Vision Flash 6
March 1971

How to Use .VSCAN

Arnold K. Griffith
Vision Group
A.I. Laboratory
M.I.T.
I. A COOKBOOK APPROACH

The call to .VSCAN looks like this:
. VSCAN PTABLE,
where the parameters governing the scan, pointed to by the tag PTABLE, are 11 in number:

PTABLE: WBIT,,VCONO
-LENGTH, ,ARRAY
XRES, ,YRES
R1
R2
C1
R3
R4
C2
P1
P2
and the intensities end up stored in locations ARRAY ... ARRAY + XRES*YRES - 1.

Scanning within some arbitrary quadrilateral on the vidi field, e.g.:

Figure 1.
is under control of these parameters, generated as follows:

Parameter 1 is described in the ITS manual;
if in doubt, use 0,3 .
Parameter $\underline{2}$ consists of the negative of the total number of points to be examined in the left half; and the starting address of the block into which the intensities are to be stored in the right halle.

Parameter 3 has the number of points in each scan in the left half; and the number of scans in the right half.

Parameters 4-11 are described in the ITS manual; however it is not obvious how one goes from the corner points of a desired scan to the parameter values. The function EIGHTVPARAM (in appendix) given the appropriate parameters, in order R1, ... P2, given the corner points PT1, PT2, PT3 and PT4 (in the form (x y)). The relation between the resulting scanning pattern and the corner points is as shown in figure 1: If the point PT2 is directly above PT1, then the scans will be made vertically; if the point PT2 is to the right of PT1, the scans will be horizontal; if PT4 and PT3 are below PT1 and PT2, then each successive scan will be below the previous one; etc. The coordinate system of these pointe assumes that the vidi field goes from (0 0) to (1024. 1024.).
II. HORIZONTAL AND VERTICAL SCANNING WITH SOME KNOWLEDGE OF WHAT IS GOING ON
The parameters R1, ... P2 are fixed point quantities with the binary point in the middle of the word. Thus if they have integer values, these integers should be stored in the left half. The origin of the scan is always ($C 1, C 2$). Several simple cases:

1) For a horizontal scan of length L , let $\mathrm{Rl}=\mathrm{L}$ and $R 2=R 3=R 4=P 1=P 2=0$.
2) For a vertical scan of length L, let $R 3=L$, and $R 1=R 2=R 4=P 1=P 2=0$.
3) For a vertically ascending sequence (of height H) of left-right horizontal scans of length L, (See figure 2)

figure 2.
let $\mathrm{R} 1=\mathrm{L} \mathrm{R} 4=\mathrm{H}$ and $\mathrm{R} 2=\mathrm{R} 3=\mathrm{P} 1=\mathrm{P} 2=0$.
4) For a sequence of ascending vertical scans of length L, with each successive scan to the right of the previous one (see figure 3) use $\mathrm{R} 2=\mathrm{W}, \mathrm{R} 3=\mathrm{L}$ and

figure 3.
$R 1=R 4=P 1=P 2=0$.
In all cases, $C 1$ and $C 2$ are respectively the x and y coordinates of the starting point of the scan; and the number of points in each scan and the number of scans determine the third parameter. The values C1, C2, L, W, and H are scaled commensurate with the vidi field being ${40000_{8}} \times 40000_{8}$ units in extent.
III. WHAT IS REALLY GOING ON

According to the ITS manual, .VSCAN generates a
set of points ($\mathrm{X} 2, \mathrm{Y} 2$) within the unit square:

figure 4.
which has been divided into XRESxYRES equal sub-rectangles; and each point is in the center of a sub-rectangle. The order in which the points is generated is as in figure 4, namely the XRES points of the bottom row of rectangels is generated in left-right order, similarly the next-to-bottom row, etc. The coordinates given to the vidissector consist of these points, in the order generated, transformed by the transformation $f(x, y)$:

$$
(\mathrm{X} 2, \mathrm{Y} 2) \quad \mathrm{f}(\mathrm{X} 2, \mathrm{Y} 2)=(\mathrm{X}, \mathrm{Y}):
$$

$$
\mathrm{X}=\frac{\mathrm{R} 1 * \mathrm{X} 2+\mathrm{R} 2 * \mathrm{Y} 2+\mathrm{C} 1}{\mathrm{P} 1 * \mathrm{X} 2+\mathrm{P} 2 * \mathrm{Y} 2+1}
$$

$$
\mathrm{Y}=\frac{\mathrm{R} 3 * \mathrm{X} 2+\mathrm{R} 4 * \mathrm{Y} 2+\mathrm{C} 2}{\mathrm{P} 1 * \mathrm{X} 2+\mathrm{P} 2 * \mathrm{Y} 2+1} .
$$

Evidently the images of $(0,0),(1,0),(1,1)$ and $(0,1)$
under this transformation become the points PT1, PT2, PT3, and PT4 as in figure 1.

Letting:

$$
\begin{aligned}
\mathrm{PT} 1 & =(\mathrm{X} 1, \mathrm{Y} 1) \\
\mathrm{PT} 2 & =(\mathrm{X} 2, \mathrm{Y} 2) \\
\mathrm{PT} 3 & =(\mathrm{X} 3, \mathrm{Y} 3) \\
\mathrm{PT} 4 & =(\mathrm{X} 4, \mathrm{Y} 4)
\end{aligned}
$$

we have, from $f(0,0)=(X 1, Y 1)$:

$$
\begin{equation*}
X 1=C 1 \tag{1}
\end{equation*}
$$

$\mathrm{Y} 1=\mathrm{C} 2$;
from $f(1,0)=(X 2, Y 2):$

$$
\begin{equation*}
\mathrm{X} 2=\frac{\mathrm{R} 1+\mathrm{C} 1}{\mathrm{P} 1+1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
Y 2=\frac{R 3+C 2}{P 1+1} \tag{4}
\end{equation*}
$$

from $f(1,1)=(X 3, Y 3):$

$$
\begin{equation*}
X 3=\frac{R 1+\mathrm{R} 2+\mathrm{C} 1}{\mathrm{P} 1+\mathrm{P} 2+1} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Y} 3=\frac{\mathrm{R} 3+\mathrm{R} 4+\mathrm{C} 2}{\mathrm{P} 1+\mathrm{P} 2+1} \tag{6}
\end{equation*}
$$

and from $f(0,1)=(X 4, Y 4)$:

$$
\begin{align*}
& \mathrm{X} 4=\frac{\mathrm{R} 2+\mathrm{C} 1}{\mathrm{P} 2+1} \tag{7}\\
& \mathrm{Y} 4=\frac{\mathrm{R} 4+\mathrm{C} 2}{\mathrm{P} 2+1} . \tag{8}
\end{align*}
$$

letting:

$$
\begin{aligned}
& \left(a, a^{\prime}\right)=(X 2-X 1, Y 2-Y 1) \\
& \left(b, b^{\prime}\right)=(X 4-X 1, Y 4-Y 1) \\
& \left(c, c^{\prime}\right)=(X 3-X 2, Y 3-Y 2) \\
& \left(d, d^{\prime}\right)=(X 3-X 4, Y 3-Y 4),
\end{aligned}
$$

$$
\text { the equations (1), } \begin{aligned}
& \mathrm{C} 1=\mathrm{X} 1 \\
& \mathrm{C} 2=\mathrm{X} 2 \\
& \mathrm{P} 1=\frac{a d^{\prime}-\mathrm{a}^{\prime} \mathrm{d}}{\mathrm{~cd}^{\prime}-\mathrm{c}^{\prime} \mathrm{d}} \\
& \mathrm{P} 2=\frac{\mathrm{cb}}{} \mathrm{~cd}^{\prime}-\mathrm{c}^{\prime} \mathrm{b} \\
& \mathrm{R} 1=\mathrm{c} \text { solve to: } \\
& \mathrm{R} 2 \mathrm{P} 1+\mathrm{a} \\
& \mathrm{R} 3=\mathrm{X} 4 \mathrm{P} 2+\mathrm{b} \\
& \mathrm{R} 3=\mathrm{Y} 2 \mathrm{P} 1+\mathrm{a}^{\prime} \\
& \mathrm{R} 4=\mathrm{Y} 4 \mathrm{P} 2+\mathrm{b}^{\prime}
\end{aligned}
$$

Note: If the transformation $£$ is in fact carried out as stated in the ITS manual, then any point ($\mathrm{X} 2, \mathrm{Y} 2$) s.t.
$\mathrm{P} 1 \mathrm{X} 2+\mathrm{P} 2 \mathrm{Y} 2+1=0$
transforms into randomness, since this gives a zero denomenator in the transformation formula. It is not clear if this can really happen, but may account for lossage in some situations.

APPENDIX

PAGE 8: The function EIGHTVPARAM
PAGE 9: Auxiliary functions
PAGE 10: A simple LAP function which uses the output of EIGHIVPARAM to drive the vidi.

001
$0 \cup 2$
$0 \cup 3$
004
$0 \cup 5$
006
$0 \cup 7$
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

```
(DEFHROP EIGHTVPARAM(LAMBDAIPTI PT? PTS DTA)
    (PKUG(A & C D P1 P2 C1 C2 P1J R24)
        (SETU PT1(SCALE -11))
        (SETO PTZ(SCALE +12))
        (SETG PT3(SCALE PTJ))
        (SETQ PT4(SCALE HT4))
        (SETG C1(CAR PT1))
        (SETQ C2(CADR PT1))
        (SETU A(VD PT2 PT1))
        (StTG BPVD PTA Pll))
        (StTU C(VD P13 PTZ))
        (StTO D(VD PT3 P\4))
        (SETG P1(*QUO(DOT A(PERP D))
            (DUT C(PERP D)) )!
        (SETG P2(*QUD(DOT C(PERP E))
            (DOI C(PERP D)) 1)
        (SETG RIU(VSUM(SCALARPROD FI PT2)A))
        (SETO R24(VSUM(SCALARPROD P2 PT4)B))
        (RETURN(MAPCAR *INELSONILIST
            (LUAR KI3)
            (CAR R24)
            Cl
            (CAUR R13)
            (CAUR R24)
            C2
            P1
            P2)lN NEXPR1
```

001
002
003
004
005
006 007 $0 \cup 8$ $0 \cup 9$ 010 011 012 013 014 015 016 017 018 019 020 021 022
023
024
025
026
027
028
029
030
031
032 033

```
IDEFPROP PERP(LAMBUA(X)(LIST
    (CAUR X)
    (MINUS(CAR X)) |EXPR)
IDEFHROP SCALE(LAMBDA(X)
    (SCALARPROD 16. XIIEXPR)
    IDEFPROP VDILAMBDAIX YIIMAPCAR
    * # IF
        X
        (VSUM Y (0.0 0.0)) )IEXPR)
(DEFHRUP VSUM(LAMBDA(X Y)(MAPCAR
    *PLUS
    *(0.0 0.0)
    X
    Y/|EXPRI
IDEFPROP DOTILAMBDAIX Y)(EVAL
    (CUNS PPLUSIMAPCAR *TIMES X Y)I)IEXPR)
IDEFPROP SCALARPRODILAMBDA(X Y)ILIST
    (TIMES X 1.O(CAR Y))
    (TIMES X 1.O(CADR Y)I IIEXPR)
(DEFHROP NELSON(LAMBDA(X)(FIX
    (TIMES 1000000 X))/EXPR)
```

```
(OPS MK(LSH-1000.18.1)
    (OPS HUND(LSH 100. 18.))
    (LAP VSCAN SUBR)
                            (SYMHOLS T)
                            (CALL 1 (QUOTE REVERSE))
                            (MOVE 3 1)
                            (MOVEI 4 7)
                            IHLRZ 1 0 3)
                            IHRRZ 3 0 3)
                            (PUSHJ F NUMVAL)
                            (MOVEM 1 PARAMS 4)
                            (SOJGE a RT)
                            (*VSCAN O PTABLE)
                            (MOVEI 1 NIL)
                            (POPJ P)
PTABLE (0 0 3)
    (MK O ARY)
    (HUND 0 10.)
    (BLOCK B.)
    (BLOCK 1024.) 1)
```

