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Abstract
Helical ribbons form in a many multi-component solutions containing sterols similar to
cholesterol, but remarkably, almost all the helices have a pitch angle of 110 or 540 . The
consistent pitch angle of the ribbons may be due to an underlying crystal structure.
In order to determine the crystal structure, I undertook x-ray scattering studies of
individual helical ribbons taken from two particular solutions: Chemically Defined
Lipid Solution and model bile. Using a synchrotron x-ray source I observed Bragg
reflections from ribbons with a pitch angle of 110.: From the diffraction patterns, I was
able to deduce the parameters of the unit cell. The crystal structure of these ribbons
is similar to that of cholesterol monohydrate, with the important difference that the
length of the unit cell perpendicular to the cholesterol layers is tripled. Furthermore,
I found that adjacent layers are shifted relative to each other along a single direction,
and that the shift varies periodically with a period of 3 bilayers. I also found that
the growth direction of the crystal is along one of the unit cell axes.

Thesis Supervisor: Professor George B. Benedek
Title: Alfred H. Caspary Professor of Physics and Biological Physics
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Chapter 1

Introduction

The formation of helical ribbons in multi-component lipid solutions is an interesting

phenomenon, and poses several questions about the structure and process of formation

of the ribbons. Helical ribbons were first discovered in human gallbladder bile, where

they form as a precursor to gallstones upon dilution of the bile [2]. Similar ribbons

were later found in a variety of solutions containing sterols similar to cholesterol,

surfactants, and fatty acids or phospholipids [3]. However, despite the wide variety

in composition of the solutions, almost all the ribbons have a pitch angle of either

110 or 540.

Explaining the consistency of the observed pitch angles of poses a challenging

problem. Several models have been proposed to explain the structure of the helical

ribbons [4, 5, 6, 7, 8, 9, 10, 11]. These models describe the ribbons as being composed

of phospholipids arranged into bilayers with the hydrophillic head groups on the

outer surface of the ribbons, and the hydrophobic tail groups sandwiched inside the

bilayer. The curvature and helical structure of the ribbons is explained using the

curvature elasticity model, by minimizing the membrane elastic free energy of ribbon

as a function of its curvature [12].

However, these theories do not explain several important features of the helical

ribbons. First, the ribbons are observed to have a pitch angle of either 110 or 540 in a

wide variety of solutions, while the proposed models predict that the pitch angle varies

depending on the composition of the solution. Secondly, the ribbons are composed



primarily of sterols [3], while the proposed theories describe the ribbons as being

composed of phospholipids. Thirdly, the thickness of some the ribbons is on the

order of microns, as evidenced by colored thin-film interference patterns seen from

the ribbons. However, theoretical models predict the thickness of the ribbons to be

the thickness of phospholipid bilayers, which is about 30 A.

An alternative explanation for the structure of the helical ribbons is that it is

caused by a crystalline cholesterol structure in the ribbon. This theory explains the

results outlined previously, and is also consistent with the fact that helical ribbons

are metastable intermediates on the pathway to formation of large cholesterol crystals

[1]. Indeed, one theoretical model, outlined in Reference [13], explains the structure

of the helices using a crystal model, and is consistent with experimental results. In

order to directly determine the crystal structure of the helical ribbons, I undertook X-

ray diffraction measurements of the ribbons. Reference [14] contains the manuscript

submitted by the group I worked with on this project.

1.1 Formation of Helical Ribbons

Helical ribbons form as precursors to large cholesterol crystals in a many solutions.

Crystallization begins when a solution containing sterols, surfactants, and fatty acids

or phospholipids is diluted. In an undiluted solution, the sterols are solubilized by

micelles, which are spherical structures made of surfactants and phospholipids with

the hydrophillic head groups on the outer surface and the hydrophobic groups in

the interior. The hydrophobic sterols are contained inside the micelles. The undi-

luted solution contains both free surfactants and surfactants contained in micelles in

equilibrium. Diluting the solution shifts the equilibrium from primarily micelles to

primarily free surfactants. As the micelles break up, they release the sterols they

contain, supersaturating the solution with respect to the sterol [1].

Upon dilution, a variety of structures including filaments, helical ribbons, tubules,

flat ribbons, and large cholesterol monohydrate crystals form from the solution. The

exact structures that form, and the sequence in which they form depend on the compo-



sition of the solution and the concentration of its components. The specific sequence

of structures observed in model bile, a solution containing cholesterol, lecithin, and

sodium taurocholate, is shown in Figure 1-1.
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Figure 1-1: Sequence of formation of structures seen in model bile. This image was
reproduced from Reference [1].

1.2 Formulation of Reciprocal Space

The analysis of the data from this experiment relies heavily on the reciprocal space

formulation of Bragg diffraction, which is described in this section.

Suppose an electromagnetic wave with wave vector ki incident on a crystal. Every

point in the crystal scatters the wave in all directions. Consider all waves scattered

in a specific direction. The waves scattered in this direction all have the same wave-

vector kf, and the same angle change in angle, defined to be 20 by crystallographic

I·~ ___~I



convention. No significant energy is lost or gained by scattering, so Iki = IkAl. The

extra distance traveled by a wave scattered at location f relative to a wave scattered

at the origin ('F=O0) is given by Equation 1.1, which is made clear by Figure 1-2.

As = - (1.1)

Thus, the relative phase of a wave scattered at position f relative to a wave

scattered at the origin is given by Equation 1.2, where ' is defined as q'= kf - ki .

< k=lAs = (i - kf) -F = - (1.2)

-k-fr

,ii'
Ilil

Figure 1-2: Diagram showing the difference in travel distance for a wave scattered at
F relative to a wave scattered the origin. The difference in travel distance is the sum
of the two segments indicated.

The amplitude of the wave scattered from location f' is proportional to g(r-, 20),

the scattering cross section per volume at location r' in the crystal. In general, the

scattering cross section depends on the scattering angle, 20. Combining g(f', 20) with

the phase difference given in Equation 1.2, the complex amplitude of a wave scattered

from location f is given by Equation 1.3.

ki



A oc g(r', 20)e -̀ ' (1.3)

Integrating over the total volume of the crystal, the total amplitude scattered in

the direction of kf is given by Equation 1.5.

A oc f g(, 20)e-i7Fd3f (1.4)

Suppose that the crystal has a unit cell with sides given by vectors a, b, and

c. Then ' can be written as F = nfa + nb + +cc+cell, where n, b, and no

specify a specific unit cell, and FeIL specifies the location in the unit cell. Because

of periodicity of the crystal, g(nad + nb+ nlc+ Fcei, 20) = g(Feu, 20). Substituting

f= nfaa+nb+ncbb +rcel into Equation 1.3 gives Equation 1.5. Note that the integral

in Equation 1.5 is only over a single unit cell.

A oc e-i (na J+nb +nc) flg(fla, 20)e-i~ Fe1d 3 cell (1.5)
na, nb,nc unitcell

Equation 1.5 separates into the product of two terms. The right term depends on

the scattering density within the unit cell, and is known as the structure factor. The

left hand term depends only on the unit cell dimensions, and not on the distribution

of scattering density inside the unit cell. Let us focus on this term. For an infinite

crystal, this term is non-zero only if Equations 1.6, 1.7, and 1.8 hold for any integers

h, k, and 1.

q = 2rh (1.6)

q-b = 27rk (1.7)

• - = 27rl (1.8)

These equations can be satisfied by q = ha + kb* + 1 , where ac, b*, and c are

given by Equations 1.9, 1.10, and 1.11



bxah
a = 27r (1.9)

•- (bx cla

b* = 2 (1.10)b -(E'x d)
axb

c( = 2 (1.11)

Therefore, the values of q that produce Bragg reflections form a lattice, known

as a reciprocal lattice, in the space of possible q, known as reciprocal space. Each

Bragg reflection has a unique set of (h,k,1) indices. For a specific value of ki, the

possible values of ' resulting from all kf with the same magnitude as ki form a sphere

centered around -ki with a radius of Ikil. This sphere is known as an Ewald sphere.

Figure 1-3 shows a two dimensional cross-section of an example reciprocal space with

a reciprocal lattice and Ewald sphere.

Figure 1-3: Two dimensional cross-section of a example reciprocal space showing a
reciprocal lattice and an Ewald sphere. The reciprocal lattice vectors a* and b* and
the (1,0,0) and (0,1,0) Bragg reflections are labeled.

In an X-ray diffraction experiment, each point on the X-ray detector corresponds

to a point on the Ewald sphere. A Bragg reflection will be observed if the Ewald

sphere crosses a point in the reciprocal lattice. Rotating the crystal rotates the

reciprocal lattice. Alternatively, with a simple coordinate transformation, rotating

K



the crystal rotates the Ewald sphere about the origin while holding the reciprocal

lattice fixed. This new set of coordinates is referred to crystal coordinates, because

the crystal is fixed in the new coordinate system. Therefore, the entire reciprocal

space in crystal coordinates can be constructed by taking a series of images over a

range of crystal rotation angles. Near the origin, the Ewald sphere is close to a flat

plane, so the crystal only needs to be rotated over a range of 180' to construct the

reciprocal lattice near the origin. For an ideal, infinite crystal, as described in this

section, the Bragg reflections have zero volume in reciprocal space. However, in a

real crystal the Bragg reflections will have a non-zero width in reciprocal space, so a

finite series of images is sufficient to locate all the Bragg reflections.

1.3 Theory of Superlattice Modulations

We found evidence for superlattice modulations in the helical ribbons, so in this

section I will formulate the diffraction pattern obtained from a crystal with superlat-

tice modulations. More specifically, this section considers modulations in which the

crystal planes are shifted along single direction with the amount of the shift varying

periodically along the direction perpendicular to the planes. Suppose that the ab

planes shift by some amount along the d direction, where d is a unit vector. Let

the amount of the shift vary periodically with period m, where m is an integer. Let

the values Xo, x1 , x 2,... xm-1 be the magnitudes of the shifts of planes defined by

c = 0, 1, 2,... m - 1. Because of periodicity, the plane with c=m+n has the same

shift as the plane with c=n for any n. Then, the equation for r' in terms of rcen

changes to F = n.d + nbb + nC+Xn nod+ rcell

Inserting this into Equation 1.3, and using the fact that g(naa+ nbb+ nc+ Xncd+

frce, 20) = g(F'ceu, 20) gives Equation 1.12.

A cc 1 e- 1'(nbc*L +nf + + d Lni gcel , 2 0)e-i'rceLd 3
jfe' (1.12)

na inbnc unitcell



Once again, the intensity factors into two terms, and we will ignore structure factor

term. The left term can be split into 3 pieces, as shown in expression Expression 1.13.

Se-in.Ta E inqb E e-i(nc,+xncd) (1.13)
na nb nc

The left two sums are unchanged from the case with no superlattice modulations,

and lead to the conditions in Equations 1.6 and 1.7. If q'-d = 0, then the third

sum is also unchanged, and recovers the condition in Equation 1.8 So, in the plane

perpendicular to d in reciprocal space, the reciprocal lattice is unchanged. However,

if q'. d 0 the third sum leads to a different condition. If we set n, = fm + g for

integers f and g, with 0 < g < m, the sum can be rewritten as Expression 1.14, using

the fact that Xfm+g = xg.

m--1

e- i m •• e-i~ (g +xgd (1.14)
f g=0

In general, the right term depends in the specific values of xg, so no conclusions

can be made about it (except when d = 0, but this case was discussed earlier). The

left hand term is non-zero only if Equation 1.15 holds.

.- (mc .= 27rl (1.15)

Equation 1.15 is almost identical to Equation 1.8, but with ' replaced with md.

This makes good physical sense, because a unit cell with dimensions a, b, and mc can

be drawn covering an entire period of superlattice modulation. From this we expect a

reciprocal lattice with dimensions a , b*, and c/m. Therefore, there are intermediate

spots seen along the c direction. Between each (h,k,1) and (h,k,l+1) for a crystal

with no superlattice modulations, m-1 new spots are inserted if there are superlattice

modulations. However, intermediate spots do not appear everywhere. Specifically,

they do not appear when '- d=0, so the intermediate spots are not seen in a plane

perpendicular to d, passing through the origin of reciprocal space.



Chapter 2

Materials and Methods

2.1 Materials Used

Helical ribbons were obtained from two different solutions. The first solution was

Chemically Defined Lipid Concentration (CDLC), commercially available from GIBCO.

CDLC is a water solution containing non-ionic surfactants (Pluronic F-68 and Tween

80), a mixture of fatty acids, and cholesterol. We do not know the protocol for

preparing CDLC.

The second solution was model bile, prepared in the lab from a mixture of choles-

terol, sodium taurocholate, and 1,2-dioleoyl-glycero-3-phosphocholine (DOPC) ac-

cording to the protocol described in Section 2.1.1.

CDLC contains a very high concentration of structures, whereas model bile con-

tains far fewer structures. Most of the helical ribbons in CDLC are low pitch, while

most of the helical ribbons in model bile are high pitch. The helical ribbons in CDLC

have a larger average length, radius, and thickness than the ribbons in model bile.

However, the low pitch helices in model bile tend to be significantly larger than the

high pitch helices in model bile. The size of the ribbon is very important for sample

preparation, as described in Section 2.2. An example of a low pitch helix in CDLC is

shown in Figure 2-1.



Figure 2-1: A low pitch helix in CDLC.
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2.1.1 Protocol for Preparing Model Bile

Model bile was prepared using a stock solution of DOPC containing 20 mg/mL in chlo-

roform obtained from Avanti Polar Lipids, cholesterol powder obtained from Sigma-

Aldrich, and sodium taurocholate powder obtained from Sigma-Aldrich. The protocol

for preparing model bile was obtained from Reference [2].

The model bile was prepared according to the following procedure:

1. Cholesterol was recrystallized in a solution of 95% ethanol and 5% water to

improve the purity.

2. Cholesterol was dissolved in chloroform to make a stock solution with a concen-

tration of 1 mg/mL.

3. Sodium taurocholate was dissolved in methanol to make

a concentration of 100 mg/mL.

4. The stock solutions were mixed to make a solution with

DOPC, and cholesterol in a 97.5:0.8:1.7 molar ratio and

of 70 mg.

5. The solution was dried under argon to form a lipid film.

6. The lipid film was resuspended in 1 mL of a solution

methanol in a 2:1 ratio by volume.

a stock solution with

sodium

a total

taurocholate,

solute weight

with chloroform and

7. The solution was dried under argon again.

8. The lipid film was placed in a vacuum lyophilizer to dry completely overnight.

9. The lipid film was suspended in 1 mL of ddH20 filtered with a 0.22 Am filter.

10. The solution was heated to 60 0 C for 1 hour to dissolve the lipid film completely.

11. The solution was supersaturated by adding 5 mL of filtered ddH20 to bring the

concentration to 12 mg/mL.



12. The solution was filtered to remove any remaining impurities.

13. The solution was placed an incubator for 5 days to allow crystals to grow.

During the growth period, the solution was viewed under a microscope at least

once a day to check for crystal structures.

2.2 Preparing Samples

Samples were prepared in two ways: in solution and out of solutions. Samples pre-

pared out of solution were removed from the liquid, whereas samples prepared in

solution were never removed from the liquid.

2.2.1 Out of Solution

Samples were prepared out of solution by lifting ribbons out of solution using micro-

capillaries and placing them on nylon loops or polyacrylamide micro-mounts. The

micro-capillaries were obtained from Eppendorf, the nylon loops were obtained from

Hampton Research, and the micro-mounts were obtained from MiTeGen. The nylon

loops and micro-mounts were attached to magnetic bases to allow for easy attachment

and removal at the X-ray beamline.

To prepare a sample, a droplet of CDLC was placed under a microscope. The

ribbons have an index of refraction similar to that of the solution, so the microscope

slide was lit obliquely to make the ribbons visible. The lighting stage was attached to

a micromanipulator to allow the droplet of CDLC to be moved. A micro-capillary was

attached to another micromanipulator and lowered into the droplet. After choosing

a suitable ribbon, the capillary was threaded through a single turn of the helix, and

slowly raised out of the solution. Figure 2-2 shows a capillary threaded through a

single turn of a helix to prepare to raise it out of the solution

Care must be taken while raising the ribbon out of solution, because the ribbon

is very delicate, and can easily be broken by surface tension. Only thick helices are

strong enough to withstand the surface tension without breaking. Model bile cannot



Figure 2-2: A micro-capillary is threaded through a single turn of a helix so that it
can be lifted out of the solution.
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be used to prepare samples out of solution because all the ribbons in model bile are

too small to be taken out of solution.

After the ribbon was taken out of the solution, a nylon loop or micro-mount was

placed on a third micromanipulator. For samples prepared for low temperature, the

loop was covered in a thin film of cryoprotectant oil. The capillary and loop were

then brought near each other, as shown in Figure 2-3, and the ribbon was placed

across the loop. Figure 2-4 shows two completely prepared samples, with one on a

nylon loop and one on a micro-mount. The samples prepared for low temperature

were then dipped in liquid nitrogen to cool them to 77 K.

Figure 2-3: A micro-capillary with a ribbon on it is brought near a polyacrylamide
micro-mount to attach it to the micro-mount.

Samples prepared out of solution have the advantage of a lower background due

50



Figure 2-4: Two complete samples. The sample on the left is attached to a micro-
mount, and the sample on the right is attached to a nylon loop.

to the small amount of liquid and glass in the beam. However, removing samples

from the solution can damage them, and ribbons taken out of solution are no longer

in their native environment, so their structure may change.

2.2.2 In Solution

To take measurements of helical ribbons in their native environment, some samples

were prepared in solution. In this configuration, the ribbons were coiled into their

natural shape, rather than stretched flat, as they were in the out-of-solution con-

figuration. This was done using hollow Cell-Tram capillaries from Eppendorf. The

Cell-Tram capillaries are made of glass, and have an inner diameter of 100 p/m, and

have a tapered opening which is narrow near the tip and wide in the body of the

capillary. The capillary was attached to an Eppendorf Cell-Tram pump, which can

hydraulically push liquid into and out of the capillary. The capillary holder was at-

tached to a micromanipulator to allow it to be moved precisely. The capillary was

inserted into the solution, and a helix was drawn into the capillary using the pump.

Figure 2-5 shows an image of a capillary with a ribbon inside it.

Because the opening of the capillary is narrow, wide ribbons will not fit into an



Figure 2-5: A capillary with a ribbon inside it. The ribbon was drawn into the
capillary using a Cell-Tram pump.
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unmodified capillary. To solve this problem, I filed off part of the tip to widen the

opening. This was done by holding the capillary close to the tip to prevent it from

bending excessively and filing off the tip using the flat side of a capillary cutter. The

capillaries are very delicate, so the tip must be filed gently by applying very little

pressure. After filing the tip to the desired opening width, the capillary was washed

to remove any glass particles on the capillary. This was done by inserting the capillary

into a droplet of ddH20 and pumping water into and out of the capillary vigorously

using the Cell-Tram pump.

After the a ribbon was drawn into the capillary, the capillary was raised out of the

solution. The tip of the capillary was covered with Paratone oil to prevent evaporation

of solution from the tip of the capillary. The capillary was then removed from the

capillary holder by scratching it using a capillary cutter and then breaking it at the

point of the scratch. A small amount of sealing wax was inserting into the back of

the capillary, and the capillary was slid onto a magnetic base. The capillary was then

heated locally for a fraction of a section by a solder gun to melt the wax and seal

the back of the capillary. This was done to prevent evaporation of liquid from the

back of the capillary. Care was taken while heating the capillary, because heating the

solution causes the ribbons to melt. The solder gun was heated to a high temperature

and touched to the capillary briefly to heat the capillary locally. Figure 2-6 shows

the tip of a completed sample.

For samples prepared in solution, the liquid and glass create a lot of background

scattering. The background was greatly reduced by taking an image with the beam

aimed away from the ribbon but still passing through glass and liquid. This image

was subtracted from the diffraction image taken by aiming the beam directly at the

ribbon, thus subtracting away most of the background.

2.3 Diffraction Setup

Diffraction experiments were carried out at the Advanced Photon Source at Argonne

National Lab. The Sector 31 (SGX-CAT) protein crystallography beamline was used



Figure 2-6: A sample with a ribbon in solution sealed in a glass capillary. The ribbon
is not as clearly visible in this figure compared to Figure 2-5 because the capillary
has been removed from the solution, so light leaving the capillary experiences greater
refraction.
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for measurements. The samples were held in the beam by magnetic bases, and motors

controlled the position and orientation of the sample. A horizontal, monochromatic

beam with photon energy 12.66 keV (A = 0.98A1) was directed at the sample. Dif-

fracted x-rays were detected using a CCD detector (MAR 165). The cross section of

the beam was set to 50m x 50m for some samples and 100pm x 100pm for oth-

ers. During each measurement, the crystal was rotated with constant angular speed

by an angle of 1800 degrees. Images were read from the CCD every 10 or 20. The

resulting set of images was later used to construct the reciprocal lattice, as described

in Section 1.2.

Low temperature samples were kept at 100 K using a cryostat, which blows cold

nitrogen evaporating from a dewar of liquid nitrogen over the sample.





Chapter 3

Results

3.1 Sample Diffraction Images

Figure 3-1 shows an example diffraction image cholesterol ribbon. This ribbon was

taken out of CDLC, and was not fully helical, but rather a thick, curved arc. These

arcs are the easiest structures to take measurements on, because they have a large

volume, and thus produce more intense diffraction patterns than fully helical ribbons,

and they are easy to remove from the solution due to their thickness. This particular

arc was measured at 100 K.

The diffraction image shows a clear lattice of Bragg reflections. Some of these

Bragg reflections from tight clusters. The inset of Figure 3-1 shows the evolution of

one of these clusters as the crystal is rotated by successive angles of 1 degree over a

range of 19 degrees. This corresponds to rotating the Ewald sphere over a range of

19 degrees. As the inset shows, each Bragg reflection persists over a range of crystal

angles of about 8 degrees, which implies that the Bragg reflections are elongated in

the axial direction in reciprocal space.

The most likely cause for the elongation of the spots is that the ribbon is curved

by several degrees, even when stretched across a loop. If the radius of curvature is

much longer than the size of the unit cell, as it is for the ribbons, the crystal can be

considered to be many small crystals with different orientations, each of which will

produce a reciprocal lattice at a different orientation. The combined pattern from



Figure 3-1: Diffraction image from a cholesterol arc. The inset shows a region of
the image as it evolves due to crystal rotation. Each frame in the inset corresponds
to a crystal rotation angle of 1 degree, and the entire sequence shows a range of 19
degrees of crystal rotation. As the inset shows, each Bragg reflection persists over a
range of about 8 degrees of crystal rotation, so the reflections span about 8 degrees
in reciprocal space.
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all the crystals is a reciprocal lattice with the Bragg reflections smeared in the axial

direction about the axis of curvature.

3.2 Data Analysis Program

Available crystallographic software cannot be used analyze our data, because the

Bragg reflections in our data span several degrees, and also because the number of

visible spots is small. To analyze the data, I programmed a tool that constructs

the location of each Bragg reflection in reciprocal space from the images and then

determines the lattice dimensions from the points in reciprocal space.

3.2.1 Extracting Bragg Reflections

The raw data that the program takes as input is a series of images taken from a single

crystal with the crystal rotation angle varying over a range of 180 degrees. Each image

provides a slice of reciprocal space, as described in Section 1.2. Extracting the location

of Bragg reflections from these images is a challenge because each Bragg reflection

spans several images.

To extract the location of the Bragg reflections in reciprocal space, I programmed

a tool that allows the user to manually select the peaks that correspond to a Bragg

reflection. Then, the program extracts the location of the Bragg reflection from the

location of the peaks. Figure 3-2 shows the spot selection tool being used to select

the peaks corresponding a single Bragg reflection. The Bragg reflection produces a

peak in every image over a range of 8 degrees.

After the peaks are selected, the program subtracts the local background around

each peak, and then determines the the location of each peak by averaging the pixel

locations weighted by intensity. Then, it determines the average crystal rotation angle

by averaging the rotation angles of the images, weighted by the integrated intensity of

the peaks. It also determines the average peak location by averaging the peak location

over all the images, weighted by integrated peak intensity. From the average peak

location, the location on the Ewald sphere can be determined. Then, the location can



Figure 3-2: Spot selection tool selecting a single Bragg reflection. The sequence of
frames shows a region of the diffraction image as the crystal is rotated by 18 degrees
in intervals of 1 degree. The boxes mark peaks in different images corresponding to
a single Bragg reflection.

be transformed into crystal coordinates by rotating by the negative of the average

crystal angle. By repeating for all Bragg reflections that can be resolved, the location

of the Bragg reflections in reciprocal space can be determined. The spot selection

program was programmed so that multiple Bragg reflections can be selected at once.

When doing so, the program ensures that each pixel is only grouped into one peak.

This is done by assigning pixels to peaks using a nearest neighbor algorithm. This

method is very useful for distinguishing Bragg reflections which are close to each

other.

Not all visible Bragg reflections can be resolved, because the Bragg reflections

overlap in certain locations of reciprocal space. For the thick cholesterol arc imaged

in Figure 3-1, approximately 100 spots were resolved. The spots formed a rectangu-

lar lattice in reciprocal lattice. The unit cell of the reciprocal lattice had two long

dimensions and one short dimension.

3.2.2 Extracting the Direction of c*

Determination of the reciprocal unit cell from the reciprocal lattice shown was done

in several steps. First, I extracted c*, defined to be the shortest reciprocal space

unit cell dimension. This was done by considering the set of Bragg reflections with a

given value of h and k. These spots form a rod in reciprocal space. To determine the

direction of c*, the program calculates the vector difference between adjacent spots

along this rod, and then averages the vectors obtained from all rods. The direction

of this vector is the calculated c* direction. Although the values of h and k are



not explicitly known at this point, the Bragg rods can be easily identified because

c*<<a* and c*<<b*. The program finds the set of vectors connecting adjacent spots

by connecting each spot to it's nearest neighbor with the restriction that each spot

can be connected to a maximum of two spots, there can only be one vector connecting

each pair of spots, and the length of the vector must be less than a maximum value.

This is repeated until no more connections can be made. The maximum value in the

last condition is set to be less than a* and b* to ensure that spots with different h,k

are not connected.

3.2.3 Extracting the Magnitude of c*

To find the length of c* I took the vectors differences between adjacent spots in each

h,k rod and projected them onto a vector along the c* direction. The distribution of

distances obtained from this procedure are plotted in Figure 3-3. There are major

peaks at 0.062 A and 0.18 A. There is also a minor peak at 0.12 A. From this we can

deduce that c*=0.062A. The peaks at 0.12 A and 0.18 A occur because occasionally

one or two Bragg reflections do not appear, resulting in a vector of length 2c* or 3c*

connecting two adjacent spots. The fact that the peak at 3c* is much larger than the

peak at 3* implies that spots are usually skipped in pairs.

An explanation for why spots are usually skipped in pairs can be found by looking

at the spot intensities. Figure 3-4 shows a region where the Bragg reflections follow a

pattern of a strong spot followed by two weak spots. In certain areas, the weak spots

may be too weak to resolve. In these areas, two spots will be skipped, resulting in a

vector of length 3c*.

3.2.4 Extracting Components of a* and b* Perpendicular to

c*

Next, the components of a* and b* perpendicular to c* were found. This was done by

projecting all the spots in reciprocal space into the plane perpendicular to c*. After

projections, these spots form a 2 dimension lattice with lattice vectors equal to the
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Figure 3-3: A histogram showing the distribution of distances between adjacent Bragg
reflections along the (h,k) rods. The peak at 0.062 A corresponds to c*. There are
peaks at 2c* and 3c* because occasionally one or two Bragg reflections do not appear.
The fact that the peak at 3c* is more intense than the peak at 2c* implies that Bragg
reflections are usually skipped in pairs.

Figure 3-4: A region of reciprocal space in which the Bragg reflections follow a pattern
of one strong spot followed by two weak spots.



components of a* and b* perpendicular to c*. These lattice vectors were found by

doing a least squares fit of the a* and b* onto the measured data. The mean squared

error was calculated by averaging the square of the distance between each data point

and the closest point in the lattice formed by the chosen a* and b*. The values of a*

and b* were adjusted to minimize this error.

3.2.5 Extracting Components of a* and b* Parallel to c*

Finally, the components of a* and b* parallel to c* were found. This was done by a

least squares fit similar to the one done in Section 3.2.4. The mean squared error was

calculated by averaging the square of the distance between each point and the closest

predicted spot. The values of a* and b* parallel to c* were adjusted to minimize the

mean squared error.

3.2.6 Calculating Errors

To calculate the errors, I first indexed the spots by assigning the h,k,l indices of

the closest predicted spot to each experimental spot. Next I calculated the root

mean squared error between the actual spot and predicted spots both along c* and

perpendicular to c*. The error perpendicular to c* was divided by V2 to give the

error per dimension.

3.2.7 Final Unit Cell Parameters

The final step of the analysis was to invert the reciprocal space unit cell to give

the real space unit cell. The equations for inverting the unit cell are identical to

Equations 1.9, 1.10, and 1.11, but with the real space and reciprocal space vec-

tors switched. The most convenient way of expressing the unit cell dimensions is

to specify the magnitudes of a, b, c, and the angles between. Figure 3-5 shows the

crystallographic convention for defining the three angles. The errors in a, b, and c

were calculated by assuming that a and a* have the same percent error, b and b*

have the same error, and c and c* have the same percent error. The percent errors



in the angles were determined by taking the rms-average of the percent errors in the

two sides next to that angle. For example, the percent error in -y is the rms-average

of the percent errors in a and b.

p

p

U

Figure 3-5: Crystallographic convention for defining the unit cell parameters. The
magnitudes of a, b, and ' and the angles between them are specified. The angle
between a and b is -y, the angle between b and ' is a, and the angle between a and '
is 0

3.3 Comparison of Unit Cells

For the thick cholesterol arc at 100 K described in Section 3.1, the unit cell para-

meters were a=(12.00.2)A, b=(12.00.2)A, c=(102±5)A, a=(89±3)o, ,3=(97±3)o,

-y=(101.1±1.7)0 . Measurements were also taken on a thinner, truly helical low-pitch

ribbon at room temperature also taken out of CDLC. The unit cell parameters for this

crystal were a=(12.1±0.4)A, b=(12.1±0.4)A, c=(102=5)A, a=(90±3)o, 3=(97±3)o,

y7=(10 2 ± 2 )0 . These two lattices are identical to within the experimental errors. For

comparison, the lattice dimensions for cholesterol monohydrate (ChM) are a=12.39A,

b=12.41A1, c=34.36A1, a=90.04, /3=98.10, -=100. 8 0. All the unit cell parameters for

the helical ribbons match the unit cell parameters for ChM except for c. The value

of c for the helical ribbons is 3 times the value of c for cholesterol monohydrate. This

/ 4y
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implies that the unit cell for helical ribbons is 3 ChM unit cells stacked on top of each

other along the c direction, and that the structure of the ribbons may be the same

as the structure of ChM, but with a superlattice modulation.

3.4 Superlattice Modulations

If we examine the h,k rods for the diffraction images, we see that there are no inter-

mediate spots in rods corresponding to h = -k. The spacing between adjacent Bragg

reflections along the (h,-h) rods is 3c*, which is identical to the spacing that would

be expected for ChM. As described in Section 1.3, this implies that the superlattice

modulation consists of shifts perpendicular to the plane in which there are no inter-

mediate spots. For the helices, there are no intermediate spots in the (h, -h, 1) plane,

so the direction of the shifts is along the ' + b direction.

3.5 Helices from Model Bile In Solution

In addition to making measurements on ribbons from CDLC taken out of solution, I

took measurements for a model bile ribbon in solution. For a sample in a capillary,

it is difficult to aim the beam at the ribbon, because it is nearly invisible once it is

sealed in the capillary, and also because the capillary has a large thickness. For these

reasons, we could only take one image from the sample. Also the spot intensity was

low compared to the background noise, even after subtraction, so not many spots

could be resolved. Also, for a fully helical ribbon the curvature angle of the crystal

is 360', so the Bragg reflections are stretched into circles instead of Bragg arc. For

these reasons, the unit cell parameters could not be extracted from the raw data.

Instead, I compared the diffraction image to the pattern predicted using the unit cell

extracted from ribbons in CDLC, to determine if the image is consistent with the

unit cell found using ribbons from CDLC out of solution.

Figure 3-6 shows the image obtained from the ribbon in model bile. The dotted

line shows the axis of helical curvature. The Bragg reflections form circles around



this axis in reciprocal space, so the observed diffraction pattern will be symmetric

about the axis of curvature. Half of the image on one side of the dotted line has

been covered with boxes marking the location of spots predicted by the unit cell from

ribbons in CDLC. As can be clearly seen, the image matches the predictions of the

unit cell for ribbons in CDLC. This indicates that fully helical ribbons in model bile

also have a structure similar to ChM but with superlattice modulations.

3.6 Growth Direction

The helical ribbon are much longer along one direction compared to the other two

directions. If a helical ribbon is stretched out, it's length will be at least an order of

magnitude larger than it's width and thickness. This indicates that the crystals grow

primarily along one direction. This growth direction can be compared to the unit cell

by noting the orientation of the crystal on the sample holder before it is placed into

the beamline, and then comparing the orientation of the crystal to the orientation of

the diffraction patterns. By doing this, we observe that the growth direction is along

the b direction for low pitch helices.

The fact that the pitch angle of the helices is 110 indicates that the growth di-

rection is offset from the plane perpendicular to the curvature axis by 110. In other

words, the growth direction is offset from the axis of curvature by 1010, indicating

that the axis of curvature is also along a crystal axis.



Figure 3-6: A diffraction image taken from a helical ribbon from model bile in solution.
The dotted line indicates the axis of helical curvature. The diffraction pattern is
symmetric about this axis. The top, left half of the image has been covered with
boxes indicating the pattern predicted by the unit cell obtained for helical ribbons in
CDLC taken out of solution. The predictions match the experimental data, indicating
that ribbons in model bile in solution are consistent with the structure obtained from
CDLC ribbons.
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Chapter 4

Discussion

4.0.1 Superlattice Modulations

The unit cell of helical ribbon crystals is similar to that of cholesterol monohydrate

(ChM) crystals. The unit cell of cholesterol monohydrate has 8 cholesterol molecules

in a bilayer configuation with the molecules aligned with their long axis along the c

direction. In between the two layers of cholesterol molecules, there is a plane with 8

hydrogen-bonded water molecules parallel to the ab-plane [15, 16]. The values of a, b,

and 7-y for helical ribbons are very close to those for ChM. Also, the molecules in the

ChM unit cell have translational pseudosymmetry in the ab-plane, which causes the

structure factor to be 0 when both h and k are odd [17]. In our diffraction patterns

for helical ribbons, we see the same pattern of Bragg reflections with odd h and odd

k vanishing. These observations indicate that helical ribbons likely have the same

configuration of cholesterol and water molecules in the ab-plane ChM.

The key difference between the helical ribbon crystals and ChM crystals is the

arrangement of planes relative to each other. ChM crystals have a crystal structure

that repeats every bilayer, resulting in a unit cell for which the length of c is approx-

imately equal to two cholesterol molecules. However, helical ribbons have a unit cell

that has a value of c three times the value for ChM. This indicates that the arrange-

ment of planes in helical ribbons has a period of 3 bilayers, or 6 cholesterol molecules.

We were able to determine the direction of the relative shift between planes from



our data. We observed that spots separated by c* do not appear in the (h,-h, 1)

plane, which indicates that the planes are shifted relative to each other along the d|b

direction.

One possible explanation for the relative shift of planes is the curvature of the

helices. Due to the curvature, the length of the outer surface of the ribbon is longer

than the length of the inner surface of the ribbon, so a periodic slippage of the inner

and outer layers will occur. If this is the case, the direction of slippage, d' + b, should

be perpendicular to the axis of curvature.

Another possible explanation is that there is a different pattern of water molecules

between layers, altering the registration of the bilayers. Such a structure is observed

in the cholesterol derivative stigmasterol [18]

Recent studies of cholesterol crystals on the air-water interface [18, 19], as well as

diffraction electron microscopy studies of cholesterol films in bile [20] provide insight

into the pathway by which helical ribbons may be formed. Both studies show that

cholesterol crystals which are only a few molecular layers thick have rectangular unit

cell, with a = 10 and b = 7.5 A. As the thickness increases, the rectangular unit

cell transforms into the triclinic unit cell of bulk ChM [19]. As the unit cell changes,

so does the hydrogen-bonding arrangement of the water molecules interleaving the

cholesterol layers. In the triclinic ChM, the mesh of the hydrogen bonds is relatively

isotropic, while in the rectangular cell crystals the hydrogen bonds generate a stripe-

like network, which is oriented along b [19]. As these initial rectangular strips grow

thicker, the arrangement of cholesterol layers converts to the lattice of ChM, which we

observe. It is conceivable that, during the growth process, the re-arrangement of water

molecules between layers lags behind the rearrangement of cholesterol molecules and

produces a hybrid structure showing the superlattice modulation we observe along

the c direction.

4.0.2 Pitch Angle

We have demonstrated that the helical ribbons having pitch angle of 110 in CDLC and

model bile are constituted of coiled single crystal strips. These strips have a crystal



structure very similar to that of cholesterol monohydrate. The essential difference

between these two structures is in the tripling of the size of the unit cell along the c

axis for our helices. The plane of the strip lies in the ab-plane, while the direction of

preferred growth, i.e. the long edge of the strip lies along the b-axis. Since the angle

between a and b-axes is 1010, the angle between the perpendicular to the edge of the

ribbon and the a-axis is 110, which coincides with the observed pitch angle. Thus,

it appears that the preferential bending direction in low pitch helices is along the a

crystallographic axis.
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