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Abstract

The traditional approach of improving radar range resolution using a linear frequency mod-
ulated chirp signal requires the full width of the frequency spectrum, which is not feasible in
the UHF band due to interference or frequency allocation for other purposes. In this study a
linear frequency modulated chirp signal is approximated using two stepped-frequency pulse
train waveforms, a continuous wave pulse train and a linear frequency modulated pulse
train. The continuous wave pulse train consists of a series of single frequency pulses, each
at a different frequency. It is found to be susceptible to corruption due to target motion.
The linear frequency modulated pulse train consists of linear frequency modulation within
pulses, each at a different center frequency. Simulations are used to demonstrate that both
approaches approximate a linear frequency modulated chirp signal, and performance is de-
graded when there is a gap in the frequency band or if there is phase distortion due to target
motion. However, it is shown that a linear frequency modulated pulse train with frequency
overlaps between pulses can be used to reduce or eliminate phase distortions resulting from
target motion provided the target is moving with constant velocity.

The validity of the technique is demonstrated by non-coherently processing radar data
from an internal moving target simulator and data from actual planes to resolve targets
from their reflected image in order to estimate target height.
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Chapter 1

Introduction

The mission of an Airborne Early Warning (AEW) radar is to seek information about

targets in a background of clutter and possible jammers. Existing airborne radar systems

must be continuously upgraded to meet future challenges. Since developing new techniques

in an airborne radar testbed is extremely expensive, a ground based radar system is built.

This system, known as Radar Technology Experimental Radar (RSTER), is shown in Figure

1-1. It is located on a high cliff overlooking the ocean, thus simulating the conditions of an

AEW radar. The radar transmits in the UHF band, which ranges from 400 MHz to 500

MHz and has an instantaneous bandwidth of 250 kHz, which means it can maintain a linear

frequency characteristic in both the transmitter and the receiver over a frequency range of

at most 250 kHz.

The purpose of this thesis is to study methods for enhancing the instantaneous band-

width of the RSTER radar system to allow target length estimation and target height

finding. Chapter 1 explains the applications of the increased bandwidth for target length

estimation and target height finding, as well as provides an overview of what the rest of the

thesis will cover.

Length measurement is an important target classification parameter. The range resolu-

tion 6R of a radar is given by Equation 1.1.

6R (1.1)
BW



Figure 1-1: Picture of the Radar Technology Experimental Radar (RSTER) at Makaha
Ridge, Kauai.
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where c is the speed of light, and BW is the bandwidth of the radar [24]. Figure 1-2 is a

plot of the instantaneous bandwidth required to resolve the lengths of a variety of targets.

The curve separates the resolvable region from the non-resolvable region. Some typical

250

200

150

100

50

20 40 60 80
Bandwidth (MHz)

100

Figure 1-2: Plot of Bandwidth Requirement versus Resolvable Lengths for a Variety of
Targets.

targets are drawn next to their respective lengths. The targets of particular interest are

usually missiles, given by the two targets in the lower right hand corner of the plot, and it

would require a bandwidth of at least 60 MHz to resolve the lengths of those targets. In

general, target length identification requires an extremely wide bandwidth in order for it

to be effective. The instantaneous bandwidth of the present radar system is only 250 kHz.

Increasing the bandwidth to 60 MHz would require major, unrealistically expensive modifi-

cations to the hardware of the radar system. It will be shown subsequently that increasing

the bandwidth to 60 MHz by stepped-frequency pulse train waveform approximations may

also be very difficult as a result of phase distortions due to target motion. Therefore, it

is more practical to focus on improving the present radar system for target height finding,



which is considerably less demanding on bandwidth.

H- H2

R -'4

Figure 1-3: Illustration of Target Height Finding

The concept of target height finding using a radar that has wide bandwidth is illustrated

in Figure 1-31. This technique works only above water or highly reflective ground. Suppose

that an airborne radar system is at height H2 above the water observing a target at height

H1 above the water and a distance R from the radar. The transmission to and the reflection

off the target can follow one of two paths. They can either follow a direct path, or they can

bounce off the surface of the water. There are four possible combinations of paths that the

transmission and the reflection can follow.

1. Both the transmission and the reflection can follow a direct path.

2. The transmission can follow the direct path and the reflection can bounce off of the

water surface.

3. The transmission can bounce off of the water surface and the reflection can follow the

'The R shown in figure refers to the actual distance from the radar to the target and not the horizontal
distance.



direct path.

4. Both the transmission and the reflection can bounce off of the water surface.

As a result, if the radar has sufficient range resolution, the target will appear at a range

that corresponds to the actual range, and there will be a multipath image at a distance

which corresponds to the difference in path length AR between the actual range and the

length of the double bounce multipath described in situation 4. Given the height of the

radar system, the range R of target, and the delay for the multipath - which can then be

used to calculate AR, the height of the target is given by Equation 1.2 [14].

2 H2
RAR (1.2)

This relationship is plotted in Figure 1-4 for some typical airborne radar operating

parameters.

0 5 10 15
Bandwidth (MHz)

20

Figure 1-4: Plot of Bandwidth Requirement versus Resolvable Target Height for a Set of
Typical Radar Operating Parameters.



The plot shows the bandwidth required to resolve target height when the airborne radar

is at an altitude of 20 kft and a distance of 100 nmi from the target. The curve separates

the resolvable region from the region where the target return and the image of return would

overlap. If the present radar bandwidth can be increased from 250 kHz to about 5 MHz,

which is possible using stepped-frequency pulse train waveform approximations, the system

can resolve target heights above 2 kft, which would be very practical and highly desirable.

In either the target length measurement application or the target height finding application,

the ultimate goal is to increase the bandwidth of the present radar system.

The thesis is organized as follows: Chapter 2 investigates a linear frequency modulated

chirp signal, which would be the most desirable signal to use in order to achieve a wide

bandwidth. The mathematics governing the chirp signal as well as the concept of matched

filtering the chirp signal is presented. There are also certain implementation issues involved

that are addressed. Chapter 3 presents one stepped-frequency pulse train waveform ap-

proximation of the chirp signal, namely the continuous wave pulse train. The mathematics

governing the processing of the continuous wave pulse train and Matlab simulations of the

processing algorithm are presented. Simulations are done for the ideal case as well as for

cases when there are non-uniform frequency steps, gaps in the frequency band, and phase

distortions due to target motion. The linear frequency modulated pulse train, which is an

enhancement of the continuous wave pulse train and more effective in some cases, is studied

in Chapter 4. The mathematics and Matlab simulations behind the linear frequency mod-

ulated pulse train are shown, and an overlapping linear frequency modulated pulse train is

introduced in order to reduce phase distortions due to target motion for constant moving

targets. In Chapter 5, some practical applications of the algorithm as well as some non-

coherent processing methods are used for multipath height finding on radar data collected

using the RSTER system for various targets, including an internal moving target simulator

and actual planes. Chapter 6 gives a summary of the findings and proposals for work to be

done in the future.



Chapter 2

Chirp Signal

2.1 Mathematics of Pulse Compression

The advantages of using a chirp signal to increase radar range resolution, usually referred to

as pulse compression, have long been recognized and exploited. A detailed analysis of the

linear frequency modulated chirp signal is given in order to derive some stepped-frequency

pulse train waveform approximations later on. A linear frequency modulated chirp signal,

which is the only type of chirp signal that can be transmitted and received by the present

radar system, is a signal whose frequency increases linearly with time. Although there may

be other types of chirp signals, only the linear frequency modulated chirp will be studied

and referred to from this point on. The following analysis and further detailed analyses can

be found in Reference [9].

After a chirp signal is transmitted, the signal reflected by the target and received by

the radar receiver is similar to the transmitted signal but delayed by the target range. It is

then convolved with a signal whose frequency characteristic is the opposite to that of the

chirp signal. The process of convolution is commonly referred to as pulse compression. The

phase characteristic of the transmitter as well as the receiver is given in Figure 2-1.

The output of this convolution process, commonly known as the matched filter response,

is a pulse compressed waveform in the time domain. It will be shown that there is a pulse

width reduction factor of TA between the width of the transmitted pulse and the width

of the compressed pulse, where T is the duration of the transmitted pulse and A is the



_--- ------

(a) (b)

I. 1

fo I to

A I I

Frequency Frequency

Figure 2-1: (a) Transmitted Pulse Characteristic and (b) Receiver Characteristic for Pulse
Compressing a Linear Frequency Modulated Chirp Signal.

bandwidth of the transmitted pulse. The compressed signal will result in better range

resolution, which can then be used for target height finding.

The transmitted pulse s(t) can be expressed as a product of the envelope wave e(t) and

the carrier wave c(t), where e(t) is a rectangular envelope and c(t) is an exponential with a

linear frequency characteristic about a center frequency fo.

s(t) = e(t) -c(t) (2.1)

e(t) = rect ()
c(t) = e2ri(fot+kt

2 /2)

The function rect(#) is commonly known as the rectangular function and is expressed as:

rect(z) = 1, Izi < 1/2 (2.2)

= 0, IzI > 1/2

It is clear from the expression of the envelope e(t) that the domain of the signal is



(-T/2, T/2), and the signal has a duration of T. Throughout the duration of the signal,

the instantaneous frequency of the carrier waveform ranges from fo - kT/2 to fo + KT/2.

The total change in frequency, A is the difference between the highest frequency and the

lowest frequency and is equal to kT. The term A is known as the bandwidth of the signal.

The mathematical analysis can be made easier if a simple change of variables is performed.

y = tA (2.3)

= A

D -TA

The product TA is a dimensionless product, commonly known as the "time-bandwidth

product" and is a characteristic parameter of radar performance. The new signal w(t) is

expressed in terms of the new variables.

w(t) = rect () e2i(xoy+y±/2D) (2.4)

where xo - fo/A and k = A/T. The duration of the signal is now D.

The signal w(t) can be expressed in terms of its Fourier Transform W(f), which is given

by:
W(f) = f w(t) . e-2if tdt (2.5)

The Continuous Time (CT) Fourier Transform for the chirp signal can be expressed in

terms of the Fresnel integral. The Fourier Transform that is used throughout the thesis

is the Discrete Fourier Transform (DFT) found using the Fast Fourier Transform (FFT)

algorithm in Matlab, [3] and [20]. The FFT of the chirp signal and the matched filtered

chirp signal are generated in Matlab using the procedure chirp.m, which can be found in

Appendix A, along with other Matlab simulation routines. Figure 2-2 shows the plot of

a portion of a chirp signal whose time-bandwidth product is 100. The plot shows only

a portion of the signal rather than the entire signal because it becomes very cluttered

otherwise, and the linear frequency characteristic of the signal will no longer be evident.
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Figure 2-2: Plot of Portion of Chirp Signal (TB = 100).

It can be seen from the plot that the frequency of the signal is increasing with time.

The frequency spectrum of the signal is given in Figure 2-3. It is evident that the signal

has a wide bandwidth. There are ripples along the top of the chirp signal as a result of the

FFT routine in Matlab.

O
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Figure 2-3: Plot of Frequency Spectrum of Chirp Signal (TB = 100).

The optimum method of processing a chirp signal is to pass it through a filter whose

delay versus frequency characteristic is opposite to that of the signal, as shown in Figure



2-1(b). The frequency characteristic of the filter is given by:

H(f) = eir(f- fo) 2/ k  (2.6)

The frequency spectrum of the output of the matched filter, Z(f) is given by the product

of the Fourier Transform of the chirp signal and the Fourier Transform of the matched filter

response. The output of the matched filter in the time domain, z(t) is by Fourier analysis,

the convolution of the chirp signal and the inverse Fourier Transform of the matched filter

response h(t). The mathematical analysis is given below:

Z(f) = W(f) - H(f) (2.7)

z(t) = w(t) ® h(t)

= J0w(t- v) -h(v)dv
-OO

= w(l). -h(t -1) dl

h(t) = H(f) -e2rift df

= j e2r i [ft+(f-fo) 2/2k] df

The inverse Fourier Transform integral evaluates to:

h(t) = e2r• (fot- kt2/2)  (2.8)

The output of the matched filter can then be found by convolution:

z(t) = T/22 2ri[fot+kr2/2-k(t-7)2/2] dr (2.9)

- ei•2 r (fo t- k t2/2) T/2 e27rikr dr
T simplified, and regrouped as foT/2

The integral can then be evaluated, simplified, and regrouped as follows:



z(t) = V sin(lrktT)e2ri(fot-kt2/2) (2.10)

SVsD-sin (rAt) e2lri(Iotkt 2 /2)

The matched filter output can also be expressed in terms of the new variable y = At.

z(y) = v-rsin(ry) e2ri(oy-y 2 /2D) + i r / 4 (2.11)iry

In order to simplify the notation for z(y) further, the sinc function is defined.

sinc(x) = sin(rx(2.12)
irx

The output of the matched filter can then be expressed as:

z(y) = -Dsinc(y)e 2 i (x°y- y2/ 2D )+ i r/ 4  (2.13)

The magnitude of the matched filter output is:

Iz(y)l = -b Isinc(y)l (2.14)

Figure 2-4 is the plot of the magnitude of the output of the matched filter. The sinc

function is the Fourier Transform of the rectangular envelope of the transmitted signal, [18]

and [19]. The linear magnitude of the output of the matched filter has zero crossings at

integer multiples of 1/A, which in this case is equal to 2.5/ts. It is evident from the plot

that the time index where the first sidelobe begins in 2.5,1s. There is a net pulse width

reduction of approximately TA. The original pulse duration T is equal to 250/is, and the

bandwidth A is 0.4 MHz The compressed pulse duration, determined from the - 3dB points

from the peak amplitude, is approximately 2/is, and there is a net pulse width reduction

by about two orders of magnitude.

A sinc function has unacceptably high near in sidelobes at approximately -12.5 dB from

the peak, as seen in the plot. Therefore, a weighting function can be applied to the signal
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Figure 2-4: Plot of Matched Filter Output for Chirp Signal (TB = 100).

to reduce the signal sidelobes. A Chebychev weighting function with peak sidelobes at -40

dB below the peak is applied to the signal in Figure 2-2, and the results are shown in

Figure 2-5 and Figure 2-6. The Chebychev weighting function used is the one in the Signal

Processing Toolbox of Matlab and is specified by the total number of points (which in this

case is 1,001) and the sidelobe level (which in this case is -40 dB below the peak). Figure

2-5 shows the magnitude of a portion of the chirp signal after it has been weighted by the

Chebychev filter. The plot again only shows a portion of the chirp signal for clarity. The

entire weighted chirp signal is symmetric and tapered at both ends. Figure 2-6 is the plot

of the result after the matched filter is applied to the weighted signal in solid and the result

after the matched filter is applied to the unweighted signal in dashed. The sidelobe is about

-30 dB below the peak amplitude, which is a significant improvement over the unweighted

case. The sidelobe is not -40 dB below the peak because only the chirp signal is weighted

and not the matched filter response. There is also an increase in the width of the peak

amplitude, although not by much. The width of the envelope of the compressed pulse is

still reduced by approximately two orders of magnitude, and given the decrease in sidelobe

level, it is clear that time weighting the transmitted signals will result in better resolution.

Since weighting the signal results in lower sidelobes, the Chebychev weighting function

with the -40 dB sidelobe level will be applied to all subsequent simulations. The Chebychev

weighting functions will only differ by the number of points in the weighting sequence.
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2.2 Implementation Issues

From the preceding analysis, it is obvious that transmitting and receiving chirp signals

result in narrow pulses in the time domain, thus increasing the resolution of the system.

Ideally, the radar system would transmit a chirp signal with a large bandwidth A. This is

not practical to implement in the present radar system for several reasons.

The chirp signal is usually very expensive to implement, and since the present radar

system has an instantaneous bandwidth of 250 kHz, it is not capable of matched filtering

signals with a bandwidth greater than 250 kHz. Furthermore, the radar system operates

in the UHF band, which ranges from 400 MHz to 500 MHz, as illustrated in Figure 2-7. It
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Figure 2-7: Plot of UHF Transmission Band.

would be ideal for the radar to transmit over the entire UHF band, as would have to be the

case if a chirp signal were used. Realistically, the UHF band contains certain frequencies

that are reserved for land mobile communications and television. As a result, there are gaps

in the frequency band over which the radar is not permitted to transmit. Sometimes, the

possible transmission frequency ranges are between 400 MHz - 450 MHz and 470 MHz -

500 MHz. Most of the time, the radar system can only transmit in a very narrow frequency

I



range, between 420 MHz - 450 MHz. At times, the available frequency band may even

be as narrow as 5 to 10 MHz. In addition to gaps in the frequency band, there are often

non-uniformities in frequency steps as a result of radar hardware. If the chirp signal were

matched filtered over a frequency band with interference and noise due to hardware, the

pulse compression would fail. It is therefore imperative in this case to look into certain

approximations of the chirp signal that are more accommodating and less susceptible to

interference and noise due to hardware.

2.3 Approximations of the Chirp Signal

Keeping in mind these implementation issues, several approximations of the chirp signal

that require minimal changes to the present radar system are explored. These approxima-

tions are classes of Stepped-Frequency Pulse Train (SPT) waveforms. The SPT waveforms

that are investigated include the continuous wave pulse train and the linear frequency mod-

ulated pulse train. The continuous wave pulse train consists of pulses at a single frequency,

increasing linearly with each pulse. The linear frequency modulated pulse train consists of

pulses that are themselves chirp signals but with a smaller bandwidth, one that the radar

system is capable of transmitting and receiving. The center frequency of the smaller chirp

signal increases linearly with each pulse.

Each approximation waveform is studied in detail. Due to the nature of the SPT wave-

forms implemented using the present radar system, there is additional phase distortion

introduced as a result of target motion. Because the target is moving and there is delay

between consecutive pulse transmissions in the waveform approximations, the target range

will change between consecutive pulse transmissions. If significant, it will result in certain

distortions in the processed waveforms of the continuous wave and the linear frequency

modulated pulse train. This phenomenon is referred to as range walk. Range walk has

not been a problem in the traditional implementation of SPT waveforms because the tradi-

tional implementation usually involves a burst of pulses transmitted very rapidly one after

another, so the target motion during pulse transmissions is insignificant. This is not the

case for the RSTER system. Due to certain hardware constraints, there is significant delay



between consecutive pulse transmissions. Rather than transmitting a burst of pulses and

processing the burst of returns, a single pulse is transmitted and the return processed before

the next pulse is transmitted. Consequently, the phase distortion due to target motion is

present and has to be addressed. It will be shown that it can be reduced by overlapping

frequencies between consecutive pulses in the linear frequency modulated pulse train.

In order to better understand the effect of implementation issues on the outcome of SPT

waveform approximations, the following cases will be simulated for both the continuous wave

pulse train and linear frequency modulated pulse train in Chapter 3 and Chapter 4.

1. Ideal pulse train.

2. Pulse train with non-uniform frequency steps between consecutive pulses.

3. Pulse train with gaps in frequency steps.

4. Pulse train with phase distortion due to target motion.



Chapter 3

CW Pulse Train

3.1 Background

The approximation of a chirp signal by a Continuous Wave (CW) pulse train is given in

Figure 3-1. The term CW refers to sinusoids at a single frequency. The linear frequency

(a)
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(b)
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Time Time

Figure 3-1: (a) Frequency Characteristic of Chirp Signal and (b) Frequency Characteristic
of CW Pulse Train Implementation.

characteristic of a chirp signal is approximated by a series of discrete steps, each at a

constant frequency and increasing linearly with every step. The overall bandwidth in both

cases would be the same. The hardware implementation of the waveform is outlined in

the block diagram in Figure 3-2. The modulator determines the frequency that will be
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Figure 3-2: Block Diagram of Hardware Implementation of CW Pulse Train.

transmitted for a particular pulse. The local oscillator produces the discrete frequencies

(fk) of the transmitted signal and is also used to bring the frequency of the received and

amplified signal down to baseband in the mixer. Because the same oscillator is used in the

transmitter and receiver, the detection is coherent. After the signal is brought down to

baseband, it can then be digitized, and the resulting pulse is weighted and summed with

previous pulses to produce a compressed pulse.

The mathematical model of transmission and detection is given as follows: the trans-

mitted signal is given by r(t), which is the product of the pulse envelope multiplied by an

exponential at a single frequency.

r(t) = p(t) e2 ifkt (3.1)

The received signal is the transmitted signal shifted by the phase offset x, found in terms

of the range of target R from the radar and the speed of light c.

2R
x 2R (3.2)

C

y(t) = r(t - x)



= p(t - x) -e2 ifk(t - x)

In order to bring the signal down to baseband, i.e. a band that can accommodate the A/D

converter, the coherent mixing operation is performed. The operation effectively multiplies

the received pulse y(t) by the complex conjugate of the transmitted pulse r(t), and the

resulting signal v(t) has, upon filtering out the high carrier frequency component, only a

low frequency component containing the phase offset due to range.

v(t) = y(t) r*(t) (3.3)

= p(t - x) e2 irfk(t - x) . e- 2 if kt

- p(t - x) e- 27ifkx

After the signal is brought down to baseband, the complex envelope at each discrete

frequency V(fk, t), is shifted and combined to form the compressed pulse q(x, t) governed

by the pulse compression equation in Equation 3.4,

N-1

q(x, t) = E V(fk, t) e2 ifkx - Af (3.4)
k=O

where Af is the frequency spacing between each pulse. It can be seen from this equation

that each complex envelope is "phase weighted" by the appropriate frequency and then

summed. This equation can also be seen as the N-point DFT of the complex envelopes.

The CW pulse train approximations of a chirp signal will be simulated in subsequent

sections for the four cases specified at the end of Chapter 2.

3.2 Simulations

3.2.1 Ideal CW Pulse Train

The condition for an ideal CW pulse train requires that CW pulses of duration T be trans-

mitted at various frequencies, each a uniform frequency step Af higher than the previous

frequency. The different transmission frequencies comprise a frequency train. For the pur-

pose of detection and better jammer suppression, the frequency train does not have to be



transmitted in order but can be randomized instead. However, the simulated frequency train

will be in increasing order in the simulations for better characterization and understanding

of the issues addressed.

The case when there are "large" frequency steps is considered first. The term "large"

refers to frequency steps that violate the Nyquist criterion, which will be explained further

subsequently. Figure 3-3 shows the plot of the frequency characteristic of a linear CW

frequency train as a function of pulse number. The size of frequency steps in this case is 14

kHz, and the total bandwidth of the CW pulse train is 28 kHz. There is a frequency offset

of approximately 0.11 MHz, which is introduced for better presentation of the frequency

spectrum. It is the overall bandwidth of the pulse train that is most important to the width

of the compressed pulse, so the offset is basically irrelevant in the analysis.
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Figure 3-3: Plot of Frequency Characteristic of CW Pulse Train Violating Nyquist Criterion
(Af = 14 kHz, A = 28 kHz).

A Matlab program was written which simulates the processing and pulse compression

procedures for a CW pulse train. The name of the program is simuspt.m and can be

found in Appendix A, along with many other Matlab procedures used to simulate both the

CW and the LFM pulse train. The procedure simulates the process of transmission, pulse

compression and pulse summation based on equation for q(x, t) for an ideal CW pulse train.

The time signal is weighted by the Chebychev weighting function used in Chapter 2, with a



-40 dB sidelobe reduction. The procedure used to generated the plots using the simulation

program is vncspt1.m.

There is a restriction imposed on the frequency step sizes in order to prevent aliasing

in the time domain, which is effectively the dual of the Nyquist criterion for the frequency

domain. The requirement on Af is expressed in terms of the pulse duration T.

Af < 2T (3.5)

When the condition for frequency step size is not satisfied, there is aliasing in the time

domain and ripples in the frequency spectrum of the compressed waveform. The case when

the frequency steps do not satisfy the Nyquist criterion is simulated using simuspt .m and

is plotted in Figure 3-4 for the time domain and Figure 3-5 for the frequency domain. The

original signal has a pulse duration of 52 is, which clearly violates the Nyquist criterion.

1
14, 000 > 9, 615

2(52 x 10-6)

Figure 3-4 shows the compressed pulse in the time domain in solid. It is apparent that
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Figure 3-4: Plot of (a) Compressed Pulse of CW Pulse Train Violating Nyquist Criterion
and (b) Envelope of a Single Pulse of CW Pulse Train.

there is severe distortion of the compressed pulse, and that it does not have the shape of

the pulse compressed waveform given in Chapter 2. The dashed line shows the shape of
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the envelope of a single pulse. It is clear that there is no significant reduction of the width

of the compressed pulse when using a CW pulse train that violates the Nyquist criterion

as compared to an envelope for a single carrier frequency. The frequency spectrum of the

compressed pulse is shown in Figure 3-5.
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Figure 3-5: Frequency Spectrum of Compressed Pulse of CW Pulse Train Violating Nyquist
Criterion.

It is evident in the plot of the frequency spectrum of the compressed pulse that it

contains ripples. The level of the ripple is large enough such that the compressed pulse

is severely distorted. It is intuitive that in violating the Nyquist criterion, the frequencies

in the frequency train are too far apart to approximate a single wideband waveform, thus

causing the ripples.

The case when the Nyquist criterion for the frequency step size is satisfied is shown

in the following figures. Figure 3-6 is a plot of the frequency characteristic of a frequency

train consisting of 20 pulses, each with a linearly increasing frequency. There is an initial

frequency offset of 1 MHz, a frequency step size of 50 kHz, and a total bandwidth of 1

MHz. Each pulse is transmitted, and upon reception, processed coherently. The condition

for processing is simulated using simuspt2.m. The procedure simulates the process of

transmission, phase shift due to range, as well as pulse compression and pulse summation

based on the equation for q(x, t) for an ideal CW pulse train, a non-uniform CW pulse train,

a gapped CW pulse train, as well as a CW pulse train with range walk distortions. Each
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Figure 3-6: Plot of Frequency Characteristic of Ideal CW Pulse Train (Af = 50 kHz, A = 1
MHz).

pulse is again weighted by the Chebychev filter at -40 dB. The results are given in Figure

3-7 and Figure 3-8. The procedure used to generate the plots is sptl-l.m.

It is obvious from Figure 3-7 that the compressed pulse of a CW pulse train that does

not violate the Nyquist criterion is similar to the compressed pulse of a chirp signal given

in Figure 2-4. The transmitted pulse duration is 20/ts, and the width of the compressed

pulse, measured from -3dB below the peak, is about 2f/s, which corresponds to a pulse

width reduction factor of 10, which is approximately TA. The time bandwidth product TA

is equal to 20 in this case, which is less than TA in the chirp signal (TA = 100). It can be

increased if more pulses are transmitted or if the transmitted pulses are of longer duration.

The sidelobes of the compressed pulse are at approximately -40 dB, which are sufficiently

low for range resolution. It is also clear from the frequency spectrum of the compressed

pulse in Figure 3-8 that the compressed pulse does have the wideband characteristic of a

chirp signal.

3.2.2 CW Pulse Train with Non-Uniform Step Sizes

In the actual implementation of the waveform, some frequencies in the frequency band

may not be possible for the reasons given in Chapter 2. As a result, the difference between
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Figure 3-7: Plot of Compressed Pulse of Ideal CW Pulse Train.
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Figure 3-8: Frequency Spectrum of Compressed Pulse of Ideal CW Pulse Train.
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consecutive frequency steps will be non-uniform. Non-uniformities in frequencies are usually

due to hardware errors. This phenomenon is simulated by generating a frequency train with

a uniformly distributed random step size error of -AL , where Af is again the frequency

step size. The frequency characteristic of a CW pulse train with the random step size error

is show in Figure 3-9. It is effectively the same pulse train as the one used for the ideal

simulations. It is governed by the same set of parameters but with random step size error

introduced.
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Figure 3-9: Plot of Frequency Characteristic of Non-Uniform CW Pulse Train (Af = 50
kHz, A = 1 MHz).

The weighted compressed pulse and the frequency spectrum of the compressed pulse of

a non-uniform CW pulse train are plotted as the solid line in Figure 3-10 and Figure 3-11,

respectively. The compressed pulse and the frequency spectrum of the compressed pulse for

the case of the ideal CW pulse train is given in dashed line for comparison. The code for

the simulation is also given in spt L .m.

It is apparent that the compressed pulse in the time domain for the case when there

is non-uniform step size in the frequency train has higher range sidelobes compared to

the ideal CW pulse train, and that there are ripples in the frequency spectrum of the

compressed pulse. The effect of non-uniformity simulated in this case does not result in

significant distortions in the compressed pulse because it is the far sidelobes that have
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Figure 3-10: Plot of (a) Compressed Pulse of Non-Uniform CW Pulse Train and (b) Com-
pressed Pulse of Ideal CW Pulse Train.
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Figure 3-11: (a) Frequency Spectrum of Compressed Pulse of Non-Uniform CW Pulse Train
(b) Frequency Spectrum of Compressed Pulse of Ideal CW Pulse Train.



increased significantly, while the near-in sidelobes did not increase by much. The sidelobes

are now at approximately -18 dB, which would still be acceptable for range resolution.

3.2.3 CW Pulse Train with Gaps in Frequency Steps

As pointed out in Chapter 2, there are often significant gaps in the frequency transmission

band. The cases when there are gaps in the frequency band is simulated using sptl-2.m,

and the results are shown in Figure 3-12, Figure 3-13, and Figure 3-14.

Figure 3-12 shows a frequency train with missing steps between two sets of pulses, which

models one gap in the transmission frequency band. The frequency steps within each set of

pulses are uniform and has the same set of characteristics as the ideal CW pulse train.
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Figure 3-12: Plot of Frequency
Steps (Af = 50 kHz).

Characteristic of CW Pulse Train with Gaps in Frequency

The effect of a gap in the frequency train on the compressed pulse and the frequency

spectrum of the compressed pulse can be seen in Figure 3-13 and Figure 3-14, respectively.

The compressed pulse for the frequency train with missing steps, shown as the solid line,

has higher far sidelobes as well as higher near-in sidelobes than the compressed pulse of

an ideal frequency pulse train, shown as the dashed line. The increase in sidelobes is more

severe than in the case of a non-uniform CW pulse train. The near-in sidelobes are now at

approximately -12 dB, which could lead to potential range detection problems, especially



in the presence of noise and background clutter.
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Figure 3-13: Plot of (a) Compressed Pulse of CW Pulse Train with Gaps in Frequency Steps
and (b) Compressed Pulse of Ideal CW Pulse Train.

Due to the gap in the frequency train, the frequency spectrum of the compressed pulse

for the frequency train with missing steps, again shown as the solid line, is no longer

a continuous band but is composed of two discrete bands, which is similar to the likely

frequency band shown in Figure 2-7. This characteristic would be expected, since the

frequency components for those frequency bands are missing.

3.2.4 CW Pulse Train with Range Walk

Besides the frequency step issues addressed in previous sections, phase distortions due

to target motion have to be considered. As explained in Chapter 2, when a target is

moving with certain velocity, it will appear at different range bins between consecutive pulse

transmissions due to the fact that there is delay between consecutive pulse transmissions.

The effect on the compressed pulse has been simulated using the procedure spti_3.m and

is shown in Figure 3-15 and Figure 3-16.

The ideal CW frequency train from Figure 3-6 is used to construct the compressed pulse.

A phase distortion of 0.51us is introduced for each individual pulse. The distortion is used

mainly for illustration and is somewhat high, but it would be applicable to the case when

the target is moving very rapidly or when there is significant delay between consecutive
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Figure 3-14: (a) Frequency Spectrum of Compressed Pulse of CW Pulse Train with Gaps
in Frequency Steps and (b) Frequency Spectrum of Compressed Pulse of Ideal CW Pulse
Train.

pulse transmissions.

Due to the nature of transmission, the phase distortion due to target motion increases

with pulse transmission and is proportional to the sum of the pulse durations and the delays

between consecutive pulses. It can be easily derived that the total phase distortion en of

pulse n from the first pulse, where the duration of each pulse is T and the delay between

consecutive pulse transmission is 6 for a target moving with constant velocity v, is:

2vn(T + 6)En = (3.6)

The compressed pulse and the frequency spectrum of the compressed pulse for the

case of range walk due to targets moving with a constant velocity are shown in solid in

Figure 3-15 and Figure 3-16, respectively. For comparison, the compressed pulse and the

frequency spectrum of the compressed pulse for the ideal CW pulse train is again given as

the dashed line. It is evident from Figure 3-15 that compared to the ideal case, shown as the

dashed line, the compressed pulse has completely lost its compression in the time domain.

The dot-dashed line shows the outline of the envelope of a single pulse. It is clear that

the compressed pulse with range distortion is not much narrower than the original pulse

envelope. It is evident from the frequency spectrum that there is amplitude distortion as
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Figure 3-15: Plot of (a) Compressed Pulse of CW Pulse Train with Range Walk, (b) Com-
pressed Pulse of Ideal CW Pulse Train, and (c) Envelope of a Single Pulse of the CW Pulse
Train.
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Figure 3-16: (a) Frequency Spectrum of Compressed Pulse of CW Pulse Train with Range
Walk and (b) Frequency Spectrum of Compressed Pulse of Ideal CW Pulse Train.
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a result of the phase distortion. The wideband characteristic of the compressed pulse is no

longer preserved.

3.3 Summary

Due to hardware limitations in the present radar system, a CW pulse train is used to

approximate a chirp signal. Given an ideal CW pulse train with uniform frequency step

sizes, it is possible to approximate a chirp signal by phase weighting consecutive pulses by

the appropriate frequencies provided that the Nyquist criterion for frequency step size given

by Equation 3.5 is satisfied. The factor of reduction in the width of the compressed pulse

from the width a single pulse is approximately TA.

When there are non-uniformities in the form of uniform random step size errors of ±A,

there is an increase in the sidelobes of the compressed pulse and ripples in the frequency

spectrum of the compressed pulse. The increase in the sidelobe level is not too severe, and

mainly the far out sidelobes are affected, so range detection would still be possible. When

there are gaps in the transmission frequency band, there is a more significant increase in the

sidelobes of the compressed pulse, and the near-in sidelobes are the ones that are affected

the most. The frequency spectrum of the compressed pulse has gaps that correspond to the

missing frequencies. The increase in the level of sidelobes may be severe enough to interfere

with range detection, especially in the presence of noise and background clutter.

Although both the non-uniformities in frequency step sizes and gaps in the frequency

band result in distortions in the compressed pulse, the most severe distortion is by far due

to range walk. Range walk results in loss of compression in the time domain and distortion

of the frequency spectrum. The amount of distortion is proportional to the velocity of the

target, the total number of pulses transmitted, as well as the pulse duration and the delay

between consecutive pulse transmissions. When there is significant phase distortion due to

target motion, the width of the compressed pulse is about the same as the width of the

envelope of a single pulse, which defeats the purpose of utilizing the CW pulse train.

It is clear that a CW pulse train can approximate a chirp signal but is severely distorted

when there are gaps in the frequency train and when there is phase distortion due to target



motion - range walk. An alternative approach will be considered that may lead to better

performance given range walk, namely the LFM pulse train.



Chapter 4

LFM Pulse Train

4.1 Background

The use of a Linear Frequency Modulated (LFM) pulse train to approximate a chirp signal

consists of transmitting a pulse train where each pulse within the pulse train is a small

LFM pulse, as shown in Figure 4-1. In effect, the chirp signal is now approximated using a

series of smaller chirp signals, and the frequency spectrum of each small chirp signal has a

constant slope r. about a center frequency fo.

(b)

Time Time

Figure 4-1: (a) Frequency Characteristic of Chirp Signal and (b) Frequency Characteristic
of LFM Pulse Train Implementation.
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Figure 3-2. The only difference is instead of having the local oscillator transmit at a constant

frequency fk, the oscillator will now produce a linear frequency ramp as a function of time,

with center frequency fk and a constant slope K. The same oscillator at that particular

center frequency is then used to bring the received signal down to baseband in the mixer.

The mathematical model of transmission and detection is essentially the same, except the

signals are chirps instead of CW pulses. The mathematics now becomes vector analysis,

where the transmitted frequency is a vector instead of a single number, and the results

are essentially the same. The mathematics for the mixing operation and pulse compression

routine is given for completeness as follows: the transmitted signal is given by r(t), which

is the product of the pulse envelope multiplied by an exponential with a frequency vector

f with center frequency f for pulse k.

r(t) = p(t)-e 2 i-fkt (4.1)

The received signal is again the transmitted signal shifted by the phase offset x, and the

calculations are carried out the same way for processing returns and filtering the signal,

except the frequency is no longer a constant but a vector that is multiplied element by

element with the time vector.

y(t) = r(t-Xz) (4.2)

= p(t - x) . e2rif(it- x )

v(t) = y(t) -r*(t)

= p(t - x) . e2iLk(t - x) . e-2rifkt

= p(t - x) e-2if xz

The result of the matched filtering operation is now a chirp signal about a center frequency

instead of a single frequency. The processing of the pulses follows the same method, whereby



each pulse V(fk, t) is shifted and combined to form the compressed pulse q(x, t).

N-1

q(x, t)= V(fk,t) eifk Af (4.3)
k=O

Af is the frequency spacing of the center frequency fk between each pulse. The equation

is about the same, and the frequency is replaced by a vector.

The Nyquist criterion for the frequency step size Af is still applicable to the LFM pulse

train. The LFM pulse train approximation of a chirp signal will be simulated in subsequent

sections for the cases at the end of Chapter 2. A simulation code written in Matlab,

simufjb2.m is used in the simulations and can be found in Appendix A. It models the

transmission, reception, mixing, and summation for a series of -40 dB Chebychev weighted

pulses for an ideal LFM pulse train, a non-uniform LFM pulse train, a LFM pulse train

with gaps in frequency steps, and an LFM pulse train subject to phase distortion due to

target motion.

4.2 Simulations

4.2.1 Ideal LFM Pulse Train

The case of an ideal LFM pulse train is simulated and shown. Figure 4-2 is a plot of

the center frequency of a frequency train consisting of 15 pulses, which spans the entire

frequency range of the 20 pulses of the CW pulse train presented in Chapter 3. There

is an initial frequency offset of 1 MHz, a frequency step size of 75 kHz, an instantaneous

bandwidth of 40 kHz, and an overall bandwidth of about 1 MHz. Each pulse is transmitted,

and upon reception, processed coherently. The condition for processing is simulated, and

the plots are generated using spt2. .m. The results are plotted in Figure 4-3 and Figure

4-4. Figure 4-3 shows the compressed pulse in the time domain, and Figure 4-4 shows

the spectrum of the compressed pulse in the frequency domain. The results are similar to

that of the CW pulse train, which is expected since when the Nyquist criterion is obeyed,

the CW pulse train should be no different from an LFM pulse train. The pulse width of

the original pulses is the same as the CW case, and there is a pulse width reduction by a
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factor of approximately TA in the compressed pulse. The compressed pulse has a maximum

sidelobe level of -40 dB below the peak, which is a result of the weighting function. The

frequency spectrum shows a wide frequency band with very low sidelobes.
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Figure 4-4: Frequency Spectrum of Compressed Pulse of Ideal LFM Pulse Train.

4.2.2 LFM Pulse Train with Non-Uniform Step Sizes

The case when there are non-uniformities in the frequency train is considered next. The

non-uniformity investigated is that of the frequency step sizes between each pulse. The

non-uniformity of the frequency steps within each pulse is fairly negligible compared to the

frequency step size between each pulse because the magnitude of Af is significantly greater

than the magnitude of 6f (6f is the frequency step between consecutive time samples within

a single LFM pulse). For example, the frequency step size between consecutive pulses of

the ideal LFM pulse train simulated is 75 kHz, while the frequency step size within each

pulse of the pulse train is only 0.1 kHz.

The process of transmitting the LFM pulse train with non-uniformities in the frequency

step sizes between pulses and uniform steps within each pulse is simulated using spt2.1 m

and given in Figure 4-5, Figure 4-6, and Figure 4-7. Figure 4-5 presents the frequency

characteristic of the center frequencies of the pulse train as a function of pulse number for a

total of 15 pulses. There is a uniformly distributed random frequency step size error of ==L-

between consecutive pulse transmissions. The parameters of the frequency characteristic in
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Figure 4-5: Plot of Frequency Characteristic of Center Frequencies of Non-Uniform LFM
Pulse Train (Af = 75 kHz, A ~ 1 MHz).

this case is the same as that of the ideal LFM pulse train. There is a frequency step size of

approximately 75 kHz (due to errors introduced), an instantaneous bandwidth of 40 kHz,

and an overall bandwidth of about 1 MHz. Figure 4-6 shows the compressed pulse for the

non-uniform LFM pulse train as the solid line and the compressed pulse for the ideal LFM

pulse train as the dashed line for comparison. The frequency spectra for both the ideal case

and the non-uniform case are shown in Figure 4-7. It is evident from the figures that when

there are non-uniformities in the frequency step size, there is an increase in the sidelobes of

the compressed pulse as well as ripples in the frequency spectrum of the compressed pulse,

which is also the case for the CW pulse train. Again the far out sidelobes are affected more

than the near-in sidelobes. The level of the sidelobes are now at about -10 dB below the

peak, which is an 8 dB increase from the sidelobe level of the CW pulse train. This is due

to the fact that the frequency step size, Af is greater in this case than in the case of the

CW pulse train in order for the LFM pulse train to span the same bandwidth with fewer

pulses. The frequency step size of the CW pulse train is 50 kHz and is 75 kHz for the LFM

pulse train. This shows that as the range of non-uniformities increase, there is an increase

in the level of sidelobes. In the case where the span of non-uniformity is very large, it would
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Figure 4-6: Plot of (a) Compressed Pulse of Non-Uniform LFM Pulse Train and (b) Com-
pressed Pulse of Ideal LFM Pulse Train.
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Figure 4-7: (a) Frequency Spectrum of Compressed Pulse of Non-Uniform LFM Pulse Train
and (b) Frequency Spectrum of Compressed Pulse of Ideal LFM Pulse Train.
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correspond to a band gap, which results in a very severe sidelobe increase, as seen earlier.

Besides the increase in sidelobe level, there is also an increase in the level of ripples in the

frequency spectrum of the compressed pulse as compared to the case of the non-uniform

CW pulse train, which is again expected since there is an increase in frequency step sizes

as well as the range of non-uniformities in the frequency step sizes.

4.2.3 LFM Pulse Train with Gaps in Frequency Steps

The case when there are gaps in the transmission frequency band is studied and simulated

using spt2-2.m, and the results are presented in Figure 4-8, Figure 4-9, and Figure 4-10.

Figure 4-8 presents the frequency characteristic of the center frequencies of the transmitted

pulse train as a function of pulse number. There is a gap in the middle of the frequency train

that may correspond to actual frequency spectrum conditions. The frequency steps outside

the gap are uniform and are the same as the ideal LFM pulse train (Af = 75 kHz). Figure
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Figure 4-8: Plot of Frequency Characteristic of
with Gap in Frequency Steps (Af = 75 kHz).

Center Frequencies of LFM Pulse Train

4-9 shows the compressed pulse of the gapped frequency train in solid and the compressed

pulse of the ideal frequency train for comparison in dashed. The frequency spectra of the

compressed pulses are shown in Figure 4-10. It is evident from the figures that gaps in the

transmission frequency band will result in an increase in the sidelobes of the compressed
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Figure 4-9: Plot of (a) Compressed Pulse of LFM Pulse Train with Gaps in Frequency Steps
and (b) Compressed Pulse of Ideal LFM Pulse Train.
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pulse (usually the near-in sidelobes) and corresponding gaps in the frequency spectrum of

the compressed pulse. The sidelobes of the compressed pulse has increased to about -10

dB, which would cause problems in noise and background clutter.

4.2.4 LFM Pulse Train with Range Walk

The case when there is range walk between consecutive pulse transmissions is simulated

using spt2-3. m, and the results are found as follows. The ideal LFM pulse train in Figure 4-3

is used, and a significant phase distortion due to target motion (0.5ps) is introduced between

consecutive pulse transmissions. The phase distortion is again somewhat high for illustration

purposes. This phase distortion also increases with consecutive pulse transmissions. Figure

4-11 shows the compressed pulse of the LFM pulse train with significant phase distortion

due to target motion in solid and the compressed pulse when there is no range walk in

dashed. For further comparison, the magnitude of the pulse envelope of a single pulse is

shown in dot-dashed. It is apparent that range walk will lead to severe distortions in the
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Figure 4-11: Plot of (a) Compressed Pulse of LFM Pulse Train with Range Walk (0.5fLs),
(b) Compressed Pulse of Ideal LFM Pulse Train, and (c) Envelope of Single Pulse of LFM
Pulse Train.

compressed pulse. In this case, the distortion is slightly better than the case of range walk

in the CW pulse train but is still very severe. There is not a total loss of compression, as

in the case of the CW pulse train. There is an increase in the width of the envelope, and

I



the near-in sidelobes are about -10 dB below the peak, but the far sidelobes are about -3

dB from the peak, which would result in severe interference and loss of compression. The

frequency spectra of the compressed pulses of an ideal LFM pulse train and a LFM pulse

train with range walk are shown in Figure 4-12, and the distortion due to range walk is also

evident.
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Figure 4-12: (a) Frequency Spectrum of Compressed Pulse of LFM Pulse Train with Range
Walk (0.5p~s) and (b) Frequency Spectrum of Compressed Pulse of Ideal LFM Pulse Train.

A more detailed comparison is made between the compressed pulse of an LFM pulse train

with 15 pulses and the compressed pulse of a CW pulse train with 20 pulses covering the

same bandwidth and subject to phase distortion due to target motion using spt2_4. m. The

amount of range walk distortion introduced in this case is 0.031Ls, which is more reasonable

than that introduced in earlier simulations (0.5CUs). Figure 4-13 shows the compressed pulse

of an LFM pulse train with range walk as the solid line and the compressed pulse of a

CW pulse train with range walk as the dashed line. It can be seen from the plot that the

compressed pulse of the LFM pulse train has slightly less distortion than the compressed

pulse of the CW pulse train in terms of the pulse width in the presence of range walk

distortion, but not by much. The phase distortion due to target motion results in a range

shift, and the range shift is slightly more severe in the compressed pulse of the CW pulse

train than in the compressed pulse of the LFM pulse train.

By far the most severe distortion to the compressed pulse is due to range walk. It is

I
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Figure 4-13: Plot of (a) Compressed Pulse of LFM Pulse Train with Range Walk (0.03its)
and (b) Compressed Pulse of CW Pulse Train with Range Walk (0.03p/s).

very difficult to remove the phase distortion due to target motion from returns using only

a range detection radar. Traditionally, the SPT waveform is transmitted in a rapid burst

so there is very little range walk, or a separate velocity tracker is used that monitors the

velocity of the target so the amount of phase distortion due to target motion from pulse

to pulse can be estimated. This is not possible for the present radar system. Instead, an

overlapping LFM pulse train can be used. The redundant frequency information in the

overlapping region can be utilized to estimate and compensate for the phase distortion due

to target motion.

4.3 Phase Compensation

An overlapping LFM pulse train approximation is given in Figure 4-14. The linear frequency

characteristic of the chirp signal is approximated using a series of LFM pulses with a region

of overlap in the transmitted frequency, shown by the shaded region. This region can be

used to determine the phase shift due to range walk.

Pulse compressing an overlapping LFM pulse train follows the same steps as pulse

compressing a non-overlapping LFM pulse train. Simulations for processing an overlapping

LFM pulse train can be found in simuolfjb.m in Appendix A. The frequency characteristic
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Figure 4-14: (a) Frequency Characteristic of Chirp Signal and (b) Frequency Characteristic
of Overlapping (shown in shaded region) LFM Pulse Train Approximation.

of the center frequencies of the non-overlapping LFM pulse train in Figure 4-2 is used. The

frequency step size is 75 kHz, and the overall bandwidth is about 1 MHz. The difference

between the overlapping and the non-overlapping LFM pulse train simulations is the slope

of the frequency within each pulse. There is an instantaneous bandwidth of 0.6 kHz in the

pulse of an overlapping LFM pulse train (0.1 kHz in the pulse of a non-overlapping LFM

pulse train), which results in a region of frequency overlap between consecutive pulses.

The processing is simulated, and the results are presented in Figure 4-15 and Figure

4-16. Figure 4-15 shows the compressed pulse of the overlapping LFM pulse train, and

Figure 4-16 shows the frequency spectrum of the compressed pulse. The sidelobes of the

compressed pulse is at -40 dB below the peak, which is expected since the Chebychev

weighting function is used. There is a net pulse width reduction of about TA (T = 20 As,

A = 1 MHz). The frequency spectrum of the compressed pulse is again that of a wideband

signal. This overlapping LFM pulse train can then be used to remove phase distortions due

to target motion.

The processing of a frequency train consisting of two overlapping pulses to remove

phase distortions due to target motion follows the flow chart given in Figure 4-17. An

LFM pulse train with overlaps in frequency is transmitted, and the interval over which

the frequencies overlap is noted. Prior to transmission, any additional phase as a result

A -
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A -- --------/__ -------
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Figure 4-15: Plot of Compressed Pulse of Overlapping LFM Pulse Train.
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Figure 4-16: Frequency Spectrum of Compressed Pulse of Overlapping LFM Pulse Train.
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of hardware differences for different frequencies in the local oscillator is recorded. Upon

reception of the return signal, that phase difference is subtracted from the first pulse. It is

not necessary to subtract or calibrate the phase difference for the second pulse because the

phase difference due to hardware is indistinguishable from phase difference due to target

motion and can be removed at the same time. The phase distortion due to target motion and

any hardware difference is then given by the difference in phase in the region of frequency

overlap, weighted by time offsets. An average phase offset can be found by averaging the

phase offset over the entire overlapping interval to remove any noise effects. The phase

of the second pulse is adjusted accordingly. The second pulse is then phase weighted by

the appropriate frequency and added to the first pulse (according to the pulse compression

equation given by Equation 3.4) for a compressed pulse. The second pulse can then be used

to process the third pulse following the same procedure.

Following the algorithm, phase compensation in order to remove range walk is accom-

plished, as seen from the following simulations for an overlapping LFM pulse train consisting

of 15 pulses with the frequency characteristic given in Figure 4-2. An increasing phase er-

ror, the same as in the case of the range walk simulations (0.5 ps) is introduced in the

pulses. The algorithm outlined in the flow chart is used in the Matlab simulation given by

simuolfjb.m. The phase offset is calculated using a single frequency overlap term and is

removed from the pulses. Figure 4-18, Figure 4-19, and Figure 4-20 show the compressed

pulse after phase compensation in solid, and the compressed pulse without phase compen-

sation is shown in dashed line for a total compression of two, eight, and all fifteen pulses,

respectively. It is evident from the figures that by using the phase compensation algorithm,

the phase term due to range walk can be effectively estimated and removed, and the result-

ing compressed pulse is identical to that of the ideal case. Without phase compensation, the

distortion of the compressed pulse increases as the number of pulses compressed increases.

This algorithm would be applicable only to targets moving with constant velocity be-

cause in the case of an accelerating target, there is a non-constant frequency offset in

addition to a phase offset. As a result, the frequency of the overlapping region would no

longer be equal between two consecutive pulses. The target velocity has to be known in

order to remove phase distortions so the phase compensation algorithm would not work.



Figure 4-17: Flow Chart for Processing Overlapping LFM Pulse Train.
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Figure 4-18: Plot of (a) Compressed Pulse of Overlapping LFM Pulse Train after Phase
Compensation for 2 Pulses and (b) Compressed Pulse of LFM Pulse Train with Range Walk
for 2 Pulses.
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Figure 4-19: Plot of (a) Compressed Pulse of Overlapping LFM Pulse Train after Phase
Compensation for 8 Pulses and (b) Compressed Pulse of LFM Pulse Train with Range Walk
for 8 Pulses.
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Figure 4-20: Plot of (a) Compressed Pulse of Overlapping LFM Pulse Train after Phase
Compensation for 15 Pulses and (b) Compressed Pulse of LFM Pulse Train with Range
Walk for 15 Pulses.

4.4 Summary

An LFM pulse train is able to approximate the chirp signal much in the same way as

the CW pulse train. The achievable instantaneous bandwidth of each pulse is governed

by hardware limitations of the radar system. The case of an ideal LFM pulse train is

studied, and the frequency spectrum of the compressed pulse does indeed approximate the

frequency spectrum of a chirp signal. There is a pulse width reduction of TA. The case

when there is a non-uniform frequency train with non-uniformities in the frequency step

sizes between consecutive pulses is simulated, and the results show that there is an increase

in the sidelobes of the compressed pulse as well as ripples in the frequency spectrum of the

compressed pulse, much like in the case of non-uniformities in the CW pulse train. However,

the amount of increase in sidelobes is higher in the case of the LFM pulse train because the

frequency step size simulated is greater, so larger non-uniformities result in bigger ripples

in the frequency spectrum, which in turn lead to higher sidelobes in the compressed pulse.

The case when there is a gap in the transmission frequency band of the LFM pulse train

is simulated, and the results are again similar to the results for the case when there are

gaps in the frequency band for a CW pulse train. There is a severe increase in the sidelobes

of the compressed pulse as well as corresponding gaps in the frequency spectrum of the



compressed pulse consistent with the missing frequency components.

In the case where range walk between consecutive pulse transmission is simulated, there

is severe distortion to the compressed pulse. There is very little pulse compression evident,

and the compressed pulse width is about the same as the pulse width of the original envelope

of a single pulse. It is slightly better than in the case of the CW pulse train, which results

in complete loss of compression. A comparison is made between the LFM pulse train with

15 pulses and a CW pulse train with 21 pulses subject to phase distortion due to target

motion. In terms of the compressed pulse, LFM pulse train results in less distortion because

there are fewer pulses in the LFM pulse train.

The issue of range walk is alleviated by using the overlapping LFM pulse train. The

overlapping LFM pulse train is processed much in the same way as a non-overlapping LFM

pulse train and achieves the same pulse width reduction of TA. Furthermore, following

the phase compensation algorithm, it is possible to use an overlapping LFM pulse train to

compensate for range walk for targets moving with constant velocity.



Chapter 5

Multipath Height Finding

The background and theory of using target multipath for height finding has been explained

in Chapter 1. It is possible to estimate the height of a target given the height of the radar

and the multipath delay (thus the path length difference between the direct path and the

multipath) for the given bandwidth of the radar system using the SPT waveform approx-

imation. The radar system acquires data, and the data can be processed non-coherently

by looking at the absolute value of radar returns for different frequencies of the SPT wave-

form approximation, or the data can be processed coherently using the phase weighting by

appropriate frequencies and summing method given in Chapter 3 by Equation 3.4.

The data acquisition procedure and processing routines are explained briefly for different

types of targets for the RSTER system. The non-coherent processing routine is introduced

and applied to radar data for different targets, and the coherent processing routine is intro-

duced. It is not carried out on actual data due to lack of time.

5.1 Data Acquisition

The RSTER system consists of 14 channels that transmit a six degree by eight degree wide

beam at a specified azimuth and elevation. Before data collection missions take place, there

are usually certain calibrations that have to be done. The purpose of the calibrations is to

gauge the characteristics of the system hardware and the environment during a particular

mission so as much distortion can be removed from the data as possible before the data is



processed. Included among the calibrations are the receiver and antenna frequency response

for the radar system, as well as noise calibrations for the system hardware and background

clutter at the beginning of a particular mission.

After the calibrations are complete, the system is prepared for transmission. According

to the specifications of the mission, there are three possible types of targets and returns to

record and process.

1. Internal MTS.

2. Niihau MTS.

3. Actual Targets.

The return from an internal Moving Target Simulator (MTS) is a type of return that

does not require external Radio Frequency (RF) transmission. After the transmission signal

is generated, specific phase offsets that correspond to a specified Doppler and range for a

particular mission are programmed and generated internally. The phase offsets are then

injected into the transmission signal and recorded as the return signal. This process takes

place internally, so there is no actual radar transmission, and therefore it is possible to use

all frequencies without concern for interference or range walk.

There is also an external MTS on Niihau, which is a neighboring island about 23 nmi

from the cliff on which the radar is mounted. The Niihau MTS is designed to receive

the transmitted signal and produce a return signal at a specific Doppler. It is mounted

at a fixed location, so it will always appear at the same range between consecutive radar

transmissions, in which case range walk would not be an issue.

The third type of return is actual planes that fly by during a recording session. For this

thesis, commercial air traffic from the far east approaching Honolulu International Airport

in Oahu, which is about 200 nmi east of the radar site, is observed. In many instances,

when receiving returns from actual planes, the type of plane and its altitude are recorded

by interrogating the aircrafts' transponder.

After the returns are recorded, they have to be converted to files that can be processed

off-line. There have been numerous scripts written to convert the data to a format that

can be processed. The data is usually converted into Matlab format, and the general shape



of a particular data set is given in Figure 5-1. The data consists of a string of Coherent

CPI I CPI 2

Figure 5-1: Picture Representation of Transmitted Data Set.

Processing Intervals (CPI's). Each CPI is at a specified frequency (a single frequency for a

CW pulse train and a linear frequency range for the LFM pulse). Each CPI contains data

across 14 channels for N identical pulses at a specified Pulse Repetition Interval (PRI).

There is a total of N pulses in a single CPI rather than a single pulse in order to estimate

the Doppler bin of the target. The Matlab data set is given in terms of CPI's, and the

shape of a single CPI is in matrix form in Figure 5-2. The total number of columns of a

CPI is equal to the total number of channels, which is equal to 14 for the RSTER system.

This number is always constant from one mission to the next. The number of rows is the

product of the total number of range gates, M per PRI, and N PRI's, which is equal to

M x N. The total number of range gates is different from mission to mission, as well as N.

For the CW pulse train, N = 16, and for the LFM pulse train, N = 8.

After the data is converted to Matlab format, it is ready for analysis. There is a set of

standard post-mission analysis routines for the RSTER system. The analysis includes:

* Data equalization - which consists of using calibration coefficients to remove any

frequency distortions due to internal radar hardware and the environment.

* Beam-forming - which consists of applying weighting over the 14 channels and sum-

ming them accordingly to form a focused beam in a desired transmission direction.

* Pulse compression - which involves matched filtering the received pulses for better

range resolution.

These analyses are not all needed to demonstrate that the CW pulse train or the LFM

pulse train is capable of estimating the target height using the target multipath. The data
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Figure 5-2: Matrix Structure of a Single CPI.

collected using the CW pulse train is processed non-coherently, and it is shown that the

target height can be estimated. If the LFM pulse train data is processed coherently, it can

also estimate the target height, and it can do it more accurately because the overlapping

region can be used to compensate for target motion if the phase distortion due to target

motion is significant.

5.2 Non-Coherent Processing of CW Pulse Train

The term non-coherent refers to the fact that the phase information in the return signals

is not accounted for in processing the returns. The flow chart for processing the CPI's

non-coherently is given in Figure 5-3.

The first step is to obtain a Doppler range map that indicates the Doppler and range

bin of the target. The Doppler range map can be thought of as a Doppler plot for each

sample across all range samples. The target is assumed to be at the same azimuth for

different transmissions. Therefore, each range sample is obtained by summing the returns

for each sample for a single pulse across all 14 channels. Then the return for the N pulses

are weighted, and a 32-point FFT is taken of the range sample for the N pulses to form



Range Profile with Multipath

Figure 5-3: Flow Chart of Non-Coherent Processing of SPT Approximation Waveforms.
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the 32-point Doppler plot for that particular range sample. After the Doppler range map is

plotted, the Doppler and range bin of the target can then be identified. It usually occupies

several range and Doppler bins, but the bin in which the maximum Doppler occurs is

noted. The M-point range profile within that particular Doppler bin is extracted, and the

frequency for that particular CPI is noted. There is a loop to process all the CPI's, and the

range profile of the same Doppler bin is extracted for each CPI. The result is a frequency

range map. The target then appears at a particular range bin across all frequencies, and

the frequency profile is extracted for the maximum range bin, which is the bin the target

is in. The FFT of the frequency profile will then give information about the height of the

target. When taking the FFT of the frequency profile at a particular range bin, only the

absolute value of the frequency profile is used, thus the processing is non-coherent.

5.2.1 Simulation

A simulation is performed which demonstrates that the FFT of the absolute value of the

frequency profile does indeed give information about the altitude of the target when there

is target multipath interference using simuolfjb.m. The simulation is done for a target at

a height of 37 kft and a range of 60 nmi, and a radar at a height of 1.5 kft (which is the

height of the cliff on which the RSTER is mounted). The frequency ranges from 420 MHz

to 450 MHz, covering a bandwidth of 30 MHz.

When the signal is transmitted at a particular frequency and the return is received for

a particular range, there is interference due to the target multipath. Given that the target

is at height H1 and range R, and the radar is height H2, the range of the multipath, R 2

can be calculated using simple geometry [1].

R2 = yR 2 + 4HIH2  (5.1)

The difference between R 2 and R 1 is the path difference AR that will be present in the

range plot of the returns.

The plot of the actual interference is given in Figure 5-4. The figure shows the frequency

characteristic of the target range bin when there is multipath interference. If there is no
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Figure 5-4: Frequency Plot of Target Range Bin with Target Multipath Interference (R = 60
nmi, Hi = 37 kft, and H2 = 1.5 kft).

multipath interference, the frequency characteristic of the target range bin would be a

straight line. It is clear that there is periodicity in the frequency characteristic. The FFT

of the magnitude of the frequency plot weighted by the -40 dB Chebychev weighting function

is given in Figure 5-5. Since it is the FFT of a real signal, the target multipath interference
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Figure 5-5: FFT of Frequency Plot of Target Range Bin with Target
(R = 60 nmi, Hi = 37 kft, and H2 = 1.5 kft).

Multipath Interference

appears at symmetrical positive and negative frequencies. The frequency spectrum is in

essence a time plot since it is the FFT of a frequency plot, and the target multipath



information is given by the delay between the main lobe and the secondary sidelobes.

5.2.2 Internal MTS

The non-coherent processing of the CW pulse train is applied to data collected from the

internal MTS. The CW pulse train consists of 101 CPI's, each containing 8 PRI's. The

duration of the pulse is 5 ps, and the frequency of the CPI's starts at 420 MHz and increases

at 0.2 MHz per CPI to 439.8 MHz for the last CPI, covering a total bandwidth of 19.8

MHz. Since the internal MTS transmits a delay that corresponds to a particular Doppler

and range, there is no multipath effect. The results, as expected, are shown in the following

figures.

Figure 5-6 is the Doppler range map for a particular CPI for mission number 9029

generated using rdplot .m found in Appendix B, along with other Matlab routines used

for data analysis. The maximum Doppler bin is located using multiplot.m. The target

is seen very clearly in the middle of the plot. The target is seen so clearly in this case

because it is an internal MTS, so there is only internal hardware noise, which is negligible

compared to background clutter of the environment. The frequency range map is generated

using multiplot.m and plotted using rdplot.m, and it is given in Figure 5-7. There is an

obvious target at range gate 51 across all frequencies.

The frequency plot for the range sample is generated using ncprocw.m and given in

Figure 5-8. It is clear from the plot that there is slight oscillation and very little periodicity,

which is expected since the internal MTS should not have any multipath images. The

periodicity and oscillation are direct results of the hardware. The FFT of the frequency plots

shows a single spike that corresponds to the programmed range. The secondary sidelobes

at around -30 dB below the peak are also results of the hardware of the radar system. The

internal MTS is used to show that the non-coherent processing technique is able to produce

an accurate and expected range profile for a particular target. The multipath effect can be

better seen when applied to an actual plane with multipath interference.
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Figure 5-6: Doppler Range Map of Internal MTS.
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Figure 5-9: FFT of Frequency Plot of Target Range Bin for Internal MTS.

5.2.3 Actual Plane

The non-coherent processing technique is applied to an actual target flying over water at

an altitude of 39 kft. The mission number for the collection is 9013, and the CW pulse

train used on the internal MTS is also used to collect the data. The results demonstrate

that the non-coherent processing technique is able to accurately determine the height of

the target. The Doppler bin of the target is found using multiplot .m, and the Doppler

range plot of the target is again generated using rdplot .m and given in Figure 5-10. The

location of the target is not as evident in this map as it is in the Doppler range map of the

internal MTS. There is considerably more noise, and the target is somewhat hidden. But

upon closer inspection and with the aid of a color map, it is clear that the target is at the

lower right hand corner of the map, at Doppler bin 31. The range profile for the bin is used

to construct the frequency range map in Figure 5-11. It is clear in the plot that the target

is at the bottom of the map, and that there is definite periodicity. Due to the fact that this

is an actual transmission, there are frequencies for which the range plot is missing or highly

corrupted, so only a subset of the frequency is used in the frequency range map as well as

the frequency plot which is again generated using ncprocw.m and shown in Figure 5-12. It

is clear that the frequency plot looks very much like the frequency plot of the simulation

in Figure 5-4. The FFT of the frequency plot in Figure 5-13 shows a main lobe and the
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equidistant sidelobes corresponds to the multipath interference of the target.
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Figure 5-13: FFT of Frequency Plot of Target Range Bin for Actual Plane.

It is appropriate at this point to look at the entire frequency profile of the frequency

range map. The frequency profile for the entire frequency train is given in Figure 5-14. There
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Figure 5-14:
Present.

Frequency Plot of Target Range Bin with All Frequencies of Frequency T rain

is distortion in the frequency samples ranging from about 430 MHz to 438 MHz, which may

be due to interference from other communication channels. It is not due to radar hardware

differences because these frequencies are valid for the internal MTS. The FFT of the entire

frequency profile is given in Figure 5-15 as the solid line, and for comparison, the FFT of
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the frequency profile of a portion of the frequency train is given in dashed. There is more
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Figure 5-15: (a) FFT of Frequency Plot of Target Range Bin with Entire Frequency Train
Present and (b) FFT of Frequency Plot of Target Range Bin for a Portion of the Frequency
Train.

distortion although the pulse width is slightly narrower. The distorted frequencies can be

zeroed out, and it would be a case of a pulse train with gaps in frequency steps simulated

earlier. If the frequency profile for frequency ranging from 428 MHz to 438 MHz are zeroed

out, the resulting frequency profile is shown in Figure 5-16. There is a gap in the frequency
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Figure 5-16: Frequency Plot of Target Range Bin for Frequency Train with Gaps in Fre-
quency Steps.

profile, which is similar to the gap in the frequency spectrum of the compressed pulses for



the CW pulse train and the LFM pulse train simulated earlier. The FFT of the frequency

profile is given in Figure 5-17 in solid, and the FFT of the frequency profile of only a portion

of the frequency train is given in dashed for comparison. There is severe distortion in this
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Figure 5-17: (a) FFT of Frequency Plot of Target Range Bin for Frequency Train with
Gaps in Frequency Steps and (b) FFT of Frequency Plot of Target Range Bin for a Portion
of the Frequency Train.

case, just as seen in earlier simulations. The sidelobes of the range profile is very high.

The data supports the fact that the non-coherent processing technique can determine

the height of the target. However, the technique does not make use of the phase information,

which can be used to better estimate the target height for more targets. There are many

conditions under which the non-coherent method would not work as well. The non-coherent

method extracts altitude information from the amplitude of the radar return only. The

amplitude fluctuations are affected by the complex reflectivity of water and the complex

reflectivity of the target at different aspect angles. These factors may greatly affect the

non-coherent frequency spectrum, but have much less effect on a true multipath time delay

estimate. Also, the target velocity may change so that it is in a different range bin, so there

would be too few data points for the FFT. Therefore, the coherent processing technique

needs to be investigated and incorporated for certain classes of targets.



5.3 Coherent Processing of Overlapping LFM Pulse Train

The flow chart for coherently processing the data is given in Figure 5-18. The top part of

Pulse Compressed Range Profile

Figure 5-18: Flow Chart for Coherent Processing of SPT Approximation Waveforms.

the flow chart looks very much like the flow chart in Figure 5-3 for non-coherent processing.

This is because the first part of the processing involves finding the exact location of the

target and extracting the range profile from a specific Doppler bin. The coherent processing

differs once the range profile for a single CPI is extracted. The range profile for the CPI is



processed according to the pulse compression equation given by Equation 3.4, and it will

be the complex pulse envelope V(fk, t) in the equation. Although the complex envelope

from Equation 3.4 applied to a single pulse before any Doppler processing, the coherent

processing can be done after Doppler processing because it is a linear process, so the order

which it is done is irrelevant. All N pulses in a single CPI are identical, so combining

them would not have any effect on their phase, provided there is no phase distortion due to

target motion within a CPI. Since coherent processing only requires that the detection be

coherent, it can be done for the RSTER system since the detection is coherent, as explained

in Chapter 3. The range profile is phase weighted by its frequency and then summed to

produce the high range profile simulated in Chapter 3 and Chapter 4. The constant phase

offsets due to hardware are embedded in the phase of the MTS, which can be used to remove

phase offsets due to hardware from returns of actual planes. The coherent processing can

then be carried out. Unfortunately, due to the lack of time, the simulations performed in

Chapter 3 and Chapter 4 could not be verified against actual data.



Chapter 6

Conclusion

The purpose of this thesis has been to investigate methods of improving the bandwidth

performance of Airborne Early Warning (AEW) radar systems. The RSTER system, which

transmits in the UHF band, is an adaptive radar system built to emulate AEW radars and

to study their performance under different conditions.

Chapter 1 investigates the applications of the AEW radar, which includes target length

estimation and target height finding. Target length estimation requires a very high band-

width for the classes of targets that are of interest, such as missiles. It is not practical to

increase the bandwidth of the present radar system to the desired bandwidth in order to

accomplish target length estimation, so the attention is turned toward estimating target

height. Because the targets observed by AEW radars are usually flying over water, there is

multipath interference between the direct transmission and the return bouncing off of the

water surface. As a result, it may be possible to resolve the target height by looking at

the range spacing between the target return and the return of the multipath. In order to

accomplish this, the bandwidth of the radar system has to be increased.

Chapter 2 studies the chirp signal, which is the usual approach to achieving a wideband

signal, resulting in a narrow pulse with high range resolution in the time domain. The chirp

signal investigated is a signal whose carrier frequency increases linearly with time. Upon

reception, the chirp signal is passed through a matched filter whose frequency versus delay

characteristic is opposite to that of the transmitted signal, and the output is a compressed

pulse in the time domain. For a signal with a pulse duration of T and spanning over a



bandwidth of A, the transmitted pulse will undergo an approximate pulse width reduction

of TA, as demonstrated by simulations in Chapter 2. In order to reduce range sidelobes, it

is also shown that it is better to apply a weighting function to the signal, which in this case

is a Chebychev weighting function with sidelobes at -40 dB below the peak. The weighted

compressed pulse is slightly wider, but the increase in width is negligible in light of the

decreased sidelobes. The same weighting function is applied to all simulations and data

analyses.

Certain implementation issues involved in adopting the chirp signal are also presented in

Chapter 2. Due to hardware limitations as well as restrictions imposed by the availability

of the UHF band, approximations of the chirp signal, known as the Stepped-Frequency

Pulse Train (SPT) approximations, are investigated. Two types of SPT approximations

are studied, the Continuous Wave (CW) pulse train, and the Linear Frequency Modulated

(LFM) pulse train. For each SPT approximation waveform, there is a total of four cases

simulated.

1. The ideal case.

2. The case when there are uniformly distributed random step size errors of =0 , where

Af is the frequency step size.

3. The case when there are gaps in frequency steps.

4. The case when there is phase distortion due to target motion.

Range walk distortion is more significant for the RSTER system than for other radar

systems because many radar systems transmit the pulse trains as a rapid burst of pulses,

so there is negligible delay between consecutive pulse transmission. The RSTER system,

however, processes a pulse before the transmission of the next pulse, so there is significant

delay between consecutive pulse transmissions. This makes it more sensitive to target

motion between consecutive pulse transmissions.

Chapter 3 investigates the CW pulse train, which is a pulse train consisting of single

frequency pulses, each at a higher frequency than the previous pulse. The pulses of the

pulse train are processed according to the pulse compression equation given by Equation



3.4. The frequency step size of the CW pulse train has to obey the Nyquist criterion given

by Equation 3.5, otherwise there may be distortions in the compressed pulse. When the

CW pulse train does obey the Nyquist criterion, the compressed pulse approximates that

of a compressed chirp signal, and the frequency spectrum of the compressed pulse is similar

to that of a chirp signal. There is also a net pulse width reduction of TA.

When there are non-uniformities in the CW pulse train, there is an increase in the

level of sidelobes of the compressed pulse in the time domain, and there are ripples in the

frequency spectrum of the compressed pulse. The distortions are not severe and should not

have a tremendous impact on the resolution of the system. The distortions become more

severe when there are gaps in the frequency steps of the pules train. The case when there

is a single gap in the CW pulse train is simulated. It is found that there is a significant

increase in the sidelobe level of the compressed pulse, and that there is a corresponding

gap in the frequency spectrum of the compressed pulse. The level of the sidelobes may

interfere with the resolution of the system in the presence of background noise and possible

jammers. The most severe distortion, by far, is due to range walk between consecutive

pulse transmissions. When range walk is introduced into the CW pulse train consisting of

21 pulses, there is a complete loss of compression. The width of the compressed pulse is the

same as that of an envelope for a single pulse, so the pulse compression routine is no longer

effective in that case.

The LFM pulse train approximation of the chirp signal is introduced in Chapter 4 in

order to compensate for the range walk. A non-overlapping LFM pulse train approximates

a chirp signal by breaking the chirp signal up into smaller chirp signals and transmitting

them individually. These pulses are then received and processed much in the same way as

the CW pulses, except there is no longer a single phase weighting factor at a single frequency

but a set of frequencies in the phase weighting of the pulse compression equation. The case

of an ideal LFM pulse train is simulated for a pulse train which consists of fewer pulses

than the CW pulse train. It is found that the compressed pulse of the LFM pulse train

also resembles that of a chirp signal with a pulse width reduction of TA. The frequency

spectrum of the compressed pulse is similar to that of the chirp signal and that of the

compressed pulse of CW pulse train. When there are non-uniformities in the LFM pulse



train, the level of sidelobes is not only higher than the ideal case for the LFM pulse train

but also higher than the non-uniform case for the CW pulse train due to the fact that the

size of the frequency steps is greater in the LFM pulse train than in the CW pulse train.

The ripples in the frequency spectrum of the compressed pulse is also bigger. The case

when there is a gap in the frequency steps is simulated, and there is again a higher increase

in the level of sidelobes of the compressed pulse than in the case of the CW pulse train with

gaps in frequency steps. The level of sidelobe increase is fairly significant and would most

likely interfere with target detection and target height finding.

Again, the most severe distortion is seen for the case of range walk introduced in the

LFM pulse train. Unlike the non-uniform and gapped case, the distortion in the compressed

pulse of the LFM pulse train as a result of range walk is slightly less than the distortion

in the compressed pulse of the CW pulse train because fewer pulses are transmitted in

the LFM pulse train. Therefore, there is a trade-off between the distortions due to non-

uniformities and gaps in the frequency spectrum and phase distortions due to target motion

when considering the total number of pulses to transmit in a pulse train and the frequency

step size between each transmission. It would be beneficial to choose smaller steps and

transmit more pulses if the targets are fairly slow moving and range walk would not be

severe. In that case, there is less distortion due to non-uniformity. In the case of fast

moving targets, it is better to transmit fewer pulses with bigger frequency steps.

It would be best to remove the distortion due to range so that smaller steps can be taken

to reduce sidelobe levels when there are hardware limitations. The overlapping LFM pulse

train is introduced for this purpose. It is an approximation that consists of a series of chirp

signals with a region of frequency overlap between consecutive pulses. A phase compensation

algorithm is developed that uses the redundant information in the overlapping frequency

region to remove any phase distortion due to range walk for targets moving with constant

velocity. If the target velocity changes, it results in a non-linear frequency shift in the

transmitted pulses, so the overlapping region no longer has the same frequency between

consecutive pulse transmissions and can no longer be used for phase compensation.

The case of the overlapping LFM pulse train is simulated, and it is found that the

phase compensation can be used to remove any range walk due to target motion. The



phase compensation algorithm is iterative, so any errors would build up over time, and

the phase estimate would deteriorate over too many pulses. There are limitations to the

phase compensation algorithm, but it is still a tremendous improvement over not having

any phase compensation.

Chapter 5 investigates some multipath height finding techniques for analyzing actual

radar returns. The method of data collection, the data format, and some existing data

processing routines are explained. There are two methods of processing the radar returns.

The first method is the non-coherent processing method, which makes use of the amplitude

and frequency characteristics of the pulse train, but not the phase information. The sim-

ulation for the non-coherent processing method shows that it is possible to resolve target

multipath. The non-coherent processing method is applied to the internal Moving Target

Simulator (MTS) as well as data from actual planes to show that it works. The range of

the internal MTS is estimated correctly, and there is no multipath present, as is expected.

The multipath effect is seen when analyzing the data from an actual plane. There is some

frequency interference over the entire frequency span of the pulse train, so only a portion

of the frequency profile is used for height finding. When the entire profile and the profile

with zero padding in the region of frequency interference are used, there are distortions in

the range profiles. The distortion due to zero-padding is more severe than the distortion to

the compressed pulse when the entire frequency profile is used.

The second method is the coherent processing method, which makes use of the phase

information between consecutive pulses. The method for processing is given, but due to the

lack of time, it is not carried out for actual radar data.

6.1 Future Work

The SPT approximation waveforms show much promise and should be investigated further.

First of all, the coherent processing method should be verified for an actual radar data set.

After the coherent processing method is verified, the phase compensation algorithm can

then be used to remove any range walk from data sets with range walk distortions, if there

is any. If not, more data collection missions should be performed.



Since the phase compensation algorithm accumulates errors, more simulations should be

carried out in order to better characterize the effect of hardware discrepancies, background

clutter, and noise on the phase compensation algorithm as well as ways to average out any

noise effects.

When there are non-uniformities in the frequency steps as well as gaps in the frequency

steps, it results in an increase in sidelobes of the compressed pulse. Measures, such as

frequency spectrum equalization, may be taken to remove the distortions. In the case when

there are gaps in the frequency steps, it may be possible to patch the frequency spectrum

by adjoining the separate frequency spectra to eliminate the gap so that there is a smaller

bandwidth but lower sidelobes, and there would be better resolution overall. Instead of

phase weighting the pulse envelope by a transmitted frequency, it may be possible to phase

weight the pulse envelope by a lower frequency to make up for the gap.

There is a lot of promise in the SPT approximation waveforms. It not only applies to

the case of the AEW radar and the RSTER radar system but the entire communications

industry. The target multipath does not just pertain to the radar. Many land mobile com-

munications applications encounter the same problem, and by better utilizing the frequency

bands to understand the multipath, the knowledge may be applied to filter out any multi-

path interference. By understanding the SPT approximations and utilizing them effectively,

the entire communications industry may see the benefits of those approximations in an age

where bandwidth is such a precious commodity.
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Appendix A

Matlab Simulation Routines

1. chirp.m

2. vncsptl.m

3. simuspt. m

4. simuspt2.m

5. sptll.m

6. sptl_2.m

7. spt 13.m

8. simufjb2.m

9. spt2_ .m

10. spt2_2.m

11. spt2_3.m

12. spt2_4.m

13. simuolfjb.m

14. simumulti.m



chirp.m
%Simulates the generation of a chirp signal and the receiver
%characteristic to match filter the chirp signal.
%Signal generation.
fo=le5;
k=1.6e9;
T=2.5e-4;
t=[0:2.5e-7:T];
el=exp(j*2*pi*(fo*t+k*t.*t/2));
elfft=fft(el);
%Plotting the signal and the frequency spectrum of signal.
figure(l)
clg
subplot(21 1)
plot(t* le6,imag(el));
set(gca,'XLim',[0,100])
set(gca,'YLim',[-l.25,1.25])
xlabel('Time (usec)')
ylabel('Amplitude')
print -deps chirp
fh=[1:1001];
fh=(fh-I)*(1/2.5e-7)/1001;
figure(2)
clg
subplot(211)
plot(fh*1e-6,20*log 10(abs(elfft)/max(abs(elfft))))
set(gca,'XLim',[0,0.8])
set(gca,'YLim',[-30,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps chirpfft
%Generating the receiver characteristic.
f=[-2e6:4e6/1000:2e6];
Y=exp(*pi*(f-fo).A2/k);
y=ifft(Y);
%Matched filtering of chirp signal by convolution.
yel=conv(y,el);
%Plotting the result of matched filtering.
th=[-T:2.5e-7:T];
figure(3)
clg
subplot(211)
plot(th*le6,20*loglO(abs(yel)/max(abs(yel))))
set(gca,'XLim',[th(970),th(1030)]*1e6);
set(gca,'YLim',[-30,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps mfchirp
%Creating the weighting function.
wf=chebwin(length(el),40)';
elw=el.*wf;
figure(4)
subplot(211)
plot(t*1 e6,imag(elw));
set(gca,'XLim',[0,100])
set(gca,'YLim',[-1.25,1.25])
xlabel('Time (usec)')
ylabel('Amplitude')
print -deps wchirp
%Matched filtering of weighted chirp signal by convolution.
yelw=conv(y,elw);

%Plotting the result of matched filtering.
th=[-T:2.5e-7:T];
figure(5)
clg
subplot(211)
plot(th*1e6,20*loglO(abs(yelw)/max(abs(yelw))))
hold on
plot(th*le6,20*logl 0(abs(yel)/max(abs(yel))),'--')
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[th(970),th(1030)]* le6);
set(gca,'YLim',[-50,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps mfwchirp

vncsptl.m
fo=le5;
k=1.6e9;
T=104;
t=[0:0.5e-6:T*0.5e-6];
f=-fo+k*t/2;
fl=f(18);
f2=f(53);
f3=f(88);
simuspt
%Values entered during the procedure call.
%[fl f2 f3]
%t
%105
disp('Hit Any Key to Plot Results...')
pause
figure(l)
clg
subplot(211)
plot([1:3],f* le-6)
hold on
plot([1:3],f* le-6,'o')
set(gca,'XLim',[0.75,3.25])
set(gca,'XTick',[1,2,3])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps vncfreq
figure(2)
clg
subplot(211)
plot(t* l1e6,20*log10(abs(q)/max(abs(q))));
hold on
plot(t* le6,20*logl0(abs(s)/max(abs(s))),'--');
legend('-','(a)','--','(b)',-1)
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
set(gca,'XLim',[min(t),max(t)]* le6);
set(gca,'YLim',[-40,5])
print -deps vnccp
figure(3)
clg
subplot(211)
qfft=abs(fft(q, 1024));
fh=[0:1023]/le-6/1024;
plot(fh*le-6,20*logl0(qfft/max(qfft)));
set(gca,'XLim',[0,0.2])



set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps vnccpfft

simuspt.m
f=input('Enter Frequency Vector -> ');
[a,N]=size(f);
disp(' ')
disp('Size of Frequency Train...')
disp(N)
fs=(f(N)-f(1))/(N-l);
disp('Size of Frequency Step...')
disp(fs)
t=input('Enter Time Vector -> ');
[b,TJ=size(t);
disp(")
disp('Maximum Time...')
disp(t(T));
ts=(t(T)-t(1))/(T-1);
disp('Size of Time Step...')
disp(ts)
m=input('Enter No. of Bins of Envelope (Odd Number) -> ');
while floor(m/10) = ceil(m/10)

disp('Even Number Entered, Please Reenter')
m-input('Enter No. of Bins of Envelope (Odd Number) ->

');

end
pd=m*ts;
disp('Pulse Duration...')
disp(pd)
disp('Ratio of Frequency Step to Pulse Duration (<- 0.5)...')
disp(pd*fs);
s=[zeros(l,(T-m)/2),boxcar(m)',zeros(l,(T-m)/2)];
figure(3)
subplot(211)
stem(f* le-6)
title('Frequency Train')
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
subplot(212)
plot(t* le6,s)
set(gca,'XLim',[t(l),t(T)]*le6);
grid
title('Shape of Pulse Envelope')
xlabel('Time (usec)')
ylabel('Amplitude')
disp('Running . . .')
w=chebwin(N,40);
W=w*ones(1,T);
S=ones(N,1)*s;
Z=S.*W.*exp(j*2*pi*f'*t)*fs;
q=sum(Z);
figure(4)
subplot(221)
plot(t*le6,abs(q))
grid
title('Magnitude of High-Resolution Profile')
xlabel('Time (usec)')
ylabel('Amplitude')
subplot(222)

plot(t* le6,20*logl0(abs(q)/max(abs(q))));
grid
set(gca,'YLim',[-30,5])
title('Magnitude of High Resolution Profile')
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
qfft=abs(fft(q));
qfft=qfft(l:(T-l)/2);
fh=[l:(T-I)/2];
fh=(fh-l)/(ts*T);
subplot(223)
plot(fh*le-6,qfft);
grid
title('Frequency Spectrum of High Resolution Profile')
xlabel('Frequency (MHz)')
ylabel('Amplitude')
subplot(224)
plot(fh*le-6,20*loglO(qfft/max(qfft)));
grid
set(gca,'YLim',[-40,0])
title('Frequency Spectrum of High Resolution Profile')
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
disp('Pulse Compression Done')

simuspt2.m
%Simulates the conditon for pulse compressing the SPT I wave-
form
%approximation for the case of 21 pulses, with a specified initial
%frequency and the frequency step for a pulse of length 401.
fo-input('Enter Initial Frequency -> ');
fs=input('Enter Frequency Step -> ');
fl =[fo:fs:20*fs+fo];
t=input('Enter Time Vector -> ');
T=length(t);
c=menu('Simulations','Ideal Case','Non-Uniform Frequency
Train','Gapped Frequency Train','Range Walk');
if c==l

disp('Ideal Case Used.')
f2=fl;

elseif c=2
disp('Non-Uniform Frequency Train Used.')
noise=rand(l,21)-0.5;
f2=fl+noise*0.5*fs;

elseif c=3
disp('Frequency Train with Gaps Used.')
f2=[fl(l:9),fl(12:21)];

elseif c==4
disp('Range Walk Distortion Introduced.')
dis-input('Enter Phase Shift Between Pulses (usec) -> ');
f2=fl;

end
disp('Running...')
N1=21;
[a,N2]=size(f2);
disp('Size of Noisy Frequency Train ... ')
disp(N2)
if (c--=4) & (dis -= 0)

x=[0:dis*le-6:(N2-1)*dis*le-6];
else

x=zeros(l,N2);



end
ss=[zeros(1,100),boxcar(201)',zeros(1,100)];
wl=chebwin(N1,40);
W1=wl*ones(l,T);
disp('Calculating Ideal Case...')
SSl=ones(N1,1)*ss;
R1=exp(j*2*pi*fl'*t);
Y1=SSl.*exp(j*2*pi*fl'*t);
V1=conj(RI).*Y1.*W1;
Zl=V1.*exp(j*2*pi*fl'*t)*fs;
ql=sum(Zl);
disp('Calculating Noisy Case ... ')
w2=chebwin(N2,40);
W2=w2*ones(1,T);
SS2=ones(N2,1)*ss;
R2=exp(j*2*pi*f2'*t);
Y2=SS2.*exp(j*2*pi*(f2'*t-(f2.*x)'*ones(1,401)));
V2=conj(R2).*Y2.*W2;
Z2=V2.*exp(*2*pi*f2'*t)*fs;
q2=sum(Z2);
qlfft=abs(fft(ql));
qlfft=qlfft(l:200);
q2fft=abs(fft(q2));
q2fft=q2fft(1:200);
fh=[1:401];
fh=(fh-1)*le7/401;
fh=fh(l:200);
figure(l)
clg
subplot(211)
plot([ 1:N 1 ],fl*l e-6);
set(gca,'XLim',[l,NI]);
grid
title('Ideal Frequency Train')
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
subplot(212)
plot([l:N2],f2*le-6)
set(gca,'XLim',[l,N2]);
grid
if c==2

title('Non-Uniform Frequency Train')
elseif c=3

title('Frequency Train with Gaps')
else

title('Ideal Frequency Train')
end
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
figure(2)
clg
subplot(211)
plot(t*1e6,20*logl0(abs(ql)/max(abs(ql))));
grid
title('Magnitude of Ideal High Resolution Profile')
set(gca,'YLim',[-40,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
subplot(212)
plot(t* le6,20*log10(abs(q2)/max(abs(q2))));
grid
set(gca,'YLim',[-40,5]);

xlabel('Time (usec)')
ylabel('Amplitude (dB)')
figure(3)
clg
subplot(211)
plot(fh*le-6,20*logl0O(qlfft/max(ql fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6);
grid
title('Frequency Spectrum of Ideal High-Resolution Profile')
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
subplot(212)
plot(fh*le-6,20*log 1(q2fft/max(q2fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6)
grid
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
if c==1

title('Frequency Spectrum of Compressed Pulse (Ideal)')
figure(2)
title('Ideal Compressed Pulse')

elseif c=2
title('Frequency Spectrum of Compressed Pulse (Non-Uni-

form)')
figure(2)
title('Compressed Pulse of Non-Uniform Pulse Train')

elseif c=3
title('Frequency Spectrum of Compressed Pulse

(Gapped)')
figure(2)
title('Compressed Pulse of Gapped Frequency Train')

elseif c==4
title('Frequency Spectrum of Compressed Pulse (Range

Walk)')
figure(2)
title('Compressed Pulse with Range Walk Distortion')

end
disp('Done with Pulse Compression')

sptl_l.m
clear all
simuspt2
%Values Entered:
%1e6
%50000
%[-2e-5:le-7:2e-5]
%Choose Non-Uniform Case
disp('Hit Any Key to Plot Results...')
pause
figure(4)
clg
subplot(211)
plot([l:N1],fl*le-6)
hold on
plot([1:Nl],fl* I e-6,'o')
set(gca,'XLim',[0.5,21.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps cwifreq
figure(5)
clg



subplot(211)
plot(t* l1e6,20*logl 0(abs(ql)/max(abs(ql))));
set(gca,'XLim',[-10, 101)
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps cwicp
figure(6)
clg
subplot(211)
plot(fh*1e-6,20*log10(qlfft/max(q1fft)));
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps cwicpfft
disp('Hit Any Key to Plot Noisy Case')
pause
figure(4)
clg
subplot(211)
plot([ 1:N2],f2* I e-6)
hold on
plot([l:N2],f2*le-6,'o');
set(gca,'XLim',[0.5,21.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps cwnufreq
figure(5)
clg
subplot(211)
plot(t* I e6,20*log I (abs(q2)/max(abs(q2))));
hold on

plot(t* le6,20*logl0(abs(ql)/max(abs(ql))),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[-60,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps cwnucp
figure(6)
clg
subplot(211)
plot(fh*le-6,20*logl0(q2fft/max(q2fft)));
hold on
plot(fh*le-6,20*logl0(qlfft/max(qlfft)),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps cwnucpfft

sptl_2.m
clear all
simuspt2
%Values Entered:
%1e6
%50000
%[-2e-5:le-7:2e-5]
%Choose Gapped Case

disp('Hit Any Key to Plot Noisy Case')
pause
figure(4)
clg
subplot(211)
plot([l:N2],f2* le-6)
hold on
plot([1:N2],f2* le-6,'o')
set(gca,'XLim',[0.5,21.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps cwgfreq
figure(5)
clg
subplot(211)
plot(t*le6,20*logl O(abs(q2)/max(abs(q2))));
hold on
plot(t* le6,20*log10(abs(ql)/max(abs(ql))),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[- 10,10])
set(gca,' YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps cwgcp
figure(6)
clg
subplot(211)
plot(fh* le-6,20*log10(q2fft/max(q2fft)));
hold on
plot(fh*le-6,20*logl0(qlfft/max(qlfft)),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim', [-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps cwgcpfft

sptl_3.m
clear all
simuspt2
%Values Entered:
%1e6
%50000
%[-2e-5:le-7:2e-5]
%Choose Range Walk Case
%0.5
disp('Hit Any Key to Plot Noisy Case')
pause
ssfft=abs(fft(ss));
ssfft=ssfft(1:200);
figure(4)
clg
subplot(211)
plot(t*le6,20*log0O(abs(q2)/max(abs(q2))));
hold on
plot(t* le6,20*logl0(abs(ql)/max(abs(ql))),'--');
plot(t* le6,20*logl0(abs(ss)/max(ss)),'-.');

set(gca,'XLim',[-10,10])
set(gca,' YLim',[-60,5])
xlabel('Time (usec)')



ylabel('Amplitude (dB)')
print -deps cwrwcp
figure(5)
clg
subplot(211)
plot(fh*le-6,20*logl0O(q2fft/max(q2fft)));
hold on
plot(fh* le-6,20*logl0(ql fft/max(qlfft)),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,51)
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps cwrwcpfft

simufjb2.m
%Simulates the conditon for pulse compressing the SPT II
waveform
%approximation for the case of 11 pulses, with a specified initial
%frequency and the frequency step for a pulse of length 401.
fo-input('Enter Initial Frequency -> ');
fs=input('Enter Frequency Step -> ');
fl=[fo:fs:14*fs+fo];
t=input('Enter Time Vector -> ');
T=length(t);
k=input('Enter Slope for Frequency Modulation -> ');
c=menu('Simulations','Ideal Case','Non-Uniform Frequency
Train','Gapped Frequency Train','Range Walk');
if c=--

disp('Ideal Case Used.')
f2=fl;

elseif c=2
disp('Non-Uniform Frequency Train Used.')
noise=rand(1,15)-0.5;
f2=fl+noise*0.5*fs;

elseif c=3
disp('Frequency Train with Gaps Used.')
f2=[fl(I:7),fl(10:15)];

elseif c-=4
disp('Range Walk Distortion Introduced.')
dis-input('Enter Phase Shift Between Pulses (usec) -> ');
f2=fl;

end
disp('Running.. .')
N1=15;
[a,N2]=size(f2);
disp('Size of Noisy Frequency Train...')
disp(N2)
if (c-=4) & (dis -= 0)

x=[0:dis*le-6:(N2-1)*dis*le-6];
else

x=zeros(1,N2);
end
ss=[zeros(1,100),boxcar(201)',zeros(l, 100)];
disp('Calculating Ideal Case...')
wl=chebwin(N1,40);
Wl=wl*ones(1,T);
TT1=ones(Nl,1)*t;
Al=fl'*ones(1,401);
FI=Al+k*TTI;
SSl=ones(NI,l)*ss;

Rl=exp(j*2*pi*Fl.*TTI);
YI=SSI.*exp(j*2*pi*Fl.*TT1);
VI=conj(RI).*YI.*W1;
Z1=V1.*exp(j*2*pi*Fl.*TTl)*fs;
ql=sum(ZI);
disp('Calculating Noisy Case ... ')
w2=chebwin(N2,40);
W2=w2*ones(l,T);
TT2=ones(N2,1)*t;
A2=f2'*ones(1,401);
F2=A2+k*TT2;
SS2=ones(N2,1)*ss;
R2=exp(j*2*pi*F2.*TT2);
Y2=SS2.*exp(j*2*pi*F2.*(TT2-x'*ones(1,401)));
V2=conj(R2).*Y2.*W2;
Z2=V2.*exp(j*2*pi*F2.*TT2)*fs;
q2=sum(Z2);
qlfft=abs(fft(ql));
qlfft=qlfft(1:200);
q2fft=abs(fft(q2));
q2fft=q2fft(1:200);
fh=[1:401];
fh=(fh-l)*le7/401;
fh=-f(l:200);
figure(l)
clg
subplot(211)
plot([l:Nl],fl*le-6);
set(gca,'XLim',[l,NI]);
grid
title('Ideal Frequency Train')
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
subplot(212)
plot([l:N2],f2*le-6)
set(gca,'XLim',[1,N2]);
grid
if c==2

title('Non-Uniform Frequency Train')
elseif c=3

title('Frequency Train with Gaps')
else

title('Ideal Frequency Train')
end
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
figure(2)
clg
subplot(211)
plot(t*le6,20*log 1(abs(ql)/max(abs(ql))));
grid
title('Magnitude of Ideal High Resolution Profile')
set(gca,'YLim', [-40,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
subplot(212)
plot(t*le6,20*log10(abs(q2)/max(abs(q2))));
grid
set(gca,'YLim',[-40,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
figure(3)



clg
subplot(211)
plot(fh* le-6,20*logl0(ql fft/max(q 1 fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6);
grid
title('Frequency Spectrum of Ideal High-Resolution Profile')
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
subplot(212)
plot(fh*le-6,20*logl0O(q2fft/max(q2fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6)
grid
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
if c==l

title('Frequency Spectrum of Compressed Pulse (Ideal)')
figure(2)
title('Ideal Compressed Pulse')

elseif c==2
title('Frequency Spectrum of Compressed Pulse (Non-Uni-

form)')
figure(2)
title('Compressed Pulse of Non-Uniform Pulse Train')

elseif c=3
title('Frequency Spectrum of Compressed Pulse

(Gapped)')
figure(2)
title('Compressed Pulse of Gapped Frequency Train')

elseif c--4
title('Frequency Spectrum of Compressed Pulse (Range

Walk)')
figure(2)
title('Compressed Pulse with Range Walk Distortion')

end
disp('Done with Pulse Compression')

spt2_1.m
clear all
simufjb2
%Values Entered:
%le6
%75000
%[-2e-5:le-7:2e-5]
%1e9
%Choose Non-Uniform Case
disp('Hit Any Key to Plot Results...')
pause
figure(4)
clg
subplot(211)
plot([l:N1],fl*le-6)
hold on
plot([1 :N],fl*le-6,'o')
set(gca,'XLim',[0.5,15.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps lfmifreq
figure(5)
clg
subplot(211)
plot(t* le6,20*logl0(abs(ql)/max(abs(ql))));

set(gca,'XLim',[-10,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps Ifmicp
figure(6)
clg
subplot(211)
plot(fh*le-6,20*loglO(ql fft/max(qlfft)));
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps lfmicpfft
disp('Hit Any Key to Plot Noisy Case')
pause
figure(4)
clg
subplot(211)
plot([ 1:N2],f2*le-6)
hold on
plot([I:N2],f2*le-6,'o')
set(gca,'XLim',[0.5,15.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps lfmnufreq
figure(5)
clg
subplot(211)
plot(t* le6,20*logl0(abs(q2)/max(abs(q2))));
hold on
plot(t*le6,20*logl0(abs(ql)/max(abs(ql))),'-');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[-l0,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps lfmnucp
figure(6)
clg
subplot(211)
plot(fh* le-6,20*log10(q2fft/max(q2fft)));
hold on
plot(fh* le-6,20*logl0(qlfft/max(qlfft)),'--');
legend('-','(a)','--','(b)',-1);
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps lfmnucpfft

spt2_2.m
clear all
simufjb2
%Values Entered:
%1e6
%75000
%[-2e-5:le-7:2e-5]
%1e9
%Choose Gapped Case
disp('Hit Any Key to Plot Noisy Case')



pause
figure(4)
clg
subplot(211)
plot([ 1:N2],f2*le-6)
hold on
plot([ 1:N2],f2* I e-6,'o')
set(gca,'XLim',[0.5,15.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps lfmgfreq
figure(5)
clg
subplot(211)
plot(t* le6,20*logl0(abs(q2)/max(abs(q2))));
hold on
plot(t*le6,20*logl0(abs(ql)/max(abs(ql))),'--');
legend('-','(a)','--','(b)',- 1)
set(gca,'XLim',[-l10,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps lfmgcp
figure(6)
clg
subplot(211)
plot(fh*le-6,20*logl O(q2fft/max(q2fft)));
hold on
plot(fh* le-6,20*logl0(qlfft/max(qlfft)),'--');
legend('-','(a)','--','(b)',- 1)
set(gca,'XLim',[0.5,2.5])
set(gca,' YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps lfmgcpfft

spt2_3.m
clear all
simufjb2
%Values Entered:
%1e6
%75000
%[-2e-5:le-7:2e-51
%1e9
%Choose Range Walk Case
%0.5
disp('Hit Any Key to Plot Noisy Case')
pause
ssfft=abs(fft(ss));
ssfft=ssfft(1:200);
figure(4)
clg
subplot(211)
plot(t* le6,20*logl0(abs(q2)/max(abs(q2))));
hold on
plot(t*le6,20*logl0(abs(ql)/max(abs(ql))),'--');
plot(t*le6,20*logl0(abs(ss)/max(ss)),'-.');
legend('-','(a)','--','(b)','-.','(c)',-1)
set(gca,'XLim',[-10,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')

ylabel('Amplitude (dB)')
print -deps Ifmrwcp
figure(5)
clg
subplot(211)
plot(fh* le-6,20*logl0(q2fft/max(q2fft)));
hold on
plot(fh* le-6,20*log10(qlfft/max(ql fft)),'--');
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps lfmrwcpfft

spt2_4.m
clear all
disp(' ')
disp(' ')
disp('CW Case...')
simuspt2
%Values Entered:
%1e6
%50000
%[-2e-5:le-7:2e-5]
%Choose Range Walk Case
%0.03
cwq2=q2;
cwq2fft=q2fft;
disp(' ')
disp(' ')
disp('LFM Case ... ')
simufjb2
%Values Entered:
%1le6
%75000
%[-2e-5:le-7:2e-5];
%le9
%Choose Range Walk Case
%0.03
lfmq2=q2;
lfmq2fft=q2fft;
disp('Hit Any Key to Compare')
pause
figure(4)
clg
subplot(211)
plot(t* le6,20*logl0(abs(lfmq2)/max(abs(lfmq2))));
hold on
plot(t* le6,20*loglO(abs(cwq2)/max(abs(cwq2))),'--');
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[-1O,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps cwlfmcomp

simuolfjb.m
%Simulates the conditon for pulse compressing the SPT III
waveform



%approximation for the case of 11 pulses, with a specified initial
%frequency and the frequency step for a pulse of length 401, and
range
%walk distortion of 0.8 usec.
clear all
fo=le6;
fs=75000;
f=[fo:fs:14*fs+fo];
t=[-le-5:le-7:le-5];
T=length(t);
k=6e9;
disp('Range Walk Distortion Introduced.')
dis=0.5;
disp('Running.. .')
N=15;
x=[0:dis* le-6:(N- 1)*dis* le-6];
ss=boxcar(201)';
disp('Calculating Ideal Case...')
TT=ones(N,1)*t;
A=f' *ones(1,201);
F=A+k*TT;
SS=ones(N,I)*ss;
R=exp(j*2*pi*F.*TT);
w=chebwin(N,40);
W=w*ones(l,T);
YI=SS.*exp(j*2*pi*F.*TT);
Vl=conj(R).*Yl.*W;
Zl=V1.*exp(j*2*pi*F.*TT)*fs;
ql=sum(Zl);
disp('Calculating Distortion Case ... ')
Y2=SS.*exp(j*2*pi*F.*(TT-x'*ones(1,201)));
V2=conj(R).*Y2.*W;
Z2=V2.*exp(j*2*pi*F.*TT)*fs;
q2=sum(Z2);
qlfft=abs(fft(ql));
qlfft=qlfft(1:200);
q2fft=abs(fft(q2));
q2fft=q2fft(1:200);
fh=[l:201];
fh=(fh-1)*le7/201;
fh--fh(l:200);
figure(l)
clg
subplot(211)
plot([ 1:N],f* le-6);
set(gca,'XLim',[l,N]);
grid
title('Ideal Frequency Train')
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
figure(2)
clg
subplot(211)
plot(t*le6,20*loglO(abs(ql)/max(abs(ql))));
grid
title('Magnitude of Ideal High Resolution Profile')
set(gca,'YLim',[-60,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
subplot(212)
plot(t* le6,20*logl0(abs(q2)/max(abs(q2))));
grid

set(gca,'YLim',[-60,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
title('Compressed Pulse with Range Walk Distortion')
figure(3)
clg
subplot(211)
plot(fh*le-6,20*logl 0(ql fft/max(ql fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6);
grid
title('Frequency Spectrum of Ideal High-Resolution Profile')
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
subplot(212)
plot(fh*le-6,20*logl0(q2fft/max(q2fft)))
set(gca,'XLim',[fh(10),fh(100)]* le-6)
grid
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
title('Frequency Spectrum of Compressed Pulse (Range Walk)')
disp('Done with Pulse Compression')
disp('Compensating ... ')
Z2P=--unwrap(angle(Z2));
clear Z3
Z3(1,:)=Z2(1,:);
phoffv(l)=0;
for count=2:15;

Z3P=unwrap(angle(Z3));
phoff=Z2P(count,l)-Z3P((count- 1),126).*TT(count)./

TT((count-1),126);
disp(phoff);
phoffv(count)=phoff;
Z3(count,:)=Z2(count,:)*exp(-l*j*phoff);
q3=sum(Z3);

% figure(4)
% clg
% plot(20*loglo(abs(q3)))
% pause
end
disp('Hit Any Key for Ideal Plots ... ')
pause
figure(4)
clg
subplot(211)
plot([l :N],f* le-6)
hold on
plot([1:N],f* le-6,'o')
set(gca,'XLim',[0.5,15.5])
xlabel('Pulse No.')
ylabel('Frequency (MHz)')
print -deps olfmifreq
figure(5)
clg
subplot(211)
plot(t* le6,20*logl0(abs(ql)/max(abs(ql))));
set(gca,'XLim',[-10,10])
set(gca,'YLim',[-60,5])
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps olfmicp
figure(6)
clg



subplot(211)
plot(fh* le-6,20*log10(ql fft/max(ql fft)));
set(gca,'XLim',[0.5,2.5])
set(gca,'YLim',[-40,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps olfmicpfft
disp('Hit Any Key for Compensating Values...')
pause
ql=sum(Z1(1:2,:));
q2=sum(Z2(1:2,:));
q3=sum(Z3(1:2,:));
figure(4)
clg
subplot(211)
plot(t*le6,20*logl0(abs(ql)/max(abs(ql))));
hold on
plot(t* I e6,20*log10(abs(q2)/max(abs(q2))),'--')
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[-l10,10])
set(gca,'YLim',[-20,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps olfmc2cp
ql=sum(Z1(1:8,:));
q2=sum(Z2(1:8,:));
q3=sum(Z3(1:8,:));
figure(5)
clg
subplot(211)
plot(t* le6,20*logl0(abs(ql)/max(abs(ql))));
hold on
plot(t* 1e6,20*logl 0(abs(q2)/max(abs(q2))),'--')
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[-10,10])
set(gca,' YLim',[-30,5]);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps olfmc8cp
ql=sum(ZI(l:15,:));
q2=sum(Z2(1:15,:));
q3=sum(Z3(1:15,:));
figure(6)
clg
subplot(211)
plot(t* le6,20*log 1(abs(ql)/max(abs(ql))));
hold on
plot(t* le6,20*logl0(abs(q2)/max(abs(q2))),'--')
legend('-','(a)','--','(b)',-1)
set(gca,'XLim',[-10,10])
set(gca,'YLim',[-60,51);
xlabel('Time (usec)')
ylabel('Amplitude (dB)')
print -deps olfmcl5cp

simumulti.m
% Simulation of target transmission and multipath for typical set
of
% numbers for airborne radar over the frequency range of typical
pulse
% trains. The reflectivity of water is assumed to be 0.99.

clear all
rl=60*6080;
hl=1500;
h2=37000;
r2=sqrt(rl^2+4*hl*h2);
dfrq=.001;
frqO=.420;
frq=frq0:dfrq:30*dfrq+frq0;
for n=1:31;
wvl=0.98425/frq(n);
dtht=(rl-r2)*pi/wvl;
sg(n)=1 +0.99*exp(-j*dtht);
end
figure(l)
clg
subplot(211)
plot(frq* le3,20*logl0(abs(sg)/max(abs(sg))));
set(gca,'XLim',[min(frq),max(frq)]*le3)
set(gca,'YLim',[-60,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps multifreq
wgt=chebwin(31,40);
yl=fftshift(fft(wgt'.*abs(sg),1024));
figure(2)
clg
subplot(211)
plot(20*logl0O(abs(yl)/max(abs(y1))))
set(gca,'XLim',[1,1024])
set(gca,'YLim',[-60,5])
xlabel('Range Bin')
ylabel('Amplitude (dB)')
print -deps multitime



Appendix B

Data Analysis Routines

1. multifind.m

2. multiplot.m

3. rdplot,m

4. dataplot.m

5. ncprocw.m

6. ncprocg.m
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multifind.m
k=input('l - Load File -> ');
if k= 1

clear all
datafname = r90input('Filename (no .mat) ');
eval(['load',' ',datafname]);

end
[ncpi n]=size(azxmit);
for icpi=1:ncpi
freq(icpi)=fxmit(icpi)*1e-6;
clear cpi0;
cpiO=eval(['cpi',int2str(icpi)]);
wgt=chebwgt(npulses(icpi),40)';
n-=O;
for rnmg0=l:1 :wrecord;
idx30=mgO:wrecord:length(cpi0);
yf=sum(cpi0(idx30,:)');
r30=-yf.*wgt;
r3Om-mean(r30);
r30=-r30-r30m;
yf=fft(r30,32);
n=n+1;
x(n)=n;
ply(n,:)=yf;
end
[a b]=max(max(abs(ply)));
DopMaxBin(icpi)=b;
scrdis=[icpi,b];
disp(scrdis)
figure(3)
colormap jet
clg
pcolor(abs(ply))
shading interp
pause
end

multiplot.m
k=input('l - Load File -> ');
if k == 1

clear all
datafname = r90input('Filename (no .mat) ');
eval(['load',' ',datafname]);

end
maxdopbin=input('Enter maximum Doppler bin -> ');
[ncpi n]=size(azxmit);
for icpi=l:ncpi
freq(icpi)=fxmit(icpi)*1e-6;
clear cpi0;
cpi0=eval(['cpi',int2str(icpi)]);
wgt=chebwgt(npulses(icpi),40)';
n-=O;
for rnmg0=l:1 :wrecord
idx30=mg0:wrecord:length(cpiO);
yf=sum(cpi0(idx30,:)');
r30=yf.*wgt;
r30m=mean(r30);
r30=r30-r30m;
yf=fft(r30,32);
n=n+l;

x(n)=n;
ply(n,:)=yf;
end
[a b]=max(max(abs(ply)));
DopMaxBin(icpi)=b;
scrdis=[icpi,b];
disp(scrdis)
colormap jet
tmp(:,icpi)=ply(:,maxdopbin);
end
[y,yi]-sort(freq);
[n npts]=size(freq);
m-O;
for n=l:npts;
m=m+1;
fr(m)=freq(yi(n));
tmpl(:,m)=tmp(:,yi(n));
if n>l
if fr(m-1) = fr(m)
m=m- I;
end
end
end
figure(1)
clg
pcolor(fr,x',abs(tmpl));
shading interp
xlabel('FREQUENCY (MHz)')
ylabel('RANGE SAMPLE')

[c d]=max(max(abs(tmpl')));
disp(d)
figure(2)
clg
subplot(211)
plot(fr,20*log 1(abs(tmpl(d,:))))
[e f]=size(tmpl(d,:));
title('MAXIMUM RANGE CUT')
xlabel('FREQUENCY (MHz)')
ylabel('AMPLITUDE (dB)')
subplot(212)
plot(20*log 1(abs(fft(tmpl(d,:)))/max(abs(fft(tmpl(d,:))))))
set(gca,'YLim',[-30,0])
set(gca,'XLim',[1,fJ)
title('FREQUENCY SPECTRUM OF MAXIMUM RANGE
CUT')
xlabel('INDEX')
ylabel('AMPLITUDE (dB)')

rdplot.m
k=input('1 - Load File -> ');
ifk == 1

clear all
datafname = r90input('Filename (no .mat) ');
eval(['load',' ',datafname]);

end
ncpi-input('Enter No. of CPI to Process -> ');
clear cpi0;
cpiO=eval(['cpi',int2str(ncpi)]);
wgt=chebwgt(npulses(ncpi),40)';
n=O;



for rngO=1:1:wrecord;
idx30-rng0:wrecord:length(cpiO);
yf=sum(cpi0(idx30,:)');
r30=yf.*wgt;
r30m=mean(r30);
r30=r30-r30m;
yf=fft(r30,32);
n=n+ 1;
x(n)=n;
ply(n,:)=yf;
end
[a b]=max(max(abs(ply)));
scrdis=[ncpi,b];
disp(scrdis)
figure(3)
colormap hot
clg
pcolor(abs(ply))

dataplot.m
clear all
load wdop9029
cpi0=cpi4;
wgt=chebwin(npulses(4),40)';
n=O;
for rngO=1:1 :wrecord;
idx30=rng0:wrecord:length(cpiO);
yf=sum(cpi0(idx30,:)');
r30=[yf,zeros(1,1)].*wgt;
r30m=mean(r30);
r30=-r30-r30m;
yf=fft(r30,32);
n=n+1;
x(n)=n;
ply(n,:)=yf;
end
[a b]=max(max(abs(ply)));
scrdis=[4,b];
disp(scrdis)
figure(l)
clg
colormap hot
clg
pcolor(1:32,x',abs(ply))
ylabel('Range Bin')
xlabel('Doppler Bin')
%title('Doppler Range Map of Internal MTS (CPI4)')
print -deps fdrm29004
figure(2)
clg
colormap hot
clg
pcolor(fr,x',abs(tmpl))
ylabel('Range Bin')
xlabel('Frequency (MHz)')
%title('Frequency Range Map of Internal MTS')
print -deps ffrm29
clear all
load wdop9013
cpi0=cpil2;
wgt=chebwin(npulses(12),40)';

n=O;
for mgO=1:1:wrecord;
idx30=rng0:wrecord:length(cpi0);
yf=sum(cpi0(idx30,:)');
r30=[yf,zeros(1,1)].*wgt;
r30m=mean(r30);
r30=r30-r30m;
yf=fft(r30,32);
n=n+1;
x(n)=n;
ply(n,:)=yf;
end
[a b]=max(max(abs(ply)));
scrdis=[12,b];
disp(scrdis)
figure(3)
clg
colormap hot
clg
pcolor(1:32,x',abs(ply))
ylabel('Range Bin')
xlabel('Doppler Bin')
%title('Doppler Range Map of Actual Plane (CPI12)')
print -deps fdrm13012
figure(4)
clg
colormap hot
clg
pcolor(fr(1:39),x',abs(tmpl(:,1:39)))
ylabel('Range Bin')
xlabel('Frequency (MHz)')
%title('Partial Frequency Range Map of Actual Plane')
print -deps ffrml3

ncprocw.m
clear all
load wdop9029
%figure(1)
%clg
%colormap hot
%pcolor(fr,x',abs(tmpl))
%shading interp
%disp('Hit any key to process ...')
%pause
disp('Maximum Range Bin...')
[a b]=max(max(abs(tmpl ')));
disp(b)
profl=abs(tmpl(b,:));
figure(l)
clg
subplot(211)
plot(fr,20*logl0O(profl/max(profl)))
%title('Frequency Profile of Internal MTS')
set(gca,'XLim',[min(fr),max(fr)])
set(gca,'YLim',[-30,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps o29frprof
q=fftshift(fft(profl(1:99).*chebwin(99,40)',1024));
figure(2)
clg



subplot(211)
plot(l:length(q),20*logl0(abs(q)/max(abs(q))))
%title('FFT of Weighted Frequency Profile of Internal MTS')
set(gca,'XLim',[1,length(q)])
set(gca,'YLim',[-50,5])
xlabel('Range Bin')
ylabel('Amplitude (dB)')
print -deps o29rngprof
load wdop9013
%figure(3)
%clg
%colormap hot
%pcolor(fr,x',abs(tmpl))
%shading interp
%disp('Hit any key to process ...')
%pause
disp('Maximum Range Bin...')
[a b]=max(max(abs(tmpl ')));
disp(b)
prof2=abs(tmpl(b,1:39));
figure(3)
clg
subplot(211)
fr=--fr(1:39);
plot(fr,20*log 1 O(prof2/max(prof2)))
%title('Frequency Profile of Actual Plane')
set(gca,'XLim',[min(fr),max(fr)])
set(gca,'YLim',[-30,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps ol3frprof
q=fftshift(fft(prof2.*chebwin(length(prof2),40)', 1024));
figure(4)
clg
subplot(21 1)
plot(l :length(q),20*logl0(abs(q)/max(abs(q))))
%title('FFT of Weighted Frequency Profile of Actual Plane')
set(gca,'XLim',[1,length(q)])
set(gca,'YLim',[-50,5])
xlabel('Range Bin')
ylabel('Amplitude (dB)')
print -deps ol3mgprof
%100 range bins apart from the peak to the sidelobe.

ncprocg.m
clear all
load wdop9013
%figure(l)
%clg
%colormap hot
%pcolor(fr,x',abs(tmpl))
%shading interp
%disp('Hit any key for processing ...')
%pause
disp('Maximum Range Bin...')
[a b]=max(max(abs(tmpl ')));
disp(b)
prof=abs(tmpl(b,:));
q=fftshift(fft(prof.*chebwin(length(prof),40)',1024));
frp=fr(1:39);
profp=abs(tmpl(b,[1 :39]));

qp=fftshift(fft(profp.*chebwin(length(profp),40)', 1024));
profg=abs(tmpl(b,[ 1:39,91:100]));
profg=[profg(l:39),zeros(1,52),profg(40:49)];
qg=fftshift(fft(profg.*chebwin(length(profg),40)', 1024));
figure(l)
clg
subplot(211)
plot(fr,20*log 1(prof/max(prof)))
%title('Entire Frequency Profile of Actual Plane')
set(gca,'XLim',[min(fr),max(fr)])
set(gca,'YLim',[-30,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps ol3frprofa
figure(2)
clg
subplot(211)
plot(1 :length(q),20*log 1(abs(q)/max(abs(q))))
hold on
plot(l:length(qp),20*log10(abs(qp)/max(abs(qp))),'--')
%title('FFT of Entire Weighted Frequency Profile of Actual
Plane')
set(gca,'XLim',[1,length(q)])
set(gca,'YLim',[-50,5])
legend('-','(a)','--','(b)',- 1)
ylabel('Amplitude (dB)')
print -deps ol3mgprofa
figure(3)
clg
subplot(211)
plot(fr,20*log 1(profg/max(profg)))
%title('Gapped Frequency Profile of Actual Plane')
set(gca,'XLim',[min(fr),max(fr)])
set(gca,'YLim',[-30,5])
xlabel('Frequency (MHz)')
ylabel('Amplitude (dB)')
print -deps ol3frprofg
figure(4)
clg
subplot(211)
plot(l :length(qg),20*logl0(abs(qg)/max(abs(qg))))
hold on
plot(1:length(qp),20*log10(abs(qp)/max(abs(qp))),'--')
%title('FFT of Gapped Weighted Frequency Profile of Actual
Plane')
set(gca,'XLim',[ 1,ength(qg)])
set(gca,'YLim',[-50,5])
legend('-','(a)','--','(b)',-1)
xlabel('Range Bin')
ylabel('Amplitude (dB)')
print -deps ol3mgprofg
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