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Abstract

The primary objective is to explore the potential of neural networks for structural damage
diagnosis. To achieve this objective, a general neural network architecture for structural damage
diagnosis and a methodology for designing the components of this architecture are formulated and
evaluated. The main components of the architecture include i) the physical system of interest and
its model ii) the data preprocessing units and iii) neural networks that operate on the processed data
and produce a prediction of the location and magnitude of damage. Important design issues are the
choice of variables to be observed, the methodology for choosing the excitation and type of
vibrational signature for the monitored structure, the actual configuration of neural networks, and
their training algorithm. These design issues are first examined in detail for the case of single-point
damage, and the evaluation is then extended to multiple-point damage. The diagnosis strategy is
based on first identifying which substructures are damaged (global diagnosis), and then examining
independently each individual damaged substructure to establish the location and extent of damage
(local diagnosis). Global diagnosis requires a neural network for predicting which substructures are
damaged. Local diagnosis employs two neural networks for predicting the locations and extent of
damage at each location within a substructure. The total number of local diagnosis systems is equal
to the number of substructures.

The evaluation phase is carried out with beam-type structures. Firstly, a single-point
damage diagnosis system for a 2-span bending beam model is developed and evaluated. The second
step considers a 4-span mode! with multiple-point damage. Numerical modeling of the structure
and computation of the response are carried out with MATLAB. Damage is introduced by
reducing the bending resistance at specific locations. Simulation studies are performed to evaluate
the performance for different choices of excitation and types of input. Observation based on
simulation studies indicates that the global and local approach considerably improves the practical
feasibility from the other existing neural network-based approaches. Difficulties in developing good
simulation models of large-scaled civil engineering structures, and the extensive amount of possible
damage states that the structures involve, are the major practical problems, and may result in
limited applicability of this approach in the field of civil structures.
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Chapter 1

Introduction

1.1 Neural Network-Based Damage Diagnosis AppA roach

Although substantial research has been carried out on the topic of damage
diagnosis of structures, the most reliable diagnostic techniques are still largely based on
human expertise (DARPA, 1988). Since human-based structural damage diagnosis
requires human experts to look for any signature that could identify damage of the
structure, problems arise due to human errors and the scarcity of qualified human
diagnosticians (Pham, 1995). There are also situations for which the human-based
approach is not practical such as damage diagnosis of structures in space, or structures in
hazardous environments. Recently, the use of Knowledge Based Systems (KBS) to
support human judgment has been proposed (DARPA, 1988 and Garrett, 1992), but this
technology is also limited. Developing a KBS is very time-consuming (DARPA, 1988).
Moreover, KBS's are not very adaptable and robust, and are too slow to be operated in
real time (Pham, 1995). Therefore, a better non-human based approach is still needéd.

By definition, a neural network consists of a number of units called " processing
elements" which are connected to and interact with each other. The activation of a
network starts when there is input to any unit. The weighted summation of the inputs for a
unit is passed through a function called "transfer function" and the output of this function

is provided at the output connection, which can be connected to the input connection of
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any other unit including itself. The activation process of each unit will continue to execute
until there is no more input, or until the output converges to some value. More details
about the architecture and operation of neural networks are presented in Chapter 2 and 3.

Considering the ability of artificial neural networks to approximate functions
(Cybenko, 1988, 1989; Hornik, 1989; Dyn, 1991; Park, 1991), the pattern mapping aspect
of structural damage diagnosis appears to be a promising application area for neural
networks. If artificial neural networks can extract knowledge from remotely collected data
in an effective way, they can be incorporated in a computer based diagnosis system that
can complement existing human diagnosis approaches.

Neural network-based damage diagnosis approach has been studied recently by
several researchers. Elkordy (1992, 1993), Rehak (1992), and Liu (1995) determine
changes in certain mode shapes of the damaged structure and use this information to
estimate the location and level of damage. Use of the frequency-domain properties of the
physical structure, referred to as the "vibrational signature" of the structure, transfers the
problem to static pattern mapping between changes in mode shapes and types of damage.
In this case, any type of network for function approximation (as discussed in Chapter 3)
can be applied to solve the mapping problem.

Elkordy (1992, 1993) trained a multilayer network with analytically generated
states of damage to diagnose damage states obtained experimentally from a series of
shaking-table tests of a five-story frame. The physical and analytical models are defined in
Fig 1.1. Damage states are simulated using a variety of smaller areas of bracing members
in the first two stories. Tables 1.1 and 1.2 contain the damage states of the testing and
training damage cases respectively. The performance of the neural network-based
diagnosis system that is optimized for the analytical model was examined and found to be
good for detecting a limited number of damage conditions of the real frame (see Table

1.1).

20



1194 cm

1194 cm

1194 cm

1194 cm

Figure 1.1: The physical and analytical model of the frame (Elkordy, 1992).
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Case Number Effective Bracing Area (cm?) Reduction of Bracing Area (%)
First Floor Second Floor First Floor Second Floor
(a) First Floor Damage Class
1 2.28 3.4 33 0
2 1.7 34 50 0
3 1.15 3.4 66 0
~(b) Second Floor Damage Class
4 34 2.28 0 33
5 3.4 1.7 0 50
6 34 1.15 0 66
) Combined Damage
7 2.28 2.28 33 33
8 1.7 1.7 50 50
9 1.15 1.15 66 66
10 0.484 0.960 66 33

Table 1.1: Damage cases of the testing data set (Elkordy, 1992).

Case Number | Reduction of Bracing Area (%) Target Diagnosis?
First Floor Second Floor First Floor Second Floor
1 10 0 1 0
2 30 0 1 0
3 50 0 1 0
4 60 0 1 0
5 0 10 0 1
6 0 30 0 1
7 0 50 0 1
8 0 60 0 1
9 30 30 1 1
10 50 50 1 1
11 60 60 1 1

*Key: 1 = damage exists;, 0 = no damage exists.

Table 1.2: Damage cases of the training data set (Elkordy, 1992).
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Using mode shapes to identify damage is only one approach. In the mechanical
engineering field, vibrational response spectrums have long been used to detect damage of
rotating tools and machines. This approach has been followed by Wu et al (1992) and
Maclntyre et al (1994). Wu utilized a multilayer network to detect changes in the response
spectrum of the numerical model of a 3-story shear building, and to cbrrelate these
changes with corresponding damage stafes. The model is subjected to earthquake base
acceleration, and the Fourier spectra of the computed relative acceleration time histories
of the top floor are used in training the neural network. Damage is defined as a reduction
of shear stiffness of a specific story. Only one story can be damaged at a time. The
illustration of the model and data processing procedure are shown in Fig 1.2. Figure 1.3
shows the neural networ_k employed for damage diagnosis. Tables 1.3 and 1.4 show the
damage cases of the testing and training data sets respectively. The results indicate good

performance of neural network in detecting damage of the model.

Sensor (acceleration)

N —

. Acceleration (cm/sec?)
gshbb uanss

/77 7 7 7 77

g 10
500
400 + 8 [1g
300
% 200+ g 06+
& 100} %
. Y 04r
-100} .
200} 02+
300f
400 F < e -
500 . X . . 0 3 10 15
° N n % “© %0 O Prequency (Hz)
Time (sec) | Input to nearal network |
Acceleration from El Centro earthquake

May, 18, 1940 (SE component),

Figure 1.2: The model and data processing procedure (Wu, 1992).
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Figure 1.3: The multilayer network for damage diagnosis (Wu, 1992).

Case Number Reduction of Shear Stiffness (%)
1st Story 2nd Story 3rd Story
1 0 0 0
2 50 0 0
3 75 0 0
4 0 50 0
5 0 75 0
6 0 0 50
0 0 0 5
Table 1.3: Damage cases of the testing data set (Wu, 1992).
Case Number Reduction of Shear Stiffness (%)
1st Story 2nd Story 3rd Story
1 0 0 0
2 60 0 0
3 0 60 0
4 0 0 60

Table 1.4: Damage cases of the training data set (Wu, 1992).
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There are also other works that involve utilizing other vibrational signatures.
Szewczyk and Hajela (1992, 1994) model the damage as a reduction in the stiffness of
structural elements that are associated with observed static displacements under prescribed
loads. They performed simulation of a frame structure model with nine bending elements
and 18 degrees of freedom (X-Y dis‘plﬁcements and rotation at each node). A variation of -
multilayer feedforward network was utilized to detect the damaged frame element. Barai
and Pandey (1995) carried out a study on damage detectidn in a bridge truss model using
multilayer network with simulated damage states, each represented by one damaged truss
member. Discretized time history response at various locations of the truss due to ﬁ single-
wheel moving load is used as the vibrational signature.

All of the research studies mentioned have been restricted to narrowly defined
application areas. Issues related to the architecture and design strategy for a general neural
network-based damage diagnosis system have not been addressed. Also, the efforts have
focused on very small-scale problems that involve very limited number of possible damage
states, and it is not obvious that the methods can be scaled up to deal with larger-scale
problems. In most cases, at a particular instant in time, damage is assumed to occur at a
single location (single-point damage condition) in order to reduce the complexity of the
problem (Wu, 1992; Szewczyk and Hajela, 1994; Barai and Pandey, 1995). The treatment
of multiple-point damage has been dealt with in 5 very limited way (Elkordy, 1992, 1993),
and the method(;logy for dealing with multiple-point damage has not been adequately
developed.

Based on our review of the literature, the important research issues concerning the
applicability of neural networks for damage diagnosis that need to be addressed are as

follows:

- The appropriate general architecture of a neural network-based structural

damage diagnosis system.
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- A comprehensive design strategy for neural network-based diagnosis system.
- The detection of simultaneous damage sources.
- The scalability of neural network-based diagnosis systems to large structures.

- The error introduced by representing the actual physical' structure with an

ideological numerical model.

- The choice of data such as. mode shapes, response spectrums, and other

vibrational signatures as input for damage classification.

- The relationship between the data collection procedure and the performance of

the diagnosis system.

1.2 Objective and Scope

The primary objective of this research is to explore the potential of neural
networks for structural damage diagnosis. To achieve this objective, a general neural
network architecture for structural damage diagnosis and a methodology for designing the
components of the architecture are formulated and evaluated. _

The main components of the general architecture include i) the physical system of
interest and its model ii) the data preprocessing units and iii) a collection of neural
networks that operate on the processed data and produce a prediction of the location and
magnitude of damage. Important system design issues are the choice of variables to be

observed, the methodology for choosing the excitation and type of vibrational signature
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for the monitored structure, the actual configuration of the neural networks, and their -
training algorithm. These design issues are first examined in detail for the case of single-
point damage condition, and the evaluation is then extended to the case of multiple-point
damage. _

The evaluation phase is carried out with beam-type structures. As a first step, a
single-point damage diagnosis system for a highly-idealized 2-span bending beam model is
developed and evaluated. Two choices of ‘excitation and vibrational signature are
considered. The first strategy applies ambient excitation to the numerical model of the
structure, and then takes the mode shapes as input patterns for the neural networks which
estimate the location and magnitude of damage. The second strategy applies a prespecified
excitation to generate the model response, and employs the resulting response spectrum as
input for the neural network system. The numerical modeling of the structure and the
computation of the response are carried out with MATLAB. Damage is introduced by
reducing the bending resistance at a sﬁeciﬁc location. Simulation studies are performed to
evaluate the performance for the different choices of excitation and type of input.

The second step in the evaluation phase considers a 4-span bending beam model
with multiple-point damage. The diagnosis strategy is based on first identifying which
spans are damaged (global structural diagnosis), and then examining independently each
individual damaged span to establish the location and extent of damage (local structural
diagnosis). Global structural diagnosis requires at least a set of neural networks for |
predicting which spans are damaged. Local structural diagnosis of each substructure
requires at least two sets of neural networks for predicting the locations and extent of
damage. The number of local structural diagnosis systems depends on the number of
substructures.

Two choices of excitation and vibrational signature are employed for global
structural diagnosis. The first choice uses ambient excitation to generate the response of

the model, and takes the corresponding mode shapes as the input pattern for the neural
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networks. The second choice employs a prespecified excitation and uses the
corresponding response spectrum as the input pattern.

Local structural diagnosis employs a prespecified excitation to create the response
of each substructure, and uses the frequency transfer functions of the substructure as input
for the neural networks that perform damage diagnosis on the substructure. |

Based on the results of the evaluation studies, a design methodology for a
comprehensive neural network system for structural damage diagnosis is formulated.
Results of additional studies on the performance of various configurations of multilayer
feedforward network, with back propagation learning algorithm, are utilized to establish
guidelines for the choice of appropriate conﬁguratiohs for the individual neural networks
contained within the general architecture. Feasibility tests are also performed to explore
the practical a;fplicability of this diagnosis approach.

Two types of neural networks, one based on the multilayer feedforward-back
propagation learning model and the other on radial basis functions, are appropriate for
pattern classification. This study employed only the multilayer feedforward networks for
the simulation studies since the lack of a-priori knowledge of the damage pattern mapping
problem do not suit Radial Basis Function Network. Data on the performance of both

types of networks is included in this document for convenient reference.

1.3 Organization

In Chapter 2, the basic concepts and definitions of artificial neural networks are
described, several well-known architectures and training algorithms are demonstrated, and
the neural network applications in civil engineering are briefly reviewed. Neural network
and other information processing approaches, such as Knowledge Based Systems, are
compared. The relation between neural networks and approximation schemes are also

discussed.
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Chapter 3 contains a detailed treatment of neural networks for function
approximation, an application area of considerable interest for civil engineering.
Performance data are presented and discussed for both Multilayer Feedforward Networks
and Radial Basis Function Networks. The optimum architectures and training strategies
for a range of regression and classification problems are also investigéted.

Feedforward neural networks, including Radial Basis Function Networks, are
discussed in terms of probability and approximation theory in Chapter 4. Probabilistic
models of feedforward networks with back propagation learning algorithms and radial
basis function networks are investigated. This knowledgé provides engineers with a
different perspective of the theory of neural networks, and makes it easier to understand
and develop a neural network-based system.

Chapter 5 is concerned with the application of neural networks to structural
damage diagnosis. A general architecture of neural network for structural damage
diagnosis is presented, and methodologies for designing the individual components of the
system for both single-point damage and multiple-point damage are proposed.

An application of a neural network based damage diagnosis system to a 2-span
beam with single-point damage is developed and evaluated in Chapter 6. Chapter 7
describes the case of multiple-point damage diagnosis for a 4-span beam. These
investigations provide a general understanding of neural network based damage diagnosis
and the difficulties involved in applying this approach to real structural problems. Chapter
8 summarizes these findings, and suggests strategies for overcoming some of these
difficulties. The practical applicability of this diagnosis approach is also discussed, and

further research topics are recommended.
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Chapter 2

Foundation of Artificial Neural Networks

2.1 Background History
Work in the neural network field began about 50 years ago. The effort during this

time period can be considered to have three distinct phases (DARPA, 1987): an early
phase, a transition phase, an a resurgent phase.

The early work, (1940's-1960's), was concerned with fundamental concepts of
neural networks such as Boolean logic (McCulloch and Pitts, 1943), synaptic learning
rules (Hebb, 1949), single layer Perceptron (Rosenblatt, 1962), and associative memory
(Steinbuch et al, 1963). The Perceptron generated immediate attention at that time
because of its ability to classify a continuous-valued or binary-valued input vector into one
of two classes. However, in the late 1960's, the work by Minsky and Papert pointed out
that the Perceptron could not solve the "exclusive OR" class of problems, and this finding
resulted in a substantial shift in research interest away from neural networks.

During the transition period (1960's-1980's), a small group of researchers
continued to develop a variety of basic theories that strengthened the foundation of the
field. Contributions include the Least Mean Square (LMS) algorithm (Widrow and Hoff,
1960), Cerebellum model (Albus, 1971), competitive learning (Von Der Malsburg, 1986),

and Adaptive Resonance Theory (Grossberg, 1987).
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Sfarting in early 1980's, there was a resurgence in interest for neural networks.
This resurgence was driven by the contﬁbutions made during the transition period toward
improving the understanding of the deficiencies of single-layer perceptron and extending
the theoretical work to multilayer systems. The advances in computer technology in the
1980's also provided the computation bower needed to deal with large-scale networks.
Notable contributions include feature maps classifier (Kohonen, 1982), associative
memory theory (Hopﬁeld, 1982), Boltzman machine (Hinton and Sejnowski, 1986), and
Back Propagation learning algorithm (Rumelhart et al, 1986). These topics are described

in more detail later in this chapter.

2.2 Topological Classification of Neural Networks

The word "neural" is used because the inspiration for this kind of network came
initially from the effort to model the operation of neurons in human brain. Artificial neural
networks are classified according to their topology and the algorithm that provides their
ability to learn. The topology of an artificial neural network defines the connection
between the various processing elements contained in the network. The function of a
network is determined by its connection topology and the weighting factors assigned to
- each connection. These weighting factors are adjusted by the learning algorithm during the
training phase. Artificial neural networks are also called "Connectionist Models", or |
"Parallel Distributed Processing Models." For convenience, the simplified term "Neural
Networks" is used throughout the remaining portion of this text.

Figure 2.1 shows a common processing element and its activation. A processing
element has many input connections and combines, usually by a simple summation, the
weighted values of these inputs. The summed input is processed by a transfer function
which usually is a threshold-type function. The output of the transfer function is then

passed on to the output connection of the element.
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The output of a processing element can be passed on as input to any processing
element, even to itself. Weights are used to designate the strength of the corresponding

connections and are applied to the input signals prior to the summation process.

I, = ZWJ.,.X ; Summation
i

Processing
element

'yj=f(1j) Transfer

Xn

Figure 2.1: An example of a general processing element.

A neural network contains many "processing elements," or "units," connected and
interacted to each other. Processing elements are usually clustered into groups called
layers. Data is presented to the network through an input layer, and the response is stored
in an output layer. Layers placed between the input and output layers are called hidden
layers. When a network is not organized into layers, a processing element that receives
input is considered to be an input unit. Similarly, a processing element that provides some
output of the network is called an output unit. It is also possible that a processing element
may act simultaneously as both input and output unit.

Based on topology, a neural network is classified as either feedforward or
recurrent. Figure 2.2 illustrates these categories. Feedforward networks have their
processing elements organized into layers. The first layer contains input units whose task
is only to provide input patterns to the network. Next to the input layer are one or more

hidden layers, followed by the output layer which displays the result of the computation.
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In feedforward networks there is no connection from a unit to the other units in either
previous layers or the same layer. Therefore, every unit provides information, or input,
only to units in the following layer. Since the input layer has no role other than to provide
input data, it is not included in the layer count. It follows that an N-layer network has N-1

hidden layers and an output layer.

a) Feedforward Network b) Recurrent Network

Figure 2.2: Feedforward network and recurrent network (Hertz, 1991).

Recurrent networks are networks that have connections "both ways" between a
pair of units, and possibly even from a unit to itself. Many of these models do not include
learning, but use a prespecified set of weights to perform some specific function. The
network iterates over itself many cycles, until some convergence criterion is met, to
produce an output. For example, the simplest recurrent network performs the following

computation,

xk+) = A xk) , | @21

where X(k) is the output vector at time step & and 4 is a weighting matrix. The
convergence of this type of computation depends on certain properties of the weighting

matrix.
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2.3 Learning Algorithms

Learning, or training, is the process of adapting or modifying the connection
weights and other parameters of specific networks. The nature of the learning process is
based on how training data is verified. In general, there are 3 training categories;
supervised,vunsupervised, and self-supervised.

Supervised learning requires the presence of an external teacher and labeling of the
data used to train the network. The teacher knows the correct response, and inputs an
error signal when the network produces an incorrect response. The error signal then
“"teaches" the network the correct response by adjusting the network parameters according
to the error. After a succession of learning trials, thé network response becomes
consistently correct. This is also called "reinforcement learning" or "learning with a critic".

- Unsupervised Learning uses unlabeled training data and requires no external
teacher. Only the information incorporated in the input data is used to adjust the network
parameters. Data is presented to the network, which forms internal clusters that compress
the input data into classification categories. This process is also called "self-organization."

Self-supervised Learning requires a network to monitor its performance internally,
and generates an error signal which is then fed back to the network. The training process
involves iterating until the correct response is obtained. Other descriptors such as
"learning by doing", "learning by experiment", or "active learning” are also used to denote
this approach. |

Each learning method has one or more sixb-élgorithms that are employed to find
the optimum set of network parameters required for a specific task. These sub-algorithms
generally are traditional parameter optimization procedures such as least square
minimization, gradient descent, or simulated annealing. In more complicated networks,
several types of learning algorithms may be applied sequentially to improve the learning

ability.
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Back propagation learning, the most popular for multilayer feedforward network,
is a supervised procedure that employs a gradient descent type method to update the
weighting parameters. With a gradient descent procedure, one updates parameters as

follows:

W, =W, -4V, f. 22)

where W is the vector of weighting parameters, fis the function to minimize (usually
called an "error function"), and A is a parameter called "step size" or "learning coefficient."
The advantages of this method are its simplicity and reliability. However, the method
requires more computation than others, and also tends to lock in on local minima of the
function surface rather than the global minima. The speed of convergence can be improved
by varying the step size and including a momentum term. There are also improved gradient
procedures such as Newton's method, Quasi-Newton, Conjugate gradient, and Stochastic
Gradient Descent which is the stochastic version of the gradient method. The equation for

Stochastic Gradient Descent has the following form

Wpr =Wy~ 4 (VoS +S,). @3

where S is a sequence of random vectors with zero mean. Under certain assumptions, this
sequence converges to a local minimum of f (Girosi, 1993, 1995).

Although the stochastic version of gradient method is more likely to avoid a local
minima, convergence to the global minimum is conditioned on certain assumptions. For
instance, a particular stochastic method, called "Simulated Annealing" (Kirkpatrick et al,
1983), will converge to the global minimum with infinite updating. Stochastic methods are
theoretically interesting, but they require extensive computation power and consequently

their training time is too long for large-scale applications on current hardware.
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The tasks which neural networks have to perform and the availability of training
data generally determine the appropriate type of training algorithm. In practice, there are
many criteria that have to be considered. Speed of training and degree of accuracy is
always a trade-off. Amount of available memory has to be considered when hardware is
restricted. In some case, even the characteristics of the error function have to be taken into -
account. Having so many alternatives for the type of architecture and training algorithm, it
is difficult to find the right combination for a specific application. In most cases, a number
of candidate solution need to be evaluated in order to identify the best choice. This
research provides guidelines for selecting the proper architecture and training method for

function approximation. Details are presented in the next chapter.

2.4 Review of Types of Neural Networks

As mentioned earlier, neural networks are categorized by their architecture and
learning algorithm. In this section some well-known networks are described in order to
provide further background for the neural network field.

Single and multilayer perceptrons are the simplest types of feedforward neural
network model. The single-layer perceptron was first introduced by Rosenblatt (1962). An
example of the network is shown in Fig 2.3a. A processing element computes a weighted
sum of input, subtracts a threshold, and passes the result through a nonlinear threshold

function,

fix) =0, x <0 and
) =1,x>0. 2.4)

The two possible outputs correspond to the two different classes which can be recognized
by the network. The single-layer perceptron can be used to classify a continuous-valued or

binary-valued input vector into one of two classes. Training can be done with the Least

36



Mean Sqﬁare (LMS) algorithm, which is a linear supervised training approach with
guaranteed convergence. Minsky and Papert (1988) analyzed the single-layer perceptron
and demonstrated that the network can only solve linearly separable problems like the
exclusive AND problem, but cannot handle a nonlinearly separable problem such as the
exclusive OR problem. A more detailed review of Rosenblatt's perceptron and Minsky and
Papert's analysis can be found in (Minsky and Papert, 1988).

O =sgn(w - € — wp).
Input layer

Hidden layer1

Output layer

~ (a) Perceptron that implement AND. (b) One-hidden-layer Perceptron
Figure 2.3: Perceptron.

Multilayer perceptron is a feedforward network with one or more hidden layers.
The transfer function of each processing element is the same as that of single-layer
perceptron. Although multilayer perceptrons perform better in many aspects compared to
single-layer perceptrons, especially in their ability to solve nonlinearly separable problems,
they were not very popular prior to the mid 1980's because of the lack of an efficient
training algorithm. The development of training algorithm called "back propagation" in the
mid 1980's (Parker, 1985; Rumelhart et al, 1986 and Werbos, 1974) resulted in renewed
interest in multilayer perceptrons. Back propagation is a supervised training procedure
that, although convergence is not guaranteed, has been applied successfully to many

problems such as spoken vowels classification (Huang et al, 1987 and Lippmann et al,
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1987), speech recognizer (Waibel et al, 1987), and nonlinear signal processing (Arbib,
1987). More details on back propagation are given in Chapter 3.

The Hopfield network is a one-layer unsupervised training recurrent network with
fully connected symmetrically weighted elements. Each unit functions as input and output
unit. In the initial version, all parameters had to be prespecified. This limitation is removed
in later versions where the parameters can be adjusted via gradient method such as Back
Propagation Through Time (Rumelhart et al, 1986), or Recurrent Back Propagation.
Given the input, the network iterates until it reaches a stable state (output from next
iteration does not change from the previous one), and provides the output. This type of
network can be used to solve pattern classification, associative memory, and optimization

problems.

Figure 2.4 Hopfield Network (Hertz, 1991). (a) Network architecture.
(b) The activation of the network for 4 time steps.

The optimization networks developed by Hopfield tend to converge to local
minima. The problem can be eliminated by adding a stochastic aspect to the training
algorithm during the iteration. This approach led to the development of a type of network

called "Boltzmann machine" (Ackley et al, 1985 and Hinton et al, 1986). The Boltzmann
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machine training algorithm solved the credit assignment problem for the special case of
recurrent networks with symmetrical connections and was demonstrated to be able to
learn a number of difficult Boolean mappings. Due to the nature of stochastic parameter
optimization, however, the training time of the Boltzmann machine is too long for most
practical applications. _

The Cerebellar Model Atticuiated Controller, or CMAC model (Albus, 1981), is
an original model of the cerebellum, which is the part of the biological brain that performs
motor control. The network adaptively generates complex nonlinear maps and is generally
used in motor control problems such as robotic control (Kawato et al, 1987 and Miller et
al, 1987). CMAC is actually an adaptive table look-up technique for representing complex,
nonlinear functions over multi-dimensional, discrete input spaces. A diagram of the

CMAC model is shown in Fig 2.5.

-
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Figure 2.5: The CMAC model (Albus, 1981).

CMAC reduces the size of the look-up table through coding, provides for response

generalization and interpolation through a distributed topographic representation of
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inputs, and learns the nonlinear function through a supervised training process that keeps
adjusting the content or weight of each address in the look-up table (DARPA, 1987).

The feature map classifier (Hampson et al, 1987 and Valiant ,1985), as shown Fig
2.6, is a hierarchical network that utilizes both unsupervised and supervised training. The
lower part of the network classifies the input and is trained first using Kohonen's feature
mép algorithm (DARPA, 1987), a type of learning algorithm that does not require explicit
tutoring of input-output correlations and perform unsupervised training based on the input
data. The perceptron-like upper part is then trained using a supervised training algorithm.
This approach is especially useful when the amount of unsupervised trainiﬁg data available

is significantly greater than the quantity of supervised training data.

OUTPUT ’ -1

SUPERVISEDJ
TRAINING

,,,,,,,,,,,,

" UNSUPERVISED
TRAINING

Figure 2.6: A Feature Map Classifier (Hampson, 1987).

Adaptive Resonance Theory (ART) networks (Carpenter and Grossberg, 1987)

are complex nonlinear recurrent networks with an unsupervised training algorithm that
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creates a new cluster by adjusting weights or adding a new internal node when an input
pattern is suﬁiciently different from the stored patterns. "Sufficient difference" can be.
adjusted externally by a parameter called the "vigilance parameter”. They are used mainly
for pattern classification. |

The Radial Basis Function Network (Broomhead and Lowe, 1988), or RBFN, is a
1-hidden-layer feedforward network with fixed nonlinear transformations in the hidden
layer, and linear transformation in the output layer (see Fig 2.7). Radial basis functions are
used as the transfer functions for the interior elements. The most popular choice of radial

basis function is the Gaussian function
2
G = el @.5)
The output of RBFN is given by

y = gcic,-(ux-x.-n) . 2.6)

The type, the center points of the radial basis functions, and the weighting
parameters need to be specified. Since the gradienf of the output error function is linear to
weighting parameters, the error function does not have local minima and the weights can
be adjusted by a linear optimization procedure such as a least square approach. These
procedures converge rapidly to the global minimum of the error surface. This aspect
makes RBFN an attractive alternative to MLN which requires a stochastic optimization
procedure since its error ﬁn&ion has local minima. More detail of RBFN is presented in

Chépter 3.
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Figure 2.7: A general Radial Basis Function Network.

2.5 Neural Network Applications

Examples of application of neural networks are:
e Language Processing
- Text-to-Speech Conversion
o Image or Data Compression
o Signal Processing
- Prediction or forecasting
- System modeling
- Noise filtering
. Risk analysis
e Complex System Control
- Plant and manufacturing control
- Robotics control

- Auto pilot and navigation
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- Adaptive Control
o Pattern Recognition and Classification
- Target classification
- Defect or fault detection
- Vision |
- Symptoms-Soﬁrce diagnosis
e Artificial Intelligence

- Expert system

The tasks that neural networks are required to perform depend on the application
area. Examples of different functions are:
- Prediction
Use input value to predict output value.
- Classification
Use input value to predict categorical output.
- Data Association (associative memory)
Learn associations of error-free or ideal data, then classify or associate data
that contains error.
- Data Conceptualization
Analyze data and determine conceptual relationships.
- Data filtering
Smooth an input signal, reduce noise.
- Optimization

Determine optimum value or choice.

Each application usually requires a different topology and learning algorithm. -

Chapter 3 discusses this aspect, mainly for networks that are employed to carry out

43



function approximation. A listing of the types of networks that are suitable for the various

tasks is given below.

Application Network Type
Prediction multilayer network with nonlinear

element, radial basis function network.
Classification multilayer network with nonlinear element,

radial basis function network, recurrent

network.

Data Association multilayer network
Data filtering recurrent network
Optimization ' recurrent network
Application Supervised Training
Prediction Yes
Classification Yes
Association Yes
Conceptualization No

Data Filtering No
Optimization No
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There is no exact way to identify the best network or learning algorithm for a
particular task. Different alternatives need to be evaluated. It may turn out that the
optimum approach is to use a combination of several networks.

When the tasks are complex, it is usually better to divide these tasks into several
less complex subtasks and develop separate networks for the subtasks. This approach is
followed for the structural diagnosis épplication, and a detailed discussion is presented in

Chapters 5 and 7.

2.6 Neural Networks in Civil and Environmental Engineering

Civil engineering applications of ﬁeural networks have become popular only since
the late 1980's, after the work of Rumelhart (1986)I revealed the potential of back
propagation learning algorithm. Researchers have utilized neural networks mostly for their
regression and classification capability. Therefore, feedforward-type networks, mostly
multilayer feedforward networks with.a back propagation learning algorithm, have been
the common choice since they are capable of performing well in both regression and
classification. Some of the current applications of feedforward neural networks in Civil

Engineering are described below (Garrett, 1992 and Pham , 1995):

- classification of distributed, noisy patterns of on-site information, such as
classification of the level of cost for remediating hydraulic conductivity fields

(Ranjithan, 1992), vehicle identification and counting applications (Bullock, 1991);

- interpretation of nondestructive evaluation sensory feedback, such as the
use of neural networks in detecting the changes of response spectrums due to
structural damage (Wu, 1992), detecting flaws in the internal structure of
construction components (Flood, 1994), or damage detection from changes in

vibrational signatures in a 5-story model steel structure (Elkordy, 1993);
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- modeling of complex system behavior, such as modeling complex material
constitutive behavior (Wu, 1991), modeling the behavior of large-scale structural
systems for the propose of control (Rehak, 1992), modeling concrete material
using actual experimental data (Ghaboussi, 1990), or predicting the flow of al river

from historical flow data (Karunanithi et al, 1994),

- control of complex engineered facilities, such as the control of deflection of large-
scale flexible structures (Rehak, 1992), or the control of an HVAC system for a

large structure (Garrett, 1992).

- In addition to the above applications, there are other civil engineering applications
which employ recurrent or other feedback-type networks. These applications are mainly
concerned with large-scale optimization problems such as resource leveling in PERT

analysis for construction projects (Shimazaki et al, 1991).

2.7 Comparison of Neural Networks to Other Information
Processing Approaches

An expert system is constructed by first acquiring a human expert's way of solving

a specific problem via extensive observation. This knowledge, or expertise, is analyzed and
represented as rules which are embedded in a co’mpﬁter program. The construction of a
neural network, on the other hand, starts by selecting an appropriate architecture and
learning algorithm based on a priori knowledge of the problem. The networks are trained,
either in supervised or unsupervised mode, with example data. The actual implementation
of a neural network then can be done either with a computer program or a specific-

purpose hardwired device.
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Although neural networks have been highly acclaimed as one of the most versatile
approaches, it is unlikely that neural networks will replace either database processing or
knowlegebase processing in the near future. Most likely, they will complement existing
schemes in areas where their adaptability, ability to learn, and maséive parallelism provides

them with a significant advantage.

2.8 Relation of Neural Networks to Approximation Schemes

From another point of view, a neural network can be considered as a simple
graphic representation of a parametric approximation schéme (Poggio and Girosi, 1991).
The network interpretation adds nothing to the theory of the approximation scheme, but it
is useful from an implementation perspective. For example, its parallelism can take
advantage of parallel computing devices, and its modular form allows for sub-structuring
to solve tasks.

Figure 2.8 shows a one-hidden-layer feedforward neural network that is a

graphical representation of the following approximation scheme:

fr@=Sarx-my , @
i=1

which is known as the ridge function approximation scheme. A
Similarly, the Radial Basis Function Network (see Fig 2.7) can be interpreted as

the representation of the radial basis function approximation scheme,

f*(x) = :ZlciG( lx=xlh . (2.8)

Both types of networks are discussed extensively in Chapter 3.
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Figure 2.8: A 1-hidden-layer feedforward network.

Approximation schemes have specific algorithms for finding the set of parameters
that minimizes a prespecified function. These algorithms correspond to the learning
algorithms of neural networks. For example, the back propagation learning algorithm can
be considered as a version of the gradient method optimization approach combined with a

specific credit assignment method. Similarly, the learning algorithm for RBFN is actually

the least-square minimization approach.
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Chapter 3

Neural Networks for Function Approximation

3.1 Introduction

Physical system modeling can be divided into two activities: performing regression
to predict the system behavior, and performing classification to identify changes of
behavior. Regression involves mapping a numerical domain input to another numerical
domain output, while classification maps a numerical or categorical domain input to a
categorical domain output. Assuming that there is a function F that can perform regression
or classification for the purpose of physical system modeling, approximating F can then be
considered as a problem of system modeling.

As shown earlier in Chapter 2, networks that perform well in regression and
classification are of the feedforward type such as the multilayer feedforward and radial
basis function models. Although recurrent networks can also be used for classification,
they are not considered here since they are based on unsupervised learning, whereas |
structural damage diagnosis applications requires supervised learning. In this chapter, the
performance of multilayer feedforward network for function approximation, a popuiar
application in civil engineering, is discussed in detail. The performance of radial basis
function networks is also investigated for the propose of providing a comparison.
Extensive performance tests are presented to show the relative advantages and
disadvantages of the multilayer feedforward networks versus radial basis function

networks, and to identify their limitations for function approximation.
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3.2 The Multilayer Feedforward Network with
Back Propagation Leaming Algorithm (MLN with BP)

The network consists of an input layer, an output layer, and at least one hidden

layer. Each layer is fully connected to its neighboring layers. Figure 3.1 illustrates the

connectivity and the notation used to described how a processing element operates (Hertz

et al, 1991).

Output

Layer 2

119 = Yl xt summation

i

wig' Y= f (I}”) transfer

Weights

Processing
element

Figure 3.1: Feedforward network.

A superscript in square brackets is used to indicate the layer being considered. Shown

below are the definitions for the various symbols.
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L

j = the current output of the jth processing element in layer s.

W},-’] = the weight for the connection joining the ith processing element in layer

(s-1) to the jth processing element in layer s.

1 5.’] "~ = the weighted summation of the inputs to the jth processing element in

layer s.
Each processing element operates.on its inputs as follows.
[ 1
s} Is] s-1
5= 2t

=A% G

where fis usually a differentiable monotonic function. For example, f may be defined as a

sigmoid function,

J@=(+e*y" 32

The initial step involves defining a global error function for the network, £
(Rumelhart et al, 1986). This function is required to be a continuous function of all the
connection weights. It is needed to define the local errors at the output layer so that they
can be propagated back through the network. The parameter that is passed back through

the layers is defined as

el=—g Efo IV . 33)

It will be shown later that 65-’] can be considered as a measure of the local error at the

processing element j in layer s.
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Applying the chain rule to evaluate the derivative in Eq. 3.3, one obtains

o _OE on™ o Ut
o erfM afabhy o1¥!

& S(Wi. )

N ) R (gl
ek a x}s] f( J ) ’
= S Zlef-wi] G4

This equation defines the relationship between the local error at a particular processing
element at level s and the local errors at processing elements at level s+1. Note that Eq.
3.4 only applies for the hidden layers.

When fis taken as the sigmoidal function defined by Eq. 3.2, its derivative is given
by

f'@)=1(2)-A-f()) : (35)

Substituting Eq. 3.5 into Eq. 3.4 gives

el = xl1. (1 xL). %[e,[f“] : W,};“l] (3.6)

Equations 3.1 and 3.6 are the key equations for describing the mechanics of the
back propagation learning algorithm. The process starts with a forward propagation of the

input through the layers to the output layer using Eq. 3.1. Next, the error at the output
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layer is determined, and the error is then propagated back through the network from the
output layer using Eq. 3.6, or more generally Eq. 3.4.

The goal of learning is to minimize the global error, E, of the network by adjusting
the weights. Given an initial set of weights VK}’], a procedure for rhodifying the weights
based on a minimization scheme can be applied. For example, gradient descent leads to the

following "correction" equation

AW = —lcoef - (6 E/ o Wi, 3.7

where Icoef is called a "learning coefficient." Each weighting parameter is adjusted
according to the size and direction of the negative gradient on the error surface.
Therefore, successive "updating” will lead to the minimum of error surface.

The partial derivatives in Eq. 3.7 can be calculated directly from the local error

values previously discussed (see Eq. 3.3). Using the chain rule and Eq. 3.1 gives
o 5lo Wi =(o 5lo 19)o 110 W)

==l ' (3.8)

Combining Eqgs. 3.7 and 3.8 leads to

AW = Icoef - el’l -xf (3.9)

Assume an input vector P is presented at the input layer of the network, and the
target output £ is defined. Given ¢ is the actual output vector produced by the network
with its current set of weights, a measure of the global error in producing the desired

output can be taken as
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E=05Y(t, -0,)’ (3.10)
k

where subscript £ is the index of the component of ¢ and 0. Equation 3.10 defines the
sum-squared error of the network in producing the desired output through out the range
of the input range. From Eq. 3.3, the local error at each processing element of the output

layer can be determined by
ePl=-0 E/o IV
=-PEl80,-8 0,18 I

=(t, ~0,)- f'U) (3.11)
which can then be propagated back to the inner layer by Eq. 3.6.

In some cases, this type of learning algorithm requires a very long training time in
order to reach the minimum. For example, when the surface corresponding to the cost
function has the shape of a valley with steep sides, and a shallow slope on the valley floor,
there may be oscillation of the adjusted parameters across the valley during the learning
process, and consequently very little movement downward the slope toward the minimum.
The additional of a momentum term (Plaut et al, 1986) can make gradient descent avoid

this problem and improve the speed of convergence. The strategy is to provide the

strength of each connection, W},'] , with some inertia or momentum so that the adjustment

is in the direction of the average downward force instead of oscillating back and forth

cycle. A larger learning rate can then be used since there is less potential for oscillation.

This objective is achieved by including the effect of learning from the previous learning

cycle in the present learning cycle. The following equation illustrates this process.
AWEN 1t +1) = -lcoef*(6 E[6 W) +aAWENr) . (3.122)

The momentum parameter oo must be between 0 and 1; a value of 0.9is usually used. -
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Identifying the appropriate value for the learning coefficient, Icoef, for a specific
application is also a challenge. In most cases, the coefficient is modified as the training
progresses. A number of researchers (Cater, 1987; Franzini, 1987; Vogl et al, 1988,
Jacobs, 1988; Baldi et al, 1995) have suggested ways to adjust this parameter. The general

approach is to observe the direction of the learning path on the error surface and adjust

Icoef to improve the rate of convergence. For example, when n successive values of W}i’]

are in the same direction, lcoef is increased. However, when m successive values of Wj[,-’]

are in the opposite direction, Jcoef is decreased to dampen the oscillation. This process is

defined by:
AW = —(lcoef + A lcoef)- (3 E[8 Wi),

A lIcoef = +a-lcoef if AE <0 for n successive training cycle,
= —b-Icoef if AE > 0 for m successive training cycle,
= 0 otherwise, (3.12b)

where AE is the cost function change, and a and b are appropriate constants.

3.2.1 Ability of Multilayer Neural Networks to Approximate
Arbitrary Functions

Cybenko (1988) has shown that two hidden layers are adequate for approximating
an arbitrary func-tion, provided there are a sufficient number of units per layer. It was also
established later that a network with only one hidden layer can represent any continuous
function (Cybenko, 1989 and Hornik et al, 1989). However, the relation between the
accuracy of the approximation and the number of layers, or the number of units per layer,
needs to be established. Figure 3.2 illustrates the approximation (shown by dot line) of a
set of functions of the type y = f{x), which are shown by solid line, with various multi-
layer architecture. An in-depth analysis of function approximation ability of MLN with BP

was discussed by Poggio (1991).
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Function Approximation

150

Output of NNET: o, Target: -

T o 2 4 6 8 10

L
< <
i ]
(¢] o
X X
v A
o O

§ & 3

8

Output of NNET: o, Target: -

-10 -8 L] 4 2 0 2 4 6 8 10
Input

b) Y = e®sin(bX)

Figure 3.2: Examples of function approximation by artificial neural networks.
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Figure 3.2: Examples of function approximation by artificial neural networks.
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3.2.2 One-hidden-layer Network
Since it has been established that one hidden layer is sufficient to represent any
continuous function, some characteristics of MLN are investigated by conducting

numerical experiments on one-hidden-layer network. The issues that are examined are:

- The relationship between the number of processing elements and i) accuracy,
ii) training time, iii) local minima, iv) underfitting, and v) the amount of training

samples needed.
- The proper network architecture for approximating a given function.
- The effects of using different set of training samples.

The network is taken as fully conhected, with single elements in the input and
output layers, and multiple elements in the hidden layer. The transfer function for the
hidden layer elements is the tangent-sigmoid function shown in Fig 3.3. A linear function
is used for the output layer elements. The input and output data of the netWork are scaled
down to the range between -0.8 to 0.8, and the initial values of all weighting parameters
are random numbers ranging between -1 to 1. This choice of weights avoids saturating the

transfer function in the hidden layer at the beginning of the training process.
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Figure 3.3: Example of transfer functions.

Figure 3.4 contains a sequence of approximations, which are generated by

networks having different numbers of interior elements, of the function

y =100 e-%"_ sin(x) . (3.13)

The training and testing data sets contain the values of f for x ranging from -10 to 10 with
an interval of 0.1. The results show that, for a given number of training cycles, increasing

the number of units improves the accuracy.
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Figure 3.4: Numerical function approximation hsing one-hidden-layer

feedforward networks with different size.
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Figure 3.4: Numerical function approximation using one-hidden-layer

feedforward networks with different size.

Underfitting is a problem associated with small networks. Figure 3.4a shows the
effect of underfitting when a network does not have sufficient parameters to fit a function.
Increasing the size of the network lessens this problem. Small networks also tend to
converge on local minima of the error function, which is the situation when there is no
improvement of accuracy with increasing number of training cycles, even though the
network has enough parameters to fit the function. Increasing the number of units
decreases the likelihood of converging to local minima, and also improves the accuracy.

Figures 3.5 and 3.6 demonstrate that the appropriate configuration of a network
depends on the nature of the function to be approximated. Figure 3.5 shows that a

network with 70 units in the hidden layer cannot accurately represent the function

y=100x +x% +x* +500sin(x), —-10<x<10, (3.14)

with 0.1 interval. On the other hand, Fig 3.6 shows that only 10 units are required to

represent the function
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y= 1008-203‘2 + 706-300‘—2)2 + 808-100(”"'3)2 . (3. 15)

for the same range and interval.
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Figure 3.5: Numerical Function approximation using a one-hidden-layer

network with 70 processing elements in the hidden layer.
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network with 30 processing elements in the hidden layer.
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Next important issue is the significance of the representation of training data.
Properly prepared training data can improve the convergence and help to avoid local
minima. To demonstrate this effect, three different training data sets are used for training

three networks, each having 25 units in the hidden layer, to represent the function

y=100sin(x), -10<x<10. (3.16)

The data interval for each training data set varies from 0.1 to 0.3, while the testing data set
interval size is 0.33. As shown in Fig 3.7, the network that is trained with the data having
an interval size of 0.1, which corresponds to 200 training data pairs, gives the best

accuracy for this choice of test data.
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Figure 3.7: Numerical function approximation using a one-hidden-layer network.
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Figure 3.7: Numerical function approximation using a one-hidden-layer network.
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Figure 3.8 shows the effect of the amount of training data on the approximation
accuracy, and indicates that the performance of networks increases with the amount of
training data. However, there is no way of establishing the "a-priori" optimum size of the
interval , or optimum size of training data set, for an arbitrary function. The proper size
has to be determined either by trial and error or cross-validation method (Wahba, 1980

and Liu, 1995), which is described later in this chapter.

10° —
S
o . .5
e AN
©
g' \\\
(73] 4
& 10 =
3
w

10’

0 50 100 150 200

Number of training samples

Figure 3.8: Effect of the number of training samples to the accuracy of neural network.

For pattern classification, a Boolean type representation is used to denote the
categorical output. This is implemented in a feedforward network by using a sigmoid
transfer function in the output layer so that the output of each output unit ranges from 0 to
1. The number of output units is set equal to the number of categories that the network is
supposed to aiﬂ'erentiate between, and each output unit corresponds to a specific
category. The classification of a particular category is considered to occur when the
output of the corresponding output unit is sufficiently close to unity, and the other outputs

- are sufficiently close to zero.
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Figure 3.9 shows 4 classes of Gaussian distributed data, with different standard
deviations, which are used to evaluate the classification performance of various networks.

The symbols X, o, +, and * represent the different data classes.

4-Class Classification: Input data
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Figure 3.9: Data for a classification problem.

These classes are nonlinearly separated and partially overlap. Each network has 2 input
units and 4 output units. Figure 3.10 shows the classifications by the networks of different
size. The performance is measured by "the percentage of correct classification" plotted in
the Fig 3.11. The symbol o indicates that the output for the particular input did not reach
the threshold level, which is set at 0.8 for every output node, and therefore the
classification cannot be made. Generally, the threshold is allowed to be lower when the

amount of training data is smaller, or when the training data is noisy.
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4-Class Classification: Result from NNET
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b) Network with 4 processing elements in the hidden layer.

Figure 3.10: Classification results using one-hidden-layer networks.
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4-Class Classification: Result from NNET
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d) Network with 10 processing elements in the hidden layer.

Figure 3.10: Classification results using one-hidden-layer networks.
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The results also show that the classification accuracy increases with the number of
processing elements in the hidden layer. However, as shown in Fig 3.11, the classification
performance stops improving when the number of processing elements is beyond a certain

number.

[+} 5 10 15
no. of processing eiements

Figure 3.11: The effect of number of processing elements to the classification accuracy.

3.2.3 Two-hidden-layer Network |
In order to propérly design a MLN for approximating an arbitrary function, the

significance of the "number" of hidden layers also has to be investigated. The important

issues are:

- For a given number of processing elements, does a 2-hidden-layer model provide

better accuracy than a one-hidden-layer model?
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- What is the optimum distribution of elements between layers, given the

same total amount of units for the whole network ?

- How 2-hidden-layer networks perform on a given task when it is compared

to the one-hidden-layer network with the same number of total units ?

A series of numerical simulations were carried out with various 2-hidden-layer

configuration trained to approximate the following function,

y =100 +70e730G-" 4 gog=100x+3" (3.15)

when -10 < x £ 10 with an increment of 0.1.

Figures 3.12 to 3.15 show the results for a set of networks with a 2 to 1
distribution of elements between the first and second hidden layers. The total number of
units ranges from 40 to 80. For instance, Fig 3.14 demonstrates the performance of the
network that has 60 total units, with 40 units in the first hidden layer, and 20 in the second
hidden layers. Similar to the findings for the one-hidden-layer case, these results show that
the accuracy for a network given the same amount of training samples improves with the
number of total elements. The results also show that smaller networks tend to underfit and
converge on local minima more frequently (see Figs 3.12 and 3.13). Both circumstances
rarely occur when the two-hidden-layer networks with larger number of units are

employed.
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Figure 3.12: Function approximation using a two-hidden-layer network with 26 units in

the 1st hidden layer, and 13 units in the 2nd hidden layer.
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Figure 3.13: Function approximation using a two-hidden-layer network with 40 units in

the 1st hidden layer, and 20 units in the 2nd hidden layer.
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Figure 3.14: Function approximation using a two-hidden-layer network with 46 units in

the 1st hidden layer, and 23 units in the 2nd hidden layer.
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Figure 3.15: Function approximation using a two-hidden-layer network with 53 units in

the 1st hidden layer, and 27 units in the 2nd hidden layer.
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Figures 3.15 to 3.17 illustrate the effect of varying the proportion of elements
between the layers, holding the number of the total elements constant. The ratios here are
2:1, 1:1, and 1:2 respectively. The results indicate that assigning more elements to the
second layer tends to degrade the performance and increase the likelihood of convergence

to a local minima. This can be observed by comparing Figs 3.16 and 3.17.
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Figure 3.16: Function approximation using a two-hidden-layer network with 40 units in

the 1st hidden layer, and 40 units in the 2nd hidden layer.
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Figure 3.17: Function approximation using a two-hidden-layer network with 27 units in

the 1st hidden layer, and 53 units in the 2nd hidden layer.
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Figure 3.18 contains the result for a one-hidden-layer network with 80 total
elements. Comparing this performance with the corresponding 2-layer results shown in Fig
3.15 to 3.17, one observes that the one-hidden-layer network performs better, and even
converges more rapidly.

In addition to the accuracy and convergence, one has to consider the computation
time. Since there are more connections in a two-hidden-layer network than in a one-
hidden-layer network with the same number of total units, two-hidden-layer network
requires more computation time. The following example illustrates this point.

Consider two networks, a one-hidden-layer hetwork with m+n processing
elements in its hidden layer, and a fully connected two-hidden-layer network with m
processing elements in the first hidden layer and » processing elements in the second
hidden layer. The total numerical operation required to forward propagate the one-hidden-

layer network, 7C1, is given by

ICI1 = 2(m+n)M + (m+n+1)S +(m+n+1)T (.17
where M is a multiplication operation; S is a summation operation; and 7 is a function
transferring' operation. The corresponding operation count for the 2-layer network, 7C2,
is

TC2 = (m+mn)M + (m+mn+1)S + (m+n+ )T . (3.18)

From Eqs. 3.17 and 3.18, it is apparent that more numerical operation is required
for the two-hidden-layer network. The difference becomes even greater with increasing m

and n.
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In addition to the operational cost, the time required to train the network needs to
be considered. The computational time required to train two types of networks using the
software MATLAB on a 486DX (33MHz) machine is listed in Table 3. 1. One network
has one-hidden-layer network with 80 total units; the other is a two-hidden-layer network
with 40 units in each of its hidden layers. The results indicate that the two-hidden-layer
network requires about twice as much computation time for the same amount of training

cycles.

Training cycles One-hidden-layer Two-hidden-layer network
network v(sec) (sec)
500 587 1120
1000 1155 2145

Table 3.1: The training time of feedforward networks.

The previous discussion pertains to regression applications. For classification
applications, one-hidden-layer networks do not génerally outperform two-hidden-layer
networks that have the Same number of total units. Figure 3.19 shows the results for 3
different two-hidden-layer networks having a total of 6 units. The corresponding one-layer |
result is presented in Fig 3.10c. As shown by the figures, two 2-hidden-layer networks
perform at essentially the same level as the 1-hidden-layer network, and one cannot say,

based on these studies, that one model is "better" than the other.
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Figure 3.19: Classification by two-hidden-layer networks.
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Figure 3.19: Classification by two-hidden-layer networks.

3.2.4 Optimum Network Architecture

The data presented in the previous sections indicates that the performance of the
network for a given task is very sensitive to the afchitecture of the network, and therefore
a method for ﬁn&ing the right architecture would be very useful. The Cross-Validation
method (Wahba, 1980 and Liu, 1995) is the most popular method. It is also a reliable way
to select the right architecture and avoid overtraining, which will be discussed later in this
section.

To perform cross-validation, the available training data is divided into two groups,
a training set and a cross-validation set. The initial architecture, which usually is the
architecture with the smallest number of processing elements possible, is then trained with

the training set, and tested with both training and cross-validation set. The error index of
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the network based on the training data is monitored while the network is being trained. At
the same time, the error index of the network based on the cross-validation data set is also
being monitored. According to Fig 3.20, the training should be stopped when the rate of
change of the cross-validation error index with the number of training cycles reverses sign,
even though the training set error index is still decreasing. More training from this point
on produces a network that is more tuned to the training data set instead of the whole
data, and hence reduces the ability of the network to deal with a broader range of inputs.

This effect is called "overfitting" or "overtraining" (Ling, 1995).

Cross
‘Validation
Set

ERROR o
Training

- Training samples —p

Figure 3.20: Cross-validation method.

The Cross-Validation method should be carried out for every combination of
network architecture and training algorithm, and the performance comparison is
performed to select the most appropriate network for the particular application (given a

set of data). It is also important to note that differently divided data sets (into training set
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and cross-validation set) can lead to different performances for the same network.
However, the difference is minimal when the size of the training data set is large.
A more realistic application, i.e. modeling the behavior of a bending beam, is-

considered. Figure 3.21 shows a cantilever bending beam subjected to a point load.

N

N P

§ !

N s b

N . |
Y L |
§ 1 |
§——r:

N

Figure 3.21: A cantilever bending beam.

The beam has length L with a point load of magnitude P placed at the distance a from
the fixed support. Considering only the linear planar bending behavior of the beam, the

amount of deflection y at the distance x from the support due to the loading can be

determined analytically as
2 _ -
JI=EE—[(3a—x) , O0s<x<a, and
y=£‘i(3x—a) as<x<lL (3.17)
6E[ 2 - ’

where E is the modulus of elasticity of the beam, and I is the moment of inertia of the
bending axis. Assuming the beam length is 500 cm; the modulus of elasticity is 2*10°
kg/cm?; the bending moment of inertia is 20000 cm®, and the magnitude of point load is 1

ton, Eq. 3.17 takes the form
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y—24x108(3a—x) , 0<x<a
a?
yzm(3x—a)‘ ’ a<x<500 . (3:18)

The training data is created from the analytical model. Variables a and X are
considered as the inputs, while J is the oﬁtput. The inputs, a and X, range from 0 to 500
cm with an interval of 20. Each output J is determined from a particular combination of a
and X, hence providing a total of 676 input-output data pairs. Gaussian noise is added to
each data pair in order to simulate the noisy signal of real sensors. The plot of noise-free

and noisy input-output data pairs are demonstrated in Fig 3.22.

Output, Y

Input2, a Inputt, X

Output, Y

Input2, & inputt, X

Figure 3.22: Noise-free and noisy input-output data.
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The Cross-Validation method is employed with the assumption that the noisy data
is obtained from real experiments (Wahba, 1980). Three-fourth of the data is randomly
assigned as the training data set, and the rest as the cross-validation set. A 1-hidden-layer
back propagation network with 2 processing elements in the hidden layer is used as the
initial network. The Cross-Validation method is then utilized for the 1-hidden-layer
nétwork with various numbers of pfocessing elements. The plot between the Sum—Squaréd
Error (SSE) after convergence of each architecture on the cross-validation set and the
corresponding number of processing elements in the hidden layer‘ is shown in Fig 3.23.
The result indicates that the optimum architecture has 12 processing elements in the
hidden layer. The Cross-Validation method can also be applied to networks with 2 or

more hidden layers, or even with other types of networks (Wahba, 1980).
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Figure 3.23: Effect of no. of units to approximation error.

To avoid the work involved in performing Cross-Validation, an algorithm that

helps optimize the architecture of the network could be incorporated into the existing
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training algorithm. The problem is there are many different criteria for network
optimization that have to be considered, such as training time, size and quality of training
data set, number of units, number of connections, number of layers, and generalization
ability, which is the ability of neural networks to predict given the input that is not
included in the training data. |

Since the one-hidden-layer network can accurately represent any arbitrary
function, and is more computational efficient than any two-or-more-hidden-layer network,
it is considered the optimum architecture. The investigation is next focused on how to
identify the number of units required to avoid converging on a local minima and achieve a
certain level of accuracy. Figure 3.24 demonstrates the performance of three 1-hidden-
layer networks, each having 80 total units, in representing a. SISO function. A sub-set of
the initialized weights of the networks, are obtained from a smaller network trained with
5,000 training samples, while the remaining are random numbers between -1 and 1.
Comparing these results with the non-pretrained results (Fig 3.18) indicates that

pretraining improves the convergence rate.

2
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Input
a) with 80 units, which is initialized by a pretained network with 40 units.

Figure 3.24: Function approximation by a one-hidden-layer network.
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Figure 3.24: Function approximation by a one-hidden-layer network.
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This finding suggests that one should modify the network architecture
continuously during the training process. Figures 3.25 to 3.28 illustrate the strategy.
Modification of the architecture is achieved by increasing the number of units in its only
hidden layer, 20 units at a time , whenever the gradient between the sum-squared error
and amount of training cycles reaches bzero. The architecture is modified until a desired
sum-squared error is reached. 'fhe initialized network has 40 total units and ends up
having 80 total units at the end of training process. The mbdiﬁcation of architecture is
performed twice after being trained through 500 and 1000 training cycles. Its performance
can be compared with that of the conventionally trained 80-unit network shown in Fig

3.18.

Sum-Squared Error

50 100 150 200 250 300 350 400 450 500
Training samples

Figure 3.25: Performance of a one-hidden-layer network with 40 units.

108 - B! ion with ive LR & Momentam
5 f 3
& [ :
‘% 10
0 50 100 150 200 250 300 350 400 450 500
Training samples

Figure 3.26: Performance of a one-hidden-layer network with 60 units, which is

initialized by a pretrained network with 40 units (Fig 3.25).
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Figure 3.27: Performance of a one-hidden-layer network with 80 units, which is

initialized by a pretrained network with 60 units (Fig 3.26).
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Figure 3.28: Performance of a one-hidden-layer network with 80 units

after being pretrained in Fig 3.27.

Althoﬁgh this method may not be as computational efficient as the training that
starts with the optimum number of units from the beginning, it still requires less work than
the Cross-Validation process. The method automatically helps users avoid using too small
or too large networks since it starts with the minimal number of total units, and stops
increasing the size when the desired level of accuracy is reached. This method also avoids
converging to a local minima during training since the architecture is modified whenever
the error gradient reaches zero. However, further testing has to be done on the application

of this architecture modification method to other function approximation problems.
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Optimizing the network architecture for a classification problem is more
complicated since a network with more hidden layers may outperform a one-hidden-layer
network. Therefore, more configurations have to be considered. The disadvantage in
computatioﬁal cost of multilayer networks may be factored into the final decision. One has
to investigate a number of possible architectures before choosing the final architecture that
is most appropriate for a specific application. Given all the difficulties mentioned, Cross-
Validation is still the most practical method for optimizing the network architecture for

classification problems (Liu, 1995).

3.3 Radial Basis Function Network (RBFN)

The RBFN can be considered as a two-layer feedforward network that has fixed
nonlinear transformations with no adjustable parameters in the hidden layer, and linear
transformations in the output layer (Broomhead and Lowe, 1988). As shown in Fig 3.29,
the network is a fully connected feedforward network with radial basis functions as

transfer functions for the interior units, and linear transfer functions at the output units.

0.0

20.8326 1+0.8326
a = radbas(n)

Radial Basis Function

Figure 3.29: An example of a general RBFN.
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For a RBFN with an input vector x € )™ and output vector y € R, the output y can be

described in the simplest form by the equation

y=2eG(e-x)) . yew, (3.19).
i=1

where ¢; is the weighting parameter of the ith unit; x; is the center of the radial basis
function G;, and ||...|| is the Euclidean norm on ®"™. The function G;, or the transfer
function of the ith unit, is a continuous function from R to R that has a maximum value
at its center and drops off rapidly away from the center. A frequently used class of radial

basis functions is the Gaussian function,

G = e b=l (3:20)

Considering the RBFN in Fig 3.29, the output y can also described by the equation

n

y= Zc,.z,. , where z, = G,.("x— x,."). (3.21)

Least Mean Square (LMS) approach employs the sum-squared error of all k¥ input-output

pairs as the global error function. The function is described by

k 2
E=O,521(y,-—0,-) , N (3.22)
J=
where o; is the expected output corresponding to y;, which is the output of RBFN due to
input vector x;. Given the error measure E , the gradient descent algorithm improves c; by

changing c; by an amount Ac; proportional to the gradient of £ :

Ac; = —lcoef ErS

i
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k
= lcoefjglz,- (yj - oj), (3.23)

where lcoef is a constant called the "learning coefficient."

If the change is made individually for each input vector x;,

Ac; = —lcoef -z,-( Y —oj), (3.24)

which is commonly referred to as the Least Mean Square approach, or LMS rule
(Rumelhart et al, 1986).

After the radial basis functions and the position of their centers are specified, the
only adjustable parameters of the network are the weighting parameter c;. Since the
gradient of the error function is linear to the weighting parameters, the error function of
the output does not have local minima, and the parameters can be adjusted by a linear
optimization procedure such as the LMS approach. This leads to an optimization
procedure that has a very fast convergence rate (Bianchini et al, 1995). This aspect makes
RBFN an attractive alternative to the MLN with BP, which requires a time-consuming

stochastic optimization procedure.

3.3.1 Ability of RBFN to Approximafe Arbitrary Functions

The ability of RBFN to approximate an arBitrary function can be proved by the
regularization theory (Girosi et al, 1993, 1995; Bertero et al, 1988; Marroquin et al, 1987, _
Wahba, 1980, 1990), which relates the radial basis function network to probability and
statistics theory. The regularization theory establishes that RBFN can approximate any
continuous function within a prespecified error if the network contains all the radial basis
functions needed. However, the types of radial basis function required for approximating
an. arbitrary function cannot be predetermined, and a trial and error method is needed to

determine the functions.
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3.3.2 Optimum Network Architecture

General clustering algorithms, such as K-Means clustering (Krishnaiah and Kanal,
1982), are usually applied to the input data in order to position the centers of the radial
basis functions. The type and number of radial basis functions largely depends on the
complexity of the function being approximated. The number of radial basis func_tions
usually increases when the function is more complex, and increases exponentially with the
dimension of the input space (Girosi, 1995). Thus RBFN become less practical when the
dimension of the input space is high. Since the type and number of radial basis functions
that are required to approximate a given function cannot be predetermined, Cross-
Validation is usually employed to identify the optimum architecture of the RBFN for a
specific task (Liu, 1995).

In case the centers of the radial basis functions are not predetermined and are
considered to be adjustable, more parameters have to be considered in the optimization
process. This makes the network much more adaptable, but also makes the gradient of
error function nonlinear to the network parameters. In this case, a stochastic learning

algorithm has to be employed, and the advantage of RBFN's simple training vanishes.

3.4 Performance Comparison Between MLLN and RBFN

The performance of RBFN's on the same applications that are applied to MLN's in
previous sections is investigated here to provide a comparison between the models.
Section 3.4.1 compares results for regression, while that of classification is illustrated in

Section 3.4.2.

3.4.1 Comparison of Regression Ability
Figure 3.30 shows the performance of a RBFN, which has 10 Guassian hidden
* units centered by K-Means clustering algorithm (Krishnaiah and Kanal, 1982), in

approximating the function
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y=100 e sin(x), (3.13)

where x ranges from -10 to 10 with an interval of 0.1. The result can be compared to that

of a MLN with 30 sigmoid units in its hidden-layer that is shown in Fig 3.4.

Response of RBF Network with sequentially training order
200 1 1 1] ¥ T LN ¥ 1 1

100

1(x)

-100

-200

_300 1 ] i 1 1 L
-10 -8 6 -4 2 0 2 4 6 8 10

Response of RBF Network with randomly training order
200 1 i T L] T 1 1 T 1

f(x)

- 1 M S
2

Figure 3.30: Function approximation by RBFN with 10 Gaussian units.
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Figure 3.31 compares the performance of a conventional MLN with a RBFN in
approximating a two-input-one-output function

=S Loty
z=100 10 1100 ™ (3.25)

where x and y range from -5 to 5 with an interval of 0.4. Both networks have one-hidden-
layer with 50 processing elements. The RBFN employs Guassian transfer functions, and
K-Means clustering algorithm for locating their centers, while the MLN uses a sigmoidal
transfer function in the hidden layer, and a linear function in the output layer.

Both comparisons indicate that RBFN, even with fewer processing elements,
performs better on these particular functions. RBFN also requires less training time and

does not converge to local minima as MLN occasionally does.

Training data
500
et AL T
R ““‘:““\:“x‘“‘\\\\\\\“\
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SN
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20 10 20
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Input 2 Input 1
Output from 1-hidden-layer MNN w/ BP
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—_ i Y .
z=100 ¢10™"® +100 e4""»

Figure 3.31a: Function approximation by MLN with BP, with total no. of units of 50.

93



Training data

Cot T
“i‘ ALY AL
““““.\““‘\\\‘\‘\\\\\\‘.‘.‘.\.‘_“
‘q\“ \\““- =

20 3°
0 o 10

Input 2 ) " Input 1
Approx. Response by RBF Net with 50 Neurons, R=0, S= 1

(x %sin(l.s )

:isin
z2=100 10

)+100 e

Figure 3.31b: Function approximation by RBFN with total no. of units of 50.

However, RBFN also has practical difficulties since its performance highly depends
on the type and properties of the radial basis functions employed, and it is difficult to find
the appropriate type and properties for a specific task (Note that there is no such problem

in applying MLN with BP). As demonstrated earlier in Fig 3.6, the function

y= 100e—20x2 +70 e—30(x-2)2 +80 e-100(x+3)2 , (3.15)

where x ranges from -10 to 10 with an interval of 0.1, can be very well approximated by a
one-hidden-layer network with 10 sigmoidal hidden units. Figure 3.32 shows the
performance of 4 different RBFN's, each with 10 Guassian hidden units, in approximating
the same function. The Gaussian transfer functions of each RBFN have a specific width

ranging from 0.1 to 10.

94



sequentially training order

100
80 width = 10
60}
Z a0
20 il
___A’D
0
-20 .
-10 -5 0 5 10
x
@
sequentially training order
100

width =1

sequentially training order

100
80 width=5
60
X 40
20 -
0
-20
-10 5 0 5 10
X
sequentially training order
120
100 width = 0.1
80
__ 60
s
40t
20t
H
0 R S VI i VAL i S —————
-20
-10 5 0 ] 10
X
@

Figure 3.32: Effects of the width of radial basis functions

on the approximation ability of RBFN.

The result demonstrates that, despite varying the width of the Guassian transfer

function over a broad range, the performance is not satisfactory. The result also shows

that a RBFN with a wider Guassian transfer function has better generalization ability, but

performs worse in interpolating functions. Figure 3.32d shows the inability of RBFN to

interpolate the function's spikes when the centers of the radial basis functions are not

properly located. Hence this example also shows how crucial the location of the centers is

to the performance of RBFN. Changing the type of radial basis function still would not

help since the types of function that improve the interpolating performance would provide

worse generalization ability. Detail investigation on the generalization ability of radial basis

function networks is discussed by Freeman et al (1995).



3.4.2 Comparison of Classification Ability

The outcome from the classification studies also agrees with that of the regression
studies. Figures 3.33 and 3.34 demonstrate the influence of the number of total units to
the performance of RBFN in the 4-class classification problem mentioned in Section 3.1.3.
RBFN achieves the same performance while requiring less training thén the MLN with the
same number of total units. Figures 3.35 Iand 3.36 also show the influence of the width of
the radial basis functions to the classification performance, and assure the importance of

using radial basis functions with appropriate properties.
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Figure 3.33: Effect of the no. of units on the classification ability of RBFN.
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Figure 3.34: Effect of the no. of units on the classification ability of RBFN.
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Figure 3.35: Effect of the width of radial basis functions to the classification performance.
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Figure 3.36: Effect of the width of radial basis functions to the classification performance.

3.5 Discussion and Summary

According to the performance of both types of network on these investigations,
RBFN clearly requires less training and is more accurate when the appropriate transfer
functions and locations of the centers are employed. This can be explained by considering
that, since the output of a RBFN is a linear combination of many narrow receptive fields
of basis functions, only the parameters that corresponds to the output error are adjusted
during a training cycle. This is called "local tréinirig effect." On the other hand, MLN
adjusts all pmm&ers due to an output error (global training effect), and hence reduce the
effect of the previous training cycles in the process (Narrendra, 1992). Moreover, all
adjustable parameters of RBFN are linear to the gradient of error function and can be
optimized by standard least square techniques, while MLN requires stochastic techniques
due to its nonlinearity. Therefore, RBFN is much easier and faster to train.

However, the global effect of parameters in MLN leads to good generalization
ability of the network, which is always required as a trade off with the accuracy (Liu,

1995; Musavi et al, 1994; Ling, 1995). RBFN may have problem with generalization when

98



the function they approximate is highly discontinuous (Girosi, 1993, 1995). MLN ﬂso
performs better when the function is associated with high dimensional input (Narendra,
1992). Having enough a-priori knowledge about input data is crucial for selecting the
configuration of RBFN, which directly reflects the performance of the network in
approximating arbitrary functions. MLN does not require such knowledge, and hence is
preferred when not much about the function is known. If the fixed parameters of RBFN,
such as the centers of the radial basis functions, become adjustable by the network's
learning algorithm, the network will be less dependent on a-priori knowledge. However,
the network will require a stochastic learning algorithm, which makes the training
characteristics and performance of the network similar to MLN (Girosi, 1993, 1995).
The results of these investigations also confirm that the Cross-Validation method
can be employed as a general procedure for configuring both types of network. The
method should be applied especially when there are factors other than the network
architecture that affect the network optimization such as the training time, size and quality

of training data set, and generalization ability of the trained network.
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Chapter 4

Probability Framework of Neural Networks

4.1 Introduction

In the past, neural networks were considered to be mysterious, and lacking a
theoretical foundation. However, since the late 1980's research has established relationship
between neural network theory and other fields such as approximation theory, and
probability and statistics. In this chapter, feedforward neural netWorks with back
propagation training algorithm and radial basis function networks are discussed from the
perspective of these fields. The objective is to provide a better understanding of these

neural networks, and thus simplify the development process.

4.2 Probabilistic Model of Feedforward Networks

In this section, a probabilistic model of a simplified feedforward neural network is
described. The model demonstrates that the maximum likelihood estimation of the
parameters of the probabilistic regression model of a function is equivalent to using a one-
layer feedforward network with linear transfer function to approximate the function
(Watanabe et al, 1995).

Firstly, the basis of the gradient method used in the back propagation learning
algorithm, which is normally used for optimizing a multilayer feedforward network, is
described (see Chapter 3 for more detail). Figure 4.1 illustrates a processing element of a

neural network.
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Figure 4.1: A processing element.

The activation of the processing element with a linear transfer function is:
u = Wx, @)

where W is the vector of the weighting parameters of the input connections; x is the input
vector; and u is the output. Suppose that the set

N
=1

rZ = {(xi’ yi) € R’ XR},- 4.2)

is the data obtained by random sampling a function f, which belongs to some space of

function X defined on Rd, in the presence of noise. The objective of function

approximation is to recover the function f, or an estimate of f, from the set of data X .
Suppose that a processing element is used to approximate the function f, and the

error function of the output is the sum-squared error of the output y,

M=

J@) = %(yi _WTxi)2°

I

4

(4.3)
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The gradient method is applied to minimize the error function J(W) by finding the gradient

of the function

S (3 -#7x)
V,JW) = -i=l J’i’f X)X @4)

and then adjusting the parameter # € R in the direction opposite to the gradient,

AW, = p (yi“WTxi)xi ' 4.5

for the ith training data pair ( X;, y,.) given an appropriate learning rate p. Successive

adjusting corresponding to every data pair will provide a set of parameter W that

minimizes J(W) and estimates f.

4.2.1 Maximum Likelihood Estimation Model

Consider a Gaussian density function,

e
S —. ‘/'270’3 ) @6)

where p is the mean, and 6?2 is the variance, of data set X. This function can be viewed
different ways, depending on which parameters are considered known or unknown. By

assuming p and o2 known, Eq. 4.6 can be considered as

fxipo0) = J2ro @
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which is the probability of x, given p and o2. Similarly, if the data set X is known, the same

equation is now considered as

1 )
L(u,o; = 2 '
(.09 s “s)

which is the likelihood of u and o2, given data x.

The maximum likelihood estimate of | and o is, by definition, the estimated value
4 and & that maximize L(#,0 ;%) Intuitively, it corresponds to the value of p and o that
best agrees with the actually observed samples.

Figure 4.2 illustrates a system that has input X € R4, and generate output p. Only

the real output y, with noise E, can be observed. Suppose that p can be described by a set

d
of parameter W = {wi}i o 5 OF
po= WX. 4.1)
Input, X M

WTX —————»{ Noise — P Output, Y

Figure 4.2: A simulated system.
The sensory output of the system can be now considered as
y = W'X + E _ (4.9)
Assuming that there is Gaussian noise,
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1 £2
E; s o?) = 26"
SE; pe ) F-—Z(rae “.10)

with zero mean, the density function of the output y can be described by

1
1 e-‘{;f(y'ﬂ)z

foi u, 0% =

2no

1
1 e—;;(y-u"x)?-
Vazo (4.11)

The objective of function approximation is to estimate the output of the system by

performing the regression of the output given the data set
N
ZV = {(xi’ yi)}i=l ’ (4.12)

which is generated by the model.
If o is assumed as a known variable, Eq. 4.11 becomes the likelihood of p and o,

givenx; ,

Lipo ijx) = LWix) i om= Wk
1
_ 2 e—;(y,-#v’xi)".
V2ro (4.13)

Given that X is an independent, identically distributed data set, the likelihood of W given X

is
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N1 W)
LWip) = Il=e2""""

s VN2mo ' 4.19)

To simplify the maximization of Eq. 4.14, the log likelihood,

log[LW;x] = IW;y)

B {10 \/i 0'120 )] g

(4.15)

is maximized instead. Since log function is monotonic, maximizing log of a function still .
maximize the function. It is interesting that maximizing the log likelihood of W given X is

exactly the same as minimizing the sum-squared error of the output,

_ Sl e
I = oy -wx), w3

of a processing element previously described in Section 4.2. Applying the gradient method

to maximize Eq. 4.15 gives

A O S N

AW, = p (yi_WTxi)xi ' (4.16)

where p is the learning coefficient. By comparing Eqs. 4.5 to 4.16, it is now obvious that

the back propagation learning algorithm of a processing element that approximates a
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function can be viewed as the effort to find the maximum likelihood estimation of the

parameters that associated to the probabilistic model of the function (Ney, 1995).

4.2.2 Choice of Transfer Function: A Probabilistic View

Based on the probabilistic approach used in the previous section, this section
demonstrates a technique for selectiné the type of transfer function of the feedforward
networks for different tasks (Watanabe et al, 1995).

For classification problems, which the output tends to be yes or no, true or false,
rather than the real number as in regression problems, it is more rational to model the
problem using Bernoulli density function instead of Gaussian. Suppose that there is a
system that has input X € R4, and generates output p. Only the real output y, with some

uncertainty, can be observed (see Fig 4.3).

Input, X Pr|

——— P fW'X) ———P»{uncertainty——P» Output, Y

Figure 4.3: A simulated system.

d
Suppose that pu can be described by a set of parameter W = {w,. }i -, as follows.

b = fW'X)y ; XWeR‘, (4.17)

where fis an arbitrary function.
Using Bernoulli's probability model, # € [0,1] can be considered as the probability
of success, and hence the probability of the output y given the probability of success . can

be demonstrated as
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Plyip)=p?(1-4)" ; y = 0or1

(4.18)
Given an independent, identically distributed data set
N d
z == w, i xme R y=0ory
(4.19)
which is generated by the model, the likelihood of W given x, is |
) -y,
L(W H xi) = u (1' ﬂi) ' (4.20)
where
= f(#7x,). 4.21)
Therefore, the likelihood of W given X is
B ¥, ' -y,
Lwiz)= 11 w(1- m)
i=1 (4.22)

Consider the loglikelihood,

l(W z ( log(u) - y;)log(1- #,)) ’

the term in the summation, which is called "cross entropy," can be perceived as a measure

of closeness between y and p.

A processing element (shown in Fig 4.1) with an arbitrary transfer function f can

be used to approximate the output of the system. The cross entropy term can be employed

(4.23)

as the error function of the feedforward network for classification problems,
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J(W) = _g (y,. log(,u‘)+(l-)’i)log(l— ﬂ.-)). (4.24)

Applying the gradient method to minimize the error function J(W) gives

B 0w, l1-p 0w,

7 w; =1

oJ ({"; (y,- op 1-y,.0 M-D

_[¢ (&_1;&)?_&}

=\ 1= )0 w,

v (
Vi— WY~ i+ 1Yy |9 W _ T V= £(z
‘(E L ' l‘i(l_/‘i) ]5 WJJ ’ o f(W xi)_ f( i)

y )
—————yi 4 "Nz )x.. .
{Z‘l (ﬂ,-(l—u,-))/( ) "J (4.25)

Hence, the learning rule of the classification network is

)
Yi— Hi '
AW, = p ( Jf'(z:')xij -
: ﬂi(l_ ﬂi) (4.26)
which is the adjustment of the parameters in the direction opposite to the gradient. The
choice of transfer function f{z) should now be the one that its derivative, f(z), can cancel

the variance term of the Bernoulli density function, x4 (l -u ), from the learning rule.

If the network employs the sigmoidal transfer function ,

(4.27)
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the derivative of the function is

f@=p (-4 . (4.28)

Therefore the learning rule can be reduced to

AW, =p (y-u)x, (4.29)

which is similar to the learning rule of the feedforward network for regression problem
(see Eq. 4.5). This result suggests that the type of transfer function used in the output
layer of the networks for different tasks should be carefully selected in order to increase
the reliability of approximation.

The same probabilistic approach can also be employed to find the proper transfer

function for other applications. The step by step procedure of the approach for is shown

below.
. Pose the problem.
. Develop a probabilistic model 7 (y |x;6 ) + where y is the output; x is the
input, and O is the parameter.
. Form the log likelihood, or the error function,

10 ; z)=glog(1’(y,-lx,-:0)) .
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e . Apply the estimation principle
6 = arggnax 6; ) .
. Choose a learning algorithm

Select an optimization procedure for finding the maximum

likelihood estimation of parameters ©.

By following the procedure, choices of transfer function for other types of problem can be

determined as shown in the following table.

Problems Probability Model | Error function | Transfer function
of the output layer
Regression Gaussian Sum-squared Error Linear
Classification Bernoulli Cross Entropy Logistic
(2-way)
Multinomial Cross Entropy Softmax

(multi-way)

Counting Poisson | Cross Entropy Exponential
Time to failure Gamma Cross Entropy Exponential
Weibull Cross Entropy Exponential

Table 4.1: Types of transfer function for different neural network application.
In order to properly design feedforward neural networks with back propagation

learning algorithm, thoroughly understanding of how the networks work, and the nature of

the problem that the networks have to solve, are required. Selecting the proper type of
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transfer function of the output layer is one important decision that can be made givén the
knowledge. Although some improperly designed networks work effectively for some
problems, properly designed networks always perform better. Therefore, it is essential that

neural networks' users also understand how they works and apply them properly.

4.3 Probabilistic Model of Radial Basis Function Networks

In this section, the relationship between the Radial Basis Function Network

(RBFN) and the probability and statistics theory is described through the regularization
theory (Girosi et al, 1993, 1995; Bertero et al, 1988; Marroquin et al, 1987; Wahba,
1990). The relationship is informally shown, without demonstrating the related
mathematical issue.

Suppose that the set

N

x = {= yi)ERd"R}isl (4.30)

is the data obtained by random sampling a function £, which is defined on R?. In case of

noisy data, the function f can be represented as
Sf()=y,+E, i=L..N (4.31)
where the noisy term E, is a random independent variable with a given distribution.
A probabilistic approach is applied in order to recover the function £ The function

is considered as a random field with a known a-priori probability distribution. Let's define:

- P[ f| X ] is the conditional probability of the function f given the examples .X.

111



- P[ X | f] is the conditional probability of X given f. In other word, if the function
N

i=1

fis corresponded to the data, this is the probability that the set of output {)’i}
N
is obtained by random sampling the function f at the data point {xi },.=,.
- P [ f]is the a-priori probability of the random field £. P [ f] covers a-priori
knowledge of the function, and can be used to apply constraints on the model by
assigning significant probability only to those functions that satisfy those

constraints.

Assuming that the probability distributions P[ f| X'] and P [ f] are known, the
posterior distribution P[ f| X ] can be determined by applying Bayes rule,

Plfx] « Plxl7] Pis] @)

Assuming that the noise E is normally distributed with variance o, the probability of X

given fis

x| s « 2z st

(4.33)
where G is the variance of the noise.

The model for the a-priori probability distribution P[ f] is chosen in
correspondence with the discrete case (when the function f'is defined on a finite subset of
an n-dimensional lattice) for which the problem can be formalized (Marroquin et al, 1987). g

The a-priori probability can be written as

P[f] « e | (4.34)
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where #(f) is the smoothness functional which will be explained in detail later, and o is a
positive real number. This type of probability distribution provides high probability to
those functions which has the term ¢(f) small, and hence gives a-priori knowledge of the
system.

| According to the Bayes rule, the posterior probability of function f can be written

as

U (5-7(x) +200%18
PlAlX] a e;{“' ” ] (4.35)

The function f can be estimated from this probability distribution by finding Maximum A
Posteriori (MAP) estimate, which considers the function that maximizes the posterior
probability P[ f| X ], or minimizes the exponent in Eq. 4.35. The MAP estimate of f is

actually the function that minimize the functional

1) = § (-1l
N =2 yvi-fx)+ 24/s], “36)

where A= 29'211 (Girosi, 1993, 1995). The first term enforces closeness to the data, while
the second term enforces the smoothness. The smoothness is defined by a smoothness
functional ¢(f), which its lower value corresponds to smoother functions. The parameter
A is called "regularization parameter", which is uAsed to control the trade-off between the
level of noise and the strength of the a-priori assumptions about the solution. In another
perspective, the parameter also controls the compromise between the degree of
smoothness and the closeness of the solution to the observed data.

The smoothness is actually a measure of the oscillatory behavior of the function.

Therefore, within a class of differentiable functions, one function is defined to be smoother
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than another if it has less oscillation. On the other hand, if the functions are considered in
the frequency domain, one is smoother than another if it has less energy at high frequency
(smaller bandwidth). The high frequency content of a function can be measured by high-
pass filtering the function, and then measuring the power (L) norm) of the result (Girosi,

1993, 1995). This leads to defining the smoothness functionals of the form

lf (o)
dsts—
$ )= I Gls) (437)

where ~ verifies the Fourier transform. G is defined as a positive function that drops to
zero as |§| — a so that 1/G is a high-pass filter. For a well-defined class of function G, the
function ¢(f) is semi-norm with a finite dimensional null space N (Madych and Nelson,
1990; Dyn, 1991). There are several possible choices for the smoothness functional ¢(f)
that can be written in the form of the above equation. If G is also assumed to be
symmetric, so that its Fourier transform G is real and symmetric (e.g. Radial Basis
Functions), it can be proved that the function that minimizes the functional H(f) has the

form

16)=2eGlx=5)+ 2d 0,02

(4.38)

k
where {% }a = is a basis in the k-dimensional null space N, and the coefficients dj; and c;

satisfy the linear system

(G+A De+y'd=y , yc=0, (4.39)
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where / is the identity matrix (Girosi, 1993, 1995). The existence of the solution of this
linear system is guaranteed by the existence of the variational problem (Girosi, 1990).

The approximation procedure of this type can also be shown as a network with one
hidden layer, and this type of network is called "Regularization Network" (Girosi, 1993,
1995). Radial Basis Function netwqu (see Chapter 3), which its smoothness ﬁmctions

satisfy the condition

¢ [f(x)] =¢ [f(Rx)] (4.40)

for any rotation matrix R, is also classified in this category. This choice of smoothness
function indicates that the a-priori assumption assumes equal relevancy of all variables, and
no privilege directions. There are many radial basis functions that satisfy these conditions.

For example, if the approximation scheme employs the smoothness function of the form

82
LTI
¢ [f]= Juds e?|F0s) 4.41)
where B is a fixed positive number, a Guassian function

=lsi?

Gls)=e # (4.42)

is considered as the basis function of the approximation scheme,

5 G(x-x,) S
f(x)-,-qci X=X, +a=1a¢a(x) (4.43)

" Since the Gaussian function is positive definite, Eq. 4.43 can be reduced to
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N
/(%)= gc"G(x'x") ’ (4.44)

which is the mathematical form of the radial basis function network (Poggio and Girosi,

1989; Yuille and Grzywacz, 1988).
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Chapter 5

Candidate Neural Network Systems
for Structural Damage Diagnosis

5.1 Introduction

Considering the ability of artificial neural networks to approximate functions, one
promising application area is pattern classification. Our paxficular interest is in evaluating
the potential applicability of the pattern mapping ability of neural networks for remote
sensing and damage diagnosis of engineering structures.

To carry out this assessment, a basic neural network-based diagnosis system is
developed and applied to thé single-point damage cases. The basic system is then extended
to a general architecture for neural network-based diagnosis system, which is applicable to
multiple-point damage. This chapter is concerned with the ovérall design approach. Details

of application are presented in Chapter 6 and 7.

5.2 Basic Neural Network-Based Diagnosis System
Figure 5.1 shows the architecture of a basic neural network-based diagnosis .

system. There are 4 major components; the structure and its numerical model; a data
preprocessing unit; a neural network for detecting the location of damage (NNET1), and a

neural network for detecting the extent of damage (NNET2).
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Figure 5.1 A basic neural network-based diagnosis system.
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The diagnosis system operates as follows. A specified excitation is introduced in
the monitored structure, with or without damage. The resulting structural response is
passed to the "Data Preprocessing Unit." This data is transformed into a numerical vector
pattern called the "Normalized Input Pattern," which is used as the input for the neural
networks.

| Network NNET1 converts each normalized input pattern to a numerical vector
that can be interpreted as defining the location of damage of the monitored structure. A
similar operation is carried out by the second network NNET2. The input in this case is a
combination of the normalized input pattern and the output of NNET]1 (the predicted
location of damage by NNET 1 in the form of binary vector). The output of NNET2 is a
numerical vector that defines the extent of damage at the given damage location. Once the
networks are trained, the diagnosis system should be able to predict the location and
extent of damage of the structure from the time history response data given an excitation.

Hence the issue is how to train NNET1 and NNET?2 to predict with an acceptable
level of accuracy. For the best prediction performance, the training data should cover all
the possible damage conditions that may be experienced by the monitored structure. Since
this data cannot be obtained from the monitored structure, a simulation model of the real
structure is required to generate the training data for both NNET1 and NNET2. If the
model adequately represents the real structure, the neural network-based diagnosis system
trained by simulation data should be able to effectively predict the location and extent of
the damage of the real structure, given the time response of the excited structure. This
idea of training with simulation data is called "Simulated training approach” (Elkordy,
1993). Selection of an appropriate simulation model, the feasibility of a diagnostic system
trained by simulation data, and the practical applicability of the simulation training
approach, are discussed in detail in Chapter 8.

Figure 5.2 shows the training procedure for NNET1. For each training cycle, the

time response of the model corresponding to each damage condition is determined via
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simulation and is passed to the data preprocessing unit, which transforms the time
response data into a normalized input pattern. The normalized input pattern is then passed
to NNET1. Given its weighting parameters, NNET1 predicts the location of damage in the
form of a numerical vector. The difference between this vector and the vector that
indicates the real location of damage is then fed back, and the superviéed training
algorithm adjusts the parameters according to the error. This process is continued, using
different damage cases for each training cycle, until the prediction accuracy of NNET1 is
within the desired limit.

The training procedure for NNET2, shown in Fig 5.3, is similar to that of NNET1
except that it uses the binary vector that indicates the location of damage, in addition to
the normalized input pattern, as the input. The output of NNET2, which is a numerical
vector, is then used to predict the extent of damage at the given location. The difference
between the output of NNET2 and the binary vector that indicates the real extent of
damage of the damage case, is then employed to adjust the parameters via a supervised
training algorithm. The same process is carried on for different damage cases until the
desired prediction accuracy of NNET?2 is obtained.

If the structure of interest involves a small number of possible damage conditions,
application of one basic diagnosis system to monitor the whole structure is feasible.
However, due to the limited ability of the neural networks used, a more elaborate system
is needed to deal with complex structural damage situations. The following two sections
describe how the basic neural network-based diagnosis system can be applied to deal with

single-point damage, and then extended to handle multiple-point damage.
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Figure 5.2 The training process of neural network for detecting location of damage, NNET1.
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Figure 5.3 The training process of the neural netwok for recognizing the extent of damage.
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5.3 Single-Point Damage Diagnosis

5.3.1 Definition of Single-Point Damage

Assuming that the monitored structure is modeled as an assemblage of elements,
and damage is introduced by changing the properties of specific elements, single-point
damage condition is defined as the case where the properties of a single element are
modified at a time. Figure 5.4 illustrates the case of a 2-span beam composed of 22 beam
elements, each of which has the potential to be damaged. It follows that there are 22
possible damage states for NNET 1 to define when the single-point damage condition is
assumed. In this case, the amount of the training data for the neural network is also limited
to the same order. The low number of damage cases makes it feasible to use one basic

diagnosis system to perform damage diagnosis of the whole structure.

5.3.2 System Design

In performing single-point damage diagnosis, the basic neural network-based
diagnosis system (see Section 5.2) can be directly applied. A simulation model of the
structure is required for creating the training and testing data, and only two neural
networks are used. The change of the vibrational signature of the structure is employed to
identify the change in the structure's condition which is then related to damage.

The operation of the diagnosis system follows the flow chart shown in Fig 5.1.
The time history response due to the specified excitation is transformed to a "vibrational
signature" corresponding to the damage condition of the structure. Two types of
vibrational signature are proposed: mode shapes, and spectrums of the response at various
locations. The vibrational signature is then further processed into the numerical vector
called the "normalized input pattern" that NNET1 uses as input to predict the location of

damage on the structure. NNET1's output is also used as input to NNET2, in addition to
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the normalized input pattern, for predicting the extent of damage. The training procedure
of NNET1 and NNET? also follows the flow chart shown in Figs 5.2 and 5.3.

More details concerning the design strategy for a neural network system for single-
point damage diagnosis of an idealized 2-span beam model, and results of the numerical
simulation studies, are presented in Chapter 6. Two choices of excitation and vibrational
sighature, ambient excitation & mode shape approach and prespecified impulse excitation

& response spectrum approach, are investigated and evaluated.

5.4 Multiple-Point Damage Diagnosis

5.4.1 Definition of Multiple-Point Damage

For most applications, the damage condition is such that several locations of the
stmctﬁre of interest can be damaged at any specific time. In this case, a diagnosis system
that is designed based on the assumption of single-point damage is not applicable, and a
new diagnosis system that can deal with multiple-point damage is required. By definition,
multiple-point damage refers to the case where damage occurs at more than one location.
If the simulation model of the monitored structure is made of several elements, and the
damage is simulated by the change of the properties of specific elements, the number of
possible different damage states is now in the order of the factorial of the tdtal number of
the elements. For example, the 2-span beam shown in Fig 5.4 has 22 beam elements, and
involves the factorial 22 (1.124*10") different damage states. For single-point damage,
only 22 different states are involved.

Multiple-point damage condition makes the number of possible damage cases
approximately in the order of the factorial of the number of elements. The number of
training samples required for a diagnosis system is also in the same order, which is too
large to be effectively used to train a basic diagnosis system. In order to deal with the

increased number of possible damage cases associated with multiple-point damage, the
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basic diagnosis system is expanded by incorporating a number of neural network-based
diagnosis systems operating in a hierarchical way. Details of this approach are provided in

the following section.

5.4.2 General Architecture of Neural Network-Based Diagnbsis System:
Global-Local Structural Diagnosis

The diagnosis system described in Section 5.3.2 can be categorized as a "global"
structural diagnosis system since it employs only one basic neural network system for the
whole structure. As mentioned earlier, the applicability of this approach is limited since
most structures involve an excessive number of different damage cases.

The global-local structural diagnosis approach transforms a structural damage
diagnosis problem to several less complex problems that are handled individually by
separate diagnosis systems. As shown in Fig 5.5, the approach is based on considering the
whole structure to consist of a set of interacting substructures, and using a "global
structural diagnosis system" involving a single neural network to identify which
substructures are damaged. Each individual damaged substructure is then independently
examined to establish the locations and extent of damage with a "local structural diagnosis
system." Figure 5.6 illustrates the general architecture of the global-local structural
diagnosis approach, and its operation flow.

The global diagnosis system, shown in Fig 5.7, is a modified version of the basic
system described in Section 5.2. The operation of the global system still follows that of the
basic system except that NNET?2 is not included, and the output of NNET1 now defines
the damaged substructures instead of damaged elements. After a specified global
excitation is introduced, the time history response of the structure is transformed to a
"global vibrational signature," which could be either the mode shapes or spectrums of

response at various locations of the structure, before being further processed into the
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"global normalized input pattern" corresponding to the damage condition. Given the

global normalized input pattern, NNET1 identifies the substructures that contain damage
by defining each substructure as a possible location of damage. The training procedure for
the basic system, which is illustrated in Fig 5.2, is also applicable here'. Global structural
diagnosis requires at least a global model of the monitored structure and a neural network
(NNET1). |

The local diagnosis system of a particular substructure is actually a basic neural
network-based diagnosis system that is trained by a local training data set specifically
created for the substructure. The number of local systems depends on the number of
substructures. As mentioned earlier, thé local system of a substructure will operate
whenever the substructure is identified as being damaged by the global system. The
architecture and operation of a local system are similar to those of the basic system
described in Section 5.2 (see Fig 5.1). To operate a local system, the response of the
monitored substructure due to a preépeciﬁed local excitation is transformed to a "local
vibrational signature," and further processed into a "local normalized input pattern," which
is used as the input for the NNET1 of the local system of the substructure. Given the local
normalized input pattern, NNET1 will predict the locations of damage on the substructure, -
and send its output vector to NNET2 (which also uses the local normalized input pattern
as a part of its input) to predict the extent of damage. The training procedure of the
NNET]1 and NNET?2 for each local system is identical to the procedure described in
Section 5.2 (see Figs 5.2 and 5.3).

Figure 5.8 illustrates the comparison between the global and global-local diagnosis
scheme for a 2-span beam having 22 elements. With global diagnosis, one diagnosis
system has to be trained with a set of damage cases involving the order of 1.124*10
(fé,ctorial of 22) data pairs. With global-local diagnosis, one global and two local diagnosis

systems need training. However, the global system now involves only the order of 2
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(factorial of 2) data pairs, while each of the two local diagnosis systems requires the order
of 4*107 (factorial of 11) data pairs. This reduction in training set is significant, and
therefore combining global and local schemes makes the training of the individual
networks much more feasible.

More details concerning the design methodology for the diaghosis systems based
on the general architecture of neural network-based diagnosis system are presented in
Chapter 7. Simulation studies of an idealized 4-span beam with multiple-point damage are
performed. Two choices of global excitation and vibrational signature, ambient excitation
& mode shape approach and prespecified impulse excitation & response spectrum
approach, are evaluated. The prespecified random excitation & frequency transfer function

approach is employed for local diagnosis systems.
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Chapter 6

Single-Point Damage Diagnosis: A Case Study

6.1 Objective and Scope

This chapter describes the development and application of a neural network-based
system for diagnosing single-point damage in a 2-span bending beam. The architecture
and training pfocedure are based on the concepts described in Section 5.2 (see Figs 5.1 to
5.3). Two choices of excitation and vibrational signature are considered: i) ambient
excitation & mode shape and ii) prespecified excitation & response spectrum. An
assessment of the significant system design variables is performed for both choices of
excitation and vibrational signature. The applicability of the diagnosis system to other
structures with single-point damage is also discussed at the end of the chapter. The
approach is extended to deal with damage prediction of a 4-span beam with multiple-
point damage condition in the next chapter.

The scope of the problem is restricted to only linear planar bending behavior, while
the contribution of transverse shear deformation is neglected. The multilayer feedforward
network with back propagation training algorithm is the only neural network considered
because the lack of a-priori knowledge of damage patterns in this problem does not suit
the radial basis function network. Only one hidden layer is used since studies (see Chapter
3) indicate no clear performance advantage of including more than one hidden layer. The

diagnosis system is supposed to identify both the location and extent of damage. Ambient
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excitation is modeled by a single-wheel moving load, while prespecified excitation is

modeled by impulse loading.

6.2 Description of Simulation Model

The 2-dimensional bending beém model shown in Fig 6.1 is taken as the model of a
real 2-span beam. The mathemaﬁcal model used is the Timoshenko's bending beam model.
The length of the right and left span is 40 and 25 meters réspectively. The model consists
of 22 linear beam elements. Eleven elements are used to represent each span. Fig 6.2
defines the notation for the element nodal displacements. There are 4 degree of freedoms

(DOFs) for each element; 2 translations and 2 rotations. The stiffness matrix of a beam

element is given by

[4 61 2 -61]
E[‘ 6/l 12/* 6/l -12/1*
Tl 2 61 4 -6l |

-6/t —12/i* 61 12/1* ]

(6.1)

where E is the modulus of elasticity of the beam element, /is the moment of inertia of the

bending axis, and / is the length of the beam element. The mass matrix for the element is

(42 221 =3 131 ]
p_ll 221 156 -131 54 ’
420[-3}2 131 4* -221 J

13/ 54 =221 156 (6.2)

where p is the average mass per unit length of the element. The stiffness and mass

matrices of the elements that are connected to the support of the beam are slightly

different due to the effect of the boundary condition. Fig 6.3 shows the beam element no.1
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Figure 6.2: General beam element.
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Figure 6.3: DOFs of beam element no.1
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of the beam model. There is no translational movement at the left end of this element due

to the presence of the hinge support, so the corresponding row and column of Eqgs. 6.1

and 6.2 can be deleted. The reduced matrices are

-
k= Ell—l 2 4 —6/1l
[—6/1 -6/l 12/12J

and

£ 2 2
- l 4l -

13/ 221 156

The same approach is applied to elements 11, 12,

(6.3)

. (6.4)

and 22 in order to provide all the

necessary boundary conditions for the equilibrium equations of the 2-span beam.

The stiffness and mass matrices of the complete beam model are generated by

superimposing the contribution of the elements as

k!

k2

k22

“43by 43

and
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ml

m2

m22
T43by 43 (6_6)

Note that there is overlap between each pair of neighboring £, or m, since they share some
global degrees of freedom.
Assuming that the beam has proportional damping (i.e. Rayleigh damping), the

damping matrix is

C= a0M+ alK (67)

where @, and @, are parameters that correspond to the pre-specified damping ratio of the
first 2 modes of vibration of the model. These parameters can be determined by solving

the equation

lrl/wl Wl_‘ ra0-| l_¢l-| :
El_l/wz W, I.01J B I.¢2J' ' (6.8)

where @, and @, are the prespecified damping ratios, and w, and w, are the undamped
modal frequencies of the 1st and 2nd mode of vibration respectively. In this application the
damping ratios of the first 2 modes are set to be 1%.

By defining
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w

| S—

(6.9)

as the global displacement vector, which contains all the degree of freedom of the beam

model (see Fig 6.4), the equation of motion of the model can be‘represented as

MU+CU+KU = P (6.10)
where
Fpl(n]
Pz(’) |
P
Lp43(t)J (6.11)

is the force on the beam model as a function of time 7. Given the force function and all the
parameters of the model, the time history response can be determined by solving the
equation of motion.

For this application, the flexural rigidity, EI, is taken as 5.34 x 10° N-m?
throughout the length. The average mass per unit length is 9880 kg/m. Fig 6.5 shows the
first three mode shapes and their corresponding frequencies. The unsymmetrical feature is
reflected in the mode shapes. The response of the beam model due to an excitation is
determined by a direct time integration method (Newmark method) performed in
MATLAB. The time interval of the integration is taken as 0.01 second. Damage is
introduced in the model by lowering the value of E7 in the stiffness matrix of a beam
element. This type of damage condition can be interpreted as degradation of the flange

" area of the beam.
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Figure 6.5: First 3 mode shapes of the unsymetrical 2-span beam.
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Two types of vibrational signatures are used to monitor the state of the beam
model; mode shape and response spectrum. As demonstrated in Appendix C, the changes
of the vibrational signatures of a bending beam can be employed to identify the change of
the beam's stiffness. The signatures are determined from the simulated free-vibration
response of the model given a specified excitation. Ambient excitation is employed in
creating mode shapes since the propérties of the mode shapes do not change with
excitations (Mazurek, 1992). Therefore, the neural network-based diagnosis system can
employ the mode shapes of the model (with various damage conditions) corresponding to
different excitations as its training data. Besides, using ambient excitation provides the
diagnosis system the real-time operatioﬂ ability, and does not require extra loading
equipment. On the other hand, the properties of response spectrums depend directly on
the characteristics of the excitation, so it is necessary for a neural network-based diagnosis
system to employ the response spectrums of the model corresponding to a specified

excitation as its training data.

6.3 Mode Shape Approach

Since the roadway roughness and vehicle velocity do not have any influence on the
modal frequencies and shapes, and variable mass has only a minimal effect (Mazurek,
1992), a mass-consistent moving load with variable velocity is utilized for creating the A
training and testing data patterns corresponding to different damage conditions. A single-
wheel load of 2000 kg (4.4 kips), with its velocity ranging from 40 to 60 mph, is moved
through both spans of the model as the excitation. In this case, the duration of loading, or 3
the amount of time that the moving load travel on the beam, is more than ten times of the
first three fundamental periods of the beam. Therefore, the moving load effectively excites
the first three modes of vibration of the beam (Humar, 1990 and Humar et al, 1993). In

practice, the ambient excitation may be more heavily weighted to certain frequencies.
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However, such variations in excitation are kept to a minimum in most cases (Green,

1995).

6.3.1 Data Preprocessing Strategy

The data preprocessing unit transforms the time history response of the structure
hﬁving a particular damage cdnditidn into a corresponding input pattern for the neural
networks NNET1 and NNET2. The time response at each monitoring point of the model
is determined via simulation, and is taken as the sensory data of the real structure. In the
mode shape approach, the free-vibration response data is processed by a modal analysis
routine (see Appendix A) in order to determine the mode shapes of the model
corresponding to different damage conditions. The data is collected right after the moving
load passes the last support for a period of 20 seconds.

| Fig 6.6 illustrates the case where the first two mode shapes, with 10 points

representing each mode, are selected as input for the neural networks. All the mode shapes
are similarly normalized so that their maximum amplitude is equal to unity. The value of
the points representing the normalized mbde shapes are then used to create a vector called

"input" vector,

[ data point no.1 of mode shape no.1 |

) data point n0.10 of mode shape no.1
input = data point no.1 of mode shape no.2 € %o, 1),

| data point no.10 of mode shape no.2 | (6.12)

The Reference Value Approach is employed next. This approach uses the

difference between the damaged and undamaged data patterns as the input for the neural
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networks (Elkordy et al, 1993 and Ballinger et al, 1995). The data generated through the

simulation of the undamaged structural model is called the "reference data set."

reference data set=input , given undamaged case. (g 13)

The difference between the data corresponding to a simulation of any given damage
condition and the reference data set is taken as the "input pattern" for the particular

damage condition.

input pattern = input -reference data set. (6.14)

Each input pattern is then normalized by dividing by the absolute value of the maximum
data point in all available input patterns (maxdata).
input pattern

lized input pattern = —————— e RO,1] .
normaliz iput pattern maxdata R[0,1]

(6.15)

Given a "normalized input pattern," NNET1 gives the corresponding output,

[ outl,
| outl,

outputl |

l_outl22

1
I
W
|

] (6.16)

where outl; € R[0,1]. Since the number of elements representing the model is 22, the size
of the output vector is 22 by 1. The "expected" output1 corresponding to the same

damage condition is also represented by Eq. 6.16, where out1; is 1 if there is reduction of

" EI of the ith element and 0 otherwise. By defining
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outl; = 0, when out; < threshold

=1, when out, > threshold, threshold € R[0,1],

for every output1, a particular output of NNET]1 is regarded as a correct classification

whenever it is within a specified threshold of error. For example, if the network output is

[0.0154]
0.7163
01209

| 0.0286 |

22x1

and the expected output is

- 722x1

which corresponds to damage in the second element, the classification is correct if
threshold is set at 0.7. However, if the threshold were set at 0.8 or 0.1, the network
prediction would be incorrect. When the amount of available training data is limited, the
threshold is kept low in order to allow the diagnosis system to predict with lower level of
confidence. As more training data becomes available, the threshold and the confidence of
prediction increase. Since the optimum threshold value for a specific application depends
on the training and testing data set, a trial and error approach is also required to find the

optimum value.
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The normalized input pattern and its corresponding expected output1 for a |
particular damage case can then be employed as a training or testing data pair of NNET1.
Note that the error term used by the training algorithm of NNET1 (see Fig 5.2) is the
difference between the expected outputl and the oiuputl that is not yet adjusted by the
threshold value.

The input of NNET2, normalized inpui pattern2 | is the vector that combines the
normalized input pattern with the threshold-adjusted output of NNET1 given the
normalized input pattern.

[ normalized input pattern)
normalized input pattern2 =|_ outpuptzll P

(6.17)

The output of NNET2 corresponding to a normalized input pattern2 is

out2; € R0,1].

Lours (6.18)

After being adjusted by a threshold value, the binary output2 represents 5 categories of
damage states: 'out21 = 1 indicates 0-20% reduction of EI of the damaged element
identified by NNET1, and O otherwise; our2, does the same for 20-40% reduction of £/ ,
out2, for 40-60% ; out2, for 60-80%, and out2 for 80-100%. The normalized input
pattern2 and the expected oufput2 corresponding to a particular damage are then taken as
a training or testing data pair of NNET2. Note that the error term used by the training
algorithm of NNET2 (see Fig 5.3) is the difference between the expected outpur2
corresponding to a particular damage condition and the oufpur2 that is not yet adjusted by
threshold value.
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6.3.2 Configuration and Training of Neural Networks

Since this application is a static pattern mapping problem, a 1-hidden-layer
feedforward network trained with the back propagation algorithm is appropriate. Figure
6.7 shows a NNET1 with 20 nodes in the input layer, corresponding to the size of the
normalized input pattern used in Section 6.3.1, and 22 nodes in the output layer that
represent the size of the binary output vector. A tangent sigmoid type transfer function is

used for the hidden layer,

e*—e™" :
= tanh(x) = , ~11],
J(¥) = tanh(x) T 1o f(x) e R-1]] 6.19)

while the log sigmoid function is employed for the output layer,

fa= f(x) e RO1].

1+e™ ' (6.20)

Both transfer functions are illustrated in Fig 6.8. According to the discussion in Section
4.2.2, this transfer function assignment is appropriate for classification networks. The
initial value of each of the connection weights is randomized value between -1 to 1. The
training algorithm also utilizes the momentum term and adaptive learning rate.

The training data set contains the normalized input patterns and their
corresponding expected outputls corresponding to 92 different damage cases, which are
created by performing 92 numerical simulations. The first four times, the simulation is
performed on the damage-free beam model. The remaining 88 times, it is performed with
different damage cases that have 5%, 20%, 50% or 80% reduction of E/ on a beam

element. Table 6.1 demonstrates the damage cases for all simulations.
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1

fo(h) = ‘1 +exp(—28h)

tanh(x)

| Bal

Figure 6.8: Example of transfer functions.
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Damage case of the Damaged Element ET Reduction
simulation no. (% of original EI)
1-4 - 0
5-26 1,2,3,..,22 5
27-48 1,2,3,..,22 20
49-70 1,2,3,..,22 50
71-92 1,2,3,..,22 - 80

Table 6.1: The damage cases of the training data set.

Fig 6.9 shows the convergence of the Sum-Square Error (SSE) of the NNET1, with 7
processing elements in the hidden layer, trained by this data set.

Other 70 testing data pairs are then similarly created. Each of them are created
from the simulation of the model that has the reduction of EI randomly range between 5%
to 90% on one beam element. Table 6.2 demonstrates all the damage cases included in the

testing data set.

Damage case of the Damaged Element EI Reduction
simulation no. (% of original EI)
1-4 - 0
5-70 1,2,3,..,22, 1,2, .., randomly between 5-90%
22,1,2,3,..,22

Table 6.2: The damage cases of the testing data set.

The accuracy of NNET]1 is determined by operating the trained network on the training
data set, and comparing the network outputs to the expected outputs, which are the binary
vectors corresponding to the damage cases used to create the testing data set. In this
application, the threshold value is set at 0.8 for both NNET1 and NNET2.

The configuration of NNET2, and the procedure followed to construct the training

and testing data, are similar to those of NNET1. The only difference is that NNET2
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Figure 6.9. Convergence of the training of an example network.
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requires more nodes in the input layer (corresponding to the size of normalized input

pattern 2), and 5 output nodes in the output layer (corresponding to the size of ouzpur2).

6.3.3 Performance Studies

The performance-based process for selecting the optimum global diagnosis system
for the 2-span beam problem based on the results of simulation studies is performed in this
section. Two measures of the performance of a diagnosis system are considered: i)
absolute accuracy, i.e., the best percentage of correct diagnosis that can be achieved by a
diagnosis system, and ii) the number of training cycles required for neural networks to
reach a specific level of accuracy.

Sensitivity studies are carried out for the following 3 variables; i) number of mode
shapes used to create input, ii) number of points representing each mode, and iii) number
of processing elements in the hidden layer of NNET1 and NNET2. Fig 6.10 shows the
significance of the number of mode shapes on the accuracy of NNET1. The accuracy
measure plotted the percentage of correct predictions by NNET1 based on the testing
data. In this case, the NNET1 configuration has 7 processing elements in the hidden layer,
and each mode shape is represented by 10 points. The result demonstrates that
incorporating more modes in the training data improves the absolute accuracy, and
reduces the number of training cycles needed to reach the absolute accuracy. Using all 3
mode shapes as input, this network trained for 4000 cycles can predict the location of
damage with the absolute accuracy as high as 96%.

Fig 6.11 shows the influence of the number of points used to represent each mode
shape, or the number of sensors, on the accuracy of NNET1. The first 3 mode shapes are
employed to create the input. In this investigation, the number of points representing each
mode shape is varied uniformly from S to 20 points, with an increment of one point. The
result demonstrates that the absolute accuracy increases with the number of points until an

optimum number is reached. In this application, the absolute accuracy stops increasing
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Figure 6.10: Significance of the no. of mode shapes to the accuracy of NNET1.
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Figure 6.11: significance of no. of points representing each mode shape

to the accuracy of NNET1.
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when the number of points representing each mode shape exceeds about 10, which is an
indication that 10 points per mode shape is a reasonable choice.

The effect of the number of processing elements in the hidden layer on the
accuracy is investigated by varying the number of elements uniformly from 2 to 20
elements with an increment of one element. The network is trained aﬁd tested with the
data created from the first three mode shapes, each of which is represented by 10 points.
The results indicate that the absolute accuracy increases with the number of elements up to
about 7 elements, and then tends to decrease slightly beyond this number of elements. Fig
6.12 compares the accuracy corresponding to three different networks (having 5, 7, and
15 processing elements respectively). The figure shows that the 7 processing elements
architecture has the best gbsolute accuracy. The 15 elements version performs better on
the training data, but worse on the testing data. The reason is that larger networks tend to
have less generalization ability, and are more susceptible to overfit the training data (Liu,
1995; Ling, 1995).

Different testing data sets, each of which has damage cases that have a specific
extent of damage, are then employed to test the optimum NNET1, which is the NNET1
with all design variables set at optimum. The configuration includes using the first three
mode shapes, each represented by 12 data points. The network has 12 hidden units, and

100 training samples are used. The result is demonstrated in Table 6.3.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)
‘ 10 96
5 96
4 81
3 54

Table 6.3: The damage sensitivity of the optimum NNET1.
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Figure 6.12: significance of the no. of PE in the hidden layer to the accuracy of NNET1.
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The optimum NNET]1 is able to detect damage corresponding to a 5% reduction in ET at
any location of the 2-span beam model with an accuracy of 96%. This performance is very
impressive.

The same performance-based design process is also employed to find the optimum
NNET?2 configuration. Based on the résults of simulation studies, the optimum NNET2
architecture has 21 processing eiements. It's input data is generated from the first 3 mode
shapes, each of which is represented by 10 points. The opﬁmum NNET?2 trained by the
cross-validation approach is able to predict the extent of damage with absolute accuracy

up to 84%.

6.3.4 Observation

Based on the results of performance studies, the optimum NNET 1 architecture has
7 processing elements. It's input data is generated from the first 3 mode shapes, each
represented by 10 data points. Properly trained NNET1 is able to predict the location of
damage with an absolute accuracy up to 96%. Simulation results demonstrate the
overtraining effect (see Chapter 3) when the network is trained to fit the training data so
that it performs poorly with the testing data. Therefore, a trial and error approach, or the
cross-validation method (see Chapter 3), is recommended for optimizing the NNET1.

These results also reveal the ability of the diagnosis system based on mode shape
approach to et’feétively monitor the condition of an idealized structure with single-point
damage. An additional benefit of this approach is that it requires no extra loading
equipment for operation. Moreover, the diagnosis systems based on this approach can be

operated in real time when ambient excitation is abundant.

6.4 Response Spectrum Approach

The excitation used in this application is a set of specified hammer impulses

applied at specific locations of the structure. The simulation model, and the damage cases
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for both the training and testing data sets, are similar to those employed in the previous

section.

6.4.1 Data Preprocessing Strategy

The time-acceleration response of all DOFs is determined from numerical
simulation, and is taken as the sensory data at the corresponding locations of the
monitored structure. Each time-acceleration data, x(%), is recorded during the time period
T and then passed through an analog-to-digital converter to generate the discrete time
series {x,}, r =0, 1, 2, ..., (N-1). The Fast Fourier Transform (FFT) is then used to
calculate the Discrete Fourier Transform (DFT) of this time series, {3}, k=0, 1,2, ...,

(N-1), and hence find the spectral estimate

- T _.
S.w,) =2 —X. X, ,

o (6.21)

where X, is the DFT of {x,}, and X is the complex conjugate of X, . The spectral
estimates corresponding to {x,} of Qarious sensors are then smoothed in order to imprové
their statistical reliability by a spectrum smoothing routine in MATLAB (based on the
method suggested by Newland, 1993) before being used to create the input for neural
networks. |

In this application, the free-vibration response of the model is employed to create
the response spectrums of the model corresponding to different damage conditions. Since
the sampling interval is 0.01 second, the Nyquist frequency is 50 Hz, which effectively
contains the response of the first 3 modes of vibration of the beam model (Newland, 1993,
suggests the Nyquist frequency should be at least twice the frequency of interest). The
time series signal is filtered to remove frequency components over 50 Hz in order to avoid
the effect of aliasing. The frequency resolution is set at 1 Hz, and the maximum effective

bandwidth of the calculation is set at 0.5 Hz. The ratio of the standard deviation to the
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mean of measurement is set at 0.3, and the required measurement length is determined to
be 20 seconds. The smoothing process involves averaging every 11 adjacent spectral
estimates, and each value of the spectral estimates is the result of smoothing over 0.5 Hz
frequency span. The smoothed spectral estimates are then taken as the response spectrums
of the time series.

Fig 6.13 shows the 20-second acceleration response of DOFs 7 and 28 of the
undamaged model given a hammer impulse, and their corresponding smoothed spectrums.
Assuming that these 2 spectrums are used as a damage pattern for NNET 1, each spectrum
will be divided into a number of zones, NUMZONE. As shown in Fig 6.14, each zone

covers the same size of frequency interval,

MAXFREQ

fint = Sazone

(6.22)

where MAXFREQ is the maximum frequency (Hz) of the response spectrums. In this
application, MAXFREQ is set at 15 Hz, which well covers the 3rd mode of vibration of
the 2-span beam (see Fig 6.5). The area under the spectrum of each interval, which
relatively represents the amount of energy released by the DOF (or by a spéciﬁc area of
the beam 'represented by the DOF) in that frequency interval, is then calculated. This
provides a number of energy-related data points (NUMZONE points from each spectrum)

for a particular damage case as a vector,

- -

data point no.1 of spectrum no.1

data point no. NUMZbNE of spectrum no.1

input = : ’
data point no.1 of spectrum no. NUMSPEC

| data point no. NUMZONE of spectrum no. NUMSPEC |

(6.23)
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Figure 6.13: Example of simulated acceleration response and its spectrums.
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where NUMSPEC is the total number of spectrums used to create the input for NNET1
and NNET2 (or the total number of sensors used to collect the data).
In order to keep the difference of the magnitude among all data points (data

spread) low, the logarithm of base ten of the input vector is used.

input = log,, (input) . C(6:29)
The vector generated through the simulation of the undamaged model is referred to as the

"reference data set,"

reference data set=input , givenundamaged case. (6.13)

The Reference Value Approach is then applied. The difference between the input vector
corresponding to a particular damage case and the reference data set is taken as the "input

pattern" for the damage case.

input pattern = input -reference data set. (6.149)

Each input pattern is then normalized by dividing by the absolute value of the maximum

data point in all the input patterns (maxdata).

input pattern
maxdata (6.15)

normalized input pattern =
Each "normalized input pattern" and its corresponding expected outputs of NNET1 and
NNET?2, which are the same types of binary vectors used in the mode shape approach, can
then be taken as a training or testing data pair of NNET1 and NNET2. More details on

how to create the data are demonstrated in Section 6.3.1.
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6.4.2 Configuration and Training of Neural Networks

The configuration of NNET1 and NNET2, and the damage cases for their training
and testing data sets, of this diagnosis system are exactly the same as those used in section
6.3.2. However, the number of input nodes for both NNET1 and NNET2 now

corresponds to the size of normalized input pattern used by the spectrum approach.

6.4.3 Performance Studies
Six design variables are investigated for their influence on the performance of the

diagnosis system; i) the number of sensors, ii) the location of sensors, iii) the numbér of
intervals representing each spectrum, iv) the number of hammers, v) the locations of
hammers, and vi) the number of processing elements in the hidden layer of NNET1 and
NNET?2. Fig 6.15 demonstrates the significance of the location of sensors to the accuracy
of NNET1. Each point represents the accuracy of a NNET1 trained and tested with data
created from two response spectrums, each of which is created from the data collected
from a sensor located at the same relative position of each span. Two hammer impulse
loads, each of which is located at the middle-left point of each span, synchronously apply
the impulse of 10000 Newton for 0.1 second as the prespecified excitation. Ten intervals
are used to represent each response spectrum, and 15 processing elements are included in
the hidden layer of NNET1. Fig 6.15 shows that fhe location of the sensors has almost no
effect on the performance of NNET]1 except when the sensors are close to supports. In
this case, there is a slight drop in performance due to the fact that the sensor response is
weak for these locations.

Fig 6.16 shows the significance of the number of sensors used to create the input
data for NNET1. The loading and network parameters are the same as for the previous
figure. The plot demonstrates that the absolute accuracy of NNET1 increases with the

number of sensors per span. However, the accuracy does not significantly improve when
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Figure 6.15: Effects of the location of sensors to the accuracy of NNET1.
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Figure 6.16: The significance of the no. of sensors to the accuracy of NNET1.
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more than one sensor per span is employed. Therefore, one sensor per span is the
recommended minimum number of sensors for this application.

The significance of the number of intervals representing each spectrum to the
absolute accuracy of NNET1 is then investigated. Similar loading and network parameters
are still employed. One sensor is located at the middle-left point of eaéh span. The number
of intervals representing each spectrum is varied from 5 to 20 intervals, with an increment
of five intervals. The results show that the absolute accuracy of NNET1 increases with the
number of intervals used to represent a response spectrum up to 10 intervals, and is
eventually constant beyond the level. This is the indication that 10 intervals per response
spectrum is essentially the optimum number for this diagnosis system configuration.
Results for 5, 10, and 20 ‘intervals are plotted in Figure 6.17.

The significance of the configuration of hammer load is also investigated. Firstly,
the significance of the number of hammer impulse loads is examined. NNET]1 still has 15
processing elements, and one sensor is located at the middle of the left half of each span.
The number of intervals representing each spectrum is 10. NNET1 is then trained and
tested with data set generated from three different configurations of hammer impulse load,
i) a single hammer applied on the left span, ii) 1 hammer per span, and iii) 2 hammer per
span. Fig 6.18 compares the performance of the networks that are trained with data from
different excitations. It is evident that a single hammer is not sufficient since the network
trained with the data created from this excitation has only around 40% absolute accuracy,
compared to 92% for those networks trained with the data generated by the other
excitations. This difference can be explained by the fact that 1 hammer is able to
effectively excite only the first mode of vibration of the beam, whereas 1 or 2 hammers per
span can excite higher modes of vibration. It was established in Section 6.3.3 that a
minimum of 3 modes is needed to create the input of NNET1. Since using 2 hammers per
span does not significantly improve the performance, only 1 hammer per span is

considered for this application.
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Figure 6.17: Significance of the no. of intervals to the accuracy of NNET1.
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The influence of the locations of the hammer loads is then examined. The
architecture of NNET1, and the data preprocessing strategy, are the same as used in the
previous investigation. Fig 6.19 shows that the location of the single-hammer load has
very little effect on the performance of NNET1. Fig' 6.20 shows 4 different configurations
of excitations employing 1 hammer load per span. Separate networks are trained and
tested with the training and testing data generated by these 4 excitations respectively. The
results indicate that the performance of the individual networks is approximately similar,
which is up to 93% of absolute accuracy. Therefore, it is reasonable to concede the
location of hammer load to be unimportant.

The significance of the number of processing elements in the hidden layer is
investigated by varying the number of elements from 4 to 30, with an increment of one
element. The network is trained and tested with the data created from the response
spectrums of two sensors, each of which is located at the middle-left point of each span.
Each spectrum is represented by 10 intervals. Fig 6.21 compares the performance of four
networks (with 4, 7, 15 and 30 processing elements respectively). The result indicates that
the absolute accuracy increases with the number of elements until the number exceeds 15,
and tends to decrease slightly afterward.

Different testing data sets, each consisting of damage cases with a specified extent
of damage, are then employed to test the damage sensitivity of the optimum NNET1. The
result is shown in Table 6.4, which demonstrates accuracy improvement with the extent of
damage. The accuracy is very good when the extent of damage is higher than 5%
reduction of EI, but becomes poor for the damage with lower extent.

The performance-based design process used to design NNET1 can also be
employed to optimize NNET2. Simulation studies indicate that NNET2 should have 27
processing elements, the time response data should be collected using at least 1 sensor per
span, and each response spectrum should be represented by 12 intervals. For hammer

impulse loads, at least one hammer load per span is needed. Based on the result of the
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performance study using the training and testing data mentioned earlier, a properly trained
optimum NNET? is able to predict the extent of damage with the absolute accuracy up to
83%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)
- 10 9
5 92
4 78
3 48

Table 6.4: The damage sensitivity of the optimum NNET1.

6.4.4 Observation

To avoid overtraining, a trial and error-based approach, or the cross-validation
method described in Chapter 3, needs to be employed to find the optimum configuration
of NNET1 and NNET?2. The results also indicate that a 1-hidden-layer network with 15
processing elements is optimal for this application. The time response data should be
collected from at least 1 sensor per span, and each response spectrum should be
represented by 10 intervals. At least one hammer load per span should be used as the
excitation. A properly trained optimum NNET1 is able to predict the location of damage
as small as 5% reduction of E7 with the absolute accuracy more than 90%. |

Simulation data indicates that the performance of the diagnosis system based on
the response spectrum approach is sufficient for this single-point damage application. The
approach is feasible when the monitored structures are subject to inconsistent ambient
excitation (low frequency, or very weak, excitation), which makes it difficult to employ

the ambient vibration & mode shape approach.
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6.5 Applicability to Other Structures

There are many potential applications for single-point damage diagnosis. For
example, a single-point damage diagnosis system for the frame structures shown in Fig
6.22 can be established by following the same procedures employed in building the
diagnosis systems for the 2-span beam ..demonstrated in the previous section. -

The mathematical model,' or a scaled model, of the frame can be constructed and
employed to create the training and testing data. Either the.mode shape or response
spectrum approach can be employed. If there is regular earthquake or wind gust in the
area, it can be used as the ambient excitation for generating training and testing data.
Hammer impulse generators or mechanical vibrators can also be used to generate
prespecified excitation, if ambient excitation is not available.

The training and testing data can be created by using the procedure previously
shown in this chapter. The time history response of the frame due to an excitation should
be recorded from the sensors on each floor, and then used in creating mode shapes or
response spectrums that correspond to different damage cases. The vibrational signatures
are then further processed by the data preprocessing procedure similar to those employed
in the previous sections, and used as input of NNET1 and NNET2. Only minor
‘adjustments on the size of the input and output layers of NNET1 and NNET?2 are needed
to correspond to the size of their new inputs and éutputs. The performance test; which is
used for conﬁguﬁng the optimum architecture of the diagnosis system, can be similarly

performed after the all the design variables are identified.

6.6 Discussion and Summary

The simulation studies of the preliminary application on an idealized 2-span beam
demonstrate good potential of the neural network-based structural diagnosis system on
single-point damage diagnosis. The performance of the optimized diagnosis systems, based

on either the mode shape or response spectrum approach, is also similar. Therefore, the
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choice of excitation and vibrational signature for a specific application could be méde by
considering the practical applicability of the choices (Green, 1995). Increasing the
information contained in the input of NNET1 and NNET2, such as increasing the number
of mode shapes or response spectrums used to create each normalized input pattern,
usually leads to better prediction performance of the diagnosis system until an optimum
point is reached.

Finally, the optimum diagnosis systems, mode shape or response spectrum
approach, are tested with the testing data set that consists of 50 multiple-poiht damage
cases, each of which has more than one damaged beam element. The damaged beam
elements of each case are randomly selected, and so is the extent of damage. The result
demonstrates that the diagnosis systems that are optimized for single-point damage can
predict the location of multiple-point damage with less than 10% accuracy. Therefore, it
can be assumed that the diagnosis systems that are optimized for single-point damage
cannot be applied to multiple-point damage problem.

However, the neural network-based diagnosis system for single-point damage can
also be applied to other structural diagnosis problems that single-point damage condition
applies. Only some detail adjustment in the design procedure is required to apply the basic
architecture to a specific application. Therefore, the approach is proved very flexible, and

should be very beneficial for structural engineers.
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Chapter 7

Multiple-Point Damage Diagnosis: A Case study

7.1 Introduction

In this chapter, a neural network-based diagﬁosis system for a 4-span bending
beam with multiple-point damage is developed and evaluated. Since multiple-point
damage leads to an excessive number of different damage cases, a combination of global
and local structural diagnosis systems is employed. The global diagnosis system is used to
identify which spans are damaged. Each damaged span is then diagnosed with a local
diagnosis system that has been customized for the particular span to detect the location
and extent of damage. The architecture and operation of the combination of diagnosis
systems is similar to the model described in Section 5.4.2. Two choices of excitation and
vibrational signature are employed for global diagnosis: i) ambient excitation & mode
shape and, i) préspeciﬂed excitation & response spectrum. However, only the prespecified
excitation & frequency tfansfer function approach is employéd for local diagnosis.
Simulation studies are performed with the global diégnosis system, considering both the
mode shape and response spectrum signatures. The applicability of this global/local
strategy to other structures with multiple-point damage is also discussed.

The research domain is similar to that of the 2-span beam application discussed in
Chapter 6. However, the objective here is to identify only the locations of damage, not

their extent, so the NNET2 networks are not considered. The actual physical system is
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modeled as a linear beam with negligible transverse shear deformation. The neural
networks are taken as one-hidden-layer feedforward networks with back propagation
training. Ambient excitation is modeled by a single-wheel moving load, while prespecified

excitation is modeled by a set of hammer impulses.

7.2 Description of Simulation Model

The 2-dimensional unsymmetrical 4-span bending beam model shown in Fig 7.1 is
taken as the model of the real 4-span beam. The model consists of 16 beam elements, with
4 elements representing each span. A typical beam element is shown in Fig 7.2. The
mathematical model used is the Timoshenko's bending beam formulation. The length of
the two right spans is 40 meters, while the two left spans are 25 meters long. Each beam
element has 4 degree of freedoms (DOFs); 2 translations and 2 rotations. The element
stiffness and mass matrices are defined by Eqs. 6.1 and 6.2 respectively, which are listed

here for convenience.

[4 ¢1 2 -6 ]
E[i 6/l 12/ ¢/l -12/1
Il 2 el 4 61| *

Lt 12/ et 12/ | (6.1)

1'412 221 -3 137 |

| p 1l 221 156 -13 54 ‘

m = — ,
420 l'—3l’ -131 4 -221|
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where E is the modulus of elasticity, /is the moment of inertia of the bending axis, lis the
length, and p is the average mass per unit length of the element. The matrices of the
elements that are connected to the supports, such as beam element no.1 shown in Fig 7.3,
are slightly different due to the boundary condition. This element has no translational
movement at the left side due to the hinge support, so the corresponding row and column

can be deleted. The reduced matrices are

(4 2 -1

EI
[—6/1 -6/l 12/12J 63)
and
[412 _31 131]
pl 2 2
m = o3 4 -2
[131_ -221 156J 64)

The same approach is applied to elements 4, 5, 8, 9, 12, 13 and 16 to provide all the
necessary boundary conditions for the equilibrium equations of the beam.

The stiffness and mass matrices of the complete beam model are generated by

superimposing the contributions of the elements

k!

k2

kl6

~29by29 (7.1

and
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m2

ml6

(7.2)

Note that there is overlap between each pair of neighboring &, or m, since they share some

global DOFs.

Assuming that the beam has proportional damping (i.e. Rayleigh damping), the

damping matrix C can be constructed following the method described in Section 6.2. The

damping ratios for the first 2 modes are still set at 1%.

By defining

[ ]

L3

o
I.uzsl

(7.3) |

as the global displacement vector, which contains all the degree of freedoms (see Fig 7.1),

the equation of motion of the beam model can be represented as

MU+CU+KU = P

where

(6.10)



DAGCY
_| P2 (D)
o
l.P29 (t)_l (7.4)

p

is the force on the beam model as a function of time, ¢. Given the force function and all
other parameters of the beam modei, the time history response of the beam model can be |
determined by solving the equation of motion.

For this application, the beam is assumed to have a constaht EI of 5.34 x 10° N-m?
over its length. The average mass per unit length is 9880 kg/m. Fig 7.4 shows the first
three mode shapes, and their corresponding frequencies. The response of the beam model
due to the excitation is determined by a direct time integration method (Runge Kutta
method) performed in MATLAB. The time interval of the integration is still taken as 0.01
second.

Similarly to the 2-span beam case study, damage is introduced in the model by
lowering the EJ in the stiffness matrices corresponding to the elements that are selected as
damaged elements. However, in this appliéation, a damage case may involve more than

one damaged element.

7.3 Global Structural Diagnosis: Mode Shape Approach

The global diagnosis system is a modified version of the basic neural network-
based diagnosis system (shown in Fig 5.7). The diagnosis system has only one neural
network, NNET1, which predicts the damaged spans given the global excitation. As
earlier mention in Chapter 6, the modal approach does not require a consistent excitation,
and both ambient and prespecified excitations can be employed. In this research, ambient
excitation is used for its convenience and its real-time applicability. The excitation is a

mass-consistent single-wheel load of 2000 kg (4.4 kips) with velocity ranging from 40 to
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60 mph. The travel time is still more than ten times of the first three fundamental periods
of the beam. Therefore, the moving load effectively excites the first three modes of

vibration (Humar, 1990 and Humar et al, 1993).

7.3.1 Data Preprocessing Strategy

The free-vibration response of the simulation model with various damage
conditions is collected and processed by a modal analysis routine (Appendix A) in order to
determine the corresponding mode shapes of the 4-span beam. The mode shapes, and the
number of points representing each mode shape, which are used to create the input for
NNET1 then have to be specified. Fig 7.5 illustrates the case when two mode shapes, with
10 points représenting each mode, are used as input for NNET1. The mode shapes
corresponding to a particular damage condition are normalized so that their maximum
amplitude is equal to unity. The value of the points representing the normalized mode

shapes are then used to create a vector called "input" vector,

[ data point no.1 of mode shape no.1 |

data point no.m of mode shape no.1

input data point no.1 of mode shape no.2

| data point no.m of mode shapeno.n| (7.5)

where m is the number of points representing each mode shape, and » is the number of
mode shapes considered.

The Reference Value Approach is then employed, and the remaining data
preprocessing procedures follow the procedures described in Section 6.3.1. As mentioned

~ earlier, the global structural diagnosis system identifies only damaged spans, not damaged
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beam elements. Therefore, the output vector corresponding to each normalized input

pattern is

[ out, |

out,
{=
Outpu I out3 I ’

out, (7.6)
where out, € R[0,1]. The "expected” output vector corresponding to a particular damage
case is also represented by Eq. 7.6, where out, is 1 if there is reduction of EI of any beam
element in the ith span from the left, and 0 otherwise. Since the beam has 4 spans, the size
of the output vector is 4 by 1. Each normalized input pattern and its corresponding

expected output can then be employed as a training, or testing, sample of NNET1.

7.3.2 Configuration and Training of Neural Networks

A 1-hidden-layer feedforward network with back propagation training algorithm is
employed as NNET1. According to Eq. 7.5, NNET1 needs mn nodes in the input layer, -
which corresponds to the size of the normalized input pattern. It also needs 4 output
nodes, which represent the size of the oufput vector. The transfer function of the
processing elements in the hidden layer is the tangent sigmoid function (Eq. 6.19), while
that of the output layer is the log sigmoid function (Eq. 6.20). Both functions are
illustrated in Fig 6.8. The initial value of all the connection weights is still randomized
value between -1 to 1. The threshold value is set at 0.8. The training algorithm also
utilizes the momentum term and adaptive learning rate.

Four training data sets, containing 50, 100, 500, and 1000 different damage cases
respectively, are created. The first four damage cases of each set are taken as the damage-

free case. The remaining cases are variations of the basic cases shown in Table 7.1.
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Case No. Damaged Span(s)
1 1
2 2
3 3
4 4
5 1,2
6 1,3
7 1,4
8 2,3
9 ‘ 2,4
10 3,4
11 1,23
12 1,2.4
13 ' 1,3,4
14 2,34
15 1,2,3,4

Table 7.1: The basic damage cases for the global diagnosis system.

Combinatio | Damaged Beam Element(s)
n No.

1 1
2 2
3 3
4 4
5 1,2
6 1,3
7 1,4
8 2,3
9 2,4
10 3,4
11 1,2,3
12 1,24
13 1,3,4
14 234
15 1,2,3,4

Table 7.2: The possible combinations of damaged elements in a particular span.
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Note that, for a particular damage case, the combination of the damaged elements in any
damaged span is randomly selected from the basic combinations shown in Table 7.2. The
extent of damage of any damaged element randomly ranges between 5 to 80% reduction
of EI.

The training procedure of NNET1 follows the approach described in Section 5.2
(se;e Fig 5.2). Fig 7.6 shows the convergence of the Sum-Square Error (SSE) of a NNET1
with 16 processing elements in the hidden layer that is trained by a data set with 100
training samples. '

The testing data, which contains a total of 50 different damage cases, is similarly
created. The damage cases cover the basic damage cases shown in Table 7.1. The
combination of the damaged elements in any damaged span is also randomly selected from
the basic combinations shown in Table 7.2. The extent of damage of any damaged element
randorﬁly ranges between 5 to 90% reduction of E7. In order to assess the ability of the
"trained" diagnosis systems to detect an arbitrary damage pattern, all démage cases in the
testing data set are different from the damage cases of the training data set .

The testing data are then used to tést the performance of the trained NNET1 in
predicting the damaged spans. The testing is performed by passing the normalized input
patterns of the testing data set through the trained network, and comparing the network

outputs to the "expected" outputs corresponding to the damage cases.

7.3.3 Performance Studies

Four variables are investigated for their influence on the accuracy of the global
diagnosis system; i) number of mode shapes used to create input, ii) number of points
representing each mode, iii) number of processing elements in the hidden layer of NNET]1,
and iv) number of training samples of the training data set. Fig 7.7 demonstrates the
influence of the number of mode shapes used to create the input for NNET1 on the

accuracy of NNET1 that is trained by the training data set with 100 training samples.

190



w

Training for 5000 Epochs

1 o T T T L T L
5 10° 1
810
« 4
g. 0
£ E
210" Y
1 0‘2 L L 1 i Il A 1 1 1 L :
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Epoch
25 : - , : —
® 201 9
e ]
L 15r
£
& 101 1
s
T LU
G A 4 al A la e s n A A A A A j j J J Jl
4] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epoch

Figure 7.6: The convergence of the Sum-Squared Error of the NNET1

of the global structural diagnosis.

191



80

Accuracy of Prediction (%)

70 +
60 4
50 +
40 1
- 12 pts/mode
30 + -N1121
20 1 —0— Mode 1, 2
—O— Mode 1,2, 3
10 ¢ —2— Mode 1
0 + + -+ + -+ t + + +
o o o (=] [ ] o [=} (=] [=} (=] (=]
(=] [=] (=] [=] (=] [=] [=3 o (=3 [=}
[=} [=3 (=] o [«] o (=] o (=] (=]
< (-] N © o < 0 N (] [=}
- - N N N L L -

Number of training cycles

Figure 7.7. The significance of the no. of mode shapes to the accuracy of NNET1.
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The accuracy shown in the plot is the percentage of correct predictions by NNET1 on the
testing data. This particular NNET1 has 12 processing elements in the hidden layer, and
employs 12 points to represent each mode shape. The result shows that the accuracy of
NNET]1 increases with the number of mode shapes, while the training cycles needed to
reach the absolute accuracy decreases. >By using the first 3 mode shapes, the NNET1
trained for 16000 cycles can pre&ia the damaged spans with as high as 68% accuracy.

Fig 7.8 demonstrates the effect of the number of pdints representing each mode
shape on the accuracy of NNET 1. In this case, NNET1 has 12 processing elements, and
the input data is created from the first three mode shapes. The training data set with 100
damage cases is used. In this investigation, the number of points representing each mode
shape is varied from 5 to 25 points, with a one point increment. The result indicates that
the absolute accuracy of NNET1 increases with the number of points up to the level of 12
points. Beyond this level, there is no additional accuracy. This suggests that 12 points per
mode shape is the optimum number for this application.

The significance of the number of processing elements in the hidden layer of
NNET1 to its accuracy is investigated by varying the number of elements from 2 to 25
elements, with a one element increment. Fig 7.9 shows the performance of three NNET1's
‘(each with 6, 12, and 18 procgssing elements in their hidden layer respectively) that are
trained and tested with the input data created f"ronﬁ the first three mode shapes, each
represented by lﬁ points. The training data set with 100 damage cases is still used. The
simulation result indicates that NNET1 with 12 processing elements in the hidden layer is
optimal.

The significance of the number of damage cases in the training data set is
demonstrated in Fig 7.10. The NNET1 has 12 processing elements in the hidden layer, and
uses all three mode shapes to create the input data. The number of points representing
each mode shape is 12. Five NNET1's are respectively trained with 5 different training

data sets, which contain 50, 100, 500, and 1000 damage cases respectively (see Section
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7.3.2 for more detail). Fig 7.10 demonstrates that the absolute accuracy of NNET1
increases with the size of the training data set. However, the accuracy does not
significantly improve when the number of damage cases exceeds 100.

All simulation results exhibit the effect of overtraining. Therefore; a trial and error
approach, or a cross-validation approach, has to be employed in ordef to find the optimum
NNETI. The results also indicate that a 1-hidden-layer network with 12 processing
elements is a satisfactory choice for NNET1. The input data should be created from the
first three mode shapes, and each should be represented by 12 points. The training data set
should contain at least 100 different damage cases. |

The result from simulation studies shows that the information from mode shapes
alone is not sufficient for NNET1 to predict the damaged spans at an acceptable level of
accuracy. The changes of modal frequencies, which are also available from the mode
shape compilation process (Appendix A), may provide the additional information needed.
In what follows, each existing input of NNET 1, which is created from the mode shapes
corresponding to a particular damage case, is incorporated by their corresponding modal
frequencies. New sets of training and testing data are created using the damage cases
mentioned in Section 7.3.2. The prediction performance of the optimum NNET!1 based on
the new data set is also investigated.

The procedure for creating an input-output pair for the training or testing data set
of NNET]1 is similar to the one previously employed in this section. However, the new
approach also incorporates information about the modal frequencies into the input vector

as follows.
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[ data point no.1 of mode shape no.1 |

data point no.m of mode shape no.1
data point no.1 of mode shape no.2

input = . : ’
data point no.m of mode shape no.n

modal frequency of mode no.1 (Hz)

| modal frequency of mode no.n (Hz) |

(mn+m)x1

7.7
where m is the number of points representing each mode shape, and » is the number of
mode shapes considered.

The input vector that is obtained from the non-damage model is still called the
"reference data set." The difference between the input vector corresponding to any
damage condition and the reference data set is then called the “input pattern” of the
corresponding damage condition. The data points of each input pattern that represent the
changes of mode shapes are normalized by the approach previously employed. The
remaining data points, which represent the changes of modal frequencies, are normalized
by the maximum data points of the same row among all input patterns. The "normalized
input patterns” and their corresponding expected oufputs can then be used as the training
or testing data of NNET1.

The performance study of the global diagnosis system is then carried out using new
training and testing data sets, which are created following the procedure dgscﬁbed in
Section 7.3.2. All the design variables investigated are the same as for the previous
investigation: The test results indicate similar behavior with the previous study. The
accuracy of NNET!1 still increases with the number of mode shapes, the number of points
representing each mode shape, the number of processing elements of NNET 1, and the
~ number of damage cases of the training data, until an optimum point is reached. For this

application, the optimum NNET1 has 19 processing elements. The input data should be
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created from the first 3 mode shapes, and each mode should be represented by 12 points.
Most importantly, the new optimum NNET1 is able to predict the damaged spans with as
high as 92% absolute accuracy, which is a significant improvement over the NNET]1 that
is trained by the training data that does not contain the information of modal frequencies.

Different testing data sets, eacﬁ of which contains the same damage cases that have
a specific extent of damage, are .then employed to test the new optimum NNET1. The

result is demonstrated in Table 7.3.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)
10 94
5 90
4 71
3 38

Table 7.3: The damage sensitivity of the optimum NNET]1.

The result demonstrates that the optimum NNET!1 is able to detect the damaged spans
with an accuracy as high as 90%, when the reduction of £J of any damaged beam element

is as small as 5%.

7.3.4 Observation

Simulation data indicates that, when the multiple-point damage condition is
applied, the changes of mode shapes due to damages alone do not provide sufficient
information for NNET1 to predict the damaged spans at an acceptable level of accuracy.
However, adding the changes in modal frequencies does significantly improve the
performance of the global diagnosis system based on the mode shape approach, and makes

the applicability of the approach much more feasible.
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7.4 Global Structural Diagnosis: Response Spectrum Approach
The design of the global diagnosis system is based on the approach described in

Section 5.4.2. A set of hammer impulses located at specific locations along the beam is
used to excite the structure. Each impulse generates 10000 Newton of force for a time
period 0.1 second. The simulation model and all damage cases of the training and testing

data sets employed in the previous study are also used here.

7.4.1 Data Preprocessing Strategy

The spectrums of the numerical simulated free-vibration acceleration responses at
various locations along the beam (given a prespecified hammer impulse) are used as the
signatures for the damaged structure. The Fast Fourier Transform is employed to
transform these time histories into response spectra which are later smoothed with the
spectrum smoothing routine in MATLAB. The procedure for creating and smoothing the
response spectrums is described earlier in Section 6.4.1. Fig 7.11 shows the 20-second
segment of the acceleration response for DOFs 3 and 7, and the corresponding spectrums.

In this application, the spectrums of the frequency between 0 to 10 Hz, which well
cover the first 3 modes of vibration of the 4-span beam (see Fig 7.4), is employed. These
spectrums are then further processed into a "normalized input pattern," corresponding to
the damage condition by the same data preprocessing procedure used in Section 6.4.1.
The expected output of NNET1, output, corresponding to the damage case is created
following the procedure described in the previous section. By performing simulations of
the beam model with various damage conditions, the normalized input patterns and
outputs corresponding to the damage cases can be used as the training or testing samples

of the NNET1 of the global structure diagnosis system.
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7.4.2 Configuration and Training of Neural Networks

The configuration of NNET1, and the damage cases for the training and testing
data sets used in the mode shape approach is also used here. However, the number of
nodes in the input layer now corresponds to the size of the normalized input pattern used

for the spectrum approach (see Eq. 6.23).

7.4.3 Performance Studies
Seven design variables are investigated for their influence on the performance of

the diagnosis system; i) number of sensors, ii) location of the sensors, iii) number of
intervals representing each response spectrum, iv) number of hammer impulse generators,
v) location of hammer impulses, vi) number of processing elements in the hidden layer of
NNET1, and vii) number of damage cases in the training data set.

| Three NNET1's are trained, each with a different training data set. The first data
set corresponds to a sensor located at the middle-left point of each of the four spans; the
second and third data sets are created by locating sensors at the middle and middle-right
points respectively. Each training data set contains 500 different damage cases. Four
hammer impulse generators, each located at the middle-right point of each span,
synchronously apply a force of 10000 Newtons for an interval of 0.1 seconds as the
excitation. Ten intervals are used to represent each spectrum, and NNET1 has 18
processing elements in the hidden layer. The results, as shown in Fig 7.12, show that the
location of the sensors has essentially no effect on the performance of NNET1.

Figure 7.13a demonstrates the significance of the number of sensors. The locations
of the sensors are shown in Fig 7.13b. The loading and network parameters are the same
as for the previous investigation. There is a substantial improvement when the number is
increased to one per span. Beyond this point, there is no observable improvement.
Therefore, one sensor per span is recommended as the minimum number for this

application.
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Figure 7.12: Effects of the location of sensors to the accuracy of NNET1.
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The sensitivity of the absolute accuracy to the discretization of the response
spectrum is then investigated. One sensor is located at the middle-right point of each span,
and all other parameters are the same. The number of intervals representing each spectrum
is varied from 5 to 20, with increments of five intervals. Figure 7.14 demonstrates the
accuracy for 5, 10, and 20 intervals 'aré employed. It appears that the absolute.accuracy
increases with the number of intérvals up to 10 intervals, and then decreases slightly.
Therefore, it is reasonable to take ten intervals per responsé spectrum as the optimum
number for this diagnosis system configuration.

The significance of the configuration of the hammer impulse excitation is alsb
investigated. Firstly, the significance of the number of hammer impulses is examined.
NNET!]1 still has 18 processing elements in the hidden layer, and one sensor is located at
the middle-right point of each span. Ten intervals are used to represent each spectrum.
NNET]1 is trained with three data sets created from three difference configurations of
hammer load; i) 1 hammer on the leftmost span, i) 1 hammer per span, and iii) 2 hammer
per span (see Fig 7.15a). Each data set contains 500 different damage cases. Fig 7.15b
demonstrates that one hammer is not enough to create quality training data, since the
absolute accuracy is around 40%, compared to 91% accuracy of those networks trained

~ with data created with 1 or 2 hammer-per-span excitations. This can be explained by the
fact that 1 or 2 hammers-per-span excitation is mbre capable of exciting the 2nd and 3rd
mode of vibratioh, which are essential as the information for the diagnosis system (based
on the previous performance test on the significance of the number of mode shapes to the
performance of NNET1 shown in Section 7.2.1). Therefore, it is appropriate to use at
least 1 hammer-per-span excitation for this application.

Fig 7.16 demonstrates the effect of the location of hammers of the 1-hammer-per-
span excitation to the performance of NNET1. The first excitation configuration has each
hammer located at the middle-left point of each span. The second and third configuration

have each hammer located at the middle and middle-right point of each span respectively.
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Figure 7.14: The significance of the no. of intervals to the accuracy of NNET1.
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Figure 7.16: The effects of the location of hammers to the accuracy of NNET1.
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Note that the architecture for NNET1 and data preprocessing strategy used in the
previous investigation is also used here. The result shows that the prediction performance
is essentially independent of the location of hammers.

The significance of the number of processing elements in the hidden layer of
NNET]1 to its accuracy is investigated by varying the number of eleménts from 4 to 40,
with a constant increment of two elements. One sensor is located at the middle-right point
of each span. Each spectrum is represented by 10 intervals, and the training data set with
500 damage cases is used. The result indicates that the absolute accuracy increases with
the number of elements until the number reaches 18, and then tends to decrease beyond
the level. Fig 7.17 compares the performance of three NNET1's (with 6, 18 and 36
processing elements respectively). The figure shows that NNET1 with 18 processing
elements has the best absolute accuracy, and this configuration is considered as the
optimum for this application.

The significance of the number of damage cases in the training data set is
demonstrated in Fig 7.18. For this investigation, NNET1 has 18 processing elements, and
one sensor is located at the middle-right point of each span. Ten intervals are used to
represent each spectrum. Excitation is generated by four hammer impulses applied at the
location of the sensors. Five NNET 1's are trained with 5 different training data sets, which
consists of 50, 100, 500, and 1000 different damage cases. Fig 7.18 shows that the
absolute accuracy of NNET]1 increases with the number of damage cases of the training
data set. However, the accuracy does not significantly improve when the number is greater
than 500, which is considered to be the optimum size of the training data set for this
application.

The results of the performance studies indicate that a 1-hidden-layer network with
18 processing elements is a satisfactory choice of NNET1 for this application. At least 1

sensor per span should be employed, and each spectrum should be represented by 10
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intervals. One hammer load per span is recommended as excitation, and the hammerl
location has very little significant. The size of the training data set has to be sufficiently
large to include all the damage scenarios, which total 500 for this application. A properly
trained NNET!1 is able to predict the damaged spaﬁs with up to 90% absolute accuracy.
Four different testing data sets, each of which contains the damage cases that have
a specified extent of damage, are employed to test the optimum NNET1. The sensitivity to
damage of the optimum NNET1 is demonstrated in Table 7.4. The result demonstrates
that the optimum NNET!1 is able to detect the damaged spans with an accuracy as high as

89%, when the reduction of E7 of any damaged beam element is as small as 5%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)
10 91
5 89
4 64
3 . 47

Table 7.4: The damage sensitivity of the optimum NNET]1.

7.4.4 Observation

Simulation data indicates that the change in response spectrum due to damage
condition provide sufficient information for NNET1 to predict the damaged spans with an
acceptable level of accuracy. A properly trained global diagnosis system can identify the

damaged spans with absolute accuracy up to 90%.

7.5 Local Structural Diagnosis: Frequency Transfer Function Approach

Four separate neural network-based systems for local structure diagnosis, each of
which is a basic neural network-based diagnosis system that is trained by a local training

data set specifically created for each span, are employed to predict the damaged beam
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elements in the individual spans. The frequency transfer functions (FTFs) of the response
at various locations of a particular span, due to a prespecified local excitation, are

employed as the local vibrational signature for the corresponding local diagnosis system.

7.5.1 Data Preprocessing Strategy

Figure 7.19 shows a middle span of a multispan beam. When the excitation is
generated outside the span, it can be assumed that moments x, and x,, which are the
moments at the left and right support (assumed measurable), are the span's only inputs. If
the vertical displacement at a specific location of the span () is the Aoutput of interest, a
linear system can be created to represent fhe relation between the inputs and output, as
shown in Fig 7.20 (Newland, 1994). Given the measured input and output data over a
time period, the frequency transfer functions between the inputs and the output, H,(w) and
H,(w), can be constructed and used to represent the condition of the linear system
(Bregant et al, 1995 and Zimmerman ét al, 1995). More details are demonstrated in

Appendix B.

)

Q— <

Figure 7.19: A middle span of a multispan beam.

For a linear system with two correlated inputs (x,, x,) and one output (y) shown in .

Figs 7.19 and 7.20, the frequency transfer functions are
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S8y =5,
H,(a)) = X xRy 2V X% ,
Sx, sz - lexz szx,
Hy@ = le szy —lenyle
2 le S X N XX, szx] ) ' .
(7.8)

Equation 7.8 demonstrates that the frequency transfer functions of the response at a
specific location of a middle span can be constructed from the spectrums and cross-
spectrums of the inputs and output. These spectrums can be approximated by performing
discrete fourier transform on the discrete time history data to create corresponding fourier
spectrums, and then using these fourier spectrums to create the spectrums and cross-
spectrums needed. The employed fourier spectrums are formerly smoothed in order to
increase the statistic reliability of the FTFs created by this procedure. More detail on the
smoothing process is described in Appendix B.

Since the properties of FTFs over a frequency range are desirable, prespecified
white-noise impulse loads on nearby spans, as shown in Fig 7.21, are employed as the
local excitation for a particular span. The white-noise impulses have the maximum
amplitude of 10000 Newton, and are applied to the model throughout the period that the
sensory data is recorded. By measuring the time history bending moments at both ends of
the span as inputs, and recording the acceleration response at various locations of the span
as outputs, the FTFs of the span (corresponding to the span's damage condition) can be
constructed. The FTFs are then used to create the training and testing data set of the local
diagnosis system of the specific span.

In this application, the time interval of all simulations is set at 0.01 second, so the
FFT spectrums cover the frequency range of 50 Hz. The frequency transfer functions that
are generated from the FFT spectrums cover the same frequency range. As shown in Figs

7.22 and 7.23, this frequency range well covers the first 3 modes of vibration of any
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The normalized mode shape of mode no.1 (2.394 Hz)
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Figure 7.22: The first 3 modes of vibration of the 1st and 2nd span of the 4-span beam.
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The normalized mode shape of mode no.1 (0.935 Hz)
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Figure 7.23: The first 3 modes of vibration of the 3rd and 4th span of the 4-span beam.
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particular span, which is now considered as a simply supported beam with moments at
both ends as its excitation (Fig 7.5). Fig 7 24 shows the 20-second acceleration response
at the middle-right point of the 2nd span and their corresponding frequency transfer
functions due to a 20-second excitation on the 1st and 3rd span. Note that there are two
FTFs that correspond to the time history response of a particular location of the inner-
spans, such as the 2nd and 3rd span, since they have two bendirig moments as inputs.
However, there is only one FTF for that of the outer-spans since there is only one moment
as their input.

Each frequency transfer function is then divided into a number of zones,

NUMZONE. As shown in Fig 7.25, each zone covers the same frequency interval,

MAXFREQ
NUMZONE % (1.9)

fint
where MAXFREQ is the maximum frequency concerned. The area under the frequency
transfer function of each interval is then calculated. This provides a number of data points
(NUMZONE points from each frequency transfer function) for each damage case as a

vector

data point no.1 of FTF no.1

data point no. NMOM of FTF no.1

input = : ’
data point no.1 of FTF no. NUMFTF

| data point no. NUMZONE of FTF no. NUMFTF |

(7.10)
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Acceleration Response of DOF 14
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Figure 7.24: The acceleration response and frequency transfer functions of DOF 14.
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where NUMFTF is the total number of frequency transfer functions used to create the
input for the local diagnosis system.

This input vector is then further processed by the same procedure employed in
Section 6.4.1. The logarithm of base ten of each vector is used instead' of the vector itself
in order to keep the data spread low. The input vector (after the log,, step) acquired from
the undamaged model is then referréd to as the "reference data set." The Reference Value
Approach is then employed. The difference between the input vector fbr a particular
damage condition and the reference data set is taken as the "input pattern" for the damage
case. Each input pattern is then normalized by dividing by the absolute value of the
maximum data point in all the input pattéms. Each "normalized input pattern" and its

expected "localoutput" vector, which is the corresponding damage condition represented

by the binary vector
[ localout, |
tocal | localout, |
ocaloutput | localout, | '
l_localout4 _l el (7.11)

where localout; is 1 if there is reduction of E7 of the ith beam element of the span of
interest, and 0 otherwise. Note that the size of the localoutput vector is 4 by 1 since each
span is repfesented by 4 beam elements. By performing simulations with various damage
conditions on a specific span, the normalized input patterns, and their corresponding
localoutput vectors, can be used as the training or testing samples for the NNET1 of the

local diagnosis system of the span.
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7.5.2 Configuration and Training of Neural Networks

The configuration of NNET1 of each local diagnosis system is the same as those
described in Sections 7.3.2 and 7.4.2. NNET1 is a 1-hidden-layer network with back
propagation training algorithm. The transfer function of the processing elements in the
hidden layer is hyperbolic tangent function, while the sigmoidal function is used for the
px.'ocessing elements in the output léyer.

The local system of each span requires its own training data set. Since four beam
elements are used to represent a span, each span has 15 different basic combinations of
damaged beam elements as shown in Table 7.2. In this study, four training data sets are
created for the local diagnosis system of the 2nd span, and each contains 30, 100, 300, and
600 different damage cases respectively. The first four damage cases of each set are the
damage-free cases. The remaining cases are the variations of the basic cases shown in
Tablé 7.2. The extent of damage of any damaged element varying randomly between 5 to
90% reduction of EI. The testing data set with 50 different damage cases is similarly
created. Note that all damage cases of the testing data set are different from those for the
training data set. |

The training procedure of the NNET1 of a local diagnosis system still follows the
procedure described in Section 5.2 (see Fig 5.2). The testing data set is used to test the
performance in predicting the damaged locations of the 2nd span. The thréshold value is

set at 0.8 for this application.

7.5.3 Performance Studies

Five design variables are investigated for their influence on the performance of
local diagnosis systems; i) number of sensors, ii) locations of sensors, iii) number of
intervals representing each FTF, iv) number of processing elements in the hidden layer of
the NNET1, and v) number of damage cases of the training data set. In this investigation,

only the performance of the local structural diagnosis system of the 2nd span is studied.
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Fig 7.26 demonstrates the significance of the location of sensor to the accuracy of
the NNET]1 that predicts the location of damage in the 2nd span. NNET]1 is trained by 3
different data sets, each of which is created from the data from a sensor located at a
particular point of the span. Each training data set contains the same 300 different damage
cases. Two hammer loads, located at the location of DOFs 7 and 17 fespectively, apply
the white-noise impulse loading throughout the data recording period. MAXFREQ is set at
25 Hz, which covers all three modes of vibration of the 2nd span. Fifteen intervals are
used to represent each FTF. NNET]1 has 35 processing elements in the hidden layer. Fig
7.26 shows that the location of sensor has almost no effect on the performance when one
sensor is used. The result also shows that the absolute accuracy of NNET 1, which is
trained by the training data from one sensor, is not yet acceptable since it has around 60%
maximum accuracy.

Fig 7.27 shows the performance of NNET1 in predicting the location of damages
in the 2nd span when the data from different number of sensors is used to create its input.
The loading and network parameters are the same as for the previous figure, and the
training data set with 300 damage cases are employed. The result demonstrates that the
absolute accuracy of NNET1 increases with the number of sensors. In this application, at
least 3 sensors per span is recommended.

The significance. of the number of intervals uséd to represent each FTF is shown in
Fig 7.28. The same local excitation and training damage cases are still employed, and
NNET!1 still has 35 processing elements. Three sensors are located at the middle-left,
middle, and middle-right point of the span respectively. The number of intervals
representing each FTF is varied from 5 to 20 intervals, with an increment of five intervals.
The result demonstrates that the absolute accuracy increases with the number of intervals
used to represent each FTF up to 15 intervals, and drops slightly beyond this level. This is

the indication that 15 intervals per FTF is the most appropriate for this application.
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Figure 7.26: The effects of the location of sensors to the accuracy of NNET1.
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Figure 7.27: The effects of the no. of sensors to the accuracy of NNET1.
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The significance of the number of processing elements in the hidden layer is
investigated by varying the number of elements from 5 to 60 elements, with an increment
of five elements. Fig 7.29 compares the performance of three NNET1's (with 20, 35, and
60 processing elements respectively) that are trained by 300 damage cases. Each FTF is
represented by 15 intervals. The result indicates that the absolute accuracy increases with
the number of elements until the number exceeds 35, and is constant beyond the level.
Therefore, NNET1 with 35 processing elements should be an appropriate choice for this
application.

The significance of the number of damage cases of the training data set is
demonstrated in Fig 7.30. NNET1 has 35 processing elements, and is trained with the data
that is created from the FTFs of three sensors respectively located at the middle-left,
middle, and middle-right point of the span. Each FTF is represented by 15 intervals. The
local excitation similar to the one in previous investigations is employed. Five NNET1's
are respectively trained with 5 traininé data sets, which contain 30, 100, 300, and 600
damage cases respectively. The simulation results indicate that the absolute accuracy of
NNET]1 increases with the number of training samples. However, the accuracy does not
significantly improve when the number exceeds 300, which is assumed to be the optimum
size for this application.

From the results of performance studies, the optimum NNET]1 is a 1-hidden-layer
network with 35 processing elements. The input data should be created from the FTFs of
3 sensors, which are located at the middle-left, middle, and middle right point of the span
respectively. Each FTF should be represented by 15 intervals, and the training data set
should contain at least 300 different damaged cases. Properly trained NNET]1 is able to
predict the locations of damage on the 2nd span with the absolute accuracy up to 85%.

Different testing data sets, each of which contains the damage cases that have a
specified extent of damage, are then employed to test the optimum local system. As

demonstrated in Table 7.5, the result shows that the optimum NNET!1 is able to detect any
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Figure 7.30: Significance of the no. of training samples to the accuracy of NNET1.
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damaged beam element in the 2nd span, which has damage as small as 10% reduction of

EI, with the accuracy up to 87%.

Extent of Damage Accuracy of Optimum NNET1
(% of EI reduction) (% of correct diagnosis)
10 87 '
5 ' 78,
4 59
3 33

Table 7.5: The damage sensitivity of the optimum NNET].

7.5.4 Observation

In order to find the appropriate configuration of the local structural diagnosis
systems of the remaining spans, the same performance-based process earlier demonstrated
for the 2nd span can be employed. The design approach for the NNET2 for each span is
also similar.

The simulation data indicates that the changes of FTF's due to local damages
provide sufficient information for the local system to predict the locations of local damage
at an acceptable level of accuracy. For this case study, a properly configured NNET1 is
able to predict the locations of local damage of the simulation model with the absolute

accuracy as high as 85%, which is impressive.

7.6 Applicability to Other Structures

There are also other potential applications for the neural network system for
multiple-point damage diagnosis. A diagnosis system for a frame structure, which is shown
in Fig 6.23, with multiple-point damage can be set up by the approach earlier described in
this chapter.

A mathematical model, or a scaled model, of the frame can then be created and

employed to simulate the training and testing data for the neural network systems. A -
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global structural diagnosis system is required to predict the damaged substructures (see
Fig 7.31). If there is earthquake, or wind gust, regularly in the area, they can be employed
as the ambient excitation for generating the training and testing data of the global system.
Otherwise, hammer impulse generators or mechanical floor vibrators can be used to
generate prespecified excitation. Ifbofh ambient excitation & mode shape approach and
prespecified excitation & respoﬁse spectrum approach are practically feasible, the

approach that performs better in the simulation will be used.

/— Horizontal-Direction Floor Vibrater
<>

..

Substructure

B Sensor

Figure 7.31: An example of a substructure of a frame and its local excitation.

The strategy for creating training and testing data also follows the procedure
described in the previous sections. For the global structural diagnosis, the time history
response at various locations of the frame due to a global excitation can be used to create
the mode shapes or response spectrums that correspond to the damage conditions. The

vibrational signature is then processed by the data preprocessing procedure, and then used
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as the input for the NNET1 of the global diagnosis system. The performance-based'design
procedure can be performed to configure the optimum design variables.

As for local structural diagnosis, the whole frame can be divided into several
substructures as shown in Fig 7.31. Each substructure will require a designated neural
network-based diagnosis system that can predict the locations of damage, and optionally
the extent of the damage, in the substructure. Designated local excitation for each
substructure; such as a set of white-noise horizontal-direction floor vibrators on the floors
next to the substructure (see Fig 7.31), is required for creating the training and testing
data for the local structure diagnosis system. During the excitation period, the response of
the substructure relative to its neighbors and all interaction forces between the
substructures are measured and used to create the FTFs that represent the condition of the
substructure. These FTFs are then processed into the input for training the local diagnosis
system of the substructure (based on the process shown in Section 7.2.3). The
performance-based design procedure can then be performed to configure the optimum

design variables of each local diagnosis system.

7.7 Discussion and Summary

The simulation studies on an idealized 4-span beam indicate that a neural network-
based system for multiple-point damage diagnosis has potential. The global diagnosis
system based on either mode shape or response spectrum signature performs well.
According to the simulation data, the performance of the global system based on the mode
shape approach improves to the same level of accuracy as that of the spectrum approach
when the changes in modal frequencies are also used. Therefore, the practical feasibility of
the approaches on a specific application will decide which approach is more appropriate
(Green, 1995). Local structural diagnosis systems based on the frequency transfer function

approach also perform well in this restricted research domain.
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However, the proposed multiple-pointed damage diagnosis system, which is based
on the general architecture of neural network-based diagnosis system, still has the
limitation on the number of different damage cases that the system can handle. This
limitation depends on several factors including the types and amount of neural networks
used, and the dimension of the input patterns for the neural networks. This limitation
should be considered as a major design issue, especially when the monitored structure is
very large or complex, or when the diagnosis result has to be highly specific. The
simulation data also reveals that the performance of the neural network-based system for
multiple-point damage diagnosis highly depends on the amount (or-the diversity) of its
training data. This relationship should be'further investigated.

Including more information in the input, such as increasing the number of mode
shapes used to create each normalized input pattern, usually improves the prediction
performance up to a certain point. After this point, the performance does not significantly
improve, or may even deteriorate. Thérefore, redundant information should also be
avoided in order to maintain the efficiency.

The global and local structure approach can be applied to a broad range of
structural damage diagnosis problems. As demonstrated in the example of a frame
structure, only some details need to be adjusted to customize the system for a specific

application.
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Chapter 8

Summary and Discussion

8.1 Introduction

In this chapter, the general architecture of a neural network-based diagnosis
system, guidelines for configuring the system, and observations based on the simulation
studies are summarized. The practical feasibility of neural network systems for structural
damage diagnosis is discussed, and solutions to potential difficulties are recommended.
Lastly, the contributions of this research are identified and topics for further research are

recommended.

8.2 Summary

8.2.1 Neural Network-Based Diagnosis System

Two types of damage are considered in this research; single-point, and multiple-
point. Single-point damage assumes that only one component of the system of interest is
damaged at any specific time, while multiple-point damage allows many components to be
damaged simultaneously.

In this research, a basic neural network-based diagnosis system is first proposed
and its applicability for structural damage diagnosis is then evaluated. Since the basic

system employs only two neural networks to classify all possible damages in the structure,
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it can handle only a limited number of different damage cases. Therefore, its applicability is
restricted to problems that involve a small number of damage states, ideally only single
point damage. In order to overcome this problem, a general architecture of neural
network-based diagnosis system is proposed. The approach is based on considering the
whole structure to consist of a set of interacting substructures, and thén using a neural
network-based diagnosis system called "global structural diagnosis" to identify which
substructures are damaged. Each individual damaged substructure is then independently
examined to establish the locations and extent of damage by a "local structural diagnosis
system." By transforming a structural damage diagnosis pioblem involving a large number
of potential damage cases to a set of less complex problems that can be handled
separately, the applicability of neural network-based diagnosis is enhanced.

Two implementation approaches for global structural diagnosis, and one approach
for local structural diagnosis, are developed. The first global scheme employs ambient
excitation as the excitation, and uses the mode shapes derived from this excitation as input
for neural networks. The mode shape approach is suitable for neural network system that
globally monitors structures that experience consistent significant ambient excitation. For
example, high-rise structures with wind load, or bridges with normal traffic, can be
considered in this category. The diagnosis systems designed by this approach do not
require extra loading equipment, and could be operated in real-time basis if ambient
excitation is available regularly. However, the mode shape approach (without
incorporating corresponding modal frequencies in the input of the diagnosis system) does
not perform well when there is multiple point damage, and it needs to be modified by
including the changes in the modal frequencies, in addition to the changes in mode shapes,
as input for the global diagnosis system.

The second global structural diagnosis approach employs prespecified excitation
(i.e. a set of hammer load) as the excitation, and uses the response spectrums at various

locations on the monitored structure as the input for neural networks. The response
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spectrum approach is more appropriate when the ambient excitation is weak. Howéver,
the approach does require a prescribed loading, such as hammer load generators, where
the mode shape approach requires arbitrary loading.

The only implementation approach for local structural diagnosis considered in this
study uses localized white-noise hammer impulses to excite each substructure, and then
employs the frequency transfer functions at various locations of the corresponding
substructure as the input for the neural networks of the corresponding local diagnosis
system.

Extensive data on the performance of a neural network-based diagnosis system
applied to a multispan beam model with a range of damage states is obtained. This data,
and the design expertise acquired, is then used to develop guidelines for the design and

optimization of neural network-based diagnosis systems for a certain class of structures.

8.2.2 Performance-Based Design Methodology

A methodology is proposed as a framework for designing neural network-based -
damage diagnosis systems for engineering structures. The methodology is based on a
consideration of the results of the simulation studies performed to assess the influence of
the various design variables. The system configuration that provides optimum
performance, or the "optimum diagnosis system," is then employed. This approach is
actually a trial and error method, or even similar to the cross-validation approach (Wahba,
1980), used to configure neural networks. The entire procedure for designing a neural
network-based damage diagnosis system for engineering structures is described in the

following sections.

Simulation model
All types of damage that could occur to the structure of interest have to be

defined. The models that can closely simulate both the behaviors of the physical structure
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and the effects of concerned damage conditions are then chosen. It is possible to use
several types of model to simulate several types of concerned damage in order to create

the best possible training data.

Excitation and vibrational signature

The choice of excitation and ﬁbrational signature is made separately for global and
local diagnosis. For global diagnosis, the selection as to whether to use ambient excitation
& mode shape approach, or prespecified excitation & response spectrum approach, is
strongly influenced by the practical feasibility of the specific applicé,tion. The mode shape
approach is preferable since it requires n§ special loading equipment, and has real-time
capability when there is adequate periodicity of ambient excitation. However, it is essential
that the ambient excitation adequately excites all the modes of vibration of interest. The
response spectrum approach is more appropriate when the ambient excitation is weak. For .

local damage, only the frequency transfer function approach is employed.

Neural network type

Any supervised-trained Artificial Neural Network (ANN), or system of supervised- -
trained neural networks, that is capable of performing function approximation can be
employed in the diagnosis systems. If there is no a-priori knowledge of the nature of
damage patterns, the multilayer feedforward network with back propagation training

algorithm is recommended.

Data preprocessing strategy

The main objective of the data preprocessing unit is to transform the selected
vibrational signatures into numerical patterns that can be used as input for the neural
networks. Therefore the data preprocessing strategy depends largely on the type of neural

network employed in the diagnosis system. Three major steps are involved in this task.
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- Reduce, as much as possible, the maximum difference in magnitude of the
elements of the input vector of neural networks. Using the logarithm of

discretized spectrums as data is an example of this method.

- Employ the Reference Value Approach. This approach uses the difference
between the data pattern of damage and non-damage case as the input for neural

networks.

- Normalize all input vectors of neural networks, until the maximum value in the
vectors is less than unity, in order to avoid the difficulty in training some types of
networks (for example the problem of saturated parameters in multilayer

networks with back propagation learning algorithm).

Training and testing data sets

The training and testing data sets éhould cover all concerned damage situations.
However, the damage cases in the testing data set should be different from those of the
training data set so that the generalization ability of the diagnosis systems can be

evaluated.

Optimize the diagnosis systems

Before performing the performance analysis of either a global or local structural
diagnosis system, all design variables that affect the performance of the diagnosis systems
need to be identified. For example, the size, the architecture, and the type of neural
networks employed are also considered as variables. Some researchers such as Green
(1995) and French et al (1995) suggest the optimum excitation configuration for bridges

and other beam-type structures. The diagnosis systems are set at their optimum
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configuration, which is the configuration that provides the best performance based on the
results of the performance studies. The cross-validation method should be used for

training each neural network in order to maximize its generalization ability (Liu, 1995).

Calibration and testing

After the optimum configuration of the diagnosis systems is established, the
systems are tested with data sets containing damage cases not included in the training
data. This difference is achieved by varying the extent or location of damage. The
performance measure of the diagnosis system is taken as the percentage of correct
diagnose for the testing data.

If the test results _indicate that the diagnosis systems have an acceptable prediction
accuracy, the systems that are trained by simulation data should be further tested with the
data from real physical structures, if available, in order to observe the performance of the
diagnosis system under real operating condition. Note that the systems have to be
calibrated for real structure by substituting the reference data set of each optimum
diagnosis system (see Section 6.3.1), which is the base-line vibrational signature from the
simulation of the undamaged simulation model (see Sections 7.3.1, 7.4.1 and 7.5.1), by
another reference data set that corresponds to the undamaged structure.

It is also important to note that this design methodology only provides the
optimum configuration, given specific training and testing data sets. The whole procedure
of configuring the optimal configuration should be repeated whenever additional training
and testing data is available. The influence of the training and testing data on the

performance of the neural network-based diagnosis system is an area of ongoing research.

8.3 Observations Based on Simulation Studies

Simulation data indicates that the diagnosis system employing the mode shape

approach predicts structural damage with essentially the same level of performance as that
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of the diagnosis system based on the response spectrum approach. This observation
suggests the two approaches are related, which is rational considering how the mode
shapes and response spectrums are constructed in this research.

According to the mode shape compilation procedure described in Appendix A, the
amplitudes of a particular peak of vaﬁous response spectrums, which are created from the -
time-response data from the sensors located at various locations of the structure, are
compiled to create the particular mode of vibration of the structure. The frequency
corresponding to the particular peak is considered as the modal frequency.

Since the mode shapes are constructed from response spectrums, theoretically they
contain the same information about the condition of the monitored structure. The only
difference is the normalization method used by each approach. The mode shapes created
from several simulations are normalized by their maximum amplitude, while the response
spectrums are normalized by the use of a specified excitation for every simulation.

The data also reveals that the performance of the neural network-based diagnosis
system largely depends on the quality of training and testing data. Increasing the
information in the input data of neural networks, or the number of damage cases in the
training data set, usually improves the prediction performance of the diagnosis system until

an optimum point is reached.

8.4 The Feasibility of Neural Network-Based Diagnosis System -
with Simulation Training Approach

Since the data from the real physical structure is usually unavailable, the use of
simulation data is necessary. In this section, the practical feasibility of the diagnosis
systems is evaluated by examining the performance of the ‘systems, which are trained by

- data generated with a simulation model, on the data generated with an alternate model.
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The optimum diagnosis systems for a 4-span bending beam, presented in Chapter
7, are tested with data generated by an alternate simulation model. The EI of each beam
element of the alternate model varies randomly between 0 to 25% from that of the original
model. The alternate test data is created by performing simulations on the alternate model
with the same damage cases used for fhe original test data (see Sections 7.3.2.and 7.5.2).
The optimal diagnosis systems for the original model are then tested using the test data
from the alternate model. The Reference Value Approach .(see Section 6.3.1) is applied by
substituting the reference data set of each optimum diagnosis system, which is the base-
line vibrational signature from the simulation of the undamaged original model (see.
Sections 7.3.1, 7.4.1 and 7.5.1), by another reference data set that corresponds to the
undamaged alternate model. The results of this investigation are listed in Table 8.1. The
performance of the diagnosis systems with the original reference data sets is also

demonstrated for comparison.

Accuracy (%)
Optimized Diagnosis Original Alternate Alternate
System testing data testing data testing data
(new reference) | (old reference)
Global diagnosis system: |
Mode shape approach %2 .| 87 69
Global diagnosis system:
Response spectrum 90 84 63
approach
Local diagnosis system
of the 2nd span 85 77 54

Table 8.1: The performance of optimized diagnosis systems.

The optimum global diagnosis systems with new reference data sets are able to
predict the damage of the alternate mode! with less than 10% reduction in accuracy. The

reduction increases to about 25% when the original reference data set is employed. The
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performance of the optimum local diagnosis system of the 2nd span on the alternate
testing data is also reasonable when a new reference data set is employed. In this case, the
accuracy reduction is only 8%, compared to 31% when the original reference data set is
used. |

Next, the optimum diagnosis systems are tested by two testing data sets that are
generated from another two alternate simulation models. Each model is an assemblage of
32 and 64 beam elements respectively (8 and 16 elements for each span). The formulation
of the numerical models follows the method described in Section 6.2. The dimension,
bending stiffness (E7) and mass per unit length of the models are the same as those of the
original model. The damage cases of the alternate testing data sets are assigned to be the
same as those of the original testing data by selecting the damaged beam elements that are
located within the locations of damage of the corresponding original damage cases. The
extent of damage at each location is also similar to that of the original cases. The diagnosis
systems optimized for the original model are then tested by data generated with the
alternate models. The Reference Value Approach (see Section 6.3.1) is applied similarly to

the previous investigation. The results are demonstrated in Table 8.2.

Accuracy
Optimized Diagnosis Original Alternate 1 Alternate 2
System testing data | (32 elements) | (64 elements)
(%) () ()
Global diagnosis system:
Mode shape approach 92 89 83
Global diagnosis system:
Response spectrum 90 87 79
approach
Local diagnosis system
of the 2nd span 85 83 78

Table 8.2: The performance of optimized diagnosis systems.
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The results show that there is less than 5% reduction of the prediction accuracy
when the alternate model consists of 32 beam elements. However, the accuracy reduction
increase to about 7 to 11% when being tested with the data from the alternate model that
has 64 beam elements. The accuracy reduction caused by the diﬁ‘erence.between the
training and testing models also increases with the difference between the models.

The optimum diagnosis systerhs are then tested with another two data sets. One is
generated from the alternate model that has the right span 5% longer than that of the
original model, while the other has the right span 5% shorter. The number of beam
elements representing the 4-span beam is still 16. The formulation of the numerical models
follows the method demonstrated in Section 6.2 except that the length of each beam
element of the right span is 5% longer or shorter. The diagnosis systems that are
optimized for the original model are then tested with the test data from the alternate
models. The Reference Value Approach is applied. The results are contained in Table 8.3.
The optimum global diagnosis systems~ have only 2-3% of accuracy reduction due to the
use of the alternate testing data, while the performance of the optimum local diagnosis

system of the 2nd span reduces only 1%.

: _ Accuracy
Optimized Diagnosis Original Alternate 1 Alternate 2
- System testing data (5% longer) | (5% shorter)
(%) ) ()
Global diagnosis system:
Mode shape approach 92 - 90 89
Global diagnosis system:
Response spectrum 90 87 87
approach
Local diagnosis system
of the 2nd span 85 84 84

Table 8.3: The performance of optimized diagnosis systems.
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The optimum diagnosis systems are then tested with the data generated from the
alternate model which is similar to the original model except that the damping ratio of the
first two modes is changed from 1% to 5%. The diagnosis systems that are optimized for
the original model are then tested by the testing data from the alternate model with
Reference Value Approach applied. The results, which are demonstrated in Table 8.4,

show minimal change in prediction éccuracy due to the change of damping.

Accuracy
Optimized Diagnosis Original Alternate Change
System testing data | testing data (%)
() (%)
Global diagnosis system:
Mode shape approach 92 92 0
Global diagnosis system:
Response spectrum 90 89 -1
approach
Local diagnosis system
of the 2nd span 85 85 0

Table 8.4: The performance of optimized diagnosis systems.

Finally, The optimum diagnosis systems are tested with data generated from the
alternate model whose flexural rigidity varies randomly between 0 to 25% of the original
model. This model is an assemblage of 64 beam elements (16 elements for each span), and
has the right span 5% longer than that of the original model. The damping ratio of the first
two modes of the alternate model is 5%. The diagnosis systems that are optimized for the
original model are then tested by the testing data from the alternate model with Reference
Value Approach applied. The results, which are demonstrated in Table 8.5, show

substantial degradation of prediction accuracy due to the change of model properties.
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Accuracy
Optimized Diagnosis Original Alternate Change
System testing data testing data (%)
(%) (%)
Global diagnosis system:
Mode shape approach 92 73 -19
Global diagnosis system:
Response spectrum 90 64 -26
~ approach ‘
Local diagnosis system
of the 2nd span 85 67 -18

Table 8.5: The performance of optimized diagnosis systems.

These results are encouraging due to the fact that the diagnosis systems are trained
with the data from one simulation model, and tested with the data from different models.
The tests also provide a breliminary indicator of how a neural network-based diagnosis
system with simulation training would perform in real world applications, where the
training data needs to be generated from simulation models, and the testing data is
obtained via sensors located on the real structure. The difference between the model and
the real structure always degrades the damage detection ability of the diagnosis systems
that are trained through simulation. However, the degradation can be offset by employing

the Reference Value Approach, and is still acceptable if the difference is minimal.

8.5 Other Potential Problems and Suggested Solutions

Although this research indicates an impressive performance of the neural network-
based diagnosis system on simplified problems, the performance on practical application is
not yet examined: In this section, some of the issues involving the possible difficulties in
real world application are identified and discussed. Recommended solutions are also
pre;sented.

Since the neural network-based diagnosis system are trained by simulation data, it

is essential that the simulation models can simulate all possible damage conditions,
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especially the multiple-type damage cases (see Fig 8.1). The difference between the
behaviors of the models and real physical structures is also a crucial issue. Various models,
or even combinations of models, should be employed to simulate the effects of a particular
type of damage condition on the vibrational signatures of the structure. As demonstrated
in Section 8.4, the reference value approach used in the proposed diagnosis systems can
suppress the effects of the problem, but only to a certain level. .

Another potential difficulty is the problem of noisy sensory data. Optimizing the
performance of the diagnosis system by employing the proposed performance-based
design methodology should handle the problem since properly trained neural networks
have the generalization ability to deal with noisy data (see Chapter 3). However, the effect
of noisy data on the performance of the diagnosis system in real world applications is also
another topic that needs further investigation.

Occasionally a neural network-based diagnosis system has to classify types of
damage that it has never been trained for, and these damage cases certainly would lead to
incorrect diagnosis by the diagnosis system. A subsystem that can identified unseen
damage cases, or unseen data patterns, should be developed and integrated into each
diagnosis system (see Fig 8.2) in order to identified these types of damage. This subsystem
may be an unsupervised learning neural network (see Section 2.3), a vector quantization
unit, or any clustering unit that has the ability recognize unseen data pattern. Future
research in this area is also recommended.

Problems related to variable environment, such as the change of stiffness or
damping of structural materials due to seasonal temperature, could cause inconsistent
performance .by the diagnosis system. Employing several reference data sets for several
testing conditions can lessen this problem. The problem of deteriorating or aging
structures can also be avoided by regularly updating the réference data set to cope with
- the change of structures. However, it is essential that the updated reference input pattern

is created from the responses of structures with no damage. In practice, the pattern can be
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updated whenever a human inspection, or other types of major inspection, indicates that

the structure has no damage.

8.6 Conclusion .

Combining global and local diagnosis, as demonstrated in Chapter S, considerably
improves the practical feasibility of niultiple-point damage diagnosis in comparison to
other existing neural network-based approaches. The combined approach also has more
potential for large-scale problems since it can be easily scaled up. Preliminary results
obtained with neural network-based diagnosis systems for multispah beams (Chapter 6, 7)
demonstrate potential. These systems caﬁ also be employed as a basis for designing
diagnosis systems for other types of engineering structures.

Although the preliminary feasibility study shows promising results, the
performance of the neural network-based diagnosis system on real world applications has
not yet been examined. Difficulties in aeveloping good simulation models of large-scaled
civil engineering structures, and the extensive amount of possible damage states that the
structures involve, are the major practical problems of this damage diagnosis approach.
This problem may not be overcome in the near future, and it may result in limited
applicability of this approach in the field of civil structures. However, this neural network-
based damage diagnosis approach can also be applied to smaller-scale problems in other
engineering fields such as mechanical engineering where the training data from real .
structures is available, or when good simulation models of the structures are easier to be
developed. The approach is also a strong candidate when remote sensing is required. For
example, the damage diagnosis of small-scaled space structures, under-water structures, or.:.
structures in hazardous environment would benefit from this approach.

It is also very essential to note that, although there are recent successes in
developing automated damage diagnosis approaches, the importance of human inspection

should not be diminished. There are always unexpected damages that is able to interfere
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operation of the automated system. There also may be deficiencies in the diagnosis
systems itself. The performance of these "intelligent" systems is only as good as the
knowledge employed in developing the systems. Therefore, human inspection is always
the first option, and automated damage diagnosis systems should be considered as a

supplement to human inspection.

8.7 Recommended Research Topics

Even though the results from this research are promising, additional research and
development is needed before the approach can be proposed for application to real

structures. The research issues of significant importance are:

- the application of other data preprocessing strategies and supervised-trained

neural networks.
- the problem of modeling real phygical structures.
- the application to structures with multiple-type damages.
- the problem of noisy data.
- the methodology for detecting unanticipated damage cases.
- the feasibility of neural network-based approach on real large-scaled applications.

- the significance of the training and testing data to the performance and training

efficiency.
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Appendix A

Mode Shape Compilation Process

When the ambient excitation and mode shape approach is employed, a mode shape
compilation routine is needed for creating the mode shapes that correspond to various
damage conditions of the monitored structure. The mode shapes are then used as input
patterns for the diagnosis system. Details of how this mode shape compilation routine
works are demonstrated as follows.

Firstly, given the ambient excitation, the time-displacement free vibration data
from the sensors located at fhe interested parts of the structure is collected. Assuming that
the time-displacement free vibration data, x(7), from a specific sensor is recorded during
the time period 7 and then passed through an analog-to-digital. converter to generate the
discrete time series {x,}, r =0, 1, '2, ..., (N-1). The Fast Fourier Transform (FFT) is then
used to calculate the Discrete Fourier Transform (DFT) of this time series, {X}, k=0, 1,

2, ..., (N-1), and hence find the spectral estimate

- T _,
S.(w,) = ;kak ’

where X, is the DFT of £X,}, and X} is the complex conjugate of X, . These spectral

estimates are then smoothed in order to improve their statistical reliability by a spectrum
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smoothing routine in MATLAB (based on the method suggested by Newland, 1993)
before being used for mode shape compilation. Since the sampling interval is set at 0.01
second, the Nyquist frequency is set to be 50 Hz, which well covers the frequency range
of interest (Newland, 1993, suggests Nyquist frequency to be at least twice the frequency
of interest). The time series signal from all sensors is filtered to remove frequency
components over 50 Hz in order to ﬁvoid the effect of aliasing when the signal is used for
creating spectral estimates. The frequency resolution is set at 1 Hz, and the maximum
effective bandwidth of the calculation is set at 0.5 Hz. The ratio of the standard deviation
of measurement to the mean of measurement is set at 0.3, and the fequired measurement
length is determined to be 20 seconds. The smoothing process involves averaging every 11
adjacent spectral estimates, and each value of spectral estimates is the result of smoothing
over 0.5 Hz. The effective frequency range of the spectral estimates is from 0 to 50 Hz,
which also means the spectrums well cover the response of the first 3 modes of vibration
of the beam model. Finally, the smoofhed spectral estimates are then employed in the
mode shape compilation process.

The amplitudes of a particular peak of various spectral estimates, which are
created from the time-response data from sensors located at various locations of the
structure, are then compiled to create the particular mode of vibration of the structure.
The ﬁ'equency‘ corresponding to the particular peak is considered as the corresponding
modal freqﬁency. For example, the amplitudes of the first peaks of all spectrums can be
compiled to create the first mode of vibration of the structure, while the amplitudes of the
second and the third peaks can be compiled to create the second and the third mode

respectively. Figure A.1 illustrates the process of the mode shape compilation routine.
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Figure A.1 Modal Analysis Approach
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Appendix B

Frequency Transfer Functions of Linear Systems

Figure B.1 demonstrates the beam model of a middle span of a multispan beam
model. When the excitation of the beam is generated outside the area of the span, it can be
assumed that moment x/ and x2, which are the moment at the left and right support
respectively, are the only excitations on the span. Assuming that the vertical displacement
at a specific location of the span, y, is the output of interest, a linear system with 2 inputs
and 1 output can be created to represent the relation between input and output as shown
in Fig B.2 (Newland, 1994). The frequency transfer functions, H/(w) and H2(w), can be
used to represent the linear system. Given the measured input and output data during a
time period, the frequency transfer functions between the inputs and the output can be
constructed.

Using Convolution Integral Method for a linear system (Newland, 1994), the

output y can be determined from
yo = [, me-0 q@ dr + [, -0 u@)

where k(1) and h2(1) are the frequency transfer functions as function of time # (or the unit

impulse response functions). If we define
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Figure B.1:

A middle span of a multi-span beam.
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6 =1t-1,

output y can be represented as
o = L me x@-0) (-a6) + [ b n-6) (-ab) ,

= [f o xe-6) 46 + [ 1,6 %0-6) a5 .

Since A(B) = 0 for 6 < O (there is no output before the impulse), the lower limit of the

integral can be extended from 0 to -a,

yo = % m@ x@-6) a8 + [£ @ x,¢-0) a6 .
B.1)

The cross-correlation between the output y and an input x, can be demonstrated by

R (r) = E[x@yt+7)] .
B.2)

Substitute Eq. B.1 into B.2 gives

R,(@) = E[x0l% m@ x@+c-0) do + x@f°, n@) x@+c-6) d6] .

Since x,(?) is not a function of 6, it may be moved under the integral signs, and the

averaging process is carried out to give

R, (t) = [ m© Exmx@+c-6)) do + I_"a hy(8) E[xyyx,(t+7-8)] db .

a
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Since the autocorrelation of input
R.t) = E[xtyx¢+7)] ,

and the cross-correlation between input and output
Ry(e) = E[xye+7)] ,

the cross-correlation between input x,(#) and output y(?) is

Ry, (@) = I° m(®& R,c-6) d6 + [°, (6 R (c-6) do .
®.3)

Equation B.3 expresses the cross-correlation between input x,(#) and output y(?) in terms
of the autocorrelation of x, (%), the cross-correlation between x,(?) and the other input x,(7),
the frequency response function between x, and y (4,(?), and the frequency response
function between x, and y (h,(?)).

Perforhling the Fourier transform of both sides of Eq. B.3 gives

l (2 ; a a | '
8,,(@) = ;I—a dr e [[° (6 R,(c-6) do + [° m(0) R, (-6) df]
1 (e —of |% ~io(r~
= ;I_ade h,(6)e ? ,‘_adr Rxl(r-ﬂ)e (==6)

1 [a = @ -o(r-
* ;;L,dﬂ h@e ™ [* dr R, (c-0)e7"C0 .

(B.4)
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The integrals with respect to 1 have constant 0. If (1-0) is replaced by ¢, then dt becomes

d¢. Since
S, (@ = = Ia R_(r)e™"dr (B.5)
* 2r e OF ! '
1 @ —-wr
Sy@) = o j_a R, ,(@me ™ dr (B.6)
and
Hoy = [ho e@ar . (B.7)

Egs. B.5 and B.6 can be employed to evaluate integrals in Eq. B.4 with respect to ¢.
Equation B.7 is then used to evaluate integrals in Eq. B.4 with respect to 0 that still

remains. Then we obtain

S;y(@) = H(@)S, (@) + H(@)S,,, (@) .

When the system has N separate inputs, of which x,(%) is a typical one, the system can be

represented by
v | ,
Sx,y(w) = E Hs(w)sx,x,(a’) ’ . (B.8)
where
xx = Sy

For uncorrelated inputs, it can be shown that
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Sy(@) = H@S, (o) ,

L H@) = .

For the linear system with two correlated inputs (x,, x,) and one output () as shown in

FigsB.1 and B.2,

S:y(@) = H@S, (@) + H@S,,, (@) ,.

szy (a)) HZ (G))sz (w) + Hl (w)szxl (a)) .

The frequency transfer functions can then be demonstrated by

S.S. . -S..S.
Sx, S, — Sx,xz szx, '
Sx Sx _Sx N X
Hz(w) = Slsz}'_s lny’Zl . (B9)
XX XXy T XX . .

These equations prove that the frequency transfer functions of a linear system can be
constructed from speétrums and cross-spectrums of the inputs and the corresponding
outputs of the system. These spectrums can be created by performing discrete fourier
transform on the discrete time history data of the inputs and output to create fourier
spectrums, and tﬁen using these fourier spectrums to create the spectrums and cross-
spectrums.

Assuming that x(?) and y(?) are recorded during the same time period 7, and then

passed through an analog-to-digital converter to generate the discrete time series {x,} and
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O r=0,1,2, .., (N-1). FFT can then be used to calculate the DFT's (Discrete Fourier
Transforms) of these two time series, {X;} and {Y}}, k=0, 1, 2, ..., (N-1). Spectral

estimates can then be demonstrated as

~ T _. ~ T _.

S,.(w,) = 'Z;Xka r Syw) = '27XkYk ’
N U

S.0m) = oKX, §,0) = K%, @10

where X} is the complex conjugate of DFT X, , and ¥; is the complex conjugate of
DFT Y, . The spectral estimates will satisfy equations above whether or not there is noise
present in the output process (%), and whether or not the system is linear (Newland,
1993).

For accurate assessment of frequency transfer functions, spectral estimates have to
be properly smoothed in order to improve their statistical reliability before being
substituted into Eq. B.9. Smoothing spectrum routine in MATLAB is employed for this
purpose. Since the sampling interval is set at 0.01 second, the Nyquist frequency is set to
be 50 Hz, which well covers the frequency range of interest (Newland, 1993, suggests
Nyquist frequency to be at least twice the frequency of interest). The time series signal
from all sensors is filtered to rerhove frequency components over 50 Hz in order to avoid
the effect of aliasing when the signal is used for creating spectral estimates. The frequency
resolution is set at 1 Hz, and the maximum effective bandwidth of the calcﬁlation is set at
0.5 Hz. The ratio of the standard deviation of measurement to the mean of measurement is
set at 0.3, and the required measurement length is determined to be 20 seconds. The
smoothing process involves averaging every 11 adjacent spectral estimates, and each value
of spectral estimates is the result of smoothing over 0.5 Hz. The effective frequency range

of the spectral estimates is from 0 to 50 Hz, which also means the spectrums well cover
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the response of the first 3 modes of vibration of the beam model. The smoothed spectral
estimates are then employed in creating frequency transfer functions. Detail on smoothing
spectral estimates and methods for evaluating the quality of frequency transfer functions,

which are created from spectral estimates, is discussed in Newland (1993).
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Appendix C

Relation of Vibrational Signatures
and Damage of Bending Beam

C.1 Relation of Mode Shapes and Damage

Figure C.1a shows a beam with flexural rigidity £/(x) and mass m(x) per unit
length. The beam is shown as simply supported, but other sﬁpport conditions are équally
admissible. Transverse vibration is allowed under the action of a distributed force p(x, ).
The transverse displacement at any point along the beam is presented by u(x,#), which is a

function of both the spatial coordinate x and time .

pix, t) : L
fr— o
| bt

. = ;9_2 ve Mo
- | {Hrh)

(a}

Figure C.1: Transverse vibration of a beam (Humar, 1990).
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A small beam element of length dx is shown in Fig C.1b in its deformed position
and the forces acting on the element are identified in Fig C.1c. These forces consist of an
external force pdx ; the inertia force mo 2u/d t*dx : the shear force ¥ and the moment M
on the left-hand face of the element; and the shear force V +J V/ 0 xqbc and the moment
M+J M, / & xdx on the right-hand face. The inertia moment caused by angular
acceleration of the element, and the damping force, are neglected.

The infinitesimal element is in equilibrium under the forces and moments shown in
Fig C.1c. The shear forces, which act in the direction perpendicular to the elastic axis, are
slightly inclined to the vertical. For small rotation, their vertical components can be taken

as equal to the shear force values. Equilibrium of the element in the vertical direction gives

ov o*

u
C7 - de+ pdc =0
ox My pETP " (C.la)
or
ov m0”2u+ _o
ox "o PTT (C.1b)

Equating the sum of moments about the left-hand face to zero gives

(ov ) d 0w  dx oM
V +——dx |dx+ pdx—— dc—+ M+ dx—-M=0.
Lo",x)dxl)2mo"t22 o x
(C.2)
On neglecting the higher order terms, Eq. C.2 becomes
M
V+5 =0
Jx (C3)
From elementary beam theory,
62
M=E2
o1 : (C.4)

280



Substitution of Eq. C.4 into C.3 gives

) 52u)
=—Z kI .
é x( f x?

(C.5)
Differentiating Eq. C.5 and then substituting in Eq. C.1b gives |
o? ( O%u J 8%u
EI + =p.
V74 xzk 174 x2 mﬁ 12 p (C6)

Equation C.6 is the equation governing the transverse vibration of the beam. To
obtain a unique solution to this equation, four boundéry conditions and two initial

conditions must be specified. For a simply supported beam, the four boundary conditions

are
u=0 at x=0
u=0 at x=L (C.7)
and
EI;Z; =0 at x=0
ET 0”2142 =0 at x=L.
o x (C8)

Other type of boundary conditions can as easily be identified for other types of supports.
The equation of undamped free transverse vibrations of a beam is obtained from

Eq. C.6 by setting p = 0:

2 2 2
g 2(EI g uz)_'_mﬁ l: =0.
a x 2 x ot (C9)

This is a fourth-order linear homogeneous partial differential equation. Assuming

u = fix)g), (C.10)
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where f{x) is a function of x alone and g(?) is a function of 7 alone. Substitution of Eq..

C.10 into Eq. C.9 gives

[ d f(x)J (t) -
()2 + f() =0 -
& (C.11)

or
1 a*( d'f()) -1 d%()
mf(x) de* " dx? J_g(t) d* - (C.12)

The terms on the left-hand side of Eq. C.12, including m and EI, are all functions
of x alone, while the terms on the right-hand side are functions of # alone. The equality can
hold only provided that each of the two sides of the equation is equal to a constant,
normally referred to as a "separation constant." Eq. C.12 leads to two separate equations,

as follows:

d’g()
e —2X> +wig(t)=0 €.13)

d? [ d*f(x))
o (EI L2 - wims (o)

(C.14)

where w2 is used as the constant. The solution of Eq. C.13 is given by
gt) = Asinwt + B coswt (C.195)

where 4 and B are constants that can be determined from the two initial conditions: the
initial displacement and velocity profiles of the beam.
Equation C.14, along with the boundary conditions given by Eq. C.7 and C.8,

represent an eigenvalue problem.
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P

‘kz k dzf(x)J wsz(x)

(C.14)

with the boundary conditions

fx)=0 at . x=0
fx)=0 at x=L (C.16)
and

g _

d* ' (C.17)

A nontrivial solution for Eq. C.14 is possible for special value of w2, There is an infinite
number of such values separated by discrete intervals. These values are referred to as
"eigenvalues" of the system. The square root of an eigenvalue is known as the "frequency”
of the system. Corresponding to each eigenvalue, there is a solution for f{x), called an
"eigenfunction” or a "mode shape," which also satisfies the boundary conditions of Egs.
C.16 and C.17.

Given a specific distribution of EI over the length of the beam, EI(x), the solution
of the eigenvalue problem of Eq. C.14 is a specific set of "mode shapes" and their
corresponding "frequencies,” 1, (¥), %, }w . In another perspective, if a speciﬁc El(x) is
defined as a certain damage condition, the corresponding {f, (x), w; } -1 is the particular set
of mode shapes and their corresponding frequencies that corresponds to the damage
condition. Figure C.2 illustrates the effect of the change of EI(x) to a mode shape of the 2-

span beam demonstrated in Chapter 6.
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The normalized mode shape of mode no.1
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....... Damage at the 6th beam element of the left span (30% of El reduction)

Figure C.2: Change of the 1st mode shape due to a damage condition
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C.2 Relation of Response Spectrums and Damage

Response spectrums at proper locations of structures contain as much information
about the condition of the structure as mode shapes do. The only difference is that the
response spectrums are normalized by the excitatidn, whereas the mode shapes are
normalized by their amplitude (see Appendix A). This makes mode shapes independent of
excitation. Figure C.3 illustrates the effect of the change of El(x) to a response spectrum

of the 2-span beam shown in Chapter 6.

2 The Autosp of Acceleration Resp of DOF 9

0 5 10
Frequency (Hz)

— No damage

...... Damage at the 6th beam element of left span (30% of El reduction)

Figure C.3: Change of the response spectrum of DOF 9 due to a damage condition.

C.3 Relation of Frequency Transfer Functions and Damage

Figure C.4 shows a beam similar to the one shown in Fig C.1a, but it is now under
the action of the moment at the left-end of the beam M. The beam has flexural rigidity
El(x), damping c(x), and mass m(x) per unit length. The transverse displacement at any

point along the beam is presented by u(x,?).
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Figure C.4: Transverse vibration of a beam with moment at the left support.

The equation of motion of the beam is still based on the general equation of

motion of the transverse vibration of bending beam described by Eq.C.6,

=0,

52 ( 52uj J*u
m—-s
gt . (C.18)

ET
o”xzk J x? *

where p = 0 since there is no distributed force on the beam. The four boundary conditions

are
u=0 at x=0
u=0  at x=L , (C.7
and
E[;‘;uz=Ml at x=0
2
EI:;:O at x=1, (C.19)

which provide the presence of the moment M, at the left support.
Given a specific distribution of EI over the length of the beam, El(x), the solution

of the eigenvalue problem of Eq. C.14 is still the specific set of "mode shapes" and their

. . a
corresponding "frequencies,” {/; (¥),W;} .y of the beam.
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Now consider the force response of the beam,

u(x,) = 5£,(0),0).
i=1 (CZO)

The mode shapes are normalized such that

IF £, f, (o) = L5, (C.21)

where §; =0 except when 7 =j, when it is unity. Substitute Eq. C.21 into Eq. C.18 gives

a| 52 ( )
S oo

i=1| 8 x? Jx
‘ (C.22)
Multiplying Eq. C.22 by f(x), and integrating over x, give
y_) 1 ¢ 32 | a f;(X)
dx =0
o 1 mLI,_{axzk }f“
’y;
FyE +w? (EI(x)mL])y =0
(C.23)

where the undamped natural frequencies {W } _ of the beam are given by a function

? 5
wjz.(EI(x),m,L,j)yj ——f; 1{5 f,(x)y )y }

(C.24)
Substitute Eq. C.20 into Eq. C.18 gives
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5f()

})’(1)} M@ , x=0

a|f
s

- (C25)
Multiplying Eq. C.25 by f{(x), and integrating over x, give

f'( 1) L2 )y,(t)}dr [E £, oM,y

L < (
i

yj(,)p{ ; o1, OB )}mM,(t)I;fj(x)cbc , x=0

L £,
y,(6) = M (1) e f’(x) , x=0,
I,,{ A )El(x)}
(C.26)
Since
2’ f;(x
w, o« IL{ af’ > i f,(x )EI(x)}
¥, = MO, £, E@)w,,L) | x=0. €27)
Assuming that the moment at the left support of the beam is
M, (1) =", ' (C.28)

Eq. C.20 becomes
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u(x,t) = H(x,w)e™ = g.f,- )y, (), (C.29)

where H(x,w) is the frequency transfer function when the response u(x,?) is measured at x
for unit harmonic moment e applied at the left end of the beam. Therefore, from Egs.

C.25 and Eq. C.23, it can be concluded that

H(x,w) = gf, 0/, () B (x)w,, L) (C.30)

Given a specific distribution of EI over the length of the beam, El(x), the solution of the
frequency trahsfer function of the beam, when the response #(x,?) is measured at x, exists

(see Eq. C.30). In another perspective, if a specific EI(x) is defined as a certain damage

[+
condition, the corresponding {{H (x, w)}ﬁzo} . is the particular set of frequency transfer

functions that corresponds to the damage condition.
Figure C.5 illustrates the effect of the change of EI(x) to a frequency transfer
function, H(w), corresponding to the response at a location of the left-most span of the 4-

span beam demonstrated in Chapter 7.
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The Frequency Transfer Function of DOF 3
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Frequency (Hz)

- No damage

...... Damage at the 3rd beam element of the leftmost span (30% of El reduction)

Figure C.5 Change of the frequency transfer function of DOF 3 due to a damage condition

290



