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Abstract

Superconducting quantum circuits (SQCs) are being explored as model systems for
scalable quantum computing architectures. Josephson junctions are extensively used
in superconducting quantum interference devices (SQUIDs) and in persistent-current
qubit systems. Noise excitations, however, have a critical influence on their dynamics.
Thus, the primary focus of this research was to investigate the effects of thermal ac-
tivation on the superconducting properties of Josephson junctions. Specifically, ther-
mal noise tends to result in a range of switching currents, values less than the critical
current at which a junction switches from the superconducting to the normal state.
First, a general review of superconductivity concepts is given, including a treatment
of the Josephson phenomena. Next, I describe some of my work on characterizing the
current-voltage traces of Josephson junctions tested at 4 K with a Multi-Chip Probe
(MCP). Then, I describe thermal activation theory and examine the equations useful
for modeling switching current distributions. The Josephson junctions of a SQUID
with a ramped bias current were tested for numerous temperatures T < 4.5 K (and
with various magnetic flux frustrations). Fit parameters of critical current, capaci-
tance, resistance, and temperature were determined from modeling the escape rates
and switching current probability distributions. The thermal activation model suc-
ceeded in fitting the results to good agreement, where parameters C = 2.000 ± 0.002
pF and T = 1.86 ± 0.06 K were obtained for 1.8 K data. For significantly lower
temperatures, the model tends to predict higher than expected temperatures; further
analysis would need to include the quantum mechanical tunneling model better in
the fitting scheme.
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Chapter 1

Introduction

1.1 Motivation

H. Kammerlingh Onnes' discovery in 1911 of vanishing electrical resistance in a cooled

mercury sample yielded the first example of superconductivity [1]. Since then, the

phenomenon of superconductivity has had many far-reaching implications for con-

densed matter physics. While the resistivity in normal metal conductors gradually

diminishes as the temperature is lowered, the resistance never completely vanishes.

Superconductors, however, are characterized by a drastic drop to exactly zero elec-

trical resistance below some critical temperature T, (Tc < 20 K for most ordinary

superconductors). Thus, currents in superconductors could theoretically persist for-

ever without any appreciable decrease due to the absence of resistance. In 1933,

Meissner and Ochsenfeld demonstrated that superconductors also actively expel all

external magnetic fields from their interior [2], an effect which was later explained by

the London equations. Then, in 1957, Bardeen, Cooper, and Schrieffer formulated

the microscopic theory of superconductivity [3], whose effects could be observed on

the macroscopic scale.

We now know that superconductivity is not merely the perfect limit of classi-

cal conductivity but that it is a special thermodynamic phase correctly described

by quantum mechanics. Today, superconductors are employed in the world's most

powerful electromagnets, such as magnetic resonance imaging (MRI) machines and



particle accelerators. They are also used to make sensitive measurements of the mag-

netic flux quantum, (o = hc/2e, in unique magnetometers called superconducting

quantum interference devices (SQUIDs).

Superconducting quantum circuits (SQCs) are now sought after as model compo-

nents for quantum computing [4]. These macroscopic systems are based on special

thin insulating barriers (-10 A) separating two superconducting materials called

Josephson junctions. They can be driven by external fields and demonstrate quan-

tum two-state dynamics, making them ideal candidates for quantum bits, or qubits

[5]. Just as conventional computers process bit logic (0 or 1) with transistors, quan-

tum computers can store information in quantum variables using qubits. SQCs are

promising qubit systems because of their ease of design, fabrication, and scalability.

However, there are still major challenges towards reducing decoherence times and

controlling the dynamics of SQCs before they can be realized in a large-scale quan-

tum computer. My goal is to evaluate some of the dynamics of these devices and be

able to extract important parameters of their superconducting properties.

1.2 Overview of Applications

Superconductivity was initially only exhibited in certain metals when cooled to liquid

helium temperatures (4.2 K). Helium cooling is quite complex and expensive, however;

advanced helium dilution refrigerators today are capable of cooling down to -10

mK but are costly to build and maintain. Fortunately, discoveries during the 1980s

revealed superconductivity at much warmer critical temperatures in ceramic materials

such as LaBa 2CuO4-_ (30 K) [6], YBa 2Cu 30, (93 K) [7], and Hg 2Ba 2Ca 2Cu 3O0

(130 K) [8]. Since liquid nitrogen cools at 77 K, these new high-T, materials could

achieve superconductivity with cheaper, alternative methods to liquid helium cooling.

High-temperature superconductors (HTS) now have significant roles in electric power

applications as superconducting magnetic energy storage devices, power cables, and

transformers. .Further advances in this technology have implemented cheaper and

more abundant metals (e.g. Cu, Fe, Mg, B) in HTS alloys, which have promoted



their use in research and in industry. [9]

Josephson junctions have also stirred significant interest with their important ap-

plications to SQCs. Josephson junctions permit superconducting current to pass

through in the form of quasi-particle (electron) tunneling when cooled to sufficiently

low temperatures T < T,. The nonlinear dynamics and other unique properties of

Josephson junctions make them suitable for implementation in SQCs. Two Joseph-

son junctions in parallel can be fashioned in a superconducting ring that can detect

infinitesimal changes in magnetic flux at the scale of a single flux quantum, 0o. These

aforementioned devices are known as SQUIDs, and because of their incredible preci-

sion, they are commonly used as magnetometers for sensing minute magnetic fields

[10], such as those generated in living organisms. Superconducting Josephson junc-

tions have also found numerous other uses as infrared detectors, microwave generators,

voltmeters, computer logic and memory devices, oscillators, and spectrometers [11].

1.3 Current Research Efforts

Great strides are continuing to be made towards realizing fully functional qubits for

use in quantum computing. The strong collaboration between MIT Lincoln Labora-

tory and Prof. Terry Orlando's group at MIT's Research Laboratory of Electronics

(RLE) attests to the commitment in improving the design, fabrication, and testing of

SQCs. Their ongoing research efforts have already yielded exciting knowledge about

Josephson junctions and their performance in SQUIDs and persistent-current (PC)

qubits. They have thoroughly investigated energy relaxation times [12][13], decoher-

ence [14], inductance effects [15], microwave-induced cooling [16], resonant readouts

[17], and other dynamics of niobium PC qubits using Josephson junctions [18][19].

They continue to study and enhance these qubits as model systems for scalable quan-

tum computing architectures [20][21].

I have been working at MIT Lincoln Laboratory under the mentorship of Dr.

William D. Oliver, who collaborates extensively with the Orlando group at RLE.

I developed software that evaluates the current-voltage characteristics of Josephson



junctions tested with various probes at cryogenic temperatures. I also accumulated

the results in a novel database management system and built wafer maps from ag-

gregate data that has helped to improve the custom design and fabrication process

of Josephson junction chips produced at MIT Lincoln Laboratory. A major concern

when testing SQCs is determining the effects of noise on the device performance.

The presence of thermal noise can produce undesirable consequences for Josephson

junctions, which can be excited from their ground superconducting states to their

normal conducting states. These switching events can occur randomly within a range

of bias currents depending on the temperature and the magnetic flux applied to the

SQUID. The primary focus of my investigation has been analyzing the switching cur-

rent distributions of SQUID junctions under a ramped bias current tested at various

temperatures T < 4.5 K. I attempt to use thermal activation theory to extract rel-

evant parameters from the distributions, such as the critical current, capacitance,

resistance, and temperature. Finally, I describe future work where quantum mechan-

ical tunneling can potentially explain aspects of the switching current dynamics at

base temperatures (T < 50 K) when the thermal activation model breaks down.



Chapter 2

Theory of Superconductivity

2.1 The Meissner Effect

To understand superconducting quantum circuits, it is fitting that we begin with

a review of superconductivity. Much of the treatment here is taken directly from

Tinkham [22], Solymar [23], and Kittel [24]. One of the defining characteristics of su-

perconductors is that when cooled to below some critical temperature, usually a few

degrees Kelvin, they enter into the superconducting phase characterized by absolutely

zero electrical resistance. Superconductors also possess the unique ability to eliminate

any externally magnetic fields from their interior (see Fig. 2-1(a)). If a normal con-

ductor were cooled to a state of zero electrical resistance, any external magnetic field

would be sustained through the conductor's interior. If a magnetic field is applied

to a superconductor above its critical temperature, the field penetrates through the

material, but once it is cooled and enters its superconducting phase, all internal flux

is completely expelled by the emergence of circulating surface currents that perfectly

cancel the external field. This phenomenon, distinct from mere perfect diamagnetism

with zero resistance, is peculiar to superconductors alone and is known as the Meiss-

ner effect. The principle of the Meissner effect was later correctly explained by the

London equations, which will be described in the next section.

Just as superconductivity can be destroyed beyond a critical temperature, the

reverse Meissner effect can occur beyond a critical magnetic field. For a given tem-
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Figure 2-1: Effects of magnetic field on a superconductor. (a) Upon transitioning to
below Tc, any external magnetic field is expelled from the interior with London pene-
tration depth AL at the superconductor surface. (Figure reproduced from Tinkham.)
(b) Parabolic relationship between critical magnetic field B, and temperature that
divides the normal and superconducting states.

perature T < Tc, a certain magnetic field strength provides exactly enough magnetic

energy to make up the free energy difference between the normal and superconducting

states. This principle is well approximated by the parabolic relationship

Be(T) Bc(0)(1 - (T/Tc) 2) (2.1)

which is illustrated in Fig. 2-1(b)

Type I superconductors are bulk materials that completely repel any internal

magnetic fields from their interior. However, materials that possess some impurities

permit magnetic fields to penetrate through holes, or filaments, along the length of

the superconducting interior. The filaments are regions in the normal conducting

state and are surrounded by vortices of superconducting current. These materials



are known as Type II superconductors. They act perfectly diamagnetic up to a

certain critical field BI, just like Type I superconductors, but then permit partial flux

penetration gradually up to a higher critical field B,2 , beyond which superconductivity

is completely destroyed. Type II superconductors, thus, are distinguished by their

mixed-state Meissner effect between B,1 and B,2 where superconductivity can be

sustained at higher fields while gradually broken down.

2.2 The London Equations

F. and H. London were able to explain the findings of Meissner and Ochsenfeld [25].

They first assumed that conduction electrons in the superconductor carry the persis-

tent supercurrent without any friction, or resistance. The electron motion for perfect

conductivity is described by
dvm = -eE. (2.2)dt

The supercurrent density, given by J = -nev where n, is the superconducting

electron density, can now be combined with the equation of motion to yield the first

London equation:
8J m

A = E; A = ne2 (2.3)at 'n,e2
The London brothers realized that the above equation merely defines what they called

the "acceleration theory", which just describes electron acceleration without friction.

They took their first equation as a starting point for discovering where superconduc-

tivity fundamentally deviates from normal conductivity. Coupling Eq. 2.3 with the

Maxwell equations V x E = -(1/c)dB/Ot and V x B = (4ir/c)J, we arrive at the

equation

Vx VxA = -- 4r (2.4)
at C2 at

Now using the vector identity V x (V x C) = V(V C) - (V- V)C and the Maxwell

equation V - B = 0, we obtain

BB 4i OB
AV 2  

-4- a. (2.5)
at c2 a



Finally, integrating with respect to time, we immediately find that one particular

solution to this equation is DB/&t = 0 or B = B0 , which maintains the initial

magnetic field at time t = 0 for all time t. This is true for normal conductors with

no electrical resistance, but we know that all applied magnetic field is quenched from

the interior in superconductors due to the Meissner effect.

Since Eq. 2.3 alone is inadequate to describe the effects of a magnetic field on

superconductors, the London brothers subsequently reverted to a more quantum

mechanical approach. Using the vector potential A and the canonical momentum

p = my - eA/c for electrons, F. and H. London assumed that the superconducting

ground state is characterized by zero net momentum (p) = 0. Therefore, the average

velocity of superconducting electrons is

e
(vS) = -A. (2.6)

mc

The definition of the supercurrent density now gives us a much more fundamental

equation:

J = -ne(v) = - A = -- A. (2.7)
mc Ac

If we use the particular gauge V -A = 0 (also known as the London gauge), then the

time derivative of the above equation yields the first London equation (Eq. 2.3) and

the curl yields the more significant second London equation:

1
V x (AJ) = -B. (2.8)

c

Extending the second London equation with the Maxwell equations V x B = (47r/c)J

and V -B = 0 elegantly explains the Meissner effect with

V 2 B = 4 B = B. (2.9)

This equation reveals that the field B cannot be uniform in space unless B = 0.



Therefore, Eq. 2.9 only has the exponential solution

B(z) = B(0) exp(-z/AL), (2.10)

indicating that the magnetic field drops quite abruptly at the surface with the char-

acteristic depth

AL= (Ac2 ) 1/2 (mC 2 2)1/2 (2.11)AtL -4 \7ne (2.11)
47r 47rse2

The parameter AL is known as the London penetration depth, qualitatively describing

that the magnetic field exponentially decays at the surface and is effectively zero

throughout the interior of the superconductor. Thus, the London equations were

able to theoretically explain why magnetic fields are not simply "frozen in" as in

normal conductors but are completely forced out in the superconducting phase.

2.3 The BCS Theory

Bardeen, Schrieffer, and Cooper (BCS) developed a powerful microscopic theory that

explained the principle of superconductivity in 1957 [3]. The complete derivation

of the BCS theory is quite cumbersome for any formal treatment here. I will only

summarize its major findings and implications. The principal tenets of the theory are

as follows:

1. The Fermi sea of electrons is unstable unless there is at least a weak attrac-

tive interaction between two electrons. Lattice deformations cause two distant

electrons of opposite spin and momentum to become weakly coupled in special

bound states called Cooper pairs. These electrons exchange phonons, units of

vibrational energy, through the crystal lattice in the superconducting material

and can thus be bound across thousands of atomic spacings.

2. The binding interaction of Cooper pairs in states (k T, -k 1) leads to the

existence of an energy gap between the Fermi ground state and the quasi-particle

excited state of superconducting systems. Their predictions agreed well with



quantitative measurements of the energy gap. BCS formulated that this energy

gap was the minimum energy Eg = 2A required to break apart a Cooper pair

into its two constituent quasi-particles.

3. The London equations follow from the treatment of the wavefunctions for the

superconducting states. Thus, the BCS assumptions were successfully able to

explain the Meissner effect. They also formulated a more robust version of

the London penetration depth, AL, that identifies the extent of magnetic field

penetration. In addition, they corroborate Ginzburg-Landau (GL) theory by

characterizing the separation of the electrons bound in a Cooper pair with the

coherence length (. Treating this parameter as the inherent extension of the

wavefunction that describes the center of mass motion for the Cooper pairs,

they define the intrinsic coherence length

hVFS= rA( (2.12)

where vyF is the Fermi velocity and A(0) is the energy gap parameter at zero

temperature. The energy gap's temperature dependence is predicted to be

A(T) T T 1 / 2

A(T) 1.74 1 - /2(2.13)

A (0) TC

4. Since the BCS ground state involves Cooper pairs of charge 2e, magnetic flux

through a superconducting ring must be quantized in units of charge 2e.

BCS theory is essentially based on the argument that the formation of Cooper

pairs lowers the ground state energy of superconductors below that of the free elec-

tron Fermi state. Cooper pairs can produce quasi-particles (electrons) that can tun-

nel through from one superconductor to the next across a Josephson junction, for

example, and then re-establish the bound Cooper state. This is the source of the su-

perconducting electron tunneling, or Josephson current, that flows across a Josephson

junction. Superconductive tunneling in this manner can occur at zero voltage, but if

the voltage is increased to V = Eg/2e = A/e for normal-superconductor (NS) tun-
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neling or to V = A/e for superconductor-superconductor (SS) tunneling, the ground

state is broken and the barrier subsequently exhibits normal conductivity following

Ohm's law. Electron tunneling between two normal conductors, a superconductor

and a normal coductor, and two different superconductors is illustrated in Fig. 2-2,

along with their respective current-voltage characteristics.

2.4 The Josephson Phenomena

B. D. Josephson discovered that an extremely thin (-10 A) insulating layer between

two superconducting materials permits superconducting current to pass through up

to a critical current value Ic at zero voltage [26]. These devices are now known as

Josephson junctions. An image of some actual junctions fabricated and tested at MIT

Lincoln Laboratory is shown in Fig. 2-3(a). The BCS and GL theories helped to prove

that it is simply quasi-particles from Cooper pairings that tunnel through to generate

this current. Cooper pairings across the whole superconductor lower the energy of

the material by a slight amount, called the "condensation energy", which is sufficient

enough to lock the pairs into essentially a Bose-Einstein condensate with a common

phase. This phase coherence allows us to describe the entire superconducting state

with a single wavefunction and common macroscopic phase, " = jIle .

Now imagine two superconductors with respective phases ¢1 and 2 separated by

a distance d of only a few atomic spacings. As d - 0, the phases become coupled in

a way that permits electron tunneling across the barrier. If Cooper pairs tunnel out

to the same energy in the neighboring superconductor, then the DC Josephson Effect

is observed. Josephson showed that in the case of weak coupling (and no magnetic

field), the superconducting current density across the junction

J = Jc sin ' (2.14)

oscillates with respect to the phase difference -- 02 - 1 and with maximum critical

current density J,. The rate of change in ' is related to the potential energy difference



(a) Micrograph of Josephson (b) Josephson junction model
junctions

Figure 2-3: Josephson junctions. (a) Optical image of Josephson junctions fabricated
and tested at MIT Lincoln Laboratory. (b) Simplified wavefunction model of Joseph-
son junction separating two superconductors with respective macroscopic phases ¢1

and 2.

across the junction (in CGS units):

dq4 2edo - V. 2(2.15)
dt hc

If the DC voltage is increased across the junction, then the current will oscillate at

high frequencies but average to zero in a plot of current vs. voltage. The current

remains at zero until the gap voltage V. = 2A/e is reached, at which point Cooper

pairs dissociate and release single electrons that exhibit normal tunneling across the

junction. The junction thus gains a finite voltage and returns to its normal state,

with Ohmic resistance Rn. Ambegaokar and Baratoff later discovered that for two

idential superconductors, the critical current density has the temperature dependence

Jc = 2r tanh (2.16)2eR,, 2kBT) 7

where A(T) is the temperature-dependent energy gap parameter [27].

If Cooper pairs tunnel out to a lower energy owing to differences in electrochemical



potentials, then photons are released with an energy that makes up this difference:

hv = 2eV. (2.17)

Because the relative phase difference ¢ has a time evolution of e- iEt/l' , the current I

will be induced to oscillate at the corresponding frequency v, typically at microwave

levels. This is called the AC Josephson Effect, and applying a high-frequency voltage

induces DC current in harmonic steps in relation to the applied frequency. First

observed by Shapiro [28], these steps were found to occur at integer multiples of

hv/2e.

An applied magnetic field has an important effect on the Josephson current. With

a magnetic field aligned perpendicularly to the direction of current and in the plane

of the Josephson junction, the zero-voltage Josephson current exhibits resonances for

specific values of the external field. Thus, Eq. 2.14 can now be modified to include

the gauge potential:

J = Jcsin (- JA. -ds). (2.18)

Integrating along a path enclosing the entire junction and using Stokes' Theorem, we

find that

J = J,, sin -27r , (2.19)
where 4D is the total magnetic flux and o = hc/2e is the magnetic flux quantum (the

value 4/4o is known as the frustration). Thus, the Josephson current should exhibit

nodes at intervals of characteristic fields B0 , 2B 0 , 3B 0 , etc. In fact, the maximum

supercurrent across the junction is described by

Ssin (T(I/@o)°)
Imax = Ic I sin(r/ ) (2.20)

This is simply the absolute value of the first spherical Bessel function, and the current

exhibits a "single slit" diffraction pattern (see Fig. 2-4(a)).

Two parallel Josephson junctions in a superconducting circuit demonstrate the

best example of flux quantization. If 4 now describes the total flux through the ring



containing the two equivalent junctions, the maximum supercurrent measured in the

device is given as

Imax = 2Ic cos (ir (2.21)

These instruments, as previously mentioned, are known as superconducting quantum

interference devices (SQUIDs) and are practical magnetometers for sensitive mea-

surements of the magnetic field. The DC SQUID is the primary device of interest in

my study of thermal activation theory.
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Figure 2-4: Magnetic field effects on the supercurrent. (a) The effect of a magnetic
field on a Josephson junction's maximum supercurrent, where ( is the flux across
the junction; nodes occur at characteristic fields B0 , 2Bo, 3B 0 , etc. (b) The periodic
effect of a magnetic field on the maximum supercurrent for a SQUID; here, 4 refers
to the flux through the entire superconducting loop. A SQUID is thus an excellent
magnetometer for measuring integer multiples of the magnetic flux quantum, (o.



Chapter 3

Characterizing Josephson

Junctions

3.1 The Multi-Chip Probe

A major initiative at MIT Lincoln Laboratory has been concerned with testing

Josephson junctions at room temperature (RT) and cryogenic temperatures (-4 K).

The fabrication of these devices on wafers of chips continues to be improved through

constant testing and analysis feedback. I initially started with analyzing data col-

lected from a Peterson Probe, capable of testing a chip containing numerous Joseph-

son junctions at RT or at 4 K. Much of this work was already accomplished and

documented extensively by Keith Brown [29]. He developed MATLAB programs to

characterize the current-voltage (I - V) readouts of tested junctions and deduce cer-

tain important parameters, such as the gap voltage, knee voltage, normal resistance,

critical current, etc. His software was also able to screen valid junctions from those

with more erratic behavior, such as leaky, shunted, resistive, shorted, and open junc-

tions. I helped to build from Keith's existing software by slightly improving its code

and embellishing on the analysis.

In characterizing Josephson junctions, however, my efforts have primarily concen-

trated on testing with a Multi-Chip Probe (MCP). The MCP can house up to two

printed circuit boards (PCB), each of which contains seven individual chips. Each



chip contains 24 contact pads and 24 grounding pads, where each junction can be

individually tested with a standard four-point test. A switching matrix connected

to the device electronics allows one to control the four-point channels (V+, I+, I-,

V-) for testing the junction of interest. After cooling the apparatus to 4 K in a 4 He

dewar, an I - V trace for each junction was recorded on an oscilloscope and saved by

a computer. Data collected from the MCP was managed by Terry Weir as part of the

Low Temperature Superconducting Electronics (LTSE) and Deep Submicron (DSM)

programs at MIT Lincoln Laboratory. I designed my own MATLAB software that

processed the MCP data, and likewise identified junctions as valid, leaky, shunted,

resistive, shorted, or open. My programs also evaluated relevant junction parame-

ters, which were all stored in a new database management system as well as used for

subsequent aggregate analysis of entire wafers.

3.2 Current-Voltage Characteristics

I characterized the I - V traces from MCP data in a similar manner to that already

outlined by Keith Brown in his analysis of Peterson Probe data [29]. The MATLAB

program I designed first screens for any null data and then for junctions that are

open, short, or completely resistive. It then proceeds to categorize any shunted or

leaky junctions before finally analyzing valid junctions. The program is based on

searching for significant changes in slope in the I - V trace; it attempts to detect the

sub-gap voltage, Vsg, at the first inflection point as well as the knee voltage, Vknee,

at the second inflection point. The energy gap parameter in terms of voltage can be

deduced by the relation
A= V'g + Vknee Vg (3.1)

4 2

Finally, the program models the linear Ohmic behavior at either ends of the I - V

trace to determine the normal resistance R&. A sample I - V trace analyzed with

relevant parameters displayed for a valid junction is illustrated in Fig. 3-1(a).

All data for each test structure relating to junction diameter, critical current,

normal resistance, sub-gap and knee voltages, etc., was collected in a novel MCP
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database. As data for an entire wafer was accumulated in the database, an overall

analysis was produced. A whole wafer comprises a 5 x 5 square array of dice (identified

by columns A - E, rows 1 - 5) One of the several methods for surveying the wafer was

to consider the critical current density, J,, for each die across the wafer. A wafer map

of J, for wafer 06-12-10 is shown in Fig. 3-1(b). The various wafer maps and data

summaries were very helpful towards observing the results of optical and process bias

as well as towards redesigning more enhanced future DSM chips.



Chapter 4

Theory of Thermal Activation

4.1 The Washboard Potential

The theoretical models of Josephson junctions outlined in Sec. 2.4 are realized at the

ideal temperature T = 0. We shall now like to investigate how thermal fluctuations

can affect the dynamics of superconducting Josephson junctions. The phase of a

Josephson junction resting in its energy potential is analogous to a mechanical bead

situated on a corrugated washboard. In the absence of noise, the washboard is flat

and the bead remains in one of the wells. This corresponds to the phase of a junction

remaining in a potential well locked in the superconducting V = 0 state. Noise can

cause the washboard to tip at an angle, however, allowing existing potential and

kinetic energy to cause the bead to roll down into the neighboring well, or depending

upon how tilted the washboard is, to continue running freely down the entire potential.

This action represents the phase of the junction switching to the normal conducting

V $ 0 state with a maximum observed critical current I, < 1co, where Ico is the ideal

critical current at T = 0. There is a small probability of retrapping the phase in the

next well, sustaining it in a V = 0 steady state, but we assume this probability to

be negligible compared to the likelihood of transitioning into the V = 0 free-running

state for some given time interval. [30][31]

The thermal activation model assumes a Stewart-McCumber circuit model for

a Josephson junction in parallel with resistance R and capacitance C under a bias
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Figure 4-1: Thermal activation theory was tested with these models. (a) The Stewart-
McCumber circuit model contains a junction in parallel with a resistor R and capacitor
C under the influence of a bias current I. (b) The washboard energy potential for
the junction phase; the potential tilts at increasing angles for increasing values of
x = I/I . The junction switches to the normal conducting state if it can thermally
overcome the energy barrier E. (Figures reproduced from Fulton and Dunkleberger.)
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current I (see Fig. 4-1(a)). We can use the Josephson equations

V dV do
I = Icsin ± + + C 22rV = (oo (4.1)

R dt dt

to obtain the second-order differential equation

I 1 d 1 d2  (4.2)
x = = sin + (4.2)

Ic 07 dt wo dt2

where 7y = RC and w0 = (2xrIc/ýoC)1/2 is the natural frequency for the potential

well. We represent the energy function as a cosine potential, where the potential is

tilted at an angle proportional to the bias current I. If E denotes the energy barrier

that must be overcome for the junction to switch from the initial superconducting

V = 0 state to the normal V # 0 state, we can model the energy for some fixed I

and Ic as

E = (Ic o/27r) [x(2 sin 1 x - 7r) + 2 cos(sin 1 x)]. (4.3)

The theoretical model of E with respect to x is shown in Fig. 4-2. We notice that when

no bias current is supplied (x = 0), the energy is at its maximum and corresponds to

the steady superconducting state. However, as x -+ 1, the energy E diminishes until

there is no barrier sufficient to retain the ground superconducting state, and so the

junction switches out to the normal conducting state.

4.2 Escape Rates

Sufficiently deep potential wells will confine the Josephson phase to the supercon-

ducting state. With the application of a bias current, however, we find the plasma

frequency of oscillations in a potential well is given by

W = wo(1 - x 2 ) 1/ 4 . (4.4)
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Figure 4-2: Theoretical dependence of E on x = I/Ic (as given by Eq. 4.3) where E
is expressed in units of Ico/ir. (Figure adapted from Fulton and Dunkleberger.)

The damping factor is denoted by

Q = wpRC. (4.5)

In the regime kBT > hwp, thermal activation can cause escape from a potential well

to the free-running state where d¢/dt oc V > 0. Thus, the presence of thermal noise

forces the junction to switch with an observed critical current I, less than the ideal

critical current Ic0 of zero temperature. The escape rate for this thermal activation

is a fundamental property of the junction for some fixed bias current [321:

7j - 1 = Ft = at(wp/27r) exp(-E/ksT). (4.6)

The prefactor

at = 4/[(1 + QkBT/1.8E)1/2 + 1]2 (4.7)

is essentially unity for the underdamped limit, .wo-y > 1, which is the condition at

which we tested the theory (Kurkijarvi has worked out the solutions for escape rates



in the high damping limit [33]). Finally, we observe that Eq. 4.6 altogether depends

on the independent parameters of the critical current Ic, the capacitance C, the

resistance R, and the temperature T.

For suitably low temperatures, quantum effects can dominate. The junction phase

can quantum mechanically tunnel through the energy barrier and thus switch out to

a V h 0 normal state. For the quantum realm (kBT < hwp), wavefunction tunneling

through the potential barrier occurs at a rate

7-q = = q- aqWp exp ( 2E 1 + (4.8)

where the prefactor aq [1207r(7.2E/hwp)]1/2 for the ideal T = 0. Notice that the

temperature T does not appear in this equation since we expect to be in the ideal

quantum state; thus, this model only relies on varying the three parameters Ic, C,

and R.

Using the thermal activation and quantum mechanical tunneling models, Devoret

et al. proposed expressing the escape rate in terms of an "escape temperature", Tesc,

regardless of whether it was in the thermal regime or the quantum regime [32]. Thus,

the two different escape rates can be commonly described by

"- 1 = F = (wp/27r) exp(-E/kBTesc). (4.9)

For the thermal regime, the escape temperature is

T
Tesc (4.10)

1- Pt

where the factor Pt = (kBT/E) In at is negligible relative to unity, and in the quantum

regime,

Tesc hwp/kB (4.11)
7.2(1 + 0.87/Q)(1 - pq)'

where pq , (hwp/7.2E) In aq.



4.3 The Switching Current Distribution

Supplying a specific bias current I causes a junction to switch at some observed

current I,, < Ic. However, stochastic processes due to randomness of noise-induced

activation produce a broad distribution of possible values for Is,. For a junction,

each escape attempt of the phase out of the potential well is an independent event,

mutually exclusive from any other attempt. Given that the plasma frequency is

sufficiently high to afford very small escape interval times, the probability of escape

for any attempt can be considered quite low. These criteria thus permit us to model

the escape process using Poisson statistics [34]. A Poisson distribution characterizes

the probability of statistically independent events at a time period t assuming the

time interval At is adequately small. Thus, the probability of k random events in

time interval t for a given rate F is characterized by

(rt)ke(- rt
P(k,t) = k! (4.12)

In our study of switching current distributions, we ramp the bias current steadily

from I = 0 up to some maximum current Imax and witness a switching event occur

at some I. We are interested in the current that is required to bring about the first

switching event. In Poisson statistics, this probability is modeled exponentially as

ft, (1)At = Pe-r'At (4.13)

where t, is the time until the first event. Now we can more constructively extend

the Poisson mechanics to the switching current distribution of a junction under the

influence of a ramped bias current. The average inter-arrival time, or average escape

time, is simply the inverse of the escape rate: Tr - 1/F. We want to consider the

probability that the first switching event occurs at bias current I,, within some

current interval AI after ramping through a range of current values where no prior



switching event could have occurred. This probability is given as

f (I)AI = P(I < IW < I + AI) = P(A)P(BIA), (4.14)

where A is the event that no switch has occured for any current up to I and B is the

conditional event that the current then switches in the interval between I and I+ AI.

Thus, we have

f(I)AI= 1- f(I')dI' , (4.15)

or more elegantly

P(I) = '-1(I) (d) 1 -] P(I')dl' , (4.16)

where T-1 (I) is the current-dependent escape rate, dI/dt is the ramp rate for the bias

current, and P(I) denotes the switching current probability distribution normalized

to unity. To obtain the distribution experimentally, we ramp the current with a known

sweep rate dI/dt and collect numerous samples to obtain a histogram of switching

current values. Thus, knowing P(I) and dI/dt, we can determine -' -(I) empirically,

and using the theory of thermal activation discussed earlier, it will be possible to

extract values for the critical current I, the capacitance C, the effective resistance

R, and the temperature T.





Chapter 5

Modeling SQUID Dynamics

5.1 Experimental Methods

The SQUID device was fabricated at MIT Lincoln Laboratory and tested in col-

laboration with RLE. It was produced using a planarized Nb/Al/AlO/Nb trilayer

process. The specific device was part of the DSM2 project, from run 05-19-08, die B4,

chip 11, row 4, column 3. The device contains a SQUID with an inductively coupled

qubit inside the SQUID loop. Although the device was primarily tested to monitor

the qubit dynamics, I was investigating the performance of the SQUID. The SQUID

possesses two equivalent-sized Josephson junctions fabricated with diameter 1.0 Lm.

Optical bias, however, indicated that the diameter was 1.11 Am, and process bias

reduced the size by 0.43 Am. Thus, the effective diameter of the SQUID junctions at

4 K was d = 0.68 Am. The critical current density of the SQUID was measured at 4

K to be J, = 6.26 pA/pm2, with a normal resistance of R, = 395 Q. The qubit holds

two Josephson junctions of equal size (d = 0.79 Am) with a third junction slightly

smaller (d = 0.74 Am). An image of the SQUID/qubit assembly is shown in Fig. 5-1.

A circuit schematic of the device and testing apparatus is shown in Fig 5-2(a).

The SQUID also contains a shunted 2 pF capacitor (SiO, dielectric) to help detune

noise-induced decoherence in the qubit. The device was tested with a 3He dilu-

tion refrigerator. The sample was housed in an RF package with gold-plated copper



Figure 5-1: Optical micrograph of device. The SQUID is defined by the outer loop
and the two parallel Josephson junctions. The inductively coupled qubit lies inside
the SQUID loop with three Josephson junctions.

shielding. DC and RF input lines were soft-coaxial shielded cables connected with a

bias-T. The DC lines were used to supply additional SQUID bias. Output lines also

separated from a bias-T, and the readout was connected to a time interval analyzer.

Copper powder filters were used for both input and output lines. A superconducting

coil surrounds the RF package and was driven by a separate (magnet) current to

penetrate the SQUID/qubit assembly with external flux (not shown in Fig. 5-2(a)).

A thermometer was attached to the package to probe the device temperature. DC

bias current sawtooth waveforms were produced by a signal generator at 100 Hz with

1 MQ resistance. A computer controlled the readout from an oscilloscope and the

spectrum analyzer.

5.2 Switching Current Distributions

For a particular magnetic frustration, a bias current was applied to the ground state

of the SQUID through values marginally higher than the ideal critical current lo in

order to ensure a switching event. The current was produced by a signal generator

in the form of a triangle wavefunction (see Fig. 5-2(b)) at 1 MQ resistance and 100

Hz frequency. Bias current for sample data collected at T = 4.5 K was produced

with a voltage amplitude of 3.5 V, yielding a current ramp rate dI/dt = 1.4 mA/s.

The time taken to switch from a zero voltage state to a non-zero voltage state, ts,,

was measured by a time interval analyzer and recorded by a computer. Ramping the
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Figure 5-2: Apparatus and data collection. (a) Circuit shematic of device and exper-
imental setup. Copper powder filters are included before each bias-T, which serve to
eliminate frequencies typically below 50 kHz. DC input lines provide SQUID bias.
The readout is sent to a counter, or spectrum analyzer, from where data can then be
sent to a computer for further analysis. An RF coil (not shown) driven by a magnet
current surrounds the device package to supply magnetic flux. (b) Triangle waveform
bias current with known ramping rate dI/dt. The junction switches from the zero
voltage state at time ts,,, from which Is, can be determined. The junction returns to
the ground state when I = 0 and the process can be repeated.



current back down with the triangle waveform through I = 0 serves to retrap the

SQUID to its resting zero-voltage ground state so the process can be repeated.

For a specific frustration applied, 10i samples were collected for statistical anal-

ysis. The switching times recorded were converted into switching current values I,,

knowing the ramp rate dI/dt. Finally, a histogram of I,, was plotted using a suitable

number of bins (N = 150) in order to afford a smooth probability curve P(I). A
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Figure 5-3: Thermal fluctuations result in a broad range of measured switching cur-
rent values less than the critical current (4.88 p1 A); a smooth histogram (105 trials)
of I,, taken at T = 4.5 K is plotted with N = 150 bins.

sample switching current histogram for T = 4.5 K is shown in Fig. 5.2. We observe

that the distribution is generally a bell-shaped curve that tapers off quite abruptly for

I/Ic P 1. The critical current Ic for this trial (4.88 [A) would be slightly beyond the

end of the histogram on the current axis. Thus, the sharp drop off represents that

for such high currents near the critical current, an escape event has already likely

occurred. The peak of the curve indicates the mean switching current.
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unity), I numerically evaluated the escape rate r-'(I) using Eq. 4.16:

-1 (I) = P(I) - 1- P(I')dI . (5.1)

Plotting the escape rate r-1 logarithmically with respect to I is easier for trying to

correlate with theoretical models. Using thermal activation theory, I attempted to

model the distribution according to Eq. 4.6 as

ln(r - 1) = ln(at) + ln(wp/27r) - (E/kBT). (5.2)

I programmed my fitting algorithm using custom-designed MATLAB software, for

which the relevant code is provided in Appendix A. As previously mentioned, this

fitting model relies on the freedom of four significant parameters: the critical cur-

rent Ic, capacitance C, temperature T, and resistance R. Data points for the lowest

and highest I/Ic values where the switching current histogram is relatively flat were

excluded to only model the most uniform, non-deviating dataset (see Fig. 5-4(a)).

We observe that ln(r-1) increases quite linearly with respect to Iw•; this relationship

confirms the concept that escape rates (or escape probabilities) increase as the bias

current is ramped up towards the critical current. The fitting algorithm attempts to

iteratively solve for the relevant parameters I, C, T, and R from initial input esti-

mates by optimizing mean-squared error reduction. Thus, the curve that optimally

fits the points ln(T-r1 ) plotted were used to determine the best parameters specified

above. Finally, the acquired parameters were used to indirectly re-plot the distribu-

tion P(I)AI (using Eq. 4.16) against the measured switching current distribution to

evaluate the effectiveness of this fitting method (see Fig. 5-4(b)).

5.3 Results and Discussion of Parameters

Data was collected with the same device at various temperatures ranging from 13

mK to 4.5 K. Initially for T = 4.5 K and 1.8 K, the fitting algorithm was found to

be quite sensitive to the input resistance R. After testing through a wide range of
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fitting analysis. Relevant parameters were extracted from fitting with thermal acti-
vation theory. (b) Fit parameters from ln(Tr-') vs. I'W plot were used to retrace the
model's switching current probability distribution over measured values.
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values, a resistance of approximately 5 to 200 Q was found to very accurately model

the switching current distributions and still yield the other relevant parameters to

within reasonable expectations. For R > 200 Q, fitting parameters Ic and C deviated

significantly from expected values. This range of R agrees with the effective parallel

resistance experienced by the SQUID. From the schematic in Fig. 5-2(a), we note

that the SQUID essentially experiences two 50 Q resistors in parallel for an effective

resistance of 25 Q. Thus, the determined range for R is acceptable. Since the fitting

algorithm essentially fixes the model to the value of R given as input, all subsequent

analysis was simply fixed with input R = 25 Q.

The thermal activation model fit the measured results with very good agreement.

For the particular sample tested at 4.5 K shown in Fig. 5-4, the fitting model predicts,

with small statistical error, the relevant parameters I, = 4.88 MA, C = 2.00 pF, and

T = 4.31 K (R = 24.98 Q). To summarize the 4.5 K test, 11 of the 19 equally

spaced frustration points sufficiently high on the SQUID lobe were selected as valid

samples for study. The results, given in Table 5.1, yielded acceptable values for the

capacitance (C = 1.990 ± 0.004 pF) and temperature (T = 4.32 ± 0.04 K).

The device was also tested in a similar manner at 1.8 K, with the bias current

ramped at dI/dt = 3.2 mA/s using a voltage amplitude of 8.0 V. Different levels

of magnet current were applied, and 8 of 10 frustration points were deemed valid

for analysis. Thermal activation theory succeeded in determining the capacitance

C = 2.000 ± 0.002 pF and the temperature T = 1.86 ± 0.06 K very accurately (see

summary of results in Table 5.1). It is interesting to demonstrate how the switching

current distribution changes with respect to different applied frustration levels at

the same temperature. A plot of switching current probability distributions for the

eight different frustrations at 1.8 K, along with their fit models, is given in Fig. 5-

5(a). The width of the distributions, relating to the error of the mean switching

current value, stays relatively equal. The curve simply shifts along decreasing values

of I,, corresponding to decreasing Ic for the respective frustrations. The Ic values

determined by the fitting model were plotted against the magnet current. applied in

Fig. 5-5(b), confirming the sinusoidal relationship given by Eq. 2.21.
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Thermal activation theory has been well justified by the results at 4.5 K and 1.8

K. I was eager to model data at very cold temperatures in an attempt to investigate

how well thermal activation theory could be used in the quantum regime. For T =

13, 20, 31, and 57 mK, a voltage amplitude of 5.8 V was used to ramp a bias current

at a rate dI/dt = 2.32 mA. Pure thermal activation models were able to adequately

fit the data; the switching current distributions with their fit curves are shown in

Fig. 5-6(a). Fixing R = 25 Q again for the model determined approximately the

same Ic = 5.312 ± 0.009 pA and C = 1.990 ± 0.003 pF. However, the temperatures

obtained were significantly higher: 367, 371, 408, and 429 mK, respectively. It is likely

that although the data could be fit sufficiently by the thermal activation model, the

model does not accurately predict the correct parameters since we acquire an Ic less

than the expected value (O 5.5 MA) and much higher temperatures.

It is also possible that because we expect thermal activation theory to break down

in the quantum regime, our attempts to model the cold temperature data are only

met with temperatures much higher than their expected values. Ideally, the quantum

model should be used to describe the escape rates; however, the quantum model makes

no use of the temperature as it is expected to be at the ideal T = 0. Using expected

values for Ic = 5.5 pA, C = 2.0 pF, and R = 25 Q, I illustrate the single defining

quantum model alongside the switching current distribution for 13 mK in Fig. 5-6(b).

The quantum model depicts a relatively sharp peak, and it would be difficult to fit

the different cold temperature distributions with this one ideal quantum model.

This finding prompted us to test the device with a greater range of temperatures:

60, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 900, 1100, and 1800 mK. A

bias current was produced from a voltage amplitude of 8.0 V, yielding a ramp rate

dI/dt = 3.2 mA/s. For each temperature, typically 10 equally-spaced frustrations

were applied to the device. I investigated the relationship between the temperature

determined by the thermal activation fitting model, Tit , and the expected experi-

mental temperature Texp across equivalent flux levels. This relationship is plotted in

Fig. 5-7, along with the I, determined by the fit model. The average critical current

was found to be I, = 5.531 ± 0.031 MA. The thermal activation model calculated
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Figure 5-6: Low temperature distributions modeled with thermal activation theory.
(a) The thermal activation model was used to fit the switching current probability
distributions at very low temperatures: 57 mK (0), 31 mK (A), 20 mK (0), and 13
mK (0). (b) Thermal activation theory fit to 13 mK compared with the quantum
mechanical tunneling model.
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reasonable temperatures for most of the trials taken. For Texp < 300 mK the model

appeared to diverge more from the expected temperatures. For example, at the low-

est temperature, Texp = 60 mK while the model predicts Tfit = 186 mK, greater

by a factor of three. It is reasonable to assume that a leveling effect is beginning

to be observed at these low temperatures. This could mean that there is some in-

trinsic noise acting near base temperatures, or that the limits of the thermal model

inhibit accurately describing the escape rates near the quantum regime. Attempts

to model these low temperatures with a combined thermal and quantum model only

allowed the thermal rates to dominate in the fitting scheme. A more prudent analy-

sis that involves the quantum mechanical phenomena should be advanced in further

investigations.
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Figure 5-7: Temperatures determined by thermal activation theory, Tfit, were com-
pared with expected, experimentally measured temperatures Texp. The model seems
to begin flattening out near 200-300 mK where noise fluctuations or the model lim-
itations are met. The critical current, Ic, remained stable across temperatures for
equivalent frustrations.
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Ic (pA)
4.881
5.571
5.318
5.315
5.298
5.315

1.990 ± 0.004
2.000 ± 0.002
1.993
1.991
1.987
1.988
1.987
1.983
1.989
2.013
2.049
2.006
2.020
1.995
1.993
1.990
1.992
2.010
1.992
1.996

4.32 ± 0.04 K
1.86 ± 0.06
428.7 mK
408.4
370.5
367.4
1154.8 mK
931.4
729.6
610.1
509.7
438.7
390.9
355.4
335.2
316.7
249.8
173.6
169.7
185.8

Table 5.1: Summary of Results.
model/algorithm, where values fo
for C and Tyft at Texp = 4.5 K an
tested.

Fit parameters produced by thermal activation
r Ic are given only for zero frustration, and values
d 1.8 K are calculated across all frustration points

4.5 K
1.8
57 mK
31
20
13
1100 mK
900
700
600
500
450
400
350
300
250
200
150
100
60

5.579
5.563
5.559
5.544
5.538
5.522
5.516
5.519
5.531
5.543
5.517
5.473
5.482
5.503

C (pF)Texp



Chapter 6

Future Work and Conclusions

6.1 Quantum Mechanical Tunneling

Modeling the SQUID dynamics under the influence of a bias current using thermal

activation theory worked sufficiently well. The model was able to accurately predict

the critical current, capacitance, resistance, and temperature within reasonable er-

ror. However, investigating the colder temperatures as we enter the quantum regime

with T - 0 reveals that thermal excitations alone are not sufficient to model the

switching current probability and escape rates but that quantum mechanical tunnel-

ing must also be included. Although we can cool down our device electronics to base

temperatures (-15 mK) with 3He refrigeration, it would be impractical to assume

that we can eliminate all sources of noise, thermal or otherwise. Therefore, modeling

switching current distributions might require a combination of the thermal model

and the quantum model where the escape rates owing to these processes would add

to produce a total rate F = Ft + Fq. My attempts to combine these rates did not

prove meaningful, since for a range of very low temperatures, the thermal activation

model dominated in the fitting scheme. Also, because the quantum mechanical tun-

neling model is temperature-independent, for fixed I,, C, and R, there is only a single

distribution that results to describe the behavior. Future studies, however, require

investigating exactly how switching current distributions should be modeled in the

quantum regime to accurately describe the dynamics across a range of temperatures.



6.2 Summary and Conclusions

Noise excitations are of critical interest to the performance of Josephson junctions.

Thermal activation results in a range of switching currents I,, < Ic for a SQUID

tested under the influence of a bias current. After plotting a histogram of the switch-

ing currents, escape rates were plotted against current and were fit with the thermal

activation model. Fit parameters of critical current Ic, capacitance C, resistance R,

and temperature T were determined. The parameters were used to redraw the pre-

dicted switching current distributions over the measured results. At 4.5 K, a range

of suitable resistance values was obtained that still permitted the model to fit the

data well, so an input R was fixed at the expected 25 Q. Different magnet currents

applied at 1.8 K confirmed that the critical current I, exhibits a cosine relationship

with frustration while the temperature remains the same at T = 1.86 ± 0.06 K. Fi-

nally, modeling thermal activation theory across different temperatures (at equivalent

frustrations) shows the fitting model to work predominantly well, at least up to -200

mK; the critical current was relatively unvarying at 1, = 5.531 0.031 PA. The quan-

tum mechanical tunneling model should be better incorporated for a more accurate

analysis of SQUID dynamics at extremely low temperatures (< 100 K).



Appendix A

MATLAB Code

The MATLAB program that I developed was used to test the thermal activation

model, as well as the quantum tunneling model and combinations thereof, for switch-

ing current distribution data. The last function specified is a non-linear function

fitting script borrowed and modified from the MIT Junior Physics Lab course (Scott

Sewell), which follows the error analysis given in [35].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0000000000000000000000000000000 0000000000000000 $000000000000000000000000000

.%.X Thermal Activation Model

%Y.% by Aditya Devalapalli (adevala@mit.edu)

function plotAverage2

U.. opens gui dialog box to select the file; returns filename and full pathname

[fileName,pathName] = uigetfile('*.*','Select the dX_hist file for

average data');

numBins = 150; %% set the number of bins (bars) in the histogram plot

ramprate = .0032; %. (A/s)



histFile = fullfile(pathName, fileName);

switch_time = load(histFile);

I = ramprate * switch_time;

[n,Iswitch] = hist(I, numBins);

I_switch_raw = I_switch;

barfig = figure; hold on;

bar(Iswitch*1e6,n); grid on; U% produce bar histogram (unnormalized)

xlabel('I_{sw} (\muA)','FontSize' ,16,'FontWeight','bold');

ylabel('Switching Frequency','FontSize',16,'FontWeight','bold');

h = findobj(gca,'Type','patch');

set(h,'FaceColor','w' , 'EdgeColor','k')

switch_fig = figure;

hold on;

normprob = n./sum(n); %% normalized probability distribution

plot(Iswitch*1e6,norm_prob,'bo');

grid on;

xlabel('Ij{sw} (\muA)','FontSize',16,'FontWeight','bold');

ylabel('Switching Probability','FontSize',16,'FontWeight','bold');

binsize = I_switch(2) - I_switch(1); %% binsize = Delta I in model

%%% calculate tau_inv and remove non-uniform points from further analysis

S = cumsum(normprob);

for i=1:length(S)

if S(i) == 1

S(i) = 0.99999;



end

end

tau_inv_1 = normprob.*ramprate./(1-S)./binsize;

Iswitch = I-switch(55:end-10);

tauinv_1 = tau-inv_1(55:end-10);

S = S(55:end-10);

ind = find(tauinv_1);

% get rid of zeroes in tau_inv_1 so that log(tauinv_1) doesn't mess up

tau-inv_1 = tau-inv_1(ind);

I-switch = Iswitch(ind);

S = S(ind);

tau_inv_error = 1./sum(n).*ramprate./(1-S)./binsize;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%7 thermal activation

therm_fig = figure; hold on;

plot(Iswitch*le6,log(tauinv_1),'r-');

grid on;

param = [5.5e-6 2e-12 1.8 25]; 7. estimate parameters

testSig = tau_inverror./tauinvl;

[a-out,aerr,chisq,yfit] = fitnonlin(Iswitch,log(tau_invl) ,testSig,

'dunkleberger.thermal',param);

Final_Parameters = [aout', aerr'];



I_c = aout(1)

C = a_out(2)

T = a_out(3)

R = a_out(4)

% kB = 1.3806505e-23; % Boltzmann's constant

% phiO = 2.067833636e-15; % flux quantum in Wb (SI units)

% x = I_switch./aout(1);

% omegaJ = sqrt(2*pi*aout(1)/(phiO*aout(2)));

% omega_bar_J = omegaJ*(1-x.^2).1(1/4);

% E = aout(1)*phiO/2/pi.*(x.*(2*asin(x)-pi)+2*cos(asin(x)));

% R = ((1-(2.*exp(-aout(4)./2)-1).^2).*(1.8).*E)

./(omegabarJ.*a_out(2).*k_B.*a_out(3));

% avgR = mean(R)

% error_R = std(R)

RChiSquare = chisq/(length(I switch)-length(aout))

plot(Iswitch*1e6,yfit,'b-');

xlabel('I_{sw} (\muA)','FontSize',16,'FontWeight','bold');

ylabel('ln(\tau^{-1})','FontSize',16, 'FontWeight' ,'bold');

% redraw distribution fit

P = exp(yfit)./ramprate.*(1-S).*binsize;

figure(switchfig);

plot(Iswitch*1e6,P,'r-');



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%% thermal activation / quantum tunneling

% switchfig2 = figure; hold on; %% normalized probability distribution

% plot(Iswitch_raw*1e6,norm.prob,'bo'); grid on;

% xlabel('I-{sw} (\muA)','FontSize',16,'FontWeight','bold');

X ylabel('Switching Probability','FontSize',16,'FontWeight','bold');

% thermfig2 = figure; hold on;

% plot(Iswitch*1e6,log(taujinvl),'r^');

% grid on;

% param = [5.5e-6 2e-12 0.5]; % estimate parameters

% testSig = tau_inv_error./tauinv_1;

% [aout,aerr,chisq,yfit] = fitnonlin(I-switch,log(tauinvl),testSig,

'devoret',param);

% Final_Parameters = [aout', aerr'];

% Ic = aout(1)

% I-c-error = aerr(1)

% C = aout(2)

% Cerror = aerr(2)

% T-esc = a_out(3)

% Tesc_error = aerr(3)

% RChiSquare = chisq/(length(Iswitch)-length(a-out))

% plot(Iswitch*1e6,yfit,'b-');



% xlabel('I_{sw} (\muA)','FontSize',16,'FontWeight','bold');

% ylabel('ln(\tau^{-1})' , 'FontSize',16,'FontWeight','bold');

% %%% redraw distribution fit

% P = exp(yfit)./ramprate.*(1-S).*binsize;

% figure(switchfig2);

% plot(Iswitch*1e6,P,'r-');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%% quantum tunneling

% figure; hold on;

% plot(Iswitch*le6,log(tauinvl),'r ^ ');

% ainput = [aout(1) aout(2) avgR];

% testtheory = dunkleberger4(I_switch,ainput);

% plot(Iswitch*le6,testtheory,'b.-');

% testSig = tau_inv_error./tauinv_1;

% [aout,aerr,chisq,yfit] = fitnonlin(I_switch, log(tauinv_1),testSig,

'dunklebergerquantum',a_input);

% Final_Parameters = [aout', aerr'];

%

% Ic = aout(1)

% C = aout(2)

% R = aout(3)



% figure(switchfig);

% plot(Iswitch*1e6,yfit,'g-');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = dunklebergerquantum(Iswitch,a) %%/ pure quantum model

% a(1) = I_c

% a(2) = C

% a(3) = R

k_B = 1.3806505e-23; % Boltzmann's constant

phiO = 2.067833636e-15; % flux quantum in Wb (SI units)

hbar = 1.054571628e-34; % Planck's constant in J*s

x = I_switch./a(1);

omegaJ = sqrt(2*pi*a(1)/(phi_0*a(2)));

omegabar_J = omegaJ*(1-x.^2).^(1/4);

E = a(1)*phiO/2/pi.*(x.*(2*asin(x)-pi)+2*cos(asin(x)));

Q = omegabarJ.*a(3).*a(2);

aq = (120.*pi.*(7.2).*E./hbar./omegabarJ).^(1/2);

f = log(aq) + log(omegabarJ/(2*pi)) - (7.2).*E./hbar./omegabar_J

.*(1+0.87./Q);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = dunklebergercombined(Iswitch,a)

7% thermal and quantum rates added



% Ic = a(1);

% C = a(2);

% R = a(3);

% at = a(4);

% T = a(5);

% aq = a(6);

k_B = 1.3806505e-23; % Boltzmann's constant

phi_0 = 2.067833636e-15; % flux quantum in Wb (SI units)

hbar = 1.054571628e-34; % Planck's constant in J*s

x = I_switch./a(1);

omegaJ = sqrt(2*pi*a(1)/(phiO*a(2)));

omegabar_J = omegaJ*(1-x.^2).^(1/4);

E = a(1)*phi_0/2/pi.*(x.*(2*asin(x)-pi)+2*cos(asin(x)));

Q = omegabarJ.*a(3).*a(2);

f = log(a(4).*(omegabarJ/(2*pi)).*exp(-E./(kB*a(5))) + a(6)

.*omega-barJ/(2*pi).*exp(-(7.2).*E./hbar./omegabar_J.*(1+0.87./Q)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = dunklebergerthermal(Iswitch,a) 7% pure thermal model

% a(1) = I_c, the critical current

% a(2) = C, the capacitance

% a(3) = T, the temperature

% a(4) = log(at), a variable fit parameter --> determine R from this value



k_B = 1.3806505e-23; % Boltzmann's constant

phiO = 2.067833636e-15; % flux quantum in Wb (SI units)

x = I_switch./a(1);

omegaJ = sqrt(2*pi*a(1)/(phi_0*a(2)));

omegabar_J = omegaJ*(1-x.^2).^(1/4);

E = a(1)*phi_0/2/pi.*(x.*(2*asin(x)-pi)+2*cos(asin(x)));

%%% include a(4) = R, the resistance

Q = omegabarJ*a(4)*a(2);

a_t = 4./(((1+Q.*k_B.*a(3)./(1.8.*E)).^(1/2) + 1).-2);

f = log(at) + log(omegabarJ/(2*pi)) - E./(kB*a(3));

0%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0

function f = devoret(Iswitch,a) %% basic model with escape temperature

% a(1) = Ic, the critical current

% a(2) = C, the capacitance

% a(3) = Tesc, the escape temperature

k_B = 1.3806505e-23; % Boltzmann's constant

phi_0 = 2.067833636e-15; % flux quantum in Wb (SI units)

x = I_switch./a(1);

omegaJ = sqrt(2*pi*a(1)/(phiO*a(2)));

omegabar_J = omegaJ*(1-x.^2).^(1/4);

E = a(1)*phi_0/2/pi.*(x.*(2*asin(x)-pi)+2*cos(asin(x)));

f = log(omegabarJ/(2*pi)) - E./(k_B*a(3));



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [a,aerr,chisq,yfit] = fitnonlin(x,y,sig,fitfun, aO)

7. FITNONLIN Fit a nonlinear function to data using the gradient search

7. method discussed in Bevington and Robinson in Section 8.4.

% [a,aerr,chisq,yfit] = fitnonlin(x,y,sig,fitfun,aO)

% Inputs: x -- the x data to fit

7. y -- the y data to fit

% sig -- the uncertainties on the data points

% fitfun -- the name of the function to fit to

% aO -- the initial guess at the parameters

7. Outputs: a -- the best fit parameters

% aerr -- the errors on these parameters

7. chisq-- the final value of chi-squared

7. yfit -- the value of the fitted function

% at the points in x

% Note: "fitfun" should be in a .m file similar to the

7. following example.

7. The following lines are saved in a file called

% "sinfit.m", and the routine is invoked with

% the fitfun parameter equal to 'sinfit' (including

% the quotes)

7 function f = sinfit(x,a)



f = a(1)*sin(a(2)*x+a(3));

X*** Parameters you may need to modify ***

X******************************************

stepsize = abs(a0)*0.0001;

% the amount parameters will be varied by in each iteration

chicut = 0.00001;

% Maximum differential allowed between successive chi^2 values

silent = 1;

X******************************************

% These parameters can be varied if you have reason to believe your fit is

% converging to quickly or that you are in a local minima of the chi

% square.

stepdown = .1;

a = aO;

chi2 = calcchi2(x,y,sig,fitfun,a);

chil = chi2+chicut*2;

% keep looking while the value of chi^2 is changing

i=0;

while (abs(chi2-chil))>chicut

i=i+1;

% Unless silent=1, the following is printed for each iteration:

% the current best fit parameters "a"

% the current chi-square "ChiSq"

% the change in the chi-square "diff"



if silent~=1

fprintf(1,'a = ');

fprintf(1,'%f ',a);

fprintf(1,'\t ChiSq = %f', chi2);

fprintf(1,'\t diff= %f\n', abs(chi2-chil));

fprintf (1, '\n');

end

[anew,stepsum] = gradstep(x,y,sig,fitfun,a,stepsize,stepdown);

a = anew;

stepdown = stepsum;

chil = chi2;

chi2 = calcchi2(x,y,sig,fitfun,a);

end

i

%Unless silent=1, prints the last values after the minimum chi-sq has been

%found

if silent~=1

fprintf(1,'a = ');

fprintf(1,' %f ',a);

fprintf(l,'\t ChiSq = %f', chi2);

fprintf(1,'\t diff = %f\n', abs(chi2-chil));

end

% calculate the returned values

aerr = sigparab(x,y,sig,fitfun,a,stepsize);

chisq = calcchi2(x,y,sig,fitfun,a);

yfit = feval(fitfun,x,a);



% the following function calculates the (negative) chi^2 gradient at

% the current point in parameter space, and moves in that direction

% until a minimum is found returns the new value of the parameters and

% the total length travelled

function [anew,stepsum] = gradstep(x,y,sig,fitfun,a,stepsize, stepdown)

chi2 = calcchi2(x,y,sig,fitfun,a);

grad = calcgrad(x,y,sig,fitfun,a,stepsize);

chi3 = chi2*1.1;

chil = chi3;

% cut down the step size in parameter space until a single step in

% the direction of the negative gradient yields a decrease in chi^2

stepdown = stepdown*2;

while chi3>chi2

stepdown = stepdown/2;

anew = a+stepdown*grad;

chi3 = calcchi2(x,y,sig,fitfun,anew);

end

stepsum = 0;

% keep going in this direction until a minimum is passed

while chi3<chi2

stepsum = stepsum+stepdown;

chil = chi2;

chi2 = chi3;



anew = anew+stepdown*grad;

chi3 = calcchi2(x,y,sig,fitfun,anew);

end

% approximate the minimum as a parabola (See Bevington p. 147).

stepl = stepdown*((chi3-chi2)/(chil-2*chi2+chi3)+.5);

anew = anew - stepl*grad;

% this function just calculates the value of chi-2

function chi2 = calcchi2(x,y,sig,fitfun,a)

chi2 = sum( ((y-feval(fitfun,x,a)) ./sig).-2);

% this function calculates the (negative) gradient at a point in

% parameter space (See Bevington p. 154).

function grad = calcgrad(x,y,sig,fitfun,a, stepsize)

f = 0.01;

Edum, nparm] = size(a);

grad = a;

chisq2 = calcchi2(x,y,sig,fitfun,a);

for i=1:nparm

a2 = a;

da = f*stepsize(i);

a2(i) = a2(i)+da;

chisqi = calcchi2(x,y,sig,fitfun,a2);



grad(i) = (chisq2-chisql);

end

t = sum(grad.^2);

grad = stepsize.*grad/sqrt(t);

% this function calculates the errors on the final fitted

% parameters by approximating the minimum as parabolic

% in each parameter (See Bevington, p. 147).

function err=sigparab(x,y,sig,fitfun,a,stepsize)

[dum, nparm] = size(a);

err = a;

chisq2 = calcchi2(x,y,sig,fitfun,a);

for i=1:nparm

a2 = a;

da = stepsize(i);

a2(i) = a2(i)+da;

chisq3 = calcchi2(x,y,sig,fitfun,a2);

a2(i) = a2(i)-2*da;

chisqi = calcchi2(x,y,sig,fitfun,a2);

err(i)=da*sqrt(2/(chisql-2*chisq2+chisq3));

end

/%%%%%%%%%%%%%
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