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Abstract

The primary objective is to explore the potential of neural networks for structural damage
diagnosis. To achieve this objective, a general neural network architecture for structural damage
diagnosis and a methodology for designing the components of this architecture are formulated and
evaluated. The main components of the architecture include i) the physical system of interest and
its model ii) the data preprocessing units and iii) neural networks that operate on the processed data
and produce a prediction of the location and magnitude of damage. Important design issues are the
choice of variables to be observed, the methodology for choosing the excitation and type of
vibrational signature for the monitored structure, the actual configuration of neural networks, and
their training algorithm. These design issues are first examined in detail for the case of single-point
damage, and the evaluation is then extended to multiple-point damage. The diagnosis strategy is
based on first identifying which substructures are damaged (global diagnosis), and then examining
independently each individual damaged substructure to establish the location and extent of damage
(local diagnosis). Global diagnosis requires a neural network for predicting which substructures are
damaged. Local diagnosis employs two neural networks for predicting the locations and extent of
damage at each location within a substructure. The total number of local diagnosis systems is equal
to the number of substructures.

The evaluation phase is carried out with beam-type structures. Firstly, a single-point
damage diagnosis system for a 2-span bending beam model is developed and evaluated. The second
step considers a 4-span model with multiple-point damage. Numerical modeling of the structure
and computation of the response are carried out with MATLAB. Damage is introduced by
reducing the bending resistance at specific locations. Simulation studies are performed to evaluate
the performance for different choices of excitation and types of input. Observation based on
simulation studies indicates that the global and local approach considerably improves the practical
feasibility from the other existing neural network-based approaches. Difficulties in developing good
simulation models of large-scaled civil engineering structures, and the extensive amount of possible
damage states that the structures involve, are the major practical problems, and may result in
limited applicability of this approach in the field of civil structures.
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Chapter 1

Introduction

1.1 Neural Network-Based Damage Diagnosis Approach

Although substantial research has been carried out on the topic of damage

diagnosis of structures, the most reliable diagnostic techniques are still largely based on

human expertise (DARPA, 1988). Since human-based structural damage diagnosis

requires human experts to look for any signature that could identify damage of the

structure, problems arise due to human errors and the scarcity of qualified human

diagnosticians (Pham, 1995). There are also situations for which the human-based

approach is not practical such as damage diagnosis of structures in space, or structures in

hazardous environments. Recently, the use of Knowledge Based Systems (KBS) to

support human judgment has been proposed (DARPA, 1988 and Garrett, 1992), but this

technology is also limited. Developing a KBS is very time-consuming (DARPA, 1988).

Moreover, KBS's are not very adaptable and robust, and are too slow to be operated in

real time (Pham, 1995). Therefore, a better non-human based approach is still needed.

By definition, a neural network consists of a number of units called " processing

elements" which are connected to and interact with each other. The activation of a

network starts when there is input to any unit. The weighted summation of the inputs for a

unit is passed through a function called "transfer function" and the output of this function

is provided at the output connection, which can be connected to the input connection of



any other unit including itself. The activation process of each unit will continue to execute

until there is no more input, or until the output converges to some value. More details

about the architecture and operation of neural networks are presented in Chapter 2 and 3.

Considering the ability of artificial neural networks to approximate functions

(Cybenko, 1988, 1989; Hornik, 1989; Dyn, 1991; Park, 1991), the pattern mapping aspect

of structural damage diagnosis appears to be a promising application area for neural

networks. If artificial neural networks can extract knowledge from remotely collected data

in an effective way, they can be incorporated in a computer based diagnosis system that

can complement existing human diagnosis approaches.

Neural network-based damage diagnosis approach has been studied recently by

several researchers. Elkordy (1992,. 1993), Rehak (1992), and Liu (1995) determine

changes in certain mode shapes of the damaged structure and use this information to

estimate the location and level of damage. Use of the frequency-domain properties of the

physical structure, referred to as the "vibrational signature" of the structure, transfers the

problem to static pattern mapping between changes in mode shapes and types of damage.

In this case, any type of network for function approximation (as discussed in Chapter 3)

can be applied to solve the mapping problem.

Elkordy (1992, 1993) trained a multilayer network with analytically generated

states of damage to diagnose damage states obtained experimentally from a series of

shaking-table tests of a five-story frame. The physical and analytical models are defined in

Fig 1.1. Damage states are simulated using a variety of smaller areas of bracing members

in the first two stories. Tables 1.1 and 1.2 contain the damage states of the testing and

training damage cases respectively. The performance of the neural network-based

diagnosis system that is optimized for the analytical model was examined and found to be

good for detecting a limited number of damage conditions of the real frame (see Table

1. 1).
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Figure 1.1: The physical and analytical model of the frame (Elkordy, 1992).



Case Number Effective Bracing Area (cm2) Reduction of Bracing Area (%)

First Floor Second Floor First Floor Second Floor

(b) Second Floor Damage Class
4 3.4 2.28 0 33
5 3.4 1.7 0 50
6 3.4 1.15 0 66

(c) Combined Damage
7 2.28 2.28 33 33
8 1.7 1.7 50 50
9 1.15 1.15 66 66
10 0.484 0.960 66 33

Table 1.1: Damage cases of the testing data set (Elkordy, 1992).

Case Number Reduction of Bracing Area (%) Target Diagnosisa

First Floor Second Floor First Floor Second Floor

1 10 0 1 0
2 30 0 1 0
3 50 0 1 0
4 60 0 1 0
5 0 10 0 1
6 0 30 0 1
7 0 50 0 1
8 0 60 0 1
9 30 30 1 1
10 50 50 1 1
11 60 60 1 1

aKey: 1 = damage exists; 0 = no damage exists.

Table 1.2: Damage cases of the training data set (Elkordy, 1992).



Using mode shapes to identify damage is only one approach. In the mechanical

engineering field, vibrational response spectrums have long been used to detect damage of

rotating tools and machines. This approach has been followed by Wu et al (1992) and

MacIntyre et al (1994). Wu utilized a multilayer network to detect changes in the response

spectrum of the numerical model of a 3-story shear building, and to correlate these

changes with corresponding damage states. The model is subjected to earthquake base

acceleration, and the Fourier spectra of the computed relative acceleration time histories

of the top floor are used in training the neural network. Damage is defined as a reduction

of shear stiffness of a specific story. Only one story can be damaged at a time. The

illustration of the model and data processing procedure are shown in Fig 1.2. Figure 1.3

shows the neural network employed for damage diagnosis. Tables 1.3 and 1.4 show the

damage cases of the testing and training data sets respectively. The results indicate good

performance of neural network in detecting damage of the model.

~uimu (wEwzuuuuj

3g
-· 2= 3l--• ¶

-1 J1

/)/ //

.1

Time (sc)

Accelrnadn ftm M Cion eanhqupake
May 18, 1940 (SE compa..ne

Figure 1.2: The model and data processing procedure (Wu, 1992).
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Figure 1.3: The multilayer network for damage diagnosis (Wu, 1992).

Case Number Reduction of Shear Stiffness (%)
1st Story 2nd Story 3rd Story

1 0 0 0
2 50 0 0
3 75 0 0
4 0 50 0
5 0 75 0
6 0 0 50
7 0 0 75

Table 1.3: Damage cases of the testing data set (Wu, 1992).

Case Number Reduction of Shear Stiffness (%)
1st Story 2nd Story 3rd Story

1 0 0 0
2 60 0 0
3 0 60 0
4 0 0 60

Table 1.4: Damage cases of the training data set (Wu, 1992).



There are also other works that involve utilizing other vibrational signatures.

Szewczyk and Hajela (1992, 1994) model the damage as a reduction in the stiffness of

structural elements that are associated with observed static displacements under prescribed

loads. They performed simulation of a frame structure model with nine bending elements

and 18 degrees of freedom (X-Y displacements and rotation at each node). A variation of

multilayer feedforward network was utilized to detect the damaged frame element. Barai

and Pandey (1995) carried out a study on damage detection in a bridge truss model using

multilayer network with simulated damage states, each represented by one damaged truss

member. Discretized time history response at various locations of the truss due to a single-

wheel moving load is used as the vibrational signature.

All of the research studies mentioned have been restricted to narrowly defined

application areas. Issues related to the architecture and design strategy for a general neural

network-based damage diagnosis system have not been addressed. Also, the efforts have

focused on very small-scale problems that involve very limited number of possible damage

states, and it is not obvious that the methods can be scaled up to deal with larger-scale

problems. In most cases, at a particular instant in time, damage is assumed to occur at a

single location (single-point damage condition) in order to reduce the complexity of the

problem (Wu, 1992; Szewczyk and Hajela, 1994; Barai and Pandey, 1995). The treatment

of multiple-point damage has been dealt with in a very limited way (Elkordy, 1992, 1993),

and the methodology for dealing with multiple-point damage has not been adequately

developed.

Based on our review of the literature, the important research issues concerning the

applicability of neural networks for damage diagnosis that need to be addressed are as

follows:

- The appropriate general architecture of a neural network-based structural

damage diagnosis system.



- A comprehensive design strategy for neural network-based diagnosis system.

- The detection of simultaneous damage sources.

- The scalability of neural network-based diagnosis systems to large structures.

- The error introduced by representing the actual physical structure with an

ideological numerical model.

- The choice of data such as. mode shapes, response spectrums, and other

vibrational signatures as input for damage classification.

- The relationship between the data collection procedure and the performance of

the diagnosis system.

1.2 Objective and Scope

The primary objective of this research is to explore the potential of neural

networks for structural damage diagnosis. To achieve this objective, a general neural

network architecture for structural damage diagnosis and a methodology for designing the

components of the architecture are formulated and evaluated.

The main components of the general architecture include i) the physical system of

interest and its model ii) the data preprocessing units and iii) a collection of neural

networks that operate on the processed data and produce a prediction of the location and

magnitude of damage. Important system design issues are the choice of variables to be

observed, the methodology for choosing the excitation and type of vibrational signature



for the monitored structure, the actual configuration of the neural networks, and their

training algorithm. These design issues are first examined in detail for the case of single-

point damage condition, and the evaluation is then extended to the case of multiple-point

damage.

The evaluation phase is carried out with beam-type structures. As a first step, a

single-point damage diagnosis system for a highly-idealized 2-span bending beam model is

developed and evaluated. Two choices of excitation and vibrational signature are

considered. The first strategy applies ambient excitation to the numerical model of the

structure, and then takes the mode shapes as input patterns for the neural networks which

estimate the location and magnitude of damage. The second strategy applies a prespecified

excitation to generate the model response, and employs the resulting response spectrum as

input for the neural network system. The numerical modeling of the structure and the

computation of the response are carried out with MATLAB. Damage is introduced by

reducing the bending resistance at a specific location. Simulation studies are performed to

evaluate the performance for the different choices of excitation and type of input.

The second step in the evaluation phase considers a 4-span bending beam model

with multiple-point damage. The diagnosis strategy is based on first identifying which

spans are damaged (global structural diagnosis), and then examining independently each

individual damaged span to establish the location and extent of damage (local structural

diagnosis). Global structural diagnosis requires at least a set of neural networks for

predicting which spans are damaged. Local structural diagnosis of each substructure

requires at least two sets of neural networks for predicting the locations and extent of

damage. The number of local structural diagnosis systems depends on the number of

substructures.

Two choices of excitation and vibrational signature are employed for global

structural diagnosis. The first choice uses ambient excitation to generate the response of

the model, and takes the corresponding mode shapes as the input pattern for the neural



networks. The second choice employs a prespecified excitation and uses the

corresponding response spectrum as the input pattern.

Local structural diagnosis employs a prespecified excitation to create the response

of each substructure, and uses the frequency transfer functions of the substructure as input

for the neural networks that perform damage diagnosis on the substructure.

Based on the results of the evaluation studies, a design methodology for a

comprehensive neural network system for structural damage diagnosis is formulated.

Results of additional studies on the performance of various configurations of multilayer

feedforward network, with back propagation learning algorithm, are utilized to establish

guidelines for the choice of appropriate configurations for the individual neural networks

contained within the general architecture. Feasibility tests are also performed to explore

the practical applicability of this diagnosis approach.

Two types of neural networks, one based on the multilayer feedforward-back

propagation learning model and the other on radial basis functions, are appropriate for

pattern classification. This study employed only the multilayer feedforward networks for

the simulation studies since the lack of a-priori knowledge of the damage pattern mapping

problem do not suit Radial Basis Function Network. Data on the performance of both

types of networks is included in this document for convenient reference.

1.3 Organization

In Chapter 2, the basic concepts and definitions of artificial neural networks are

described, several well-known architectures and training algorithms are demonstrated, and

the neural network applications in civil engineering are briefly reviewed. Neural network

and other information processing approaches, such as Knowledge Based Systems, are

compared. The relation between neural networks and approximation schemes are also

discussed.



Chapter 3 contains a detailed treatment of neural networks for function

approximation, an application area of considerable interest for civil engineering.

Performance data are presented and discussed for both Multilayer Feedforward Networks

and Radial Basis Function Networks. The optimum architectures and training strategies

for a range of regression and classification problems are also investigated.

Feedforward neural networks, including Radial Basis Function Networks, are

discussed in terms of probability and approximation theory in Chapter 4. Probabilistic

models of feedforward networks with back propagation learning algorithms and radial

basis function networks are investigated. This knowledge provides engineers with a

different perspective of the theory of neural networks, and makes it easier to understand

and develop a neural network-based system.

Chapter 5 is concerned with the application of neural networks to structural

damage diagnosis. A general architecture of neural network for structural damage

diagnosis is presented, and methodologies for designing the individual components of the

system for both single-point damage and multiple-point damage are proposed.

An application of a neural network based damage diagnosis system to a 2-span

beam with single-point damage is developed and evaluated in Chapter 6. Chapter 7

describes the case of multiple-point damage diagnosis for a 4-span beam. These

investigations provide a general understanding of neural network based damage diagnosis

and the difficulties involved in applying this approach to real structural problems. Chapter

8 summarizes these findings, and suggests strategies for overcoming some of these

difficulties. The practical applicability of this diagnosis approach is also discussed, and

further research topics are recommended.



Chapter 2

Foundation of Artificial Neural Networks

2.1 Background History

Work in the neural network field began about 50 years ago. The effort during this

time period can be considered to have three distinct phases (DARPA, 1987): an early

phase, a transition phase, an a resurgent phase.

The early work, (1940's-1960's), was concerned with fundamental concepts of

neural networks such as Boolean logic (McCulloch and Pitts, 1943), synaptic learning

rules (Hebb, 1949), single layer Perceptron (Rosenblatt, 1962), and associative memory

(Steinbuch et al, 1963). The Perceptron generated immediate attention at that time

because of its ability to classify a continuous-valued or binary-valued input vector into one

of two classes. However, in the late 1960's, the work by Minsky and Papert pointed out

that the Perceptron could not solve the "exclusive OR" class of problems, and this finding

resulted in a substantial shift in research interest away from neural networks.

During the transition period (1960's-1980's), a small group of researchers

continued to develop a variety of basic theories that strengthened the foundation of the

field. Contributions include the Least Mean Square (LMS) algorithm (Widrow and Hoff,

1960), Cerebellum model (Albus, 1971), competitive learning (Von Der Malsburg, 1986),

and Adaptive Resonance Theory (Grossberg, 1987).



Starting in early 1980's, there was a resurgence in interest for neural networks.

This resurgence was driven by the contributions made during the transition period toward

improving the understanding of the deficiencies of single-layer perceptron and extending

the theoretical work to multilayer systems. The advances in computer technology in the

1980's also provided the computation power needed to deal with large-scale networks.

Notable contributions include feature maps classifier (Kohonen, 1982), associative

memory theory (Hopfield, 1982), Boltzman machine (Hinton and Sejnowski, 1986), and

Back Propagation learning algorithm (Rumelhart et al, 1986). These topics are described

in more detail later in this chapter.

2.2 Topological Classification of Neural Networks

The word "neural" is used because the inspiration for this kind of network came

initially from the effort to model the operation of neurons in human brain. Artificial neural

networks are classified according to their topology and the algorithm that provides their

ability to learn. The topology of an artificial neural network defines the connection

between the various processing elements contained in the network. The function of a

network is determined by its connection topology and the weighting factors assigned to

each connection. These weighting factors are adjusted by the learning algorithm during the

training phase. Artificial neural networks are also called "Connectionist Models", or

"Parallel Distributed Processing Models." For convenience, the simplified term "Neural

Networks" is used throughout the remaining portion of this text.

Figure 2.1 shows a common processing element and its activation. A processing

element has many input connections and combines, usually by a simple summation, the

weighted values of these inputs. The summed input is processed by a transfer function

which usually is a threshold-type function. The output of the transfer function is then

passed on to the output connection of the element.



The output of a processing element can be passed on as input to any processing

element, even to itself. Weights are used to designate the strength of the corresponding

connections and are applied to the input signals prior to the summation process.

xo

lation

Figure 2.1: An example of a general processing element.

A neural network contains many "processing elements," or "units," connected and

interacted to each other. Processing elements are usually clustered into groups called

layers. Data is presented to the network through an input layer, and the response is stored

in an output layer. Layers placed between the input and output layers are called hidden

layers. When a network is not organized into layers, a processing element that receives

input is considered to be an input unit. Similarly, a processing element that provides some

output of the network is called an output unit. It is also possible that a processing element

may act simultaneously as both input and output unit.

Based on topology, a neural network is classified as either feedforward or

recurrent. Figure 2.2 illustrates these categories. Feedforward networks have their

processing elements organized into layers. The first layer contains input units whose task

is only to provide input patterns to the network. Next to the input layer are one or more

hidden layers, followed by the output layer which displays the result of the computation.

\i



In feedforward networks there is no connection from a unit to the other units in either

previous layers or the same layer. Therefore, every unit provides information, or input,

only to units in the following layer. Since the input layer has no role other than to provide

input data, it is not included in the layer count. It follows that an N-layer network has N-1

hidden layers and an output layer.

I1 2 OutoutOutput

Hidden
Layer 2

Hidden
Layer 1

Input Buffer
.... r---F InnutInDut

a) Feedforward Network b) Recurrent Network

Figure 2.2: Feedforward network and recurrent network (Hertz, 1991).

Recurrent networks are networks that have connections "both ways" between a

pair of units, and possibly even from a unit to itself. Many of these models do not include

learning, but use a prespecified set of weights to perform some specific function. The

network iterates over itself many cycles, until some convergence criterion is met, to

produce an output. For example, the simplest recurrent network performs the following

computation,

x(k+l = A x(k) , (2.1)

where x(k) is the output vector at time step k and A is a weighting matrix. The

convergence of this type of computation depends on certain properties of the weighting

matrix.



2.3 Learning Algorithms

Learning, or training, is the process of adapting or modifying the connection

weights and other parameters of specific networks. The nature of the learning process is

based on how training data is verified. In general, there are 3 training categories;

supervised, unsupervised, and self-supervised.

Supervised learning requires the presence of an external teacher and labeling of the

data used to train the network. The teacher knows the correct response, and inputs an

error signal when the network produces an incorrect response. The error signal then

"teaches" the network the correct response by adjusting the network parameters according

to the error. After a succession of learning trials, the network response becomes

consistently correct. This is also called "reinforcement learning" or "learning with a critic".

Unsupervised Learning uses unlabeled training data and requires no external

teacher. Only the information incorporated in the input data is used to adjust the network

parameters. Data is presented to the network, which forms internal clusters that compress

the input data into classification categories. This process is also called "self-organization."

Self-supervised Learning requires a network to monitor its performance internally,

and generates an error signal which is then fed back to the network. The training process

involves iterating until the correct response is obtained. Other descriptors such as

"learning by doing", "learning by experiment", or "active learning" are also used to denote

this approach.

Each learning method has one or more sub-algorithms that are employed to find

the optimum set of network parameters required for a specific task. These sub-algorithms

generally are traditional parameter optimization procedures such as least square

minimization, gradient descent, or simulated annealing. In more complicated networks,

several types of learning algorithms may be applied sequentially to improve the learning

ability.



Back propagation learning, the most popular for multilayer feedforward network,

is a supervised procedure that employs a gradient descent type method to update the

weighting parameters. With a gradient descent procedure, one updates parameters as

follows:

W., = W, -. A Vf. (2.2)

where W is the vector of weighting parameters, f is the function to minimize (usually

called an "error function"), and X is a parameter called "step size" or "learning coefficient."

The advantages of this method are its simplicity and reliability. However, the method

requires more computation than others, and also tends to lock in on local minima of the

function surface rather than the global minima. The speed of convergence can be improved

by varying the step size and including a momentum term. There are also improved gradient

procedures such as Newton's method, Quasi-Newton, Conjugate gradient, and Stochastic

Gradient Descent which is the stochastic version of the gradient method. The equation for

Stochastic Gradient Descent has the following form

wn+ = w- (vf + s,). (2.3)

where S is a sequence of random vectors with zero mean. Under certain assumptions, this

sequence converges to a local minimum off (Girosi, 1993, 1995).

Although the stochastic version of gradient method is more likely to avoid a local

minima, convergence to the global minimum is conditioned on certain assumptions. For

instance, a particular stochastic method, called "Simulated Annealing" (Kirkpatrick et al,

1983), will converge to the global minimum with infinite updating. Stochastic methods are

theoretically interesting, but they require extensive computation power and consequently

their training time is too long for large-scale applications on current hardware.



The tasks which neural networks have to perform and the availability of training

data generally determine the appropriate type of training algorithm. In practice, there are

many criteria that have to be considered. Speed of training and degree of accuracy is

always a trade-off. Amount of available memory has to be considered when hardware is

restricted. In some case, even the characteristics of the error function have to be taken into

account. Having so many alternatives for the type of architecture and training algorithm, it

is difficult to find the right combination for a specific application. In most cases, a number

of candidate solution need to be evaluated in order to identify the best choice. This

research provides guidelines for selecting the proper architecture and training method for

function approximation. Details are presented in the next chapter.

2.4 Review of Types of Neural Networks

As mentioned earlier, neural networks are categorized by their architecture and

learning algorithm. In this section some well-known networks are described in order to

provide further background for the neural network field.

Single and multilayer perceptrons are the simplest types of feedforward neural

network model. The single-layer perceptron was first introduced by Rosenblatt (1962). An

example of the network is shown in Fig 2.3a. A processing element computes a weighted

sum of input, subtracts a threshold, and passes the result through a nonlinear threshold

function,

fix) = 0 , x < 0 and

(x) = 1 , x > 0 . (2.4)

The two possible outputs correspond to the two different classes which can be recognized

by the network. The single-layer perceptron can be used to classify a continuous-valued or

binary-valued input vector into one of two classes. Training can be done with the Least



Mean Square (LMS) algorithm, which is a linear supervised training approach with

guaranteed convergence. Minsky and Papert (1988) analyzed the single-layer perceptron

and demonstrated that the network can only solve linearly separable problems like the

exclusive AND problem, but cannot handle a nonlinearly separable problem such as the

exclusive OR problem. A more detailed review of Rosenblatt's perceptron and Minsky and

Papert's analysis can be found in (Minsky and Papert, 1988).

) =- •an(w • - tn,
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(a) Perceptron that implement AND. (b) One-hidden-layer Perceptron

Figure 2.3: Perceptron.

Multilayer perceptron is a feedforward network with one or more hidden layers.

The transfer function of each processing element is the same as that of single-layer

perceptron. Although multilayer perceptrons perform better in many aspects compared to

single-layer perceptrons, especially in their ability to solve nonlinearly separable problems,

they were not very popular prior to the mid 1980's because of the lack of an efficient

training algorithm. The development of training algorithm called "back propagation" in the

mid 1980's (Parker, 1985; Rumelhart et al, 1986 and Werbos, 1974) resulted in renewed

interest in multilayer perceptrons. Back propagation is a supervised training procedure

that, although convergence is not guaranteed, has been applied successfully to many

problems such as spoken vowels classification (Huang et al, 1987 and Lippmann et al,

H1
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1987), speech recognizer (Waibel et al, 1987), and nonlinear signal processing (Arbib,

1987). More details on back propagation are given in Chapter 3.

The Hopfield network is a one-layer unsupervised training recurrent network with

fully connected symmetrically weighted elements. Each unit functions as input and output

unit. In the initial version, all parameters had to be prespecified. This limitation is removed

in later versions where the parameters can be adjusted via gradient method such as Back

Propagation Through Time (Rumelhart et al, 1986), or Recurrent Back Propagation.

Given the input, the network iterates until it reaches a stable state (output from next

iteration does not change from the previous one), and provides the output. This type of

network can be used to solve pattern classification, associative memory, and optimization

problems.

(b)

(a)

W11 W12 W22

W21

t=4

t=3
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t=1

Figure 2.4 Hopfield Network (Hertz, 1991). (a) Network architecture.
(b) The activation of the network for 4 time steps.

The optimization networks developed by Hopfield tend to converge to local

minima. The problem can be eliminated by adding a stochastic aspect to the training

algorithm during the iteration. This approach led to the development of a type of network

called "Boltzmann machine" (Ackley et al, 1985 and Hinton et al, 1986). The Boltzmann



machine training algorithm solved the credit assignment problem for the special case of

recurrent networks with symmetrical connections and was demonstrated to be able to

learn a number of difficult Boolean mappings. Due to the nature of stochastic parameter

optimization, however, the training time of the Boltzmann machine is too long for most

practical applications.

The Cerebellar Model Articulated Controller, or CMAC model (Albus, 1981), is

an original model of the cerebellum, which is the part of the biological brain that performs

motor control. The network adaptively generates complex nonlinear maps and is generally

used in motor control problems such as robotic control (Kawato et al, 1987 and Miller et

al, 1987). CMAC is actually an adaptive table look-up technique for representing complex,

nonlinear functions over multi-dimensional, discrete input spaces. A diagram of the

CMAC model is shown in Fig 2.5.

GENERATE RECEPTIVE STORED
FIELDS WEIGHTS

AND HASH CODING

Figure 2.5: The CMAC model (Albus, 1981).

CMAC reduces the size of the look-up table through coding, provides for response

generalization and interpolation through a distributed topographic representation of



inputs, and learns the nonlinear function through a supervised training process that keeps

adjusting the content or weight of each address in the look-up table (DARPA, 1987).

The feature map classifier (Hampson et al, 1987 and Valiant ,1985), as shown Fig

2.6, is a hierarchical network that utilizes both unsupervised and supervised training. The

lower part of the network classifies the input and is trained first using Kohonen's feature

map algorithm (DARPA, 1987), a type of learning algorithm that does not require explicit

tutoring of input-output correlations and perform unsupervised training based on the input

data. The perceptron-like upper part is then trained using a supervised training algorithm.

This approach is especially useful when the amount of unsupervised training data available

is significantly greater than the quantity of supervised training data.

SUPERVISED
TRAINING

UNSUPERVISED
TRAINING

Figure 2.6: A Feature Map Classifier (Hampson, 1987).

Adaptive Resonance Theory (ART) networks (Carpenter and Grossberg, 1987)

are complex nonlinear recurrent networks with an unsupervised training algorithm that



creates a new cluster by adjusting weights or adding a new internal node when an input

pattern is sufficiently different from the stored patterns. "Sufficient difference" can be

adjusted externally by a parameter called the "vigilance parameter". They are used mainly

for pattern classification.

The Radial Basis Function Network (Broomhead and Lowe, 1988), or RBFN, is a

1-hidden-layer feedforward network with fixed nonlinear transformations in the hidden

layer, and linear transformation in the output layer (see Fig 2.7). Radial basis functions are

used as the transfer functions for the interior elements. The most popular choice of radial

basis function is the Gaussian function

G,(x) = e (2.5)

The output of RBFN is given by

n

y = XCG,(JJx-xll) * (2.6)
i=i

The type, the center points of the radial basis functions, and the weighting

parameters need to be specified. Since the gradient of the output error function is linear to

weighting parameters, the error function does not have local minima and the weights can

be adjusted by a linear optimization procedure such as a least square approach. These

procedures converge rapidly to the global minimum of the error surface. This aspect

makes RBFN an attractive alternative to MLN which requires a stochastic optimization

procedure since its error function has local minima. More detail of RBFN is presented in

Chapter 3.



Figure 2.7: A general Radial Basis Function Network.

2.5 Neural Network Applications

Examples of application of neural networks are:

* Language Processing

- Text-to-Speech Conversion

* Image or Data Compression

* Signal Processing

- Prediction or forecasting

- System modeling

- Noise filtering

- Risk analysis

* Complex System Control

- Plant and manufacturing control

- Robotics control

- Auto pilot and navigation



- Adaptive Control

* Pattern Recognition and Classification

- Target classification

- Defect or fault detection

- Vision

- Symptoms-Source diagnosis

* Artificial Intelligence

- Expert system

The tasks that neural networks are required to perform depend on the application

area. Examples of different functions are:

- Prediction

Use input value to predict output value.

- Classification

Use input value to predict categorical output.

- Data Association (associative memory)

Learn associations of error-free or ideal data, then classify or associate data

that contains error.

- Data Conceptualization

Analyze data and determine conceptual relationships.

- Data filtering

Smooth an input signal, reduce noise.

- Optimization

Determine optimum value or choice.

Each application usually requires a different topology and learning algorithm.

Chapter 3 discusses this aspect, mainly for networks that are employed to carry out



function approximation. A listing of the types of networks that are suitable for the various

tasks is given below.

Application

Prediction

Classification

Data Association

Data filtering

Optimization

Application

Prediction

Classification

Association

Conceptualization

Data Filtering

Optimization

Network Type

multilayer network with nonlinear

element, radial basis function network.

multilayer network with nonlinear element,

radial basis function network, recurrent

network.

multilayer network

recurrent network

recurrent network

Supervised Training

Yes

Yes

Yes

No

No

No



There is no exact way to identify the best network or learning algorithm for a

particular task. Different alternatives need to be evaluated. It may turn out that the

optimum approach is to use a combination of several networks.

When the tasks are complex, it is usually better to divide these tasks into several

less complex subtasks and develop separate networks for the subtasks. This approach is

followed for the structural diagnosis application, and a detailed discussion is presented in

Chapters 5 and 7.

2.6 Neural Networks in Civil and Environmental Engineering

Civil engineering applications of neural networks have become popular only since

the late 1980's, after the work of Rumelhart (1986)1 revealed the potential of back

propagation learning algorithm. Researchers have utilized neural networks mostly for their

regression and classification capability. Therefore, feedforward-type networks, mostly

multilayer feedforward networks with a back propagation learning algorithm, have been

the common choice since they are capable of performing well in both regression and

classification. Some of the current applications of feedforward neural networks in Civil

Engineering are described below (Garrett, 1992 and Pham, 1995):

- classification of distributed, noisy patterns of on-site information, such as

classification of the level of cost for remediating hydraulic conductivity fields

(Ranjithan, 1992), vehicle identification and counting applications (Bullock, 1991);

- interpretation of nondestructive evaluation sensory feedback, such as the

use of neural networks in detecting the changes of response spectrums due to

structural damage (Wu, 1992), detecting flaws in the internal structure of

construction components (Flood, 1994), or damage detection from changes in

vibrational signatures in a 5-story model steel structure (Elkordy, 1993);



- modeling of complex system behavior, such as modeling complex material

constitutive behavior (Wu, 1991), modeling the behavior of large-scale structural

systems for the propose of control (Rehak, 1992), modeling concrete material

using actual experimental data (Ghaboussi, 1990), or predicting the flow of a river

from historical flow data (Karunanithi et al, 1994);

- control of complex engineered facilities, such as the control of deflection of large-

scale flexible structures (Rehak, 1992), or the control of an HVAC system for a

large structure (Garrett, 1992).

In addition to the above applications, there are other civil engineering applications

which employ recurrent or other feedback-type networks. These applications are mainly

concerned with large-scale optimization problems such as resource leveling in PERT

analysis for construction projects (Shimazaki et al, 1991).

2.7 Comparison of Neural Networks to Other Information

Processing Approaches

An expert system is constructed by first acquiring a human expert's way of solving

a specific problem via extensive observation. This knowledge, or expertise, is analyzed and

represented as rules which are embedded in a computer program. The construction of a

neural network, on the other hand, starts by selecting an appropriate architecture and

learning algorithm based on a priori knowledge of the problem. The networks are trained,

either in supervised or unsupervised mode, with example data. The actual implementation

of a neural network then can be done either with a computer program or a specific-

purpose hardwired device.



Although neural networks have been highly acclaimed as one of the most versatile

approaches, it is unlikely that neural networks will replace either database processing or

knowlegebase processing in the near future. Most likely, they will complement existing

schemes in areas where their adaptability, ability to learn, and massive parallelism provides

them with a significant advantage.

2.8 Relation of Neural Networks to Approximation Schemes

From another point of view, a neural network can be considered as a simple

graphic representation of a parametric approximation scheme (Poggio and Girosi, 1991).

The network interpretation adds nothing to the theory of the approximation scheme, but it

is useful from an implementation perspective. For example, its parallelism can take

advantage of parallel computing devices, and its modular form allows for sub-structuring

to solve tasks.

Figure 2.8 shows a one-hidden-layer feedforward neural network that is a

graphical representation of the following approximation scheme:

n

f*(4= cf(X.W) , (2.7)
i=1

which is known as the ridge function approximation scheme.

Similarly, the Radial Basis Function Network (see Fig 2.7) can be interpreted as

the representation of the radial basis function approximation scheme,

f,*(4= cG(I -I xII) (2.8)
Both types of networks are discussed extensively in Chapter 3.=1

Both types of networks are discussed extensively in Chapter 3.
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Figure 2.8: A 1-hidden-layer feedforward network.

Approximation schemes have specific algorithms for finding the set of parameters

that minimizes a prespecified function. These algorithms correspond to the learning

algorithms of neural networks. For example, the back propagation learning algorithm can

be considered as a version of the gradient method optimization approach combined with a

specific credit assignment method. Similarly, the learning algorithm for RBFN is actually

the least-square minimization approach.



Chapter 3

Neural Networks for Function Approximation

3.1 Introduction

Physical system modeling can be divided into two activities: performing regression

to predict the system behavior, and performing classification to identify changes of

behavior. Regression involves mapping a numerical domain input to another numerical

domain output, while classification maps a numerical or categorical domain input to a

categorical domain output. Assuming that there is a function F that can perform regression

or classification for the purpose of physical system modeling, approximating F can then be

considered as a problem of system modeling.

As shown earlier in Chapter 2, networks that perform well in regression and

classification are of the feedforward type such as the multilayer feedforward and radial

basis function models. Although recurrent networks can also be used for classification,

they are not considered here since they are based on unsupervised learning, whereas

structural damage diagnosis applications requires supervised learning. In this chapter, the

performance of multilayer feedforward network for function approximation, a popular

application in civil engineering, is discussed in detail. The performance of radial basis

function networks is also investigated for the propose of providing a comparison.

Extensive performance tests are presented to show the relative advantages and

disadvantages of the multilayer feedforward networks versus radial basis function

networks, and to identify their limitations for function approximation.



3.2 The Multilayer Feedforward Network with

Back Propagation Learning Algorithm (MLN with BP)

The network consists of an input layer, an output layer, and at least one hidden

layer. Each layer is fully connected to its neighboring layers. Figure 3.1 illustrates the

connectivity and the notation used to described how a processing element operates (Hertz

et al, 1991).

Output
Layer

Hidden
Layer 2

Hidden
Layer 1

Input Buffer

rTfsl - VTrisl xisl

W10"

summation

nsfer

Output path

Processing
element

Figure 3.1: Feedforward network.

A superscript in square brackets is used to indicate the layer being considered. Shown

below are the definitions for the various symbols.
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xS] = the current output of thejth processing element in layer s.

Wrsi = the weight for the connection joining the ith processing element in layer

(s-1) to the jth processing element in layer s.
IJS ' = the weighted summation of the inputs to thejth processing element in

layer s.

Each processing element operates on its inputs as follows.

=f[ SiJ , (3.1)

wheref is usually a differentiable monotonic function. For example, f may be defined as a

sigmoid function,

f (z) = (1+ e-z) -1 . (3.2)

The initial step involves defining a global error function for the network, E

(Rumelhart et al, 1986). This function is required to be a continuous function of all the

connection weights. It is needed to define the local errors at the output layer so that they

can be propagated back through the network. The parameter that is passed back through

the layers is defined as

eýl =-- Eld I1s] (3.3)

It will be shown later that e . ] can be considered as a measure of the local error at the

processing elementj in layer s.



Applying the chain rule to evaluate the derivative in Eq. 3.3, one obtains

SE l] f (I? )
[S+1  f(J]) p fI]

k (W 31

= fI(I'[]) ejWs +1] 1 (3.4)

This equation defines the relationship between the local error at a particular processing

element at level s and the local errors at processing elements at level s+l. Note that Eq.

3.4 only applies for the hidden layers.

Whenf is taken as the sigmoidal function defined by Eq. 3.2, its derivative is given

by

f'(z) = f (z) (1- f (z)) (3.5)

Substituting Eq. 3.5 into Eq. 3.4 gives

e= xS 1 . (1- XISi). ]. w. + 1]]  (3.6)
k

Equations 3.1 and 3.6 are the key equations for describing the mechanics of the

back propagation learning algorithm. The process starts with a forward propagation of the

input through the layers to the output layer using Eq. 3.1. Next, the error at the output



layer is determined, and the error is then propagated back through the network from the

output layer using Eq. 3.6, or more generally Eq. 3.4.

The goal of learning is to minimize the global error, E, of the network by adjusting

the weights. Given an initial set of weights WJ' ]1, a procedure for modifying the weights

based on a minimization scheme can be applied. For example, gradient descent leads to the

following "correction" equation

AWV' 1 = -lcoef -( E/l Jsi), (3.7)

where Icoefis called a "learning coefficient." Each weighting parameter is adjusted

according to the size and direction of the negative gradient on the error surface.

Therefore, successive "updating" will lead to the minimum of error surface.

The partial derivatives in Eq. 3.7 can be calculated directly from the local error

values previously discussed (see Eq. 3.3). Using the chain rule and Eq. 3.1 gives

8 E/ W i,"•1 =( El9 Ik]i) .( Is.l/ W,'~] )

= -eJs 1 . X-'] (3.8)

Combining Eqs. 3.7 and 3.8 leads to

AWFSl = Icoef -es! 1. x s-i' (3.9)

Assume an input vector P is presented at the input layer of the network, and the

target output t is defined. Given o is the actual output vector produced by the network

with its current set of weights, a measure of the global error in producing the desired

output can be taken as



E = 0.5Y(tk -Ok) 2  (3.10)
k

where subscript k is the index of the component of t and o. Equation 3.10 defines the

sum-squared error of the network in producing the desired output through out the range

of the input range. From Eq. 3.3, the local error at each processing element of the output

layer can be determined by

e[o] [ - E 16 Iko]ek =-k 3E/dIk

= - E / ok. ok/c I~o]

= (tk - k) f (k) (3.11)

which can then be propagated back to the inner layer by Eq. 3.6.

In some cases, this type of learning algorithm requires a very long training time in

order to reach the minimum. For example, when the surface corresponding to the cost

function has the shape of a valley with steep sides, and a shallow slope on the valley floor,

there may be oscillation of the adjusted parameters across the valley during the learning

process, and consequently very little movement downward the slope toward the minimum.

The additional of a momentum term (Plaut et al, 1986) can make gradient descent avoid

this problem and improve the speed of convergence. The strategy is to provide the

strength of each connection, W,{' , with some inertia or momentum so that the adjustment

is in the direction of the average downward force instead of oscillating back and forth

cycle. A larger learning rate can then be used since there is less potential for oscillation.

This objective is achieved by including the effect of learning from the previous learning

cycle in the present learning cycle. The following equation illustrates this process.

AWj'](t +1) = -lcoef* (0 E/1 WiS]) +aAWJ'](t) . (3.12a)

The momentum parameter a must be between 0 and 1; a value of 0.9 is usually used.



Identifying the appropriate value for the learning coefficient, Icoef, for a specific

application is also a challenge. In most cases, the coefficient is modified as the training

progresses. A number of researchers (Cater, 1987; Franzini, 1987; Vogl et al, 1988;

Jacobs, 1988; Baldi et al, 1995) have suggested ways to adjust this parameter. The general

approach is to observe the direction of the learning path on the error surface and adjust

Icoef to improve the rate of convergence. For example, when n successive values of W 1si

are in the same direction, Icoefis increased. However, when m successive values of W~[l

are in the opposite direction, Icoef is decreased to dampen the oscillation. This process is

defined by:

AWrs1 = -(lcoef + A Icoef) (9 E/1 Wr,1i),

A Icoef = +a Icoef if AE < 0 for n successive training cycle,
= -b Icoef if AE > 0 for m successive training cycle,
= 0 otherwise, (3.12b)

where AE is the cost function change, and a and b are appropriate constants.

3.2.1 Ability of Multilayer Neural Networks to Approximate

Arbitrary Functions

Cybenko (1988) has shown that two hidden layers are adequate for approximating

an arbitrary function, provided there are a sufficient number of units per layer. It was also

established later that a network with only one hidden layer can represent any continuous

function (Cybenko, 1989 and Hornik et al, 1989). However, the relation between the

accuracy of the approximation and the number of layers, or the number of units per layer,

needs to be established. Figure 3.2 illustrates the approximation (shown by dot line) of a

set of functions of the type y =f(x), which are shown by solid line, with various multi-

layer architecture. An in-depth analysis of function approximation ability of MLN with BP

was discussed by Poggio (1991).
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Function Approximation
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Figure 3.2: Examples of function approximation by artificial neural networks.



3.2.2 One-hidden-layer Network

Since it has been established that one hidden layer is sufficient to represent any

continuous function, some characteristics of MLN are investigated by conducting

numerical experiments on one-hidden-layer network. The issues that are examined are:

- The relationship between the number of processing elements and i) accuracy,

ii) training time, iii) local minima, iv) underfitting, and v) the amount of training

samples needed.

- The proper network architecture for approximating a given function.

- The effects of using different set of training samples.

The network is taken as fully connected, with single elements in the input and

output layers, and multiple elements in the hidden layer. The transfer function for the

hidden layer elements is the tangent-sigmoid function shown in Fig 3.3. A linear function

is used for the output layer elements. The input and output data of the network are scaled

down to the range between -0.8 to 0.8, and the initial values of all weighting parameters

are random numbers ranging between -1 to 1. This choice of weights avoids saturating the

transfer function in the hidden layer at the beginning of the training process.
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Figure 3.3: Example of transfer functions.

Figure 3.4 contains a sequence of approximations, which are generated by

networks having different numbers of interior elements, of the function

y= 100 e10 sin(x) (3.13)

The training and testing data sets contain the values off for x ranging from -10 to 10 with

an interval of 0.1. The results show that, for a given number of training cycles, increasing

the number of units improves the accuracy.
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a) Network with 30 processing elements in the hidden layer.
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Figure 3.4: Numerical function approximation using one-hidden-layer

feedforward networks with different size.

Underfitting is a problem associated with small networks. Figure 3.4a shows the

effect of underfitting when a network does not have sufficient parameters to fit a function.

Increasing the size of the network lessens this problem. Small networks also tend to

converge on local minima of the error function, which is the situation when there is no

improvement of accuracy with increasing number of training cycles, even though the

network has enough parameters to fit the function. Increasing the number of units

decreases the likelihood of converging to local minima, and also improves the accuracy.

Figures 3.5 and 3.6 demonstrate that the appropriate configuration of a network

depends on the nature of the function to be approximated. Figure 3.5 shows that a

network with 70 units in the hidden layer cannot accurately represent the function

y = 100x + x 2 + x3 +500sin(x), - 10 < x 10, (3.14)

with 0.1 interval. On the other hand, Fig 3.6 shows that only 10 units are required to

represent the function

I



y = 100e - 20 x2 + 70e - 3S(x - 2) + 80e-lo1 (x+3)2

for the same range and interval.
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Figure 3.5: Numerical Function approximation using a one-hidden-layer

network with 70 processing elements in the hidden layer.

Backaroaranaon wth Adanave LR & Momenmum

104I
103

0 500 1000 1500 2000 2500 3000 3500 4000 4500 500C
Training samples

A N
-10 -8 -6 -4 -2 0 2 4

inputy = lOO + 7-- +

y = 100e-202 -30(z-2)2 + 0(e x+3)2

6 8 10

Figure 3.6: Numerical Function approximation using a one-hidden-layer

network with 30 processing elements in the hidden layer.

(3.15)

Backpropanauon with Adavuve LR & Momenmm

4500 5000

y= lOOx+x 2 +500sin(x)

SE
K.

50
0

--

0 

00

11111

~ --- '~-'-~---~~ ~-~~~----- ~~---~~~--

I (i

n'

t



Next important issue is the significance of the representation of training data.

Properly prepared training data can improve the convergence and help to avoid local

minima. To demonstrate this effect, three different training data sets are used for training

three networks, each having 25 units in the hidden layer, to represent the function

y = 100 sin(x), - 10_ x 5 10.

The data interval for each training data set varies from 0.1 to 0.3, while the testing data set

interval size is 0.33. As shown in Fig 3.7, the network that is trained with the data having

an interval size of 0.1, which corresponds to 200 training data pairs, gives the best

accuracy for this choice of test data.
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Figure 3.7: Numerical function approximation using a one-hidden-layer network.
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Figure 3.8 shows the effect of the amount of training data on the approximation

accuracy, and indicates that the performance of networks increases with the amount of

training data. However, there is no way of establishing the "a-priori" optimum size of the

interval, or optimum size of training data set, for an arbitrary function. The proper size

has to be determined either by trial and error or cross-validation method (Wahba, 1980

and Liu, 1995), which is described later in this chapter.
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Figure 3.8: Effect of the number of training samples to the accuracy of neural network.

For pattern classification, a Boolean type representation is used to denote the

categorical output. This is implemented in a feedforward network by using a sigmoid

transfer function in the output layer so that the output of each output unit ranges from 0 to

1. The number of output units is set equal to the number of categories that the network is

supposed to differentiate between, and each output unit corresponds to a specific

category. The classification of a particular category is considered to occur when the

output of the corresponding output unit is sufficiently close to unity, and the other outputs

are sufficiently close to zero.
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Figure 3.9 shows 4 classes of Gaussian distributed data, with different standard

deviations, which are used to evaluate the classification performance of various networks.

The symbols x, o, +, and * represent the different data classes.

4-Class Classification: Input data
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Figure 3.9: Data for a classification problem.

These classes are nonlinearly separated and partially overlap. Each network has 2 input

units and 4 output units. Figure 3.10 shows the classifications by the networks of different

size. The performance is measured by "the percentage of correct classification" plotted in

the Fig 3.11. The symbol o indicates that the output for the particular input did not reach

the threshold level, which is set at 0.8 for every output node, and therefore the

classification cannot be made. Generally, the threshold is allowed to be lower when the

amount of training data is smaller, or when the training data is noisy.
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4-Class Classification: Result from NNET
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Figure 3.10: Classification results using one-hidden-layer networks.
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Figure 3.10: Classification results using one-hidden-layer networks.
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The results also show that the classification accuracy increases with the number of

processing elements in the hidden layer. However, as shown in Fig 3.11, the classification

performance stops improving when the number of processing elements is beyond a certain

number.

,4n
5 10
no. of processing elements

Figure 3.11: The effect of number of processing elements to the classification accuracy.

3.2.3 Two-hidden-layer Network

In order to properly design a MLN for approximating an arbitrary function, the

significance of the "number" of hidden layers also has to be investigated. The important

issues are:

- For a given number of processing elements, does a 2-hidden-layer model provide

better accuracy than a one-hidden-layer model?

I1M



- What is the optimum distribution of elements between layers, given the

samte total amount of units for the whole network ?

- How 2-hidden-layer networks perform on a given task when it is compared

to the one-hidden-layer network with the same number of total units ?

A series of numerical simulations were carried out with various 2-hidden-layer

configuration trained to approximate the following function,

y = 100e - 20 x2 + 70e- 30(x-2)2 + 80e- 00(x+ 3)2  (3.15)

when -10 <x -< 10 with an increment of 0.1.

Figures 3.12 to 3.15 show the results for a set of networks with a 2 to 1

distribution of elements between the first and second hidden layers. The total number of

units ranges from 40 to 80. For instance, Fig 3.14 demonstrates the performance of the

network that has 60 total units, with 40 units in the first hidden layer, and 20 in the second

hidden layers. Similar to the findings for the one-hidden-layer case, these results show that

the accuracy for a network given the same amount of training samples improves with the

number of total elements. The results also show that smaller networks tend to underfit and

converge on local minima more frequently (see Figs 3.12 and 3.13). Both circumstances

rarely occur when the two-hidden-layer networks with larger number of units are

employed.
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Figure 3.14: Function approximation using a two-hidden-layer network with 46 units in

the 1st hidden layer, and 23 units in the 2nd hidden layer.
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Figures 3.15 to 3.17 illustrate the effect of varying the proportion of elements

between the layers, holding the number of the total elements constant. The ratios here are

2:1, 1:1, and 1:2 respectively. The results indicate that assigning more elements to the

second layer tends to degrade the performance and increase the likelihood of convergence

to a local minima. This can be observed by comparing Figs 3.16 and 3.17.
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Figure 3.16: Function approximation using a two-hidden-layer network with 40 units in

the 1st hidden layer, and 40 units in the 2nd hidden layer.
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Figure 3.17: Function approximation using a two-hidden-layer network with 27 units in

the 1st hidden layer, and 53 units in the 2nd hidden layer.
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Figure 3.18 contains the result for a one-hidden-layer network with 80 total

elements. Comparing this performance with the corresponding 2-layer results shown in Fig

3.15 to 3.17, one observes that the one-hidden-layer network performs better, and even

converges more rapidly.

In addition to the accuracy and convergence, one has to consider the computation

time. Since there are more connections in a two-hidden-layer network than in a one-

hidden-layer network with the same number of total units, two-hidden-layer network

requires more computation time. The following example illustrates this point.

Consider two networks, a one-hidden-layer network with m+n processing

elements in its hidden layer, and a fully connected two-hidden-layer network with m

processing elements in the first hidden layer and n processing elements in the second

hidden layer. The total numerical operation required to forward propagate the one-hidden-

layer network, TC1, is given by

TC1 = 2(m+n)M + (m+n+ )S +(m+n+l)T (3.17)

where M is a multiplication operation; S is a summation operation; and T is a function

transferring operation. The corresponding operation count for the 2-layer network, TC2,

is

TC2 = (m+mn)M + (m+mn+l)S + (m+n+J)T. (3.18)

From Eqs. 3.17 and 3.18, it is apparent that more numerical operation is required

for the two-hidden-layer network. The difference becomes even greater with increasing m

and n.



In addition to the operational cost, the time required to train the network needs to

be considered. The computational time required to train two types of networks using the

software MATLAB on a 486DX (33MHz) machine is listed in Table 3.1. One network

has one-hidden-layer network with 80 total units; the other is a two-hidden-layer network

with 40 units in each of its hidden layers. The results indicate that the two-hidden-layer

network requires about twice as much computation time for the same amount of training

cycles.

Training cycles One-hidden-layer Two-hidden-layer network

network (sec) (sec)

500 587 1120

1000 1155 2145

Table 3.1: The training time of feedforward networks.

The previous discussion pertains to regression applications. For classification

applications, one-hidden-layer networks do not generally outperform two-hidden-layer

networks that have the same number of total units. Figure 3.19 shows the results for 3

different two-hidden-layer networks having a total of 6 units. The corresponding one-layer

result is presented in Fig 3.10c. As shown by the figures, two 2-hidden-layer networks

perform at essentially the same level as the 1-hidden-layer network, and one cannot say,

based on these studies, that one model is "better" than the other.
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Figure 3.19: Classification by two-hidden-layer networks.
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Figure 3.19: Classification by two-hidden-layer networks.

3.2.4 Optimum Network Architecture

The data presented in the previous sections indicates that the performance of the

network for a given task is very sensitive to the architecture of the network, and therefore

a method for finding the right architecture would be very useful. The Cross-Validation

method (Wahba, 1980 and Liu, 1995) is the most popular method. It is also a reliable way

to select the right architecture and avoid overtraining, which will be discussed later in this

section.

To perform cross-validation, the available training data is divided into two groups,

a training set and a cross-validation set. The initial architecture, which usually is the

architecture with the smallest number of processing elements possible, is then trained with

the training set, and tested with both training and cross-validation set. The error index of



the network based on the training data is monitored while the network is being trained. At

the same time, the error index of the network based on the cross-validation data set is also

being monitored. According to Fig 3.20, the training should be stopped when the rate of

change of the cross-validation error index with the number of training cycles reverses sign,

even though the training set error index is still decreasing. More training from this point

on produces a network that is more tuned to the training data set instead of the whole

data, and hence reduces the ability of the network to deal with a broader range of inputs.

This effect is called "overfitting" or "overtraining" (Ling, 1995).

Cross

ERROR
T

Training samples

Figure 3.20: Cross-validation method.

The Cross-Validation method should be carried out for every combination of

network architecture and training algorithm, and the performance comparison is

performed to select the most appropriate network for the particular application (given a

set of data). It is also important to note that differently divided data sets (into training set



and cross-validation set) can lead to different performances for the same network.

However, the difference is minimal when the size of the training data set is large.

A more realistic application, i.e. modeling the behavior of a bending beam, is

considered. Figure 3.21 shows a cantilever bending beam subjected to a point load.

r'
L

~-- zI

Figure 3.21: A cantilever bending beam.

The beam has length L with a point load of magnitude P placed at the distance a from

the fixed support. Considering only the linear planar bending behavior of the beam, the

amount of deflection y at the distance x from the support due to the loading can be

determined analytically as

Px2

y =•--(3a - x)6El

Pa 2

y = (3x - a)6El

0 x < a, and

a5x<L ,

where E is the modulus of elasticity of the beam, and I is the moment of inertia of the

bending axis. Assuming the beam length is 500 cm; the modulus of elasticity is 2*106

kg/cm2; the bending moment of inertia is 20000 cm4, and the magnitude of point load is 1

ton, Eq. 3.17 takes the form

(3.17)

IN,IN,
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x2

Y = 2.4 x 10(3a - x)
2.4 x 108

2

y = 8 (3x - a)-
2.4 x 10

a 5 x_ 500 .

The training data is created from the analytical model. Variables a and x are

considered as the inputs, while Y is the output. The inputs, a and x, range from 0 to 500

cm with an interval of 20. Each output Y is determined from a particular combination of a

and x, hence providing a total of 676 input-output data pairs. Gaussian noise is added to

each data pair in order to simulate the noisy signal of real sensors. The plot of noise-free

and noisy input-output data pairs are demonstrated in Fig 3.22.
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Figure 3.22: Noise-free and noisy input-output data.
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The Cross-Validation method is employed with the assumption that the noisy data

is obtained from real experiments (Wahba, 1980). Three-fourth of the data is randomly

assigned as the training data set, and the rest as the cross-validation set. A 1-hidden-layer

back propagation network with 2 processing elements in the hidden layer is used as the

initial network. The Cross-Validation method is then utilized for the 1-hidden-layer

network with various numbers of processing elements. The plot between the Sum-Squared

Error (SSE) after convergence of each architecture on the cross-validation set and the

corresponding number of processing elements in the hidden layer is shown in Fig 3.23.

The result indicates that the optimum architecture has 12 processing elements in the

hidden layer. The Cross-Validation method can also be applied to networks with 2 or

more hidden layers, or even with other types of networks (Wahba, 1980).

10

210

10

10

5 10 15 20 25
no. of processing elements

Figure 3.23: Effect of no. of units to approximation error.

To avoid the work involved in performing Cross-Validation, an algorithm that

helps optimize the architecture of the network could be incorporated into the existing
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training algorithm. The problem is there are many different criteria for network

optimization that have to be considered, such as training time, size and quality of training

data set, number of units, number of connections, number of layers, and generalization

ability, which is the ability of neural networks to predict given the input that is not

included in the training data.

Since the one-hidden-layer network can accurately represent any arbitrary

function, and is more computational efficient than any two-or-more-hidden-layer network,

it is considered the optimum architecture. The investigation is next focused on how to

identify the number of units required to avoid converging on a local minima and achieve a

certain level of accuracy. Figure 3.24 demonstrates the performance of three 1-hidden-

layer networks, each having 80 total units, in representing a SISO function. A sub-set of

the initialized weights of the networks, are obtained from a smaller network trained with

5,000 training samples, while the remaining are random numbers between -1 and 1.

Comparing these results with the non-pretrained results (Fig 3.18) indicates that

pretraining improves the convergence rate.

106  Backropasation with Adaptive LR & Momentum
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a) with 80 units, which is initialized by a pretained network with 40 units.

Figure 3.24: Function approximation by a one-hidden-layer network.
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This finding suggests that one should modify the network architecture

continuously during the training process. Figures 3.25 to 3.28 illustrate the strategy.

Modification of the architecture is achieved by increasing the number of units in its only

hidden layer, 20 units at a time , whenever the gradient between the sum-squared error

and amount of training cycles reaches zero. The architecture is modified until a desired

sum-squared error is reached. The initialized network has 40 total units and ends up

having 80 total units at the end of training process. The modification of architecture is

performed twice after being trained through 500 and 1000 training cycles. Its performance

can be compared with that of the conventionally trained 80-unit network shown in Fig

3.18.

107 . - Backpropanation with Adaptive LR & Momentm
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Figure 3.25: Performance of a one-hidden-layer network with 40 units.
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Figure 3.27: Performance of a one-hidden-layer network with 80 units, which is

initialized by a pretrained network with 60 units (Fig 3.26).
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Figure 3.28: Performance of a one-hidden-layer network with 80 units

after being pretrained in Fig 3.27.

Although this method may not be as computational efficient as the training that

starts with the optimum number of units from the beginning, it still requires less work than

the Cross-Validation process. The method automatically helps users avoid using too small

or too large networks since it starts with the minimal number of total units, and stops

increasing the size when the desired level of accuracy is reached. This method also avoids

converging to a local minima during training since the architecture is modified whenever

the error gradient reaches zero. However, further testing has to be done on the application

of this architecture modification method to other function approximation problems.



Optimizing the network architecture for a classification problem is more

complicated since a network with more hidden layers may outperform a one-hidden-layer

network. Therefore, more configurations have to be considered. The disadvantage in

computational cost of multilayer networks may be factored into the final decision. One has

to investigate a number of possible architectures before choosing the final architecture that

is most appropriate for a specific application. Given all the difficulties mentioned, Cross-

Validation is still the most practical method for optimizing the network architecture for

classification problems (Liu, 1995).

3.3 Radial Basis Function Network (RBFN)

The RBFN can be considered as a two-layer feedforward network that has fixed

nonlinear transformations with no adjustable parameters in the hidden layer, and linear

transformations in the output layer (Broomhead and Lowe, 1988). As shown in Fig 3.29,

the network is a fully connected feedforward network with radial basis functions as

transfer functions for the interior units, and linear transfer functions at the output units.

X Y

a

1.0 ........ ....

0.5 ........ !......
0.0 n

0.0 -0.8326 +0.832 n
a = radbas(n)

Radial Basis Function

Figure 3.29: An example of a general RBFN.



For a RBFN with an input vector x e 91 n and output vectory e 91, the output y can be

described in the simplest form by the equation

y = cG,(Ix- xi ,I ye91", (3.19)
i=1

where ci is the weighting parameter of the ith unit; xi is the center of the radial basis

function Gi, and 11...11 is the Euclidean norm on 91 n. The function Gi, or the transfer

function of the ith unit, is a continuous function from 91+ to 91 that has a maximum value

at its center and drops off rapidly away from the center. A frequently used class of radial

basis functions is the Gaussian function,

G,(x) = e- IIxx~2 (3.20)

Considering the RBFN in Fig 3.29, the output y can also described by the equation

y= cz, , where z,= Gj (1x - .i) (3.21)
i=1

Least Mean Square (LMS) approach employs the sum-squared error of all k input-output

pairs as the global error function. The function is described by

k 2

E= 0.51(y -o j) (3.22)

where oj is the expected output corresponding to y., which is the output of RBFN due to

input vector xj. Given the error measure E, the gradient descent algorithm improves ci by

changing ci by an amount Ac i proportional to the gradient of E:

eE
Ac, = -Icoef

d9c,



k

=Icoef zi (y -o), (3.23)
j=1

where Icoefis a constant called the "learning coefficient."

If the change is made individually for each input vector xj,.

Aci = -lcoef -z 7(, - o) ,  (3.24)

which is commonly referred to as the Least Mean Square approach, or LMS rule

(Rumelhart et al, 1986).

After the radial basis functions and the position of their centers are specified, the

only adjustable parameters of the network are the weighting parameter ci. Since the

gradient of the error function is linear to the weighting parameters, the error function of

the output does not have local minima, and the parameters can be adjusted by a linear

optimization procedure such as the LMS approach. This leads to an optimization

procedure that has a very fast convergence rate (Bianchini et al, 1995). This aspect makes

RBFN an attractive alternative to the MLN with BP, which requires a time-consuming

stochastic optimization procedure.

3.3.1 Ability of RBFN to Approximate Arbitrary Functions

The ability of RBFN to approximate an arbitrary function can be proved by the

regularization theory (Girosi et al, 1993, 1995; Bertero et al, 1988; Marroquin et al, 1987;

Wahba, 1980, 1990), which relates the radial basis function network to probability and

statistics theory. The regularization theory establishes that RBFN can approximate any

continuous function within a prespecified error if the network contains all the radial basis

functions needed. However, the types of radial basis function required for approximating

an arbitrary function cannot be predetermined, and a trial and error method is needed to

determine the functions.



3.3.2 Optimum Network Architecture

General clustering algorithms, such as K-Means clustering (Krishnaiah and Kanal,

1982), are usually applied to the input data in order to position the centers of the radial

basis functions. The type and number of radial basis functions largely depends on the

complexity of the function being approximated. The number of radial basis functions

usually increases when the function is more complex, and increases exponentially with the

dimension of the input space (Girosi, 1995). Thus RBFN become less practical when the

dimension of the input space is high. Since the type and number of radial basis functions

that are required to approximate a given function cannot be predetermined, Cross-

Validation is usually employed to identify the optimum architecture of the RBFN for a

specific task (Liu, 1995).

In case the centers of the radial basis functions are not predetermined and are

considered to be adjustable, more parameters have to be considered in the optimization

process. This makes the network much more adaptable, but also makes the gradient of

error function nonlinear to the network parameters. In this case, a stochastic learning

algorithm has to be employed, and the advantage of RBFN's simple training vanishes.

3.4 Performance Comparison Between MLN and RBFN

The performance of RBFN's on the same applications that are applied to MLN's in

previous sections is investigated here to provide a comparison between the models.

Section 3.4.1 compares results for regression, while that of classification is illustrated in

Section 3.4.2.

3.4.1 Comparison of Regression Ability

Figure 3.30 shows the performance of a RBFN, which has 10 Guassian hidden

units centered by K-Means clustering algorithm (Krishnaiah and Kanal, 1982), in

approximating the function



y = 100 e- x/lO sin(x),

where x ranges from -10 to 10 with an interval of 0.1. The result can be compared to that

of a MLN with 30 sigmoid units in its hidden-layer that is shown in Fig 3.4.

Response of RBF Network with sequentially training order

x
Response of RBF Network with randomly training order

Figure 3.30: Function approximation by RBFN with 10 Gaussian units.

(3.13)



Figure 3.31 compares the performance of a conventional MLN with a RBFN in

approximating a two-input-one-output function

-x y-sin(x) Ysin(l.Sy)

z=100 e 1o + 100 e 4  , (3.25)

where x and y range from -5 to 5 with an interval of 0.4. Both networks have one-hidden-

layer with 50 processing elements. The RBFN employs Guassian transfer functions, and

K-Means clustering algorithm for locating their centers, while the MLN uses a sigmoidal

transfer function in the hidden layer, and a linear function in the output layer.

Both comparisons indicate that RBFN, even with fewer processing elements,

performs better on these particular functions. RBFN also requires less training time and

does not converge to local minima as MLN occasionally does.

Traning data

500

60
40050

Input 2 Input 1

Output from 1-hidden-layer MNN wl BP

50

Input 2 Input 1

z10 sin(x) ZW(l.Sy)z=100 e 'o +100 e4 Fb ( .l5y )

Figure 3.31 a: Function approximation by MLN with BP, with total no. of units of 50.
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Figure 3.31 b: Function approximation by RBFN with total no. of units of 50.

However, RBFN also has practical difficulties since its performance highly depends

on the type and properties of the radial basis functions employed, and it is difficult to find

the appropriate type and properties for a specific task (Note that there is no such problem

in applying MLN with BP). As demonstrated earlier in Fig 3.6, the function

y = 100e -2OX2 + 70e - 30 (x- 2)2 + 80e - 1 0 0 (x+3 )2  (3.15)

where x ranges from -10 to 10 with an interval of 0.1, can be very well approximated by a

one-hidden-layer network with 10 sigmoidal hidden units. Figure 3.32 shows the

performance of 4 different RBFN's, each with 10 Guassian hidden units, in approximating

the same function. The Gaussian transfer functions of each RBFN have a specific width

ranging from 0. 1 to 10.
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Figure 3.32: Effects of the width of radial basis functions

on the approximation ability of RBFN.

The result demonstrates that, despite varying the width of the Guassian transfer

function over a broad range, the performance is not satisfactory. The result also shows

that a RBFN with a wider Guassian transfer function has better generalization ability, but

performs worse in interpolating functions. Figure 3.32d shows the inability of RBFN to

interpolate the function's spikes when the centers of the radial basis functions are not

properly located. Hence this example also shows how crucial the location of the centers is

to the performance of RBFN. Changing the type of radial basis function still would not

help since the types of function that improve the interpolating performance would provide

worse generalization ability. Detail investigation on the generalization ability of radial basis

function networks is discussed by Freeman et al (1995).

sequentially training order



3.4.2 Comparison of Classification Ability

The butcome from the classification studies also agrees with that of the regression

studies. Figures 3.33 and 3.34 demonstrate the influence of the number of total units to

the performance of RBFN in the 4-class classification problem mentioned in Section 3.1.3.

RBFN achieves the same performance while requiring less training than the MLN with the

same number of total units. Figures 3.35 and 3.36 also show the influence of the width of

the radial basis functions to the classification performance, and assure the importance of

using radial basis functions with appropriate properties.
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Figure 3.34: Effect of the no. of units on the classification ability of RBFN.
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Figure 3.36: Effect of the width of radial basis functions to the classification performance.

3.5 Discussion and Summary

According to the performance of both types of network on these investigations,

RBFN clearly requires less training and is more accurate when the appropriate transfer

functions and locations of the centers are employed. This can be explained by considering

that, since the output of a RBFN is a linear combination of many narrow receptive fields

of basis functions, only the parameters that corresponds to the output error are adjusted

during a training cycle. This is called "local training effect." On the other hand, MLN

adjusts all parameters due to an output error (global training effect), and hence reduce the

effect of the previous training cycles in the process (Narrendra, 1992). Moreover, all

adjustable parameters of RBFN are linear to the gradient of error function and can be

optimized by standard least square techniques, while MLN requires stochastic techniques

due to its nonlinearity. Therefore, RBFN is much easier and faster to train.

However, the global effect of parameters in MLN leads to good generalization

ability of the network, which is always required as a trade off with the accuracy (Liu,

1995; Musavi et al, 1994; Ling, 1995). RBFN may have problem with generalization when

I I I I. . I I .



the function they approximate is highly discontinuous (Girosi, 1993, 1995). MLN also

performs better when the function is associated with high dimensional input (Narendra,

1992). Having enough a-priori knowledge about input data is crucial for selecting the

configuration of RBFN, which directly reflects the performance of the network in

approximating arbitrary functions. MLN does not require such knowledge, and hence is

preferred when not much about the function is known. If the fixed parameters of RBFN,

such as the centers of the radial basis functions, become adjustable by the network's

learning algorithm, the network will be less dependent on a-priori knowledge. However,

the network will require a stochastic learning algorithm, which makes the training

characteristics and performance of the network similar to MLN (Girosi, 1993, 1995).

The results of these investigations also confirm that the Cross-Validation method

can be employed as a general procedure for configuring both types of network. The

method should be applied especially when there are factors other than the network

architecture that affect the network optimization such as the training time, size and quality

of training data set, and generalization ability of the trained network.



Chapter 4

Probability Framework of Neural Networks

4.1 Introduction

In the past, neural networks were considered to be mysterious, and lacking a

theoretical foundation. However, since the late 1980's research has established relationship

between neural network theory and other fields such as approximation theory, and

probability and statistics. In this chapter, feedforward neural networks with back

propagation training algorithm and radial basis function networks are discussed from the

perspective of these fields. The objective is to provide a better understanding of these

neural networks, and thus simplify the development process.

4.2 Probabilistic Model of Feedforward Networks

In this section, a probabilistic model of a simplified feedforward neural network is

described. The model demonstrates that the maximum likelihood estimation of the

parameters of the probabilistic regression model of a function is equivalent to using a one-

layer feedforward network with linear transfer function to approximate the function

(Watanabe et al, 1995).

Firstly, the basis of the gradient method used in the back propagation learning

algorithm, which is normally used for optimizing a multilayer feedforward network, is

described (see Chapter 3 for more detail). Figure 4.1 illustrates a processing element of a

neural network.
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Figure 4.1: A processing element.

The activation of the processing element with a linear transfer function is:

p = Wx , (4.1)

where W is the vector of the weighting parameters of the input connections; x is the input

vector; and p is the output. Suppose that the set

x = x,, yi) Rd xR=1 (4.2)

is the data obtained by random sampling a functionf, which belongs to some space of

function X defined on Rd, in the presence of noise. The objective of function

approximation is to recover the functionf, or an estimate off, from the set of data X .

Suppose that a processing element is used to approximate the functionf, and the

error function of the output is the sum-squared error of the output y,

J() = Yi - Wx, .

i=42 (4.3)



The gradiefit method is applied to minimize the error function J(W) by finding the gradient

of the function

N

VJ(fW) = - (yi -WT rx)x ,
i=1 (4.4)

and then adjusting the parameter W E Rd in the direction opposite to the gradient,

AW = p (y, -I 'x,)x ,  (4.5)

for the ith training data pair (x, ,y,) given an appropriate learning rate p. Successive

adjusting corresponding to every data pair will provide a set of parameter Wthat

minimizes J(W) and estimatesf

4.2.1 Maximum Likelihood Estimation Model

Consider a Gaussian density function,

1 )2

f (x - e 2•o.v2 (4.6)

where p is the mean, and a 2 is the variance, of data set X. This function can be viewed

different ways, depending on which parameters are considered known or unknown. By

assuming ip and a2 known, Eq. 4.6 can be considered as

f (x; ,o) e 2
ra (4.7)
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which is the probability of x, given gt and a2. Similarly, if the data set X is known, the same

equation is now considered as

1 _

L(p,;x) - e 2
2• = a (4.8)

which is the likelihood of gp and 02, given data x.

The maximum likelihood estimate of t and a is, by definition, the estimated value

A and a that maximize L(up,a ; 4. Intuitively, it corresponds to the value of g and a that

best agrees with the actually observed samples.

Figure 4.2 illustrates a system that has input X E Rd, and generate output gp. Only

the real output y, with noise E, can be observed. Suppose that gp can be described by a set

of parameter W= (wi  , or

i W = WT X  . (4.1)

Input, X lu
SWTX ' I Noise N. Output, Y

Figure 4.2: A simulated system.

The sensory output of the system can be now considered as

y = WTX  + E. (4.9)

Assuming that there is Gaussian noise,
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1 E2
f(E; PE ý 0-2) - - ' 2o'-*ra (4.10)

with zero mean, the density function of the output y can be described by

f(y; p a, 0 2 ) 2e,v2; (

1 '(y-WTxX
e 22

(4.11)

The objective of function approximation is to estimate the output of the system by

performing the regression of the output given the data set

z = {,, yi= ' (4.12)

which is generated by the model.

If a is assumed as a known variable, Eq. 4.11 becomes the likelihood of I and a,

given x ,

L(p,a ;x,) = L(W;x,) P = WTX

1 --ý(y,-W'x)e 2a
Ir C (4.13)

Given that X is an independent, identically distributed data set, the likelihood of W given X

is
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N 1
L(W;- ) = - 2(yi_-WTX)

i=1 - "rE
(4.14)

To simplify the maximization of Eq. 4.14, the log likelihood,

log[L(W; Z] = I(W; Z)

K 1 Yi1 NF lo(yi WTx,

(4.15)

is maximized instead. Since log function is monotonic, maximizing log of a function still

maximize the function. It is interesting that maximizing the log likelihood of W given X is

exactly the same as minimizing the sum-squared error of the output,

J(W) = y•• -WTx,)2

;=1 (4.3)

of a processing element previously described in Section 4.2. Applying the gradient method

to maximize Eq. 4.15 gives

N
= - (y, -W'T)x,

i=4

AW = p (y,-WTx,)x, , (4.16)

where p is the learning coefficient. By comparing Eqs. 4.5 to 4.16, it is now obvious that

the back propagation learning algorithm of a processing element that approximates a
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function can be viewed as the effort to find the maximum likelihood estimation of the

parameters that associated to the probabilistic model of the function (Ney, 1995).

4.2.2 Choice of Transfer Function: A Probabilistic View

Based on the probabilistic approach used in the previous section, this section

demonstrates a technique for selecting the type of transfer function of the feedforward

networks for different tasks (Watanabe et al, 1995).

For classification problems, which the output tends to be yes or no, true or false,

rather than the real number as in regression problems, it is more rational to model the

problem using Bernoulli density function instead of Gaussian. Suppose that there is a

system that has input X E Rd, and generates output ii. Only the real output y, with some

uncertainty, can be observed (see Fig 4.3).

Input, X A
(WTX) p-Uncertainty Output, Y

Figure 4.3: A simulated system.

Suppose that g can be described by a set of parameter W = 1W , as follows.

S = f(WTX) ; X,W Rd, (4.17)

wheref is an arbitrary function.

Using Bernoulli's probability model, p e [0, 1] can be considered as the probability

of success, and hence the probability of the output y given the probability of success g can

be demonstrated as
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P(y; P) = PY(1-)- P; y = 0 or 1

(4.18)

Given an independent, identically distributed data set

Z = (x, y,) ; x, E Rd; y =0 or 1;

(4.19)

which is generated by the model, the likelihood of Wgiven x, is

L(W ; xj = (1- Py , (4.20)

where

, w = f(W'x,)" (4.21)

Therefore, the likelihood of W given X is

N

L(W; ) = PI p•(1 - (P,)-Y
i=l (4.22)

Consider the loglikelihood,

N

1(W ; X)= (y, log(p,) +(1- y,)log(1- i) ,

(4.23)

the term in the summation, which is called "cross entropy," can be perceived as a measure

of closeness between y and g.

A processing element (shown in Fig 4.1) with an arbitrary transfer functionf can

be used to approximate the output of the system. The cross entropy term can be employed

as the error function of the feedforward network for classification problems,
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(4.24)

Applying the gradient method to minimize the error function J(W) gives

dJ (N y, p, I-y,i . ,P

fwi. (Pi19. w1  - i

(N1- y 0 _i_

=1-Li 1- Pi *;

)jf'(Z. * iJ;=, •,((1- Pi~) ~.

Hence, the learning rule of the classification network is

~AW, = P A1- Pi),)=

pi = f(WTX,)= f(z,)

(4.25)

(4.26)

which is the adjustment of the parameters in the direction opposite to the gradient. The

choice of transfer functionf(z) should now be the one that its derivative, f(z), can cancel

the variance term of the Bernoulli density function, (1- u ), from the learning rule.

If the network employs the sigmoidal transfer function,

S ) 1I + e- 'z (4.27)
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the derivative of the function is

f'(z) = p (1-) (4.28)

Therefore the learning rule can be reduced to

A;J = p (y- p)x, (4.29)

which is similar to the learning rule of the feedforward network for regression problem

(see Eq. 4.5). This result suggests that the type of transfer function used in the output

layer of the networks for different tasks should be carefully selected in order to increase

the reliability of approximation.

The same probabilistic approach can also be employed to find the proper transfer

function for other applications. The step by step procedure of the approach for is shown

below.

* Pose the problem.

* Develop a probabilistic model P(Y I x;0) , where y is the output; x is the

input, and 0 is the parameter.

* Form the log likelihood, or the error function,

N

1(0 ; X) = Ilog(P(y, Ix,;))
i=i
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* - Apply the estimation principle

0= argmax 1(0 ; ).
0

Choose a learning algorithm

Select an optimization procedure for finding the maximum

likelihood estimation of parameters 8.

By following the procedure, choices of transfer function for other types of problem can be

determined as shown in the following table.

Problems Probability Model Error function Transfer function
of the output layer

Regression Gaussian Sum-squared Error Linear

Classification Bernoulli Cross Entropy Logistic

(2-way)

Multinomial Cross Entropy Softmax

(multi-way)

Counting Poisson Cross Entropy Exponential

Time to failure Gamma Cross Entropy Exponential

Weibull Cross Entropy Exponential

Table 4.1: Types of transfer function for different neural network application.

In order to properly design feedforward neural networks with back propagation

learning algorithm, thoroughly understanding of how the networks work, and the nature of

the problem that the networks have to solve, are required. Selecting the proper type of
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transfer function of the output layer is one important decision that can be made given the

knowledge. Although some improperly designed networks work effectively for some

problems, properly designed networks always perform better. Therefore, it is essential that

neural networks' users also understand how they works and apply them properly.

4.3 Probabilistic Model of Radial Basis Function Networks

In this section, the relationship between the Radial Basis Function Network

(RBFN) and the probability and statistics theory is described through the regularization

theory (Girosi et al, 1993, 1995; Bertero et al, 1988; Marroquin et al, 1987; Wahba,

1990). The relationship is informally shown, without demonstrating the related

mathematical issue.

Suppose that the set

Z = {(x,, y,)eRdxR}N)
i-- (4.30)

is the data obtained by random sampling a functionf, which is defined on Rd. In case of

noisy data, the function f can be represented as

f(x,)=y,+E,, i= 1,...,N (4.31)

where the noisy term E, is a random independent variable with a given distribution.

A probabilistic approach is applied in order to recover the functionf The function

is considered as a random field with a known a-priori probability distribution. Let's define:

-P[f I X ] is the conditional probability of the functionf given the examples X.
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- P[ X If] is the conditional probability ofX givenf. In other word, if the function

fis corresponded to the data, this is the probability that the set of output {Y, i

is obtained by random sampling the functionf at the data point {x,} i .

- P [f] is the a-priori probability of the random fieldsf P [f] covers a-priori

knowledge of the function, and can be used to apply constraints on the model by

assigning significant probability only to those functions that satisfy those

constraints.

Assuming that the probability distributions P[ fI X] and P [f] are known, the

posterior distribution P[f I X] can be determined by applying Bayes rule,

P[flx] c. P[Xf] P[f]. (4.32)

Assuming that the noise E is normally distributed with variance a, the probability of X

givenf is

P[X I f c e ( 1-x)(4.33)

where a is the variance of the noise.

The model for the a-priori probability distribution P[f] is chosen in

correspondence with the discrete case (when the functionf is defined on a finite subset of

an n-dimensional lattice) for which the problem can be formalized (Marroquin et al, 1987).

The a-priori probability can be written as

P[f ] ac e- ar I (4.34)
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where (f ) is the smoothness functional which will be explained in detail later, and a is a

positive real number. This type of probability distribution provides high probability to

those functions which has the term 0(f) small, and hence gives a-priori knowledge of the

system.

According to the Bayes rule, the posterior probability of functionf can be written

as

P[lfi| X] a e2 1 ((4.35)

The functionf can be estimated from this probability distribution by finding Maximum A

Posteriori (MAP) estimate, which considers the function that maximizes the posterior

probability P[f I X ], or minimizes the exponent in Eq. 4.35. The MAP estimate off is

actually the function that minimize the functional

N

H(f) = y f(Xi)) 2 [ ( [f
i= (4.36)

where A= 2a2a (Girosi, 1993, 1995). The first term enforces closeness to the data, while

the second term enforces the smoothness. The smoothness is defined by a smoothness

functional (f ), which its lower value corresponds to smoother functions. The parameter

X is called "regularization parameter", which is used to control the trade-offbetween the

level of noise and the strength of the a-priori assumptions about the solution. In another

perspective, the parameter also controls the compromise between the degree of

smoothness and the closeness of the solution to the observed data.

The smoothness is actually a measure of the oscillatory behavior of the function.

Therefore, within a class of differentiable functions, one function is defined to be smoother
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than another if it has less oscillation. On the other hand, if the functions are considered in

the frequency domain, one is smoother than another if it has less energy at high frequency

(smaller bandwidth). The high frequency content of a function can be measured by high-

pass filtering the function, and then measuring the power (L2 norm) of the result (Girosi,

1993, 1995). This leads to defining the smoothness functionals of the form

Rd G(S) (4.37)

where - verifies the Fourier transform. G is defined as a positive function that drops to

zero as •1s11 -+ a so that 1/G is a high-pass filter. For a well-defined class of function G, the

function C (f) is semi-norm with a finite dimensional null space N (Madych and Nelson,

1990; Dyn, 1991). There are several possible choices for the smoothness functional # (f)

that can be written in the form of the above equation. If G is also assumed to be

symmetric, so that its Fourier transform G is real and symmetric (e.g. Radial Basis

Functions), it can be proved that the function that minimizes the functional H(0 has the

form

N k

f(x) = cG(x-x+ Edaa (X)i a = (4.38)

where {qI a = is a basis in the k-dimensional null space N, and the coefficients da and ci

satisfy the linear system

(G+2 I)c+ yTd=y , ' c=O, (4.39)
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where I is the identity matrix (Girosi, 1993, 1995). The existence of the solution of this

linear system is guaranteed by the existence of the variational problem (Girosi, 1990).

The approximation procedure of this type can also be shown as a network with one

hidden layer, and this type of network is called "Regularization Network" (Girosi, 1993,

1995). Radial Basis Function network (see Chapter 3), which its smoothness functions

satisfy the condition

S[f (x)] = [f (Rx)] (4.40)

for any rotation matrix R, is also classified in this category. This choice of smoothness

function indicates that the a-priori assumption assumes equal relevancy of all variables, and

no privilege directions. There are many radial basis functions that satisfy these conditions.

For example, if the approximation scheme employs the smoothness function of the form

Us12

S[f = ads e # s1 2 (4.41)

where 13 is a fixed positive number, a Guassian function

G(s) = e (4.42)

is considered as the basis function of the approximation scheme,

N k
f(x) = c,G(x-x ) + Ydaa(Vx)

i= a =1 (4.43)

Since the Gaussian function is positive definite, Eq. 4.43 can be reduced to
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N

f(x) = c,G(x -,)
;=] (4.44)

which is the mathematical form of the radial basis function network (Poggio and Girosi,

1989; Yuille and Grzywacz, 1988).
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Chapter 5

Candidate Neural Network Systems
for Structural Damage Diagnosis

5.1 Introduction

Considering the ability of artificial neural networks to approximate-functions, one

promising application area is pattern classification. Our particular interest is in evaluating

the potential applicability of the pattern mapping ability of neural networks for remote

sensing and damage diagnosis of engineering structures.

To carry out this assessment, a basic neural network-based diagnosis system is

developed and applied to the single-point damage cases. The basic system is then extended

to a general architecture for neural network-based diagnosis system, which is applicable to

multiple-point damage. This chapter is concerned with the overall design approach. Details

of application are presented in Chapter 6 and 7.

5.2 Basic Neural Network-Based Diagnosis System

Figure 5.1 shows the architecture of a basic neural network-based diagnosis

system. There are 4 major components; the structure and its numerical model; a data

preprocessing unit; a neural network for detecting the location of damage (NNET 1), and a

neural network for detecting the extent of damage (NNET2).
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Figure 5.1 A basic neural network-based diagnosis system.
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The diagnosis system operates as follows. A specified excitation is introduced in

the monitored structure, with or without damage. The resulting structural response is

passed to the "Data Preprocessing Unit." This data is transformed into a numerical vector

pattern called the "Normalized Input Pattern," which is used as the input for the neural

networks.

Network NNET1 converts each normalized input pattern to a numerical vector

that can be interpreted as defining the location of damage of the monitored structure. A

similar operation is carried out by the second network NNET2. The input in this case is a

combination of the normalized input pattern and the output ofNNET1 (the predicted

location of damage by NNET1 in the form of binary vector). The output of NNET2 is a

numerical vector that defines the extent of damage at the given damage location. Once the

networks are trained, the diagnosis system should be able to predict the location and

extent of damage of the structure from the time history response data given an excitation.

Hence the issue is how to train NNETI and NNET2 to predict with an acceptable

level of accuracy. For the best prediction performance, the training data should cover all

the possible damage conditions that may be experienced by the monitored structure. Since

this data cannot be obtained from the monitored structure, a simulation model of the real

structure is required to generate the training data for both NNET1 and NNET2. If the

model adequately represents the real structure, the neural network-based diagnosis system

trained by simulation data should be able to effectively predict the location and extent of

the damage of the real structure, given the time response of the excited structure. This

idea of training with simulation data is called "Simulated training approach" (Elkordy,

1993). Selection of an appropriate simulation model, the feasibility of a diagnostic system

trained by simulation data, and the practical applicability of the simulation training

approach, are discussed in detail in Chapter 8.

Figure 5.2 shows the training procedure for NNET1. For each training cycle, the

time response of the model corresponding to each damage condition is determined via
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simulation and is passed to the data preprocessing unit, which transforms the time

response data into a normalized input pattern. The normalized input pattern is then passed

to NNET1. Given its weighting parameters, NNET 1 predicts the location of damage in the

form of a numerical vector. The difference between this vector and the vector that

indicates the real location of damage is then fed back, and the supervised training

algorithm adjusts the parameters according to the error. This process is continued, using

different damage cases for each training cycle, until the prediction accuracy of NNET1 is

within the desired limit.

The training procedure for NNET2, shown in Fig 5.3, is similar to that of NNET1

except that it uses the binary vector that indicates the location of damage, in addition to

the normalized input pattern, as the input. The output of NNET2, which is a numerical

vector, is then used to predict the extent of damage at the given location. The difference

between the output of NNET2 and the binary vector that indicates the real extent of

damage of the damage case, is then employed to adjust the parameters via a supervised

training algorithm. The same process is carried on for different damage cases until the

desired prediction accuracy of NNET2 is obtained.

If the structure of interest involves a small number of possible damage conditions,

application of one basic diagnosis system to monitor the whole structure is feasible.

However, due to the limited ability of the neural networks used, a more elaborate system

is needed to deal with complex structural damage situations. The following two sections

describe how the basic neural network-based diagnosis system can be applied to deal with

single-point damage, and then extended to handle multiple-point damage.
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5.3 Single-Point Damage Diagnosis

5.3.1 Definition of Single-Point Damage

Assuming that the monitored structure is modeled as an assemblage of elements,

and damage is introduced by changing the properties of specific elements, single-point

damage condition is defined as the case where the properties of a single element are

modified at a time. Figure 5.4 illustrates the case of a 2-span beam composed of 22 beam

elements, each of which has the potential to be damaged. It follows that there are 22

possible damage states for NNET1 to define when the single-point damage condition is

assumed. In this case, the amount of the training data for the neural network is also limited

to the same order. The low number of damage cases makes it feasible to use one basic

diagnosis system to perform damage diagnosis of the whole structure.

5.3.2 System Design

In performing single-point damage diagnosis, the basic neural network-based

diagnosis system (see Section 5.2) can be directly applied. A simulation model of the

structure is required for creating the training and testing data, and only two neural

networks are used. The change of the vibrational signature of the structure is employed to

identify the change in the structure's condition which is then related to damage.

The operation of the diagnosis system follows the flow chart shown in Fig 5.1.

The time history response due to the specified excitation is transformed to a "vibrational

signature" corresponding to the damage condition of the structure. Two types of

vibrational signature are proposed: mode shapes, and spectrums of the response at various

locations. The vibrational signature is then further processed into the numerical vector

called the "normalized input pattern" that NNET1 uses as input to predict the location of

damage on the structure. NNET l's output is also used as input to NNET2, in addition to
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the normalized input pattern, for predicting the extent of damage. The training procedure

ofNNET1 and NNET2 also follows the flow chart shown in Figs 5.2 and 5.3.

More details concerning the design strategy for a neural network system for single-

point damage diagnosis of an idealized 2-span beam model, and results of the numerical

simulation studies, are presented in Chapter 6. Two choices of excitation and vibrational

signature, ambient excitation & mode shape approach and prespecified impulse excitation

& response spectrum approach, are investigated and evaluated.

5.4 Multiple-Point Damage Diagnosis

5.4.1 Definition of Multiple-Point Damage

For most applications, the damage condition is such that several locations of the

structure of interest can be damaged at any specific time. In this case, a diagnosis system

that is designed based on the assumption of single-point damage is not applicable, and a

new diagnosis system that can deal with multiple-point damage is required. By definition,

multiple-point damage refers to the case where damage occurs at more than one location.

If the simulation model of the monitored structure is made of several elements, and the

damage is simulated by the change of the properties of specific elements, the number of

possible different damage states is now in the order of the factorial of the total number of

the elements. For example, the 2-span beam shown in Fig 5.4 has 22 beam elements, and

involves the factorial 22 (1.124*1021) different damage states. For single-point damage,

only 22 different states are involved.

Multiple-point damage condition makes the number of possible damage cases

approximately in the order of the factorial of the number of elements. The number of

training samples required for a diagnosis system is also in the same order, which is too

large to be effectively used to train a basic diagnosis system. In order to deal with the

increased number of possible damage cases associated with multiple-point damage, the
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basic diagnosis system is expanded by incorporating a number of neural network-based

diagnosis systems operating in a hierarchical way. Details of this approach are provided in

the following section.

5.4.2 General Architecture of Neural Network-Based Diagnosis System:

Global-Local Structural Diagnosis

The diagnosis system described in Section 5.3.2 can be categorized as a "global"

structural diagnosis system since it employs only one basic neural network system for the

whole structure. As mentioned earlier, the applicability of this approach is limited since

most structures involve an excessive number of different damage cases.

The global-local structural diagnosis approach transforms a structural damage

diagnosis problem to several less complex problems that are handled individually by

separate diagnosis systems. As shown in Fig 5.5, the approach is based on considering the

whole structure to consist of a set of interacting substructures, and using a "global

structural diagnosis system" involving a single neural network to identify which

substructures are damaged. Each individual damaged substructure is then independently

examined to establish the locations and extent of damage with a "local structural diagnosis

system." Figure 5.6 illustrates the general architecture of the global-local structural

diagnosis approach, and its operation flow.

The global diagnosis system, shown in Fig 5.7, is a modified version of the basic

system described in Section 5.2. The operation of the global system still follows that of the

basic system except that NNET2 is not included, and the output ofNNET1 now defines

the damaged substructures instead of damaged elements. After a specified global

excitation is introduced, the time history response of the structure is transformed to a

"global vibrational signature," which could be either the mode shapes or spectrums of

response at various locations of the structure, before being further processed into the
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"global normalized input pattern" corresponding to the damage condition. Given the

global normalized input pattern, NNET1 identifies the substructures that contain damage

by defining each substructure as a possible location of damage. The training procedure for

the basic system, which is illustrated in Fig 5.2, is also applicable here. Global structural

diagnosis requires at least a global model of the monitored structure and a neural network

(NNET1).

The local diagnosis system of a particular substructure is actually a basic neural

network-based diagnosis system that is trained by a local training data set specifically

created for the substructure. The number of local systems depends on the number of

substructures. As mentioned earlier, the local system of a substructure will operate

whenever the substructure is identified as being damaged by the global system. The

architecture and operation of a local system are similar to those of the basic system

described in Section 5.2 (see Fig 5.1). To operate a local system, the response of the

monitored substructure due to a prespecified local excitation is transformed to a "local

vibrational signature," and further processed into a "local normalized input pattern," which

is used as the input for the NNET1 of the local system of the substructure. Given the local

normalized input pattern, NNET1 will predict the locations of damage on the substructure,

and send its output vector to NNET2 (which also uses the local normalized input pattern

as a part of its input) to predict the extent of damage. The training procedure of the

NNET1 and NNET2 for each local system is identical to the procedure described in

Section 5.2 (see Figs 5.2 and 5.3).

Figure 5.8 illustrates the comparison between the global and global-local diagnosis

scheme for a 2-span beam having 22 elements. With global diagnosis, one diagnosis

system has to be trained with a set of damage cases involving the order of 1.124*10 2

(factorial of 22) data pairs. With global-local diagnosis, one global and two local diagnosis

systems need training. However, the global system now involves only the order of 2
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(factorial of 2) data pairs, while each of the two local diagnosis systems requires the order

of 4* 10' (factorial of 11) data pairs. This reduction in training set is significant, and

therefore combining global and local schemes makes the training of the individual

networks much more feasible.

More details concerning the design methodology for the diagnosis systems based

on the general architecture of neural network-based diagnosis system are presented in

Chapter 7. Simulation studies of an idealized 4-span beam with multiple-point damage are

performed. Two choices of global excitation and vibrational signature, ambient excitation

& mode shape approach and prespecified impulse excitation & response spectrum

approach, are evaluated. The prespecified random excitation & frequency transfer function

approach is employed for local diagnosis systems.
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Chapter 6

Single-Point Damage Diagnosis: A Case Study

6.1 Objective and Scope

This chapter describes the development and application of a neural network-based

system for diagnosing single-point damage in a 2-span bending beam. The architecture

and training procedure are based on the concepts described in Section 5.2 (see Figs 5.1 to

5.3). Two choices of excitation and vibrational signature are considered: i) ambient

excitation & mode shape and ii) prespecified excitation & response spectrum. An

assessment of the significant system design variables is performed for both choices of

excitation and vibrational signature. The applicability of the diagnosis system to other

structures with single-point damage is also discussed at the end of the chapter. The

approach is extended to deal with damage prediction of a 4-span beam with multiple-

point damage condition in the next chapter.

The scope of the problem is restricted to only linear planar bending behavior, while

the contribution of transverse shear deformation is neglected. The multilayer feedforward

network with back propagation training algorithm is the only neural network considered

because the lack of a-priori knowledge of damage patterns in this problem does not suit

the radial basis function network. Only one hidden layer is used since studies (see Chapter

3) indicate no clear performance advantage of including more than one hidden layer. The

diagnosis system is supposed to identify both the location and extent of damage. Ambient
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excitation is modeled by a single-wheel moving load, while prespecified excitation is

modeled by impulse loading.

6.2 Description of Simulation Model

The 2-dimensional bending beam model shown in Fig 6.1 is taken as the model of a

real 2-span beam. The mathematical model used is the Timoshenko's bending beam model.

The length of the right and left span is 40 and 25 meters respectively. The model consists

of 22 linear beam elements. Eleven elements are used to represent each span. Fig 6.2

defines the notation for the element nodal displacements. There are 4 degree of freedoms

(DOFs) for each element; 2 translations and 2 rotations. The stiffness matrix of a beam

element is given by

F 4 6/1 2 -6/1
El 6/1 12/12 6/1 -12/l2
11 2 6/1 4 -6/1

L-6/1 -12/1 -6/1 12/12 (6.1)

where E is the modulus of elasticity of the beam element, Iis the moment of inertia of the

bending axis, and I is the length of the beam element. The mass matrix for the element is

S412  221 -312 131

p1 221  156 -131 54
420[-312 -131 412 -221l

L131 54 -221 156 (6.2)

where p is the average mass per unit length of the element. The stiffnhess and mass

matrices of the elements that are connected to the support of the beam are slightly

different due to the effect of the boundary condition. Fig 6.3 shows the beam element no. 1
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of the beam model. There is no translational movement at the left end of this element due

to the presence of the hinge support, so the corresponding row and column of Eqs. 6.1

and 6.2 can be deleted. The reduced matrices are

4 2 -6/1l
ki El 2 4 -6/1

-6/1 -6/1 12/12 (6.3)

and

412  -312  131 1
m = -312 412 -2211

420 I
4 131 -221 156 (6.4)(6.4)

The same approach is applied to elements 11, 12, and 22 in order to provide all the

necessary boundary conditions for the equilibrium equations of the 2-span beam.

The stiffness and mass matrices of the complete beam model are generated by

superimposing the contribution of the elements as indicated below.

K

43 by 43

and
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M=

43 by 43 (6.6)

Note that there is overlap between each pair of neighboring k, or m, since they share some

global degrees of freedom.

Assuming that the beam has proportional damping (i.e. Rayleigh damping), the

damping matrix is

C= aoM+ alK (6.7)

where ao and a, are parameters that correspond to the pre-specified damping ratio of the

first 2 modes of vibration of the model. These parameters can be determined by solving

the equation

Il F /w, wI Faol F Il

2L1/w 2 W2 L La L 2 1 (6.8)

where 01 and 02 are the prespecified damping ratios, and w1 and w2 are the undamped

modal frequencies of the 1st and 2nd mode of vibration respectively. In this application the

damping ratios of the first 2 modes are set to be 1%.

By defining
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F u, I
I

Lu43 (6.9)

as the global displacement vector, which contains all the degree of freedom of the beam

model (see Fig 6.4), the equation of motion of the model can be represented as

MO+CU+KU = P , (6.10)

where

rpi (t)
.'_ P (t) 1P=I I

[p43 (t) (6.11)

is the force on the beam model as a function of time t. Given the force function and all the

parameters of the model, the time history response can be determined by solving the

equation of motion.

For this application, the flexural rigidity, El, is taken as 5.34 x 109 N-m2

throughout the length. The average mass per unit length is 9880 kg/m. Fig 6.5 shows the

first three mode shapes and their corresponding frequencies. The unsymmetrical feature is

reflected in the mode shapes. The response of the beam model due to an excitation is

determined by a direct time integration method (Newmark method) performed in

MATLAB. The time interval of the integration is taken as 0.01 second. Damage is

introduced in the model by lowering the value of E in the stiffness matrix of a beam

element. This type of damage condition can be interpreted as degradation of the flange

area of the beam.

139



T--•

co(q

CY,C4)

CvO

'1
Cv,

0,CV

I,

CMW)
N

CV)

o

cD

CDq

0
co

ct
coqe

C,4

140

o0
E

S E
a,
.0

0.
(,

t-

E
o

0)"o

a)I-

4-

0

()
c,

..



The normallzea moose raDe o moo, no 1

10 20 30 40 5'

10 20 30 40 5
Natural freauency = 2.819 Hz

The normalzea moe snaDe of mode no. 2

0 60

Nturall frequency 7.064 Hz

The normaizea mode smaD of mode no. 3

NMUl fequency z 10.1 Hz

Figure 6.5: First 3 mode shapes of the unsymetrical 2-span beam.
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Two types of vibrational signatures are used to monitor the state of the beam

model; mode shape and response spectrum. As demonstrated in Appendix C, the changes

of the vibrational signatures of a bending beam can be employed to identify the change of

the beam's stiffness. The signatures are determined from the simulated free-vibration

response of the model given a specified excitation. Ambient excitation is employed in

creating mode shapes since the properties of the mode shapes do not change with

excitations (Mazurek, 1992). Therefore, the neural network-based diagnosis system can

employ the mode shapes of the model (with various damage conditions) corresponding to

different excitations as its training data. Besides, using ambient excitation provides the

diagnosis system the real-time operation ability, and does not require extra loading

equipment. On the other hand, the properties of response spectrums depend directly on

the characteristics of the excitation, so it is necessary for a neural network-based diagnosis

system to employ the response spectrums of the model corresponding to a specified

excitation as its training data.

6.3 Mode Shape Approach

Since the roadway roughness and vehicle velocity do not have any influence on the

modal frequencies and shapes, and variable mass has only a minimal effect (Mazurek,

1992), a mass-consistent moving load with variable velocity is utilized for creating the

training and testing data patterns corresponding to different damage conditions. A single-

wheel load of 2000 kg (4.4 kips), with its velocity ranging from 40 to 60 mph, is moved

through both spans of the model as the excitation. In this case, the duration of loading, or :

the amount of time that the moving load travel on the beam, is more than ten times of the

first three fundamental periods of the beam. Therefore, the moving load effectively excites

the first three modes of vibration of the beam (Humar, 1990 and Humar et al, 1993). In

practice, the ambient excitation may be more heavily weighted to certain frequencies.
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However, such variations in excitation are kept to a minimum in most cases (Green,

1995).

6.3.1 Data Preprocessing Strategy

The data preprocessing unit transforms the time history response of the structure

having a particular damage condition into a corresponding input pattern for the neural

networks NNET1 and NNET2. The time response at each monitoring point of the model

is determined via simulation, and is taken as the sensory data of the real structure. In the

mode shape approach, the free-vibration response data is processed by a modal analysis

routine (see Appendix A) in order to determine the mode shapes of the model

corresponding to different damage conditions. The data is collected right after the moving

load passes the last support for a period of 20 seconds.

Fig 6.6 illustrates the case where the first two mode shapes, with 10 points

representing each mode, are selected as input for the neural networks. All the mode shapes

are similarly normalized so that their maximum amplitude is equal to unity. The value of

the points representing the normalized mode shapes are then used to create a vector called

"input" vector,

data point no. 1 of mode shape no. 1

data point no.10 of mode shape no.1
data point no. 1 of mode shape no.2

data point no.10 of mode shape no.2

E 91( 0,1)

liz13

The Reference Value Approach is employed next. This approach uses the

difference between the damaged and undamaged data patterns as the input for the neural
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networks (Elkordy et al, 1993 and Ballinger et al, 1995). The data generated through the

simulation of the undamaged structural model is called the "reference data set."

reference data set = input , given undamaged case. (6.13)

The difference between the data corresponding to a simulation of any given damage

condition and the reference data set is taken as the "input pattern" for the particular

damage condition.

input pattern = input - reference data set. (6.14)

Each input pattern is then normalized by dividing by the absolute value of the maximum

data point in all available input patterns (maxdata).

input pattern
normalized input pattern = max ata [0,1] .max data

(6.15)

Given a "normalized input pattern," NNET1 gives the corresponding output,

F outl 1
I I

outputl= utl2  ,

Loutl22 j (6.16)

where outl, E 9110,1]. Since the number of elements representing the model is 22, the size

of the output vector is 22 by 1. The "expected" outputl corresponding to the same

damage condition is also represented by Eq. 6.16, where outli is 1 if there is reduction of

El of the ith element and 0 otherwise. By defining
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outl1 = 0, when out, < threshold

= 1, when outi 2 threshold, threshold c 9K[0,1],

for every outputl, a particular output ofNNET1 is regarded as a correct classification

whenever it is within a specified threshold of error. For example, if the network output is

00154

0.7163

0.1209

0.0286
-22xl

and the expected output is

Fol
10101
L ] ,22 x1

which corresponds to damage in the second element, the classification is correct if

threshold is set at 0.7. However, if the threshold were set at 0.8 or 0.1, the network

prediction would be incorrect. When the amount of available training data is limited, the

threshold is kept low in order to allow the diagnosis system to predict with lower level of

confidence. As more training data becomes available, the threshold and the confidence of

prediction increase. Since the optimum threshold value for a specific application depends

on the training and testing data set, a trial and error approach is also required to find the

optimum value.

146



The normalized input pattern and its corresponding expected outputl for a

particular damage case can then be employed as a training or testing data pair of NNET1.

Note that the error term used by the training algorithm of NNET1 (see Fig 5.2) is the

difference between the expected outputl and the outputl that is not yet adjusted by the

threshold value.

The input of NNET2, normalized inputpattern2 , is the vector that combines the

normalized input pattern with the threshold-adjusted output ofNNET 1 given the

normalized input pattern.

Snormalized input pattern]
normalized input pattern2 = input pattern

L outputl j
(6.17)

The output of NNET2 corresponding to a normalized input pattern2 is

Fout21 1
I out22

output2 = ou , out2, E 91[0,1].

Lout25  (6.18)

After being adjusted by a threshold value, the binary output2 represents 5 categories of

damage states: out21 = 1 indicates 0-20% reduction of EI of the damaged element

identified by NNET1, and 0 otherwise; out22 does the same for 20-40% reduction ofEI;

out23 for 40-60% ; out24 for 60-80%, and out2, for 80-100%. The normalized input

pattern2 and the expected output2 corresponding to a particular damage are then taken as

a training or testing data pair of NNET2. Note that the error term used by the training

algorithm of NNET2 (see Fig 5.3) is the difference between the expected output2

corresponding to a particular damage condition and the output2 that is not yet adjusted by

threshold value.
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6.3.2 Configuration and Training of Neural Networks

Since this application is a static pattern mapping problem, a 1-hidden-layer

feedforward network trained with the back propagation algorithm is appropriate. Figure

6.7 shows a NNET1 with 20 nodes in the input layer, corresponding to the size of the

normalized input pattern used in Section 6.3.1, and 22 nodes in the output layer that

represent the size of the binary output vector. A tangent sigmoid type transfer function is

used for the hidden layer,

x -xex -e
f(x) = tanh(x) = +- , f(x) G 91[-1,1],ex + e-x  (6.19)

while the log sigmoid function is employed for the output layer,

1
f (x) - -x , f(x) e 91t[0,1].

l+e (6.20)

Both transfer functions are illustrated in Fig 6.8. According to the discussion in Section

4.2.2, this transfer function assignment is appropriate for classification networks. The

initial value of each of the connection weights is randomized value between -1 to 1. The

training algorithm also utilizes the momentum term and adaptive learning rate.

The training data set contains the normalized input patterns and their

corresponding expected outputls corresponding to 92 different damage cases, which are

created by performing 92 numerical simulations. The first four times, the simulation is

performed on the damage-free beam model. The remaining 88 times, it is performed with

different damage cases that have 5%, 20%, 50% or 80% reduction of EI on a beam

element. Table 6.1 demonstrates the damage cases for all simulations.
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Figure 6.8: Example of transfer functions.
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Damage case of the Damaged Element El Reduction
simulation no. (% of original El)

1-4 - 0
5-26 1, 2, 3, ..., 22 5

27-48 1, 2, 3, ..., 22 20
49-70 1, 2, 3, ..., 22 50
71-92 1, 2, 3, ..., 22 80

Table 6.1: The damage cases of the training data set.

Fig 6.9 shows the convergence of the Sum-Square Error (SSE) of the NNET 1, with 7

processing elements in the hidden layer, trained by this data set.

Other 70 testing data pairs are then similarly created. Each of them are created

from the simulation of the model that has the reduction of El randomly range between 5%

to 90% on one beam element. Table 6.2 demonstrates all the damage cases included in the

testing data set.

Damage case of the Damaged Element EI Reduction
simulation no. (% of original El)

1-4 - 0

5-70 1, 2, 3, ..., 22, 1, 2, ..., randomly between 5-90%
22, 1, 2, 3, ..., 22

Table 6.2: The damage cases of the testing data set.

The accuracy of NNET1 is determined by operating the trained network on the training

data set, and comparing the network outputs to the expected outputs, which are the binary

vectors corresponding to the damage cases used to create the testing data set. In this

application, the threshold value is set at 0.8 for both NNET1 and NNET2.

The configuration of NNET2, and the procedure followed to construct the training

and testing data, are similar to those ofNNET1. The only difference is that NNET2
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Figure 6.9: Convergence of the training of an example network.
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requires more nodes in the input layer (corresponding to the size of normalized input

pattern 2), and 5 output nodes in the output layer (corresponding to the size of output2).

6.3.3 Performance Studies

The performance-based process for selecting the optimum global diagnosis system

for the 2-span beam problem based on the results of simulation studies is performed in this

section. Two measures of the performance of a diagnosis system are considered: i)

absolute accuracy, i.e., the best percentage of correct diagnosis that can be achieved by a

diagnosis system, and ii) the number of training cycles required for neural networks to

reach a specific level of accuracy.

Sensitivity studies are carried out for the following 3 variables; i) number of mode

shapes used to create input, ii) number of points representing each mode, and iii) number

of processing elements in the hidden layer of NNET1 and NNET2. Fig 6.10 shows the

significance of the number of mode shapes on the accuracy of NNET1. The accuracy

measure plotted the percentage of correct predictions by NNET 1 based on the testing

data. In this case, the NNET1 configuration has 7 processing elements in the hidden layer,

and each mode shape is represented by 10 points. The result demonstrates that

incorporating more modes in the training data improves the absolute accuracy, and

reduces the number of training cycles needed to reach the absolute accuracy. Using all 3

mode shapes as input, this network trained for 4000 cycles can predict the location of

damage with the absolute accuracy as high as 96%.

Fig 6.11 shows the influence of the number of points used to represent each mode

shape, or the number of sensors, on the accuracy ofNNET1. The first 3 mode shapes are

employed to create the input. In this investigation, the number of points representing each

mode shape is varied uniformly from 5 to 20 points, with an increment of one point. The

result demonstrates that the absolute accuracy increases with the number of points until an

optimum number is reached. In this application, the absolute accuracy stops increasing
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when the number of points representing each mode shape exceeds about 10, which is an

indication that 10 points per mode shape is a reasonable choice.

The effect of the number of processing elements in the hidden layer on the

accuracy is investigated by varying the number of elements uniformly from 2 to 20

elements with an increment of one element. The network is trained and tested with the

data created from the first three mode shapes, each of which is represented by 10 points.

The results indicate that the absolute accuracy increases with the number of elements up to

about 7 elements, and then tends to decrease slightly beyond this number of elements. Fig

6.12 compares the accuracy corresponding to three different networks (having 5, 7, and

15 processing elements respectively). The figure shows that the 7 processing elements

architecture has the best absolute accuracy. The 15 elements version performs better on

the training data, but worse on the testing data. The reason is that larger networks tend to

have less generalization ability, and are more susceptible to overfit the training data (Liu,

1995; Ling, 1995).

Different testing data sets, each of which has damage cases that have a specific

extent of damage, are then employed to test the optimum NNET1, which is the NNET1

with all design variables set at optimum. The configuration includes using the first three

mode shapes, each represented by 12 data points. The network has 12 hidden units, and

100 training samples are used. The result is demonstrated in Table 6.3.

Extent of Damage Accuracy of Optimum NNET1
(% of El reduction) (% of correct diagnosis)

10 96
5 96
4 81
3 54

Table 6.3: The damage sensitivity of the optimum NNET 1.
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The optimum NNET1 is able to detect damage corresponding to a 5% reduction in El at

any location of the 2-span beam model with an accuracy of 96%. This performance is very

impressive.

The same performance-based design process is also employed to find the optimum

NNET2 configuration. Based on the results of simulation studies, the optimum NNET2

architecture has 21 processing elements. It's input data is generated from the first 3 mode

shapes, each of which is represented by 10 points. The optimum NNET2 trained by the

cross-validation approach is able to predict the extent of damage with absolute accuracy

up to 84%.

6.3.4 Observation

Based on the results of performance studies, the optimum NNET 1 architecture has

7 processing elements. It's input data is generated from the first 3 mode shapes, each

represented by 10 data points. Properly trained NNET1 is able to predict the location of

damage with an absolute accuracy up to 96%. Simulation results demonstrate the

overtraining effect (see Chapter 3) when the network is trained to fit the training data so

that it performs poorly with the testing data. Therefore, a trial and error approach, or the

cross-validation method (see Chapter 3), is recommended for optimizing the NNET1.

These results also reveal the ability of the diagnosis system based on mode shape

approach to effectively monitor the condition of an idealized structure with single-point

damage. An additional benefit of this approach is that it requires no extra loading

equipment for operation. Moreover, the diagnosis systems based on this approach can be

operated in real time when ambient excitation is abundant.

6.4 Response Spectrum Approach

The excitation used in this application is a set of specified hammer impulses

applied at specific locations of the structure. The simulation model, and the damage cases
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for both the training and testing data sets, are similar to those employed in the previous

section.

6.4.1 Data Preprocessing Strategy

The time-acceleration response of all DOFs is determined from numerical

simulation, and is taken as the sensory data at the corresponding locations of the

monitored structure. Each time-acceleration data, x(t), is recorded during the time period

T and then passed through an analog-to-digital converter to generate the discrete time

series {xr), r = 0, 1, 2, ..., (N-1). The Fast Fourier Transform (FFT) is then used to

calculate the Discrete Fourier Transform (DFT) of this time series, ({Xk, k = 0, 1, 2, ...,

(N-1), and hence find the spectral estimate

T
S=-(Wk - k k2; X(6.21)

where Xk is the DFT of {xr}, and Xk is the complex conjugate of Xk . The spectral

estimates corresponding to ({xr of various sensors are then smoothed in order to improve

their statistical reliability by a spectrum smoothing routine in MATLAB (based on the

method suggested by Newland, 1993) before being used to create the input for neural

networks.

In this application, the free-vibration response of the model is employed to create

the response spectrums of the model corresponding to different damage conditions. Since

the sampling interval is 0.01 second, the Nyquist frequency is 50 Hz, which effectively

contains the response of the first 3 modes of vibration of the beam model (Newland, 1993,

suggests the Nyquist frequency should be at least twice the frequency of interest). The

time series signal is filtered to remove frequency components over 50 Hz in order to avoid

the effect of aliasing. The frequency resolution is set at 1 Hz, and the maximum effective

bandwidth of the calculation is set at 0.5 Hz. The ratio of the standard deviation to the
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mean of measurement is set at 0.3, and the required measurement -length is determined to

be 20 seconds. The smoothing process involves averaging every 11 adjacent spectral

estimates, and each value of the spectral estimates is the result of smoothing over 0.5 Hz

frequency span. The smoothed spectral estimates are then taken as the response spectrums

of the time series.

Fig 6.13 shows the 20-second acceleration response of DOFs 7 and 28 of the

undamaged model given a hammer impulse, and their corresponding smoothed spectrums.

Assuming that these 2 spectrums are used as a damage pattern for NNET1, each spectrum

will be divided into a number of zones, NUMZONE. As shown in Fig 6.14, each zone

covers the same size of frequency interval,

.MAXFREQ
fint = Hz,

NUMZONE (6.22)

where MAXFREQ is the maximum frequency (Hz) of the response spectrums. In this

application, MAXFREQ is set at 15 Hz, which well covers the 3rd mode of vibration of

the 2-span beam (see Fig 6.5). The area under the spectrum of each interval, which

relatively represents the amount of energy released by the DOF (or by a specific area of

the beam represented by the DOF) in that frequency interval, is then calculated. This

provides a number of energy-related data points (NUMZONE points from each spectrum)

for a particular damage case as a vector,

input

data point no.1 of spectrum no.1

data point no. NUMZONE of spectrum no. 1

data point no. 1 of spectrum no. NUMSPEC

Ldata point no. NUMZONE of spectrum no. NUMSPEC

I

(6.23)
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Figure 6.13: Example of simulated acceleration response and its spectrums.
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where NUMSPEC is the total number of spectrums used to create the input for NNET 1

and NNET2 (or the total number of sensors used to collect the data).

In order to keep the difference of the magnitude among all data points (data

spread) low, the logarithm of base ten of the input vector is used.

input = loglo(input) . (6.24)

The vector generated through the simulation of the undamaged model is referred to as the

"reference data set,"

reference data set = input , given undamaged case (6.13)

The Reference Value Approach is then applied. The difference between the input vector

corresponding to a particular damage case and the reference data set is taken as the "input

pattern" for the damage case.

input pattern = input- reference data set. (6.14)

Each input pattern is then normalized by dividing by the absolute value of the maximum

data point in all the input patterns (maxdata).

input patternnormalized input pattern = input pattern
maxdata (6.15)

Each "normalized input pattern" and its corresponding expected outputs of NNET 1 and

NNET2, which are the same types of binary vectors used in the mode shape approach, can

then be taken as a training or testing data pair of NNET1 and NNET2. More details on

how to create the data are demonstrated in Section 6.3.1.
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6.4.2 Configuration and Training of Neural Networks

The configuration ofNNET1 and NNET2, and the damage cases for their training

and testing data sets, of this diagnosis system are exactly the same as those used in section

6.3.2. However, the number of input nodes for both NNET1 and NNET2 now

corresponds to the size of normalized input pattern used by the spectrum approach.

6.4.3 Performance Studies

Six design variables are investigated for their influence on the performance of the

diagnosis system; i) the number of sensors, ii) the location of sensors, iii) the number of

intervals representing each spectrum, iv) the number of hammers, v) the locations of

hammers, and vi) the number of processing elements in the hidden layer ofNNET 1 and

NNET2. Fig 6.15 demonstrates the significance of the location of sensors to the accuracy

of NNET1. Each point represents the accuracy of a NNET1 trained and tested with data

created from two response spectrums, each of which is created from the data collected

from a sensor located at the same relative position of each span. Two hammer impulse

loads, each of which is located at the middle-left point of each span, synchronously apply

the impulse of 10000 Newton for 0.1 second as the prespecified excitation. Ten intervals

are used to represent each response spectrum, and 15 processing elements are included in

the hidden layer of NNET1. Fig 6.15 shows that the location of the sensors has almost no

effect on the performance of NNET1 except when the sensors are close to supports. In

this case, there is a slight drop in performance due to the fact that the sensor response is

weak for these locations.

Fig 6.16 shows the significance of the number of sensors used to create the input

data for NNET 1. The loading and network parameters are the same as for the previous

figure. The plot demonstrates that the absolute accuracy ofNNET1 increases with the

number of sensors per span. However, the accuracy does not significantly improve when
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more than one sensor per span is employed. Therefore, one sensor per span is the

recommended minimum number of sensors for this application.

The significance of the number of intervals representing each spectrum to the

absolute accuracy of NNET1 is then investigated. Similar loading and network parameters

are still employed. One sensor is located at the middle-left point of each span. The number

of intervals representing each spectrum is varied from 5 to 20 intervals, with an increment

of five intervals. The results show that the absolute accuracy of NNET 1 increases with the

number of intervals used to represent a response spectrum up to 10 intervals, and is

eventually constant beyond the level. This is the indication that 10 intervals per response

spectrum is essentially the optimum number for this diagnosis system configuration.

Results for 5, 10, and 20 intervals are plotted in Figure 6.17.

The significance of the configuration of hammer load is also investigated. Firstly,

the significance of the number of hammer impulse loads is examined. NNET1 still has 15

processing elements, and one sensor is located at the middle of the left half of each span.

The number of intervals representing each spectrum is 10. NNET1 is then trained and

tested with data set generated from three different configurations of hammer impulse load;

i) a single hammer applied on the left span, ii) 1 hammer per span, and iii) 2 hammer per

span. Fig 6.18 compares the performance of the networks that are trained with data from

different excitations. It is evident that a single hammer is not sufficient since the network

trained with the data created from this excitation has only around 40% absolute accuracy,

compared to 92% for those networks trained with the data generated by the other

excitations. This difference can be explained by the fact that 1 hammer is able to

effectively excite only the first mode of vibration of the beam, whereas 1 or 2 hammers per

span can excite higher modes of vibration. It was established in Section 6.3.3 that a

minimum of 3 modes is needed to create the input of NNET1. Since using 2 hammers per

span does not significantly improve the performance, only 1 hammer per span is

considered for this application.
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Figure 6.17: Significance of the no. of intervals to the accuracy of NNETI.
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The influence of the locations of the hammer loads is then examined. The

architecture of NNET1, and the data preprocessing strategy, are the same as used in the

previous investigation. Fig 6.19 shows that the location of the single-hammer load has

very little effect on the performance of NNET1. Fig 6.20 shows 4 different configurations

of excitations employing 1 hammer load per span. Separate networks are trained and

tested with the training and testing data generated by these 4 excitations respectively. The

results indicate that the performance of the individual networks is approximately similar,

which is up to 93% of absolute accuracy. Therefore, it is reasonable to concede the

location of hammer load to be unimportant.

The significance of the number of processing elements in the hidden layer is

investigated by varying the number of elements from 4 to 30, with an increment of one

element. The network is trained and tested with the data created from the response

spectrums of two sensors, each of which is located at the middle-left point of each span.

Each spectrum is represented by 10 intervals. Fig 6.21 compares the performance of four

networks (with 4, 7, 15 and 30 processing elements respectively). The result indicates that

the absolute accuracy increases with the number of elements until the number exceeds 15,

and tends to decrease slightly afterward.

Different testing data sets, each consisting of damage cases with a specified extent

of damage, are then employed to test the damage sensitivity of the optimum NNET1. The

result is shown in Table 6.4, which demonstrates accuracy improvement with the extent of

damage. The accuracy is very good when the extent of damage is higher than 5%

reduction of El, but becomes poor for the damage with lower extent.

The performance-based design process used to design NNET1 can also be

employed to optimize NNET2. Simulation studies indicate that NNET2 should have 27

processing elements, the time response data should be collected using at least 1 sensor per

span, and each response spectrum should be represented by 12 intervals. For hammer

impulse loads, at least one hammer load per span is needed. Based on the result of the
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Figure 6.20: Combination of locations of the 2-hammer case (1 hammer/span).
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performance study using the training and testing data mentioned earlier, a properly trained

optimum NNET2 is able to predict the extent of damage with the absolute accuracy up to

83%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)

10 96
5 92
4 78
3 48

Table 6.4: The damage sensitivity of the optimum NNET1.

6.4.4 Observation

To avoid overtraining, a trial and error-based approach, or the cross-validation

method described in Chapter 3, needs to be employed to find the optimum configuration

of NNET1 and NNET2. The results also indicate that a 1-hidden-layer network with 15

processing elements is optimal for this application. The time response data should be

collected from at least 1 sensor per span, and each response spectrum should be

represented by 10 intervals. At least one hammer load per span should be used as the

excitation. A properly trained optimum NNET1 is able to predict the location of damage

as small as 5% reduction of EI with the absolute accuracy more than 90%.

Simulation data indicates that the performance of the diagnosis system based on

the response spectrum approach is sufficient for this single-point damage application. The

approach is feasible when the monitored structures are subject to inconsistent ambient

excitation (low frequency, or very weak, excitation), which makes it difficult to employ

the ambient vibration & mode shape approach.
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6.5 Applicability to Other Structures

There are many potential applications for single-point damage diagnosis. For

example, a single-point damage diagnosis system for the frame structures shown in Fig

6.22 can be established by following the same procedures employed in building the

diagnosis systems for the 2-span beamn demonstrated in the previous section.

The mathematical model, or a scaled model, of the frame can be constructed and

employed to create the training and testing data. Either the mode shape or response

spectrum approach can be employed. If there is regular earthquake or wind gust in the

area, it can be used as the ambient excitation for generating training and testing data.

Hammer impulse generators or mechanical vibrators can also be used to generate

prespecified excitation, if ambient excitation is not available.

The training and testing data can be created by using the procedure previously

shown in this chapter. The time history response of the frame due to an excitation should

be recorded from the sensors on each floor, and then used in creating mode shapes or

response spectrums that correspond to different damage cases. The vibrational signatures

are then further processed by the data preprocessing procedure similar to those employed

in the previous sections, and used as input of NNET1 and NNET2. Only minor

adjustments on the size of the input and output layers of NNET1 and NNET2 are needed

to correspond to the size of their new inputs and outputs. The performance test, which is

used for configuring the optimum architecture of the diagnosis system, can be similarly

performed after the all the design variables are identified.

6.6 Discussion and Summary

The simulation studies of the preliminary application on an idealized 2-span beam

demonstrate good potential of the neural network-based structural diagnosis system on

single-point damage diagnosis. The performance of the optimized diagnosis systems, based

on either the mode shape or response spectrum approach, is also similar. Therefore, the
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choice of excitation and vibrational signature for a specific application could be made by

considering the practical applicability of the choices (Green, 1995). Increasing the

information contained in the input of NNET1 and NNET2, such as increasing the number

of mode shapes or response spectrums used to create each normalized input pattern,

usually leads to better prediction performance of the diagnosis system until an optimum

point is reached.

Finally, the optimum diagnosis systems, mode shape or response spectrum

approach, are tested with the testing data set that consists of 50 multiple-point damage

cases, each of which has more than one damaged beam element. The damaged beam

elements of each case are randomly selected, and so is the extent of damage. The result

demonstrates that the diagnosis systems that are optimized for single-point damage can

predict the location of multiple-point damage with less than 10% accuracy. Therefore, it

can be assumed that the diagnosis systems that are optimized for single-point damage

cannot be applied to multiple-point damage problem.

However, the neural network-based diagnosis system for single-point damage can

also be applied to other structural diagnosis problems that single-point damage condition

applies. Only some detail adjustment in the design procedure is required to apply the basic

architecture to a specific application. Therefore, the approach is proved very flexible, and

should be very beneficial for structural engineers.
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Chapter 7

Multiple-Point Damage Diagnosis: A Case study

7.1 Introduction

In this chapter, a neural network-based diagnosis system for a 4-span bending

beam with multiple-point damage is developed and evaluated. Since multiple-point

damage leads to an excessive number of different damage cases, a combination of global

and local structural diagnosis systems is employed. The global diagnosis system is used to

identify which spans are damaged. Each damaged span is then diagnosed with a local

diagnosis system that has been customized for the particular span to detect the location

and extent of damage. The architecture and operation of the combination of diagnosis

systems is similar to the model described in Section 5.4.2. Two choices of excitation and

vibrational signature are employed for global diagnosis: i) ambient excitation & mode

shape and, ii) prespecified excitation & response spectrum. However, only the prespecified

excitation & frequency transfer function approach is employed for local diagnosis.

Simulation studies are performed with the global diagnosis system, considering both the

mode shape and response spectrum signatures. The applicability of this global/local

strategy to other structures with multiple-point damage is also discussed.

The research domain is similar to that of the 2-span beam application discussed in

Chapter 6. However, the objective here is to identify only the locations of damage, not

their extent, so the NNET2 networks are not considered. The actual physical system is
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modeled as a linear beam with negligible transverse shear deformation. The neural

networks are taken as one-hidden-layer feedforward networks with back propagation

training. Ambient excitation is modeled by a single-wheel moving load, while prespecified

excitation is modeled by a set of hammer impulses.

7.2 Description of Simulation Model

The 2-dimensional unsymmetrical 4-span bending beam model shown in Fig 7.1 is

taken as the model of the real 4-span beam. The model consists of 16 beam elements, with

4 elements representing each span. A typical beam element is shown in Fig 7.2. The

mathematical model used is the Timoshenko's bending beam formulation. The length of

the two right spans is 40 meters, while the two left spans are 25 meters long. Each beam

element has 4 degree of freedoms (DOFs); 2 translations and 2 rotations. The element

stiffness and mass matrices are defined by Eqs. 6.1 and 6.2 respectively, which are listed

here for convenience.

F 4 6/1 2 -6/1 1
E= 6/1 12/12, 6/ -12/1
1 2 6/1 4 -6/1 I

L-6/1 -12/12 -6/1 12/12 (6.1)

r 412 221 -31 131 1
p 11 221 156 -131 54

420 - 312 -131 412 -2211

L 131 54 -221 1561j
(6.2)
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where E is the modulus of elasticity, lis the moment of inertia of the bending axis, I is the

length, and p is the average mass per unit length of the element. The matrices of the

elements that are connected to the supports, such as beam element no. 1 shown in Fig 7.3,

are slightly different due to the boundary condition. This element has no translational

movement at the left side due to the hinge support, so the corresponding row and column

can be deleted. The reduced matrices are

S4 2 -6/1

-k, = -i 6/1 -6/1 12/12 (6.3)

and

41' -312 131
m1 = I -312 412 -221

[ 131 -221 156 (6.4)

The same approach is applied to elements 4, 5, 8, 9, 12, 13 and 16 to provide all the

necessary boundary conditions for the equilibrium equations of the beam.

The stiffness and mass matrices of the complete beam model are generated by

superimposing the contributions of the elements

Th

2- by .1)

and
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J

-92 by 29 (7.2)

Note that there is overlap between each pair of neighboring k, or m, since they share some

global DOFs.

Assuming that the beam has proportional damping (i.e. Rayleigh damping), the

damping matrix C can be constructed following the method described in Section 6.2. The

damping ratios for the first 2 modes are still set at 1%.

By defining

U= U2 I

Lu29J (7.3)

as the global displacement vector, which contains all the degree of freedoms

the equation of motion of the beam model can be represented as

MU+CU+KU = P

(see Fig 7.1),

(6.10)

where
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[ pl(t) 1
p2 (t)

P=I I

LP29 (t) (7.4)

is the force on the beam model as a function of time, t. Given the force function and all

other parameters of the beam model, the time history response of the beam model can be

determined by solving the equation of motion.

For this application, the beam is assumed to have a constant El of 5.34 x 109 N.m 2

over its length. The average mass per unit length is 9880 kg/m. Fig 7.4 shows the first

three mode shapes, and their corresponding frequencies. The response of the beam model

due to the excitation is determined by a direct time integration method (Runge Kutta

method) performed in MATLAB. The time interval of the integration is still taken as 0.01

second.

Similarly to the 2-span beam case study, damage is introduced in the model by

lowering the El in the stiffness matrices corresponding to the elements that are selected as

damaged elements. However, in this application, a damage case may involve more than

one damaged element.

7.3 Global Structural Diagnosis: Mode Shape Approach

The global diagnosis system is a modified version of the basic neural network-

based diagnosis system (shown in Fig 5.7). The diagnosis system has only one neural

network, NNET1, which predicts the damaged spans given the global excitation. As

earlier mention in Chapter 6, the modal approach does not require a consistent excitation,

and both ambient and prespecified excitations can be employed. In this research, ambient

excitation is used for its convenience and its real-time applicability. The excitation is a

mass-consistent single-wheel load of 2000 kg (4.4 kips) with velocity ranging from 40 to
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60 mph. The travel time is still more than ten times of the first three fundamental periods

of the beam. Therefore, the moving load effectively excites the first three modes of

vibration (Humar, 1990 and Humar et al, 1993).

7.3.1 Data Preprocessing Strategy

The free-vibration response of the simulation model with various damage

conditions is collected and processed by a modal analysis routine (Appendix A) in order to

determine the corresponding mode shapes of the 4-span beam. The mode shapes, and the

number of points representing each mode shape, which are used to create the input for

NNET1 then have to be specified. Fig 7.5 illustrates the case when two mode shapes, with

10 points representing each mode, are used as input for NNET1. The mode shapes

corresponding to a particular damage condition are normalized so that their maximum

amplitude is equal to unity. The value of the points representing the normalized mode

shapes are then used to create a vector called "input" vector,

input -

data point no. 1 of mode shape no.1

data point no.m of mode shape no.1
data point no.1 of mode shape no.2

data point no.m of mode shape no.n_

P7V

where m is the number of points representing each mode shape, and n is the number of

mode shapes considered.

The Reference Value Approach is then employed, and the remaining data

preprocessing procedures follow the procedures described in Section 6.3.1. As mentioned

earlier, the global structural diagnosis system identifies only damaged spans, not damaged
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beam elements. Therefore, the output vector corresponding to each normalized input

pattern is

F out, I
out2oututt out3

Lout4  (7.6)

where outi E c[0,1]. The "expected" output vector corresponding to a particular damage

case is also represented by Eq. 7.6, where outi is 1 if there is reduction of EI of any beam

element in the ith span from the left, and 0 otherwise. Since the beam has 4 spans, the size

of the output vector is 4 by 1. Each normalized input pattern and its corresponding

expected output can then be employed as a training, or testing, sample of NNET1.

7.3.2 Configuration and Training of Neural Networks

A 1-hidden-layer feedforward network with back propagation training algorithm is

employed as NNET 1. According to Eq. 7.5, NNET1 needs mn nodes in the input layer,

which corresponds to the size of the normalized input pattern. It also needs 4 output

nodes, which represent the size of the output vector. The transfer function of the

processing elements in the hidden layer is the tangent sigmoid function (Eq. 6.19), while

that of the output layer is the log sigmoid function (Eq. 6.20). Both functions are

illustrated in Fig 6.8. The initial value of all the connection weights is still randomized

value between -1 to 1. The threshold value is set at 0.8. The training algorithm also

utilizes the momentum term and adaptive learning rate.

Four training data sets, containing 50, 100, 500, and 1000 different damage cases

respectively, are created. The first four damage cases of each set are taken as the damage-

free case. The remaining cases are variations of the basic cases shown in Table 7.1.
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Case No. Damaged Span(s)
1 1
2 2
3 3
4 4
5 1,2
6 1,3
7 1,4
8 2,3
9 2,4
10 3,4
11 1,2,3
12 1,2,4
13 1,3,4
14 2,3,4
15 1,2,3,4

Table 7.1: The basic damage cases for the global diagnosis system.

Combinatio Damaged Beam Element(s)
n No.

1 1
2 2
3 3
4 4
5 1,2
6 1,3
7 1,4
8 2,3
9 2,4
10 3,4
11 1,2,3
12 1,2,4
13 1,3,4
14 2,3,4
15 1,2,3,4

Table 7.2: The possible combinations of damaged elements in a particular span.
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Note that, for a particular damage case, the combination of the damaged elements in any

damaged span is randomly selected from the basic combinations shown in Table 7.2. The

extent of damage of any damaged element randomly ranges between 5 to 80% reduction

of EI.

The training procedure of NNET1 follows the approach described in Section 5.2

(see Fig 5.2). Fig 7.6 shows the convergence of the Sum-Square Error (SSE) of a NNET1

with 16 processing elements in the hidden layer that is trained by a data set with 100

training samples.

The testing data, which contains a total of 50 different damage cases, is similarly

created. The damage cases cover the basic damage cases shown in Table 7.1. The

combination of the damaged elements in any damaged span is also randomly selected from

the basic combinations shown in Table 7.2. The extent of damage of any damaged element

randomly ranges between 5 to 90% reduction of E. In order to assess the ability of the

"trained" diagnosis systems to detect an arbitrary damage pattern, all damage cases in the

testing data set are different from the damage cases of the training data set .

The testing data are then used to test the performance of the trained NNETI in

predicting the damaged spans. The testing is performed by passing the normalized input

patterns of the testing data set through the trained network, and comparing the network

outputs to the "expected" outputs corresponding to the damage cases.

7.3.3 Performance Studies

Four variables are investigated for their influence on the accuracy of the global

diagnosis system; i) number of mode shapes used to create input, ii) number of points

representing each mode, iii) number of processing elements in the hidden layer of NNET1,

and iv) number of training samples of the training data set. Fig 7.7 demonstrates the

influence of the number of mode shapes used to create the input for NNET1 on the

accuracy of NNETI that is trained by the training data set with 100 training samples.
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The accuracy shown in the plot is the percentage of correct predictions by NNET 1 on the

testing data. This particular NNET1 has 12 processing elements in the hidden layer, and

employs 12 points to represent each mode shape. The result shows that the accuracy of

NNET1 increases with the number of mode shapes, while the training cycles needed to

reach the absolute accuracy decreases. By using the first 3 mode shapes, the NNETI

trained for 16000 cycles can predict the damaged spans with as high as 68% accuracy.

Fig 7.8 demonstrates the effect of the number of points representing each mode

shape on the accuracy ofNNET1. In this case, NNET1 has 12 processing elements, and

the input data is created from the first three mode shapes. The training data set with 100

damage cases is used. In this investigation, the number of points representing each mode

shape is varied from 5 to 25 points, with a one point increment. The result indicates that

the absolute accuracy ofNNET1 increases with the number of points up to the level of 12

points. Beyond this level, there is no additional accuracy. This suggests that 12 points per

mode shape is the optimum number for this application.

The significance of the number of processing elements in the hidden layer of

NNET1 to its accuracy is investigated by varying the number of elements from 2 to 25

elements, with a one element increment. Fig 7.9 shows the performance of three NNET l's

(each with 6, 12, and 18 processing elements in their hidden layer respectively) that are

trained and tested with the input data created from the first three mode shapes, each

represented by 12 points. The training data set with 100 damage cases is still used. The

simulation result indicates that NNET1 with 12 processing elements in the hidden layer is

optimal.

The significance of the number of damage cases in the training data set is

demonstrated in Fig 7.10. The NNET1 has 12 processing elements in the hidden layer, and

uses all three mode shapes to create the input data. The number of points representing

each mode shape is 12. Five NNET l's are respectively trained with 5 different training

data sets, which contain 50, 100, 500, and 1000 damage cases respectively (see Section
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7.3.2 for more detail). Fig 7.10 demonstrates that the absolute accuracy of NNET1

increases with the size of the training data set. However, the accuracy does not

significantly improve when the number of damage cases exceeds 100.

All simulation results exhibit the effect of overtraining. Therefore, a trial and error

approach, or a cross-validation approach, has to be employed in order to find the optimum

NNET1. The results also indicate that a 1-hidden-layer network with 12 processing

elements is a satisfactory choice for NNET1. The input data should be created from the

first three mode shapes, and each should be represented by 12 points. The training data set

should contain at least 100 different damage cases.

The result from simulation studies shows that the information from mode shapes

alone is not sufficient for NNET 1 to predict the damaged spans at an acceptable level of

accuracy. The changes of modal frequencies, which are also available from the mode

shape compilation process (Appendix A), may provide the additional information needed.

In what follows, each existing input of NNET1, which is created from the mode shapes

corresponding to a particular damage case, is incorporated by their corresponding modal

frequencies. New sets of training and testing data are created using the damage cases

mentioned in Section 7.3.2. The prediction performance of the optimum NNET1 based on

the new data set is also investigated.

The procedure for creating an input-output pair for the training or testing data set

ofNNET1 is similar to the one previously employed in this section. However, the new

approach also incorporates information about the modal frequencies into the input vector

as follows.
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input =

data point no.1 of mode shape no. 1

data point no.m of mode shape no.1

data point no.1 of mode shape no.2

data point no.m of mode shape no.n

modal frequency of mode no. 1 (Hz)

.modal frequency of mode no.n (Hz)_

I

~mrrT~5J~~L

(7.7)

where m is the number of points representing each mode shape, and n is the number of

mode shapes considered.

The input vector that is obtained from the non-damage model is still called the

"reference data set." The difference between the input vector corresponding to any

damage condition and the reference data set is then called the "input pattern" of the

corresponding damage condition. The data points of each input pattern that represent the

changes of mode shapes are normalized by the approach previously employed. The

remaining data points, which represent the changes of modal frequencies, are normalized

by the maximum data points of the same row among all input patterns. The "normalized

input patterns" and their corresponding expected outputs can then be used as the training

or testing data of NNET1.

The performance study of the global diagnosis system is then carried out using new

training and testing data sets, which are created following the procedure described in

Section 7.3.2. All the design variables investigated are the same as for the previous

investigation: The test results indicate similar behavior with the previous study. The

accuracy of NNET1 still increases with the number of mode shapes, the number of points

representing each mode shape, the number of processing elements of NNET1, and the

number of damage cases of the training data, until an optimum point is reached. For this

application, the optimum NNET1 has 19 processing elements. The input data should be
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created from the first 3 mode shapes, and each mode should be represented by 12 points.

Most importantly, the new optimum NNET1 is able to predict the damaged spans with as

high as 92% absolute accuracy, which is a significant improvement over the NNET 1 that

is trained by the training data that does not contain the information of modal frequencies.

Different testing data sets, each of which contains the same damage cases that have

a specific extent of damage, are then employed to test the new optimum NNET 1. The

result is demonstrated in Table 7.3.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)

10 94
5 90
4 71
3 38

Table 7.3: The damage sensitivity of the optimum NNET 1.

The result demonstrates that the optimum NNET1 is able to detect the damaged spans

with an accuracy as high as 90%, when the reduction of EJ of any damaged beam element

is as small as 5%.

7.3.4 Observation

Simulation data indicates that, when the multiple-point damage condition is

applied, the changes of mode shapes due to damages alone do not provide sufficient

information for NNET1 to predict the damaged spans at an acceptable level of accuracy.

However, adding the changes in modal frequencies does significantly improve the

performance of the global diagnosis system based on the mode shape approach, and makes

the applicability of the approach much more feasible.
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7.4 Global Structural Diagnosis: Response Spectrum Approach

The design of the global diagnosis system is based on the approach described in

Section 5.4.2. A set of hammer impulses located at specific locations along the beam is

used to excite the structure. Each impulse generates 10000 Newton of force for a time

period 0.1 second. The simulation model and all damage cases of the training and testing

data sets employed in the previous study are also used here.

7.4.1 Data Preprocessing Strategy

The spectrums of the numerical simulated free-vibration acceleration responses at

various locations along the beam (given a prespecified hammer impulse) are used as the

signatures for the damaged structure. The Fast Fourier Transform is employed to

transform these time histories into response spectra which are later smoothed with the

spectrum smoothing routine in MATLAB. The procedure for creating and smoothing the

response spectrums is described earlier in Section 6.4.1. Fig 7.11 shows the 20-second

segment of the acceleration response for DOFs 3 and 7, and the corresponding spectrums.

In this application, the spectrums of the frequency between 0 to 10 Hz, which well

cover the first 3 modes of vibration of the 4-span beam (see Fig 7.4), is employed. These

spectrums are then further processed into a "normalized input pattern, " corresponding to

the damage condition by the same data preprocessing procedure used in Section 6.4.1.

The expected output of NNET1, output, corresponding to the damage case is created

following the procedure described in the previous section. By performing simulations of

the beam model with various damage conditions, the normalized input patterns and

outputs corresponding to the damage cases can be used as the training or testing samples

of the NNET1 of the global structure diagnosis system.
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7.4.2 Configuration and Training of Neural Networks

The configuration ofNNETI, and the damage cases for the training and testing

data sets used in the mode shape approach is also used here. However, the number of

nodes in the input layer now corresponds to the size of the normalized input pattern used

for the spectrum approach (see Eq. 6.23).

7.4.3 Performance Studies

Seven design variables are investigated for their influence on the performance of

the diagnosis system; i) number of sensors, ii) location of the sensors, iii) number of

intervals representing each response spectrum, iv) number of hammer impulse generators,

v) location of hammer impulses, vi) number of processing elements in the hidden layer of

NNET1, and vii) number of damage cases in the training data set.

Three NNET l's are trained, each with a different training data set. The first data

set corresponds to a sensor located at the middle-left point of each of the four spans; the

second and third data sets are created by locating sensors at the middle and middle-right

points respectively. Each training data set contains 500 different damage cases. Four

hammer impulse generators, each located at the middle-right point of each span,

synchronously apply a force of 10000 Newtons for an interval of 0.1 seconds as the

excitation. Ten intervals are used to represent each spectrum, and NNET1 has 18

processing elements in the hidden layer. The results, as shown in Fig 7.12, show that the

location of the sensors has essentially no effect on the performance ofNNET1.

Figure 7.13a demonstrates the significance of the number of sensors. The locations

of the sensors are shown in Fig 7.13b. The loading and network parameters are the same

as for the previous investigation. There is a substantial improvement when the number is

increased to one per span. Beyond this point, there is no observable improvement.

Therefore, one sensor per span is recommended as the minimum number for this

application.
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The sensitivity of the absolute accuracy to the discretization of the response

spectrum is then investigated. One sensor is located at the middle-right point of each span,

and all other parameters are the same. The number of intervals representing each spectrum

is varied from 5 to 20, with increments of five intervals. Figure 7.14 demonstrates the

accuracy for 5, 10, and 20 intervals are employed. It appears that the absolute accuracy

increases with the number of intervals up to 10 intervals, and then decreases slightly.

Therefore, it is reasonable to take ten intervals per response spectrum as the optimum

number for this diagnosis system configuration.

The significance of the configuration of the hammer impulse excitation is also

investigated. Firstly, the significance of the number of hammer impulses is examined.

NNET1 still has 18 processing elements in the hidden layer, and one sensor is located at

the middle-right point of each span. Ten intervals are used to represent each spectrum.

NNET1 is trained with three data sets created from three difference configurations of

hammer load; i) 1 hammer on the leftmost span, ii) 1 hammer per span, and iii) 2 hammer

per span (see Fig 7.15a). Each data set contains 500 different damage cases. Fig 7.15b

demonstrates that one hammer is not enough to create quality training data, since the

absolute accuracy is around 40%, compared to 91% accuracy of those networks trained

with data created with 1 or 2 hammer-per-span excitations. This can be explained by the

fact that 1 or 2 hammers-per-span excitation is more capable of exciting the 2nd and 3rd

mode of vibration, which are essential as the information for the diagnosis system (based

on the previous performance test on the significance of the number of mode shapes to the

performance of NNET1 shown in Section 7.2.1). Therefore, it is appropriate to use at

least 1 hammer-per-span excitation for this application.

Fig 7.16 demonstrates the effect of the location of hammers of the 1-hammer-per-

span excitation to the performance of NNET 1. The first excitation configuration has each

hammer located at the middle-left point of each span. The second and third configuration

have each hammer located at the middle and middle-right point of each span respectively.
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Figure 7.16: The effects of the location of hammers to the accuracy of NNET1.
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Note that the architecture for NNET1 and data preprocessing strategy used in the

previous investigation is also used here. The result shows that the prediction performance

is essentially independent of the location of hammers.

The significance of the number of processing elements in the hidden layer of

NNET1 to its accuracy is investigated by varying the number of elements from 4 to 40,

with a constant increment of two elements. One sensor is located at the middle-right point

of each span. Each spectrum is represented by 10 intervals, and the training data set with

500 damage cases is used. The result indicates that the absolute accuracy increases with

the number of elements until the number reaches 18, and then tends to decrease beyond

the level. Fig 7.17 compares the performance of three NNET1's (with 6, 18 and 36

processing elements respectively). The figure shows that NNET1 with 18 processing

elements has the best absolute accuracy, and this configuration is considered as the

optimum for this application.

The significance of the number of damage cases in the training data set is

demonstrated in Fig 7.18. For this investigation, NNETI has 18 processing elements, and

one sensor is located at the middle-right point of each span. Ten intervals are used to

represent each spectrum. Excitation is generated by four hammer impulses applied at the

location of the sensors. Five NNET l's are trained with 5 different training data sets, which

consists of 50, 100, 500, and 1000 different damage cases. Fig 7.18 shows that the

absolute accuracy of NNET1 increases with the number of damage cases of the training

data set. However, the accuracy does not significantly improve when the number is greater

than 500, which is considered to be the optimum size of the training data set for this

application.

The results of the performance studies indicate that a 1-hidden-layer network with

18 processing elements is a satisfactory choice ofNNET1 for this application. At least 1

sensor per span should be employed, and each spectrum should be represented by 10
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intervals. One hammer load per span is recommended as excitation, and the hammer

location has very little significant. The size of the training data set has to be sufficiently

large to include all the damage scenarios, which total 500 for this application. A properly

trained NNET1 is able to predict the damaged spans with up to 90% absolute accuracy.

Four different testing data sets, each of which contains the damage cases that have

a specified extent of damage, are employed to test the optimum NNET1. The sensitivity to

damage of the optimum NNET1 is demonstrated in Table 7.4. The result demonstrates

that the optimum NNET 1 is able to detect the damaged spans with an accuracy as high as

89%, when the reduction of El of any damaged beam element is as small as 5%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)

10 91
5 89
4 64
3 47

Table 7.4: The damage sensitivity of the optimum NNET1.

7.4.4 Observation

Simulation data indicates that the change in response spectrum due to damage

condition provide sufficient information for NNET1 to predict the damaged spans with an

acceptable level of accuracy. A properly trained global diagnosis system can identify the

damaged spans with absolute accuracy up to 90%.

7.5 Local Structural Diagnosis: Frequency Transfer Function Approach

Four separate neural network-based systems for local structure diagnosis, each of

which is a basic neural network-based diagnosis system that is trained by a local training

data set specifically created for each span, are employed to predict the damaged beam
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elements in the individual spans. The frequency transfer functions (FTFs) of the response

at various locations of a particular span, due to a prespecified local excitation, are

employed as the local vibrational signature for the corresponding local diagnosis system.

7.5.1 Data Preprocessing Strategy

Figure 7.19 shows a middle span of a multispan beam. When the excitation is

generated outside the span, it can be assumed that moments x, and x2, which are the

moments at the left and right support (assumed measurable), are the span's only inputs. If

the vertical displacement at a specific location of the span (y) is the output of interest, a

linear system can be created to represent the relation between the inputs and output, as

shown in Fig 7.20 (Newland, 1994). Given the measured input and output data over a

time period, the frequency transfer functions between the inputs and the output, HI(w) and

H2(w), can be constructed and used to represent the condition of the linear system

(Bregant et al, 1995 and Zimmerman et al, 1995). More details are demonstrated in

Appendix B.

xl Y x2

Figure 7.19: A middle span of a multispan beam.

For a linear system with two correlated inputs (x,, x2) and one output (y) shown in

Figs 7.19 and 7.20, the frequency transfer functions are
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Sx SxSY - SX2SX

H2()o) =
Sx x- ,x2 S x2  (7.8)

Equation 7.8 demonstrates that the frequency transfer functions of the response at a

specific location of a middle span can be constructed from the spectrums and cross-

spectrums of the inputs and output. These spectrums can be approximated by performing

discrete fourier transform on the discrete time history data to create corresponding fourier

spectrums, and then using these fourier spectrums to create the spectrums and cross-

spectrums needed. The employed fourier spectrums are formerly smoothed in order to

increase the statistic reliability of the FTFs created by this procedure. More detail on the

smoothing process is described in Appendix B.

Since the properties of FTFs over a frequency range are desirable, prespecified

white-noise impulse loads on nearby spans, as shown in Fig 7.21, are employed as the

local excitation for a particular span. The white-noise impulses have the maximum

amplitude of 10000 Newton, and are applied to the model throughout the period that the

sensory data is recorded. By measuring the time history bending moments at both ends of

the span as inputs, and recording the acceleration response at various locations of the span

as outputs, the FTFs of the span (corresponding to the span's damage condition) can be

constructed. The FTFs are then used to create the training and testing data set of the local

diagnosis system of the specific span.

In this application, the.time interval of all simulations is set at 0.01 second, so the

FFT spectrums cover the frequency range of 50 Hz. The frequency transfer functions that

are generated from the FFT spectrums cover the same frequency range. As shown in Figs

7.22 and 7.23, this frequency range well covers the first 3 modes of vibration of any
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The normalized mode shape of mode no.1 (2.394 Hz)

5 10 15 20

The normalized mode shape of mode no.2 (9.362 Hz)

5 10 15 20

The normalized mode shape of mode no.3 (20.160 Hz)

0 5 10 15 20

Figure 7.22: The first 3 modes of vibration of the 1st and 2nd span of the 4-span beam.
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The normalized mode shape of mode no.1 (0.935 Hz)
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Figure 7.23: The first 3 modes of vibration of the 3rd and 4th span of the 4-span beam.
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particular span, which is now considered as a simply supported beam with moments at

both ends as its excitation (Fig 7.5). Fig 7.24 shows the 20-second acceleration response

at the middle-right point of the 2nd span and their corresponding frequency transfer

functions due to a 20-second excitation on the 1st and 3rd span. Note that there are two

FTFs that correspond to the time history response of a particular location of the inner-

spans, such as the 2nd and 3rd span, since they have two bending moments as inputs.

However, there is only one FTF for that of the outer-spans since there is only one moment

as their input.

Each frequency transfer function is then divided into a number of zones,

NUMZONE. As shown in Fig 7.25, each zone covers the same frequency interval,

MAXFREQ
fint = Hz,NUMZONE Hz,(7.9)

where MAXFREQ is the maximum frequency concerned. The area under the frequency

transfer function of each interval is then calculated. This provides a number of data points

(NUMZONE points from each frequency transfer function) for each damage case as a

vector

input -

data point no. 1 of FTF no. 1

data point no. NUMZONE of FTF no. 1

data point no. 1 of FTF no. NUMFTF

data point no. NUMZONE of FTF no. NUMFTF

I

(7.10)
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Acceleration Response of DOF 14
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Figure 7.24: The acceleration response and frequency transfer functions of DOF 14.
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where NUMFTF is the total number of frequency transfer functions used to create the

input for the local diagnosis system.

This input vector is then further processed by the same procedure employed in

Section 6.4.1. The logarithm of base ten of each vector is used instead of the vector itself

in order to keep the data spread low. The input vector (after the loglo step) acquired from

the undamaged model is then referred to as the "reference data set." The Reference Value

Approach is then employed. The difference between the input vector for a particular

damage condition and the reference data set is taken as the "input pattern" for the damage

case. Each input pattern is then normalized by dividing by the absolute value of the

maximum data point in all the input patterns. Each "normalized input pattern" and its

expected "localoutput" vector, which is the corresponding damage condition represented

by the binary vector

Ftlocalout, I
1 localout,

localoutput = localoutI localout3 I
Llocalout4 4x1 (7.11)

where localouti is 1 if there is reduction of EI of the ith beam element of the span of

interest, and 0 otherwise. Note that the size of the localoutput vector is 4 by 1 since each

span is represented by 4 beam elements. By performing simulations with various damage

conditions on a specific span, the normalized input patterns, and their corresponding

localoutput vectors, can be used as the training or testing samples for the NNET1 of the

local diagnosis system of the span.

222



7.5.2 Configuration and Training of Neural Networks

The configuration ofNNET1 of each local diagnosis system is the same as those

described in Sections 7.3.2 and 7.4.2. NNET1 is a 1-hidden-layer network with back

propagation training algorithm. The transfer function of the processing elements in the

hidden layer is hyperbolic tangent function, while the sigmoidal function is used for the

processing elements in the output layer.

The local system of each span requires its own training data set. Since four beam

elements are used to represent a span, each span has 15 different basic combinations of

damaged beam elements as shown in Table 7.2. In this study, four training data sets are

created for the local diagnosis system of the 2nd span, and each contains 30, 100, 300, and

600 different damage cases respectively. The first four damage cases of each set are the

damage-free cases. The remaining cases are the variations of the basic cases shown in

Table 7.2. The extent of damage of any damaged element varying randomly between 5 to

90% reduction of El. The testing data set with 50 different damage cases is similarly

created. Note that all damage cases of the testing data set are different from those for the

training data set.

The training procedure of the NNET1 of a local diagnosis system still follows the

procedure described in Section 5.2 (see Fig 5.2). The testing data set is used to test the

performance in predicting the damaged locations of the 2nd span. The threshold value is

set at 0.8 for this application.

7.5.3 Performance Studies

Five design variables are investigated for their influence on the performance of

local diagnosis systems; i) number of sensors, ii) locations of sensors, iii) number of

intervals representing each FTF, iv) number of processing elements in the hidden layer of

the NNETI, and v) number of damage cases of the training data set. In this investigation,

only the performance of the local structural diagnosis system of the 2nd span is studied.
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Fig 7.26 demonstrates the significance of the location of sensor to the accuracy of

the NNET 1 that predicts the location of damage in the 2nd span. NNET1 is trained by 3

different data sets, each of which is created from the data from a sensor located at a

particular point of the span. Each training data set contains the same 300 different damage

cases. Two hammer loads, located at the location of DOFs 7 and 17 respectively, apply

the white-noise impulse loading throughout the data recording period. MA4XFREQ is set at

25 Hz, which covers all three modes of vibration of the 2nd span. Fifteen intervals are

used to represent each FTF. NNET1 has 35 processing elements in the hidden layer. Fig

7.26 shows that the location of sensor has almost no effect on the performance when one

sensor is used. The result also shows that the absolute accuracy of NNET1, which is

trained by the training data from one sensor, is not yet acceptable since it has around 60%

maximum accuracy.

Fig 7.27 shows the performance of NNET1 in predicting the location of damages

in the 2nd span when the data from different number of sensors is used to create its input.

The loading and network parameters are the same as for the previous figure, and the

training data set with 300 damage cases are employed. The result demonstrates that the

absolute accuracy of NNET1 increases with the number of sensors. In this application, at

least 3 sensors per span is recommended.

The significance. of the number of intervals used to represent each FTF is shown in

Fig 7.28. The same local excitation and training damage cases are still employed, and

NNET1 still has 35 processing elements. Three sensors are located at the middle-left,

middle, and middle-right point of the span respectively. The number of intervals

representing each FTF is varied from 5 to 20 intervals, with an increment of five intervals.

The result demonstrates that the absolute accuracy increases with the number of intervals

used to represent each FTF up to 15 intervals, and drops slightly beyond this level. This is

the indication that 15 intervals per FTF is the most appropriate for this application.
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Figure 7.26: The effects of the location of sensors to the accuracy of NNET1.
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The significance of the number of processing elements in the hidden layer is

investigated by varying the number of elements from 5 to 60 elements, with an increment

of five elements. Fig 7.29 compares the performance of three NNET1's (with 20, 35, and

60 processing elements respectively) that are trained by 300 damage cases. Each FTF is

represented by 15 intervals. The result indicates that the absolute accuracy increases with

the number of elements until the number exceeds 35, and is constant beyond the level.

Therefore, NNET1 with 35 processing elements should be an appropriate choice for this

application.

The significance of the number of damage cases of the training data set is

demonstrated in Fig 7.30. NNET1 has 35 processing elements, and is trained with the data

that is created from the FTFs of three sensors respectively located at the middle-left,

middle, and middle-right point of the span. Each FTF is represented by 15 intervals. The

local excitation similar to the one in previous investigations is employed. Five NNET l's

are respectively trained with 5 training data sets, which contain 30, 100, 300, and 600

damage cases respectively. The simulation results indicate that the absolute accuracy of

NNET1 increases with the number of training samples. However, the accuracy does not

significantly improve when the number exceeds 300, which is assumed to be the optimum

size for this application.

From the results of performance studies, the optimum NNET1 is a 1-hidden-layer

network with 35 processing elements. The input data should be created from the FTFs of

3 sensors, which are located at the middle-left, middle, and middle right point of the span

respectively. Each FTF should be represented by 15 intervals, and the training data set

should contain at least 300 different damaged cases. Properly trained NNET1 is able to

predict the locations of damage on the 2nd span with the absolute accuracy up to 85%.

Different testing data sets, each of which contains the damage cases that have a

specified extent of damage, are then employed to test the optimum local system. As

demonstrated in Table 7.5, the result shows that the optimum NNET1 is able to detect any
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Figure 7.29: The significance of the no. of processing elements
in the hidden layer to the accuracy of NNETI.
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damaged beam element in the 2nd span, which has damage as small as 10% reduction of

EI, with the accuracy up to 87%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)

10 87
5 78.
4 59
3 33

Table 7.5: The damage sensitivity of the optimum NNET1.

7.5.4 Observation

In order to find the appropriate configuration of the local structural diagnosis

systems of the remaining spans, the same performance-based process earlier demonstrated

for the 2nd span can be employed. The design approach for the NNET2 for each span is

also similar.

The simulation data indicates that the changes of FTF's due to local damages

provide sufficient information for the local system to predict the locations of local damage

at an acceptable level of accuracy. For this case study, a properly configured NNET1 is

able to predict the locations of local damage of the simulation model with the absolute

accuracy as high as 85%, which is impressive.

7.6 Applicability to Other Structures

There are also other potential applications for the neural network system for

multiple-point damage diagnosis. A diagnosis system for a frame structure, which is shown

in Fig 6.23, with multiple-point damage can be set up by the approach earlier described in

this chapter.

A mathematical model, or a scaled model, of the frame can then be created and

employed to simulate the training and testing data for the neural network systems. A
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global structural diagnosis system is required to predict the damaged substructures (see

Fig 7.31). If there is earthquake, or wind gust, regularly in the area, they can be employed

as the ambient excitation for generating the training and testing data of the global system.

Otherwise, hammer impulse generators or mechanical floor vibrators can be used to

generate prespecified excitation. If both ambient excitation & mode shape approach and

prespecified excitation & response spectrum approach are practically feasible, the

approach that performs better in the simulation will be used.

IU rItLI

Figure 7.31: An example of a substructure of a frame and its local excitation.

The strategy for creating training and testing data also follows the procedure

described in the previous sections. For the global structural diagnosis, the time history

response at various locations of the frame due to a global excitation can be used to create

the mode shapes or response spectrums that correspond to the damage conditions. The

vibrational signature is then processed by the data preprocessing procedure, and then used
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as the input for the NNET 1 of the global diagnosis system. The performance-based design

procedure can be performed to configure the optimum design variables.

As for local structural diagnosis, the whole frame can be divided into several

substructures as shown in Fig 7.31. Each substructure will require a designated neural

network-based diagnosis system that can predict the locations of damage, and optionally

the extent of the damage, in the substructure. Designated local excitation for each

substructure, such as a set of white-noise horizontal-direction floor vibrators on the floors

next to the substructure (see Fig 7.31), is required for creating the training and testing

data for the local structure diagnosis system. During the excitation period, the response of

the substructure relative to its neighbors and all interaction forces between the

substructures are measured and used to create the FTFs that represent the condition of the

substructure. These FTFs are then processed into the input for training the local diagnosis

system of the substructure (based on the process shown in Section 7.2.3). The

performance-based design procedure can then be performed to configure the optimum

design variables of each local diagnosis system.

7.7 Discussion and Summary

The simulation studies on an idealized 4-span beam indicate that a neural network-

based system for multiple-point damage diagnosis has potential. The global diagnosis

system based on either mode shape or response spectrum signature performs well.

According to the simulation data, the performance of the global system based on the mode

shape approach improves to the same level of accuracy as that of the spectrum approach

when the changes in modal frequencies are also used. Therefore, the practical feasibility of

the approaches on a specific application will decide which approach is more appropriate

(Green, 1995). Local structural diagnosis systems based on the frequency transfer function

approach also perform well in this restricted research domain.
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However, the proposed multiple-pointed damage diagnosis system, which is based

on the general architecture of neural network-based diagnosis system, still has the

limitation on the number of different damage cases that the system can handle. This

limitation depends on several factors including the types and amount of neural networks

used, and the dimension of the input patterns for the neural networks. This limitation

should be considered as a major design issue, especially when the monitored structure is

very large or complex, or when the diagnosis result has to be highly specific. The

simulation data also reveals that the performance of the neural network-based system for

multiple-point damage diagnosis highly depends on the amount (or the diversity) of its

training data. This relationship should be further investigated.

Including more information in the input, such as increasing the number of mode

shapes used to create each normalized input pattern, usually improves the prediction

performance up to a certain point. After this point, the performance does not significantly

improve, or may even deteriorate. Therefore, redundant information should also be

avoided in order to maintain the efficiency.

The global and local structure approach can be applied to a broad range of

structural damage diagnosis problems. As demonstrated in the example of a frame

structure, only some details need to be adjusted to customize the system for a specific

application.
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Chapter 8

Summary and Discussion

8.1 Introduction

In this chapter, the general architecture of a neural network-based diagnosis

system, guidelines for configuring the system, and observations based on the simulation

studies are summarized. The practical feasibility of neural network systems for structural

damage diagnosis is discussed, and solutions to potential difficulties are recommended.

Lastly, the contributions of this research are identified and topics for further research are

recommended.

8.2 Summary

8.2.1 Neural Network-Based Diagnosis System

Two types of damage are considered in this research; single-point, and multiple-

point. Single-point damage assumes that only one component of the system of interest is

damaged at any specific time, while multiple-point damage allows many components to be

damaged simultaneously.

In this research, a basic neural network-based diagnosis system is first proposed

and its applicability for structural damage diagnosis is then evaluated. Since the basic

system employs only two neural networks to classify all possible damages in the structure,

235



it can handle only a limited number of different damage cases. Therefore, its applicability is

restricted td problems that involve a small number of damage states, ideally only single

point damage. In order to overcome this problem, a general architecture of neural

network-based diagnosis system is proposed. The approach is based on considering the

whole structure to consist of a set of interacting substructures, and then using a neural

network-based diagnosis system called "global structural diagnosis" to identify which

substructures are damaged. Each individual damaged substructure is then independently

examined to establish the locations and extent of damage by a "local structural diagnosis

system." By transforming a structural damage diagnosis problem involving a large number

of potential damage cases to a set of less complex problems that can be handled

separately, the applicability of neural network-based diagnosis is enhanced.

Two implementation approaches for global structural diagnosis, and one approach

for local structural diagnosis, are developed. The first global scheme employs ambient

excitation as the excitation, and uses the mode shapes derived from this excitation as input

for neural networks. The mode shape approach is suitable for neural network system that

globally monitors structures that experience consistent significant ambient excitation. For

example, high-rise structures with wind load, or bridges with normal traffic, can be

considered in this category. The diagnosis systems designed by this approach do not

require extra loading equipment, and could be operated in real-time basis if ambient

excitation is available regularly. However, the mode shape approach (without

incorporating corresponding modal frequencies in the input of the diagnosis system) does

not perform well when there is multiple point damage, and it needs to be modified by

including the changes in the modal frequencies, in addition to the changes in mode shapes,

as input for the global diagnosis system.

The second global structural diagnosis approach employs prespecified excitation

(i.e. a set of hammer load) as the excitation, and uses the response spectrums at various

locations on the monitored structure as the input for neural networks. The response

236



spectrum approach is more appropriate when the ambient excitation is weak. However,

the approach does require a prescribed loading, such as hammer load generators, where

the mode shape approach requires arbitrary loading.

The only implementation approach for local structural diagnosis considered in this

study uses localized white-noise hammer impulses to excite each substructure, and then

employs the frequency transfer functions at various locations of the corresponding

substructure as the input for the neural networks of the corresponding local diagnosis

system.

Extensive data on the performance of a neural network-based diagnosis system

applied to a multispan beam model with a range of damage states is obtained. This data,

and the design expertise acquired, is then used to develop guidelines for the design and

optimization of neural network-based diagnosis systems for a certain class of structures.

8.2.2 Performance-Based Design Methodology

A methodology is proposed as a framework for designing neural network-based

damage diagnosis systems for engineering structures. The methodology is based on a

consideration of the results of the simulation studies performed to assess the influence of

the various design variables. The system configuration that provides optimum

performance, or the "optimum diagnosis system," is then employed. This approach is

actually a trial and error method, or even similar to the cross-validation approach (Wahba,

1980), used to configure neural networks. The entire procedure for designing a neural

network-based damage diagnosis system for engineering structures is described in the

following sections.

Simulation model

All types of damage that could occur to the structure of interest have to be

defined. The models that can closely simulate both the behaviors of the physical structure
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and the effects of concerned damage conditions are then chosen. It is possible to use

several types of model to simulate several types of concerned damage in order to create

the best possible training data.

Excitation and vibrational signature

The choice of excitation and vibrational signature is made separately for global and

local diagnosis. For global diagnosis, the selection as to whether to use ambient excitation

& mode shape approach, or prespecified excitation & response spectrum approach, is

strongly influenced by the practical feasibility of the specific application. The mode shape

approach is preferable since it requires no special loading equipment, and has real-time

capability when there is adequate periodicity of ambient excitation. However, it is essential

that the ambient excitation adequately excites all the modes of vibration of interest. The

response spectrum approach is more appropriate when the ambient excitation is weak. For

local damage, only the frequency transfer function approach is employed.

Neural network type

Any supervised-trained Artificial Neural Network (ANN), or system of supervised-

trained neural networks, that is capable of performing function approximation can be

employed in the diagnosis systems. If there is no a-priori knowledge of the nature of

damage patterns, the multilayer feedforward network with back propagation training

algorithm is recommended.

Data preprocessing strategy

The main objective of the data preprocessing unit is to transform the selected

vibrational signatures into numerical patterns that can be used as input for the neural

networks. Therefore the data preprocessing strategy depends largely on the type of neural

network employed in the diagnosis system. Three major steps are involved in this task.
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- Reduce, as much as possible, the maximum difference in magnitude of the

elements of the input vector of neural networks. Using the logarithm of

discretized spectrums as data is an example of this method.

- Employ the Reference Value Approach. This approach uses the difference

between the data pattern of damage and non-damage case as the input for neural

networks.

- Normalize all input vectors of neural networks, until the maximum value in the

vectors is less than unity, in order to avoid the difficulty in training some types of

networks (for example the problem of saturated parameters in multilayer

networks with back propagation learning algorithm).

Training and testing data sets

The training and testing data sets should cover all concerned damage situations.

However, the damage cases in the testing data set should be different from those of the

training data set so that the generalization ability of the diagnosis systems can be

evaluated.

Optimize the diagnosis systems

Before performing the performance analysis of either a global or local structural

diagnosis system, all design variables that affect the performance of the diagnosis systems

need to be identified. For example, the size, the architecture, and the type of neural

networks employed are also considered as variables. Some researchers such as Green

(1995) and French et al (1995) suggest the optimum excitation configuration for bridges

and other beam-type structures. The diagnosis systems are set at their optimum
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configuration, which is the configuration that provides the best performance based on the

results of the performance studies. The cross-validation method should be used for

training each neural network in order to maximize its generalization ability (Liu, 1995).

Calibration and testing

After the optimum configuration of the diagnosis systems is established, the

systems are tested with data sets containing damage cases not included in the training

data. This difference is achieved by varying the extent or location of damage. The

performance measure of the diagnosis system is taken as the percentage of correct

diagnose for the testing data.

If the test results indicate that the diagnosis systems have an acceptable prediction

accuracy, the systems that are trained by simulation data should be further tested with the

data from real physical structures, if available, in order to observe the performance of the

diagnosis system under real operating condition. Note that the systems have to be

calibrated for real structure by substituting the reference data set of each optimum

diagnosis system (see Section 6.3.1), which is the base-line vibrational signature from the

simulation of the undamaged simulation model (see Sections 7.3.1, 7.4.1 and 7.5.1), by

another reference data set that corresponds to the undamaged structure.

It is also important to note that this design methodology only provides the

optimum configuration, given specific training and testing data sets. The whole procedure

of configuring the optimal configuration should be repeated whenever additional training

and testing data is available. The influence of the training and testing data on the

performance of the neural network-based diagnosis system is an area of ongoing research.

8.3 Observations Based on Simulation Studies

Simulation data indicates that the diagnosis system employing the mode shape

approach predicts structural damage with essentially the same level of performance as that
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of the diagnosis system based on the response spectrum approach. This observation

suggests the two approaches are related, which is rational considering how the mode

shapes and response spectrums are constructed in this research.

According to the mode shape compilation procedure described in Appendix A, the

amplitudes of a particular peak of various response spectrums, which are created from the

time-response data from the sensors located at various locations of the structure, are

compiled to create the particular mode of vibration of the structure. The frequency

corresponding to the particular peak is considered as the modal frequency.

Since the mode shapes are constructed from response spectrums, theoretically they

contain the same information about the condition of the monitored structure. The only

difference is the normalization method used by each approach. The mode shapes created

from several simulations are normalized by their maximum amplitude, while the response

spectrums are normalized by the use of a specified excitation for every simulation.

The data also reveals that the performance of the neural network-based diagnosis

system largely depends on the quality of training and testing data. Increasing the

information in the input data of neural networks, or the number of damage cases in the

training data set, usually improves the prediction performance of the diagnosis system until

an optimum point is reached.

8.4 The Feasibility of Neural Network-Based Diagnosis System

with Simulation Training Approach

Since the data from the real physical structure is usually unavailable, the use of

simulation data is necessary. In this section, the practical feasibility of the diagnosis

systems is evaluated by examining the performance of the systems, which are trained by

data generated with a simulation model, on the data generated with an alternate model.
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The optimum diagnosis systems for a 4-span bending beam, presented in Chapter

7, are tested with data generated by an alternate simulation model. The El of each beam

element of the alternate model varies randomly between 0 to 25% from that of the original

model. The alternate test data is created by performing simulations on the alternate model

with the same damage cases used for the original test data (see Sections 7.3.2.and 7.5.2).

The optimal diagnosis systems for the original model are then tested using the test data

from the alternate model. The Reference Value Approach (see Section 6.3.1) is applied by

substituting the reference data set of each optimum diagnosis system, which is the base-

line vibrational signature from the simulation of the undamaged original model (see

Sections 7.3.1, 7.4.1 and 7.5.1), by another reference data set that corresponds to the

undamaged alternate model. The results of this investigation are listed in Table 8.1. The

performance of the diagnosis systems with the original reference data sets is also

demonstrated for comparison.

Accuracy (%)
Optimized Diagnosis Original Alternate Alternate

System testing data testing data testing data
(new reference) (old reference)

Global diagnosis system:
Mode shape approach 92 87 69

Global diagnosis system:
Response spectrum 90 84 63

approach
Local diagnosis system

of the 2nd span 85 77 54

Table 8.1: The performance of optimized diagnosis systems.

The optimum global diagnosis systems with new reference data sets are able to

predict the damage of the alternate model with less than 10% reduction in accuracy. The

reduction increases to about 25% when the original reference data set is employed. The
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performance of the optimum local diagnosis system of the 2nd span on the alternate

testing data is also reasonable when a new reference data set is employed. In this case, the

accuracy reduction is only 8%, compared to 31% when the original reference data set is

used.

Next, the optimum diagnosis systems are tested by two testing data sets that are

generated from another two alternate simulation models. Each model is an assemblage of

32 and 64 beam elements respectively (8 and 16 elements for each span). The formulation

of the numerical models follows the method described in Section 6.2. The dimension,

bending stiffness (El) and mass per unit length of the models are the same as those of the

original model. The damage cases of the alternate testing data sets are assigned to be the

same as those of the original testing data by selecting the damaged beam elements that are

located within the locations of damage of the corresponding original damage cases. The

extent of damage at each location is also similar to that of the original cases. The diagnosis

systems optimized for the original model are then tested by data generated with the

alternate models. The Reference Value Approach (see Section 6.3.1) is applied similarly to

the previous investigation. The results are demonstrated in Table 8.2.

Accuracy
Optimized Diagnosis Original Alternate 1 Alternate 2

System testing data (32 elements) (64 elements)
(%) (%) (%)

Global diagnosis system:
Mode shape approach 92 89 83

Global diagnosis system:
Response spectrum 90 87 79

approach
Local diagnosis system

of the 2nd span 85 83 78

Table 8.2: The performance of optimized diagnosis systems.
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The results show that there is less than 5% reduction of the prediction accuracy

when the alternate model consists of 32 beam elements. However, the accuracy reduction

increase to about 7 to 11% when being tested with the data from the alternate model that

has 64 beam elements. The accuracy reduction caused by the difference between the

training and testing models also increases with the difference between the models.

The optimum diagnosis systems are then tested with another two data sets. One is

generated from the alternate model that has the right span 5% longer than that of the

original model, while the other has the right span 5% shorter. The number of beam

elements representing the 4-span beam is still 16. The formulation of the numerical models

follows the method demonstrated in Section 6.2 except that the length of each beam

element of the right span is 5% longer or shorter. The diagnosis systems that are

optimized for the original model are then tested with the test data from the alternate

models. The Reference Value Approach is applied. The results are contained in Table 8.3.

The optimum global diagnosis systems have only 2-3% of accuracy reduction due to the

use of the alternate testing data, while the performance of the optimum local diagnosis

system of the 2nd span reduces only 1%.

Accuracy

Optimized Diagnosis Original Alternate 1 Alternate 2
System testing data (5% longer) (5% shorter)

(%) (%) (%

Global diagnosis system:
Mode shape approach 92 90 89

Global diagnosis system:
Response spectrum 90 87 87

approach
Local diagnosis system

of the 2nd span 85 84 84

Table 8.3: The performance of optimized diagnosis systems.
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The optimum diagnosis systems are then tested with the data generated from the

alternate model which is similar to the original model except that the damping ratio of the

first two modes is changed from 1% to 5%. The diagnosis systems that are optimized for

the original model are then tested by the testing data from the alternate model with

Reference Value Approach applied. The results, which are demonstrated in Table 8.4,

show minimal change in prediction accuracy due to the change of damping.

Accuracy

Optimized Diagnosis Original Alternate Change
System testing data testing data (%)

(%) (%)
Global diagnosis system:
Mode shape approach 92 92 0

Global diagnosis system:
Response spectrum 90 89 -1

approach
Local diagnosis system

of the 2nd span 85 85 0

Table 8.4: The performance of optimized diagnosis systems.

Finally, The optimum diagnosis systems are tested with data generated from the

alternate model whose flexural rigidity varies randomly between 0 to 25% of the original

model. This model is an assemblage of 64 beam elements (16 elements for each span), and

has the right span 5% longer than that of the original model. The damping ratio of the first

two modes of the alternate model is 5%. The diagnosis systems that are optimized for the

original model are then tested by the testing data from the alternate model with Reference

Value Approach applied. The results, which are demonstrated in Table 8.5, show

substantial degradation of prediction accuracy due to the change of model properties.
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Accuracy
Optimized Diagnosis Original Alternate Change

System testing data testing data (%)
(%) (%)

Global diagnosis system:
Mode shape approach 92 73 -19

Global diagnosis system:
Response spectrum 90 64 -26

approach
Local diagnosis system

of the 2nd span 85 67 -18

Table 8.5: The performance of optimized diagnosis systems.

These results are encouraging due to the fact that the diagnosis systems are trained

with the data from one simulation model, and tested with the data from different models.

The tests also provide a preliminary indicator of how a neural network-based diagnosis

system with simulation training would perform in real world applications, where the

training data needs to be generated from simulation models, and the testing data is

obtained via sensors located on the real structure. The difference between the model and

the real structure always degrades the damage detection ability of the diagnosis systems

that are trained through simulation. However, the degradation can be offset by employing

the Reference Value Approach, and is still acceptable if the difference is minimal.

8.5 Other Potential Problems and Suggested Solutions

Although this research indicates an impressive performance of the neural network-

based diagnosis system on simplified problems, the performance on practical application is

not yet examined. In this section, some of the issues involving the possible difficulties in

real world application are identified and discussed. Recommended solutions are also

presented.

Since the neural network-based diagnosis system are trained by simulation data, it

is essential that the simulation models can simulate all possible damage conditions,
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especially the multiple-type damage cases (see Fig 8.1). The difference between the

behaviors of the models and real physical structures is also a crucial issue. Various models,

or even combinations of models, should be employed to simulate the effects of a particular

type of damage condition on the vibrational signatures of the structure. As demonstrated

in Section 8.4, the reference value approach used in the proposed diagnosis systems can

suppress the effects of the problem, but only to a certain level.

Another potential difficulty is the problem of noisy sensory data. Optimizing the

performance of the diagnosis system by employing the proposed performance-based

design methodology should handle the problem since properly trained neural networks

have the generalization ability to deal with noisy data (see Chapter 3). However, the effect

of noisy data on the performance of the diagnosis system in real world applications is also

another topic that needs further investigation.

Occasionally a neural network-based diagnosis system has to classify types of

damage that it has never been trained for, and these damage cases certainly would lead to

incorrect diagnosis by the diagnosis system. A subsystem that can identified unseen

damage cases, or unseen data patterns, should be developed and integrated into each

diagnosis system (see Fig 8.2) in order to identified these types of damage. This subsystem

may be an unsupervised learning neural network (see Section 2.3), a vector quantization

unit, or any clustering unit that has the ability recognize unseen data pattern. Future

research in this area is also recommended.

Problems related to variable environment, such as the change of stiffness or

damping of structural materials due to seasonal temperature, could cause inconsistent

performance by the diagnosis system. Employing several reference data sets for several

testing conditions can lessen this problem. The problem of deteriorating or aging

structures can also be avoided by regularly updating the reference data set to cope with

the change of structures. However, it is essential that the updated reference input pattern

is created from the responses of structures with no damage. In practice, the pattern can be
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Figure 8.2: Recommended approach for detecting unseen damage case.
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updated whenever a human inspection, or other types of major inspection, indicates that

the structure has no damage.

8.6 Conclusion

Combining global and local diagnosis, as demonstrated in Chapter 5, considerably

improves the practical feasibility of multiple-point damage diagnosis in comparison to

other existing neural network-based approaches. The combined approach also has more

potential for large-scale problems since it can be easily scaled up. Preliminary results

obtained with neural network-based diagnosis systems for multispan beams (Chapter 6, 7)

demonstrate potential. These systems can also be employed as a basis for designing

diagnosis systems for other types of engineering structures.

Although the preliminary feasibility study shows promising results, the

performance of the neural network-based diagnosis system on real world applications has

not yet been examined. Difficulties in developing good simulation models of large-scaled

civil engineering structures, and the extensive amount of possible damage states that the

structures involve, are the major practical problems of this damage diagnosis approach.

This problem may not be overcome in the near future, and it may result in limited

applicability of this approach in the field of civil structures. However, this neural network-

based damage diagnosis approach can also be applied to smaller-scale problems in other

engineering fields such as mechanical engineering where the training data from real

structures is available, or when good simulation models of the structures are easier to be

developed. The approach is also a strong candidate when remote sensing is required. For

example, the damage diagnosis of small-scaled space structures, under-water structures, or:

structures in hazardous environment would benefit from this approach.

It is also very essential to note that, although there are recent successes in

developing automated damage diagnosis approaches, the importance of human inspection

should not be diminished. There are always unexpected damages that is able to interfere
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operation of the automated system. There also may be deficiencies in the diagnosis

systems itself. The performance of these "intelligent" systems is only as good as the

knowledge employed in developing the systems. Therefore, human inspection is always

the first option, and automated damage diagnosis systems should be considered as a

supplement to human inspection.

8.7 Recommended Research Topics

Even though the results from this research are promising, additional research and

development is needed before the approach can be proposed for application to real

structures. The research issues of significant importance are:

- the application of other data preprocessing strategies and supervised-trained

neural networks.

- the problem of modeling real physical structures.

- the application to structures with multiple-type damages.

- the problem of noisy data.

- the methodology for detecting unanticipated damage cases.

- the feasibility of neural network-based approach on real large-scaled applications.

- the significance of the training and testing data to the performance and training

efficiency.
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Appendix A

Mode Shape Compilation Process

When the ambient excitation and mode shape approach is employed, a mode shape

compilation routine is needed for creating the mode shapes that correspond to various

damage conditions of the monitored structure. The mode shapes are then used as input

patterns for the diagnosis system. Details of how this mode shape compilation routine

works are demonstrated as follows.

Firstly, given the ambient excitation, the time-displacement free vibration data

from the sensors located at the interested parts of the structure is collected. Assuming that

the time-displacement free vibration data, x(t), from a specific sensor is recorded during

the time period T and then passed through an analog-to-digital converter to generate the

discrete time series {xr}, r = 0, 1, 2, ..., (N-1). The Fast Fourier Transform (FFT) is then

used to calculate the Discrete Fourier Transform (DFT) of this time series, (Xk), k = 0, 1,

2, ..., (N-1), and hence find the spectral estimate

T
sc(wk) - XIXk

where Xk is the DFT of ({X}, and Xk is the complex conjugate of Xk . These spectral

estimates are then smoothed in order to improve their statistical reliability by a spectrum
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smoothing routine in MATLAB (based on the method suggested by Newland, 1993)

before being used for mode shape compilation. Since the sampling interval is set at 0.01

second, the Nyquist frequency is set to be 50 Hz, which well covers the frequency range

of interest (Newland, 1993, suggests Nyquist frequency to be at least twice the frequency

of interest). The time series signal from all sensors is filtered to remove frequency

components over 50 Hz in order to avoid the effect of aliasing when the signal is used for

creating spectral estimates. The frequency resolution is set at 1 Hz, and the maximum

effective bandwidth of the calculation is set at 0.5 Hz. The ratio of the standard deviation

of measurement to the mean of measurement is set at 0.3, and the required measurement

length is determined to be 20 seconds. The smoothing process involves averaging every 11

adjacent spectral estimates, and each value of spectral estimates is the result of smoothing

over 0.5 Hz. The effective frequency range of the spectral estimates is from 0 to 50 Hz,

which also means the spectrums well cover the response of the first 3 modes of vibration

of the beam model. Finally, the smoothed spectral estimates are then employed in the

mode shape compilation process.

The amplitudes of a particular peak of various spectral estimates, which are

created from the time-response data from sensors located at various locations of the

structure, are then compiled to create the particular mode of vibration of the structure.

The frequency corresponding to the particular peak is considered as the corresponding

modal frequency. For example, the amplitudes of the first peaks of all spectrums can be

compiled to create the first mode of vibration of the structure, while the amplitudes of the

second and the third peaks can be compiled to create the second and the third mode

respectively. Figure A. 1 illustrates the process of the mode shape compilation routine.
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Appendix B

Frequency Transfer Functions of Linear Systems

Figure B. 1 demonstrates the beam model of a middle span of a multispan beam

model. When the excitation of the beam is generated outside the area of the span, it can be

assumed that moment xl and x2, which are the moment at the left and right support

respectively, are the only excitations on the span. Assuming that the vertical displacement

at a specific location of the span, y, is the output of interest, a linear system with 2 inputs

and 1 output can be created to represent the relation between input and output as shown

in Fig B.2 (Newland, 1994). The frequency transfer functions, Hl(w) and H2(w), can be

used to represent the linear system. Given the measured input and output data during a

time period, the frequency transfer functions between the inputs and the output can be

constructed.

Using Convolution Integral Method for a linear system (Newland, 1994), the

output y can be determined from

y(t) = Pa h(t - r) x,(r) dr + Pa h2(t-r) x 2 (r) dr

where hl(t) and h2(t) are the frequency transfer functions as function of time t (or the unit

impulse response functions). If we define
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Figure B. 1: A middle span of a multi-span beam.
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8 = t- t,

output y can be represented as

y(t) = h,(O) xl(t-0) (-dO) + 2 h2 9) xt(t-9) (-dO) ,

= Jo h (0) x, 1(t- ) dO + 0 h2(9) x2(t-9) dO.

Since h(Q) = 0 for e < 0 (there is no output before the impulse), the lower limit of the

integral can be extended from 0 to -a,

y(t) = h (0) x (t - ) dO + f h2(0) ) x 2(t-O) dO .

(B. 1)

The cross-correlation between the outputy and an input x, can be demonstrated by

Rxy(r) = E[x(t)y(t+ r)]

(B.2)

Substitute Eq. B. 1 into B.2 gives

RxIy(r ) = E[Xl(t)tar hl(O) xl(t+r-0) dO + Xl(t)a h2(0) x2(t+r-O) dO] .

Since x1(t) is not a function of 0, it may be moved under the integral signs, and the

averaging process is carried out to give

Rx, y( ) = I hl(O) E[Xl(t)X(t+ + -6)] dO + I'a h2 (0) E[X,(tX 2 (t+ - 0)] dO .

273



Since the autocorrelation of input

Rx (r) = E[x(t) x(t +r)]

and the cross-correlation between input and output

Rxy(r) = E[x(t)y(t+r)] ,

the cross-correlation between input x,(t) and output y(t) is

Rxl( ) (ar hi(0) Rx, (r - 9) dO + " _ h2 (0) Rxx2 (r - ) dO

(B.3)

Equation B.3 expresses the cross-correlation between input xl(t) and output y(t) in terms

of the autocorrelation of x (t), the cross-correlation between x,(t) and the other input x2(t),

the frequency response function between xi and y (hi(t)), and the frequency response

function between x2 and y (h2(t)).

Performing the Fourier transform of both sides of Eq. B.3 gives

Sx, (o)e a I h, (0) R (-r - ) d + f h2 () R ( -9) de0
2;r X1 L-a j X2

= t _ dO hl(O)e oe w t dr Rx.
2+ da -a

+ dO h,(0 )e dr2 I -a -a

(r - O)e" (• - o)

Rxxx (r - O)e"•(5 - 0)

(B.4)
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The integrals with respect to T have constant 0. If (T-6) is replaced by ý, then dr becomes

d4. Since

Sx () =

Sx() -=
SXY (0) 1 la

Rx (r)e""' d r , (B.5)

(B.6)

and

H(o,) = t h(t) e'dt . (B.7)

Eqs. B.5 and B.6 can be employed to evaluate integrals in Eq. B.4 with respect to ý.

Equation B.7 is then used to evaluate integrals in Eq. B.4 with respect to 0 that still

remains. Then we obtain

Sxy (c) = H, (o)Sx, (c) + H2 (w)Sx2 (co)

When the system has N separate inputs, of which xr(t) is a typical one, the system can be

represented by

N
Sxy (c) = Z H, (ow)S .x, (o) , (B.8)

where

Sx, x Sxr

For uncorrelated inputs, it can be shown that
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Sxy ,) = H(w)Sx(ow)

. H() S()

For the linear system with two correlated inputs (x,, x2) and one output (y) as shown in

Figs B. 1 and B.2,

Sx, (c) = H, (o)Sx, (c) + H, (c) SX (X2 )  ,

SX2, (o) = H2 (o)SX2 (o) + H, ()SXxl (o)

The frequency transfer functions can then be demonstrated by

H,(o) = S s
SXI X -X X2 SX2XI

H12(0) = H SS2Y - SX I, B.9)

These equations prove that the frequency transfer functions of a linear system can be

constructed from spectrums and cross-spectrums of the inputs and the corresponding

outputs of the system. These spectrums can be created by performing discrete fourier

transform on the discrete time history data of the inputs and output to create fourier

spectrums, and then using these fourier spectrums to create the spectrums and cross-

spectrums.

Assuming that x(t) and y(t) are recorded during the same time period T, and then

passed through an analog-to-digital converter to generate the discrete time series {Xr} and
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(Yr), r = 0, 1, 2, ..., (N-1). FFT can then be used to calculate the DFT's (Discrete Fourier

Transforms) of these two time series, ({X and ({Yk, k = 0, 1, 2, ..., (N-1). Spectral

estimates can then be demonstrated as

T T
S=(Wk) I- XXk 2 x k XYk k

y- ( 2 kX y - k (B.10)

where Xk is the complex conjugate of DFT Xk , and Yk* is the complex conjugate of

DFT Yk . The spectral estimates will satisfy equations above whether or not there is noise

present in the output process y(t), and whether or not the system is linear (Newland,

1993).

For accurate assessment of frequency transfer functions, spectral estimates have to

be properly smoothed in order to improve their statistical reliability before being

substituted into Eq. B.9. Smoothing spectrum routine in MATLAB is employed for this

purpose. Since the sampling interval is set at 0.01 second, the Nyquist frequency is set to

be 50 Hz, which well covers the frequency range of interest (Newland, 1993, suggests

Nyquist frequency to be at least twice the frequency of interest). The time series signal

from all sensors is filtered to remove frequency components over 50 Hz in order to avoid

the effect of aliasing when the signal is used for creating spectral estimates. The frequency

resolution is set at 1 Hz, and the maximum effective bandwidth of the calculation is set at

0.5 Hz. The ratio of the standard deviation of measurement to the mean of measurement is

set at 0.3, and the required measurement length is determined to be 20 seconds. The

smoothing process involves averaging every 11 adjacent spectral estimates, and each value

of spectral estimates is the result of smoothing over 0.5 Hz. The effective frequency range

of the spectral estimates is from 0 to 50 Hz, which also means the spectrums well cover
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the response of the first 3 modes of vibration of the beam model. The smoothed spectral

estimates are then employed in creating frequency transfer functions. Detail on smoothing

spectral estimates and methods for evaluating the quality of frequency transfer functions,

which are created from spectral estimates, is discussed in Newland (1993).
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Appendix C

Relation of Vibrational Signatures
and Damage of Bending Beam

C.1 Relation of Mode Shapes and Damage

Figure C. la shows a beam with flexural rigidity EI(x) and mass m(x) per unit

length. The beam is shown as simply supported, but other support conditions are equally

admissible. Transverse vibration is allowed under the action of a distributed force p(x,t).

The transverse displacement at any point along the beam is presented by u(x, t), which is a

function of both the spatial coordinate x and time t.

p(x, t)

U

t x u(x, t)

S- - - 1a v

xI- dx
La

(a)

(c)

Figure C. 1: Transverse vibration of a beam (Humar, 1990).
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A small beam element of length cd is shown in Fig C. lb in its deformed position

and the forces acting on the element are identified in Fig C. Ic. These forces consist of an

external force pdx ; the inertia force m02u/£ t 2dx ; the shear force V and the moment M

on the left-hand face of the element; and the shear force V + £ V/1 xdx and the moment

M + a M/8 xdx on the right-hand face. The inertia moment caused by angular

acceleration of the element, and the damping force, are neglected.

The infinitesimal element is in equilibrium under the forces and moments shown in

Fig C. Ic. The shear forces, which act in the direction perpendicular to the elastic axis, are

slightly inclined to the vertical. For small rotation, their vertical components can be taken

as equal to the shear force values. Equilibrium of the element in the vertical direction gives

£ V d 2uad -mI 2•d + pCh = 0
1dx t2 (C.la)

or
£ V 02U

-m +p=O.
9 x dt2 (C.lb)

Equating the sum of moments about the left-hand face to zero gives

( 0 Vd9d 02U dd 0 M
+ cbcIpcph--m aýd-+ M+ - d-M= 0.L x 2 £t2 2 £x

(C.2)

On neglecting the higher order terms, Eq. C.2 becomes

£iM
V+-=0

£ x (C.3)

From elementary beam theory,

92u
M = El t' 

(C.4)
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Substitution of Eq. C.4 into C.3 gives

V=a x, x2 ) (C.5)

Differentiating Eq. C.5 and then substituting in Eq. C. Ib gives

d2 1/,2u 19 2u
--- E-l + m -p.Sx2 X 2)+M t2  (C.6)

Equation C.6 is the equation governing the transverse vibration of the beam. To

obtain a unique solution to this equation, four boundary conditions and two initial

conditions must be specified. For a simply supported beam, the four boundary conditions

are

u=0 at x=O0

u= 0 at x=L (C.7)

and
d2u

El - 0 at x=0
O x2

El x2-0 at x = L.
O x2  (C.8)

Other type of boundary conditions can as easily be identified for other types of supports.

The equation of undamped free transverse vibrations of a beam is obtained from

Eq. C.6 by setting p = 0:

82 E/ 2U 19 2UE +m -0.
Ox 2j 2a t 02 (C.9)

This is a fourth-order linear homogeneous partial differential equation. Assuming

u = f(x)g(t), (C. 10)



wheref(x) is a function of x alone and g(t) is a function of t alone. Substitution of Eq..

C. 10 into Eq. C.9 gives

d 2  f d2 f(x) d 2g(t)
g(t)-E 2I+mf(x) - 0

2 ) dt 2  (C.11)

or
1 d2 (EI d2f(x)h -1 d2g(t)

mf (x) dr2  dr2 ) g(t) dt2  (C.12)

The terms on the left-hand side ofEq. C. 12, including m and EI, are all functions

of x alone, while the terms on the right-hand side are functions of t alone. The equality can

hold only provided that each of the two sides of the equation is equal to a constant,

normally referred to as a "separation constant." Eq. C.12 leads to two separate equations,

as follows:

d2 g(t)S+ w g(t) = O
dt2  (C.13)

d2 (E d2 f (x) f (
dC2 ) f) (C.14)

where w2 is used as the constant. The solution of Eq. C. 13 is given by

g(t) = A sin wt + B cos wt (C. 15)

where A and B are constants that can be determined from the two initial conditions: the

initial displacement and velocity profiles of the beam.

Equation C. 14, along with the boundary conditions given by Eq. C.7 and C.8,

represent an eigenvalue problem.
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d( d f(x)2 2Mf(X)

C&(C.14)

with the boundary conditions

f(x) = 0 at x=

f(x) = 0 at x=L (C. 16)

and

d 2f(x)El =2f  0 at x = 0

d2f(x)El d  = 0 at x = L.
cdr2 (C.17)

A nontrivial solution for Eq. C. 14 is possible for special value of w2. There is an infinite

number of such values separated by discrete intervals. These values are referred to as

"eigenvalues" of the system. The square root of an eigenvalue is known as the "frequency"

of the system. Corresponding to each eigenvalue, there is a solution forf(x), called an

"eigenfunction" or a "mode shape," which also satisfies the boundary conditions of Eqs.

C.16 and C.17.

Given a specific distribution of El over the length of the beam, EI(x), the solution

of the eigenvalue problem of Eq. C. 14 is a specific set of "mode shapes" and their

corresponding "frequencies," {f1 (x),w, }~ . In another perspective, if a specific EI(x) is

defined as a certain damage condition, the corresponding f, (x),w, JI1 is the particular set

of mode shapes and their corresponding frequencies that corresponds to the damage

condition. Figure C.2 illustrates the effect of the change of EI(x) to a mode shape of the 2-

span beam demonstrated in Chapter 6.
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The normalized mode shape of mode no.1

Length of the beam (m)

- No damage

....... Damage at the 6th beam element of the left span (30% of El reduction)

Figure C.2: Change of the 1st mode shape due to a damage condition
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C.2 Relation of Response Spectrums and Damage

Response spectrums at proper locations of structures contain as much information

about the condition of the structure as mode shapes do. The only difference is that the

response spectrums are normalized by the excitation, whereas the mode shapes are

normalized by their amplitude (see Appendix A). This makes mode shapes independent of

excitation. Figure C.3 illustrates the effect of the change of EI(x) to a response spectrum

of the 2-span beam shown in Chapter 6.

The AutLnacn~ ru of Acaeration Reswanse of DOF 9

0 5 10
Frequency (Hz)

- No damage

...... Damage at the 6th beam element of left span (30% of El reduction)

Figure C.3: Change of the response spectrum of DOF 9 due to a damage condition.

C.3 Relation of Frequency Transfer Functions and Damage

Figure C.4 shows a beam similar to the one shown in Fig C.la, but it is now under

the action of the moment at the left-end of the beam M1. The beam has flexural rigidity

EI(x), damping c(x), and mass m(x) per unit length. The transverse displacement at any

point along the beam is presented by u(x, t).
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u(x,t)

Ml t M2

-AdxK
x

L

Figure C.4: Transverse vibration of a beam with moment at the left support.

The equation of motion of the beam is still based on the general equation of

motion of the transverse vibration of bending beam described by Eq.C.6,

,92 1,/2U 02u
l(EJi xr+m 0,

Sx2 p X2 ) '=,9 X2)9t2. 1(C.18)

where p = 0 since there is no distributed force on the beam. The four boundary conditions

are

u=O at x=O

u = 0 at x = L (C.7)

and
d2u

EI - M 1  at x=0
c x2
d2U

El - 0 at x = L,
F 9x 2  (C.19)

which provide the presence of the moment M, at the left support.

Given a specific distribution of El over the length of the beam, EI(x), the solution

of the eigenvalue problem of Eq. C. 14 is still the specific set of "mode shapes" and their

corresponding "frequencies," {f, (x), w, },_ of the beam.
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Now consider the force response of the beam,

u(x, t) = f, (x)y, (t).
i=1 (C.20)

The mode shapes are normalized such that

• f, (x)fj (x)dc = LS6 (C.21)

where 35 = 0 except when i =j, when it is unity. Substitute Eq. C.21 into Eq. C. 18 gives

a 2 ( 2f(x)
1 9 2

i= 8x dxZ
2y, 0.+ mf(x) .

(C.22)

Multiplying Eq. C.22 by f/x), and integrating over x, give

d92y 1  a {x2 a

9 t 2 mL 0 i x
1•_2f, (X)

El
d xZ Jf(x)y}= 

0

2 + w (E(x),m, L, j)y =0
g 

=

(C.23)

where the undamped natural

w2(EF-(x),m,L,j)y,

frequencies {j = i

1 f t 2 (
-mL Oi d= x2

of the beam are given by a function

•(x) ,j(x)y,}
(C.24)

Substitute Eq. C.20 into Eq. C. 18 gives
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a, 02f. (x)
EI(x) x, (t)x'29 Y Sx = 0

(C.25)

Multiplying Eq. C.25 byf(x), and integrating over x, give

E(x) x (x)y, (t f (x) Mr (t)d x = 0

y (t) f (x)E(x) dx = Mx (t) fj (x)dc ,

y (t) = M (t)WI L
0

42f 2 (X) f 1(x)EI(x)}dx
,9 X2

Since

{d2ff(x))
wi 0 x2 fj (x) El(x) ý

J)= M(t)Q f(x),EI(x),wL)

y1(t) = If(t)Q,(f 1()E(x),ET·x),w L , x=O.

Assuming that the moment at the left support of the beam is

M, (t)= e't,

Eq. C.20 becomes
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, x = 0.

(C.26)

(C.27)

(C.28)

Of,(x)d



at

u(x,t) = H(x,w)e'wt = fi (x)yi (t),i=1 (C.29)

where H(x,w) is the frequency transfer function when the response u(x, t) is measured at x

for unit harmonic moment eiwt applied at the left end of the beam. Therefore, from Eqs.

C.25 and Eq. C.23, it can be concluded that

H(x, w) = 2f (x)Qi (f (x), E(x), w, L).
i=1 (C.30)

Given a specific distribution of El over the length of the beam, EI(x), the solution of the

frequency transfer function of the beam, when the response u(x, t) is measured at x, exists

(see Eq. C.30). In another perspective, if a specific EI(x) is defined as a certain damage

condition, the corresponding IH(x, w)oL 4o is the particular set of frequency transfer

functions that corresponds to the damage condition.

Figure C.5 illustrates the effect of the change ofEl(x) to a frequency transfer

function, H(w), corresponding to the response at a location of the left-most span of the 4-

span beam demonstrated in Chapter 7.
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The Frequency Trnsfer Function of DOF 3

0 5is 01 25
Frequency (Hz)

-- No damage

...... Damage at the 3rd beam element of the leftmost span (30% of El reduction)

Figure C.5 Change of the frequency transfer function of DOF 3 due to a damage condition
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