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Abstract

A loudspeaker feedback system is built in this project. A class D switching amplifier and
the loudspeaker are placed in a closed loop. The switching power amplifier is a simple
pulse width modulator, but without the conventional output filter that is made up of
expensive inductors and capacitors. The band-pass loudspeaker replaces the output filter.
Feedback is achieved by an electret condenser microphone and a lag-pole compensator in
the low frequency range of the audio spectrum. For a typical closed box type loudspeaker,
the closed loop system frequency response is flat from 35Hz to 300Hz. The total
harmonic distortion is also minimized to acceptable levels in the same frequency range.
Various loudspeakers, drivers, and compensators are also studied for the completion of the
final system.
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Chapter 1

Introduction

1.1 Objective
Feedback is used extensively in audio electronics to reduce harmonic distortion and

improve frequency response. However it has been little used in the loudspeaker. The

loudspeaker is an important but weak part of the audio system. Its poor performance

includes poor frequency response and large harmonic distortion. Its electromagnetic-

mechano-acoustic nature makes it hard to utilize feedback compensation. Nevertheless,

work has been done to include the loudspeaker in a feedback loop. Satisfactory results

have been obtained for frequencies up to 500Hz [1] [2]. The reported results indicate a

nearly flat frequency response and an average of about 5dB harmonic distortion reduction

from about 30Hz to 150Hz [3]. However, such results come only by employing expensive

and complicated sensors and compensators. There is a need to develop a simple low-cost

feedback network that gives similar results to those of the previous complex feedback

networks.

1.2 Historical Background
Feedback enables the modification of poor systems with uncertain characteristics to better

systems with well-defined characteristics. As a result, harmonic distortion can be

minimized while a flat frequency can be obtained. While most audio equipment takes

advantage of feedback, the loudspeaker remains open-loop for the most part.

The loudspeaker is an electromagnetic-mechano-acoustic transducer. It takes in an

electrical signal and converts it to sound by means of a moving voice coil and cone. The

process involves electromagnetic-mechanical and mechano-acoustic conversions.



Because the system is not purely electronic, extracting the feedback signal can be

challenging. Therefore the loudspeaker has been left open-loop.

Figure 1.1: Frequency Response of a Closed Box Loudspeaker
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Note: The frequency response is measured using a dynamic signal analyzer (HP 3562A). The input
to the amplifier-loudspeaker system is a sine sweep generated by the same instrument. The
amplifier is a low distortion linear amplifier (LM12) (see Appendix B). The loudspeaker is a
10inch "woofer" (RS 40-1014A) mounted in a 50L closed box (see Appendix C). The output of the
loudspeaker is sensed by an electret condenser microphone (RS 270-090B). The SPL is measured
by a sound level meter (RS 33-2050). The measured SPL at 60Hz is 110dB at linch from the
center of the cone. 1

Figure 1.1 shows a measured frequency response of a loudspeaker used in this project.

It is actually the open loop characteristics of a linear amplifier-loudspeaker-microphone

system. Assuming that the amplifier and microphone contribute no magnitude deviation

or phase shift to the Bode plots, Figure 1.1 is an accurate picture of the loudspeaker's

frequency response alone. The peaks and valleys of the magnitude plot indicate that the

loudspeaker has a very poor magnitude response. The magnitudes of the first peak and

valley are nearly 20dB apart.

Using a distortion analyzer, we can also measure the total harmonic distortion (THD)

of the loudspeaker. The results are plotted in Figure 1.2. Here we see that the harmonic

distortion increases quickly as the frequency decreases near the lower end of the audio

1. The SPL reference is 0.0002pbar.
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spectrum. The distortion can reach as high as -16dB, or 15.8% (at 30Hz). 1 2 This

distortion is significant because most of other audio equipment such as an average linear

power amplifier introduces smaller than 1% harmonic distortion throughout the audio

spectrum (20Hz-20kHz).

Figure 1.2: Total Harmonic Distortion of a Loudspeaker
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Note: The distortion is measured by a distortion analyzer (HP 334A). The input to the
amplifier-loudspeaker system is a sine wave from a signal generator (KH 2000). The amplifier is a
low distortion linear amplifier (LM12) (see appendix B). The loudspeaker is a 10inch "woofer"
(RS 40-1026A) mounted in a 50L closed box (see appendix C). The output of the loudspeaker is
sensed by an electret condenser microphone (RS 270-090B). Constant SPL is obtained by
manually adjusting the input to the system so that the RMS value of the microphone output signal
is constant (at 300mVpp). 3 Using a sound level meter (RS 33-2050), the measured SPL at 60Hz is
110dB at linch from the center of the cone.

1. The distortion at 25Hz can be ignored since at that frequency the movement of the voice coil
exceeds the maximum excursion limits of the loudspeaker. However the distortion at frequencies
greater than 30Hz is valid.

2. Total harmonic distortion is the RMS ratio of the amplitudes of all harmonics (up to 3MHz, not
including the fundamental) to those of the fundamental and harmonics. It is shown here in relative
dB scale. The distortion analyzer (HP 334A) is an average-responding voltage-measuring device.
Thus the relationship between dB and % is: -20dB = 201og 0o(10%).

3. [Vpp] stands for "peak-peak Volt."

n -· ·-- · · ·- · ~ · · · · ·- · ·
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Work has been done in the past 40 years to improve the loudspeaker's performance

utilizing feedback. The block diagram of a general loudspeaker feedback system is below.

Figure 1.3: Block Diagram of a General Loudspeaker Feedback System.

There are mainly two forms of loudspeaker feedback: "partial" and "motional."

Partial feedback uses a nonintrusive method to extract the feedback signals from the

loudspeaker's input terminals only. The signals can be extracted using a bridge circuit, a

simple current sensing resistor, or other means [5] [6] [7] [8]. The signals can be the back

electromotive force (EMF), load voltage and load current. It is believed that these signals

are related to the sound output of the loudspeaker in a specific way. This type of feedback

is usually inadequate since the actual output of the loudspeaker is not used. There is also

disagreement about the linearity of the systems used to extract the signals [1]. For these

reasons, partial feedback was not used in this project.

Another type of loudspeaker feedback is motional feedback. The term "motional

feedback" is used to indicate any loudspeaker feedback network that includes in its

feedback loop the motion of the speaker cone -- its displacement, velocity and/or

acceleration [1] [2] [3]. It is believed that the cone motion, whether measured or derived,

is related to the sound we hear in some known manner. Therefore the cone motion is a

good representation of the sound -- the final output of the system.

To apply feedback, the feedback signal is combined with the input electrical signal to

generate the error signal that is largely amplified as the new input of the loudspeaker.

Feedback theory indicates that distortion can be reduced while a flat overall frequency

response can be maintained.



1.3 Methods
Motional feedback has been used successfully in a variety of loudspeaker compensation

systems. Although they fail at high frequencies for reasons we will see in Section 2.3, the

compensation techniques are claimed to be applicable to all audio frequencies.

Nevertheless their implementations are costly because the sensors and the compensation

networks are either too delicate or too complex. This project examines a simple feedback

method using a lag-pole network as the compensator and an electret condenser

microphone as the sensor.

The microphone has been ruled out in most loudspeaker feedback systems. The main

reason is the non-minimum phase shift associated with the time delay between the

generation of the sound at the cone and the output of the converted signal from the

microphone. The phase shift is caused by the propagation delays in the air medium and in

the microphone. Although they avoided the use of the microphone and instead explored

other sensors and feedback methods, researchers found that actual loudspeaker feedback

can be achieved for frequencies up to only about 500Hz. At this frequency, the

microphone's non-minimum phase problem is negligible. In fact, the phase problem is

negligible for frequencies up to the kilohertz region, as we will see in Section 5.1. Since

in this project we are concerned with low frequency (up to 300Hz) feedback

compensation, we can safely use a microphone for feedback. In particular we will use an

economical electret condenser microphone, which has a nearly flat frequency response

and virtually no phase shift over the described frequency range.

Lastly the feedback system in this project features a "PWM driver" that resembles a

class D switching amplifier. Previously many loudspeaker feedback systems used high

cost linear amplifiers in the forward path. Sometimes the amplifier introduces unwanted

phase shift that can make compensation difficult. For this project we will explore the use



of a class D switching amplifier in place of a linear amplifier. A switching amplifier is low

cost, small, highly efficient and provides high output power. However, most commercial

class D switching amplifiers treat the loudspeaker as an external load of a fixed impedance

(e.g. 8Q). Thus the inclusion of complicated filters that are made up of high quality

inductors and capacitors seems inevitable. In these switching amplifiers, feedback is

usually applied to the output filter stage to regulate the load current or voltage delivered to

the loudspeaker. This would be fine if the loudspeaker load were purely resistive.

However as we will see in the next chapter, the loudspeaker is a complex device with an

impedance considerably different than just the resistance of the voice coil. Furthermore

the inductors and capacitors used in the filters are not just expensive, they are also

problematic when the whole switching amplifier is used in the loudspeaker feedback

system. Like the linear amplifier, the output filter of the switching amplifier introduces

unwanted phase shift, which again complicates compensation. By realizing that the

loudspeaker is a band-pass filter (see Section 2.2), we can eliminate the switching

amplifier's output filter altogether and apply the switches (PWM driver) directly to the

loudspeaker. The loudspeaker effectively becomes the output filter. Finally, simple

feedback can be applied around the PWM driver and the loudspeaker to control the precise

switching action so that the sound output is regulated.

1.4 Outline

The outline of this thesis is as follows: First, we will develop a simplified model of the

loudspeaker based on its components and analogous electrical symbols. Then, we will

look at different topologies of switching power converters and amplifiers and design the

PWM drivers used for this project. Next we will discuss and also implement the loop

compensation techniques based on the simplified loudspeaker model and the PWM

drivers. We will then build and test the actual loudspeaker feedback system using an



electret condenser microphone and a modified version of the compensator developed for

the loudspeaker model. Finally, we will end with a discussion section and conclusion.



Chapter 2

Loudspeaker Model

In order to compensate the closed loop loudspeaker system, we must first understand

the loudspeaker's open loop characteristics. In this section we will develop a relatively

simple electrical model for the loudspeaker using the mobility analogy. We will also

address the limitations and applications of this model in loudspeaker feedback

compensation.

2.1 Elements of the Loudspeaker
The loudspeaker is a complicated device. It is an electromagnetic-mechano-acoustic

transducer that converts electrical signals into sound. The type of loudspeaker that we are

concerned with in this project is the common paper or polypropylene cone loudspeaker.

Figure 2.1 shows a cross section of this type of loudspeaker. For reference, we shall call

the side of the speaker where the cone opens up "the front," and the other side "the back."

In such a loudspeaker, a strong magnet is mounted on the back on an open metal frame

shaped much like a cone with most of the side panel cut away. On the rim of the metal

frame hangs the speaker cone, or diaphragm. The materials used to suspend the cone

around the rim and around the center are flexible so that the cone can move in only the

axial direction: in and out (with respect to the front and back of the speaker). The center

of the cone is connected to the voice coil that is in the magnetic gap of the permanent

magnet. When a current is fed through the voice coil, the magnetic interaction in the air

gap generates a force on the voice coil, as given by the electromagnetic property F = Bli.1

As a result, the voice coil and the cone move away from the equilibrium point. The cone

1. Appendix A lists variables used in this thesis.



movement results in a change of air density and pressure locally, and sound waves

propagate directly from the cone.

Figure 2.1: Cross Sectional View of a Loudspeaker
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The front and back of the speaker can be acoustically shielded from each other if the

speaker is mounted in a closed box or an infinitely large baffle. Caution should be taken to

minimize the air leak between the two sides so that changes in air pressure on the two

sides do not interfere. If the sound waves from two sides of the cone are permitted to

interact with each other (such as in free air), the sound level would drop due to

cancellation from the two sides. The cancellation is especially pronounced at low

frequencies, where the waves are omnidirectional. The effect is analogous to trying to

make a sound with only one hand moving. For practical reasons, a closed box instead of

an infinite baffle is used to shield off the effect from the back of the loudspeaker. The box



cannot be made too small because the enclosed air acts like a spring whose force increases

as the enclosed volume decreases (see Appendix D). This "air suspension" changes the

speaker system characteristics and should be accounted for in our loudspeaker model. We

will only consider a closed box loudspeaker design in this project, as any other designs

complicate the model by adding more acoustical elements to the system. Such

complication is undesirable because it makes the closed loop compensation difficult and

consequently degrade the overall system performance. We hope that the box's effect

would not be too big and that the closed loop will be able to compensate for it.

2.2 Loudspeaker Model
We have just seen the parts that make up the loudspeaker -- a coupler between these

worlds: electrical, magnetic, mechanical, and acoustic. We would like to model the

system elements by electrical components so that further analysis can be applied. The

analogy we will use is the so called mobility analogy.

In the mobility analogy, variables such as current i, force F, and pressure p are

considered "through" variables, while voltage v, velocity u and volume velocity v, are

called "across" variables [9]. The volume velocity is a property of the acoustic volume. It

is a measure of how fast the volume changes and therefore the intensity of the sound at the

output of the speaker. Volume velocity is analogous to velocity, which is a measure of

how fast the displacement changes. Volume velocity is directional and has units [m3/sec].

For the loudspeaker, the volume velocity is simply the product of the cone's velocity and

area.

Using the mobility analogy, mechanical and acoustical resistances, masses and

compliances (due to suspension) can be modeled by electrical components. Mechanical

and acoustic resistances resemble electrical resistors. The moving mass of the cone or that



of the air in front of the cone is equivalent to a capacitor, while the compliance of the cone

suspension or that of the air is analogous to an inductor. With the above analogy, we are

ready to construct the loudspeaker model. One valid model is shown in Figure 2.2. The

equations for the variables are given in Appendix D [9] [10].

Figure 2.2: A Circuit Model for the Closed Box Loudspeaker (unloaded)

BI:1

+ R e  Le +

Mm Cm Cb Rm U

- - Electromagnetic circuit 0 i Mechanical circuit -*J

In this model, we have included the effect of the closed box, an extra compliance Cb,

contributed by the spring-like air suspension inside the box. The reason that all the

mechanical elements are in parallel is intuitive: the velocity is ideally identical over the

entire cone structure. However, this assumption is oversimplified as we will see later in

the discussion of the model's limitations. Nevertheless for low frequencies, the above

model is adequate.

Next we will include the acoustic load. Baranek gives two models, one the broadband

model and the other the simplified model for low frequencies [9].

Figure 2.3: Circuit Models of the Acoustic Load

Broad Band Model Simplified Model

v



Though the simplified model is said to be accurate only up to f< c = 275Hz for a

10inch (r = 0. Im) loudspeaker, in reality the error it introduces at even higher frequencies

is small compared to that introduced by cone resonance, noise, and standing waves. For

this reason, we can use it in most cases (unless, of course, the other errors are comparably

small).

Thus we have the complete Loudspeaker model:

Figure 2.4: A Closed Box Loudspeaker Circuit Model with Acoustic Load

Bl:1
+ Re Le Ma +

M mM C lCb , R m  Ra V

Acousticalf-- Electromagnetic circuit ----- Mechanical circuit 1 circuit

M
We now take out the transformer and let vi  v, 0 = Blvv,, RE= Re, LE = Le, CM -

(Bl)
LM = (Cm II Cb) (Bl)2, RM = Rm (Bl) 2, CA 2 RA = Ra (Bl) 2. Then we have the

(Bl)
following simplified model:

Figure 2.5: A Simplified Loudspeaker Circuit Model with Acoustic Load

Electromagnetic circuit ----- Mechanical circuit - iu Acousticaluit

For the 12inch loudspeaker used in this project, the corresponding values in the above

circuit model are listed in Table 2.1.

From the above model, we wish to derive the system function, which will be useful for

feedback compensation. From the system function, we can also extract poles and zeros of

the system. Nyquist and Bode analyses can then be applied. Piece-wise estimation



techniques have been used in determining the frequency response of the system [9] [10].

However, such techniques are not adequate for finding the estimated locations of the

system poles and zeros. Though involved, finding the exact solution to the system is a

start.

Using Maple, we

Figure 2.5:1

Table 2.1: Loudspeaker Model Parameters

Re = 5.6 RE = 5.6

Le = 4.5x10 -4  LE = 4.5X10 -4

Mm = 0.0546 CM = 1.23X10 -3

Cm =7.66x10 -4

Cb= 1.25X10-4  LM = 4.77X10 -3

Rm = large: 4.51 R M = large: 200

Ma = 6.87X10 -3  CA = 1.55X10 -4

Ra = 0.0321 RA = 1.4 2

Note: The loudspeaker is a 12inch loudspeaker (RS 40-1026A).
Values in the second column are derived from those in the first
column (see Appendices A, C and D). MKS units are omitted. Rm
is calculated from a nominal value of RM, 2002 [9].

can find the exact system function for the simplified circuit model in

V
o

H (s) = -. (s) =
V.

1

Ks
2

4 3 2
s +als +a 2s +a 3s+a 4

, where (2.1)

1
K =C

CML E

RE 1 1 1a = L + + R C + R1 L+ RC RC RC'
E AM AA MM

(2.2)

(2.3)

1. Maple is a registered trademark of Waterloo Maple Software.



RE RE 1 1 1 RE
a + + I + + +IR
a2LRC LRC LC LC RCRC LRCEAM LERA C A LMCM LECM RA C A R M C M LERMCM ,

(2.4)

1 1 RE 1
a = + + + (2.5)
3  LERACACMC RACALMCM LERACARMCM LMCM

RE
a4  LERA CALMCM. (2.6)

Though it is precise, the above system function is of little use to us. One can simplify

the system function further by eliminating/adding terms that are negligible for typical

parameter values. For example, RM is generally big compared to the other components

that are in parallel. Therefore RM can be eliminated. After deleting and adding negligible

terms, the new system function becomes:

V Ks2

H (s) = (s) ,where (2.7)
Vi s +bls +b2s +b3s+b

4

1
K = C (2.8)

ML E

RE 1 1 1
b + -- + - + (2.9)1 L RE CM RCA RE (CM + CA)'

RE (1 1> 1 (1 1 M 1
b = + + + - + IA R+• I (2.10)
2 LERA M A M A) LE LM RA ARECM



1 1 E
b 1 + 1 + - E (2.11)

3  LERACACM RACALMCM LELM (CM + CA)

b E (2.12)
4  LERACALMM

The above system function can be factored exactly to yield a simpler one:

V Ks2
H(s) (s) Kwhere (2.13)

(s+a) (s + b) s + cs + d

K = (2.14)
CMLE

RE
a = R , (2.15)

E

C + CM
b = M (2.16)

RACAC
M '

1
c = +CM) (2.17)

d = (2.18)
LM (CA + CM)

The above system function represents the simplified model of the loudspeaker. It

shows that the system has a double zero at the origin and 4 additional poles: two complex

and two real. Figure 2.6 shows the pole-zero plot for the loudspeaker model with

parameter values given in Table 2.1. We see that the system's complex poles are near the

low frequency range of the audio band. Therefore the magnitude response of the system



climbs steadily at a rate of 40dB/dec as the frequency increases up to the double pole

(fundamental resonance) frequency. At the fundamental frequency, the magnitude usually

peaks because of the closed box. However the magnitude turns nearly flat for mid

frequencies, with a slight declining slope due to the effect of the two high frequency real

poles. Then at high frequencies, because of the two closely located real poles, the

magnitude gradually rolls off at 40dB/dec.

Figure 2.6: Pole-Zero Plot of the 12inch Loudspeaker Model System
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Note: The plot on the left shows all system poles and zeros, particularly the high frequency real
poles; the plot on the right is a magnified plot that shows the zeros at the origin and the low
frequency complex poles. The numerical pole locations are: -5116, -12444, and -64+384i.

Equation 2.13 enables us to quickly plot the asymtotic Bode magnitude and phase

plots once given the loudspeaker parameters (as shown in Table 2.1). Consequently

closed loop compensation for the loudspeaker system using Bode analysis would be

simplified and quick. Figure 2.7 shows the corresponding asymptotic Bode plots. As the

figure indicates, the loudspeaker is a second order audio band pass filter. Thus the phase

plot starts off at 1800 and ends at -180o. It reaches 0O when the frequency is somewhere in

between the fundamental resonance frequency and the two closely located real poles.
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Bode Plots for the Simplified Loudspeaker Model
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The estimated system function we have just developed is very accurate compared to

the exact system function even for large variations in system parameters. We can see this

from the Bode plots of the two system functions, and that of the absolute error -- the

difference between the actual and estimated system functions. The plots are shown in

Figure 2.8. As we can see, the two systems' plots nearly overlap. The phase error is

virtually zero except for frequencies near the fundamental resonance frequency. The

magnitude error function exhibits a similar behavior. It is 40dB or more below the actual

or estimated magnitude plot for almost all frequencies. This means that the error is

smaller than 1% of the actual system function for those frequencies. This value is

negligible compared to other sources of errors. Even near the fundamental resonance

frequency, the estimate is also very close to the actual model, with only about 10% error

(-20dB). Furthermore, such an error is not a problem when we use feedback. The closed

loop system can tolerate even larger magnitude deviation from a high resonance peak if
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the compensator is designed to account for sensitivity to system parameters. The system

sensitivity requirement is not hard to meet, as we will see in Section 4.1.2.

Given the system parameters in Table 2.1, we can now quickly predict how the model

behaves. We will then be able to compensate the system in a closed loop.

Figure 2.8: Bode Plots of the Actual and Estimated Speaker Models, and the Error
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2.3 Limitations and Applications of the Model
The model presented in Section 2.2 have limitations. In reality the average loudspeaker

does not behave as predicted by the above model at high frequencies. In the construction

of the model, we have neglected the effects of the speaker cone resonance, standing

waves, and the acoustic load at high frequencies.

Speaker cone resonance probably results in the worst kind of error. Ideally all parts of

the cone move in a synchronous mode. This is true when the frequency is low in the audio

band, where the corresponding wavelength is much greater (27t times) than the dimensions



of the cone (2r): =-- > 4xr. As the frequency increases, different parts of the cone start
f

to resonate. Some parts move in while other parts move out. The patterns or modes are

highly frequency dependent and unpredictable for different loudspeakers [9]. The net

result is that the overall sound magnitude and phase are irregular at high frequencies

(greater than 275Hz for the 10inch loudspeaker). We can see this effect in Figure 1.1. The

magnitude peaks and valleys are undesirable in both open loop and closed loop systems.

The additional phase shift at cone resonance frequencies also complicates the closed loop

compensation. The irregular cone resonance imposes a practical limit on loudspeaker

feedback systems. Given the reported results from previous work, the limit has been

around 500Hz for paper cone loudspeakers [1] [2]. Unless there are mechanical changes

to the loudspeaker design, the limit is hard to overcome. Such changes may include using

lightweight rigid cones such as that made of aluminum, alloy or fiber glass, and even a

new cone design. These topics are beyond the scope of this project and will not be dealt

with here.

It appears that the model we developed is not useful because of the limitations

imposed by the cone resonance and other effects. This is true for high frequencies where

the corresponding wavelength is comparable to the dimensions of the cone. However the

relativity of the cone dimensions and the wavelength can be changed. For example, a

smaller cone, a lightweight rigid cone, or a cone with mechanically damped termination

can be used [11].1 If a loudspeaker with such a cone is used, the model would be valid up

to a higher frequency limit. Though in this project the limit is around 300Hz for the

loudspeakers, it can be higher for other loudspeaker systems. The model is therefore

1. If the cone is terminated (anywhere between the center and the edge inclusively) by a soft
region, high frequency waves cannot reflect off the boundaries to create cone resonance.
Furthermore sound waves travel faster in a rigid cone than in a soft cone. This implies that the
effective wavelength is increased in a rigid cone because . c

f



applicable to other loudspeaker systems at least up to the frequency limit given by the

cone resonance and other effects.

In loudspeaker feedback compensation, using the model clearly has an advantage over

directly measuring the open loop system characteristics. The model gives a quick picture

of the system performance once the loudspeaker parameters are known. Since

loudspeaker manufacturers usually provide specifications that contain enough related

information, the parameters can be calculated easily (see Table 2.1 and Appendices C and

D). This means that an experimental compensation network can be built by trial-and-error

once the model is determined. No further open loop system characterization is necessary.

The only caution when using the model is to make sure that the system crosses over before

the frequency limit f< c47r



Chapter 3

PWM Driver

The amplifier used in this project is a class D switching type. However, it is distinct

from regular switching amplifiers. This amplifier is without the output filter that is usually

made up of inductors and capacitors in ordinary switching amplifiers. For brevity, we

shall call it a "PWM driver." The reason for choosing a switching action driver is

apparent given that the loudspeaker can be used as a filter. The idea is to exploit the

advantages of a switching power converter and replace its costly output filter with the

loudspeaker itself.

3.1 Switching Power Converter and Power Amplifier Topologies
Before presenting the PWM driver, let us look at the different topologies in switching

power converters. With slight modifications any switching power converter can perform

just like a switching amplifier. In this way, switching amplifiers evolve from switching

power converters. The PWM driver used here evolves from one type of switching

amplifier -- the buck (down) converter.

Figure 3.1 shows the block diagrams for switching power converters and power

amplifiers. The core of the two diagrams is the same: a DC supply input, switches,

inductors, capacitors and usually a feedback regulating network. In a switching power

converter the output delivered to the load is internally set with or without a feedback loop.

The voltage (or current) seen by the load is fixed by a reference voltage Vref. If a feedback

loop is used, the output is constant regardless of changes in the input supply voltage Vdc.

The feedback loop operates in such a way that the switching duty ratio D responds to the

changing Vd, so that the output stays at constant. Similarly in a switching power



amplifier, the output is regulated if Vvar (the reference voltage made available as in input)

is fixed. Additionally, the feedback loop in a switching amplifier responds to a change in

Vva, proportionally. Furthermore, additional feedback (e.g. from the loudspeaker output)

can be included in the feedback such that the final output is controlled.

Figure 3.1: Block Diagrams of Switching Power Converters and Amplifiers
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Switching power converters have been very popular in the power electronics field.

Their small size, low cost, high efficiency and high power features make them the ideal

choice in many DC and AC conversion applications. There are DC/DC, DC/AC, AC/DC,

and AC/AC conversions. We are concerned with only DC/DC and DC/AC in this project.

DC/DC conversion can be achieved by three basic methods depending on the

application: buck, boost, and buck-boost [12]. They are also called down, up, and

up-down conversions respectively. In this project, we are only concerned with buck

(down) converters. In a buck converter, a DC voltage input is converted to a lower DC



output. Figure 3.2 shows the circuit topology of a buck converter. The inductor L,

capacitor C2 (and the load) form the output filter of the converter. The average output

voltage Vo depends on the duty ratio D: vo = DVdc

Figure 3.2: Buck (Down) Converter

Vo

Vdc

The buck converter emerges as the ideal choice for the switching amplifier in this

project because the energy storage element, the inductor L, is on the output side of the

switch. As we have seen in the previous chapter, there is an embedded inductor (the voice

coil) in every electromagnetic loudspeaker. Using the voice coil alone as the energy

storage element, we can eliminate the inductor at the output stage of the buck converter.

The elimination of the inductor is not only cost efficient but also less complicated in terms

of output feedback control. One fewer energy storage component (inductor or capacitor)

means one fewer pole and/or zero in the system. A simpler system leads to a simpler

compensation network. For the same reason, the filter capacitors (if there is any) can also

be eliminated. All the filtering of switching ripple is performed by the band-pass like

loudspeaker.

While DC/DC converters are made to output a fixed DC voltage, the DC/AC

conversion is to output a variable voltage from a fixed DC source. DC/AC conversion is

necessary in this project because the audio output is variable. One way of implementing

DC/AC conversion stems from the buck converter. As we said before, one can vary the

DC output of a DC/DC converter by changing Vref and consequently the duty ratio D (see

Figure 3.1). For most DC/DC switching power converters, D is regulated so that the



output is fixed even though the input may change. The regulation is done by an internal

feedback loop. In an actual buck converter the duty ratio is a function of both the

reference voltage and the output. If the output drops because of a drop in the DC input or

for any other reason, the duty ratio would be increased due to the negative feedback from

the output. Consequently the output voltage increases to the desired fixed voltage. The

increase in D counter-balances the drop in Vdc such that the output voltage (v o = DVdc)

stays at a constant voltage fixed by Vref-

In order to achieve DC/AC conversion, the internal reference voltage Vref is replaced

by an external variable signal Vva r, so that the output voltage follows Vva, In other words,

varying Vvar causes Vo to change proportionally if the relationship between Vvar and D is

linear. The result is that the output is a pulse width modulated (PWM) waveform. In

Figure 3.3, the PWM waveform (vpWM) before the output filter, and the final output

waveform (v,) are plotted for a half-period sinusoidal Vvar input. The switching

frequency is fixed at f,, = (1OOkHz<fw<5OOkHz), which is well above the audio

frequency range. From the figure, we see that Vvar changes the duty cycle (pulse width) in

each fixed period as a result of changing D. Higher Vvar contributes to a wider pulse,

which averages to a higher output voltage after the output filter. Because O<D<1,

O<Vo<Vdc, the DC/AC power converter becomes a switching power amplifier whose

output voltage swing is O<Vo<Vd,.



Figure 3.3: Pulse Width Modulation

3.2 Circuit Implementations of the PWM Driver
Now we proceed to construct the PWM driver. If we use the buck converter as shown by

simply replacing the output filter with the loudspeaker, it is not possible to obtain negative

output. Figure 3.4 shows the circuit topology and its practical circuit implementation.

From section 3.1, we have seen that the output voltage is between the ground and Vdc (see

Figure 3.3). Therefore, no negative voltage can be delivered to the loudspeaker, limiting

the movements of the cone.

Figure 3.4: A Simple (Buck) PWM Driver-Loudspeaker System
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To solve the above problem, we can use a bipolar or a bridge design for the PWM

driver. The circuit topologies are given in Figure 3.5. The first design is bipolar. The

input to the loudspeaker is switched between two voltage sources: +Vdc and -Vdc. The

voltage sources and the loudspeaker share a common ground.' This topology has few

switches. Thus the duty ratio controller is relatively simple. Its expense is the bipolar

voltage sources.

Figure 3.5: Bipolar and H-Bridge PWM Driver-Loudspeaker Systems

Bipolar Implementation

Vdc

H-Bridge Implementation

The second design is an H-bridge. The input terminals of the loudspeaker are

simultaneously switched by two sets of switches, 180' out of phase. Only one set of

diagonal switches are on at any time. As a result, the two terminals of the single DC

voltage source are connected to the loudspeaker in a rotary fashion. There is only one

voltage source but twice as many switches as the bipolar design. The switch drive

1. A common ground may become useful for current and voltage sensing at the speaker's input
terminals. No additional circuitry is required (except a current sensing resistor). Otherwise an
extra differential amplifier stage is necessary.



therefore becomes complicated. If the switches are implemented using only N-type

MOSFET's, then four different switch drives are necessary, two being the complements of

the other two.

For this project, both the bipolar and bridge designs were implemented, but the bridge

circuit was used in the actual loudspeaker feedback system in the later stage of the project.

To implement the switch drives, the "triangle intercept" method can be used [12].

Basically a fixed frequency triangle wave is compared to the varying input Vvar, (see

Figure 3.3). The output of the comparator is a true PWM rectangular wave whose duty

ratio D is linearly related to Vvar even without the benefit of feedback. This is because the

triangle wave is linear in its half period. True PWM is not necessary when negative

feedback is applied, even though the fixed frequency waveform is not exactly triangular.

The duty ratio D will be fixed by the feedback loop so that it gives an output that is

linearly related to the input Vvar An exponential wave from the free running multivibrator

can be used [13] [14]. However for low harmonic distortion, a true triangular wave is

superior to the exponential wave. In the earlier stage of this project, an exponential wave

was used. It was later replaced by a true triangular wave.

Figures 3.6 and 3.7 show the detailed schematics of the switch drives and the

corresponding switch networks in the bipolar and bridge designs. One marked difference

between the two schematics is that the circuitry for the bipolar design is powered by dual

DC supplies while that for the bridge design is a single supply +Vdc. Another difference is

the switch implementation. The switches of the bipolar design are discrete (NMOS

IRFD 110 and PMOS IRFD9110), whereas the ones in the bridge are monolithic (NMOS

H-bridge LMD18200). Other features in the bipolar design include a speed up capacitor

for the inverting npn stage, the nearly non-overlapping turn-on times for the switches, and

push-pull buffers for the MOSFET gates. Dead times were not implemented for the



bipolar circuit. However the faster falling edge of the comparator was exploited by the

inverting npn stage. In the bridge design, a charge pump is an inherent feature for driving

the high side N-type MOSFET's. For a switching frequency as high as 500kHz, the

charge pump capacitors of about 0.01gF are suggested [4].



Figure 3.6: Bipolar PWM Driver Circuit
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Figure 3.7: H-Bridge PWM Driver Circuit
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Chapter 4

Loudspeaker Closed Loop Compensation

Now we have a fairly simple and accurate circuit model for the loudspeaker, and a

working PWM driver/amplifier. Next we wish to find a compensator for the closed loop

system that includes the PWM driver and the loudspeaker model. Then we will verify

whether the compensator is adequate using a loudspeaker model circuit that is made up of

discrete components. Though the model used here does not include the effects of cone

resonance and other sources of errors we discussed in Chapter 2, the compensation of such

a model has its significance in the event that a loudspeaker that fits the model (for all or

part of the audio spectrum) is used. In this project, the compensation of the actual

loudspeaker system near the low frequency crossover is certainly based on the

compensation of the loudspeaker model, as we will see in the next chapter.

4.1 Theory of Loudspeaker Compensation
4.1.1 System Function and Compensation Network A
Figure 1.3 shows the block diagram of a general loudspeaker feedback system. The

feedback signal is taken from the output of the speaker. It is then compared to the

system's input. The resulted error is fed to a compensator, which basically has the effect

of shaping the open loop amplifier-loudspeaker system characteristics. The compensated

signal is then amplified by the amplifier. The output of the amplifier is finally fed to the

loudspeaker. If the compensator is properly designed to suit the open loop amplifier-

loudspeaker system characteristics, the loudspeaker output will track the system input

with little distortion.

Since we know that the loudspeaker model circuitry driven by a linear amplifier is

open loop stable, and that the PWM driver has no additional poles or zeros in the



frequency range of interest, the PWM driver-loudspeaker system is also open loop stable

and has no additional poles in the right half s-plane. Consequently, Nyquist diagrams or

root loci are not necessary in determining system stability before applying Bode analysis.

However, the actual loudspeaker system may be unstable due to cone resonance. Nyquist

diagrams or root loci should be used to show stability first before applying Bode analysis.

Furthermore when using Bode plots in closed loop compensation, the phase margin at

crossover must be adequate to account for the negative non-minimum phase associated

with any part of the system (e.g. the sensor's signal pick up and the amplifier's delays).

For the moment, let us assume that there is no time delay and that the loudspeaker can

be modeled as shown in Figure 2.5. We also assume that the speaker's sound output signal

is available to us, so that we can apply negative feedback easily. The open loop system

function for the PWM driver-loudspeaker combination can be derived using incremental

models: 1

vi =2 Vdc (d - 0.5) , where 0O<d<1; (4.1)

v i = Vi + vi; d = D + d; and, Vi = 2 Vdc (D- 0.5 ) . (4.2)

Substituting Equations 4.2 into Equation 4.1, we have

vi = 2 Vdcd. (4.3)

The system function relating the duty ratio and the output of the PWM driver-loudspeaker

system is therefore:

1. The notations used here are not IEEE standard. In the standard format, it is hard to denote the
duty ratio incremental variable without a subscript. Therefore the tilde mark (-) is used for all
incremental variables.



V V
G (s) 2 Vdc = = 2 VdcH(s)

d v.

where H(s) is given by: (Equation 2.13)

V
H(s) = •(s)

V.

Figure 4.1: Bode Plots
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From Equation 4.4, we see that the overall open loop system function G(s) is simply

the loudspeaker model's open loop system function scaled by a constant, 2 Vdc. The Bode

plots for G(s) are similar to that in Figure 2.8. For convenience, they are shown in Figure

4.1. If we require that the closed loop steady state error be minimized and the bandwidth

be reasonably large (as close as possible to the frequency limit imposed by the cone

(4.4)
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resonance), then the compensator should include a double integrator and a lead network

for extra phase at crossover. The compensator should have the form:

GcA (s) = K S (4.5)c c 2 s

where 0c is the desired crossover frequency and Kc is the compensator gain. t is large so

s+-
that at low frequencies I becomes a double integrator but at high frequencies it is

2
S

unity. The steady state error is thus:

= sV (s) 1 KcK
= lim S ( =0 if c is big. (4.6)ss s -40 1 +GcA (s) 1+ KcK abd'T2

2
abdt2

The closed loop crossover frequency is approximately oc. The phase margin at crossover

is about 550 since the lead network adds a maximum amount of 550 to the otherwise 00

phase margin when the lead zero and pole are spaced one decade apart.

Note that the above compensator cannot achieve exactly zero steady state error for a

step input because we cannot include more integrators in it. If we included another I/s,

the phase margin criterion at crossover would not be met and the system would be

unstable. As a result of non-zero steady state error, the tracking error for a ramp input

cannot be controlled to a bounded limit. Ideally the above compensator is very good,

considering that there is almost no steady state error at low frequencies (0Hz to cone

resonance frequency), where severe distortions are. In reality the above compensator is

inappropriate. Here is why:

1. The average audio signal is hardly step-like. It is instead usually sinusoidal. Steady
state accuracy is not really necessary.



2. Unless global DC feedback is used in the closed loop system, the op amps in the
double integrator's circuit implementation eventually saturate. A non-zero offset
(however small) at the input of a "perfect" integrator implementation is integrated
indefinitely until the op amp saturates.

3. DC coupling is hard to implement in the loudspeaker feedback system. It requires
that the sensor must be able to detect DC signal. An electret condenser
microphone (or any microphone) has a slow roll off near low frequencies.
Therefore a microphone cannot detect DC output. A broadband sensor, or one that
has a flat frequency response up to at least the crossover frequency (i.e. a low pass
characteristic) is required. Delicate and expensive motion sensors probably
suffice.

4. DC coupling is also hard to implement for a single power supply.
5. Moreover, since the system's steady state error is not zero, any offset (at the input,

from feedback, or in the op amps) may contribute significant DC offset at the
output. A DC offset at the input to the loudspeaker is undesirable.

6. The system is susceptible to low frequency noise (1Hz - 10Hz). Any such noise
picked up by the sensor will be considered as part of the input signal and amplified
by the system. If a motional sensor is used to derive the feedback signal, low
frequency vibrations from the environment (including the loudspeaker enclosure,
the sensor's mounting structure and the floor) appear as noise.

For the reasons listed above, the compensator given in Equation 4.5 is not suitable for this

project. The next section presents an alternative.

4.1.2 Compensation Network B
Since we are not concerned with steady state accuracy, we do not have to include the

double integrator in the compensation network. This leads to the alternate Compensation

Network B. For the compensation near the high frequency crossover 0c2, the

requirements are: [15]

1. Relative Stability: The loop transmission GcG must have enough phase margin at
crossover: Pm = 1800 + ZGcG > 450. This means that GcG magnitude plot should
have adequate length of no more than -20dB/dec slope at or near crossover (0c2-

2. Accuracy in Operating Range and System Sensitivity: In the mid frequencies, IGcGI
must be large in order to improve accuracy (reduce error), and to reduce sensitivity
to disturbance and loudspeaker parameter variations. This requires that IGcGI at
some point before 0 c2 should be steeper than at crossover.

3. Noise Rejection: The noise level at frequencies higher than oc2 must be attenuated.

1. Noise applied to the sensor is different from a disturbance at the speaker cone. The latter is
suppressed by feedback, while the former is amplified.



The slope of GcG should be more than -40dB/dec. This requirement can also
reduce the effects of cone resonance peaks.

In addition to the above, we must make sure that there is enough phase margin at the

low frequency crossover. The design of the compensation network near the low frequency

crossover 1cl is similar to that at the high frequency crossover Oc2:

1. Relative Stability: At crossover, GcG must have enough phase margin, measured
from 180' instead of from -180o: Pm = 1800 - ZGcG > 45'. This means that the
Bode plot of GcG should have adequate length of no more than 20dB/dec slope at
or near crossover ccl.

2. Accuracy in Operating Range and System Sensitivity: In the mid frequencies, IGcGI
must be large to improve accuracy, and to reduce sensitivity to disturbances and
loudspeaker parameter variations. This requires that the slope of IGcGI should be
raised at some point after the low frequency crossover o0l.

3. Noise Rejection: The noise level must be reduced at frequencies lower than Cocl i.e.
IGcGI should have a slope greater than 40dB/dec at those frequencies.

Given the above criterions, we proceed to design another compensator -- Network B.

For the speaker model we have developed in Section 2.2, the driver-speaker system

function is given by Equation 4.4. The corresponding Bode plots are shown in Figure 4.1.

We see that the magnitude plot has a slope of +40dB/dec (or -40dB/dec) at low (or high)

frequencies, while at the mid frequencies the system maintains a nearly flat magnitude

response. For the requirements that we have just listed above, we need a lag

compensation network near the low frequency crossover, and a lead near the high

frequency crossover. The overall compensator should be of the form:

(s+ 10 c )  + c2

GcB (s) = K c2 (4.7)

(s+ 0l) s +10 c2

The asymtotic Bode plots of GcG is thus:



Figure 4.2: Asymptotic Bode Plots of the Compensated Loudspeaker Model System
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Compensation Network B solves most of the problems presented by the earlier version

(Network A). For comparison, the features of Network B are listed below:

The system with Compensation Network

B gives up steady state accuracy.

System B can be AC coupled. As long as signals whose frequencies are

greater 

than

the low crossover frequency can pass through the system, feedback is valid. DC
offsets at the input and from the feedback are suppressed. Op amp offsets can be
nulled by an offset adjust.

3. The sensor can be either broad band or band pass. Its frequency response only need
to be wider than the GcG frequency range 1c < 0 < 0c2.

4. System B is not susceptible to low or high frequency noise. However it is subject to
mid frequency noise. If care is not taken, room noise picked up by the microphone
can deteriorate the system's performance.

5. If needed to offset the unwanted phase due to time delay, cone resonance, standing
waves, etc., the phase margin can be increased by crossing over early, but
definitely beyond the fundamental resonance frequency.
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4.2 Loudspeaker Model Closed Loop System and Its Performance
Assuming that the loudspeaker model in Equation 2.13 is valid, then the loop transmission

of the PWM driver-loudspeaker system is given by Equation 4.4. A compensator of the

type given in Equation 4.7 can be readily implemented for the closed loop

driver-loudspeaker system. To realize the lag-lead network, we can use the following

circuit:

Figure 4.3: Lag-Lead Network

R3

R2 C1

)

The system function

V
S(s) =V.I

associated with the above

R3  (R 4 C2 s + 1)

R1 [ (R 3
+ R4 ) C2s +

circuit is:

[(R 1 + R2) C1s + 1]

1] (R2C s + 1)

The desired compensator is:

Gc (s) = 2x103

(s+200)( s 4
1.5x104

(s+ 2 0)( s + 1)
1.5x10

According to Matlab Bode plots,1 the above compensator sets the system crossover

frequencies to be ocl=20rad/sec and Oc2=160krad/sec. Figure 4.4 shows the plots. Also

evident from the Bode plots is that the phase margins at both crossovers are close to 45'.

1. Matlab is a registered trademark of MathWorks, Inc.

(4.8)

(4.9)



Figure 4.4: Bode Plots of the Lag-Lead Compensated Loudspeaker Model System
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The corresponding values for the resistors and capacitors that make up the poles and

zeros of the compensator in Equation 4.9 are shown in the circuit diagram of Figure 4.5.

Loop gain is achieved by a couple of amplifier stages in the feedback path. More

compensator gain is achieved by a variable gain inverter prior to the PWM driver. The

"duty ratio limiting" diodes in the variable gain inverter are necessary to prevent latch up

conditions. Upon start-up or if the input is out of the specified range (-1.2V<vi<1.2V), the

PWM driver may latch in a state and the feedback loop malfunctions. Lastly both the

input and feedback signal are AC coupled through an appropriate RC filter. Signals whose

frequencies are as low as 0.2Hz can pass through. The loading of the RC network is

negligible since 100kK2>>RA (<5K).

50n



Figure 4.5: A Loudspeaker Model Closed Loop System

C.•~=•

-o -o

o- o
+I >m0.

• -J2-

I-I

OL

> ....... ..>

V'2-

+
O.
o



The compensator shown in Figure 4.5 has been built and tested in conjunction with the

bipolar PWM driver shown in Figure 3.6. In Figure 4.6, the frequency response of the

lag-lead compensated system is compared to that of the uncompensated open loop

loudspeaker model system. The closed loop system output is taken from Point A, or

through a separate amplifier from Point B for independent measurements. The two

measuring schemes yield almost identical results. In the case of Point B, the output signal

is small and should be amplified for maximum scope sensitivity. Furthermore, it contains

high frequency noise at the switching frequency (100kHz). It should be filtered by a

second order low pass filter to show meaningful results.l

Figure 4.6: Magnitude Plots of the Compensated and
Uncompensated Loudspeaker Systems
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Note: The compensated closed loop system is given in Figure 4.5. The uncompensated open loop
system is the same circuit minus the summing junction and the compensator. Thus in the open loop
system, the buffered input signal is directly connected to the input of the bipolar PWM driver (see
Figure 3.6). The output of the open loop system is from point B. The input to the systems is a
100mVpp sinewave from a signal generator (KH 2000). The output is measured manually with an
oscilloscope (Tektronix 2445).

1. The high frequency noise is beyond the audio range. It is merely the interference from the PWM
driver, not part of the actual output of the loudspeaker or its model circuit. We shall disregard this
noise.



As shown in Figure 4.6, the frequency response of the compensated system is flat from

20Hz to 20kHz. The bandwidth is from 3Hz to 25kHz. The results are almost as expected

(see Figure 4.4).

Because a speaker model circuit is used instead of the actual loudspeaker, the systems

have no harmonic or nonlinear distortion other than that introduced by the switching

amplifier (because of the exponential wave and the timing of the switches). Therefore

distortion analysis is not necessary. The distortion from the switching amplifier was later

minimized in the final loudspeaker system using a true triangle wave and an improved

switch drive (see Figure 5.11).



Chapter 5

A Closed Loop Loudspeaker System

Finally we are ready to implement the actual loudspeaker feedback system. In this

chapter, the lag-lead compensator given in Chapter 4 will be modified to suit two box-type

loudspeakers. An electret condenser microphone will be used as the sensor. The results

are presented at the end of this chapter.

5.1 Measurement of Open Loop Driver-Loudspeaker Characteristics
The lag-lead compensator presented in Chapter 4 has been shown to give satisfactory

results for the loudspeaker model given in Chapter 2. However, a loudspeaker that can be

represented by the model over its entire operating range does not presently exist. Because

of the limitations that we have discussed in Chapter 2, the loudspeaker model and its

circuit equivalent are only valid for a narrow audio range: f< c ,r' or up to about 275Hz

for a 10inch speaker in a closed box. The cone resonance and other problems in all paper

or polypropylene cone speakers are hard to solved by compensation, except the possibility

of avoiding the problems altogether. This implies that the speaker system should cross

over before the frequency limit, or 275Hz for the 10inch loudspeaker.

Previous work on closed loop loudspeaker systems has been claimed to be successful

for frequencies up to around 500Hz. The main reason could well be the cone resonance

problem. Some of these systems use complicated feedback systems including

voltage/current and motional feedback techniques. Some also use complicated and

expensive sensors such as a bridge, a capacitive distance meter, an accelerometer and a

moving coil to sense the motion of the cone. The performance of these systems still falls

under the cone resonance frequency. Since steady state accuracy is not of concern for



audio, a microphone can be used as the sensor. In the following closed loop systems, we

will use an economical electret condenser microphone (RS 270-090B) as the sensor.

Before we measure the driver-loudspeaker system's open loop characteristics, we shall

first validate the use of an electret condenser microphone. Such a microphone, according

to the literature, can easily be designed to have a flat frequency response over a wide range

(30Hz - 10kHz) [16]. It has virtually no phase shift until very near the upper limit of its

operating range. Even at that limit, the phase shift is between 200 and 500 [16]. Since we

are only concerned with low frequencies, we can use an electret condenser microphone for

feedback.

Despite of its attractive features, the use of a microphone as a sensor has been avoided

in most loudspeaker feedback systems. The main reason, as researchers have pointed out,

is that the time delay associated with sound waves traveling from the cone to the

microphone is non-minimum phase. The delay contributes no change in magnitude but

significant phase shift at high frequencies:

Z( e-- I -TTdd = -2,K , (5.1)

where Td is the propagation delay due to the sound traveling the distance A from the cone

to the microphone, at the speed of c = 345m/sec.



Simulated Non-minimum Phase Effect Due to Propagation Delay
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If we put the microphone close to the cone, say about 0.5cm apart, then the phase shift

is minimal for low frequencies. Such a near field measurement of the sound field is valid

in this project.1 Using Equation 5.1 and Equation 4.4, the Matlab simulated phase plot of

the open loop loudspeaker model and microphone system is given in Figure 5.1. Though

it does not include the effect of the PWM driver's phase shift, the plot is accurate in that

the PWM driver contributes little negative phase shift. From the plot, we see that the time

delay contributes little negative phase below l0krad/sec. This suggests that as improved

loudspeakers become available, a microphone can still be used as the sensor.

Most electret condenser microphones are also omnidirectional, meaning that sound

waves can incident at any angle with little variation in the output. The omni-directivity

1. Far field measurement is subject to the unavoidable room acoustics just like in any system. We
shall not use far field measurement as a performance indicator of our closed loop system.
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feature can be beneficial or harmful. In terms of picking up the feedback signal, it is

beneficial because the microphone is not sensitive to the sound's incidence angle.

However the omni-directivity can be harmful because the microphone can pick up

surrounding noise. As we have mentioned in Section 4.1.2, noise can deteriorate the

system's closed loop performance. Fortunately the room noise problem can be solved by

placing the microphone inside the closed box, right behind the cone. Since the back of the

cone moves with the front of the cone exactly 1800 out of phase for all frequencies, the

feedback signal from the back microphone must be inverted before it is coupled to the

negative feedback path. For this project, the microphone was placed in front of the cone

for ease of installation. All measurements were done in a quiet environment.

The microphone used in this project is a low cost electret condenser microphone

(Radio Shack No. 270-090B). This particular microphone has a built-in FET amplifier.

The given frequency response is from 30Hz to 3kHz [17]. Because of the poor frequency

response of this particular microphone, we will use a matching microphone in the

measurements to offset its effect in the low frequency range. The sensitivity of the

microphone is -63dB_+3dB at 1V/gbar and a bias voltage of 4.5V. For a 115dB (at

0.0002gbar, 1cm distance) sound input, the equivalent output voltage is thus:

115
20log 10 2 x 0.0002 -63

10 20 = 0.08 V. (5.2)

This value is large enough for coupling to the feedback path without amplification.

Using the above microphone and a 100mVpp sinusoidal input, the open loop PWM

driver-loudspeaker magnitude and phase characteristics are measured. The data

essentially form the Bode plots of the loop transmission in the closed loop that includes

the PWM driver, boxed loudspeaker and the microphone. The plots are shown in Figure



5.2. Two data sets have been collected: one for a 10inch speaker (RS 40-1014A) and the

other for a 12inch speaker (RS 40-1026A). The speakers are mounted in 0.05m3 (50L)

closed box enclosures. It is evident from the figures that both loudspeakers exhibit cone

resonance. At frequencies lower than the fundamental resonance (the first peak due to the

double complex poles) of the loudspeaker, the slope of the magnitude response is close to

40dB/dec and the phase is 180O. Then after the fundamental resonance peak, the

magnitude slowly decreases due to the influence of its high frequency real poles. The

phase plot crosses over 0O at some point after the fundamental resonance, but before cone

resonance start to dominate at around 500Hz for both speakers. The phase quickly drops

beyond -180' for frequencies higher than 1kHz.

Figure 5.2: Measured Bode Plots of the Driver-Loudspeaker-Microphone Systems
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Note: The PWM driver used is shown in Figure 3.7. Inputs to the systems are 100mVpp sine
waves from a signal generator (KH 2000). The inputs are buffered and have a DC offset of 2.5V,
the quiescent input voltage of the PWM driver. The loudspeakers (12inch RS 40-1026A and
10inch RS 40-1014A) are mounted in 50L closed boxes (see appendix C). The output is sensed by
an electret condenser microphone (RS 270-090B), as shown in Figure 5.4.
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If we use a simple gain of 10 compensator for the system hoping to improve frequency

response over a wide operating range, we will see that the system is unstable as is evident

from the Bode plots. The phase margin requirement cannot be met at the crossover

frequencies if we simply raise the magnitude plot by 20dB. Alternatively, we can replot

the data points on a magnitude-phase (Nyquist) plane and scale the magnitude by 10

times. From the Nyquist plots in Figure 5.3, we see that the systems are unstable because

they enclose the -1 point.

Figure 5.3: Nyquist Plots of Simple Gain Compensator-Loudspeaker Systems
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Note: The Nyquist plots are created by plotting the phase and scaled (10 times) magnitude data
from Figure 5.2.



Since we know that the cone resonance hurts the phase margin significantly, we will

compensate the system so that it crosses over before the cone resonance peaks.

Furthermore, we must suppress the cone resonance peaks so that they are not above unity

where the phase is close to -180o. Accomplishing this is equivalent to bending the

Nyquist plot by reducing magnitude to avoid enclosing the -1 point, and making sure that

the plot does not come back out to enclose the -1 point at higher frequencies.

To compensate for the low frequency crossover, a lag network (as a part of the lag-lead

network used in Chapter 4) would suffice. It is repeated here for convenience:

(s + 10 cl)
Glag (s) = K 1 (s + 100) (5.3)

lag 1 (s+0 1 )

On the other hand, to compensate for the crossover before the cone resonance peaks, a

lead network is inappropriate. Fortunately two alternatives of essentially the same

principle are available:

1. Add one or two poles just before the first "valley" prior to the cone resonance,
hoping to suppress the resonant peaks without contributing much phase shift to the
crossover. i.e. coc must be before these poles.

2. Add one pole prior to crossover so that the gain at low frequencies can be raised in
order to increase accuracy. The pole contributes a maximum -90' phase but can
reduce the resonance peaks significantly. Then increase the system gain until the
phase margin is just adequate or until the cone resonance peaks are just adequately
below unity, whichever comes first. The crossover frequency coc must be after the
pole and should be before the first "valley."

Option (1) is similar to (2) in that one or two poles suppresses the resonance peaks while

contributing negative phase to crossover. However, option (2) is superior for it allows

greater gain and thus higher accuracy at low frequencies. The difference between options

(1) and (2) is that the second one adds the pole before crossover.

The alternatives listed above can be satisfied by one or two low pass filters:



G ole () - (5.4)pole ( s+a

where a > (c2 for option (1) and co <a < c2 for option (2) (oo is the fundamental

resonance frequency, where the first peak is). The overall compensator is thus of the form:

(s + 10mcl )
G lG (s) = K +.O)) (5.5)

lagpole (s + Ocl) (s +a)

Because of the difficulty involved to simulate the actual loudspeaker in Matlab,l the

constants in the above equation will be experimentally determined.

5.2 Circuit Implementations of the Closed Loop Loudspeaker System
Next we will realize the compensators given in the previous section. For practical

reasons, we will use the single supply PWM driver. Consequently the compensators will

also be single supply. We will reuse the 5V supply used for the PWM driver to bias the

microphones. We also need a 7.5V reference for the op amps. It is implemented by two

lk0 resistors. In addition, because the H-bridge input is TTL logic, the PWM driver input

is + V. The output from the compensator must be divided down 3 times. This can be
2 3

easily done by a low resistance R-2R voltage divider. Note that we cannot easily use an

op amp to implement the 1/3 factor because of the single supply limitation. Furthermore,

we need an offset adjust in the feedback (or input) buffer op amp stage to null any op amp

offsets and the static error due to the 7.5V reference. This prevents DC offsets in the

loudspeaker. Though AC coupling can be used to isolate op amp DC offsets, it is not used

in this project since additional circuitry in the forward path can complicate the system

compensation.

1. Such a simulation requires a large number of poles and zeros. In the case of the actual
loudspeaker, the unpredictable cone resonance makes the simulation almost impossible.



For the compensators given in the previous section, three circuits have been built.

Each circuit has also been tested in a closed loop enclosing each one of the two

loudspeakers.

5.2.1 Lag-2Pole Compensator
The first circuit (Figure 5.4) is the realization of the lag compensator Glag(s) and the

two-pole compensator (1) given in the previous section. The system function is as

follows:

10 3.3 x 10- 3 s + 1)

Giae(s) = K , (5.6)

(33 x 103 s+ 1j( 0.5x 103 s+ Ij)

where K is varied experimentally to give optimal results. The above compensator is

designed to have a low system crossover frequency of around 15Hz and two poles at

320Hz, just before the first valley and the first cone resonance frequency.

In Figure 5.5, the measured frequency response of the compensated closed loop

12inch boxed speaker is compared to that of the uncompensated open loop (from Figure

5.2). Though there is some improvement in the closed loop system, the difference is

small. Using the same compensator, the frequency response of the 10inch speaker system

is given in Figure 5.6. Both Figures 5.5 and 5.6 show that the above compensation

network does not improve performance substantially.



Figure 5.4: Lag-2Pole Compensator
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Figure 5.5: Frequency Response of the Closed Loop Lag-2Pole
Compensator-Loudspeaker System (12inch)
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Note: The measurement system setup is the same as that used for Figure 5.2. Input to the closed
loop system is also a 100mVpp sinewave (from a signal generator KH 2000). The output is sensed
by a matching microphone (RS 270-090B) as shown in Figure 5.4.

Figure 5.6: Frequency Response of the Closed Loop Lag-2Pole
Compensator-Loudspeaker System (10inch)
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5.2.2 Lag-Pole Compensator
The second circuit tested is the combination of Glag(S) and the single pole compensator (2)

from the previous section. It is given in Figure 5.7. The corresponding system function

for the compensator in this circuit is:

10(4.7 x 10-3s +
G (S) =K 10 3 s . (5.7

47 x 10-3s + 1 1.5 x 10 - 3 s+ (5.7)

This compensator is designed to have a low frequency crossover frequency of 10Hz, and a

pole at around 100Hz -- shortly after the loudspeakers' fundamental resonance peak.

The measured closed loop characteristics of the 12inch and 10inch loudspeakers are

given in Figures 5.8-5.10. They are compared to the open loop characteristics. The plots

show that this compensator is superior to the earlier lag-2pole compensator for both

loudspeakers. Again the 10inch system performs slightly better than the 12inch one does.

This is partly due to the difference between the open loop characteristics of the two

speakers. The 10inch speaker has a lower cone resonance peak so its gain can be raised

slightly higher, thus improving accuracy in the operating range. For the compensated

10inch loudspeaker closed loop system, we see that it has a nearly flat frequency response

from 30Hz to 500Hz (see Figure 5.9). The small peak at around 800Hz is caused by cone

resonance and insufficient phase margin.

Because the compensator gain is maximized to increase accuracy in the operating

range, frequency response and harmonic distortion at high frequencies can be worse. It is

therefore necessary to band limit the input to this loudspeaker feedback system (and the

next one). An electronic crossover network should precede the input so that only low

frequency signals are passed to the loudspeaker feedback system.



Figure 5.7: Lag-Pole Compensator
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Figure 5.8: Frequency Response of the Closed Loop Lag-Pole
Compensator-Loudspeaker System (12inch)
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Note: The measurement system setup is the same as that used for Figure 5.2.
loop system is also a 100mVpp sinewave (from a signal generator KH 2000).
by a matching microphone (RS 270-090B) as shown in Figure 5.7.
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Figure 5.9: Frequency Response of the Closed Loop Lag-Pole
Compensator-Loudspeaker System (10inch)
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Figure 5.10: Harmonic Distortion of the Closed Loop Lag-Pole
Compensator-Loudspeaker System (10inch)
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Note: The total harmonic distortion is measured by a distortion analyzer (HP 334A). Constant
sound pressure level is obtained by manually adjusting the input to the systems such that the RMS
value at the microphone output is 300mVpp. The measured SPL at 60Hz is 110dB at linch from
the center of the cone.

In Figure 5.10, the harmonic distortion is compared among three systems: the open

loop linear amplifier-loudspeaker system, the uncompensated open loop PWM

driver-loudspeaker system and the compensated closed loop PWM driver-loudspeaker

system. From the figure, we see that the closed loop reduces the harmonic distortion by

about 2dB to 10dB from 35Hz to 80Hz.1 However, it fails at frequencies greater than

100Hz. This is because at high frequencies the loop gain is no longer large enough to

compensate for the distortion.

Figure 5.10 also indicates that the PWM driver introduces significant nonlinear

distortion to the loudspeaker system, as compared to the linear amplifier. As we

mentioned before, this nonlinearity is caused by the exponential waveform used in the

pulse width modulation, and the timing of the switches in the switch drive. Even though

1. The low distortion level at around 60Hz for all three systems is a result of the loudspeaker
system fundamental resonance. Only the fundamental at that resonance frequency is amplified by
the system's acoustic structure, while all other harmonics are greatly attenuated.



the closed loop can reduce the harmonic distortion of the PWM driver-loudspeaker

system, the improvement is not significant compared to the linear amplifier-loudspeaker

system. Much of the improvement is offset by the extra nonlinearity of the PWM driver.

It is therefore necessary to redesign the PWM driver so that it does not add significant

nonlinearity to the loudspeaker system. This leads to the last circuit design.

5.2.3 Improved Lag-Pole Compensated Loudspeaker System
The final loudspeaker feedback system is basically a modified version of the above

lag-pole system. Figure 5.11 shows the complete circuit diagram of the system. The

switch drive in the PWM driver includes a true triangle wave oscillator. The triangle wave

is obtained by integrating a schmitt trigger output in a positive feedback configuration

[13]. In order to minimize the switching error in the comparator of the switch drive, the

voltage swing of the oscillator is increased to 10Vpp and the frequency is decreased to

around 26.5kHz.

Furthermore, a better lag network replaces the earlier one in the lag-pole compensator.

This op amp implementation of a lag network is superior because it does not load the

preceding circuitry through a capacitive path as in the earlier version. The circuit seems to

be more stable with the new lag network. The preceding circuitry also includes an extra

second order low pass filter. The damping ratio of the filter is about 0.7. The poles are at

about 700Hz, where the loudspeakers' first cone resonance peaks are. The low pass filter

does not add much negative phase shift at the crossover frequency, while suppressing the

resonance peaks.

With the above modifications, the measured system characteristics are given in

Figures 5.12-5.16.1 Figure 5.12 shows that the closed loop 12inch loudspeaker system has

a nearly flat frequency response from 35Hz to 200Hz. It is compared to the

1. Measurements at frequencies greater than 3kHz are corrupted by noise and are discarded.



uncompensated open loop frequency response in Figure 5.13. Figure 5.14 shows that the

closed loop 10inch loudspeaker system is again better than the 12inch system, with a flat

frequency response from 35Hz to 300Hz. 1 For comparison, the uncompensated open loop

frequency response is also shown in Figure 5.15. Here we see that the uncompensated

open loop frequency response of the PWM driver-loudspeaker system is slightly different

from that of the linear amplifier-loudspeaker system given in Figure 1.1. Particularly at

low frequencies, the magnitude plot of the former system seems to be more linear than

that of the latter. The slope of the former plot at low frequencies is constant at 40dB/dec,

as predicted by the model. This suggests that the op amp circuit actually changes the

magnitude response of the loudspeaker system as given in Figure 1.1. However the

magnitude deviation is small and mostly outside the audio range (20Hz - 20kHz).

The distortion plot in Figure 5.16 indicates that the modified PWM driver introduces

little nonlinear distortion for almost all the frequencies of interest, as compared to the

linear amplifier's distortion performance. The plot also shows that the closed loop is able

to reduce the harmonic distortion by about 3dB to 10dB from 35Hz to 80Hz. For the same

reason as in the earlier lag-pole compensator, the final feedback system fails to reduce the

distortion at frequencies above 100Hz. From 100Hz to 300Hz, it seems that the loop even

adds distortion. Nevertheless, the final closed loop loudspeaker system performs as

expected at low frequencies (35Hz - 100Hz).

1. The small peak at around 250Hz is due to cabinet panel resonance that is also evident from the
open loop Bode magnitude and phase plots of the loudspeakers. This resonance should not be
considered as part of the system's performance.



Figure 5.11: A Loudspeaker Feedback System
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Figure 5.12: Frequency Response of the Loudspeaker Feedback System (12inch)
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Note: The frequency response is measured using a dynamic signal analyzer (HP 3562A). The input
is a sine sweep generated by the same instrument. The magnitude plot is automatically normalized
to the peak magnitude. The measured sound pressure level at 60Hz is 110dB at linch from the
center of the loudspeaker cone.

Figure 5.13: Frequency Response of the Open Loop System (12inch)
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Note: The measurement setup is the same as that used for Figure 5.12. The open loop system is the

same circuit given in Figure 5.11 minus the summing junction and the compensator prior to the
switch drive. The measured sound pressure level at 60Hz is 110dB at linch from the center of the
loudspeaker cone.



Figure 5.14: Frequency Response of a Loudspeaker Feedback System (10inch)
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Note: The frequency response is measured using a dynamic signal analyzer (HP 3562A). The input
is a sine sweep generated by the same instrument. The magnitude plot is automatically normalized
to the peak magnitude. The measured sound pressure level at 60Hz is 110dB at linch from the
center of the loudspeaker cone.

Figure 5.15: Frequency Response of the Open Loop System (10inch)
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Note: The measurement setup is the same as that used for Figure 5.14. The open loop system is the
same circuit given in Figure 5.11 minus the summing junction and the compensator prior to the
switch drive. The measured sound pressure level at 60Hz is 110dB at linch from the center of the
loudspeaker cone.
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Figure 5.16: Harmonic Distortion of the Closed Loop 10inch Loudspeaker System
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Note: The total harmonic distortion is measured by a distortion analyzer (HP 334A). Constant
sound pressure level is obtained by manually adjusting the input to the systems such that the RMS
value at the microphone output is 300mVpp. The measured SPL at 60Hz is 110dB at linch from
the center of the loudspeaker cone.



Chapter 6

Discussion

The results given in Section 5.2 are satisfactory. The closed loop loudspeaker system

shown in Figure 5.11 has been tested to give a nearly flat frequency response (30Hz -

300Hz) and reduced harmonic distortion at low frequencies (35Hz - 100Hz). Though the

system built is a prototype, it is easy to see that the compensation technique is applicable

to other loudspeaker systems. For example, a linear amplifier can be used rather than the

PWM driver. Furthermore if better system components are used to replace the

loudspeaker, microphone and the driver, then the closed loop system performance can be

improved.

For the best performance in feedback applications, the loudspeaker should be

reselected or redesigned to reduce cone resonance at mid and high audio frequencies.

Even if the cone suspension (LM) and weight (CM) have to be altered, the cone resonance

must be suppressed or pushed up to the high frequency range.

Since the PWM driver power supply voltages can be made arbitrarily large (up to the

maximum limits of the op amps, comparators and switches), voltage scaling is possible in

the circuits presented in this thesis. In particular, a large triangle wave is desired in order

to reduce switching errors of the comparator in the PWM driver. Furthermore, the power

amplification of the PWM driver can be increased by voltage scaling if necessary.

Lastly if a better microphone is used as the sensor, the closed loop system should

perform better, especially at low frequencies. This is because a better microphone can

detect low frequency sound more precisely. The microphone is the feedback element in

the system. Therefore the performance of the microphone ultimately determines that of

the closed loop loudspeaker system.



Chapter 7

Conclusions

A low-cost simple loudspeaker feedback system was built. The system consisted of a

closed box loudspeaker, an electret condenser microphone and a simple "direct-drive"

switching amplifier that is made up of mainly a switch drive and semiconductor switches.

The final system is a modification of a closed loop system built for the ideal loudspeaker.

The ideal loudspeaker can be modeled by a simple equivalent electronic circuit. An

estimated system transfer function can be quickly derived from given loudspeaker

parameters. The estimated system function is accurate to within 1% error from the actual

system function for all frequencies except very near the fundamental resonance of the

loudspeaker, where the error is about 10%. Therefore the estimated system function can

serve as a quick and accurate guide for system compensation.

The estimated system function shows that the ideal loudspeaker has two zeros at the

origin and four additional poles -- two low frequency complex poles (at the fundamental

resonance frequency, or around 20Hz - 150Hz), and two closely located real poles at high

frequencies (at around lkHz - 10kHz). Therefore this ideal loudspeaker exhibits a second

order band-pass characteristic. The slope of the magnitude plot at low (and high)

frequencies is 40dB/dec (-40dB/dec), while at mid frequencies it is nearly flat. The phase

at low (and high) frequencies approaches 1800 (-180') while at mid frequencies it is close

to 00.

In addition, a simple direct PWM switching amplifier (PWM driver) was built. The

semiconductor switches in the amplifier are applied directly to the loudspeaker. The

loudspeaker therefore serves as the output filter for the switching amplifier, filtering out

high frequency harmonics including that at the switching frequency (100kHz - 500kHz).



The switching action of the switches is done by fixed-frequency-variable-duty-ratio

pulsed width modulation (PWM). Both dual-supply and single-supply versions of the

PWM driver were built.

Using the above PWM driver, ideal loudspeaker model and a lag-lead compensator at

the low and high frequency crossovers, the closed loop loudspeaker model system was

built. The measured system performance was satisfactory. It shows that the system has a

bandwidth close to that predicted by the crossover frequencies (3Hz<BW<25kHz). The

system has a flat frequency response from 20Hz to 20kHz.

Though the ideal loudspeaker model system shows promising results, the real

loudspeaker is difficult to compensate. Problems are caused by cone resonance and

feedback signal sensing. The sensor used was an electret condenser microphone, which

contributes little magnitude distortion and little phase shift over its (more-than-sufficient)

operating frequency range. The non-minimum phase problem associated with the sound's

propagation delay was minimized by placing the microphone next to the cone (0.5cm

apart). However, the cone resonance problem cannot be solved by simple techniques.

The cone resonance peaks and the associated large negative phase shift must be avoided.

Based on the closed loop loudspeaker model system, a modified compensator was

used for the final loudspeaker system. The compensator is made of a simple lag network

at around the low frequency crossover of the system, and a simple pole (low-pass)

network before the high frequency crossover and the cone resonance frequencies. There is

also a low pass filter included in the loop to further suppress cone resonance peaks. The

closed loop PWM driver-loudspeaker-microphone system was built and tested. The

measured performance of the compensated system is satisfactory. The system's frequency

response is nearly flat at low frequencies (35Hz - 300Hz), and the total harmonic

distortion is reduced by 3dB to 10dB from 35Hz to 100Hz.



The results also indicate that the compensation network performs better for a

loudspeaker with a smaller cone. A smaller cone leads to less cone resonance. Unless the

cone resonance problem is solved, the upper limit for this loudspeaker feedback system is

at around 500Hz for a typical paper or polypropylene cone loudspeaker.



Appendix A

List of Variables

F

B

P

v
V

Vv

r

A

V

Re, RE

Rm

RM

C

L

Le, LE

Mm

CM

Cm

Cb
LM

Ra, Ral, Ra2

RA

mechanical force, [N].

magnetic flux density in the air gap, [Weber/m 2].

length of wire in the voice coil, [m].

electric current, [A].

air pressure, [N/m2].

velocity of the cone, [m/sec].

induced electromotive force, [V].

volume velocity, [m3/sec].

radius of the cone, [m].

effective area of the loudspeaker cone, [m2].

volume of the closed box, [m3].

electrical resistance, [Q].

mechanical responsiveness, [m/N-s].

mechanical responsiveness expressed as numerically equal electrical

resistance, scaled by (Bl)2, [p].

capacitance, [F].

inductance, [H].

inductance of the voice coil, [H].

mechanical mass of the cone, [kg].

mechanical mass expressed as numerically equal capacitance, scaled by

1/(Bl)2, [F].

mechanical compliance of cone suspension, [m/N].

compliance of the air in the closed box, [m/N].

total compliance of the cone and air suspension expressed as numerically

equal electrical inductance, scaled by (Bl)2 , [H].

acoustic responsiveness, scaled by 1/A2, [mS/N-s].

acoustic responsiveness expressed as numerically equal electrical resistance,



scaled by (Bl)2, [Q].

Ma acoustic mass of the air load, [kg].

Mm+a total moving mass of the cone and air load, [kg].

CA acoustic mass expressed as numerically equal capacitance, scaled by 1/(Bl)2,
[F].

Ca acoustic compliance of the air in front of the cone, [m/N].

Po air density, 1.18kg/m 3 .

c speed of sound in ambient air, 345m/sec.

, wavelength of sound waves, [m].

f frequency, [Hz].

vi  system input, [V].

vo  system output, [V].

D duty ratio.

Vref reference voltage, [V].

Vvar variable voltage, [V].

Vdc DC supply voltage input, [V].

Vo  output voltage, [V].

ess steady state error.

Gc  compensator's system function.

G open loop system function.

K compensator gain.

ce  crossover frequency, [rad/sec].

COc low frequency crossover frequency, [rad/sec].

0c2 high frequency crossover frequency, [rad/sec].

00 fundamental resonance frequency, [rad/sec].

fo fundamental resonance frequency, [Hz].

T time constant.

Td  time delay, [s].

o frequency, [rad/sec].

A distance, [m].



T fixed period of the PWM waveform, [s].

fsw switching frequency, [Hz].

PWM pulse width modulation.

BW bandwidth.

SPL sound pressure level, [dB].

THD total harmonic distortion, [dB] or [%].

EMF electromotive force, [V].

MOSFET metal-oxide-silicon field effect transistor.

NMOS N-type MOSFET.

PMOS P-type MOSFET.

TTL transistor-transistor logic.



Appendix B

Low Distortion Audio Amplifier

The circuit below is a linear amplifier that uses the power operational amplifier LM12

from National Semiconductor. The op amp is capable of driving ± 25V at 10A from ±30V

supplies. It can deliver 80W of sinewave power into a 4Q load with 0.01% distortion.

Intermodulation distortion of the linear amplifier is 0.015% (60Hz/7kHz, 4:1). "Transient

response and saturation recovery are clean, and the 9V/ps slew rate of the LM12 virtually

eliminates transient intermodulation distortion." [4]

1.5n

3.3k

1.1k
LM12

IN +

39 00p MR752

1k
common 3900V MR752
ground

point" V

OUT

2.2

TL/H/8704-2

*Low distortion (0.01%) audio amplifier

Source: National Semiconductor



Appendix C

Loudspeaker Parameters

Listed are specifications for two loudspeakers used in this project. The speakers are

polypropylene-cone replacement "woofers." One is 10inch (RS 40-1014A) and the other

is 12inch (RS 40-1026A).

Parameters Symbols Units 10inch 12inch

Nominal Impedance Q 8 8

Frequency Response Hz 30 -2500 25 - 3000

Free Air Resonance Frequency fo Hz 30 25

Infinite Baffle Resonance Frequency Hz 29 23

Effective Cone Area A m2  0.0360 0.0523

Rated Power Input - Nominal W 50 50

RMS Thermal Power Limit Pmax W 100 100

Flux Density - Wire Length Product BI Weber/m 8.27 6.66

Voice Coil Resistance Re, RE Q 6.6 5.6

Voice Coil Inductance @1kHz Le, LE mH 1.13 0.45

Sound Pressure Level SPL dB/1W/lm 87±2 88+2

Electrical Q Factor 0.61 1.13

Mechanical Q Factor 4.6 3.13

Total Q Factor 0.54 0.83

Equivalent Acoustic Volume L 181.2 297.19

Mechanical Compliance Cm gtm/N 963.17 766

Mechanical Mass of Cone Mm g 31.14 54.59

Moving Mass of Cone and Air Load Mm+a g 35.19 61.46

Peak-to-Peak Linear Excursion cm 2.25mm 2.90

Power Handling Wrns 50 50

Source: Radio Shack



Appendix D

Additional Loudspeaker Model Parameters

The following equations are used to calculate the circuit parameters in the model in

Chapter 2. Most of them are taken from sources [9] [10].

A = r ,

C =b 2A2'
Poc A

(D.1)

(D.2)

RM
R Mm 2

= 200 Q nominally,

Ma = M -M +

0.221
a 2

r p0 c

0.721
al 2

r p0 c

0.318
a2 2

r p0 c

0.6
a 2r

rpoc

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

1

h~ 2 R
, w ere
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