emission ensemble spectra from the

same physical samples at temperatures between T=5K and T=300K. Furthermore, we wanted the

spectra to be indicative of the properties of the individual NCs within the ensemble, so that we

could infer properties of a single NC: the temperature dependence of the exciton transition,

intrinsic spectral linewidth, and Stokes shift. In this section we discuss all aspects of our

experiment, although we will only analyze the temperature dependence of the absorption spectra

in this chapter. Chapter 3 will focus on the intrinsic linewidth and the Stokes shift. It will

provide the temperature dependence of the photoluminescence (PL) which is important for the

applications mentioned in the introduction.

2.1.1 Sample Preparation

In order to get reliable and relevant data, we needed to make trade offs between various

characteristics of our samples. Some important considerations in sample preparation were: 1)

Optical clarity - This is necessary in order to minimize scattering as light passes through the

sample. Scattering manifests itself as a slope in the absorption spectra which makes it more

difficult to infer the absorption spectra due NC absorption. 2) Low Optical Density - This is

necessary in order to minimize reabsorption and remission which causes a red shift in the
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emission spectra. 3) Low NC density - This is necessary in order to ensure that the NCs do not

significantly interact with one another. If the NCs are too closely packed, then they can transfer

energy from one to another via dipole-dipole coupling. This will cause a redshift in the PL

spectrum. 4) Accurate temperature control - If the NC/polymer is too thick then the heat transfer

between the middle of the polymer composite and the cryostat will be poor, and this will decrease

the ability to control the sample temperature. These were major considerations that dictated

many of the choices that we made in our sample preparation.

We embedded NCs in a poly laurylmethacrylate (PLMA) matrix using a procedure

similar to the one described in ref. [32]. The basic procedure is: 1) Separate the NCs from their

solvent. 2) Mix a monomer, a cross linker, and a catalyst with the NCs. 3) Activate the catalyst

by heating to create a NC/polymer composite. However, because our NC samples were different

from those used in ref. [32], their procedure needed to be modified in order to achieve a high

enough sample quality for our needs. We used 545, 565, 585, 605, and 655 Qdot ITK Organic

Quantum Dots from the Quantum Dot Corporation which come in decane with a TOP (trioctyl

phosphine) and TOPO (tioctyl phosphine oxide) coating. The high quantum efficiency (>50% at

room temperature) of these NCs indicates that the effects of defect/surface states are minimal,

while the narrow size distribution allows accurate determination of the bandedge absorption

energy.

Before continuing it is worth briefly mentioning some of our failed attempts. Evident

Technologies sells CdSe NCs in an optically clear polymer that is similar to NOA (Norland

Optical Adhesive) and can be cured with UV light. We mixed dried NCs with NOA and were

able to make a reasonably clear NC/polymer composite. We cured the samples under UV, but the

resulting samples were quite foggy at room temperature which looked to be the result of tiny

cracks in the cured polymer. The PL intensity was also significantly reduced upon mixing with

the NOA. We stopped using NOA for both of these reasons. Secondly, we tried incorporating

the NCs into polyvinyl butyral (PVB). We dissolved dried NCs with some PVB, deposited drops

of the solution onto two separate sapphire plates, waited a few hours for the solution to mostly

dry, made a sandwich of the two sapphire plates with the NC/PVB in the middle, and put the

sample in an oven at 100'C with a weight on top for half an hour. The heat served to fully dry

out the PVB and to allow the polymer to flow. We successfully created an optically clear sample

and were able to make accurate absorption measurements. However, the PVB quenched the PL

of the NCs dramatically and the signal was not adequate for emission spectra measurements.

Accordingly, we discontinued using PVB.

Our initial attempts to incorporate the NCs into PLMA did not work. In order to
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incorporate the NCs into PLMA, they must first be separated from the decane solvent. We

followed ref. [32] and separated the NCs from the decane using a familiar crash out procedure:

add methanol and a little butanol until the mixture becomes cloudy and then centrifuge. The NCs

collect on the bottom of the container and the remaining clear solvent can be removed, leaving

just some moist NCs. We found that the polymer composite did not cure unless the NCs were

thoroughly dried, which we accomplished by pulling vacuum on the NC container for about 1

hour. However, we also found that the crash out procedure removed much of the TOP/TOPO,

which we believe caused the NCs to aggregate and resulted in a foggy sample. We tried to add

some TOP to the dried NCs, but this also resulted in a foggy sample, possibly because we were

unable to accurately add the small amount of TOP that is appropriate for the small amount of NCs

sample that we had at our disposal. Eventually, we found that pulling vacuum directly on the

NC/decane solution for a few hours removed the decane and left behind an appropriate amount of

TOP/TOPO with the dried NCs. This is how we separated the NCs from solvent for all of our

final samples.

After drying out 1 mL of QDot solution, we mixed the NCs with a premixed solution of

0.36g of laurylmethacrylate, 0.09g of ethyleneglycol dimethacrylate crosslinker, and

approximately 0.005g of azobisisobutyronitrile (AIBN) radical initiator. The resulting solution

was often times foggy, which we speculated was due to NC aggregation. However, after about

10 minutes of sonication the solution became optical clear. We then inserted some of the solution

between two sapphire plates separated by 380-760pxm with two Indium solder spacers. Following

Ref. [32], we first tried to cure the samples in an oven at 77'C, but even after many hours our

samples did not fully cure. We also tried to cure the sample by illuminating it with a 30W Xenon

lamp overnight, but no curing occurred. We then put the samples in an aluminum dish, put it on

a hot plate set to 100'C, covered the samples and hot plate with aluminum foil, and waited about

2 hours. The resulting cured samples were optically clear and flush with the sapphire plates on

both upper and lower surfaces. We found that if the sapphire plates were spaced much less than

380ptm then the curing polymer, which contracts as it is cured, would separate from the surface of

the upper sapphire plate and the surface would be too wavy to accurately measure the absorption

spectrum. The thicker spacing apparently allows the polymer enough room to bend inwards

while curing without cracking or separating from the sapphire plates.
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2.1.2 Optical Detection

We used the same optical detection setup to measure both the emission and absorption spectra of

our samples. (see Figure 2-1) To measure the absorption spectra we used an LS1 halogen lamp

from Ocean Optics as a white light source. The output light is collimated to a beam a few

millimeters in diameter, passed through the sample, and collected with a CC3 diffuser attached to

a 600ptm fiber (both from Ocean Optics). (The diffuser minimizes the sensitivity to the angle and

position of the incident beam.) A spectrum is measured by attaching the fiber to an Acton

SpectraPro 300i spectrometer with a Princeton Instruments Spec 10:400BR back illuminated, deep

depletion camera cooled to -80'C. Next, the sample is removed from the beam path, and the

halogen lamp spectrum is measured. After subtracting the dark counts from both spectra, the

absorption spectrum is calculated by taking the absolute value of the log of the first spectrum

divided by the second. The first absorption peaks of our samples have an optical density that

varies between 0.04 and 0.07. This low optical density ensures that the PL redshift due to

reabsorption and reemission is minimized. The absolute wavelength is verified to an accuracy of

X=1 -2nm using the lines of a Mercury Xenon lamp.

UV LED

cryostat

fluorescence

H a loge n -....... - -..... -.... -................ d iffuse r

Lamp
beam fiberbeam

block to
sample spectrometer

Figure 2-1: Schematic of our experimental setup. To measure emission spectra the UV LED is
used to excite samples, while the halogen lamp is blocked. To measure absorption the beam
block is used to block the UV excitation.

Accurately measuring the PL spectrum is slightly more complicated. We use a X=380nm

LED (Digikey LX5093SUVC) filtered with UGI and BG40 colored glass filters as an excitation

source. The UV light is focused to a few mm diameter spot on the sample, the NC emission is

collected by the fiber, and a spectrum is measured using the same detection system that is used
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for absorption. (The halogen lamp is physically blocked while taking emission spectra.) The

relative efficiency as a function of wavelength of the detection system is calculated by dividing

our measured LS1-CAL halogen lamp (Ocean Optics) spectra by the calibration spectrum sent

with the lamp. (see Figure 2-2) It is reassuring that the calculated relative efficiency spectrum

agrees well with the efficiency spectrum of the camera multiplied by our grating's spectral

efficiency. The actual PL spectrum is then calculated by dividing the raw emission spectrum by

the relative efficiency spectrum. We estimate that our calibration procedure corrects the center

wavelength of NC PL spectra by up to A~-lnm, or AE~4meV, which is small but not negligible.

This calibration procedure is necessary for accurate measurements of the emission spectra, and

we suspect that it is often overlooked by other researchers.
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Figure 2-2: Left - Colored lines show the measured spectra of calibration source LS1-CAL at
three spectrometer settings. Black line shows the calibration spectrum. Right - Colored lines
show the measured spectra divided by calibration spectrum. Black line shows a fit to the colored
lines, and is used as the relative efficiency for our optical detection system.

We were also concerned that the details of our LED might affect the measured emission

spectra. The -20nm FWHM linewidth of our LED excitation could preferentially excite NCs of

a certain size within our inhomogeneously broadened sample. However, an emission spectrum

taken with a X-50nm FWHM bandpass filtered Xenon lamp was experimentally identical to
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spectrum using our LED, and we therefore concluded that any size selective effects of our LED

excitation are negligible. Also, the magnitude of the emission spectra scaled linearly with

excitation intensity, but the shape did not change. We concluded that our measurements are not

sensitive to the LED excitation intensity which in theory could cause heating or have other

effects. Using the cross sections of different sized NCs from [33] along with our absorption data,

we calculated that the density of NCs in our samples are 1-2x 10 5cm- 3 which corresponds to a NC

spacing of approximately 80nm. Energy transfer between NCs is expected to be negligible at this

distance.

2.1.3 Temperature Control

Accurately controlling the temperature of the NCs at low temperatures requires careful thermal

engineering. Our samples are cooled in an Optistat CFV continuous flow helium cryostat from

Oxford Instruments. Our samples are secured to a cold finger with a top plate and four screws.

(see Figure 2-3) All thermal connections are made with Indium solder to ensure good heat

transfer. [In the cryostat literature GE varnish is often recommended for making a good thermal

contact, however our experience was that Indium solder makes a far superior thermal contact and

is much easier to use. For example, we originally connected the cold finger to the cryostat body

using GE varnish, and we were not able to lower the cold finger temperature below T=10K.

After replacing the varnish with Indium solder the cold finger could be cooled below T=5K. We

ran into similar problems using GE varnish to attach the sample to the cold finger, but were able

to solve them by switching to Indium solder.] Three of the attachment screws passed through 2

or 3 spring loaded washers to ensure that pressure is maintained even if parts thermally expand or

contract at lower temperatures. The fourth screw went through a mounting adapter for a silicon

diode temperature sensor from Lake Shore (DT-470-BO) that was above the top plate. [We first

tried to use silicon diode that was not premounted by Lake Shore and had a lot of difficulty

making a good thermal contact to the cold finger without making an electrical contact. We highly

recommend using the premounted sensor if possible.] This temperature sensor always agreed to

within about T=2K with a sensor embedded in the cryostat body. We concluded that the sapphire

plates, which were in the thermal path between the two temperature sensors, were maintained at

the same temperature as the cryostat body. However, we were still concerned that there could be

a large thermal resistance between the middle of the NC/polymer composite and the sapphire

plates on either side. [In our preliminary experiments we created a NC/polymer composite in a
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0.25" diameter hole of a metal washer. We mounted the sample/washer in our cryostat without

Indium solder thermal connections. In retrospect, we can infer from the PL spectrum that the

sample was only at T=150K when the cryostat was at T=5K. This was presumably due to bad

thermal contacts between the sample, the washer, and the cold finger, even though they were all

in physical contact.]

Bird's Eye

Screw

Cold
Finger

Silicon
Diode

-NC/polymer

Spring
Washers I

Lateral

mount

Indium
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to cryostat body

Bottom

Top Plate

Sapphire
Windows

Figure 2-3: Schematic of our sample mounted on the cold finger.

We performed another experiment to validate that the temperature of the NC/polymer

composite was cooled to the same temperature as the cryostat. We first set the cryostat to T=77K

and measured the PL spectrum of a sample. Then, we removed the sample and immersed it in a

dish filled with liquid nitrogen (T=77K) and again measured the PL spectrum. The two spectra

were experimentally identical, and therefore we concluded that the cryostat temperature sensor

accurately indicated the sample temperature at low temperatures. (The center wavelengths agreed

to within X=0.2nm, which is quite close considering that the PL wavelength shifts by X=20nm as

the temperature is changed from T=300K to T=77K.)

2.1.4 Data Processing

Since most of the theoretical models of NCs are reported in terms of energy, as opposed to
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wavelength, it is convenient to transform the axes of our spectra from wavelength to energy in

order to compare with theory. While this is trivial for an absorption spectrum, simply convert X

to E=2nhc/X and replot the data, this is an INCORRECT procedure for emission spectra. An

absorption spectrum is unitless, since it is the ratio of the POWER OUT divided by the POWER

IN. The emission spectrum, on the other hand, has units. It measures the optical power per unit

wavelength or per unit energy. Since AE=-2nhc(A)/X2, simply converting the x-axis from X to E

and then replotting the emission data on the energy axis is incorrect, although this is correct for

absorption. A correct procedure is to multiply the emission spectra by X2 and then plot on the

energy axis. To illustrate this, figure 2-4 shows the theoretical blackbody spectrum for an object

at T=3000K, and the spectrum that would be measured using a spectrometer. Simply converting

the spectrometer bin wavelengths to energy, and replotting gives an incorrect result, as fig. 2-4

shows. Since the spectrometer bins are spaced evenly in wavelength, they are unevenly spaced in

energy. Finally, fig 2-4 shows the result when the correct procedure is used. This procedure is

more important for spectra with larger linewidth:wavelength ratios. The incorrect procedure

causes only about a 5 meV error in our PL data, which is small but not negligible. We suspect

that the incorrect procedure is common in the literature.

Additionally, there were some complications with the absorption spectra due to

scattering. At T=300K, all of our samples were optically clear with flat absorption spectra at

energies lower than the first absorption peak. However, by the time they had been cooled to

about T=230K they became visibly foggy. This showed up as a negative slope when plotting the

absorption spectra versus wavelength, and is presumably due to Rayleigh scattering. In order to

correct for this we have subtracted off a variable straight line background from the absorption in

the wavelength domain. We found that the fogginess was reversed when the sample temperature

was returned to T=300K. In fact, we took 2 sets of data on the same physical sample and the data

was experimentally identical. We speculate that some molecule in our sample came out of

solution at lower temperatures, and went back into solution when the temperature was returned to

T=300K, but we are not sure.
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Figure 2-4: Simulation of data processing procedure. Left - Shows the theoretical T=3000K
blackbody spectrum, along with a spectrometer measurement. Center - Shows the results of
applying the incorrect data processing. Right - Shows the results using the correct procedure -
multiply the spectrometer data by X2, convert X to E, and then replot.

2.2 Experimental Results

The absorption spectra are fit to a series of either 2 or 3 Gaussians. Figure 2-5 shows the

temperature dependence of the lowest energy absorption peak E(T) for all of our samples along

with the raw absorption spectra at T=300K. (For the largest NCs, we use an average of the 1st

and 2nd absorption features, since the lowest energy feature is partially buried beneath the 2nd

feature and therefore the least squares fit is not sensitive to its position.) Our measured values of

dE/dT are experimentally identical for all 5 NC sizes and agree well with the average bulk value

of dEbul/dT=-0.36meV/K from T=100-300K. Our results are in contrast to previous

measurements in CdSe [16] and CdS [21] NCs which indicate that the magnitude of dE/dT scales

with NC size. We believe that our data is more reliable for several reasons. 1) Our implied size

dispersion is narrow enough (oR/R-5%) that we are able to measure the shift of the bandedge

absorption directly, while in [16] Stark spectroscopy is necessary to extract dE/dT values. The

interpretation of Stark spectra of CdSe NCs is complicated since the electric field is known to
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cause state mixing [34] and therefore may modify dE/dT. 2) NC manufacturing has improved

dramatically in the last decade, so that we are confident that our NCs have a CdSe core. In

contrast, measurements of CdS NCs in 1994 show a size dependent E(T) [21], but have a S/Cd

ratio as low as 0.2, instead of 1.

E
%..w

0
4.'
t.
o

90

80

70

60

50

40

30

20

10

0
0 100 200

Temperature (K)
300

Figure 2-5: Temperature dependence of the lowest absorption feature for 5 sizes of CdSe/ZnS
NCs from the QDot Corporation (655nm, 605nm, 585nm, 565nm, 545nm). Inset - Raw
absorption data for all 5 samples at T=300K.

2.3 Analysis

In light of our different experimental results it is appropriate to revisit the analysis in [16] of the

physical mechanisms that contribute to dE/dT in CdSe NCs. Additionally, it is important to

consider experimental data of quantum dots in other material systems.

2.3.1 CdSe Nanocrystals

In bulk CdSe the temperature dependence of the bandgap is thought to result primarily from

changes in the electron-LO phonon self-energy [15]. However, dE/dT could be modified in a NC

due to changes in the pressure, Coulomb energy, exciton-phonon scattering, and the confinement

energy. 1) Since our NCs have a ZnS capping layer, the CdSe core could potentially experience a
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temperature dependent strain, due to different thermal expansion coefficients. However, we

believe that strain effects are minimal since adding the ZnS cap causes a red shift in the exciton

energy [35], not a blue shift as is expected for increasing pressure (dE/dP is positive). 2) Since

the electron and hole wavefunctions are confined in a NC and therefore have a greater overlap

than a bulk exciton, the Coulomb energy is higher in a NC. Since the Coulomb energy depends

on the dielectric constant and the dielectric constant depends on temperature, dE/dT will be

modified. Assuming that the Coulomb energy in a NC scales as 1/R, that Ecoulomb=15meV for the

bulk exciton radius R=5.6nm, and that S300K=9 .6 4 and EIooK= 9 .17, we have calculated the

dielectric contribution to dE/dT to have a maximum effect of about -0.01meV/K for our smallest

NCs. (see Figure 2-6)
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Figure 2-6: Calculated contributions to dE/dT for a CdSe NC: Coulomb energy, exciton-optical
phonon scattering, thermal expansion, and effective mass (see text). Shaded area indicates the
calculated range of dE/dT due to uncertainty in the effective mass contribution. Circles -
experimental values.

3) Exciton-phonon scattering is expected to be modified in a NC since the phonon density

of states, the electronic structure, and exciton wavefunction are different than in bulk. It has been

suggested that this modification may lead to a change in dE/dT for NCs [16-18, 20]. The

independent boson model is commonly used to describe exciton-phonon interactions in NCs [16,

36], but this model does not lead to a change in dE/dT [37]. A second order model which allows

for the virtual absorption and emission of phonons and does modify dE/dT is simulated in [38] for

optical phonons in CdSe NCs. The shift in energy hAop,=BxN scales as the optical phonon
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Boltzmann occupation N and the constant B can be inferred from simulations of the optical

phonon contribution to the linewidth 6 opt in [38]. The contribution to dE/dT is quite small,

reaching a magnitude of only about -0.01meV/K for R=5nm. (see Fig. 2-6)

4) Finally, there will be some contribution to dE/dT due to a change in confinement

energy with temperature. Assuming an infinite potential well and a parabolic bandstructure, the

h2 a2

confinement energy is given by E., = 2 where a is a geometric constant, m is the exciton
2MR2

effective mass, and R is the radius of the confining potential. Taking the first derivative with

respect to temperature we find dECf*" = E ~ 1 am 2 aR , and we can therefore estimate the
dT - _m aT R aT_

contribution to dE/dT due to changes in the confinement energy. The thermal expansion

coefficient is approximately 5x 10-6 for CdSe and therefore the second term is negligible [16]. We

are not aware of any data on the temperature dependence of the effective mass in CdSe, but this

1 1 2h 2 (p)
can be estimated using Kane's k-p formula = -+ , where m, is the mass of

];(T) me mEg(T)'

an electron, pv is a coupling constant, and Eg(T) is the bulk bandgap. Since we know that the

effective mass of CdSe is about 0.12m, and we know dEg/dT=-0.36 meV/K, we estimate a

percentage change in effective mass of about 2x10-4/K, although this is likely an overestimate

since Kane's formula tends to overestimate the temperature dependence in other materials [39].

This effect is potentially the largest modification to dE/dT in a CdSe NC by far. However, in

materials such as PbS and PbSe where the percentage change in effective mass with temperature

has been measured to be quite large, 8.5x10-4/K and 1.2x10-3/K respectively at T=300K [40], we

expect this effect to dominate.

2.3.2 Other Materials

Figure 2-7 shows our measured dE/dT values for CdSe NCs and experimental dE/dT values in

other materials, all normalized by their bulk dEbslk/dT values. While dE/dT in CdSe, InAs,

InGaAs, and GaAs nanostructures are experimentally identical to their bulk values

((dE/dT)/(dEbulk/dT) = 1), dE/dT in PbS and PbSe NCs decreases in magnitude with increasing

confinement energy and actually goes to dE/dT=0 for PbS NCs with a confinement energy of

approximately 700meV. To quantify the importance of the temperature dependence of the
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effective mass on dE/dT for PbS and PbSe, we have subtracted this contribution E -MIm aT_

from the raw data and plotted the result (open symbols) in Fig. 2-7. The resulting values of

dE/dT are much closer to the bulk value dEbulk/dT (their ratio is approximately one) across a

range of sizes for both PbS and PbSe. We conclude that the temperature dependence of the

effective mass can account for the majority of the size dependence in dE/dT for PbS and PbSe

NCs. This effect was ignored in the analysis of [17]. We believe that our interpretation is

strongly supported by measurements of PbSe NCs which show that the ratio of the second to first

exciton confinement energies remains constant as a function of temperature [41], even though the

first exciton confinement energy is strongly temperature dependent. If dE/dT were being

modified by strain effects, for example, then we would not expect this ratio to remain constant.

CdSe, InAs, InGaAs, and GaAs are expected to have a weaker percentage change in effective

mass with temperature and hence are expected to have dE/dT values much closer to their bulk

values, as Fig. 2-7 shows is the case. It is important to note that our model will break down once

the confinement becomes so strong that the electrons occupy k states further from the band

minimum and the parabolic band approximation breaks down. Since this breakdown occurs for

confinement energies of about 800meV and 600meV for PbS and PbSe, we have only included

data points with these lower confinement energies in Fig. 2-7.

4 InAs U PbS
b InGaAs 0 modified PbS

2 A GaAs * PbSe

* CdSe 0 modified PbSe

1

UU

0

0 200 400 600 800 1000
Confinement Energy (meV)

Figure 2-7: Filled shapes are raw experimental data for InAs [18], In 0.6Gao.4As [18], and GaAs [20]
epitaxial QDs, and CdSe (this work), PbS [17], and PbSe [17] NCs. Open shapes show PbS and PbSe data
after subtracting the expected contribution of effective mass to dE/dT.
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2.4 Conclusions

In conclusion, we have shown that a first order model that only considers changes in the effective

mass with temperature can explain the existing experimental measurements of dE/dT for both

epitaxial QDs and colloidal NCs, and hence both types of systems can be modeled using the same

physical framework. Our absorption measurements of high quality CdSe/ZnS NCs show that

there is no measurable size dependence to dE/dT, in contrast to earlier measurements in lower

quality CdSe and CdS NCs. We are able to explain most of the size dependence in dE/dT in PbS

and PbSe NCs by the strong temperature dependence of the effective mass of these materials.

Previous explanations neglected this simple, yet dominant physical effect. We do not know of

any experimental evidence that indicates that E(T) should be modified in nanostructures due to

changes in exciton-phonon coupling. However, the next chapter will consider how exciton-

phonon coupling scales with NC size and the effect on NC optical spectra.
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Chapter 3

The Stokes Shift and Spectral Linewidth of CdSe

Nanocrystals

Nanometer size structures have enabled the control of excitonic transition energies through

confinement of the electron/hole wavefunctions. This has allowed the fluorescent properties of

CdSe nanocrystals (NCs) to be tailored to any wavelength across the visible spectrum by

controlling their size [32]. A desire to understand the physical mechanisms responsible for the

optical properties of NCs, including the Stokes shift and the spectral linewidth, has lead to

various theories about the fine structure of the bandedge exciton [3] and exciton-acoustic phonon

coupling [27, 38].

In this chapter, we consider both perspectives in the analysis of the experimentally

measured exciton fluorescence, absorption, and Stokes shift. Analysis of the observed

temperature dependence of the Stokes shift through the lens of exciton fine-structure is a rigorous

test of existing theory and can assist in locating the excitonic excited states with precision.

However, if the same data is analyzed through the lens of strong exciton-acoustic phonon

coupling, an alternative physical picture develops that can quantitatively reproduce the observed

Stokes shift and exciton linewidth. Consideration of both theories in light of the data presented

suggests that neither explanation is complete, and in fact both are demonstrably flawed when

considering both ensemble and single particle data. Additionally, we infer the room temperature

intrinsic linewidth of NCs for different sized NCs from our experimental data. As discussed in

Chapter 1 this is an important parameter for determining the "fundamental limits" of many

potential NC applications.
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3.1 Introduction

Figure 3-1 shows schematically how the fine structure and exciton-acoustic phonon scattering

theories account for the Stokes shift and linewidth broadening of NC ensembles with an

inhomogeneous size distribution. This section discusses in detail the physics that is used to

derive these theories and their implications.

Fine Structure

T=5K -

upper

dark,,,

I ower

T=300K

I :

-100 -50 0 50 100
Energy (meV)

Exciton-Acoustic Phonon Scattering

2

C

.2

0

1.5

I

0.5

0
-100 -50 0 50

Energy (meV)
100

Figure 3-1: Schematic of fine structure and acoustic phonon theories applied to an ensemble with an
inhomogeneous size distribution. The thick lines show the convolution of the single NC emission (dashed)
and absorption (dotted) with an inhomogeneous size distribution. Upper Left - thin lines show absorption
of a single NC, while the single NC emission is mostly from the lowest energy level at T=5K. Lower Left
- Thin lines show the predicted single NC emission at T=300K by assuming an oscillator strength weighted
Boltzmann distribution. This change in single NC emission causes the Stokes shift to decrease and the
ensemble emission linewidth to broaden. Upper Right - According to the independent boson model of
exciton-acoustic phonon coupling, the single NC absorption and emission have a Prussian helmet shape
that consists of a sharp zero phonon line and a broad offset acoustic phonon pedestal, and they are mirror
images of one another about the zero phonon line. Lower Right - At higher temperatures the acoustic
phonon pedestal broadens and this causes both the emission and absorption spectra to broaden, but the
Stokes shift does not change.
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3.1.1 Fine Structure Theory

The fine structure is derived by considering confinement effects within a multiband effective

mass framework. The analysis of CdSe NCs in [3] accounts for the effects of the hexagonal

lattice structure, crystal shape asymmetry, and electron-hole exchange interaction, and results in

five sublevels with different oscillator strengths including a dipole forbidden 'dark exciton' [3].

Evidence for the fine structure theory includes 1) PLE (photoluminescence excitation) and FLN

(fluorescence line narrowing) spectroscopies which show sharp features in the spectrum of the

bandedge exciton that compare reasonably well with theoretical predictions [24], and 2)

Measurements of the low temperature fluorescence lifetime dependence on both magnetic field

[3] and temperature [42-44] which are consistent with the existence of a dark exciton. While the

fine structure is usually invoked to explain the Stokes shift, exciton-acoustic phonon scattering is

usually invoked to explain the spectral linewidth.

In the fine structure theory, the bandedge exciton consists of multiple discrete energy

levels. The single NC absorption spectra consist of sharp lines, weighted according to their

oscillator strengths, while the emission spectra consists of sharp lines weighted according to an

oscillator strength weighted Boltzmann distribution. (see figure 3-1) The single NC emission

spectra changes as a function of temperature, which can result in ensemble broadening, while the

absorption spectra is predicted to be temperature independent. Figure 3-2 shows how the strong

temperature dependence of the Stokes shift arises for an example based on [3] with 4 energy

levels (0u, 1U, 1L, 2). Boltzmann statistics are used to calculate the occupation probability for

each sublevel. This means that the ratio of occupation probabilities for states with energies El

-(EI-E2)
and E2 is given by 1 = e kBT At low temperatures the lowest energy levels are

P
2

preferentially occupied, but at higher temperatures the occupation probabilities will become

equal. When there are many states, the occupation probability of state n is given by

-E -E

Pn e -B where C is a normalization given by C = e kT . The relative probability of
C

emission PEj/PEj for two states is given by the ratio of their respective occupation probabilities Pi

PE. Pio.
multiplied by their respective oscillator strengths oi, or * = i . When there are many

PEg Pgo.
-rii

states, the emission probability of state n is given by PEn =!I" e kBT where K is a normalization
K
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-E;

given by K = oekBT . As Fig. 3-2 shows, this can lead to a complex temperature dependence

when there are many levels. At high temperatures the emission probabilities will approach their

normalized oscillator strengths, and will have the same spectrum as absorption. At low

temperatures, the Stokes shift is large since most of the emission is from the low energy 2 state

while the absorption is dominated by the high oscillator strength 0 U and l states. At higher

temperatures, the Stokes shift approaches zero.
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Figure 3-2: Left - Occupation probability calculated using Boltzmann statistics for the energy
levels shown on the right. Center - Emission probability is calculated by multiplying the
occupation probability by the oscillator strength. The oscillator strengths are shown as triangles.
Right - Absorption energy is the sum of the oscillator strengths multiplied by the energies. The
emission energy is the sum of the occupation probabilities multiplied by the energies. The energy
levels are shown as triangles.

3.1.2 Exciton-Acoustic Phonon Scattering Theory

Exciton-acoustic phonon scattering is expected to be dominated by the deformation potential in

CdSe NCs [27]. The deformation potential in a bulk material refers to the fact that the bandgap

changes when a material is compressed. Since acoustic phonons locally compress a material,
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they change the local bandgap, and hence change the energy of a localized exciton, which has an

electron in the conduction band and a hole in the valence band. In NCs this interaction is

normally modeled using the independent boson model [37], is expected to scale like 1/R 2 [27],

and has a magnitude that can be calculated using bulk material parameters [38]. The resulting

absorption and emission spectra consist of a broad acoustic phonon pedestal under a narrow and

offset (polaron shifted) ZPL (zero phonon line) whose shape has been described as a "Prussian

helmet" [30]. Evidence for exciton-acoustic phonon coupling includes 1) Spectral hole burning

experiments which show a sharp peak on top of a broad pedestal in self assembled CdSe QDs

[45] and CdSe NCs [29], 2) Single CdTe QD emission spectra showing a sharp line on a broad

pedestal [46], and 3) Femtosecond photon-echo experiments that measure spectra of CdSe NCs

with a size and temperature dependence that is consistent with calculated exciton-acoustic phonon

coupling [28]. While the spectral broadening effects of exciton-acoustic phonon coupling have

been widely appreciated, the contribution of exciton-acoustic phonon coupling to the Stokes shift

has not.

The Prussian helmet spectrum has two parts: the ZPL and the acoustic phonon pedestal.

(see Fig. 3-1) For emission, the ZPL physically corresponds to an exciton recombining and

emitting one photon, with no change in phonon occupation. Alternatively, an exciton can create

both a photon and a phonon upon recombination. For optical phonons, this process leads to

optical phonon replicas which are spaced in multiples of the optical phonon energy ho=26meV

on the low energy side of a single NC emission spectra. (see Figure 3-5) Since there many

acoustic phonon modes with different energies, the same physical effect is expected to manifest

itself as an acoustic phonon pedestal on the low energy side of the ZPL. At higher temperatures,

when the acoustic phonon modes of a NC are thermally populated, a recombining exciton can

emit a photon while annihilating a phonon and therefore the emitted photon will have a higher

energy than the ZPL. This process is not possible at T=OK, since there are no phonons to be

annihilated. Thus, the phonon pedestal becomes broader with temperature. Importantly, the ZPL

is offset from acoustic phonon pedestal. (see Fig. 3-1) Intuitively, this offset occurs because the

lowest energy lattice configuration of the NC is depends on whether an exciton is present or not.

When there is an exciton present the equilibrium lattice configuration will relax in order to lower

the bandgap, and thus reduce the energy of the exciton. The lattice relaxation energy is often

referred to as a polaron shift. When the exciton recombines, the lattice will return to its original

configuration. Figure 3-3 shows a schematic of what happens.
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Figure 3-3: Schematic of how the lattice configuration changes within the independent Boson
model. 1. NC absorbs a photon 2. lattice configuration relaxes 3. Photon emitted 4. lattice
configuration relaxes back to original position.

For the exciton-acoustic phonon scattering model the emission spectrum is a mirror

image of the absorption spectrum about the ZPL. For CdSe NCs, the acoustic phonon pedestal is

expected to have most of the oscillator strength [45] and therefore the Stokes shift is

approximately twice the polaron shift. (see Figure 3-1) In the independent Boson model, the

Stokes shift is expected to be temperature independent and the ensemble emission and absorption

linewidths are expected to broaden equally due to higher population of acoustic phonons at higher

temperatures.

3.1.3 Outline

In the following sections, we present our measurements of the temperature dependence of the

Stokes shift and spectral linewidth in high quality CdSe NC ensembles along with a single NC

photoluminescence (PL) spectrum, and show that neither theory by itself is able to adequately

explain our experimental results. In Section 3.2 we present our experimental data. In Section 3.3

we analyze the nonresonant Stokes shift, which has previously been primarily attributed to the

exciton fine structure [3, 47]. If this model is correct, then our measurements of the temperature

dependence of the Stokes shift allow us to infer the energy spacing and oscillator strength of the

fine structure. Using this model, our results can be made to roughly agree with theoretical
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predictions. We show that the lattice relaxation energy due to acoustic phonons that is implicit in

the exciton-acoustic phonon scattering theory developed in [38] can reasonably account for both

the magnitude and size dependence of the Stokes shift. In Section 3.4 we show that the fine

structure is unable to explain our measured spectral broadening, while the exciton-acoustic

phonon model shows reasonable agreement. However, we show that the exciton-acoustic phonon

scattering theory is inconsistent with single NC emission spectra. We conclude that neither

theory is able to explain our experimental results. In Section 3.5 we speculate that a model that

consistently treats both the fine structure and the exciton-acoustic phonon interaction in the same

physical framework is required to explain our measured anomalous Stokes shift. Section 3.6

discusses the inferred room temperature intrinsic single NC linewidth and the range of spectral

diffusion. Section 3.7 reviews our calculation of the contribution of the inhomogeneous size

distribution to the Stokes shift, before concluding in Section 3.8.

3.2 Experiment

We have taken absorption and emission spectra of 5 types of CdSe/ZnS NCs. Chapter 2

describes the details of our experimental setup, but we will briefly review the key considerations.

In order to verify that the nonresonant Stokes shift is due to the intrinsic NC physics, we have

taken care to minimize potentially distorting effects. The high quantum efficiency (>50% at

room temperature) of these NCs indicates that the effects of defect/surface states are minimal,

while the narrow size distribution minimizes the effects of the inhomogeneous contribution to the

Stokes shift. We have embedded the NCs in a poly laural methacrylate (PLMA) matrix using a

procedure similar to the one described in reference [32]. The NC/polymer composite was cured

between two sapphire windows that were separated with Indium foil spacers (380-76Ojm) [23].

The first absorption peak has an optical density that varies between 0.04 and 0.07 for our

samples. This low optical density ensures that the PL redshift due to reabsorption and reemission

is minimized, while the low volume density of the NCs (<5x1015 cm 3) ensures that the NCs do

not interact. Previous measurements had optical densities up to 0.3 which corresponds to 50%

light absorption, and could lead to a significant red shift due to reabsorption and reemission [47].

Figure 3-4 shows the raw PL and absorption data for all of our samples at T=5K and T=300K,

along with a fit to the absorption using a series of either 2 or 3 Gaussians. Figure 3-5 shows a

single NC PL spectrum from the same physical batch of NCs that we used for the smallest NC

ensemble measurements.
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Figure 3-4: Raw PL (green) and absorption (blue) measurements for 5 samples of QDots (from
top to bottom: 655, 605, 585, 565, 545) at T=5K and T=300K. The fit to a series of Gaussians is
shown on the absorption spectra. The NC sizes are determined by comparing to the spectra in
[24, 47, 48]. The range of implied radii are (3.5-4.3 nm, 2.2-2.6nm, 1.7-2.2nm, 1.5-2.Onm, 1.35-
1.8nm) respectively.
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Figure 3-5: Single NC emission spectra from the same physical batch of 545 NCs that are used in
the PL and absorption measurements.
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Figure 3-6 shows the temperature dependence of the Stokes shift, PL ensemble linewidth,

and PL center wavelength. The Stokes shift is weakly dependent on temperature and increases as

size is decreased, in qualitative agreement with previous measurements [47]. The ensemble

linewidth increases with temperature for all NC sizes, but has the strongest dependence for the

smallest NCs. The temperature dependence of the center wavelength of the PL spectra is similar

for all sizes, decreasing as a function of temperature except at low temperatures where there is a

2-4meV increase between T=5K and T=20K. We note that our R=2.4nm sample stands out from

the other samples with regards to its small Stokes shift, weakly temperature dependent linewidth,

and asymmetric emission spectrum. We are unsure if this is due to the intrinsic physics of

R=2.4nm NCs or if there was a difference in the NC growth. We include all of the R=2.4nm

data, but view it with some suspicion.
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Figure 3-6: Left - Temperature dependence of the non-resonant Stokes shift for all 5 of our
samples. Center - Ensemble emission linewidth versus temperature. Right - The temperature
dependence of the emission wavelength is similar for all samples (in the plot the PL center is
normalized to zero at T=300K for all samples). All samples have a "hook" at low temperatures
that is consistent with emission from a dark exciton.
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3.3 Analysis - Temperature dependence of the Stokes shift

Existing theory attributes the non-resonant Stokes shift to a combination of optical phonon

replicas, the exciton fine structure, and the inhomogeneous size distribution in a NC ensemble.

We consider the contribution of each to the Stokes shift. Optical phonons have a narrow energy

range around hco=26meV, and optical phonon assisted transitions manifest themselves as optical

phonon replicas. To estimate the contribution to the Stokes shift, we follow the analysis in

reference [3] which results in a contribution of 15meV independent of size and temperature,

although it should be noted that this is very rough since the optical phonon replicas are not

accurately described in the independent Boson model as is shown in reference [49]. Next, there is

a Stokes shift that is due to the inhomogeneous size distribution. Since NC absorption cross

sections scale as R3 [3] away from the bandedge, large NCs preferentially absorb UV excitation

resulting in a red shift of the ensemble PL spectrum. However, since the oscillator strength of the

first absorption feature scales as R [33], the first absorption feature is also red shifted and

partially cancels the first effect. Using appropriate inhomogeneous size distributions for our

samples, we find a temperature independent contribution of only 4-8meV to the Stokes shift.

Finally, the fine structure is assumed to account for the remaining Stokes shift and is calculated

by assuming an oscillator strength weighted Boltzmann occupation of the fine structure energy

states calculated in ref. [3]. In contrast to the previous explanation of the room temperature

Stokes shift [47], we assume that the oscillator strengths for the PL are the same as those for

absorption. (In [47] it is assumed that the oscillator strength of the three optically active energy

levels are equal for emission, but different for absorption. Since we see no physical justification

for this model, and none is given, we assume the oscillator strengths are the same for absorption

and emission. This leads to almost no change at low temperatures, but gives a significantly lower

Stokes shift than previously calculated at room temperature.) Figure 3-7 shows that the a priori

predicted temperature dependence of the Stokes shift using the current literature model does not

match experiment very well. (Our model is based on the analysis in ref. [3] but is slightly

simplified. We haven't included the optically inactive states (±2,oL) since they are not important

for the temperature dependence of the Stokes shift between T=40K and T=300K. Also, we have

combined the (oU, lu) levels, since they are spaced relatively close together.) According to the

model, at low temperatures for small NCs, the Stokes shift is dominated by the fine structure

contribution: emission occurs from the lowest energy 'dark' exciton state and the upper levels

which have most of the oscillator strength dominate the absorption. The theory predicts a strong

temperature dependent Stokes shift, which we do not observe experimentally.
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Figure 3-7: Left - The solid lines show the a priori prediction for the temperature dependence of
the Stokes shift according to the fine structure theory. The plot assumes that there is a 15meV
Stokes shift for all sizes and temperatures due to effects other than the fine structure, and the fine
structure is assumed to look like the solid lines in bottom plot. The dashed lines correspond to

a least squares fit of the fine structure to our data. The resulting energy and oscillator
strengths are shown with the circles in Figure 3-8. Center - Repeat of Stokes data. Right -
predicted temperature dependence of Stokes shift according to exciton acoustic phonon scattering
theory for a CdSe core in a SiO 2 matrix.
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However, figure 3-8 shows that by modifying the fine structure a reasonable agreement

can be reached. If the fine structure model is correct, then the temperature dependence of the

Stokes shift is an extremely sensitive way to measure the upper energy levels and oscillator

strengths of the fine structure. Many previous experiments have measured the energy levels and

relative oscillator strengths of the "dark" and lower fine structure energy levels using the

temperature dependence of the lifetime at low temperatures [42, 43]. In fact, our experimentally

measured PL wavelength shows a "hook" at low temperatures (see figure 3-7) that is consistent

with the existence of a dark exciton about 2-4meV below the lowest allowed bright exciton level.

At T=5K almost all of the emission is expected to occur from the dark exciton, while at T=40K

almost all of the emission is expected to occur from the lower bright exciton level. (Importantly,

our measurements show that the first absorption feature does not have a "hook" at low

temperatures [23].) Our measurements of the dark exciton energy relative to the lowest bright

exciton energy are consistent with previous lifetime measurements [42], but the upper exciton

energy is 3x-5x published theory. Using our extracted fine structure we can calculate the

corresponding ensemble absorption spectra. Fig. 3-9 shows that convolving our extracted fine

structure single NC absorption spectrum for R=1.5nm NCs with the inhomogeneous broadening

implied by the T=5K emission spectrum, we are unable to adequately account for the ensemble

absorption spectrum. In summary, within the fine structure model the temperature dependence of

the Stokes shift allows a sensitive determination of the energy levels and oscillator strengths, but

these values do not agree with the theoretically expected values or our measured absorption

spectra. We now consider the same data from a different perspective.
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Figure 3-9: We fit the T=5K emission spectrum to a Gaussian to infer the inhomogeneous

broadening for R=1.5nm NCs. We use this to calculate the corresponding absorption spectra

(T=5K, T=300K) and emission spectrum (T=300K) using our extracted fine structure.
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The temperature independent polaron shift that results from the exciton-acoustic phonon

interaction offers an alternative explanation. In [38] the acoustic phonon interaction is calculated

to first order in perturbation theory, so that the difference in the phonon Hamiltonians

("independent boson model") for the final and initial states is given by

H, - H, = hM,, + Aa (5 + 5g, where hf~fi is the excitonic energy after excitation, a and
a

a are phonon creation and annihilation operators, and the summation is over all phonon modes.

(The solutions when all of the phonon modes have the same energy has an analytical form

consisting of a series of delta functions [37], and has been used to model the optical phonon

replicas in CdSe NC emission spectra [24, 50]. Within this model, the emission and absorption

spectra are mirror images about the ZPL [37].) In [38] the spectrum of acoustic vibration modes

for a NC embedded in a glass SiO 2 matrix is calculated and the lineshape of the phonon

broadening is approximated as Gaussian. The calculated spectra physically corresponds to

acoustic phonon assisted optical transitions, however there is also a narrow ZPL corresponding to

optical transitions not requiring phonons that is offset from the acoustic phonon band by the

lattice relaxation energy (polaron shift). In [38], the polaron shift (Aac) is not explicitly

calculated, but can be inferred from the linewidth (6ac) simulations. [Although refs. [27, 38, 46]

all consider exciton-acoustic phonon scattering in similar frameworks, it is difficult to extract the

relevant information from the simulations of any one paper. According to [38] the temperature

'~ ex[-(Q7 - - A ac )2
dependence of the acoustic phonon pedestal is given by ra (Q) = exp - 2 J

2 ac

2 A2  ho A2  2
where a coth and A ac Since a ( scales like

h 2kBT h 2) ha a h 2

1/R2 [27] and values for R=1.mm and R=6nm are given in the simulation results in ref [38], the

values at intermediate sizes can be estimated. Using the simulation results for 8ac(T= 3 0 0 K) and

A2  hw
making an approximation 62c = -i- coth , allows one to infer co for all CdSe NC sizes

h 2 2kB

and hence Aac=6 ac/oa for all NC sizes. Our approximation accurately reproduces the simulations

of the temperature dependence of R=1. 1m and R=6nm NCs in [38], and demonstrates that this is

reasonable.] Since spectral hole burning experiments indicate that most of the oscillator strength

is in the acoustic phonon pedestal, and PL and absorption spectra are mirror images of one

another about the ZPL, there is a Stokes shift equal to approximately twice the polaron shift.

Figure 3-7 shows that the acoustic phonon scattering theory without any fitting parameters agrees
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reasonably well with our measured Stokes shift in terms of both size and temperature

dependence. Since the Stokes shift can not definitively say which theory is correct, we next look

at the temperature dependence of the ensemble linewidth.

3.4 Analysis - Temperature Dependence of the Linewidth

Existing theory attributes the temperature dependence of the spectral linewidth to homogeneous

broadening due to exciton-acoustic phonon scattering [27, 28]. This effect is expected to scale

approximately as I/R 2 and as T [27]. Figure 3-10 shows the predicted temperature dependence of

the ensemble linewidth using the same single NC model that is used to calculate the Stokes shift,

but convolved with a Gaussian size distribution that is chosen to fit our experimental linewidth at

low temperature. The agreement with experiment is adequate in terms of size dependence and the

magnitude of the spectral broadening. Furthermore, the exciton-acoustic phonon scattering

model predicts that both the absorption and emission linewidths will broaden by the same

amount. Our raw data are consistent with this prediction, as is clear from the large NC spectra in

Fig. 3-4. However, there is too much noise in our data to allow for a quantitative measure of the

absorption broadening. We conclude that the exciton-acoustic phonon scattering model can

reasonably explain both the Stokes shift and spectral linewidth broadening. However, the fine

structure theory also predicts that the ensemble emission linewidth will increase with

temperature.

In figure 3-10 we have plotted the calculated broadening using the fine structure that was

inferred from the temperature dependence of the Stokes shift. The broadening is not strong

enough to explain our measured ensemble emission broadening. Additionally, the fine structure

theory can not explain the broadening of the absorption features. (Optical phonon replicas are

expected to cause a small but insignificant temperature dependence to the spectral linewidth.)

We therefore conclude that the fine structure does not provide a full description of the relevant

NC physics and that exciton-acoustic phonon scattering is necessary in any comprehensive

physical model in order to account for spectral broadening.
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Figure 3-10: Left - calculated temperature dependence of an inhomogeneously broadened
ensemble linewidth assuming the fine structure used to calculate the dashed Stokes shift in figure
4. The inhomogeneous broadening is assumed to be Gaussian whose width is choosen to fit the
data at T=5K. Center - Repeat of linewidth data. Right - Predicted temperature dependence of
the linewidth using exciton-acoustic phonon scattering model.

However, our single NC experimental data is inconsistent with predictions of the exciton-

acoustic phonon scattering model. The theory that we have used predicts a broad acoustic

phonon pedestal (-35meV FWHM) for our smallest NC sample at T=5K. However, the narrow

linewidth (-12meV FWHM) of a single NC shows that this can not possibly be the case. While

the single NC spectra is not necessarily indicative of the homogeneous linewidth, since spectral

diffusion causes the spectra of the NC to shift during the integration time of the spectrometer, it

does set a strict upper bound of 12meV on the homogeneous linewidth at T=5K. We therefore

conclude that the exciton-acoustic phonon coupling model can not provide a full description of

the NC physics necessary to explain the optical properties.

3.5 Discussion

Neither the fine structure theory nor the acoustic phonon scattering theory can adequately explain

all of the experimental results. As has been pointed out in the literature, the independent boson
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model for exciton-acoustic phonon scattering only takes one excited exciton state into account,

neglecting higher energy exciton states [36, 51]. However, the effects of other excited states

become important as the thermal energy kBT approaches the relevant energy level spacing [51].

The fine structure theory and experiments suggest that the spacing between the 'dark exciton' and

the next highest level can be as small as a few meV, and therefore the exciton-acoustic phonon

scattering model should break down at low temperatures. A complete physical model that

includes both the fine structure and acoustic phonon coupling is expected to yield complex

results, as [52] indicates.

It is interesting to speculate how the NC spectra may be modeled phenomenalogically.

The temperature dependence of the emission lifetime along with the "hook" in our PL spectra

seems to strongly confirm the existence of a dark exciton and a lower excitonic level. However,

the only experimental evidence of an upper exciton level that we are aware of comes from PLE

experiments in [24]. These PLE experiments infer a single NC absorption spectrum that has a

"Prussian helmet" shape, (see figure 7 in [24]) however in [24] the two peaks in the Prussian

helmet were interpreted as discrete fine structure energy levels. We speculate that this "Prussian

helmet" may in fact correspond to the ZPL and acoustic phonon pedestal due to exciton-acoustic

phonon scattering. It seems that any model must incorporate a dark exciton that has a narrow

spectrum and a higher exciton level that is broadened by exciton-acoustic phonon scattering,

since these seem to be well established experimentally.

3.6 Room Temperature Spectral Linewidth

The room temperature single NC intrinsic linewidth is an important parameter in determining the

"fundamental" potential for many NC applications. Even without a complete understanding of

the physical mechanisms responsible for the temperature dependence of the linewidth, the room

temperature intrinsic linewidth can be inferred from our experimental data. We consider the

effect of spectral diffusion on the temperature dependence of the ensemble linewidth. We review

the literature on spectral diffusion and conclude that its effects on the temperature dependence of

the linewidth are minimal.

3.6.1 Data Analysis

Our results show that the ensemble linewidth increases with temperature. (see Figure 3-10)
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While the inhomogeneous size distribution is believed to be responsible for most of the ensemble

linewidth, we attribute the temperature dependence of the linewidth to the temperature

dependence of the single NC intrinsic linewidth. To infer the room temperature intrinsic

linewidth, we assume that the PL spectrum at T=5K is due to inhomogeneous broadening, that

this contribution to the linewidth is independent of temperature, and that all of the temperature-

dependent broadening is due to homogeneous broadening. We then do a least squares curve fit to

the T=300K PL spectrum by convolving the T=5K PL spectrum with both a Gaussian and

Lorentzian with variable width and center. The results are shown in figure 3-11. For small NCs,

the inferred linewidth decreases with size before increasing for our largest NCs.

To compare our data with the exciton-phonon scattering theory, we define the

homogeneous linewidth as Im ](T)=F +T (T), and plot rT(300) on Figure 3-11, not the

homogeneous linewidth. This is what we would infer using our deconvolution procedure if we

had Gaussian inhomogeneous broadening and Gaussian homogeneous broadening. Exciton-

acoustic phonon scattering is expected to dominate for small NCs and the acoustic phonon

pedestal is expected to have a Gaussian spectrum [38]. The exciton-acoustic phonon scattering

theory shows quite reasonable agreement with our experimental data for the smaller NCs, both in

magnitude and size dependence. However, the effects of acoustic phonon scattering clearly can't

explain the largest NC sample. We believe this is because optical phonon scattering becomes the

dominant broadening mechanism for larger NCs.
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Figure 3-11: Experimentally deconvolved linewidth assuming Gaussian (x) and Lorentzian (o)
homogeneous spectra. Dash - temperature dependent linewidth FT for acoustic phonons (defined
in text). Dotted - optical phonon broadening calculated in [38].
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In bulk CdSe, the exciton linewidth is almost entirely due to optical phonon scattering,

where the scattering is one phonon scattering between different excitonic states (mostly higher

energy continuum states) [53]. In [54] the excitonic absorption linewidth in bulk is measured and

fit to F=FO+BN with a Lorentzian lineshape, where N is the phonon occupation number.

Assuming ho=26meV for optical phonons, reference [54] finds that B=53±3 meV. This result

has been misquoted multiple times, because [54] refers to the "half-width" of the exciton

absorption. Other researchers including myself interpreted this to mean HWHM, but looking at

the actual data that is included in the paper indicates that they mean FWHM. Since there are

many other numbers quoted in the literature (B up to 200meV), we think that it is worth double

checking the linewidth by considering an experiment by Cardona. In [55] the dielectric function

of bulk CdSe is measured using spectral ellipsometry. Fixing the optical phonon energy at

hco=26meV, they find that for the lowest energy exciton, B=46±2 meV (FWHM) for the

imaginary part of the dielectric function E2. Using Kramers-Kronig relations and their value for I

we estimate that this underestimates the excitonic absorption linewidth by about 5%, so this ends

up being in agreement with [54]. We believe that the data in [54] and [55] is the most reliable,

and plot this bulk linewidth value in Fig. 3-11. (See matlab code in appendix for details.)

In a NC, the physics of optical phonon scattering is expected to differ from bulk, since

the electronic states may not be separated by 26meV and hence there may not be a 1 phonon

transition between exciton states. In NCs, the dominant optical phonon scattering mechanism is

expected to be second order virtual transitions (simultaneous absorption and reemission of

phonons) with no change in the electronic state. This effect has been estimated in [38] and is

expected to scale like I/R with size and J(n(n +1)) with temperature. In fact, measurements in

substrate grown CdSe based dots show that B=23meV [56], consistent with the prediction of

reduced coupling. However, it has also been observed that the strength of optical phonon

scattering is sensitive to the shape of the electron and hole wavefunctions [57], and even observed

to be enhanced by up to 5 times in GaAs/AlAs superlattices compared to bulk.

Our interpretation of the data is that for small NCs, acoustic phonon broadening

dominates and the Gaussian fit is appropriate, while for large NCs optical phonon broadening

dominates and the Lorentzian fit is more appropriate. Importantly, our experiment indicates that

optical phonon scattering is reduced in CdSe NCs compared to bulk. This result is consistent

with measurements in epitaxial CdSe QDs [56] and colloidal CdSe NCs [58]. We have treated

the inhomogeneous broadening due to spectral diffusion as independent of temperature. In the

next subsection we will discuss in detail why we believe this is appropriate.
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3.6.2 Range of Spectral Diffusion

Measurements of single NCs show that their spectra change with time. This effect is referred to

as spectral diffusion, and is believed to be caused by fluctuating local electric fields caused by

charges moving in the matrix surrounding a NC. A direct result of spectral diffusion is that the

longer the integration time of the spectrometer, the broader the measured linewidth will be.

Spectral diffusion contributes to inhomogeneous broadening of our ensemble spectra. This

subsection considers the possibility that spectral diffusion affects the temperature dependence of

an ensemble linewidth.

While it has been shown that the rate of spectral diffusion increases with temperature

[59], less attention has been focused on the temperature dependence of the range of spectral

diffusion. The range of spectral diffusion refers to the linewidth that would be measured as the

integration time of the spectrometer approaches infinity. The range of spectral diffusion must be

smaller than the measured ensemble spectra, but clearly contributes to the inhomogeneous

broadening of our ensemble spectra. Our ensemble measurements have no way of distinguishing

homogeneous broadening from broadening due to a change in the range of spectral diffusion. In

our analysis we have assumed that the range of spectral diffusion is independent of temperature,

but it is possible that this is not the case. For example, any temperature dependence in the

number of charges in the environment or the distance between occupied trap states and a NC will

result in a temperature dependence of the range of spectral diffusion. We argue that experimental

evidence indicates that the temperature dependence of the range of spectral diffusion is small

compared to the measured temperature dependence of the ensemble linewidth.

First, experiments indicate that individual NCs on average have a large permanent dipole

moment. This is commonly attributed to local electric fields inducing a polarization. In [60], the

dipole moment of NCs is measured using dielectric dispersion measurements of NC ensembles

between a parallel plate capacitor. Their measurements of the average dipole moment over a

temperature range of about 80K near room temperature show that the dipole moment is

independent of temperature. They calculate that the measured dipole moment of NCs could be

explained if there is 1 charge on the surface of the NCs. The magnitude of the measured dipole

moment is quite similar to measurements of single NCs at low temperatures in [61]. In [59] it is

shown that the dipole moment is reduced for ZnS capped NCs, which means that any effect

should be reduced in capped NCs. Furthermore, it has also been shown that the rate of spectral

diffusion is reduced when a cap is added [59], which is consistent with the idea that the cap

reduces the local E-field by keeping charges further from the core and screening the charge since
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the cap is a dielectric. These experiments together indicate that the range of spectral diffusion is

independent of temperature.

Secondly, experiments on individual CdSe NCs capped with elongated CdS shells show

that "the spectral range of 30+/-10 meV over which peak shifts occur is virtually independent of

temperature." [62] These experiments indicate that the change in the range of spectral diffusion

between T=5K and T=300K is less than 10meV. Figure 3-10 shows that this is significantly

smaller than the inferred homogeneous broadening.

Thirdly, within the model of spectral diffusion proposed above, if the fluctuations of the

local electric field increased with temperature (because there are more charges or they get closer

to the NC) then we would expect to see a larger average E-field. This larger average E-field

would cause a larger average Stark shift, and hence we would expect to see a difference in dE/dT

between bulk CdSe and the NCs. As Chapter 2 shows, this is not the case. Given the

experimental evidence discussed above, we conclude that the range of spectral diffusion is

independent of temperature with an uncertainty of 10meV from T=5K to T=300K, and therefore

that our inferred homogeneous broadenings are reasonable.

Finally, it is interesting to estimate the range of spectral diffusion and its contribution to

the ensemble linewidth. Reference [61] presents single NC PL measurements with an applied

electric field. Modeling the NCs using the quantum confined stark effect, they are able to infer

both the average polarizabilities a and the average local electric field E for 4 different sizes of

NCs. Using this data we estimate the average spectral energy shift AE = -X E 2 . Although this
2

data can not be used to definitively measure the range of spectral diffusion, we believe that it is

reasonable to expect that the range of spectral diffusion is in the range of AE to 2AE. Figure 3-12

shows that the calculated values of 2AE are quite similar for all 4 sizes of NCs. The shaded

region shows the estimated range of spectral diffusion.

Figure 3-12 also shows our inferred homogeneous linewidth at room temperature and our

measured ensemble linewidths. Assuming Gaussian spectra and that the ensemble linewidth

Gensemble is result of the homogeneous linewidth Ghomo, range of spectral diffusion GSD=10 nm, and

size inhomogeneities asize, we can infer the broadening due to the size distribution

2 = 2 em 2 2 2
ysize =ensemble -Yhomo S~D~
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Figure 3-12: Shaded area shows our estimated range of spectral diffusion. Using our inferred
homogeneous linewidths and measured ensemble linewidths at T=300K, we can infer the
broadening due to our ensemble size distribution.

Our analysis indicates that even if the even if the size distribution can be narrowed and

the effects of spectral diffusion can be eliminated, the ensemble linewidth at room temperature

would be limited to about 50% of its surrent value by the homogeneous linewidth. This sets

"fundamental" limits on what is possible for many potential NC applications.

3.7 Stokes Shift Contribution of Inhomogeneous Broadening

This section presents our simulations of the contributions to the Stokes shift due to

inhomogeneous broadening. Since NC absorption cross sections scale as RW [3] away from the

bandedge, large NCs preferentially absorb UV excitation resulting in a red shift of the ensemble

PL spectrum. However, since the oscillator strength of the first absorption feature scales as R

[33], the first absorption feature is also red shifted and partially cancels the first effect. The net

effect is that an inhomogeneous size distribution contributes to the Stokes shift. Quantifying this

effect is more subtle than it may appear on the surface.

The first step is to specify the relationship between the NC radius, R, and the NC energy,

E. Figure 3-13 shows the relationship that we use in our simulations E(R). It is based on the

implied bandedge absorption peak at T=10K in [24]. Secondly, the size distribution of the NC

ensemble s(R) must be specified, where s(R) is the PDF (probability distribution function) of a

randomly chosen NC having a particular radius. Multiplying the size distribution s(R) by R3 and
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renormalizing gives the PDF of a particular size of NC being excited by UV excitation and

emitting a photon, Pemi(R). The ensemble emission energy is then calculated by averaging the

product of Pemi(R) and E(R) over R, Eemi=<E(R)x Pemi(R)>. The result is that the average

ensemble emission energy is redshifted compared to the emission energy of a NC with an average

ensemble radius. This happens because larger NCs are preferentially excited. Similarly, the

bandedge absorption feature is also redshifted because of the inhomogeneous size distribution.

Since the oscillator strength of the bandedge absorption feature scales as R [33], the PDF of a

photon from a white light source being absorbed by a NC with radius R is given by s(R)

multiplied by R and renormalized, Pabs(R). The average absorption energy is then calculated by

averaging the product of Pabs(R) and E(R) over R, Eabs=<E(R)x Pabs(R)>. This analysis allows us

to quantify the contribution of an inhomogeneous size distribution to the Stokes shift.

Figure 3-14 shows that a OR/R=5.5% Gaussian size distribution contributes a maximum

of about 7meV to the Stokes shift. This is the approximate size distribution for our smallest NCs,

assuming that the low temperature PL spectrum is entirely due to the inhomogeneous size

distribution. Our largest NC ensembles have an implied size distribution of approximately 10%.

Since the contribution to the Stokes shift from inhomogeneous broadening scales like (R/R) 2, the

inhomogeneous contribution is approximately 4meV for our largest samples. We conclude that

the contribution of an inhomogeneous size distribution to the Stokes shift is small.
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Figure 3-13: Approximate bandedge absorption energy at T=10K for CdSe NCs from [24].
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Figure 3-14: Calculated contribution to the Stokes shift assuming a Gaussian aR/R=5.5% size
distribution.

3.8 Conclusion

In the literature, both exciton fine structure and exciton-acoustic phonon scattering models have

been used to explain a wide variety of experiments in CdSe NCs. However, our careful

measurements of the temperature dependence of the ensemble emission and absorption spectra,

along with the single NC spectrum, can not be adequately explained by either theory in isolation.

Using the acoustic phonon scattering model developed in [38], we are able to explain both the

magnitude and size dependence of our measured Stokes shift and the ensemble linewidth

temperature broadening, but not our experimentally measured single NC PL spectra. On the other

hand, the parameters in the fine structure theory can be adjusted to adequately fit the temperature

dependence of the Stokes shift, but the implied fine structure can not explain the spectral

broadening of the emission linewidth or the broadening of the absorption linewidth. We believe

that the existence of a 'dark exciton' with a narrow emission spectrum and a higher energy

exciton state whose absorption is broadened by exciton-acoustic phonon scattering have been

well established experimentally. We hope that this work provides the motivation to reassess the

physics that has previously been used to explain experimental results.

Finally, we have estimated the contributions of the size distribution, spectral diffusion,

and homogeneous linewidth to the ensemble PL linewidths for our samples. Our analysis

indicates that even if the inhomogeneous broadening due to size distribution and spectral
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diffusion could be eliminated, the room temperature homogeneous broadening will only allow the

ensemble linewidth to be reduced to approximately half of the current value. The room

temperature ensemble linewidth is an important parameter for many potential NC applications,

especially NC microbead barcodes. The next chapter will analyze the potential of NC based

microbeads for high throughput biological screening.
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Chapter 4

Design of fluorescence microbead barcodes for

high throughput screening

In previous chapters, we examined the physical processes that determine the optical properties of

semiconductor nanocrystals. We inferred the room temperature intrinsic linewidth of CdSe

nanocrystals, a parameter that puts "fundamental" constraints on many nanocrystal applications

including microbead barcodes. After reviewing biological assays and the state of the art in

microbead screening, we consider the design of nanocrystal based microbead barcode technology

for use in high throughput biological screening.

4.1 Introduction

A recurring desire in many areas of biological research is screening for the presence of many

predefined target biomolecules in large numbers of test samples in a rapid and economic manner.

In Section 4.2, we review two dominant techniques for performing biological assays - planar

array and microbead based technologies. In the microbead technology, different types of polymer

microspheres are distinguished from one another by varying the amount of two dyes incorporated

into the microbead. Currently 100 types of microbead are distinguishable using traditional dyes,

but the literature suggests that using nanocrystals (NCs) instead of traditional dyes could

dramatically increase the number of distinguishable microbead types. It has been speculated that

between 10,000 and 40,000 distinguishable barcodes may be realized [31], with some guessing an

upper limit closer to 1 million. Even increasing the number of distinguishable barcode types to

around 1000 is important, since this would allow a single experiment to screen for every type of

human microRNA, which are estimated to number at least 800 [63].

Although the benefits of replacing dyes with nanocrystals (NCs) has been anticipated,

there are still very basic questions regarding how a NC based microbead barcode system should

be designed that have not yet been addressed. Should the optical detection system use filters and
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highly sensitive photomultiplier tubes or a spectrometer? How should information bits be

encoded as fluorescence signals - what kind of code? How should the fluorescence signature be

optimally decoded? How many distinguishable barcodes are possible for a given error rate? This

chapter provides some quantitative analysis to help answer these questions.

Specifically, we look at the problem of NC based microbead barcodes through the lens of

information and coding theory. Information theory has been widely applied to the analysis of

biomolecular structure and sequence information [64-66]. Recently, applications have included

using error control coding analysis as a tool in sequence analysis [64, 65] as well as string

barcoding as a tool for developing minimal assays for sequence identification [67]. These are

examples of channel coding, a field that is concerned with making the storage or transmission of

information more robust to disturbances that can cause errors. Code design involves the

construction of a collection of codewords (the code) where the individual codewords can be

distinguished with minimal error. Once a channel has been specified, a code can be designed to

appropriately trade off the size of the code with the chance of error. In this chapter, the utility of

code design to molecular biology is demonstrated with the example of microbead based high-

throughput assays.

In Section 4.3, we review what is currently achievable with NC doped polymer

microbeads and develop a simple noise model based on what has been achieved experimentally.

Section 4.4 discusses the similarities and differences between this problem and traditional

communications problems. In section 4.5 we investigate multiple regular coding architectures,

while we consider a Monte Carlo code generation technique in section 4.6. Section 4.7 presents a

sensitivity analysis of our model. Before investigating the prospects of NC-based barcodes, it is

appropriate to first review the current biological assay technologies.

4.2 Current Biological Multiplex Assay Technologies

This section reviews the two dominant biological assay technologies - DNA planar arrays and

microbead based assays. Specifically, we discuss the specifications that are currently

commercially available for microbead assays.

4.2.1 DNA Planar Array

A familiar solution to screening for gene expression in human cells is the DNA planar array. This
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technology uses a planar array of 40,000 wells each containing sDNA' (single stranded DNA)

that is complementary to the sDNA of a different human gene. After fluorescently labeling all of

the sDNA strands in the sample of interest, the sample is flowed over the planar array. In

biology, it is well known that an sDNA strand will bind to its complement sDNA'. (see figure 4-

1) Therefore, if a particular gene is present in the sample, then the corresponding well in the

planar array will accumulate sDNA. This is detected by illuminating the planar array with UV

excitation and imaging the fluorescence. Since only wells that have accumulated sDNA will

fluoresce, and the correspondence between well location and gene type is known, the expression

of all 40,000 genes in the human genome can be inferred. Figure 4-2 summarizes the process.

Figure 4-3 shows a picture of the fluorescence from a DNA planar array.

sDNA

sDNA'

Figure 4-1: Schematic of a DNA molecule. A single strand of sDNA binds to its complementary
sDNA' to form a DNA molecule.

1) Prepare reference sDNA' Planar Array
- Attach complementary sDNA'

E A' (B' sDNA'

3) Dye analyte sDNA with fluorescent tag

fluorophore

2) Prepare Biological Sample
- different genes are expressed in the
form of DNA or RNA

sDN A--- C

4) Flow Biological Sample over array
- See what sticks by looking at flourescence

Figure 4-2: Schematic of traditional DNA planar array technology.
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Figure 4-3: Picture of fluorescence from a DNA planar array. Fluorescence indicates that a

particular gene has been expressed.

Biological screening applications can differ in the types of target biomolecules, the

number of target biomolecules (degree of multiplexing), or the required experimental throughput.

For example, a clinical setting might require screening for only a few types of antibodies in only a

handful of samples per day. Because of these differences, alternative screening technologies such

as microbead assays have been developed. The next section reviews the principle of operation

behind microbead assays and discusses what is currently commercially available.

4.2.2 Microbead Assays

Optically encoded microbeads are used for multiplex assays in many areas of biology [31, 68-71].

In these applications, each biomolecular probe of interest (a single nucleotide polymorphism for

example) is attached to the surface of a different type of encoded polymer microbead.

Commercially available microbeads are encoded by the intensity of two fluorescent dyes within

the microbead [72]. An assay is performed by mixing different types of microbeads with a

sample, separating the microbeads, and using the fluorescence to both decode each microbead

individually and to infer the amount of analyte that is attached to the surface of the microbead.

Figure 4-4 shows a schematic of the microbead assay technology.

For some of the most common microbead biological assays, a flow cytometer is used to

separate the microbeads, while a classification laser excites the internal dyes. The fluorescence

intensity of the two dyes is measured using one colored glass filter and one photo-multiplier tube

(PMT) for each dye. Figure 4-5 shows a schematic of how this separation and detection are

performed. Commercial systems with 8 distinguishable bead types are specified to correctly

decode greater than 80% of the time with an error rate less than 0.5% [72]. (The remaining
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microbeads are ignored due to ambiguous fluorescence.) Systems with as many as 100 different

microbead types are specified to have an error rate of less than 2% [72]. These error rates refer to

decoding individual microbeads, but the effect of these errors can be reduced at the system level

by simply removing the high and low outliers from the final statistics, since typically there are on

the order of 100 microbeads of each type per experiment.

1) Create Different Microbead Barcodes
- polystyrene spheres (-5pm)
- Dye with different intensity of fluorophores

dyel dIye2 microbead

3) Mix with Biological Samples

microbead
sDNA'

sDNA

fluorophore

2) Coat with Complementary DNA

sDNA'

4) Separate microbeads
- Green fluorescence measures amount of sDNA
- Red & Yellow used to decode type of microbead

Figure 4-4: Schematic of microbead assay technology.

Particle analysis rates as high as 10,000/sec have been reported using flow cytometry, but

500/sec is more typical [73]. Relative to DNA planar arrays, microbead assays are considered

less expensive, more flexible, and have a higher throughput, but have low multiplexing

capabilities. With this in mind, it is interesting to consider if using NC based barcodes can

improve the degree of multiplexing that is possible for microbead assays.
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Figure 4-5: Schematic of detection system for traditional dye based microbeads. Red and yellow

fluorescence are used to distinguish the type of microbead. Green fluorescence is used to

measure the amount of biomolecule attached to the microbead.

4.3 Nanocrystal Based Microbead Technology

To analyze the potential of nanocrystal based microbead barcodes, we have created a simulation

of what is experimentally reasonable using current technology. Specifically, we developed a

Monte Carlo simulation of the expected noise sources in order to estimate the correct and error

decode rates of different coding schemes. First, we had to make some educated choices about

how a nanocrystal based microbead barcode system might be implemented.

4.3.1 System Implementation

While dye based microbead systems use colored glass filters and photomultiplier tubes for

detection, as the number of colors used to label an individual microbead increases, fluorescence

measurements with a spectrometer become a more practical solution. Figure 4-6 shows

schematically what a system might look like. Assuming a spectrometer based system, we must

choose an algorithm for how to decode a measured spectrum. Our algorithm first computes the

mean-square-error (MSE) between the 'measured' noisy fluorescence spectrum and the expected

fluorescence spectrum for all possible codewords, and then decodes by choosing the codeword
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with the minimum MSEI. However, no decision is made if the codeword with the second lowest

MSE 2 has a similar MSE. In our simulations we have a relative error threshold p and if MSEI>

P*MSE 2 then we choose not to decode. Our algorithm is similar to a correlation detector. Next

we need to make a model of the expected noise given what can reasonably be achieved

experimentally with NCs and microbeads.
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Figure 4-6: Schematic of NC based microbead assay technology from [31]. Different probe
molecules are attached to different types of microbeads. The fluorescently labeled target
molecules bind to their cooresponding probes. The spectrum of individual microbeads is used to
both infer the type of probe molecule using the optical code and to measure the presence of the
corresponding target analyte.

Since CdSe NCs are the most mature NC technology and have been studied most

extensively, we will focus on them in this analysis. Incorporating NCs into polymer microbeads

is a well established procedure. Figure 4-7 shows microbeads doped with different NC colors. In

our simulations, we assume that the ensemble fluorescence spectra is Gaussian and has a

linewidth of aIinewidth=13nm (AX~30nm FWHM), although ensemble linewidths narrower than this

are currently available for all colors of CdSe NCs [14]. Mathematically, we use h(X-kX) to denote

the spectrum of a single color NC ensemble centered at k. We assume that any color in the range

Xblue=
5 3 0nm < k < Xred=6 5 0nm is readily available, even though a larger range has been

demonstrated [32]. The full spectrum will be the superposition of many colors of NCs with
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different amplitudes S(x) = h( - X). We choose a spectrometer bin spacing of AX=5nm

with a wavelength range from Xmn=450nm to X,,=700nm for our simulations.

Figure 4-7: Picture of NC dyed microbeads from [74].

Although it may be possible to use the absolute intensity of the fluorescence spectra for

microbead barcodes [31], a much more robust approach is to make decoding the barcodes

independent of absolute intensity. Mathematically, we normalize the spectrum before decoding,

so that JS(X)d = 1. This constraint not only makes the barcodes more robust to decoding - so

that the coupling efficiency of the fluorescence to the detector does not matter - it also makes

creating the barcodes potentially must easier, since controlling absolute intensities can be difficult

[74]. (The fluorescence spectrum is the linear superposition of the emission from each color of

NCs so long as there is minimal interaction between the NCs in terms of reabsorption of emitted

light, or dipole-dipole coupling between NCs. Importantly, reference [74] does not observe any

fluorescence quenching or spectral shift when NCs are incorporated into mesoporous polystyrene

beads.)

4.3.2 System Noise Model

While there is no fundamental reason why NC ensemble samples can't be made with arbitrarily

small uncertainty in NC color or linewidth, the cost and effort required to manufacture the NC
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samples increase as the quality and control of the NC samples increase. We are interested in

assessing what can be achieved given what is currently available commercially. Accordingly, we

have ordered various NC samples from QDot Corp and find that the error in the center

wavelength Ecen versus what is expected has a standard deviation of aeen= 2 nm and a variation in

fluorescence linewidth Ewid that is about aGid=0. 5 nm. We believe that these uncertainties give a

reasonable measure of the noise that can be expected when creating an individual instance of a

barcode. The resulting spectrum will have the form S(X1)= h X -+ i ) - + cen ,where

F=1 3nm is the expected linewidth.

Incorporating NCs into mesoporous polymer microbeads has been established

experimentally. The NCs reside in pores (~20nm) in the microbead [74]. Because the

distribution of microbead pore sizes may vary from microbead to microbead, the relative dyeing

efficiency for different colors of NCs will vary, since it is easier for larger NCs to fit into larger

pores. We model this noise by multiplying the desired fluorescence spectra by a random slope

Eamp centered at X center - red + X blue and leaving
2

S()= (1+amp(k - Xcenter) A h - i + cen.
1+(wid/r)

Finally, we add a white Gaussian noise background swn(k) to the fluorescence spectra to

account for a variety of things - like environmental fluorophores, the detection sensitivity of the

optical system, or photon shot noise. (All of the noise sources are modeled using zero mean

Gaussian random variables.) The final noisy spectrum is given by

S(X) = (I + Eamp - X center A h k - k + Feen + &wn(). This spectrum S(X) is

then discretized into a vector of numbers S[n] corresponding to spectrometer bins, where

X~+AX (n)

S[n]= S(A)dX, and is normalized E S[n] = 1.
X i+A(n-0) n

In order to calibrate the amplitude and background noise sources we compare our model

to what has been achieved experimentally using the ratio of 2 colors of CdSe NCs separated by

70nm in wavelength [75]. Ref. [75] finds that the ratio of the amplitudes can be controlled to

better than 2% accuracy and estimates that over 30 ratios could potentially be distinguished. We

adjust the amplitude and background noise so that our model gives comparable results.

Specifically, we generate a code based on the ratios of 2 colors separated by 70nm. We chose a
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1:1 ratio of color#1 to color#2 as the first codeword in our code, and then generate many noisy

instances with only the background and amplitude noise sources turned on. We then do a least

squares curve fit to the amplitudes of two Gaussians with appropriate centers and linewidths. The

distribution of the ratio of the amplitude fits is then calculated. The second codeword (ratio) is

then chosen so that only 0.5% of the distribution is closer to the second ratio. (This effectively

spaces the ratios by about six standard deviations of the distribution, which is what has been

indicated in [75].) We continue this process until we reach zero.

Figure 4-8 shows the simulation results. As expected, we find that for small ratios, the

background dominates the noise and hence it is best to space the ratios linearly, while for ratios

close to 1, the amplitude noise is dominant and the best spacing is logarithmic. Fig. 4-8 only

shows 17 ratios, all less than or equal to 1. Of course, for every ratio less than 1 (more of color

#2 than color #1), there is a corresponding ratio greater than 1 (more color#1 than color#2). (For

completeness, calibrated white noise in a spectrometer bin has a standard deviation of ac,,=0.001

and yamp= 5 x 10-4nm-1.) Finally, the result of this analysis is that we now have a noise model that

is grounded in what has been achieved experimentally.

0.9

a 0.E
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E0.4
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Figure 4-8: In order to calibrate the noise in our model to experiment, we simulate the ratio of 2
colors of NCs (with the center and linewidth errors turned off). Each peak is the result of a
simulation for a particular ratio of NCs. The text explains in detail how the ratios were chosen.

At this point we have a fully specified mathematical problem, and we are left with the

task of making an intelligent choice of how to design the barcodes to maximize the number of

distinguishable codewords. Before continuing with barcode design, we will investigate this

problem through the lens of information theory.

76



4.4 Information and Coding Theory

The microbead barcode system that we have specified in the previous section can be viewed as a

noisy communications channel and can be analyzed with information theory, specifically the

Shannon-Hartley Theorem. In this section we also examine the similarities and differences

between a "typical" communications problem and microbead barcodes.

4.4.1 Shannon-Hartley Theorem

Shannon's channel capacity theorem sets a limit on the transmission rate of information C

through a noisy communications channel with negligible chance of error as the length of a

message becomes arbitrarily long. This is a relevant metric for most modem communications

systems. Shannon's channel capacity in the time domain is C = B 10 2 1+ N df where
0 ~ (f))

S(f) and N(f) are the signal and noise power spectral densities and BW is the channel bandwidth.

There is a direct analogy between the usual the time domain version and our spectral domain

problem that allows us to apply this theorem to microbead barcodes. One issue is that the signal

and the noise are assumed to be independent in the Shannon-Hartley Theorem, which is not true

for our problem. However, the background noise En() in our model is independent of the

signal, and therefore we can still apply the Shannon-Hartley Theorem to our problem in order to

set an upper bound on the information capacity of a microbead.

One possible analogy between the usual time domain and the optical spectral domain, is

to imagine that the spectrometer range (Xmin to max) corresponds to one second t= Is of signal. In

this analogy, the spectrum of a single NC color corresponds to the impulse response h(t) of the

channel. Then, the magnitude of the discrete Fourier transform of h(t) indicates the attenuation of

sinusoids at 1 Hz intervals, and the square gives us samples of S(f) which we denote S[ki]. N(f) is

calculated by taking the average of the squared Fourier transform of many instances of £wj[n].

Figure 4-9 shows the power spectral densities, S[ki] and N[ki]. The information capacity of a

microbead is then calculated according to C = Xred ' Xblu log 2 1+ i . The factor in
kmax - min k#0 N[ki] I

front of the summation is due to the fact that we can not transmit for the whole t=ls, since we are
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constrained by XIble < Xi < red- Also, S[O]/N[O] is not included because our normalization

condition eliminates all the information stored in the DC offset. This analysis yields a capacity of

C=42 bits/microbead. However, this metric is not especially useful for assessing microbead

technology.
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Figure 4-9: The plot shows the squared absolute magnitude of the
color NC optical spectrum and the background white noise.
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First, the capacity C is not an upper bound on the number of codewords, since we allow a

finite error rate. On the other hand, our system has other constraints that are not taken into

account in our calculation, and will lower the microbead capacity - S[n] can not be negative, S[n]

is normalized, and there are other signal dependent noise sources that we have neglected. Despite

the difficulty of putting an upper bound on the code size, we can put a lower bound on the

number of codewords by simulating different coding schemes to see what works the best. The

main question is: How do we encode the information?

4.4.2 Channel Coding

Most of the analysis that has been done for traditional coding applications is not especially useful

for our situation, but it is worth reviewing the basics in order to understand how our problem is

different. A "normal" communications problem deals with the transmission of a large amount of

information, typically assumes that signal and noise are independent, and assumes that there is no

78

I



ISI (inter symbol interference). A message is first converted into bits which are then physically

encoded, for example as a plus or minus voltage. The receiver then makes a decision as to

whether a 1 or 0 was sent by checking if the received voltage is above or below some threshold

level. Channel coding deals with the problem of how to efficiently add redundant bits to a

message in order to make the message more robust to decode errors, but not unnecessarily long.

Hamming, Golay, Reed Solomon, and convolution codes all fall into this category of traditional

binary codes. Because of channel noise, some of the received bits will be incorrect. As long as

the number of errors is sufficiently small, the original message can be recovered by choosing the

codeword that is closest to the received signal in the Hamming distance sense (minimum number

of differences in bits).

In contrast to a "normal" communications problem, our microbead barcode application

has a small amount of information per microbead (~10 bits) and is therefore in the short block

length regime. Our signal and noise are not independent, so it is non-trivial to apply Shannon's

theorem to set a strict upper bound on the number of distinguishable codewords. Finally, there is

significant ISI if one chooses a PAM (pulse amplitude modulation) coding architecture, since the

spectra of different colors massively overlap if more than approximately 5 colors are used.

For our application, the received signal is the measured light intensity in each

spectrometer bin, or a vector of (700nm - 450nm)/5nm = 50 numbers. As explained previously,

we decode by calculating the MSE between the received signal and the expected signal that

corresponds to every codeword, and choose the codeword with the minimum MSE as long as

there isn't a close second choice. For our application, decode complexity is not an issue since we

will be dealing with a very small data rate (~10 bits/bead)*(~1000 beads/sec) = 10,000 bits/sec.

Finally, we are ready to analyze the code design for microbead barcodes.

4.5 Regular Barcode Design

To begin our design analysis we consider pulse-amplitude-modulation (PAM) codes. First, we

create a list of all valid PAM codewords for a given number of colors and number of intensity

levels. Because we have assumed that our system will not be sensitive to absolute intensity we

eliminate codewords that appear identical after normalization, like (132) and (264). Next, a

random codeword is selected from the list (all codewords have equiprobability of being chosen)

and a noisy instance of the fluorescence for that codeword is created according to the noise

characteristics described above. Figure 4-10 shows an example of a noisy instance of the
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spectrum corresponding to the codeword (20211), along with the non-noisy spectrum that was

desired. The left most peak of the noisy spectrum is right shifted due to noise in the center

wavelength, while the high frequency noise results from the background noise. Note that even

with only 5 colors there is a lot of spectral overlap between colors. Figure 4-10 also shows a

specific instance of an incorrect decode.

Actual Actual Wrong
Desired Desired decode

codeword: 2 2 1
2 0 2 1 A decode: 2 2 2

-j

Correct Decode Decode Error

450 500 550 600 650 700
Wavelength (nm) 450 500 550 600 650 700

Wavelength (nm)

Figure 4-10: Specific instances of a correct decode and a decoding error.

To decode, we choose the codeword whose expected fluorescence spectrum has the

lowest MSE with respect to the actual noisy fluorescence signal, unless MSEI> pxMSE 2 in which

case the spectrum is not decoded. The success rate and error rate are then calculated by repeating

the simulation many times. We then optimize the choice of number of colors, number of intensity

levels, and error threshold P in order to maximize the number of distinguishable codewords while

maintaining a correct decode rate>80% and error rate<0.5%. Ideally we would like to have a

large number of colors and a large number of intensity levels, since this would result in a large

number of codewords. However, there is a trade-off. Fig. 4-11 shows that as the number of

colors increases, the spectral overlap increases and it becomes more difficult to distinguish

between intensity levels. This happens because increasing the number of colors while holding the

spectral range fixed (Xblue < Xi < Xred), means that the colors Xi must be spaced more closely. This

increases the spectral overlap and ISI.
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Figure 4-11: Left: shows maximum number of levels versus number of colors for PAM codes.
Right: Number of codes versus number of colors.

Fig. 4-11 shows that the best results are obtained by using a 10 color binary architecture

with 1023 codewords (all zeros is not valid). In the literature, it has been speculated that a

"realistic" scheme would use PAM with 5 or 6 colors and 6 intensity levels for a total of 10,000

to 40,000 codewords [31]. However, our simulation indicates that for 5 colors, only 3 intensity

levels (0,1,2) can be used and still satisfy the error rates. This only yields 211 codewords, far less

than the expected 10,000. A typical error in the PAM scheme involves mistaking between the

codewords: (203) and (304). Since there is no absolute intensity, only the ratio of the intensities

matters, and 2:3 is close to 3:4.

In order to get a better intuition for how efficient a code is, we have created a type of

diagram that is similar to a CIE diagram and plots all of the codewords (for a 3 color case) in a

triangle. (see Figure 4-12) After choosing a particular code with 3 colors, we generate a set of

noisy instances for each codeword. Then, we do a least squares curve fit to the amplitudes of 3

Gaussians summed together (the center and linewidth are fixed at their expected values) for each

of the noisy instances. The 3 amplitude fits are used to generate a coordinate which is shown as a

dot in the diagram. The sum of the 3 amplitudes is normalized to 1 and each amplitude is used as

a scalar multiplier for a unit vector pointing away from the origin on the diagram. For example,

the vector for color #2 points vertically from the origin and hence the code (010) shows up on the

diagram at x=0, y=1. The 3 corners of the triangle correspond to having just 1 color, and the

center of the triangle corresponds to having equal parts of each color.
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Figure 4-12: The diagram shows the codewords for PAM (3 colors, 4 levels) Scatter plot for 3
color codes. A least squares curve fit to the amplitude of 3 Gaussians is performed on several
noisy instances of each codeword and the result is plotted as a point (a random color is chosen for
each codeword). Each of the corners of the triangle corresponds to pure colors, and the middle is
an equal weighting of each color. The noise has a different magnitude and shape in different
regions.

Fig. 4-12 shows that the noise has a different magnitude and shape in different regions,

and that the spacing of the codewords for the PAM scheme is quite inefficient. Along the lower

edge of the triangle, the noise is in a horizontal line and is primarily due to the noise in the

amplitude which is what causes the most errors for PAM codes. Figure 4-12 shows that the

codewords (203) and (102) are very close and that the scatter plots overlap a bit, indicating errors.

A simple way to minimize these kinds of errors is to use PAM but choose codewords of

equal weight (the sum of elements are equal). This method provides a kind of error correction

since two of the elements need to be incorrect in order to create another valid codeword with the

same weight. In this scheme the "nearest neighbors" of (063) are {(072), (162), (153), (054)} all

of which differ by at least 2 elements. (see Fig. 4-13) We find that the optimal code uses 5 colors

and a weight of 10 for a total of 1001 total codewords, which is actually worse than non-equal

weight PAM.
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Figure 4-13 Diagram of equal weight PAM (3 colors, weight 9)

However, a further improvement can be made by adding the additional constraint that

there must be at least 1 zero between any 2 colors with non-zero elements. Using this, we find

that the optimal code uses 8 colors and a weight of 12 for a total of 2164 codewords. (see Figure

4-14) Intuitively, this technique gives better results because more information can be stored in

the color choice of the non-zero elements - it is a kind of mix between amplitude modulation and

pulse position modulation. (For example, if we consider a return-to-zero coding scheme with 6

colors, then there are 4 ways to arrange the elements (1,2,3) in that order {(102030), (102003),

(100203), (010203)}. In the PAM coding scheme with 3 colors, there is only 1 way to do this.)

In fact, the return-to-zero coding scheme can be improved further by constraining codewords to

have at least 2 zeros between non-zero elements. In this scheme, the optimal parameter choice is

10 colors with a weight of 15 for a total of 2586 codewords. If the noise associated with the

center wavelength were reduced, then further gains could be made by constraining codewords to

have even more zeros between non-zero elements. However, for our choice of parameters the

return-to-2zeros scheme is the best regular coding scheme that we have been able to come up

with. Looking at Fig. 4-12 it is clear that codes should not be spaced evenly, but instead should

be packed more densely in regions with low noise and less densely in regions with high noise.

The next section discusses our Monte Carlo code generation algorithm which achieves exactly

this.
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Figure 4-14: Codewords versus number of colors for different regular PAM based coding
schemes described in the text.

4.6 Monte Carlo Code Generation

This section describes the details of our Monte Carlo code generation algorithm and its results.

Using this technique we find a code with 9000 codewords, a large improvement over the regular

codes discussed in the previous section.

4.6.1 Barcode Generation Results

We begin by describing our Monte Carlo code generation algorithm for three colors. First, we

randomly generate a trial PAM codeword with 100 levels (a list of 3 numbers from 0-99). We

then generate 100 noisy fluorescence spectra for that trial codeword, and decode using the usual

technique with the trial codeword plus all of the codewords that are already part of the code. If

all of the noisy fluorescence spectra are decoded correctly, then the trial codeword is added to the

code. If any are incorrectly decoded, then we throw out the trial codeword and continue by

generating another random trial codeword.
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Figure 4-15 shows the results of this Monte Carlo code generation. This technique

allows codewords to be packed more closely in regions that have low noise, and further apart in

regions where the noise is larger. In fact, Fig. 4-15 shows that the codewords along the bottom

edge of the triangle are spaced closer in the vertical direction than the horizontal, which is exactly

what we want since the noise is larger in the horizontal direction. This code generation procedure

can be continued indefinitely, but it is clear that there is a limit to how many codewords can be

added to the code while still satisfying the error rate condition.
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Figure 4-15: Triangle diagram for Monte Carlo code generation.

Figure 4-16 shows the results of our Monte Carlo code generation as a function of the

number of colors. The number of codes increases monotonically as expected, although it is

perhaps surprising that some of regular coding schemes manage to do better than the Monte Carlo

generation scheme for a certain number of colors. We attribute this to the fact that in the PAM

based schemes, the codewords are spaced in a regular fashion and hence can be packed

efficiently. The Monte Carlo scheme, on the other hand, sometimes leaves spaces between

codewords that are large, but not large enough to fit another codeword, and therefore there is

some wasted space. Using the Monte Carlo generation procedure with 50 colors, we have found

a code with over 9000 codewords that still satisfies the error conditions. Although this result can

presumably be improved upon, it does set a lower bound on the number of codewords that is over

8 times bigger than the PAM scheme. The algorithm that is used to create this large code must be

carefully designed in order to be computationally efficient.
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Figure 4-16: Number of codewords versus the number of colors for various coding schemes. For

each choice of coding scheme and number of colors, the weight/number of levels and error

threshold P are optimized to maximize the total number of codewords while still maintaining a

correct>80% and incorrect<0.5% error rate.

4.6.2 Barcode Generation Algorithm Details

The Monte Carlo code generation with 50 colors requires careful thought to get the best results

since it is computationally impossible to consider all 10050 possible codewords. A code

generation technique that generates a random number uniformly distributed between 0-99 for

each of the 50 colors gives poor results. This simple technique tends to preferentially generate

codewords with a fluorescence spectrum that is relatively flat and therefore similar to other

spectra in a MSE sense. For example, (99, 0, 99, 0, 99, 0, ... } is almost indistinguishable from

{50, 50, 50, 50, 50, 50, ... } in the MSE sense even though they are far apart in a traditional

Hamming distance sense. This happens because each color overlaps massively with its neighbor

since they are spaced by 2.4nm and have a linewidth FWIHM > 30nm. Figure 4-17 shows six trial

codewords using this simple technique (n=1 strategy). All six are relatively smooth and are

similar.
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Figure 4-17: The first six trials of the n=1 and n=16 strategies.

In order to get sharp spectral features, most of the numbers should be small or zero with

only a few large numbers. This can be accomplished by first generating 50 uniformly distributed

numbers, then exponentiating each to some power n, normalizing so that the largest possible

value is 100, and rounding to the nearest integer. Following this procedure on the vector {0, 20,

80, 40, 60, 0, ... } with a power n=2, gives the new vector (0, 4, 64, 16, 36, 0, ... }. Using a

power n=6 gives (0, 0, 26, 0, 5, 0, ... }, which will generate a spectrum with sharper features than

the original vector. Fig. 4-17 shows that codewords generated with the n=16 strategy have

sharper features and are less similar in the MSE sense. As n becomes larger the generated spectra

become even more peaked and start to look like one another again.

Our Monte Carlo code generation algorithm uses seven strategies to generate trial

codewords n=1,2,4,8,16,32,64. We keep track of success rate = (number of times the trial

codeword is added to the code)/(number of attempts) for each strategy. Each time through the

algorithm we choose a strategy based on what has worked in the past, such that the probability of

choosing a strategy is proportional to its marginal success rate. (We start the simulation by

artificially giving each strategy 1 success and 1 attempt.) The idea behind this, is that if a

particular strategy is generating a lot of codewords that are similar (in the MSE sense), like the

n=1 strategy, then eventually its success rate will decrease and therefore its probability of being

chosen as a strategy will decrease and other more productive strategies will be used instead.

Using this kind of strategy diversity ensures that our algorithm is robust. Figure 4-18 shows the

number of attempts and successes for each strategy in our algorithm. The n=4 and n=8 strategies

have high success rates relative to other strategies, and hence they are preferentially chosen.
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Interestingly, we find that using a diverse set of strategies has a higher overall success rate after

30,000 attempts than an algorithm that only uses the n=8 strategy. We attribute this

outperformance to the fact that any one particular strategy tends to generate similar codewords

and hence preferentially fills a certain fraction of the total codeword phase space. Other

strategies can then fill in the less filled parts of the phase space.
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Attempts (104)

Figure 4-18: Plot of the number of trial codewords versus the number of successful attempts for
each strategy we used. The probability of choosing a particular strategy is based on the marginal
success rate.

4.6.3 Information Theory

At this point, it is worth stepping back again to consider how our Monte Carlo code differs from

codes used in "typical" communications applications. Often, the modulation and channel coding

decisions are considered independently. In our case, these have been combined and we directly

try to find codewords that are spaced such that noise does not cause a codeword to be incorrectly

decoded. Another difference is that for our application we do not expect the noise to be

independent of the signal or to have a trivial structure. As a result it is difficult to find a regular

coding scheme that uses all of the information capacity that is available. Instead, we find that by

using our Monte Carlo generated code we are able to more fully utilize the information capacity

of a microbead barcode.

While it is relatively easy to visualize what is happening when only 3 mostly non-
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overlapping colors are involved, it is much more difficult to visualize what is happening when 50

colors with a lot of overlap are used. In order to help get an intuition for what is happening, we

have plotted the power spectral histogram of the error sources and signal for our 50 color Monte

Carlo code in Figure 4-19. (The signal power histogram is generated by averaging the magnitude

of the Fourier transform of the spectral contribution of the noise from just one source. The noise

power histograms are generated by averaging the magnitude of the Fourier transform of many

instances of the spectra of just the noise source. Although Shannon's Theorem can not

technically be applied since the signal and noise are not independent, pretending that the signal

and total noise are power spectral densities and applying Shannon's Theorem yields a microbead

capacity of 19 bits.) The plot shows that the power spectrum of the signal decreases at higher

frequencies. This makes sense because the linewidth of 1 color of NCs effectively acts like a low

pass filter. Fig. 4-19 shows that for low frequencies, which is where most of the information

capacity lies (S/N is the best), the uncertainty in the center wavelength is the dominant noise

source. This is interesting because it suggests that uncertainty in the center wavelength of NC

ensembles may be the limiting factor for NC-bead based barcodes. This is in contrast to [75]

which hints that the uncertainty associated with the intensity of different colors of NCs may be

the limiting factor. However, a better and more direct way to understand what noise sources are

most critical is to perform a sensitivity analysis on the parameters in our model.
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Figure 4-19: Power spectral histogram of the 50 color Monte Carlo coding scheme. Each line of
the labeled lines shows the power spectral density of each power source individually. The dotted
line corresponds to the total luminescence, and the solid black corresponds to all of the noise
sources.
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4.7 Other System Considerations

In this section we consider how sensitive our model is to the parameters we have used and

estimate the system throughput.

4.7.1 Sensitivity Analysis

We performed a sensitivity analysis of our model in order to assess the importance of our

parameter choices. For each parameter, we made a slight change (-20%) and then varied the

number of colors, number of intensity levels, and the relative error threshold P in order to

maximize the number of codewords while still satisfying our error constraints (correct > 80%,

error < 0.5%). We use an equal weight retum-to-2-zeros architecture for this analysis. Using the

Monte Carlo code generation for a sensitivity analysis is complicated by the fact that we do not

know of any way to quantify how well filled the code space is, and therefore can not be sure that

we have waited long enough for the algorithm to fill the code space. Figure 4-20 shows how a

1% change in each parameter is expected to change the total number of codewords = 2 bits. The

results show that a 1% increase in the NC color range (bandwidth) increases the number of bits

by about 1%. It is comforting that this agrees with our intuition from the Shannon channel

capacity C = BW x log 2 (S / N) which indicates that the capacity scales proportionally to

bandwidth BW.

In our analysis we tried to choose parameters that are reasonable for currently available

CdSe NC technology, but it may not be too difficult to expand the range of colors that are

available by using CdS or CdTe NCs. All of these types of NCs can be capped with tri-n-

octylphosphine oxide (TOPO), which should allow them to be incorporated into the same

polymer and could vastly expand the number of barcodes. Also, our results show that reducing

the ensemble linewidth is important. A narrower linewidth will reduce spectral overlap and ISI.
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Figure 4-20: Sensitivity analysis of parameters in simulation. A PAM architecture with equal
weighting and retumn-to-2zeros constraints is assumed for this analysis.

The sensitivity to different noise sources gives qualitatively the same answer as the

power spectral histogram: the uncertainty in the center wavelength dominates. It is noteworthy

that we do not appear to be limited by the relatively large 5 nm spectrometer bin width that we

have used. In fact, we can increase the bin width to 12.5nm with only minor effects on our

results, which makes intuitive sense when one considers the Nyquist criterion. According to the

Nyquist criterion if we sample a bandlimited signal at twice the signal bandwidth, then the

original analog signal can be recreated with perfect fidelity. Because the "impulse response" of

our system (the sharpest spectrum we can create) has a linewidth of about 30nm FWHM, we

should be able to sample at 15nm spacing (half the impulse response linewidth) without losing

much information. An additional error source is due to uncertainty in the temperature.

Since both the emission wavelength and linewidth are temperature dependent, any

uncertainty in the temperature of the microbeads will introduce additional noise. Figure 4-21

shows our measured temperature dependence of the ensemble emission wavelength for CdSe/ZnS

NCs. We model this by linearly interpolating between a temperature dependence of

d/dT=0.I Inm/K for X=650nm NCs and dJdT=0.08nm/K for X=530nm NCs. Figure 4-22 shows

our measured temperature dependence of the ensemble emission linewidth for CdSe/ZnS NCs.

Since the slope is similar for all sizes, we model the linewidth with a linear temperature

dependence such that the linewidth (FWHM) increases by X=2nm for a T=40K change in

temperature.
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Figure 4-21: Measured temperature dependence of the emission wavelength for 5 sizes of
CdSe/ZnS NCs. The wavelengths are offset to equal zero at T=300K so that the slopes can be
compared.
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Figure 4-22: Measured temperature dependence of the emission linewidth
CdSe/ZnS NCs. Color and shape convention is the same as previous figures.

for 5 sizes of

To estimate the effects of an unknown temperature offset, we adjust the NC emission

spectra accordingly but do not change our decode algorithm. We then find the set of parameters

that maximizes the number of codewords with an acceptable error rate. Figure 4-23 shows the
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results of our simulation. Our simulation indicates that an unaccounted for 20'C increase in

temperature will reduce the maximum number of distinguishable codewords within the PAM

return-to-2zeros scheme from 2586 to 1066. Such a large temperature uncertainty seems unlikely

in a real system. However, if the temperature uncertainty of the microbead system is a concern,

we expect that the performance degradation can be minimized by installing a thermometer inside

the microbead system and then adjusting the expected emission spectra for each codeword in the

decode procedure. In fact, our simulations indicate that if the temperature offset is known and the

temperature dependence of NC emission spectra has been characterized, then the expected center

wavelength and linewidth can be modified in the decode algorithm, allowing for the full 2586

code to meet the error rates across a -30'C to +30'C offset range. We conclude that temperature

uncertainty will not be a major source of error in a NC based microbead system.
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Figure 4-23: Simulation of the maximum code size using a PAM-return-to-2-zeros scheme if
there is an unknown temperature offset.

4.7.2 System Throughput

Finally, it is important to remember that for the applications that we are considering - medium

density biological assay applications - we would like the throughput to be as high as possible, but

we need to make sure that there will be enough collected light to properly decode. A 5Rm bead

can have about 1 million NCs, each of which can emit 100 photons in the 10 ps that it is in the

path of a focused argon laser [74]. Assuming 1% collection efficiency, about 1 million photons

will reach the detector per microbead. The photons will be mostly spread over 24 spectrometer
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bins (120nm range, 5nm/bin). So, about 40,000 photons will reach each bin, and photon shot

noise will be less than 1% of the signal. Since this is less than the white noise that has already

been added to our noise model, we don't believe that the throughput of the system will

necessarily be limited by the amount of light that can be detected by the optical detection system.

4.8 Conclusion

In conclusion, for many biological applications there is a desire to be able to perform medium

density (~1000) assays with high throughput. In order to assess the viability of using NC-based

(instead of dye based) barcodes we have created a Monte Carlo simulation of NC barcodes that is

grounded in what is currently achievable using today's technology. We find that the simple PAM

coding scheme can be improved upon by using an equal weighted, return-to-2zeros PAM coding

scheme. Furthermore, we used a Monte Carlo technique to generate a code with over 9000

codewords that satisfies our error conditions. This number of codewords is much bigger than the

100 currently available dye based commercial technology, but is much less than the 1 million

codewords that has been mentioned in the literature. Our analysis shows the perhaps unintuitive

result that the number of distinguishable codewords can be increased quite dramatically by using

many different colors of NCs even though their spectra massively overlap! Accordingly, we

conclude that controlling the center wavelength of NC ensembles will be the limiting noise

source, rather the amplitude uncertainty. We hope that our work provides a useful framework for

thinking about NC based microbead barcodes, even if future developments indicate that the noise

model should be modified. Finally, our analysis indicates that NC-based barcodes have the

potential to fill the need for medium-density high throughput biological assays. Whether this

technology ever comes to fruition will largely depend if it is economically advantageous to create

such a system.

From the perspective of information theory and channel coding, our problem seems quite

unique. In practice, most problems are in the long block regime (~1000 bits) and it is

computationally impractical to run a Monte Carlo code generation algorithm. In this situation,

the concept of a random code generation is used as a theoretical concept, but is not actually

implemented. However, the microbead barcode problem is in such a small block length regime

(-10bits/barcode), that it is actually computationally possible to implement what is normally a

theoretical concept. At the same time the problem is complex enough, that there is no easy

analytic solution to our problem, and a Monte Carlo simulation seems to be the only option. We

94



are not aware of any other applications that fall into this small block length regime, where

constructing a code is nontrivial analytically, but small enough to be tractable using a Monte

Carlo approach.

95



96



Chapter 5

Conclusions

This thesis has investigated the optical properties of semiconductor nanocrystals and attempted to

relate these properties to NC applications. In Chapters 2 and 3 we presented our experimental

measurements of CdSe/ZnS NCs and investigated the physical mechanisms that have been

invoked to explain the temperature dependence of the exciton energy, the Stokes shift, and the

spectral linewidth. In Chapter 4 we used a Monte Carlo simulation to investigate the prospects of

using NC based microbead barcodes for high throughput biological assays.

This chapter reviews our main conclusions, discusses the implications for NC

applications, and suggests directions for future research. In section 5.1 we review our

conclusions regarding the physical mechanisms responsible for NC optical properties and relate

these conclusions to the applications discussed in Chapter 1. In section 5.2 we review the

prospects for NC based microbead barcodes for high throughput biological screening. We also

review microbead barcodes through the lens of information and coding theory, and suggest

additional topics for future research.

5.1 Implications of NC Physics for Applications

This section reviews our conclusions regarding the temperature dependence of the emission

energy dEemi/dT and the spectral linewidth of semiconductor nanocrystals. We discuss the

implications of these properties for the applications discussed in Chapter 1.

5.1.1 Temperature Dependence of the Emission Energy dEemi/dT

In Chapter 2, we showed that a first order model that only considers changes in the effective mass

with temperature can explain the existing experimental measurements of dE/dT for both epitaxial

QDs and colloidal NCs, and hence both types of systems can be modeled using the same physical
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framework. Previously, there was no model, either theoretical or semi-empirical, to predict the

temperature dependence of the exciton energy dE/dT in nanostructures. Our absorption

measurements of high quality CdSe/ZnS NCs show that there is no measurable size dependence

to dEabs/dT, in contrast to earlier measurements in lower quality CdSe and CdS NCs. We

explained most of the size dependence in dEabs/dT in PbS and PbSe NCs by the strong

temperature dependence of the effective mass of these materials. Previous explanations neglected

this simple, yet dominant physical effect.

One way to test our model is to measure the temperature dependence of the absorption

energy dEabs/dT of InSb quantum dots, which our model predicts will be reduced from its bulk

value because of the large percentage change in effective mass as a function of temperature. It is

difficult to make an exact prediction due to the lack of reliable measurements of the effective

mass with temperature, but k-p theory indicates that materials with a large percentage change in

Eg(T) with temperature should also have a large percentage change in effective mass with

temperature. Specifically, reference [39] indicates that the percentage change in effective mass

with temperature for InSb is about d%m*/dT = -4x 104/K near room temperature, while reference

[76] indicates that at room temperatue, Eg=170meV and dEg/dT=-0.33meV/K. Using

dE**"' = E F -1 am 2 aR1 we find that if a nanostructure was made with Econf=1 000meV, then
dT " m 8T R aT_

our model predicts dE/dT=0. It is important to note that as the confinement potential increases,

the effective mass approximation will break down. The parabolic band approximation fails as

increasing confinement forces electrons further from the band minimum. Additionally, once the

confinement energy becomes comparable to the bulk bandgap, the effective mass approximation

will break down. However, we expect that even for InSb nanostructures with smaller

confinement energies (100s of meV), there should be a measurable decrease in the magnitude of

dE/dT from bulk.

In Chapter 2 we focused on dEabs/dT, while Chapter 3 focused on the temperature

dependence of the Stokes shift Eabs(T)-Eemi(T). Combining these two properties one is able to

model the temperature dependence of the emission energy dEemi/dT, an important parameter for

many NC applications. Our measurements on CdSe NCs show a weak temperature dependence

of the Stokes shift near room temperature and hence dEemi/dT is similar to dEabs/dT. In fact, in the

literature it is often implicitly assumed that dEemi/dT and dEabs/dT are the same. Having any

model for dE/dT in useful for assessing potential NC applications.

In chapter 1 we discussed using NCs imbedded in organic devices as light emitters as a

way to provide a solid state solution for yellow traffic lights. Currently, the options for solid state
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yellow lights are limited by material properties. Because of the narrow spectral range perceived

as yellow by the human eye and the wide temperature range that a traffic light is subjected to, a

crucial specification for yellow traffic lights is the chromaticity drift as a function of temperature.

British railway specifications allow AX=2.5nm of chromaticity drift from -200 C to +40'C. Our

measurements of CdSe/ZnS NCs show that the chromaticity drift across this temperature range is

AX-6nm, thus precluding the use of CdSe/ZnS NCs for this application. However, PbS or PbSe

NCs may provide an answer. Since the Stokes shift is small in PbS and PbSe NCs, the

temperature dependence of the absorption energy should be a good approximation for dEemi/dT.

Measurements from [17] indicate a chromaticity drift AX=O±lnm for PbS NCs across the relevant

temperature range, indicating their potential suitability for yellow lighting applications.

Although, the quantum efficiency of PbS NCs may be a concern. Our analysis indicates that InSb

nanostructures are potentially another good solution.

Another potential application is to use NCs as a temperature sensor with a high spatial

resolution (1 Os of nanometers). Researchers have demonstrated the ability to deposit a monolayer

of NCs in organic electronic devices. By measuring the emission spectrum of NCs, the

temperature of the organic device at the depth of the NCs can be inferred. It is difficult to

imagine how to measure the temperature with 10 nanometer resolution using traditional

techniques. For this potential application, it is desirable to make dEem/dT as large as possible in

order to increase the temperature sensitivity. In general, materials with a large dEg/dT and with a

minimal temperature dependence of the effective mass are desirable for this application. Large

CdSe/ZnS NCs have dX/dT~0. nm/K making them ideal candidates for this application. Figure

4-21 shows that the temperature dependence of the emission wavelength of CdSe/ZnS NCs scales

with size, making larger CdSe/ZnS NCs more sensitive temperature probes. Our measurements

indicate that it is reasonably easy to detect changes of T=2*C using CdSe NC emission spectra.

Infrared images of OLEDs in [77] show that surface temperatures can reach 50*C before

degradation begins. The ability to measure internal temperatures, which are presumably even

higher, with T=20 C temperature resolution and a vertical spatial resolution of approximately

1 Onm could allow the internal temperature of OLEDs to studied with far greater precision than is

possible using traditional techniques. The temperature dependence of the emission energy will

have an impact on other applications, but it is often of secondary importance compared to the

spectral linewidth.
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5.1.2 Spectral Linewidth and Stokes Shift

In the literature, both exciton fine structure and exciton-acoustic phonon scattering models have

been used to explain a wide variety of experimental results in CdSe NCs. These two theories are

based on fundamentally different physical mechanisms and normally only one model is invoked

to explain the results of an experiment. In Chapter 3 we presented our careful measurements of

the temperature dependence of the ensemble emission and absorption spectra for different sizes of

CdSe/ZnS NC ensembles. Our experiment is performed in a regime where both theories are

potentially important, and therefore allows us to compare the theories directly. We interpret our

results through the lens of both theories.

In the fine structure framework, the temperature dependence of the Stokes shift gives a

highly sensitive measurement of the energy levels and oscillator strengths. As the temperature is

lowered from T=30K to T=5K, our measurements show a sharp 2-4meV increase in the Stokes

shift for different NC sizes. This behavior indicates the existence of lower energy level with

small oscillator strength, consistent with the existence of a dark exciton. The 2-4meV increase of

the Stokes shift is a measure of the energy difference between the dark exciton and the lowest

bright exciton state, and agrees well with temperature dependent lifetime measurements [42]. At

temperatures higher than T=40K, the dark exciton is expected to have a minimal impact in

determining either the emission or absorption spectra because of its small oscillator strength. As

a result, the temperature dependence of the Stokes shift between T=40K and T=300K provides a

sensitive measure of the energy level spacing and oscillator strengths of higher fine structure

energy levels. Previously, PLE experiments provided the only experimental measurements of the

upper fine structure levels that we are aware of [24]. According to the fine structure theory, we

expected to find a strong temperature dependence of the Stokes shift especially for our smallest

NCs. Surprisingly, we measured a weak temperature dependence of the Stokes shift for all sizes

of CdSe/ZnS NCs between T=40K and T=300K. Although these results were unexpected, we

found that adequate agreement could be obtained by adjusting the parameters in the fine structure

theory to fit our experimental results. Within the fine structure framework our results provide a

sensitive measure of the energy levels and oscillator strengths. However, the fine structure model

can not explain the temperature dependence of the spectral linewidth, which is considered to be a

result of homogeneous broadening which results from exciton-acoustic phonon scattering.

Within the exciton-acoustic phonon scattering model, the absorption and emission spectra

have a 'Prussian helmet' shape and are mirror images of one another about the ZPL. While the

spectral broadening predicted by this model is well known, we are not aware of any mention of
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this model's contribution to the Stokes shift in CdSe NCs, which turns out to be quite large.

Using the exciton-acoustic phonon scattering model developed in Ref. [38], we are able to

reasonably account for both the magnitude and size dependence of our measured Stokes shift and

the ensemble linewidth temperature broadening. Importantly, this model uses only material

parameters and has no adjustable parameters. However, we have measured single NC emission

spectra which are narrower than predicted and are directly inconsistent with this model.

We conclude that neither the fine structure model nor the exciton-acoustic phonon

scattering model can provide a complete description of the NC physics that is relevant for

explaining NC optical properties. Although both theories are able to adequately explain

experiments in certain regimes, it is not obvious how to combine the separate theories to explain

experiments in a regime where both are important, like the temperature dependence of the Stokes

shift. We speculate that a comprehensive theory that includes the physics of both the fine

structure and exciton-acoustic phonon scattering is needed to explain our experimental results.

Figure 5-1 compares the implied single CdSe NC bandedge absorption spectrum from

PLE experiments in [24] to the exciton-acoustic phonon scattering model of [38]. Previously, the

wide high energy peak from PLE experiments was interpreted as a higher energy exciton level in

the fine structure. We suggest that an alternative explanation is that this peak is due to exciton-

acoustic phonon coupling. One way to potentially determine the correct explanation would be to

measure the absorption of a single NC. At low temperatures, this peak would presumably be

narrow if it is due to a fine structure level, while the exciton-acoustic phonon scattering model

indicates a large width even at T=OK. In fact, the absorption spectrum of a single NC has been

measured by performing PLE on a single NC [78], however the measurements were performed on

a large NC where the difference between the two theories is minimal. If the single NC PLE

experiments were repeated on small NCs, then measuring a narrow high energy PLE peak would

strongly enhance the fine structure interpretation. In the end we suspect that reality is more

complicated, and that a comprehensive theory which combines the physics from both theories is

required. We hope that our work provides the motivation to perform additional experiments and

to reassess the physics that has previously been used to explain experimental results.
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Figure 5-1: Left - inferred single CdSe NC bandedge absorption spectrum (without optical
phonon replicas) from PLE experiments in [24]. Predicted absorption spectra of CdSe NCs based
on exciton-acoustic phonon scattering model in [38]. The oscillator strength and linewidth of the
ZPL are chosen to make the comparison more clear.

Another mystery that has yet to be consistently addressed, but may provide a clue to

resolving the issues we have been discussing, is why adding a ZnS capping layer to a CdSe NC

core increases the Stokes shift. A direct effect of adding a ZnS capping layer, is that the electron

and hole wavefunctions are less confined, since they can extend into the ZnS capping layer, and

hence the emission wavelength is red shifted. This effect indicates that the Stokes shift should be

reduced since redder NCs have smaller Stokes shifts, however figure 5-2 shows that

experimentally the opposite effect is observed [35, 79]. Adding a ZnS cap is also observed to

broaden the emission linewidth. Previously, this broadening has been interpreted as resulting

from an increased effective size distribution of the NCs. The increased Stokes shift was then

explained by the increased contribution of inhomogeneous broadening [35]. Our calculations of

the contributions of inhomogeneous broadening to the Stokes shift indicate that this is a small

effect, and can not account for the increased Stokes shift. Figure 3-14 shows that a typical

contribution of the inhomogeneous size distribution to the Stokes shift is 5meV for a high quality

sample. Assuming that adding a ZnS capping layer increases the size distribution by 10% (from

aR/R=5% to aR/R=5.5%), the contribution to the Stokes shift of the inhomogeneous size

distribution will increase by approximately 1meV, to 6meV total. This is far less than the 20meV

that is observed in [35]. We speculate that adding a capping layer may increase the lattice

relaxation energy (within the exciton-acoustic phonon scattering model), and hence may increase
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the Stokes shift. However, we are not aware of any quantitative analysis of exciton-acoustic

phonon scattering for NCs with a capping layer to support our speculation.
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Figure 5-2: Absorption and emission spectra of CdSe NCs with different thicknesses, or
monolayers ML, of the ZnS capping layer. (from [79])

Finally, we have estimated the contributions of the size distribution, spectral diffusion,

and homogeneous linewidth to the ensemble PL linewidths for our samples at room temperature.

Our analysis indicates that even if the inhomogeneous broadening due to size distribution and

spectral diffusion could be eliminated, the room temperature homogeneous broadening will only

allow the ensemble linewidth to be reduced to approximately half of the current value. The room

temperature ensemble linewidth is an important parameter for many potential NC applications.

Reducing the ensemble linewidth by 50% would improve the performance of many

applications. For NC based display applications, a wider range of colors could be displayed. On

the CIE diagram, the points corresponding to NCs could be moved about half the distance from

where they are currently to towards the edge of the diagram. For biological imaging, the number
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of colors that can be used simultaneously could potentially double. For laser gain applications,

the maximum gain would double for a given pumping power. For microbead barcodes, our

sensitivity analysis indicates that the number of codewords could potentially be increased from

about 2" to 22. Whether it is worthwhile to devote time, energy, and money to reducing the

emission linewidth is a complex question that will depend on the economic costs and benefits of

doing so. The primary goal of our research was to analyse what is possible and to assess how

improvements in NC manufacturing could improve NC applications.

5.2 Prospects of NC Based Microbead Barcodes

This section reviews the prospects of NC based microbead barcodes from the perspective of

biology and from the perspective of information and coding theory.

5.2.1 Biological Assay Perspective

For many biological applications there is a desire to be able to perform medium density (-1000)

assays with high throughput. Microbead barcodes are one commercially available method for

performing biological assays. The advantages of replacing organic dyes with NCs for this

application have been widely anticipated in the literature, but we are not aware of any quantitative

analysis of what could be achieved. In Chapter 4 we analyzed the performance that a NC-based

microbead system could be expected to achieve. Here we review our analysis and conclusions.

We began by making some design decisions regarding how a NC-based system would

operate. Among our choices, we choose to use a spectrometer, to make decoding the barcodes

independent of absolute intensity, and to decode based on MSE. We then developed a noise

model based on what can reasonably be achieved experimentally using current NC and microbead

technology. All of the parameters in our noise model have an experimental basis. We then

developed a Monte Carlo simulation of the noise in our system in order to assess the decode error

rates for different types of code design. We found that the simple PAM coding scheme that is

suggested in the literature, performs much worse than anticipated. It was anticipated that 5 colors

and 6 intensity levels could be used for a total of 7776 codewords, while we found that for 5

colors only 3 intensity levels could be used (and still satisfy our error conditions) for a total of

211 codewords. We then investigated other coding schemes. We found that the PAM results can

be improved upon by using an equal weighted, return-to-2zeros PAM coding scheme which
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allows over 2500 codewords. Furthermore, we developed a Monte Carlo code generation

algorithm to find a code with over 9000 codewords that satisfies our error conditions. This

number of codewords is much bigger than the 100 currently available using dye based

commercial technology, but is much less than the 1 million codewords that were speculated as

possible in the literature. Our analysis shows the perhaps unintuitive result that the number of

distinguishable codewords can be increased quite dramatically by using many different colors of

NCs even though their spectra massively overlap! Our sensitivity analysis indicates that

controlling the center wavelength of NC ensembles will be the limiting noise source, rather the

amplitude uncertainty as is implied in the literature. We hope that our work provides a useful

framework for thinking about NC based microbead barcodes, even if future developments

indicate that the noise model should be modified. Finally, our analysis indicates that NC-based

barcodes have the potential to fill the need for medium-density high throughput biological assays.

A goal of our research was to analyze what is possible using currently available technology.

Whether this technology ever comes to fruition is a more complex question that will require

weighing the economic costs and benefits of further developing this technology.

5.2.2 Information and Coding Theory Perspective

From the perspective of information theory and channel coding, NC based microbead barcodes

seem quite unique. In practice, most coding problems are in the long block regime (-1000 bits)

and it is computationally impractical to run a Monte Carlo code generation algorithm. In this

situation, the concept of a random code generation is used as a theoretical concept, but is not

actually implemented. However, the microbead barcode problem is in such a small block length

regime (-10bits/barcode), that it is actually computationally possible to implement what is

normally a theoretical concept. At the same time the problem is complex enough, that there is no

easy analytic solution to the optimal design of NC microbead barcodes, and a Monte Carlo

simulation seems to be the only option.

Additionally, our research raises questions that may be of interest to the information and

coding theory communities. Can an algorithm be developed to space the codewords in a regular

fashion, so that codewords can be packed more densely without increasing the error rate? In

order to better picture what is going on, is there a way to extend the triangle diagram that we

developed for the 3 color case, to more colors? Is there a way to quantify how fully a code covers

the total coding phase space? Is there a way to improve our Monte Carlo code generation
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algorithm to make it more computationally efficient? All of these questions strike us as

potentially interesting topics for further research.
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Appendix A

Frequency Domain Lifetime Measurements

We measured both the absorption and fluorescence lifetime of CdSe/ZnS NCs in the frequency

domain. These experiments were a first step towards performing a spectral hole burning

experiment at cryogenic temperatures. They were discontinued for multiple reasons: reference

[29] reported excellent experimental results before we were able to complete the experiment, we

had trouble getting a NC sample that was well matched to our laser wavelength (X=635nm) at

T=5K, and we found that careful measurements of ensemble absorption and emission were quite

interesting and more assessable experimentally.

For the fluorescence lifetime measurements, we excited the NCs with a green LED that

was sinusoidally modulated using a function generator. The X=640nm NCs were suspended in

toluene in a square cuvette. A New Focus 1801 detector that was connected to a SR844 lock-in

amplifier was used to the measure the amplitude and phase of the fluorescence signal. To get a

reference signal, the sample cuvette was replaced by a mirror and the LED excitation was

measured directly. Figure A.1 shows that the relative amplitude and phase of the fluorescence

agrees well with the prediction for a molecule with a r=20ns lifetime. The slow response of our

LED limited the frequency range of our measurement.

For the absorption lifetime measurement, we used a X=635nm, 5mw diode laser

modulated by an AOM (acousto optic modulator) to excite the NCs. This effectively modulated

the absorption of the NC sample, which was monitored with a probe laser at the same

wavelength. The induced modulation of the probe laser is detected with the same setup used for

fluorescence lifetime. Fig. A.1 shows that the absorption lifetime agrees well with the

fluorescence lifetime of -r=20ns. The most difficult aspect of this experiment is eliminating the

effects of scattered pump light. It is difficult to separate the signal due to scattered pump light

from the induced modulation in the probe laser.
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Figure A. 1: Shows the magnitude and phase delay of both fluorescence and absorption lifetime

measurements. The results agree well with the predicted lifetime of T=20ns.
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Appendix B

Thermal Fluctuations

Every object in thermal equilibrium with its environment has energy fluctuations. For large

objects, these fluctuations are not noticeable since their heat capacities are large. However,

because NCs have small heat capacities, these fluctuations can potentially be measurable. For

instance, since the number of phonons in a NC fluctuates, even when the NC is in thermal

equilibrium with its environment, and the excitonic energy of a NC is dependent on the number

of phonons, the excitonic energy of a NC will fluctuate. This will manifest itself as linewidth

broadening in the absorption and emission spectra. The goal of this appendix is to quantify this

broadening.

B.1 Analysis to Date

Thermodynamics tells us that the thermal energy of any system in thermal equilibrium with a

large reservoir will fluctuate. This is a result of the fact that any object is constantly exchanging

heat with its environment. The dispersion in the energy of a system in thermal equilibrium is

given by

(AEthermal ) 2 = U 2 C V

where Cv is the heat capacity of the system [80]. Because the thermal energy of a NC fluctuates,

one can also think of the temperature of the NC as fluctuating. By relating a change in thermal

energy to a change in temperature using

AEthermal = CVAT

a NC temperature fluctuation can be calculated. There is some controversy regarding the validity
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of interpreting AEthermal and AT as widths of the distribution of E and T. However, experiments

using superconducting magnetometers to measure the temperature of paramagnetic salts at 2K are

consistent with its validity [81]. Assuming the equation is valid, the above relations imply that

2 kT 2(AT) 2  2

Using the heat capacity of bulk CdSe c,=1.454 J/(cm 3K) and R~5nm one finds that

AT~1K at room temperature. Arzberger and Amann have created a more complicated, but more

accurate, model of NC temperature fluctuations using this equation as their starting point [13].

(The primary correction is to consider the volume of the electron and hole wavefunctions when

calculating Cv, instead the NC volume.) Their model indicates an excitonic broadening of 1.8

meV at room temperature for R=5nm CdSe NCs. This is comparable to the expected 3 meV

acoustic phonon broadening at room temperature and suggests that it may be important to include

temperature fluctuations in any complete analysis of NC linewidth.

In their analysis, they use the bulk value of cv at room temperature and assume that it is

independent of temperature. In fact, c,(T=O)=O and increases with temperature. So, while their

calculated broadening at room temperature should be reasonably accurate, they underestimate the

broadening at lower temperatures. The next subsection analyzes the linewidth broadening at low

temperatures (T<20K).

B.2 Our Analysis

For sufficiently low temperatures, only the lowest energy acoustic phonon mode has a significant

chance of being occupied. Therefore, in the low temperature regime the thermal energy

dispersion can be accurately estimated by modeling the NC as having only one phonon mode.

The probability distribution of the number of phonons occupying that mode can be calculated

using the canonical distribution

P, = C-EIkT

where Pr is the probability of the system being in state r, Er is the energy of state r, and C is a

constant of proportionality independent of r [80]. Adding up the probabilities of all states must
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equal 1, so C is found to be C-1 = e-ErkT. We also know that the energy for oscillator is
r

given by E, = (n + -)hco. Combining these equations we find the probability of having n
2

phonons in a mode is

P(n) = (1 -e-hwkT )e-a kT

Figure B-1 plots the probabilities of n=0,1, and 2 versus temperature for an acoustic phonon

mode with Ea=1.5meV. This is the energy of the lowest acoustic phonon mode in a CdSe/ZnS

NC with R-1.5nm [29]. This single phonon model will break down when the probability of

occupation of higher phonon modes becomes significant. Since the next highest acoustic phonon

mode is expected to have an energy of about 3meV, and the probability of n=2 which corresponds

to an energy of 3meV is about 7% at T=15K, this model should be reasonably accurate up to

15K. The mean thermal energy Ethermal and the standard deviation of the thermal energy AEthermal

are calculated directly from the probability distribution of phonon mode occupation. Figure B-1

shows the probability of phonon occupation, the mean thermal energy, and the standard deviation

of thermal energy versus temperature according to the above model. For T>15K this model will

tend to overestimate the thermal energy dispersion.

The excitonic line broadening AEexciton due to thermal energy fluctuations can be

estimated using AEexciton=(8 Eexciton/aT)x( 8 T/Ethermal) x AEthermal. From the above analysis, we

know the standard deviation in the thermal energy AEthermal, and can calculate the inverse slope of

Ethermal(T). Finally, our data indicate that aEexciton/aT is experimentally identical to bulk aEg/aT.

[Our preliminary data indicated that the average value of aEexciton/OT between 0 and 50 K was

much larger than bulk, about -0. 1meV/K, and spurred our interest in temperature fluctuations.

However, after improving our experimental technique, we now believe that the bulk model is a

good model.] Putting these pieces together gives a thermal linewidth of AEexcitn(R=1.5nm,

T=15K) = 0.02[teV. This is much smaller than what has been observed epxerimentally and what

is expected theoretically due to phonon scattering. We conclude that excitonic broadening due to

thremal fluctuations is not significant for NCs at low temperatures.
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Figure B-1. Top left - Shows the occupation probability of n=0,1, and 2 for a phonon mode with
E=1.5meV. Top right - Mean thermal energy is calculated using the occupation probability.
Bottom left - standard deviation of the thermal energy distribution calculated using the
occupation probability. Bottom right - derivative of Eg(T) for bulk CdSe based on [82].
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Appendix C

Calculation of Optical Trap Depth for a

Nanocrystal

Initially we hoped to use a laser to optically trap a NC in free space. This was motivated by the

belief that trapping the NC would minimize the environmental effects on the NC (since it would

no longer be in contact with a substrate or polymer) and would therefore allow us to better

measure the intrinsic properties of the NC. In retrospect, this idea is probably fundamentally

flawed. NCs are typically coated with TOPO in order to passivate the surface states of the NC.

Removing the TOPO is expected to quench the PL of a NC, since an electron or hole can get

trapped in a surface state and therefore not recombine. Since the TOPO provides the local

environment of the NC, and can not be removed, optically trapping a NC will not eliminate the

environmental effects of TOPO on a NC. Here we present our calculation of the optical trapping

potential for a NC.

The basic idea behind optical tweezers for small dielectric particles is quite simple. First,

a laser is focused to a spot. The average magnitude of the electric field is greatest where the

intensity is greatest, at the laser beam waist. Since the energy potential seen by a dielectric

particle is given by U=-(a/2)jEj2, where a is the polarizability of the particle, the particle will feel

a force towards the region of highest intensity, the beam waist. A 100 mw laser focused to a spot

size of 1 pm diameter has an electric field magnitude of about IE=10 7V/m. A CdSe NC with

c -i
diameter a=1 Onm and dielectric c=1 0, has a polarizability a = a 3cO of approximately 10-35

F, + 2

Fm 2 . These values give a trap depth of about 6meV. We do not expect this to be deep enough

since it is small compared to thermal energy at room temperature kT=25meV. Since a scales like

a3, it becomes increasing difficult to trap smaller particles. We conclude that it is very difficult to

use the simple optical tweezer setup that we described to trap NCs.
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Appendix D

Matlab Code

This appendix includes some of the key matlab code used to produce many of the figures in this

thesis.

D.1 Chapter 2 code

% For cal. ib rat ing the ef cicy of te op Lical deteCti as a fun(ti.n
EI)C 0'. ea~ c LAfl 912 ah ioof wavel-ength

clear all;

dark = 73;
cen = {'40'; '550'; '461 }

lambdamax = [705.60 616.57 527.47];
lambdamin = [572.77 481.89 391.07];

for I = 1:length(lambdamax),
dlambda(I) = (lambdamax(I)-lambdamin(I))/1339;
lambda(I,:) =(lambdamin(I):dlambda(I):lambdamax(I));

end

%.Waveli ength Calibrat :ion

load mercurv460tls.txt;
load mercurySSOtLs.txt;
load mercury640L.Is.txt.;

mer460=mercury460tls(3:end)-dark;
mer550=mercury550tls(3:end)-dark;
mer640=mercury640tls(3:end)-dark;

T.he i.ne wavelengths fIrm HorG-
merlines = [404.7 435.8 546.1 577.0 579.1 696.5];

figure (1);
splot(lambda(1,:),mer640);
splot(lambda(2,:),mer550);
splot(lambda(3,:),mer460);
xlabel ('Waveclngt h (nn) ') ;
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ylabel (' Intensity');
title ( 'Measured Mercury/Argon Lines ') ;

% To find the peak. positions

[Y, I] =max (mer460 (1:400));
mline (1) =lambda (3,1)
[Y,I]=max(mer460);
mline(2)=lambda(3,I);
[Y,I]=max(mer55O);
mline(3)=lambda(2,I)
[Y,I]=max(mer640(1:60));

mline(4)=lambda(1,I);

[Y,I]=max(mer640(1:200));

mline (5) =lambda (1,1);
[Y,I]=max(mer640(200:end));

mline(6)=lambda(1,I+200);

mline-mer lines

mline
merlines

mean(mline-mer lines)

Intensity Calibration

load cal460tOs.txt;
load ca.I55 0t10s.txt;
load cal640t5s.txt;
cal460=cal460t10s(3:end)-dark;
cal550=cal550tl0s(3:end)-dark;

cal640=2*(cal64Ot5s(3:end)-dark);

----------------- Efficiency Data for Calibration-----------------------

Actual- spectrum for the LSICA. with oo3 diffuser on SMA connector

lsllam = [350 360 370 380 390 400 420 440 460 480 500 525 550 575 600
650 700 750];
lslcc3 = [0.0761 0.0930 0.1238 0.1796 0.259 0.333 0.566 0.880 1.31 1.72
2.06 2.79 3.57 4.50 5.52 7.40 9.95 13.951;
lampl = [1.56 2.01 3.33 5.24 7.82 9.43 11.6 15.3 19.9 25.1. 31.3 47.0

64.7];

lslcalfit = polyfit(lsllam,lslcc3,9);

figure(2);

splot(lambda(1,:),cal640);

splot(lambda(2,:),cai550);
splot(lambda(3,:),cal460);
splot(lambda(1,:),3500*polyval(lslcalfit,lambda(1,:)));
splot(lambda(2,:),3500*polyval(lslcalfit,lambda(2,:)));
splot(lambda(3,:),3500*polyval(lslcal fit,lambda(3,:)));
xlabel ( 'Waveleng th (nm) ')

ylabel('Intensity');
title ('Measured LS1-CAL ')

lam = (400:25:700);
pts = [1500 1500 1650 1950 2300 2700 3050 3150 3350 3600 3900 4100
3900];
eff fit = polyfit(lam,pts,7);
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figure (3);
splot(lambda(1,:),cal640./polyval(lslcalfit,lambda(1,:)));

splot(lambda(2,:),ca1550./polyval(lslcalfit,lambda(2,:)));
splot(lambda(3,:),cal460./polyval(lslcalfit,lambda(3,:)));

splot(lam,pts,'o');
splot(lambda(l,:),polyval(efffit,lambda(1,:)));

splot(lambda(2,:),polyval(efffit,lambda(2,:)));

splot(lambda(3,:),polyval(eff_fit,lambda(3,:)));
xlabel ( ' Waveleng Lh (rim) ) ;
ylabel ('Relative Efficiency') ;
title('CC.3 di ffuser on 60um fiber');
axis([400 700 0 4500]);

mnorm = max(cal640);

figure(4);

subplot (1,2,1);
splot(lambda(1,:),cal640./mnorm,'r');

splot(lambda(2,:),cal550./mnorm,'g');

splot(lambda(3,:),cal460./mnorm,'b');

splot(lambda(l,:),3500*polyval(lslcal fit,lambda(1,:))./mnorm, 'k');
splot(lambda(2,:),3500*polyval(lslcalfit,lambda(2,:))./mnorm, 'k.');
splot(lambda(3,:),3500*polyval(lslcalfit,lambda(3,:))./mnorm,'k');

xlabel ( ' Wave lengqth (nr) ' ) ;
ylabel ('Intensity' )
title (' LS1-CAL' ) ;
axis([400 700 0 1]);

nnorm = max(polyval(eff fit,lambda(l,:)));

subplot(1,2,2) ;
splot(lambda(1,:),cal640./polyval(lslcalfit,lambda(l,

splot(lambda(2,:),ca1550./polyval(lslcal_fit,lambda(2,
splot(lambda(3,:),cal460./polyval(lslcalfit,lambda(3,

sp. ot (1 aM, pts, 'ko

splot(lambda(1,:),polyval(efffit,lambda(l,:))./nnorm,
splot(lambda(2,:),polyval(efffit,lambda(2,:))./nnorm,

splot(lambda(3,:),polyval(eff fit,lambda(3,:))./nnorm,

xlabel ( ' Waveleng th (nm) ' ) ;
ylabel ( 'Re lati ve Eff iciency ' );
title ('Opt ical Detecti:on Sys tem ');
axis([400 700 0 11);

:))./nnorm, 'r');

:))./nnorm,'g');
))./nnorm, 'b')

'k'1);

'') ;
') ;

% Verifi..es that my data processing is correct by converting the
theoretical blackbody spectrum from wavelength to energy

clear all;
clf;

h = 6.626e-34; % m'kg/s
c = 3e8; n m/s
k = 1.3807e-23; )i/K
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T = 3000; %1K

kT = k*T;
meV = 1.60e-22; mev expressed in joules

lambda = (600:200:3800)*le-9;
freq = (1:10:1000)*lel2;

lambda-fine = (10:10:5000)*le-9;

% Theoretical Black body as a function of lambda
Slam = 8*pi*h*c./(lambda.^5.*(exp((h*c) ./(lambda*kT))-1));
Slamfine = 8*pi*h*c./(lambdafine.^5.*(exp((h*c)./(lambda fine*kT))-

1));
% Theoretical Black body as a function of frequency

Sfreq = 8*pi*h.*freq.^3./(c^3*(exp((h.*freq)./kT)-1));

Now lets convert lambda to freq
Lfreq = c./lambda;
lcorr = lambda.^2;

SLfreq = lcorr.*Slam;

figure(1);

subplot (1,3,1);
,bar (lambda *1e 6, Sl am. /max (Slam) , 1, 'w'

vwhist(lambda*1e6, Slam./max(Slam));

hold on;
plot(lambda fine*1e6,Slamfine./max(Slam fine), 'r');

xlabel ( ' Wave. ength (um) ');
ylabel ( 'Normalized Intensity)

title('Spectrometer');

axis([0 4 0 1]);

subplot (1, 3, 2);
vwhist(Lfreq*h/meV,Slam./max(Slam));

hold on;
plot (freq*h/meV,Sfreq./max(Sfreq), 'r');
xlabel (V Energy (meV) ') ;
title ('Incorrect. Method')

axis([0 3000 0 1]);

subplot (1,3,3);
vwhist(Lfreq*h/meV,SLfreq./max(SLfreq));

hold on;

plot(freq*h/meV,Sfreq./max(Sfreq), 'r');

xlabel ('Energy (meV) ');
title ( 'Correct Method );
axis([C 3000 0 1]);

For processing experimental data

clear all;

clf;
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colors ={r';

r' ''; 'gI';

I Y f I . , 7 I f 1 11 1 I I I
'mn'; 'g'; ' ' 'b'; 'k'; 'r'; 'mf'; 'g' 'c'; 'b'; 'k'
'c'; 'b'; 'k'};

hbar = 1.055e-34; %is

c = 3.00e8; % I/s
meV = 1.60e-22; % meV expressed in joules
kB = 0.0863; %nMeV/K<

For kaiser filtering to smooth data
N = 31;
Bet = 5;

S load all of
colorstring =
condstr = ('p'

the data file Is into dat

I 'a' };

tempstr = {'300'; '260';
'80'; '60'; '50'; '40';
temp = [300 260 230 200

'230'; '200'; '170';
'30'; '20'; '5'};
170 140 120 100 80 60

'140'; '120'; '100';

50 40 30 20 51;

Use th.i s for all - seconrdz set of 6(,- d a
lambdamax = [705.60 666.04 641.30 621.51 606.67];
lambdamin = [572.77 532.37 507.13 486.94 471.80];

---------------- --------------------

This is calcu olat-edl. in precal.m -e.n trhe aibratIon diretrV
Seff _fit is the fi n of L.he tal. d .. . f Li fs e r /f i be r /s ectrometer

sstem
lam = (400:25:700);
pts = [1500 1500 1650 1950 2300 2700 3050 3150 3350 3600 3900 4100
3900];
eff fit = polyfit(lam,pts,7);

So, in order to corrine ctIly cali brae daLa, need to divide Iby
prIyval (e f fIL, .1- ambda

SAd'L this needs to be donre while in lambda, before converting to
energy

%dat-a proCssinig
for I=1:length(colorstring),

NOt tI tI a t L he way Lt I Ca I 01at0 ambda i n approx.11.Iatn ,
in reality diambda varies by 7 % from beginin to i he end

dlambda(I) = (lambdamax(I)-lambdamin(I))/1339;
lambdadummy =(lambdamin(I):dlambda(I):lambdamax(I));
lambda(I, :) = lambdadummy(3:end); becau.se th.,4er-e i0s s00. fiunny

busi ness witLh the firsL 4 pei nts
energy (I, :) = 2*pi*hbar*c. / (meV*1e-9*lambda (I, n)(); V

% there is a (distort-i.on when convert ing t energy since di /dE is not
c o n s t ant
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% So, need Lo multiply signal by lcorr when converting to energy

lcorr = lambda(I,:).^2; % See blackbody program to verify this is

c rr ect

for J=l:length(condstr),

% Just take averaqe value of dark, since it is flat

dummy = load([colorstring{I) '/d300.txt']);

dark = mean(dummy(5:end));

length(colorstring)-I

for K=l:length(tempstr),

if (condstr{J}=='p'), for PL

dummy = load([colorstring{I} '/' condstr{J} tempstr{K}

'txt']);
pl = dummy(5:end)-dark;

% Th i is a better place to do the convolution

pl = convolution(dummy(5:end)-dark,kaiser(N,Bet));

%I convolve with a kaiser window to smooth data, and divide

by efficiency of system
ldat(I,K,J,:) pl./polyval(efffit,lambda(I,:));

lamemi = pl./polyval(efffit,lambda(I,:));
edat(I,K,J,:) = lcorr.*pl./polyval(efffit,lambda(I,:));
ene emi = lcorr.*pl./polyval(eff fit,lambda(I,:));

Full. Wi dth Halt x

dum = fwhm(lam emi,lambda(I,:));
pllamcenter(I,K) = dum(2);

pllam width(I,K) = dum(l);

% Full Width Hal.f Max
dum = fwhm(eneemi,energy(I,:));
plcenter(I,K) = dum(2);

plwidth(I,K) = dum(l);

figure(I);

splot(energy(I,:),ene emi/(max(ene emi))-0.5*K,'g');

xlabel (' Enerqy (meV)');

figure(99);

if temp(K)==300,

subplot (1,2,2);
splot(energy(I,:),ene emi/(max(ene emi))-I,'g');

xlabel ('Energy (meV)')
title('T=300K');

axis([1750 2650 -5.2 0.2]);
elseif temp(K)==5,

subplot (1, 2, 1)
splot(energy(I,:),ene emi/(max(eneemi))-I,'g');
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xlabel ('Energy (meV)
ylabel ( 'uminscence & Abs.rbance (au)
title ('T=5K');
axis([1750 2650 -5.2 0.2]);

end

if ((temp(K) == 300) && (I == 5))
qdot545pl300 = eneemi;
save . . /. . /simulation/qdoto45pl300
qdot545energy = energy(I,:);
save../... /simulation/qdotS4 energy

end

if ((temp(K) == 5) && (I == 5))
qdot545pl5 = ene emi;
save . . /. . /simulation/dot54
qdot545energy = energy(I,:);
save .. / .. /simel ati .qo/dot 54

end

qdro t.545p .130 0;

qdot054 Cnergy;

p5 p d I "I 'o t '45 .

Iene r gy qdot,5 4:energy;

end

if (condstr{J)=='a'), 0 112 abs o rpt. 1 0121

tempstr{K}

don n m CUe an

.txt']);

%Need this for absorpti4 on data processing

dummywhite = load([colorstring{I) '/w3CC.xL']);
white = dummywhite (5: end) -dark; sLnce first twje numbers

any thing

dummy = load([colorstring{I} '/' condstr{J} tempstr{K}

abs = dummy(5:end)-dark;
normyia lize abs to account for refletions

absorb = abs*mean(white(1300:end))/mean(abs (1300:end));

ab = -1*logl0(absorb./white);
ldat(I,K,J,:) = -1*logl0(absorb./white);

TO SUBTRACT SCATTERIFNG BACKGROUND
if (1)
if (temp(K)>180),

scati = mean(ab(1288:1338));
scat2 = mean(ab(1108:1158));
scatslope = (scat2-scatl)/180
ab = ab-(length(absorb):-1:1)*scatslope;

else
scatl = mean(ab(1300:1338));
scat2 = mean(ab(950:988));
scat slope = (scat2-scatl)/350
ab = ab-(length(absorb):-1:1)*scat slope;

end

if (temp(K)==300),
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figure(50);
hold on;

plot(lambda(I,:),ab/max(ab)-0.5*I,'b');
end

end

fitting 2 gaussians ....
OPTIONS =

optimset('MaxFunEvals',1e4,'MaxILer',2000,'To

OPTIONS =
optimset('MaxFunEvals',1e4, 'MaxIter',2000, 'To

2 Fits for different colors
if (colorstring{I) == 'qdot6O5'),

if (temp(K)>110),

ptest = [0.5 0.5 2 25 40 10
else

ptest = [0.5 0.5 2 25 40 10
end

end

if (colorstring{I} == '
if (temp(K)>110),

ptest = [0.5 0.5
else

ptest = [0.5 0.5
end

end

if (colorstring{I} ==

if (temp(K)>110),

ptest = [0.5 2 4

else

ptest = [0.5 2 4

end

end

if (colorstring{I} ==

if (temp(K)>110),
ptest = [0.5 2 4

else

lFun' , le-7) ;

lFun', le-6);

0 2100 2220 2300];

0 2150 2250 23501;

qdoL65' ),

2 25 40 100 1950 2050 22001;

2 25 40 100 2000 2100 2200];

qdot545' ),

0 100 2400 2700];

0 100 2450 2750];

qdot585'),

0 100 2250 2400];

ptest = [0.5 2 40 100 2300 2450];
end

end

if (colorstring{I} ==

if (temp(K)>110),

ptest = [0.5 2

else

ptest = [0.5 2

end

end

qdot5 6  
' ),

40 100 2300 2500];

40 100 2350 2550];

pfit =
lsqcurvefit('afun2',ptest,energy(I,:)',ab', [], [],OPTIONS)

abswidth(I,K)=pfit(length(ptest)/3+1)*2.3548;

from sigma to fwhm
to convert
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abscenter(I,K)=pfit(length(ptest)*2/3+1);

abs center2(I,K)=pfit(length(ptest)*2/3+2);

figure (I);
hold on;
plot(energy(I,:),ab/max(ab)-0.5*K,'b');

plot(energy(I,:),afun2(pfit,energy(I,:)')/max(ab)-

0. 5*K, 'r );

figure(99);

if temp(K)==300,

subplot (1,2,2);
splot(energy(I,:
splot(energy(I,:

elseif temp(K)==5,

subplot (1,2,1);
splot(energy(I,:

splot(energy(I,:

),ab/max(ab)-I, 'b');
,afun2 (pfit,energy(I,

ab/max (ab) -I, 'b');
,afun2 (pfit,energy(I,

:)')/max(ab)-

:)')/max(ab)-

end

figure(98);

axis([1750 2650 -5.2 0.2]);
if temp(K)==300,

splot(energy(I,:),ab/max(ab)-I, 'b');
splot(energy(I,:),afun2(pfit,energy(I,:)')/max(ab)-

end

if (temp(K)==300)

figure(55);

hold on;
plot(energy(I,:),ab,colors{I});

xlabel ('.En.ergy (mnev)') ;
ylabel ('Opt icaL Density i. );

end

if ((temp(K) == 300) && (I == 5))
qdot545abs300 = ab;

save . / . . imulation/qdott4tabs300
qdotS45energy = energy(I,:);
save . . /. . /simulat .ion/ qdott45energy

end

qdot5 4 5abs 300

Ont 54 Denergy;

if ((temp(K) == 5) && (I == 5))
qdot545abs5 = ab;

save ../../s i mul ati on/cdot.54 a bsb qdot545abs5;
qdot545energy = energy(I,:);

save /s imuL ation/qdo t 4energy qdot 45onergy;
end

end
end
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end
end

SAVING DATA

if (0)
data temp = temp;

save data temp data temp;

save . . /. . /simulation/data temp data taemp;
save pllam -width pllam width;
save pl lam center pl lam center;
save lambda lambda;
save lIdat dat; data in lambda

save energy energy;
save edat edat;
save pl width pl width;
save pl center picenter;
save abs width abs width;
save abs center abs cent.er;
save abs cener2 abs center2;

save ../..si mula ien/pl width pl width;
save . .simulatin/pl center p1 center;
save .. /../sinuI ation/abs width abs width;
save . . / . . /simulation/abs center abs center;
end

if (0)
for I=1:9,

figure(50+I);
plot(temp,pfitsave(1,:,T));

end
end

NEED to save data in simulation folder in order to compare to theory
fwid temp = temp;
fwid = pl width;
for I=l:length(colorstring),

stokes(I,:) = abscenter(I,:)-pl_center(I,:);
end

save .. /../siulation/stok.es stokes;
save .. /../simulation/fwid temp fwid temp;
save .. /../simulation/fwid fwid;

PLOTTING DATA

if (0)
figure(13);
for I=l:length(colorstring),

splot(temp,plwidth(I,:),[colors{I) 'o-']);

end

xlabel ('Temperature (K) ');

ylabel ('Linewidth (meV)')
end
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if (0)
figure(23);

errorbar(temp,abswidth(1,:),-1,1,'rx-');

xlabel ( 'Temperature (K)
ylabel ( Linewidth (meV)

end

end

function g = afun2(params,x)
% cal led fraori da ta fIt
% for s 0mie stupi d r aeason need to lump evervth ing Jin toerms of pa rams

num = length(params);

N = (num)/3;

amp = params(l:N);
sig = params((N+1):2*N);
cen = params((2*N+1):3*N);

y = (ones(length(x),l)*amp).*...

(1./(ones(length(x),1)*sig).*sqrt(2*pi)).*...
exp(-((x*ones(1,length(amp))-

ones(length(x),1)*cen)./((ones(length(x),1)*sig).*sqrt(2))).^2);

g = sum(y,2);

% Important - I don'L compa re ne igbaring samplees
This wil.. g ive rrai resut if data is e nat: emathed

function fw = fwhm(y, x)

left = 0;
right = 0;

for I = 1:(length(y)-2),

if ((y(I)<max(y)/2) & (y
left = I+1;

elseif ((y(I)>max(y)/2)
right = I+1;

end
end

(I+2)>=max(y)/2))

& (y(I+2)<=max(y)/2))

fw(1)=x(left) -x (right); fwhm
fw(2)=(x(right)+x(left))/2; % center

For cal culat ing the various cont ributfons ta dE/dT far CdSe and
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PbS NC"s

clear all;

. Fundamental Constants
h = 6.62e-34; %js
me = 9.le-31; %kg
kB = 0.0863; %meV/K

%2 ----- --------- CdSe N-s -----------------------------------

r = 1:.1:5;

bulk coulomb energy = 15; %meV
I'll assume that thi scales like 1/R, and in bulk R=5.6nm

coulombenergy = 15*5.6./r; %meV

First get an estimate for the confinement energy
Ebulk300 = 1750; %meV at 300K - DOUBL.E C.HEC WITH CARDONA
energy = radius to energy(r); %meV
Econfinement = energy - Ebulk300 - coulombenergy;

Bulk CSe
dEdTbulk = -0.36*ones(1,length(r)); %meV/K - according to Cardona

Thermal Expansion
coeffthermal expansion = 5e-6; %/K
dEdTthermalexpansion = -2*coeffthermalexpansion*Econfinement;

Effective Mass - us ing k.p theory (see notebook 3/2-7/06 p 2 8)
Should really use dmdT for 100-300K, which will be bigger

dmdT = -0.039/200; %/K
dEdT effective mass = -l*dmdT*Econfinement;

Dielectric Change - from Nomura
epsilon300 = 9.64;
epsilonlOO = 9.17;

energy goes like 1/opsilon
dEdTdielectric = (coulombenergy-bulk coulomb energy).*(l-
(epsilon300/epsilonl00))./200;

Exciton-LO phonon - see Goupalov, Citrin, Nanotechnology
n300 = 1/(exp(26/(kB*300))-1); LO population at 300K
nlOO = 1/(exp(26/(kB*100))-1);
dopt = 5*r/7; %meV

Bopt = -1*dopt./sqrt(n300*(n300+1));
dEdT excitonLOphonon = Bopt*(n300-nl00)/200;

Total is just the sum
dEdT tot = dEdTbulk + dEdTthermal expansion + dEdT effective mass +
dEdTdielectric + dEdTexcitonLOphonon;

0Plot resulls
figure(1);
plot(r,dEdT bulk,'b-');
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hold on;
plot(r,dEdTthermal expansion,'b-');

plot(r,dEdTeffectivemass,'b:');

plot(r,dEdTexciton LOphonon,'b-.');

plot(r,dEdTdielectric, 'b--');

JackKnife(r,dEdTtot-dEdT effective mass/2,dEdT effectivemass/2);
plot(r,dEdTtot,'k');

plot(r,dEdTbulk,'b--');
xlabel (' Rad-ius (nm) ' ) ;
ylabel ( dEF/dT (rneV/K)
title('CdSe NCs');

NEED TO ADD EXPERIMENTAL RESULT S
rlow = [3.5 2.2 1.7 1.5 1.35];
rhi = [4.3 2.6 2.2 2.0 1.8];
rave = 0.5*(rlow+rhi);
rdif = 0.5*(rhi-rlow);
dEdTCdSe = -1*[0.3591 0.3478 0.3448 0.3445 0.3530];
plot(rave,dEdTCdSe,'ro');

% To cal c 1 ate the expected dE con f/dT for iff ferent mater ials

temp = 0:1:300;

Data for
PbSdat =

2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27

28
29

PbS f r ) khovets
1 494.591158
558.112384
648.576538
783.826297
812.494814
878.736442
825.870315
633.918568
786.390179
1027.861776
850.503530
820.493893
817.818821
919.843958
1115.298215
1014.522561
988.361219
648.576538
1031.223895
1048.200170
1141.087029
1097.235244
1343.480449
1330.382721
1352.283827
1506.156700
1576.615098
2047.320394
2157.137550

283.292383
250.859951
163.882064
172.727273
157.985258
149.140049
131.449631
138.820639

128.501229
115.233415
107.862408
82.800983
56.265356
78.378378
62.162162

51.842752
228.746929
23.832924
0.245700
-15.970516
-60.196560
-35.135135
3.194103
7.616708
-69.041769
-85.257985
-79.361179
-60.196560

373.218673
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30 2094.660167 -18.918919
31 3181.630815 -10.073710
32 4282.631270 -10.0737101;

E_PbS = PbSdat(:,2); meV
dEdTPbS = PbSdat(:,3); %meV/K

---------- PbS ------------------

Ebulk = 263 + sqrt(400 + 0.265*temp.^2); %meV
EbulkO = 263 + sqrt(400 + 0.265*0.^2);

% From Landolt Bornstein

mnperp = (10.6*(EbulkO./Ebulk) + 1.9).^-1;
mnpara = (5.8*(Ebulk0./Ebulk) + 3.7).^-1;
mpperp = (10.6*(EbulkO./Ebulk) + 2.7).^-1;
mppara = (5.8*(EbulkO./Ebulk) + 3.7).^-1;

This is the mass that should be used. for exciton confinement energy -

see
iournal p 56 5/10/06

para and perp relative to major axis
mPbS = 1./((2./mnperp) + (1./mnpara) + (2./mpperp) + (1./mppara));

for I=1:(length(temp) - 1),
This is the percentaqe change in mPbS per Kelvin

dmPbSdT(I) = (mPbS(I+1) - mPbS(I))/((temp(I+1)-temp(I)) *

mPbS(I+1));
dEdTbulkPbS(I) = (Ebulk(I+1) - Ebulk(I))/(temp(I+1)-temp(I));

end

if (0)
figure(1);
plot(temp(2:end),dmPbSdT);
xlabel ( ' Temperature (K) ') ;
ylabel ('PercentacTe change in mass per K'
title('PbS');

figure(11);
plot(temp(2:end),dEdT bulk PbS);
xlabel('Temperatur (K))' );
ylabel ('dE/dT (meV/K)')
title('PbS');

dEdTbulkPbS(end)
end
%-------------------------------------

&&&&&&&&&&& PbSe &&&&&&&&&&&&&&&&&&&&&

Ebulk = 125 + sqrt(400 + 0.256*temp.^2); %meV
EbulkO = 125 + sqrt(400 + 0.256*0.A2);

From Lando.t Bcrnstein
mnperp = (20.7*(EbulkO./Ebulk) + 4.3).A-1;
mnpara = (11.4*(EbulkO./Ebulk) + 2.9).A1;
mpperp = (20.7*(EbulkO./Ebulk) + 8.7).^-1;
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mppara = (11.4*(EbulkO./Ebulk) + 3.3).^-l;

This is the Imass that shoul he used foe n nfinement onergy -

S e
ounal 9 S6 5/10/0

mPbSe 1./((2./mnperp) + (l./mnpara) + (2./mpperp) + (l./mppara));

for I=1:(length(temp) - 1),
%1 This is the percentage ch ange in mP bS per Kelvin

dmPbSedT(I) = (mPbSe(I+1) - mPbSe(I))/((temp(I+1)-temp(I)) *

mPbSe(I+1));

dEdTbulkPbSe(I) = (Ebulk(I+1) - Ebulk(I))/(temp(I+1)-temp(I));

end

if (0)
figure(2);

plot(temp(2:end),dmPbSedT);

xlabel (' Tempera ture (K) ' ) ;
ylabel ('Percentage change in mass per K');
title('PbSe');

figure(12);
plot(temp(2:end),dEdT bulk PbSe);
xlabel ('Temperatnre (K)
ylabel('dE/dT (meV/K)
title('PbSe');

dEdTbulkPbSe(end)
end

W Wise' s data for PbS and PbSe
% Get size <--> enery conversion for PbSe f romi APL 71 (1997) p3400

The weAird energy dependence is from this paper
E_PbSe = [600 750 700 1000 1200]; . me.V
R_PbSe = [8 7 5.5 3.5 1.8]/2; % nm
dEdTPbSe = [140 115 50 -5 -55]; ueV/K
dEdTPbSebulk = 500; % neV/K
dmdT PbSe300 = 1200e-6; /K

Ebulk PbSe300 = 278; mV
Econf PbSe = EPbSe EbulkPbSe300;
dEdTcorrection PbSe 1000*EconfPbSe.*dmdTPbSe300; noieV/K

value s frem beginning of pregram

%E PV) = e0 S5' 800 840 910 1030 1060 1100 2.100]; % meV
dEdl PUS = [5 8 ) 150 170 160 50 130 0 -60 -70]; % aeV/K

dEdT PbS bulk = 510; % teV/K
dmdTPbS300 = 850e-6; /K
EbulkPbS300 = 410; me-V
EconfPbS = E PbS - EbulkPbS300;
dEdTcorrectionPbS = 1000*EconfPbS.*dmdTPbS300; % neV/K

My experi ment - from data qdot /data plot
dEdTCdSe = [0.3591 0.3478 0.3448 0.3445 0.3530];
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EconfCdSe = [186.1261 317.7040 435.4482 515.6562 597.1329];
dEdTCdSebulk = 0.36;

if (0)

-------------- Try presentinq d%Econf/dT ----------

figure(6);
h = plot(EconfInAs,1,'k<');
hold on;
set(h,'MarkerFaceColor','k');
h = plot(EconfInGaAs,1,'k>');
set(h,'MarkerFaceColo.r','k ');

h = plot(EconfGaAs,ones(1,3),'k');
set(h,'MarkerFaceColor','k');

h = plot(EconfCdSe,dEdTCdSe./dEdTCdSe bulk,'ko');
set (h, ' MarkerFaceColor' , 'k')

This is to make the legend work out correctly
h = plot(EPbS(1)-EbulkPbS300,dEdTPbS(1)/dEdTPbSbulk,'ks');
set (h, 'Mar kerFaceClc or k ,

h = plot(EPbS(1)-
EbulkPbS300, (dEdTPbS(1)+dEdTcorrectionPbS(1))/dEdTPbS bulk,'ks');
set(h,'MarkerFaceColor','w');
h = plot(EPbSe(1)-EbulkPbSe300,dEdTPbSe()/dEdTPbSebulk,'kd');
set(h,'MarkerFaceColor','k');
h = plot(EPbSe(1)-
EbulkPbSe300, (dEdTPbSe()+dEdTcorrectionPbSe(1))/dEdTPbSebulk,'kd'

);r
set(h,'MarkerFaceColor','w');

for I = 1:length(EPbS),
if (EPbS(I)<1200)

h = plot(EPbS(I)-EbulkPbS300,dEdTPbS(I)/dEdTPbSbulk,'ks');
set (h, ' MarkerFaceCo1or',' k');
h = plot(EPbS(I)-
EbulkPbS300, (dEdTPbS(I)+dEdTcorrectionPbS(I))/dEdTPbS bulk,'ks');

set(h,'MarkerFaceColor','w');
end

end

for I = 1:length(EPbSe),

if (EPbSe(I)<1000)

h = plot(EPbSe(I)-EbulkPbSe300,dEdTPbSe(I)/dEdTPbSebulk,'kd');
set(h,'MarkerFaceCo.or','k');
h = plot(EPbSe(I)-
EbulkPbSe300, (dEdTPbSe(I)+dEdTcorrectionPbSe(I))/dEdTPbSe-bulk,'kd'

);I
set(h,'MarkerFaceCo1r','w');

end

end

h = plot(EconfCdSe,dEdTCdSe./dEdTCdSe bulk,'ko');
set(h,'MarkerFaceColor','k');
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plot((1:5000),ones(1,5000));
xlabel ('Confinement Energy (IeV )
ylabel (' (d E N C/dT) / (dE b ii I k )');
axis([0 1000 0.5 2.5])
legend ( InAs ', ' InaAs ' G, a A ' CdSe PbS', modif ied
PbS , PbSe ', 'mcdi ied PbS', 'c cati on', Northes t ') ;

D.2 Chapter 3 code

% To calculiate the Ste kes shift for Gaussian distribution

clear all;

load pl center. mat;
load abs cent er.1mat;

Fundacmnt al Constants
k = 0.0863; smeV/K

colors = I

'g'; 'c''; 'b'; 'k'; };
num replicas=10;
Eo = 26; % meV
Se = 0.45;
Sa = 0.14;

temp = [5 20 30 40 50 60 80 100 120 140 170 200 230 260 300];
temprev = [300 260 230 200 170 140 120 100 80 60 50 40 30 20 5];

%From NC radius prr an

r = [4.10 2.41 1.99 1.69 1.47];

C. LCULATI'ON OF BROADENING/STOKES SHIFT DUE TO OPTI CAL PHONON
REPLICAS

n = 1./(exp(Eo./(k.*temp))-1);

emireplica shift = zeros(1,length(temp));
abs replica shift = zeros(1,length(temp));

This wii.l give th e sni.ft fromt ZPL, due to phonon replicas
for I = (-1*num replicas):num replicas,

emi replica shift = emi replica shift + Eo*I*exp(-1*Se*(2*n +
1)).*besseli(I,2*Se*sqrt(n.*(n+1))).*exp(I*Eo./(2*k*temp));

abs replica shift = absreplicashift + Eo*I*exp(-1*Sa*(2*n +
1)).*besseli(I,2*Sa*sqrt(n.*(n+1))).*exp(I*Eo./(2*k*temp));

end;
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stokesreplica shift = abs replica shift + emi replicashift;

for rad=1:length(r),

iCALCULATION OF BROADENING/STOKES SHIFT DUE TO ENERGY SUBLEVELS
d = levelO(r(rad));

ol0=d(1);
el0=d(2);
d = levellu(r(rad));
ollu=d(1);
ellu=d(2);

d = levelll(r(rad));

ol11=d(l);
elll=d(2);
d = level2(r(rad));

o12=d(1);
el2=d(2);

in order to compare to my 2level fits, I combine levels and drop
dark

d = levelu 21ev(r(rad));

ou_21ev = d(l);
eu_21ev = d(2);

d = levell_21ev(r(rad));

ol_21ev = d(l);
el_21ev = d(2);

% For presentalion plot - This is made up
edark_31ev = -3;

odark_31ev = 0.005;

Calculate the probability of energy level occupation
Ptot = exp(-e10./(k.*temp)) + exp(-el1u./(k.*temp)) + exp(-

el11./(k.*temp)) + exp(-el2./(k.*temp));
PlO = exp(-el0./(k.*temp))./Ptot;
P1ll = exp(-el1l./(k.*temp))./Ptot;
Pllu = exp(-el1u./(k.*temp))./Ptot;
P12 = exp(-e12./(k.*temp))./Ptot;

Ptot_21ev = exp(-el_21ev./(k.*temp)) + exp(-eu_21ev./(k.*temp));
P1_21ev = exp(-el_2lev./(k.*temp))./Ptot_21ev;
Pu_21ev = exp(-eu_2lev./(k.*temp))./Ptot_21ev;

Probabilit ies of emission from sublevels states
equals probability of occupation times oscillator strength

Petot = ol0*Pl0 + olll*Plll + ollu*Pllu + o12*P12;
PelO = ol0*Pl0./Petot;
Pellu = ollu*Pl1u./Petot;
Pelil = olll*Pl1l./Petot;
Pel2 = ol2*Pl2./Petot;

Petot_21ev = ol_2lev*Pl_21ev + ou_21ev*Pu_21ev;
Pel_21ev = ol_21ev*P1_21ev./Petot_21ev;
Peu_21ev = ou_21ev*Pu_2lev./Petot_21ev;
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Relative o silla tor steng h
otot = ol0 + ollu + oll + o12;
rolO = olO/otot;
rollu = ollu/otot;
roll = oll/otot;
rol2 = ol2/otot;

otot 21ev = ou_21ev + ol_21ev;
rol_2lev = ol_2lev/otot_21ev;
rou_21ev = ou_21ev/otot_21ev;

picenter = PelO*elO + Pellu*ellu + Pelll*elll + Pel2*el2;
abscenter = elO*rolO + ellu*rollu + elll*rolll + el2*rol2;
stoke = abscenter - picenter + stokes replicashift;
Stokeslevels = abscenter - picenter;

plvar = PelO.*(plcenter-elO).^2 + Pellu.*(plcenter-ellu).^2 +

Pelll.*(plcenter-el1l).^2 + Pel2.*(plcenter-el2).^2;
plwidth = sqrt(plvar);

stoke300(rad) = stoke(end);

stokelO(rad) = stoke(1);

Stokeslevels300(rad) = Stokeslevels(end);

if (0)
Stokeslevelsrad = r;

save Stokes levels .30 0 Stokes levels3 00;
save Stokes levels rad Stok.es ievels rad;
end

if (1)

figure(1);

plot(temp,plcenter, [colors{rad} '---');
hold on;
plot(temp,plwidth,colors{rad});

xlabel('Temperature (K)');

ylabel (' PL cent.er / Width (ImeV)' );

figure(2);
hold on;
plot(temp,sqrt(30^2+plwidth.^2),colors{rad});

xlabel (' Temperature (K)

ylabel ( 'Linewidth (reV)

figure(9);
subplot(1,3,3);
plot(temp,plcenter,'k--');

hold on;

plot(temp,abscenter*ones(1, length(temp)), 'k:');

plot(300, elO, 'b>');
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plot(300, ellu, 'g>');
plot(300, elil, 'r>');
plot(300, e12, 'k.>');
xlabel('TTemperature (K)');

ylabel('Emissi-n Energy (meV)');
axis([O 300 -15 20]);

subplot (1,3,1);
plot (temp, PlO, 'b');
hold on;
plot(temp,Pllu,'g');

plot (temp, P111, 'r');
plot (temp,P12, 'k');

xlabel('Temperature (K)');

ylabel('Probability of Occupation');
axis([0 300 0 1]);

subplot (1, 3, 2);

plot(temp,PelO,'b');

hold on;
plot(temp,Pellu,'g');

plot (temp,Pelll, 'r');

plot (temp, Pel2, 'k');

plot(300, rolO, 'b>');
plot(300, rollu, 'g>');

plot(300, rolll, 'r>');

plot(300, rol2, 'k>');
xlabel (' Tempe rature (K ) ');

ylabel('Prebability of Emission');
axis([0 300 0 1]);

if (1)
figure(11);
plot(temp,Stokeslevels, [colors{rad} '--']);

hold on;
stokesexptblue = abscenter(5,:)-plcenter(5,:);
plot(temp rev,stokesexptblue);

xlabel ('Temperalure (K)');
ylabel('Absolute Stokes Shift (meV)');
title ('Only Fine Structure');

end

figure(12);

plot(tempstoke,colors{rad});

hold on;
plot(temprev,stokesexptblue, 'o-');

xlabel ('Temperature (K)
ylabel ('Stokes Shift wiLh Offset (meV)');
title ( 'Qdot45');

figure(13)

subplot (1,3,1);
plot(tempstoke_21ev, [colors{rad}],'LineWidth',1.5);

hold on;
xlabel ('Temperature (K) ')
ylabel('Stokes Shift (meV)');
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title ( 'Fine SLructure Theory1 ');
axis([0 300 0 100]);

subplot (1, 3, 2);
load pl center;
load abs center;
plot(temprev,abscenter(rad,:)-plcenter(rad,:), [colors{rad)

shapes {rad} ' -' I, '-.1 ineV i ,dth'1.5)
hold on;
xlabel (' TemperaL tre (K)
title ( 'Experi-ment' ) ;
axis([0 300 0 100]);

% see stokes 2leve
osc_2level = 1 -

0.
0.
0.
0.

ene_2level = [53.7
58.
83.
89.
96.

I- Thes(
[0.4104
2055
5331
7217
7484]';
167
4974
6353
5679
4719]

va I iu e s ar e using a r-), 1a Ic tir ve fi t

stokesother = 15;

subplot(1,3,1);
for I = 1:5,

hold on;
% Calc e he p rU .abi i y of energy Ieve.I-lcupat ion
Ptot = exp(0) + exp(-ene_21evel(I)./(k.*temp));
ProbL = exp(0)./Ptot;
ProbU = exp(-ene_21evel(I)./(k.*temp))./Ptot;

Relati
roscL =

roscU =

ve oscilIater Itrength
osc_2level(I);
1 - osc_21evel(I);

Prbabiliti Of emis ib bn from1 sublevel s states
4equa ls prObblity m f eocupaticon times 0scilat stent

Petot = roscL*ProbL + roscU*ProbU;
PemisL = roscL*ProbL./Petot;

PemisU = roscU*ProbU./Petot;

plcenter = PemisU*ene 2level(I);

abscenter = ene_2level(I)*roscU;

Stokes_2level = abscenter - plcenter;

plot(temp, stokes-other + Stokes_2level, [colors{I} '--

'LineWidth ,1.5);

end

subplot (1,3,3);
see si mlation\citrin Lo how I get these

Stokes ac = [157.6014 64.7394 28.1293
3.4880 1.8942 0.9665];

13.9391 7.5704
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r_citrin = [11 15 20 25 30 40 50 601/10;
Stokes citrin = interpl(rcitrin,Stokesac,r);
for I = 1:length(r),

plot(temp,stokesother +
Stokescitrin(I)*ones(l,length(temp)),colors{I},'LineWidth',1.5);

hold on;
end

xlabel ( 'Temperature (K) ');
%ylabel ('Stokes Shift (meV)
title( 'Acoustic Phonon Scattering');
axis([0 300 0 100]);

figure(14);
subplot (1,3,1);

results from stokes 2level using Isqcurvefit
fw = [62.1000 62.1000 62.2000 62.4000

64.7000
78.1000
91.1000
89.1000
89.7000

91.5000];

78.1000
91.1000
89.1000
89.7000

78.1000
91.1000
89.1000
89.7000

78.2000
91.2000
89.2000
89.7000

fwtemp = [5 50 100 150 200

plot(fw-temp,fw(1,:)'r','ineWidth',1
hold on;
plot (fw temp, fw (2, :Ji,'m , LieWi.d th ',1
plot(fwtemp,fw(3,:),'g','LineWidt-h',1

plot(fw temp,fw(4,:),'b', 'ineWidth',1

plot(fwtemp,fw(5,:),'k','LineWidth',1

xlabel('Temperature (K)');

ylabel ('Linewidth FWHM (meV)
title('Fine Structure') ;
axis([0 300 60 120]);

subplot(1,3,2);
load p1 width;
for rad = 1:length(r),

plot(temp rev,pl width(rad,:), [col
'Li neWi.dth' , 1. 5)

hold on;

end

xlabel (' Temperature (K) '

ylabel (' Linewidth FWHM (meJV) '

title ('Experiment') ;
axis([0 300 60 120]);

78.5000
91.5000
89.6000
90.0000

250
.5);

.5);

.5);

.5);

.5);

62.9000 63.8000

78

92
90
90

.8000

.1000

.4000

.5000

79.2000
92.8000
91.7000

3001;

ors{rad} shapes{rad} '-

subplot (1,3,3);
Sthese parameters are from simuLation\oitrin
A = [25.3209 13.6170 7.6596 4.9021

1.2255 0.8511];
hw = [8.1363 5.7283 4.1714 3.4480

1.5858 1.4989];
r_citrin = [11 15 20 25 30 40
inhomo = [61 76 90 85 831/2.35;

3.4043 1.9149

3.0616 2.1025

50 601/10;
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for num = 1:length(r),
Ao = interpl(r citrin,A,r(num));
hwo = interpl(rcitrin,hw,r(num));
plot(temp,2.35*sqrt((Ao*sqrt(coth(hwo./(2*k*temp)))).^2 +

inhomo (num) ^2) colors { num}, ' LineWidth', 1. 5)
hold on;

end;
xlabel (' Tem perature (K)

%'ylabel ( ' in.T.ewi1.dth HM
title ( ' Acous Lic Phonorn'
axis([0 300 60 1201);

);
(mneV) ' );

end
end

figure (30)
plot(r,stoke300,'r');

hold on;
plot(r,stokel0,'b');
xlabel ('Radius (Onmi) ')
ylabel ('Stokes Shift
title('At -T10,300K' )

(mneV) ' )

dataplot.m

clear all;
clf;

colors = {
'm '; 'T1 g ';;'

shapes =

colorstring

tempstr = {
'80'; '60';
condstr = {

r' ; 'm' 'g';

a'; 'b' ; 'k' };
D' ; 'x'; '+';

= {'qdot655';
'3r 0'; ' ;; '
0p'; 1 a'};

'b'; 'k'; 'r'; 'n'; 'g'; ''; 'b'; 'k'; 'r'

.30

I; 'S'};
qdot605';
3 '; 0'0

6; '2 .' 6.

'qdot 505
' '170';

'9 }

; 'qdot-56 ';

'140'; '1.20';
qdot 545} ;
'10 0';

LOADING DATA

load
temp
temp

(dIat 1a temp data teMip;
= datatemp;
= [300 260 230 200 170 140 120 100 80 60 50 40 30 20 5];

load p1 a inwidth pl lam width;
load pl lam center p1 lam center;

load lambda I.. ambda;
load Idat Idat; %datla in

load energy energy;
load edat edat;

load pl width pL width;
load pl center pl center;

lam.nbda
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load abs width abs width;
load abs center abs center;
load abscenter2 abs center2;

% PLOTTING DATA

if
fo

(0)
I=1:length(colorstring

for J=l:length(condstr)

for K=1:length(temps

if (condstr{J}=='

figure(I);

splot(energy(I,

xlabel('Energy
end
if (condstr{J}=='

figure(I);

hold on;
plot(energy(I,:)

plot(energy(I,:)

end

end
end

end
end

if (1)
figure(13);

for I=l:length(colorst

s plo..t (temp, abs wi
splot(temp,plwidt

end

xlabel ('Temperature (K

ylabel (' Linewidth (meV
end

tr)
P) ),

:),ene emi/(max(ene emi))-0.5*K,'g');

(meV)');

a'),

,ab/max(ab)-0.5*K,'b');

,afun2(pfit,energy(I,:)')/max(ab)-0.5*K,'r');

ring),

dth (I, ) , [colo rs ( I} 'x-'1);

h (I, ), [colors{I} ' -' );

) ') ;
) ') ;

if (1)
figure(53);

for I=l:length(colorstring),

splot(temnabs width(I,:), [colors{I} 'x-'!);
splot(temp,-pllamwidth(I,:)+pllam width(I,1), [colors{I} 'o-

end
xlabel ('Temperature (K) ');

ylabel (' Li...newidth FWHM (nm)

end

if (1)

figure(63);
for I=1:length(colorstring),

splot (temp, abs width (I,:), [colors {I} 'x-']);

splot(temp,-pl lamwidth(I,:), [colors{I} shapes{I}

'LineWidth' , 1.5);
end
xlabel (' Temperature (K) ')
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ylabel ( 'LiniewidtLh FWHM (rm)
end

if (1)
figure(73);

for I=1:length(colorstring),

splot. ( temp, abs width ( T ,
splot(temp,pl lam center(I,

shapes { eI - ], 'icWidth ', 1. 5) ;
end

xlabel ( ' Temperature (K)
ylabel('Em-fnission Wavienqh (rnm)

end

[ colors { TI 'x-' I ) ;
:)-pl lam center(I,1),[colors{T}

if (0)
figure(23);

errorbar(temp,abswidth(1,:),-1,1,'rx-');

xlabel ( 'Temperat ure (K)

ylabel ( 'Tinewidt.h (meV)
end

rom "P rpertis. of Wide B a nria p IT -VI Semiconductors p 33-36
Eo=1849; meV CdSe (cubic) at T=0K
hw=25.4; meV
S=2.94;
kB=8. 617e-2; 5meV/K
Eg=Eo-S*hw* (coth(hw./(temp.*2*kB))-1); %meV

if (1)
figure(14);
for I=1:length(colorstring),

splot(temp,abscenter(I,:),[colors{I} 'x-']);
splot(temp,plcenter(I,:),[colors{I} 'o-']);

end
S 1 lt (temp, Eq, ' k- )

xlabel ( Temperature (K) ')
ylabel (' Center (meV) ');

end

if (1)
figure(15);

subplot (1, 3, 1)
for I=1:length(colorstring),

splot(temp,abscenter(I,:
'-'-1, 'LineWidth', 1.5);

end
xlabel ( 'Temperature (K) ) ;
ylabel ('SLokes Shif t (meV) ');
axis([0 300 0 100]);

subplot (1,3,2);
for I=1:length(colorstring),

splot(temp,plwidth(I,:),

'1, 'LineWidth',1.5) ;
end

xlabel ('Temperature (.K) '4 ;

)-plcenter(I,:),[colors{I} shapes{I}

[colors{I} shapes{I -
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ylabel ( ' Linewidlh FWHM (meV)
axis([0 300 60 120]);

subplot (1,3,3);
for I=1:length(colorstring),

splot(temp,plcenter(I,:

'-'],'LineWidth',1.5);
end

xlabel ('Temperature (K)');
ylabel ('DL center (meV)')
axis([0 80 66 821);

)-pl center(I,l),[colors{I} shapes{I}

figure(35);

for I=1:length(colorstring),
splot(temp,abscenter(I,:)-pl center(I,:)-(abscenter(I,end)-

plcenter(I,end)),[colors{I} shapes{I} '-'],'LineWidth',l.5);
end

xlabel ('Temperaturce (K)');

ylabel ('Steokes Shift. (meV) )

axis([0 300 -20 0]);

end

if (1)
figure(25);

subplot (1,3,2);
for I=1:length(colorstring),

splot(temp,abscenter(I,:)
- 'LineWidth ',1.5);
end

xlabel('Temperature (K)');

ylabel('Stokes Shift (meV)');

axis([0 300 0 100]);

-plcenter(I,:),[colors{I} shapes{I)

subplot(1,3,1);
splot(temp,0.5*(abscenter(l,:)-abscenter(l,l) + abscenter2(1,:)-

abscenter2(1,l)),[colors{l} shapes{1} '-'],'L.ineWidth',l.5);
for I=2:5,

splot(temp,abscenter(I,:)-abs center(I,1), [colors{I} shapes{I}
,'LineWidth',1.5);

end
xlabel ('Temperalure (K) ')
ylabel ( 'Absorption Center (meV) ' ) ;
axis([0 300 0 90]);

subplot (1,3,3);
for I=1:length(colorstring),

splot(temp,plcenter(I,:)-pl center(I,1), [colors{I} shapes{I}
LineWith', 1.5);

end
xlabel('Temperature (K)');
ylabel('PL center (meV)');
axis([0 80 66 82]);

end
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if (1)
figure(16);

for I=l:length(colorstring),

splot(temp,abs-center(I,:)-abs center(I,1), [colors{I} 'x-']);

end
sp.let (temp, Eg-Eg (1) , 'k.x-')

xlabel ( 'Temperature (K) ' )
ylabel (' Abs Cent.er (meV)

end

if (1)
figure(26);

for I=1:length(colorstring),

splot(temp,plcenter(I,:)
end

% spl,. t (temp, Eg-Eq (1) , ' kx-

xlabel ( ' Temiperature (K)

ylabel ('PL Center (meV)
end

-pl-center(I,1),[colors{I} 'o-']);

if (0)
figure(17);

for I=1:length(colorstring),

splot(temp,pl_3qcenter(I,:)-plqcenter(I,:), [colors{I)

end

xlabel ('Temperature (K) ' )

ylabel ('Skewness (mIteV) ');

end

if (0)
figure(18);

for I=l:length(colorstring),

splot(temp,pl1ltwidth(I,

end

xlabel ('Tempera rure (K)
ylabel ( ' Full WidthP .1/10 Max

end

if (0)
figure (3)
plot(temp,2.355*pfit save (1,

hold on;
plot(temp,2.355*pfitsave(2,
xlabel ( 'Temperatu:re (K)
ylabel ( ' FW.HM (meV) ' ) ;
end

% For PL and absc-rpti. on
if (0)
for I=1:length(colorstr),

figure(60);

subplot (2,2,1);
for J=1:length(tempstr),

:),[colors{I} 'o-']);

(meV) ' ) ;

:,3) , 'go-');

,3) , 'be-' );
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splot(energy(I,:),convertdat(I,J,2,edat));

end
xlabel('Energy (meV)');

ylabel ('Normal ized. Absorption')
axis([1750 2200 -0.2 1.2]);
subplot(2,2,2);
for J=1:length(tempstr),

splot(energy(I,:),convertdat(I,J,1,edat)/max(convertdat(I,J,1,edat)));

end

xlabel (' Energy (mieV)
ylabel('Normalized PL');

axis([1750 2200 -0.2 1.2]);
subplot (2,2,3);
splot(temp,fwpl(I,:),'b-');

splot (temp, fw abs (I, )g,

xlabel ( 'Temperature (K) ')

ylabel (' FWHM Linewidth (meV) ');
subplot (2,2,4);
splot(temp,cen pl(I,:),'b-');

splot(temp,cen abs(I,:),'g-');
xlabel ('Temperature (K) ') ;

ylabel('Peak Center (meV)');

end

end

if (0)
for I=1:length(colorstr),

figure(I);

subplot (2,2,1);
xlabel ('Energy (meV)')
ylabel ('Absorption (au)');

subplot(2,2,2);
for J=l:length(tempstr),

splot(energy(I,:),convertdat(I,J,1,edat)/max(convertdat(I,J,1,edat)));

end
xlabel ('Energy (meV)

ylabel('PL (au)');
subplot (2,2,3);
splot(temp,fwpl(I,:),'b-');

% sp.1ot(t emp, fw abs(I,:),'g-)
xlabel('Temperature (K)');

ylabel (FWHM Linewidth (meV)')

subplot (2,2,4);
splot(temp,cen_pl(I,:),'b-');

splet (temp, cen abs (I,:),
xlabel ('Temperature (K)');

ylabel('Peak Center (meV)');
end

end

if (1)

figure(36);

for I=2:5,

splot(temp,abscenter(I,:)-abs center(I,1),[colors{I} 'x-']);
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end
splot(temp,0.5*(abs center(l,:)-abs center(1,1)+abs center2(1,:)-

abs_center2(l,l)),'kx- ');
xlabel ( 'Temperature (K)
ylabel ( 'Abs Center (meV)

end

SThis i s a simulation of the Stkes sift gi.ven a 2 .eve.a.del

clear all;

colors = {'r' M.' ' ' 'b' 'k'};

The S t.kes shi..ft. fariy smaylet NC sample
Ab 20u 20meV of th 1is is expected ta

i.s 83meV at
be fr;. -tica p h rns (1,

and

itnoognos sze disrbti n (n- m),s need ta explain 63meV.

Assumin qnly 2 .levels., try/ to find the e.er.y level spacing and
1sc at srength tat axim th t shift at PT

%r = 1 47 1.6El9 -1..9 9 .41 4 .10 ; 1 n
r = [4.10 2.41 1.99 1.69 1.47]; 'nm
Stokes_300 = [ 32.5842

25.6220
55.4230
73.9551
81.64671'; %1meV

Stokes_40 = [ 36.9699

28.3386
59.9279
80.5875
87.8841]';

Stokeschange = Stokes_40 - Stokes_300;

%Stokes change = 6 *ones (1, 1) ; %meV from T=40K > T=300K

Stokes other = 15; 'meV due t--o intiamno and opt.ical phan ons, etc
Stokesfine40 = Stokes_40 - Stokes-other;

% Fundamental Cans tan ts
k = 0.0863; tmeV/K

temp = 10:10:300;

if (0)

for K=1:length(r),
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Stokes best = zeros(1,length(temp));

Energy best = 0;
Oscbest = 0;

for I=5:1:150,
for J=0.01:0.01:0.8,

% ENERGY SULBLEVELS
lowe r

energyL = 0;
oscL = J;
% uppper
energyU = I; %meV
oscU = (1-J);

Calculate the probabili. ty of energy .Level. occupation
Ptot = exp(-energyL./(k.*temp)) + exp(-energyU./(k.*temp));

ProbL = exp(-energyL./(k.*temp))./Ptot;

ProbU = exp(-energyU./(k.*temp))./Ptot;

SRelati e oscillato.r strength
otot = oscL + oscU;
roscL = oscL/otot;
roscU = oscU/otot;

Probabilities of em.ssion from sublevels states
equals probability of occupa'ion t-imes oscillator

st. r en gt h
Petot = roscL*ProbL + roscU*ProbU;

PemisL = roscL*ProbL./Petot;

PemisU = roscU*ProbU./Petot;

picenter = PemisL*energyL + PemisU*energyU;

abscenter = energyL*roscL + energyU*roscU;

Stokeslevels = abscenter - plcenter;

if ((Stokes levels(4) < Stokes fine40(K)+0.5) &&

(Stokeslevels(4) > Stokesfine40(K)-0.5))

if ((Stokeslevels(l)-Stokeslevels(end) >

Stokeschange(K)-0.5) && (Stokeslevels(1)-Stokeslevels(end) <

Stokes change(K)+0.5))
Stokesbest = Stokeslevels;
Energy best = I;

Osc best = J;
end

end

end
end

energy(K) = Energybest
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osc(K) = Osc best

if (1)
figure (20)

hold on;
plot(temp, Stokes-best + Stokes-other);
xlabel (' Temperature (K)
ylabel ('St.okes shi ft due to level. s (m1ev))
end

end

figure (1)
subplot (1,2,1)
plot(r,energy,
xlabel ('Radius
ylabel ('Energy

subplot (1,2,2)
plot (r, osc, '.r.
hold on;
plot (r, 1-osc,'
xlabel ('Raius
ylabel ('Oscill

'bo-', ' LineWidth', 1.5)
( nm) ' );
(mieV)');

-', ' LineWidth ' , 1.5);

bo-', '.LineWidth', 1.5) ;
(nm)

ator St rent.h ' ) ;

end

4: Firs ~ p1 04: 4: j~(~ the 0 5 4: 1 aOL ~ro ci. at. ions

r = (12:50)/10; NC radiu in anIstr1ms

for I=1:length(r),

d = levelu_2lev(r(I));

ou_21ev(I) = d(l);
eu_2lev(I) = d(2);
d = levell_2lev(r(I));

ol_2lev(I) = d(l);
el 2lev(I) = d(2);

end

otot = ol_21ev + ou_21ev;

if (0)
figure (1);
subplot (1,2, 2)
hold on;
splot(r,ol_2lev./otot, 'r', 'LineWidth', 1.5);

splot (r, ou_2lev. /otot, 'b', 'LneWith', 1.5);
xlabel ( ' Radius (nm)
ylabel (' Oscail... atoi.. St rength')
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subplot (1,2,1);
hold on;

splot (r, el_21ev, 'r', 'LinehIdth', 1.5) ;
splot (r, eu_21ev, 'b' , 'iLineWAidth', 1. 5) ;
xlabel ('Radius (nm) ' ) ;
ylabel('Energry (meV)');

axis([l 5 -10 110]);
end;

if (0)
% Try to figure cut what the linewi dth broaden ing is

dE = 0.1;
ene = -150:dE:150; %meV

width = [62 78 91 89 89.5];

temp = [5 50 100 150 200 250 300];

for I=1:5,
for J = 1:length(temp),

ENERGY SUBIEVELS
lower

energyL = 0;
oscL = osc(I);

uppPer
energyU = energy(I); %meV
oscU = 1-osc(I);

Calculate the probability of energy level occupati.. on
Ptot = exp(-energyL./(k.*temp(J))) + exp(-

energyU./(k.*temp(J)));

ProbL = exp(-energyL./(k.*temp(J)))./Ptot;
ProbU = exp(-energyU./(k.*temp(J)))./Ptot;

Relative oscillator strength
otot = oscL + oscU;
roscL = oscL/otot;
roscU = oscU/otot;

Prebabilities of emission from sublevels states
equals probability of occupation times oscillator strength

Petot = roscL*ProbL + roscU*ProbU;

PemisL = roscL*ProbL./Petot;

PemisU = roscU*ProbU./Petot;

pl = gauss(PemisL(end),ene',width(I)/2.35,energyL) +
gauss(PemisU(end),ene',width(I)/2.35,energyU);

if (temp(J) == 300)

pl 3 0 0 (I,:) = pl;

end
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end
end
fwhm

end

if (temp(J) == 5)

pl5(I,:) = pl;
end

if (0)
figure(11);

splot(ene,pl);

xlabel ('Energy (meV)
ylabel ('Emission')
title ('T=3 K');
end

dum=fwhm(pl);

fw(I,J) = dum(1)*dE;

if (J==length(temp))

figure(22);

splot(ene,pl, [colors{I}, 'Linewidth',1.5);

xlabel ('Energy (meV)
ylabel ( Emii.ssion)
title ('T-.300K');

end

(gauss(1,ene',width(l)/2.35,0))

if (0)

figure(12);

plot (temp, fw (1, :), 'r', 'Linewidt ',1.5);
hold on;
plot (temp, fw (2,: ) ,'m' , ' TLinewidth ' ,1 1. 5) ;

plot (temp, fw (3, : ) , ' , i newidth , 1.5) ;

plot (temp, fw (5, : ) , ' ' , ' Linewidth' , 1.5) ;

xlabel (' Temperature (K) ') ;
ylabel ( ' I inewidth FWHM (meV) ')

title ('Broadeninq due t-o Fine St ructure');
axis([0 300 60 120]);

% Try Lo figure out what. the absorption would look 1lke

ene = -200:1:200; 10meV

figure(15);

hold on;
for I=1:5,
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abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((1-
osc(I)),ene',width(I)/2.35,energy(I));

plot (ene,abs, [colors { I }], 'Li newidth',1.5);

dum = fwhm(abs);
fwabs = dum(1)*dE;

end

xlabel ( 'Enerqy (meV)'
ylabel ('Absorption');
title ('Absorptio'n assuming only fine structure');
axis([-100 200 0 0.012]);

figure(16);

load qdot.545abs300;
load qdot545p1300;
load qdot545oenergy;
plot(qdot545energy,1.25*qdot545abs300./max(qdot545abs300),'b','Linewidt
h',1);

hold on;
plot(qdot545energy,qdot545pl300./max(qdot545pl300), 'g', 'i..newidth',1.5)

I = 5;

abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((l-
osc(I)),ene',width(I)/2.35,energy(I));

plot(2261+ene,abs./max(abs),'r--','Linewidth',1.5);

plot(2261 + (-150:dE:150),pl300(I,:)./max(pl300(I,:)),'k--
, 'Linewidth',1.5);

xlabel ('Energy (meV) ');
ylabel('Absorpt ion & Emiss ion');
title ('T=300K');
axis([2100 2600 -0.2 1.2]);

figure(17);

load qdot'545abs5;
load qdo-t54pl5;
load qdot540energv;
plot(qdot545energy,1.2*qdot545abs5./max(qdot545abs5),'b', 'Linewidth',l)

hold on;
plot (qdot545energy,qdot545pl5./max(qdot545pl5), 'g', 'Linewidth',1.5);
I = 5;

abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((l-
osc(I)),ene',width(I)/2.35,energy(I));

plot(2341 + ene,abs./max(abs),'r--','Linewidth',1.5);
plot(2341 + (-150:dE:150),p15(I,:)./max(p15(I,:)),'k--

, 'Linewidth',1.5);
xlabel ('Energy (meV) ')
ylabel('Absorpt ion & Eission');
title('T=5K');
axis([2100 2600 -0.2 1.2]);

figure(18);

subplot (1, 2, 1)

plot(qdot545energy,1.2*qdot545abs5./max(qdot545abs5),'b', 'Linewidth',1)

hold on;
plot(qdot545energy, qdot545pl5./max(qdot545pl5), 'g', 'inewidth',1.5);
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I = 5;
abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((1-

osc(I)),ene',width(I)/2.35,energy(I));

plot (2341 + ene,abs./max(abs) , 'r--','Linewidth' ,1.5);
plot(2341 + (-150:dE:150),pl5(I,:)./max(p 5(I,:)),'k--

,'Linew idth' 1.5);
xlabel ( 'Enerqy (meV)');
ylabel('A bsorption & Emission')

title('T=5.K');
axis([2100 2600 -0.2 1.2]);

subplot (1,2, 2)
plot(qdot545energy,1.25*qdot545abs300./max(qdot545abs300), 'b', 'Linewi.dt
h , 1);
hold on;
plot(qdot545energy,qdot545p1300./max(qdot545p1300), '','Linewidth',1.5)

I = 5;

abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((1-

osc(I)),ene',width(I)/2.35,energy(I));

plot(2261+ene,abs./max(abs), 'r--','Linewidtth',1.5);

plot(2261 + (-150:dE:150),p1300(I,:)./max(p1300(I,:)),'k--

xlabel ('Energy (meV) ' ) ;
ylabel('Absorpt ion & Emission');
title ( 'T=300K') ;
axis([2100 2600 -0.2 1.2]);

figure(19);

plot(qdot545energy, 1.2 +
1.2*qdot545abs5./max(qdot545abs5), 'b', 'LI.newidt-h',1);

hold on;
plot(qdot545energy, 1.2 +
qdot545pl5./max(qdot545p5),'g','Linewidth',1.5);
I = 5;

abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((1-

osc(I)),ene',width(I)/2.35,energy(I));

plot(2340 + ene, 1.2 + abs./max(abs),'r--','inewidth',1.5);
plot(2340 + (-150:dE:150), 1.2 + p15(I,:)./max(pl5(I,:)),'k--

','Linewidth'1, 1. 5);

plot (qdot545energy,1.25*qdot545abs300./max(qdot545abs300) , 'b', '.inewidt

h',1);

hold on;
plot(qdot545energy,qdot545pl300./max(qdot545pl300), 'g', 'Linewi..dth',1.5)

I = 5;

abs = gauss(osc(I),ene',width(I)/2.35,0) + gauss((1-
osc(I)),ene',width(I)/2.35,energy(I));

plot(2263+ene,abs./max(abs), 'r--', 'Linewidth',1.5);

plot(2263 + (-150:dE:150),p1300(I,:)./max(p1300(I,:)),'k--
I IT', ' Linewidth.', 1.5) ;

xlabel ( 'Energy (meV) ' ) ;
ylabel('Abs o)rpt i on & Em.i ssion');
axis([2100 2600 -0.2 2.4]);
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title ( 'R= 1. .nmI );

end

if (1)
SEAST SQUARES CURVE FIT

OPTIONS = optimset('MaxFunEva. 1.s',1e4,'MaxIter',2000, 'To1Fun',1e-7);
Stokes offset = 15;

temp = [300 260 230 200 170 140 120 100 80 60 50 40 30 20 5];
rad = [4.10 2.41 1.99 1.69 1.47]; %nm
load . . /data/qd.ot/pi_center p.1center;
load . . /data/qdot/abs center abs center;

stokesdata = abscenter - plcenter;
stokes_40to300 = stokesdata(:,1:end-3) - Stokesoffset;

temp_40to300 = temp(1:end-3);

pguess = [80 0.4];

for I=1:5,
pfit(I,:)

lsqcurvefit('stcke21ev',pguess,temp_40to300,stokes_40to300(I,:), [1, [],0
PTIONS);

energyUfit(I) = pfit(I,1);
oscUfit(I) = pfit(I,2);
energyLfit(I) = 0;
oscLfit(I) = 1-pfit(I,2);

end

figure(15);

hold on;
for I=1:5,

plot(temp_40to300,stokes_40to300(I,:) + Stokesoffset,'o');
plot(temp,stoke2lev(pfit(I,:),temp) + Stokes-offset,'-');

end
xlabel('Temperature (K) ');

ylabel('Stokes Shift (meV)
axis([0 300 0 100]);

figure (16);
subplot (1,2,2);
hold on;
splot(rad,oscLfit, 'ro-', 'LineWidth', 1.5);
splot(rad,oscU fit, 'bc-', 'LineWidth.', 1.5);
splot(r,ol_2lev./otot,'r', 'Li.neWidth', 1.5);
splot(r,ou_2lev./otot,'b', 'LineWidth', 1.5);
xlabel (' Radius (nm) ') ;
ylabel('Oscillator Strencgth');
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subplot (1,2,1);

hold on;
%splot (rad, energyL fit, ' r- , i.neWidth', 1. 5) ;
splot(rad,energyU fit, 'b-, 'ineWidth', 1.5);
splot (r, el_21ev,' r ', in -WdLth', 1.5);
splot (r, eu 21ev, 'b', ' ineWid th', 1.5);
xlabel ( Radius (nm)
ylabel ( 'Energy (meV)
axis([1 5 -10 110]);

figure (17) ;
subplot (1, 2, 2)
hold on;
splot([rad(1) rad(3:5)],[oscL-fit(1) oscLfit(3:5)],' ro-',
1.5);
splot([rad(1) rad(3:5)],[oscU fit(1) oscU fit(3:5)],' bo-',
1.5);

% pot (Cr a d (2) , scL fit (2 '','L n dtl' 1. 3);
%splot ( rad (2) , OcU fit (2) ,'b', 'Linelidth', 1 .5);
splot(r,ol_2lev. /otot, 'r' , ' LineWidth', 1. 5);
splot(r,ou_2lev./otot,'b', 'T.ineWidth', 1.5);
xlabel ('Radius (nm) ) ;
ylabel ( 'Osci.Lator Strength' )

' n eW.dth',

'Ii neWi d th '

subplot (1, 2, 1);
hold on;

splot([rad(1) rad(3:5)],[energyLfit(1) energyLfit(3:5)],'r-',
'.i.neW .idth ' , 1 . 5);

splot([rad(1) rad(3:5)],[energyUfit(1) energyUfit(3:5)],'bo-'

'LineWidt~h ' , 1. 5);
splot (rd (2) , energP yUfit (2) , 'bo' , ' LneWidth ', 1.5);
splot (r, el_21ev, ', LineWth' , 1.5);
splot(r,eu_21ev,'b', ineWi.dth', 1.5);
xlabel ( ' Radius (nm) )
ylabel ( 'Energy (meV)
axis([1 5 -10 110]);
figure (17);

SINEWJI.DTH TEMPERATURE DEPENDENCE OF FTNE STRUCTURE THEORY

% d = le ve 1.11
ou loev(T)
% u21ev (I)
eu21lev(I)
d I (evell

%. /l2.1e v (IT)
% I el21e v( I)

2 1,v (r ( ));

= d (1);
d (2)
ev ( ()

= d (C)I
= d(2);

if (1)
% Try to f. igure out what the lJ-riewLidth broadenig is

colors = { 'r' 'mi' 'q' 'b' ''k' );
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dE = 0.1;
ene -100:dE:100; tmeV
rad = [4.10 2.41 1.99 1.69 1.47]; %nm

temp = [5 50 100 150 200 250 300];
width = [62 78 91 89 89.51;

for I=1:5,

for J = 1:length(temp),

lower
energyL = energyL fit(I);
oscL = oscLfit(I);

uppper
energyU = energyUfit(I);
oscU = oscU_fit(I);

Calculate the probabili.tv of energy level occupation
Ptot = exp(-energyL./(k.*temp(J))) + exp(-

energyU./(k.*temp(J)));

ProbL = exp(-energyL./(k.*temp(J)))./Ptot;
ProbU = exp(-energyU./(k.*temp(J)))./Ptot;

Relative oscillator strength
otot = oscL + oscU;
roscL = oscL/otot;
roscU = oscU/otot;

% Probabilities of emission from sublevels states
a equals probability of occupation times oscillator strength
Petot = roscL*ProbL + roscU*ProbU;
PemisL = roscL*ProbL./Petot;
PemisU = roscU*ProbU./Petot;

pl =
gauss(PemisL(end),ene',width(I)/2.35,energyL)+gauss(PemisU(end),ene',wi

dth(I)/2.35,energyU);

if (temp(J) == 300)
pl300_fit(I,:) = pl;

end

if (temp(J) == 5)
pl5_fit(I,:) = pl;

end

figure(11);
hold on;
plot(ene,pl,colors{I});

xlabel('Energy (meV)');
ylabel('Emission');
dum=fwhm(pl);

fw fit(I,J) = dum(1)*dE;
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end
end

end

figure(72);

for I=1:5,

plot (temp,fw-fit (I,:), [colors{I}] , 'L inewidth-',1.5);
hold on;

end
xlabel ( 'Temperat-uAre (K)
ylabel ('1 inewidth FWIM (meV)
title(' Broadening due to Fine Structure');
axis([0 300 60 120]);

dE = 1;
ene = -200:dE:200; %meV

figure(15);
hold on;
for I=1:5,

abs fit = gauss(oscL fit(I),ene',width(I)/2.35,energyL fit(I)) +

gauss(oscUfit(I),ene',width(I)/2.35,energyUfit(I));

plot(ene,absfit, [colors{I)],'Linewidth',1.5);

dum = fwhm(absfit);
fwabs = dum(1)*dE;

end

xlabel ('Energy (meV) ');
ylabel ('Absorpt i on')
title('Absorption assum.ing only f. iine st ructoure ');
axis([-100 200 0 0.012]);

figure(96);

load qdot545abs300;
load qdot54'5pI..300;
load qdot545energy;
plot(qdot545energy,1.25*qdot545abs300./max(qdot545abs300), 'b', 'Lineidt
h.' , 1);

hold on;
plot(qdot545energy,qdot545pl300./max(qdot545pl300), 'g', 'Linewidth',1.5)

absfit = gauss(oscL-fit(5),ene',width(5)/2.35,energyL fit(5)) +
gauss(oscU fit(5),ene',width(5)/2.35,energyU fit(L));)

plot(2261 + eneabsfit./max(abs_fit),'r--','L.inewidth',1.5);
plot(2261 + (-100:0.1:100),pl3 00_fit(5,:)./max(pl300_fit(5,:)),'k--

','LdinewidtLh',1.5);
xlabel('Energy (meV) ');
ylabel ('Absorption & Emi-ssion');
title('T=300K');

axis([2100 2600 -0.2 1.2]);

figure(97);

load qdot545absft;
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load qdot 4bpi5;
load qdot54cenergy;
plot(qdot545energy,1.2*qdot545abs5./max(qdot545abs5),'b', 'Linewidth',1)

hold on;
plot(qdot545energy,qdot545pl5./max(qdot545pl5), 'g', 'Linewidth',1.5);
plot(2341 + ene,absfit./max(absfit),'r--','Linewidth',1.5);
plot(2341 + (-100:0.1:100),pl5_fit(5,:)./max(pl5_fit(5,:)),'k--

', i-new idth , 1.5);

xlabel('Energy (moV)');

ylabel('Absorption & Emission');

title('T=5K');
axis([2100 2600 -0.2 1.2]);

figure(98);

plot(qdot545energy, 1.2 +
1.2*qdot545abs5./max(qdot545abs5), '','Linewidth',1);
hold on;
plot(qdot545energy, 1.2 +
qdot545pl5.//max(qdot545pl5),'g','Linewidth',1.5);
plot(2340 + ene, 1.2 + absfit./max(abs fit),'r--', 'Linewidth',1.5);
plot(2340 + (-100:0.1:100), 1.2 + pl5_fit(5,:)./max(pl5_fit(5,:)),'k--

'Linewidth', 1.5);
xlabel('Energy (meV)');

ylabel('Absorption & Emission');
axis([2100 2600 -0.2 2.4]);

plot(qdot545energy,1.25*qdot545abs300./max(qdot545abs300),'b', 'inewidt

hold on;
plot(qdot545energy,qdot545pl300./max(qdot545pl300),'g','Linewidth',1.5)

abs fit = gauss(oscLfit(5),ene',width(5)/2.35,energyL fit(5)) +
gauss(oscULf it(5),ene',width(5)/2.35,energyU fit());

plot(2264 + ene,absfit./max(absfit),'r--','Linewidth',1.5);
plot(2264 + (-100:0.1:100),pl30 0_fit(5,:)./max(pl300_fit(5,:)),'k--

','inewidth ' , 1.5) ;

end

citrin.m
8 To come up with an estimate of the expected linewidth and Stoke's
shf it

from the plots in Citrin/oupalov paper - Nanotechnology 12 (2001)
p 1.8

clear all;

kB = 0.0862; %meV/K

5 Data points for CdSe NC in Si2 matrix
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% The T=0 Iirnewid th scales like 1/R2 as Takagahara ponts out
fwhm dac r11 TO = 64; emeV
fwhm dac r60 TO = 2; %meV

fwhm dac r1 TO GeO2 = 26.5; %mjeV
fwhm dac r60 TO GeO2 = 0.94; %eV

% The T=.30OK linewidit.-hJlls
r = [11 15 20 25 30 40 50 60]; % Angstroms
dacT300 [(75/1.17) 41 27 19 14 9.5 7 5]; meV
dacT300_GeO2 = [(33/1.17) 18 11 8 6.4 4.2 2.6 1.9]; % meV
fwhmdac T300 = 2.35*dacT300; osice Caussian is assumed
fwhm_dac_T300_GeO2 = 2.35*dacT300_GeO2; since Gaussi.an is assumed

S Choosing something that fits the plots
fwhm dacTO = 7200*r.^-2; 2meV
fwhm dacTOGeO2 = 3400*r.^-2; %meV

in's e\press in..
fr dca2 S um (A ^2 ot h (Bi/2) ) . Ic an use data points at T=0 and

T 3 C C

and assume only 1. moe, is relevant. So fi t. to das^ =

At T-0, cth (B)=I so I can solve for A
A = fwhmdacTO/2.35;
A Ge02 = fwhm dacTOGeO2/2.35;

At non-zero T, hw .2kT* acoth (das (T) /A.)
hw = 2*kB*300*acoth(fwhmdacT300.^2./fwhmdacTO.^2);
hw_GeO2 = 2*kB*300*acoth(fwhmdacT300_GeO2.^2./fwhmdacTOGeO2.^2);

Stokesac = 2*A.^2./hw; ',,neV

StokesacGeO2 = 2*AGeO2.^2./hwGeO2; ameV

****************** L-AD DATA ****.

% Esti ma tea from Norrais PR 53 (1996) p16347
rdat = [3.6 2.6 2.2 2.0 1.8];

8 See stokes ffigures for 3 papers used to calculte rads.

% These are the upper and lower numbers Irom those papers
rlow = [3.5 2.2 1.7 1.5 1.35];
rhi = [4.3 2.6 2.2 2.0 1.8];
rave = 0.5*(rlow+rhi);
rdif = 0.5*(rhi-rlow);

load (fit wid.mat;
load fit wi d,.mat;
load gfit cen.mat;
load 1fit cen.mat;

load abs center.mat;
load p center .mat.;

Rguyot = 2.3; %nm - PRB 64 p245342
Wguyot = 18; % meV
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* * * * * *k** * k* * * +* * ** ** * ** ** * ** * * ** * ** ** * ** * ** ** ** ** ** *

temp = 1:1:300;

if (1)
% OTHER STOKES SHIFT CONTRIBUTIONS ----------------
Stokes opt = 15*ones(1,length(r)); %meV - see stokes theory for

cal.~culaetion

% Output. from stokes theory - contribution due to fine structure
load Stokes levels rad.mat;
load Stokes levels3 C.mat;

% Output from stokes inhomo - due to inhomcgeneous broadening
load Stokes inhomo r mat;
load Stokes inhomo.miat;

Stokes tot300 = Stokes ac + Stokes-opt + Stokes-levels300 +
Stokesinhomo;

figure(14);

plot(r/10,Stokesac,'r--');
hold on;
plot(r/10,Stokesopt,'r:');

plot(r/10,Stokes levels300,'r-.');

plot(r/10,Stokes inhomo,'r-');
plot(r/10,Stokestot300,'k-');

xlabel ('Radius (nm) ') ;
ylabel (' Stokes Shift (meV) ');
axis([l 5 0 1001);
herrorbar(rave,abscenter(:,1)-plcenter(:,l),rdif,rdif,'x');

end

if(0)
% &&&&&&&&&&&&&&& PLOT spectra &&&&&&&&&&&&&&&&&&&&&&&&&

for I = 1:length(r),
wid = A(I)*sqrt(coth(hw(I)./(2*kB*temp)));

figure(I);

plot(temp,wid*1.17);

xlabel ('Temperature (K)');

ylabel ('dac HWHM (meV)
end

% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
end

if (1)

rx = [5 19 21 24 2.7 33 44 50];

fwhm _dac_TOx = interpl(r,fwhmdacTO,rx);
Stokes acx = interpl(r,Stokesac,rx);
fwhm dacT300x = interpl(r,fwhm dacT300,rx);
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for num = (1:length(rx)),

en = -200:1:200;
sig ped = fwhm dac TOx(num)/2.35;

ZPLcen = -0.5*Stokesacx(num);

ZPLsig = 1.2;

ped = (1/(sig ped*sqrt(2*pi)))*exp(-

((en+ZPLcen)./(sig ped*sqrt(2))).^2);

ZPL = (1/(ZPLsig*sqrt(2*pi)))*exp(-(en./(ZPLsig*sqrt(2))).^2);

pruss = 0.9*ped + 0.1*ZPL;
prussian abs = pruss./max(pruss);
sig = 100/2.35; LmeV
inhom = gauss(l,en',sig,0);

inhomo = inhom./sum(inhom);

prussian c = convolution(prussianabs,inhomo);
prussian conv = prussianc/max(prussianc);

sig ped300 = fwhm dac T300x(num)/2.35;

ped300 = (1/(sig ped300*sqrt(2*pi)))*exp(-
((en+ZPLcen)./(sig-ped300*sqrt(2))).^2);

prussian c = convolution(prussianabs,inhomo);
prussian conv = prussianc/max(prussian-c);

if (0)
figure(10*num + 1);

plot(temp,2.35*A(num)*sqrt(coth(hw(num)./(2*kB*temp))));

xlabel ( ' Tempera Lure (K) ' ) ;
ylabel ( ' Linewidth FWHM (meV)
axis([0 300 0 70]);
end

figure(12);

subplot (1, 2, 1)
axis([-150 150 1 (1+length(rx))]);

plot(en,0.7*prussianabs + num);
hold on;
plot(en,0.9*prussian conv + num);

plot(-en,0.7*prussian abs + num,'--');

plot(-en,0.9*prussian conv + num,'--');
xlabel('Energy (meV)');
ylabel ( PL Intens itv/Absorptlion (a) ');

title ('T=OK');

AT T=3OOK
subplot(1,2,2);
axis([-150 150 1 (1+length(rx))]);

figure(12);

plot(en,0.7*prussianabs + num);
hold on;
plot(en,0.9*prussian conv + num);
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plot(-en,0.7*prussianabs + num,'--');
plot(-en,0.9*prussian conv + num,'--');
xlabel('Energy (meV)');

title('T=300K');

figure(13);
if rx(num)<25,

subplot (1,2, 1)
axis([-35 150 0.9 (2+length(rx))/2]);

plot(en,0.9*prussianabs - num + 5);

hold on;
xlabel ('Energy (meV)');
ylabel('Single Dot Absorption');

else

subplot (1,2, 2)
axis([-17.5 75 0.9 (2+length(rx))/2]);

plot(en,0.9*prussianabs - num + 9);

hold on;
xlabel ( 'Energy (meV) ')

end

figure(16);

dum = prussianabs(end:-1:1).*(1:length(prussian abs));

plot(dum);

figure(17);

plot(conv(dum,prussian abs));

figure(18);

plot(conv(dum,prussian abs)./(1:length(conv(dum,prussian abs))));

end
end

if (0)
CALCU ATED .INEWIDTH ^^^^^^^^^^^^^

Since I only measure the temperature dependence of dac, and not the
temperature constant part

figure(17);

plot(r/10,sqrt(fwhm dac T300.^2-fwhmdacTO.^2),'r--');

xlabel ('Radius (nm)');
ylabel ( 'Deconvolution Linewidth FWIM (meV)
title( 'Room Te'mperat ure Im plied Deconvolution Linewidth');

figure (18);
plot(r/10,sqrt(fwhm dac T300_GeO2.^2-fwhm dacTOGeO2.^2),'r--');
xlabel('Radius (nm) ');
ylabel('Deconvolution Linewidth FWHM (meV)');
title('Rcom Temperature Implied Deconvolution Linewi..dt.h. - GeO2');

Now for optical phonon contribution - dopt = B*sqrt (n (n+l) ) , B=Bopt*r
hwopt = 26; %hmeV

Soptical. pt ponon occupaon at. T= 3 01K
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n300 = 1/(exp(hw-opt/(kB*300))-l);

1 Frm figure 1 p1,t

Bopt = 4.2/(60*sqrt(n300* (n300+l))); lmeV/ang

B = Bopt*r;

fwhmB300 = B*sqrt(n300*(n300+1))*2.35;

fwhm temp tot = sqrt(fwhmB300.^2+fwhm dacT300.^2-fwhm dacTO.^2);

figure(17);

hold on;
plot(r/10,fwhmtemptot,'k-');

plot(r/10,fwhmB300,'r:');

i.f (0)
herrorbar(rave,gfit wid(:,l)*2.35,rdif,rdif,'bx');

herrorbar(rave,lfitwid(:,l),rdif,rdif,'g');

axis([l 5 0 1001);
Su I k po. at

plot (5,31, 'k');
% plot (Rg uyot , Wguy t, ' ks '

end

end

PLOT THE CONTRIBUTIONS TO LINEWIDTH AT RT
if (0)

figure(27);

plot(r/10,sqrt(fwhm B300.^2+fwhm dacT300.^2));
xlabel ( 'Radius (nm) ) ;
ylabel ( Linew 0ith FWVM (meV) ) ;
title (' Cnt r Lbt ians ta Roam Tenperatur e Luinew.id 'h)

end

Ta get a. Masura of dE /T
See PRB 34, 24 8 (198)

f -rm C a 1 rID na pap e

clear all;

% fi.sL i n dex is A exciton, second is B

Eo(l) = 1.834;
Eo(2) = 1.860;

alphaf(1) = 4.24e-4;
alphaf(2) = 4.17e-4;

betaf(1) = 118;

betaf(2) = 93;

temp = [77 200 300];
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for I=1:2,
Energy(I,:) = Eo(I) + alphaf(I)*temp.^2./(temp + betaf(I));
dEdT = (Energy(I,1)-Energy(I,3))*1000/223;

end

This part is to calculate the FWHM of the absorption given the
die ectr.i c

constanL that Card.ona measures and

Gamma = 1;

Amp = 0.7;
eO = 8;

freqO = 100;

freq = (1:0.1:200);

e2 = eO*Amp*(Gamma/2)^2./((Gamma/2)^2 + (freq - freqo).^2);

el = eO*(l + Amp*(Gamma/2)*(freq-freqo)./((Gamma/2)^2 + (freq -

freqO) .^2));

k = imag(sqrt(complex(el,e2)));

figure (1);

plot (freq, e2);
hold on;
plot(freq,el,'--');

plot (freq, 6*k, 'k);
xlabel ('Frequency')

ylabel ( 'Amplitude ' );
axis([80 120 -2 15]);

D.3 Chapter 4 code

BubbleplotPAM.m

This is to create a bubble plot for 3 colors

clear all;

colors = {'b'; 'g'; ' r ; 'c'; I'; 'y'; 'k');
numcolors = 3;

load ( [ ' codes \PAM_ 3 9']);

Randomcodes = PAMcodes;

% NC/noise/m icrobead characteristics
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smalllambda = 530;

big lambda = 650;

linewidth = 13; % std.ev in em

censig = 2; enm
wid sig = 0.5; % nm
amplitude error slope = 0.05; t hi is the percentagte unertainty 100
nm away

white noise amp = 0.001; % this i.s tzhe ampiitUde i.n a given d.1ambda bin

% spec Lrm nie C er ciaractL e r istics
min lambda = 450;
max lambda = 700;
dlambda = 5;

lambda = min lambda:dlambda:max lambda;

iter = 30;

% expected center wavelenqths
cen = (small lambda:(big lambda-small lambda)/(num colors-

1):biglambda)';
wid = linewidth*ones(numcolors,l);

options = optimset('Display', 'off');

for I=l:length(Randomcodes),

code = Randomcodes(I,:)

for J = 1:iter,

%T; Make wh itLe noise
white-noise = white noise amp*randn(l,length(lambda))';

% ampl ituede crror
amp error slope = amplitude error slope*randn;
percentamperror = 1+(amperrorslope*(cen-small lambda)/100);
amperror = codel.*percentamperror;

cen error = cen sig*(randn(length(cen),l));

widerror = widsig*(randn(length(cen),l));

Smake en i V ph te mienscencc

pl nn error =

gauss(amperror',lambda', (wid+widerror)', (cen+cen error)');

plerror = plnn error./sum(pl nn error);
pl = whitenoise + plerror;

ampguess = ones(numcolors,l);
ampfit =

lsqcurvefit('gauss',ampguess',lambda',pl./sum(pl),0,1e9,options,wid',c

en');

normalized-amp = amp fit/sum(amp fit);

if (1)
figure(11);

hold on;
x = (sqrt(3)/2)*(-normalized amp(l) + normalizedamp(3));
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y = normalizedamp(2) - 0.5*normalizedamp(1) -
0.5*normalized amp(3);

plot(x,y, ['.' colors{1+mod(I,length(colors)))]);

end

if (0)
figure(10);

hold on;
plot(normalizedamp(2),normalized amp(3), ['o'

colors{1+mod(I,length(colors))}]);

end

end

end

barcode_21evelb.m

This is specifically designed to simulate 2 colors and number of
ratis

h that can be distinguiched for a. given error rate.

clear all;

NC/n'i>se/microbead characteristics

smalllambda = 510;
big lambda = 580; % NOTE TH IS DIFFERENCE!!!
linewidth = 13; %8 stdev in rim
censig = 0; % nm DIFFERENT
wid sig = 0; % nm DIFFERENT
amplitude error slope = 0.05; % this is the percentage uncertainty 100
nM away
white noise amp = 0.001; this is the amplitude in a qiven dlambda bin

spectrometer characteristics
min lambda = 400;
max lambda = 750;
dlambda = 5;

lambda = minlambda:dlambda:maxlambda;

number of reps per particular barcode
N = 1000;

options = optimset (Displav', 'off');

numcolors = 2;

- expected center wavelengths
cen = (small lambda:(big lambda-small lambda)/(num colors-

1):biglambda)';
wid = linewidth*ones(numcolors,1);

level(l) = 2.5;

levelindex = 1;

totalamp = dlambda;
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while (level(levelindex) > 0),

for I=1:N,

qenerate cOde
code = [level(levelindex) (totalamp - level(levelindex))]';

--- -------- GENERATE PL- ---------------------------------

I make white noise
whitenoise = white-noiseamp*randn(l,length(lambda))';

ampi ltude error
amp error slope = amplitude error slope*randn;
percent amp error = 1+(amp error slope*(cen-small lambda)/100);
amp-error = code.*percentamperror;

cen error = censig*(randn(length(cen),l));
widerror = widsig*(randn(length(cen),l));

make photo 1. umins. a, Cence
plnn = gauss(code',lambda',wid',cen');

plnonoise = plnn./sum(pl-nn);
pl nn error =

gauss(amperror',lambda', (wid+widerror)', (cen+cen error)');

plerror = plnn-error./sum(pl nnerror);
pl = whitenoise + plerror;
noise = pl-plnonoise;

I DECODING BARCODE

ampguess = ones(numcolors,1);
ampfit = lsqcurvefit('qauss',ampguess',lambda',pl./sum(pl),-

le9,1e9,options,wid',cen');

normalizedamp = (totalamp/sum(ampfit))*amp fit;

Need to decode
lev fit(I) = normalized amp(1);

end

make next. leve IL
lev sort = sort(levfit);
levelindex = level-index + 1
level(levelindex) = level(level index - 1) + 2*(levsort(5) -

level(level index - 1))

[pp,ppcen] = hist(levsort);

figure(2);

plot(pp cen./(5-pp cen),pp./max(pp));

hold on;
xlabel('Ratio')
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ylabel('Normalized Probability');
axis([0 1.2 0 1]);

std(levsort)/mean(levsort)
end

total-levels = 2*(level index - 1) - 1

channelcapacity.m

To estimate the channel capacity of microbead barcodes

clear all.;

% NC/noise/'micr',bead characteristics
smalllambda = 530;
biglambda 650;
linewidth 13; , stdev in nm
censig = 2; nn
wid sig = 0.5 nii
amplitude error slope = 0.05; this is the percentage uncertainty 10f
nm away
white noise amp = 0.001; % this is the amplitude in a given dlambda bin

spectrcmeter characteristics
min lambda = 350;

max lambda = 700;
dlambda = 5;

lambda = minlambda:dlambda:maxlambda;

number of reps pe partcur barcode
N = 1000;
numcolors = 3;

options = optimset('Dsp..ay','off');

%initialize variables
failed = 0;
success = 0;
nocode = 0;
totalmse = 0;
rejected = 0;
errorlocation(numcolors,:) = zeros(1,numcolors);
fftcode = zeros(length(lambda),1);
fftnoise = zeros(length(lambda),1);

expected centor wavelengths
cen = (small lambda:(big lambda-small lambda)/(num colors-
1):biglambda)';
wid = linewidth*ones(numcolors,1);

psd noise = zeros (1,length(lambda))';
psd amp = zeros(1,length(lambda))';
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psd wid = zeros(1,length(lambda))';

psd cen = zeros(1,length(lambda))';

psd signal = zeros(l,length(lambda))';
psd-wn = zeros(l,length(lambda))';
psd-pl = zeros(l,length(lambda))';

for I=1:N,

if (mod(I,1000) == 0)
I

end

Senerat.e c de
code = [1 0 0]';

--------------- GENERATE PL ----------------------------------

make whi te n1oiL.se

white noise = white noise amp*randn(1,length(lambda))';
psdwn = psdwn + abs(fft(white noise)).^2;

%amp 1 Ltud(Te e rr10r

amp error slope = amplitudeerrorslope*randn;

percentamp error = 1+(amperrorslope*(cen-small lambda)/100);
amperror = code.*percentamp error;

cen error = censig*(randn(length(cen),1));
widerror = widsig*(randn(length(cen),1));

lmake photoluminescence
plnn = gauss(code',lambda',wid',cen');
plnonoise = plnn./sum(plnn);
psdsignal = psd signal + abs(fft(plnonoise)).^2;

pl nn error =
gauss(amperror',lambda', (wid+widerror)', (cen+cen error)');

pl error = pl nn error./sum(pl nn error);

pl = whitenoise + plerror;

psd_p1 = psd_pl + abs(fft(pl)).^2;

noise = pl-plnonoise;

psdnoise = psd noise + abs(fft(noise)).^2;

plnnamp = gauss(amp-error',lambda',wid',cen');
pl amp = plnn amp./sum(pl nn amp);
noise amp = pl_amp - plnonoise;

psdamp = psd amp + abs(fft(noiseamp)).^2;

pl nn cen = gauss(code',lambda',wid', (cen+cenerror)');
plcen = plnncen./sum(pl nncen);
noise cen = plcen - plno noise;

psd cen = psdcen + abs(fft(noise cen)).^2;

pl nn wid = gauss(code',lambda', (wid+wid error)',cen');

plwid = pl_nnwid./sum(plnn wid);
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noise wid = plwid - plnonoise;

psdwid = psdwid + abs(fft(noise wid)).^2;

end

figure (2)

freq = (0:0.04:1);

oscil (0:25);
semilogy(oscil(2:26),psd-signal(2:26)/N,'b.-');
hold on;
%semiloqy(oscil (1:26) ,psd pl (1:26) /N, 'b: ' );
semilogy (oscil (2: 26) , psd noise (2:26) /N, 'k.-')

% semnilo.jgy (oscil ].(2: 26) ,psdi am..p (2: 2 6) /N, ' r . -
sem.l gy (oscil (2: 26) , psd cen (2: 26) /N, 'g.-')
emilogy (osci1 (2:26), psd wid (2: 26) /N, 'm.-')

semilogy(oscil(2:26),psdwn(2:26)/N,'c.-')
axis([0 25 le-6 1]);

xlabel (' Frequencv (oscil.at ions/spectrometer range) ');
ylabel ( Average Power Spec trum');

Calculate channel capacity - the first. factor is because I only
transmit
% for a fraction of the time.

capacity = ((biglambda-smalllambda)/(maxlambda-
minlambda))*sum(log2(1+(psd-signal(2:26)./psdnoise(2:26))))

wn capacity = ((big lambda-small lambda)/(max lambda-

minlambda))*sum(log2(1+(psd-signal(2:26)./psdwn(2:26))))

This is the matlab code to generate the regular PAM codes. The only trick is to make sure that all
of the codewords are linearly independent, ie not a multiple of any other code.

Create_PAMnn_ files.m

This prcogram is to create the PAM code fi les for later access

maxnum colors = 16;
maxcodes 5e5;

max-prod = 100;

for colors=12:max num colors,
maxlevel = 1;
while(((maxlevel)^colors < maxcodes) && (maxlevel*colors <

maxprod)),

[colors, maxlevel]

PAMnncodes = createPAMnn(colors,max level);
length(PAMnncodes(:,l))

codename = ['code s\PAMnn ' int2str(colors)
int2str(maxlevel)];

save(codename, ' PAMnncodes ' ) ;
max-level = max-level + 1;

end
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end

function c = createPAMnn(colors, maxlevel)

clear PAM MATRIX;
clear PAM INDEX;

global PAMMATRIX;
global PAMINDEX;

PAMMATRIX = zeros((maxlevel+l)^colors,colors);

PAMINDEX = 1;

makePAMnn(colors, maxlevel);

for I=1:(max level+l)^colors,

if (sum(PAMMATRIX(I,:)) ~ 0)
lastnonzero = I;

end

end

c = PAMMATRIX(l:lastnonzero,:);

function g = makePAMnn(colors, maxlevel)

% make PAM with no nor-mali zatlon, so eliminate en i es. r i- 0 wi h re .r. ,ate. 0 - t

fac L or not equo n Cu Q-lc

global PAMMATRIX;
global PAM INDEX;

if (colors == 1)
for J=maxlevel:-1:0,

PAM MATRIX(PAMINDEX,end) = [J];
% f the biggest common factor 0

reject
if (bcf(PAMMATRIX(PAMINDEX,l:end)) <= 1)

PAMINDEX = PAMINDEX + 1;
end

end
else

for I = max level:-1:0,
PAMMATRIX((PAMINDEX:end), (end + 1 - colors))
makePAMnn(colors-1, maxlevel);

end
end

g = 1;

theri keep i..t, e..0se

= I;
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function g = bcf(vec)

finds the least biggest common factor of a vector of positive
integers

just to take care of the zero vectr
if (sum(abs(vec)) == 0)

g = 0;
return

end

sort vec = sort(vec);

low ind = 1;
for I=1:length(vec),

if (sortvec(I) == 0)
low ind = I+1;

end
end

low = sortvec(lowind);
low_factors = sort (factors (low) , 'ascend');

f = [1;

bcfsofar = 1;
for I = 1:length(lowfactors),

if (sum(mod(vec,lowfactors(I))) == 0)
bcfsofar = low factors(I);

end
end;

g = bcfsofar;

This is the matlab code that generates the codes that have the equal weight and return to 2 zeros
constraint. The key point is that I am NOT just inserting 2 zeros between the PAM symbols. I
recursively generate all PAM codes that have equal weight AND have at least 2 zeros between
non-zero symbols. There is a big difference. The other cases that I presented are easier than this.

createPAM2rtzfiles.m

To create a range of PAMr-tz codes

global PAMMATRIX;

maxnumcolors = 24;

maxcodes = 15000;
maxprod = 200;

for colors=14:max num colors,
counts = 1;
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while((counts*colors < maxprod) && (countPAM2rtz(colors,counts) <
maxcodes)),

PAM2rtzcodes = createPAM2rtz(colors,counts);
code name = ['codes\PAM2rtz int2str(colors)

int2str(counts)];

save(codename, 'PAM2rtz codes');
counts = counts + 1;

end

end

to rcursi vely calculate the size of a PAM2rt z code

function g = countPAM2rtz(colors, counts)

if (colors == 1)
numcodes = 1;

elseif (colors 2)

if (counts == 0)
numcodes = 1;

else

numcodes = 2;

end
elsei.f (colors == 3)

if (counts == 0)
num codes = 1;

else

numcodes = 3;

end

else

num codes = 0;
for I = counts:-1:0,

if (I -= 0)
num codes = num codes + countPAM2rtz(colors-3, counts-I);

else

num codes = num codes + countPAM2rtz(colors-1, counts);
end

end

end

g = num codes;

function c = createPAM2rtz(colors, counts)

clear PAM MATRIX;
clear PAM INDEX;

global PAM MATRIX;

global PAMINDEX;

countPAM2rtz(colors,counts)

PAMMATRIX = zeros(countPAM2rtz(colors,counts),colors);

168



PAM-INDEX = 1;

makePAM2rtz(colors, counts);

c = PAM-MATRIX;

function g = makePAM2rtz(colors, counts)

global PAMMATRIX;

global PAMINDEX;

if (colors == 1)

PAM MATRIX(PAM INDEX,end) = [counts];

PAMINDEX = PAMINDEX + 1;

elseif (colors == 2)

if (counts == 0)
PAMMATRIX(PAMINDEX, (end-1:end))

PAMINDEX = PAMINDEX + 1;

else

PAMMATRIX(PAMINDEX, (end-1:end))

PAMINDEX = PAMINDEX + 1;

PAMMATRIX(PAMINDEX, (end-1:end))

PAMINDEX = PAM-INDEX + 1;

end

elseif (colors == 3)

if (counts == 0)
PAM MATRIX(PAM INDEX, (end-2:end))

PAMINDEX = PAMINDEX + 1;

else
PAMMATRIX(PAMINDEX, (end-2:end))

PAMINDEX = PAMINDEX + 1;

PAMMATRIX(PAMINDEX, (end-2:end))

PAMINDEX = PAMINDEX + 1;

PAMMATRIX(PAMINDEX, (end-2:end))

PAMINDEX = PAM INDEX + 1;

end

= [0 0];

= [counts 0];

= [0 counts];

= [0 0 0];

= [counts 0 0];

= [0 counts 0];

= [0 0 counts];

else
for I = counts:-1:0,

if (I ~ 0)
PAMMATRIX((PAMINDEX:end), (end + 1 - colors)) = I;
PAMMATRIX((PAMINDEX:end), (end + 2 - colors)) = 0;
PAMMATRIX((PAMINDEX:end), (end + 3 - colors)) = 0;
makePAM2rtz(colors-3, (counts-I));

else
PAMMATRIX((PAMINDEX:end), (end + 1 - colors)) = 0;
makePAM2rtz(colors-1, (counts-I));

end
end

end

g = 1;
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This is the Monte Carlo code generation program.

randomsystematic.m

T% .hi-s imu I t on a s ssm s a vai.ty o 0 nis -ah.-t noji.. s, amp, cen,
and.

w wid rioise and attempts to estimate the numbr 0 f poof sib1 odes

clear all.;

Cno i S ,Is / icr, I oe a ad cha r a cterl ic s
smalllambda = 530;
biglambda = 650;
linewidth = 13; st.dev in nm

cen sig = 2; C nm
wid sig = 0.5; rm
amplitude error slope = 0.05; this i.s the percentage inortalinty 11C
nm away
white noise amp = 0.001; % thisis t. he ampI.l: itude in a g:iven. dl. amhda bi n

% speictLr omete.inr ch a ra c I:.nrI.stLLicss
min lambda = 450;

max lambda = 700;

dlambda = 5;
lambda = minlambda:dlambda:max lambda;

num colors = 50;

num levels = 100;

numfailures = 10000;

modnum = 7;
iter = 100;

codename = ['codes\Random_' int2str(smalllambda) 'to'
int2str(biglambda) '_iter' int2str(iter) '_colors' int2str(numcolors)

'levels' int2str(numlevels) '_failures' int2str(numfailures)];

% expected center wavelengths
cen = (smalllambda: (biglambda-smalllambda)/(num colors-
1):biglambda)';
wid = linewidth*ones(num colors,l);

number failures = 0;
max numbercodes = le4;

maxnumberattempts = 1e4;

codematrix = zeros (maxnumbercodes,numcolors);
plmatrix = zeros (maxnumbercodes,length(lambda));
noisy instances = zeros(iter,length(lambda));
code-index = 1;

failure tally = zeros (num failures,l);
attempts power = ones(modnum,l);
successpower = ones (modnum,l);
mse = zeros(iter,l);
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these are for recording the history of the success rates
hitrate power = zeros(maxnumberattempts,modnum);
tryspower = zeros(maxnumberattempts,modnum);
indexpower = 1;

while (numberfailures < numfailures),

% save as I go
if (mod(code index,100) == 0)

Randomcodes = code_matrix(1:code_index-1,:);
hsucpower = hsuccesspower(l:index power-i,:);
hattpower = hattemptspower(l:indexpower-,:);
save(codename, 'Random codes', 'hsucpower', 'haLttpower');

end

record strategy success rates as I go.
if (mod(sum(attemptspower),100) 0)

hsuccesspower(indexpower,:) = successpower;
hattemptspower(indexpower,:) = attemptspower;
indexpower = indexpower + 1;

figure(6);
plot (haLtermpts power (1: index power-

I, ),hsuccess power (1: index power-1,:),'.-
plot(hattemptspower(1:indexpower-

1,4),hsuccesspower(1:index_power-1,4),'.-');
xlabel ('AtteMpts')
ylabel('Successes');
title('All strategies');

figure(7);
plot (sum (hattempts power (1: index power-

1, :) ,2) , sum (hsuccess power (1: index power-1, :) ,2) ,'.-

plot(sum(hattemptspower(1:indexpower-
1,4),2),sum(hsuccesspower(l:indexpower-1,4),2),'.-');

xlabel ('Attemripts');
ylabel('Successes');
title('Sum of All strategies');

end

% generate code - slig ht ly more complicat ed, but bet er way
nnprobpower = success power./attemptspower;

- this is the real probability that I use to ehoose power
prob power = nnprobpower./sum(nnprobpower);
dum = rand;

power = 1;

for I = 1:modnum,
if (dum > sum(probpower(l:I)))

power = I+1;
end

end

code = floor(numlevels*rand(l,num colors).^(2^(power-1)));
while (sum(code) == 0)
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code = floor(num levels*rand(1,num colors).^(2^(power-1)));
end

S-------------- GENERAT E L ------------------------------------

mak no noise pl
pl_nn = gauss(code,lambda',wid',cen');
plno noise = plnn./sum(plnn);

for I=1:iter,

Sma k.e wht no i s
white-noise = white noise amp*randn(1,length(lambda))';

% amplitude error
amp error slope = amplitude error slope*randn;

percent amp error = 1+(amp error slope*(cen-small lambda)/100);

amperror = code'.*percentamperror;

cen error = censig*(randn(length(cen),1));

widerror = widsig*(randn(length(cen),1));

mike nOisy photoumi nescenue
pl nn error =

gauss(amp-error',lambda', (wid+widerror)', (cen+cen error)');

plerror = plnnerror./sum(plnnerror);
pl = white-noise + plerror;

noisyinstances(I,:) = pl;

end

CHECK IF THIS CODE IS SPACED FAR ENOUCH AWAY
if (code index == 1)

code matrix(1,:) = code;

plmatrix(1,:) = plnonoise';
codeindex = code-index + 1;

code

else

I = 1;

failed = 0;
mse = sum((noisyinstances - ones(iter,1)*plnonoise').^2,2);
whil e ((I < codeindex) && (failed == 0)),

% keep going L f -a-il
code mse = sum((noisy instances -

ones(iter,1)*plmatrix(I,:)).^2,2);

if (max(mse - codemse) >= 0)
failed = 1;

else

I = I + 1;

end

end
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if (I == codeindex)

-,then this is a good code
code matrix(code index,:) = code;

plmatrix(codeindex,:) = plnonoise';
code index = codeindex + 1

failuretally(numberfailures+1) =

failure tally(number failures+l) + 1;

numberfailures = 0;
successpower(power) = successpower(power) + 1;

%code
else

number-failures = number-failures + 1;

end
end

end
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