
HIERARCHY IN DESCRIPTIONS

VISION FLASH 46

by

Michael R. Dunlavey

May 73

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Abstract

Organization of knowledge requires the flexible

use of hierarchy in descriptions. This memo attempts

to catalog the issues related to recognizing and

executing such descriptions, drawing examples primarily

from the blocks world.

Work reported herein was conducted at the Artificial
Intelligence Laboratory, a Massachusetts Institute of
Technology research program supported in part by the
Advanced Research Projects Agency of the Department of
Defense and monitored by the Office of Naval Research
under Contract Number N00014-70-A-0362-0005.

Vision flashes are informal papers intended for
internal use.

Foreword

This memo is an octopus, touching just about every

current abstract issue in Artificial Intelligence. Vy

interest in hierarchy began as an interest in plan4ning,

stimulated by my advisor at Georgia Tech, Prof. Vichael

D. Kelly. Prof. Marvin Minsky encouraged me to explore

the broader issues, giving rise to this memo. I am

lucky in being able to build almost directly on Prof.

Patrick Winston's thesis(14).

Table of contents

Wholes and parts 3

Combining things 5
Example
Example - Sharing parts
Example - Adding intermediate parts

Patterns 8

Choices 10

Pattern Induction 12

Two paradigms of mini-theory interaction 15

Research topic - planning in constructing toy buildings 18
A domain of knowledge about walls
A domain of knowledge about bricks
Interface knowledge
Building a corner
Conflict resolution under memory restrictions
Procedure manipulation

Data structure design 27
Basic ideas
How to make small additions to data structure design
How to design a data structure globally

Bibliography

Wholes and parts

Properties of aggregates may or may not be related

to properties of their parts.

For example, this aggregate
has the property of being a
cube, but this cannot in any
obvious way be deduced from
properties of its parts
(example due to Winston).

On the other hand, an aggregate
may posess strong, simple local
properties, like squareness,
adjacency, and support, and yet
have no interesting global
properties, or the global
properties may be difficult to
determine, like stability.

Wholes may not even have parts of their own, but

be intimately related to context.

our example the noLuiLUn of au
"edge" of a brick wall could
be defined. in terms of the
properties of the bricks in
the wall, although I suppose
the imaginary line would be
connslidered a part of the edge,

As before, even "partless"
wholes can have global properties
unobviously related to local
properties, just as this
hole in a field of random dots
seems to be square.

** e... - 1.:,.-00
%:•-.

Of particular interest are aggregates in which a

global property depends on some arbitrary and identifiable

local property.

For example, suppose a brick wall
is to have a ragged vertical edge.

considered a nart of the edge.

3

Now if you take two such walls
and try to fit them together,
you may find that they don't
fit snugly. We have a bug
in our system!

However, if one of the walls
had been built with its lowest
edge brick indented instead
of protruding, the walls would _]
fit.

So the "fit" relation between two walls turns out to be

related to an a priori insignificant and arbitrary

"position" property of a brick. How do we know that

there are effectively only two alternatives? I'll

discuss this a little further along under patterns of

choices.

Combining things

When enforcing global properties, it is often

necessary to debug on a local level. The examples

I give are primarily about binary properties, but they

could just as well be n-ary.

Examrle

Suppose you want to build
a 3-tower OI a table, as
represented by this goal
description. (AKO.means
.11 "
·a-kind-of).

We don't know how to stack
3-towers, only bricks, so we
expand the definition
of the 3-tower. (OPI means
"one-part-is".)

rAbLU

However, the stacker still
complains because one of the
bricks isn't ON anything, so
we bring into play a couple
of deductive rules associated
with the ON relation. I call
them "interface" knowledge
because they help put things
together. -W-

oN c.e InLE

• - :....• I•0 . ..

One rule-identifies the bottom
brick and the other tells what
it is ON, so'the stacker's
complaint is satisfied.

fAPLE

3-TOWEJ

BRICK(

BRICK

Example - Sharing parts

Sharing parts is risky if
you don't know when to stop.
For example, A is obviously
two arches, but is B two
arches? or C? Obviously
your salvation is the
notion of a "hole".

Anyl,,ay, suppose you want
to build two arches adjacent
to one another.

First expand the arch
definition. (I'll use
dashed balloons from now
on to represent OPI
aggregates.)

Then this rule and its
mirror image identify
the leftmost and
rightmost supports.

Then this rule identifies
the fact that the two
adjacent supports can
be replaced by one.

ARcH

6 dAýrir Vj AKo

.4N -O

f /
(FO f\ PLED

(~ ~ ~ C-p 4
ir ,PLED)

A

C

1. ,

So the description is
modified to share the
center support.

/ eK " 1. •T-,- "
" , • • ,• • • " •

Exam'ole - Addin- intermediate parts

Sometimes new parts must be added in order for two

aggregates to be placed in a relationship. This exa!ple

is adapted from one by Ira :Goldstein.

The goal is to make a
program that draws. a tree,
given that you already
have subroutines for a
triangle and a trunk.

The subroutines are
expanded into their
constituent states.

30

Thon interface knowledge
detects incoMpati'ble
beginning and, end states
and does a search to find
a connecting sequence
of states.

new part
added

K i * / iRIANGLE
C•-• •0 •A/ (D v+

•O

PPIUM

I '--.

L
I

Patterns

A pattern is an aggregate which repeats to form a

still larger aggregate.

So the description of a
brick wall might have
three levels of detail
instead of just two.

An example of a brick
pattern which is an
aggregate (since the
pattern body contains
two bricks):

WALL

PATTE •

BRICK

A pattern may be
multi-level:

The recursive part of
the factorial function
is easily described
as a pattern.

UEN
-I

,Ao ' rATTERJ

- I A KO

ME MAR A Vre I

era

Using the notion of sharing parts and some simple

rules about patterns, we can optimize the fibonacci

function:

e 3

The recursive part of
the fibonacci function
would look something
like this:

However, this definition
takes exponential time to
compute, so it can be
reworked as follows.
First one more neighbor
of the pattern can be
instantiated.

Then a little rule that
we planned to try to use
wakes up

and puts in its two
cents worth.

Next the two bottom
leaves are see. to
be identical and are
merged.

This description now only takes linear time to compute.

Though a simple example, this illustrates the possible

overlap in ways we handle patterns and aggregates and

ways we handle programs.

so51

(: V4aP IPLiBD

q' *** ^" .Own

TERM

-2

Ft

a. mrn'p ~or~nn~icRt~ 9 Fm
of an exception is the
edge pattern of a wall,
in which the exception

I+ -I-P+

E1Y-PE PAWTTE .RN',

Since choices are aggregates, they can also contain

their ovwn patterns. This is useful for getting a handle

on the global properties of a brick wall.

When building a wall,
the first brick has to
be put someplace, and this
decision is arbitrary.
Assume our coordinate
system is over the
integers. Then the place
we can put the first
brick is (integer, 0).

However, one position is
equivalent to another if
they generate iaentical
walls, so there is a
pattern among the
alternatives, such that
each component of the
pattern corresponds to an
equivalence class of
alternatives. So in
a sense there are only

SINTow

MTE&LER

two alternatives.

Pattern induction

The generic induction problem is: "Given a field

of data, find the pattern in it." This requires some

syntax which can enumerate all patterns. The brute

force method is: for each segmentation of the data,

for each pattern, see if the pattern matches the data.

A trick used by Winston is to first look for

specific simple subpatterns in the data, like a chain

of pointers of the same type, or a bunch of pointers

of the same type pointing into or out of a single node.

These are easy to spot even in a haystack of data. A

subpattern suggests a segmentation of the data, and

from there on the brute force method can proceed quickly.

I think the key to pattern induction is to have a

well organized hierarchy of subpatterns to look for.

By "well organized" I mean that if a subpattern is

perceived or is almost perceived, it suggests some other

related subpatterns to try next - another Winston idea.

The following (hard) problem illustrates the idea:

What is a small
description of this
arrangement of bricks?

Having shown this to our secretary and interpreted

her comments.according to my own bias, I think it is safe

to say that Ishe did the following steps:

1. The first thing she
noticed vas one or
more lines running
through the picture.

2. Then she noticed that
these long lines
repeated in. parallel.

I

,· r
I --- II

I
-· ·- ·:

3. Then she noticed some
perpendicular lines' doing
the same thing, and then
noticed the squaresl,

4. At this point the number
of bricks within one
square was reasonably
small, so she tried seeing
if each or every other
square was the same., and
every other one was.

5. She then looked at the
in-between square, and it
also repeated. tI~hii-

6. Then she simply fastened
ogethner thne two generic
squares and she had found
the pattern body.
However, she didn't
discard the two squares.

7. She knew that the pattern
repeated horizontally, but
would it repeat vertically?
However, she did find that
each square always had the
other, inverted, as a
vertical neighbor, and she
was done.

(

z

K

Obviously, other correct answers are possible

simply by switching components from left to right or

up to down.

In steps 1-3 Suzin was, in a sense, planning.

A straight line, like Winston's chain, is a pattern

which is very simple, easily looked for and verified.

It acted as a powerful clue which not only suggests

more elaborate patterns but segments the data.

Step 4 was the first point at which she broke out

from her little hierarchy of basic patterns and used

syntax. She simply described something and looked for

something similar elsewhere. Steps 5-7 are back in the

network of pattern forms, and she finds the answer.

Notice that she wasn't upset that her description

didn't explain the boundaries of the arrangement. I

don't even think she noticed.

E

p

I

Choices

A choice is an aggregate from fwhich one or •ore r :.

rIayv be chosen.

An exa-pLle of an - c-,
ex:licit choice
would be the OR /0 0)
of "tatle" and i TA SE CHAlI
"chair".

All of the concepts
we have already seen AO e_ o
implicitly describe r
choices, for example, , ,
"integer" is like a Q
choice from 1, 2, 3, ...

Ad WTIM IA c
like a choice among all
structures that match
it.

Another kind of choice is what I call an "exception" to

a repeating pattern. An exception intercepts an instance

of a repeating pattern and overrides it in some .way.

This is easiest to illustrate
for the factorial function.

Nlotice that, with choices,
descriptions attain
computational universality.

cc

ec

J

Two paradigms of mini-theory interaction

These two paradigms are not the final answer to

anything, but we needed them as an intellectual crutch

in understanding the representation problem.

Figure 1. illustrates the paradigms in the context

of a search.problem. Assume you're trying to drive from

one town to ahother in New England. Assume you have two

maps, or mini-theories, to use, but these maps contain no

directional information, only connectedness. One map

displays connectedness of towns, and the other displays

connectedness of metropolitan areas. In addition, you

have two tables, one giving for each town its metropolis,

and the other giving for each link between metropoli its

representative link between towns. For these two tables

we have coined the term interface knowledge because they

relate one mini-theory to the other. Refer to figure 1.

to see how the problem is solved.

To clarify the distinction between the two paradigms,

they arose while we were considering ways to influence a

strict AND-OR tree search from outside. Most planning

programs or general search direction methods operate by

trying to pick the best choice at each OR node. If you

can influence OR's, why can't you influence AND's? What

is an AND anyway? It is a bunch of things that exist

together, that is, structure. That's what paradigm 2.

does, it alters the structure of the problem, in this

case by adding intermediate goals. So paradigm 1. in-

[L/we- A8e Trx /VEVVow

two ccAMBR/Ja= ,FarC//T-LAa~dLZj, di ~Q7 {Z~LV4 ;LI&~,C)~

(G & -577--'AR/ P&& /V'A'A--#AVE
(SIAN -42- F6N g~r~/

(sra was./i- -Z.- R/R r .(;so 57~b~E /YI-/~~
(2 / A /Y~'L-7e9l/iV t'i/-AcO-A)

(Gd Sr //Fo<; 4 w/rT-PL44-v.s

(2/4'At /'V - Nor- jiott #/-1/ Yo<,*)

~1..

cludes classic pruning and hill-climbing, while paredi:;r.m

2. is Yiore like macro expansion.

Of course, this leaves out a lot. There are ot!.er

•,ays mini-theories can interact, such as !when. o.ne el- I.

to interpret the other. Additional mini-theories, s'uch

as one preferring geometrically closer iov-s, l.•ul .,C

greatly. This says nothing about debugging, w•.ic ..

deciding which choices to remake and how after ru",. ,inr-

into trouble. However, the structure of a plan can

help a lot in debugging by telling you which choices

are independent.

Research toDic - plannin': in constructing_ toy buildings

A good problem in which to study planning is to

simulate the building of toy houses out of bricks. We

would like to be able to state "rough" or "vague"

descriptions like:

A box is four walls arranged to meet at four square
corners.

A house is a box on which two opposed walls are topped
with peaks, and roof panels are supported by the edges
of the peaks, and one wall has a door.

A church is a house in which one of the peaked walls has
a steeple in the middle of it.

A fort is a house surrounded by a box with a door in it.

To build such objects in simulation, a program will need

at least two domains of knowledge, one about walls and one

about bricks.

Bricklaying is a very rich problem area compared to (

something like searching networks. For example, the

interface knowledge will have to do problem solving of its

own, and it will have to use a domain of knowledge about

manipulating procedures into equivalent forms.

A domain of knowledge. about walls

A wall is a rectangular parallelepiped having height,

width, and unspecified thickness:

1?

In this domain we're not saying anything about wrhat a wall

is made out of; it could be bricks, glass, concrete, or

wood.

Walls may be placed in relation to one another in

a small number of ways:

L IIT

A domain of knowledge about bricks

A brick is an object whose shape is the same as two

cubes joined at one face. Bricks may be put in relation

to one another in a small number of ways:

- 7......

rz7G
r~fl

i_·E~~
f~a

A half-brick is a cube formed by removing one cube

from a brick. Any brick may be made into a half-brick

by removing either half:

Bricks may not be placed in such a way as to intersect

spatially. If such a condition occurs, it may be corrected

by deleting either a half-brick or a whole brick.

Interface knowledge

The main component of interface knowledge between the

domains of walls and bricks is a description of the structure

of bricks that constitutes a wall. If all walls had the same

width and height, we would need only a single static

description:

relational
structure wall

of
bricks

However, since we allow walls to have any height or width,

we need a more flexible description of the possible brick

structures. Cne kind of description erploys a rereating

pattern and some edges, plus a starting instance of the

pattern. The pattern would start proypgating at the

starting instance and be delimited by the edges.

Lc-- ---

flexible
description wall

of brick
structure

Another reason for using this type of description is that

it conserves memory when compared to a brick-by-brick

description of a wall.

Building a corner

Now we can do a little scenario of building two walls

which meet at a corner. The goal is to make one of these:

We first have to expand the walls into their equivalent

brick structures, using pthe interface knowledge. Assume

for now that we have enough memory to make brick-by-brick

descriptions of the walls.

22

spatial conflict

However, the problem isn't solved yet becsuse there is

spatial conflict among bricks at the corner. 3o each

pairwise case of conflict is resolved by removing a

half-brick. One possible combination of removal choices

produces this nonconflicting structure:

which can be directly built.

Notice that neither of these two modified brick

structures any longer conforms to the definition of a

wall, as defined by interface knowledge, yet we would

still call them walls. They are, in fact, unforeseen

variations of the concept of a wall. If we still call

such a structure a wall, does that mean our idea of a

wall is vague? While mathematicians eschew vagueness

in the concepts they use, we would like to offer the

opinion that some vagueness is essential to thinking

about complex things, as this example shows.

Programmners run into the same trouble in writing

big systems. A big subroutine is written to do complex

23

task A, and another to do complex task B. However, if

someone wishes to do both A and B, say in sequence,

likely as not he will run into trouble because the two

subroutines are incompatible in minor ways.

Conflict resolution under memory restrictions

Going back to the Wall-wall example, the step where

we generated .all bricks in each of the walls would have

been impractical for any but very small walls, due to

memory and time restrictions. However, we can make use

of the fact that the walls are described by repeating

patterns.

The idea is to have a demon detect the region of

possible conflict by looking at the dimensions and

positions of the walls.. Then a domain of knowledge that

knows about pattern manipulation would-walk the pattern

all about the region of possible conflict so that only

bricks that- might be involved in conflict will be

generated:

The conflicts are resolved as before:

Then the walls are built from their patterns, working

around the specific modified instances of the pattern.

Procedure manipulation

Going back again to the problem of resolving the

conflict between the two walls, it could even .be'that

it will be uneconomical to remember all bricks along a

single edge., For example, imagine thinking about all

the specific bricks on one corner of the Washington

Ilonument. We are trying to suggest how to handle big

problems!

One could argue that it's not necessary to do all this

conflict resolution in advance of actual construction, which

is correct for some problems. Where the building material

and fabrication methods are cheap, as in masonry, it's (

not necessary to plan so. carefully. But in steel construction

of buildings, it is necessary to plan carefully.

In the. wall-wall example, it happens that the bricks

along the conflict edge can be described by another

repeating pattern:

main patti
and neighl

edge pattern
nd neighbors

The problem now is to find out what that edge pattern is.

This can be done with the help of a domain that knows how

to manipulate procedures, because these patterns are

actually simple procedures. The basic idea is to try

transforming the main pattern into equivalent forms in

such a way that, when scissored by the edge, it and all

its vertical neighbors are alike:

gives not alike

!

gives alike

Once an edge pattern has been found for each wall,

it is possible to try to resolve the conflicts by just

resolving the conflicts in the patterns. For example, if

the patterns come together like this:

they can be resolved like this:

/

ZIM U

If the two patterns do not match up in their upper and

lower boundaries, some additional procedural manipulation

may be necessary to make them match, For example, these

two patterns cannot be resolved because their boundaries

do not match:

However, the pattern on.the right can be transformed, by

cyclically permuting its parts, so as to be comparable

to the left hand pattern:

(

This should illustrate the importance of having a

domain of knowledge about how to manipulate procedures, of

which these patterns are simple cases. This knowledge

is specific in the sense that it could be an independent

problem domain, but it is.general, like mathematics, in

that it can be brought to bear in a wide variety of other

problem domjins.

Data Structure Design

These are some half-baked thoughts about data structure

design, which is crucial to non-tri.vial learning as well as

to automatic programming. I feel that there are strong

parallels between data structure design and problen-solving,

but I.'m not sure what they are. Anyway here is -sone food

for thought.

Basic ideas

1. A data structureb primary purpose is to provide
primitives with which to describe problems.

2. A data structure design is a procedure which
can generate any particular problem description.

3. A data structure design should come with something
of a ready-made theory for the class of problems
it can represent.

4. A subroutine distills repetition in a program
.description- wh.ile a varlable distills repetition
in an execution of a program.

5~ A variable corresponds to a network node, and its
values correspond to the node"'s pozssible properties.

How to make small additions to data structure.. design

1. If you perceive a pattern in the program you are
writing,.. make it a subroutine.

2. If you perceive that there will be a pattern in the
execution of the program you are wri-ting, make
a variable..

How to design a data structure Rlobally

1. You have a catalog of basic datwla structurel types
and attendant theories. Find one in which you can
state your problem and use it.

2. In one sense you just "collect •" together all the
-things "needed"' by the various subunits of your
program and interface them, much like gathering
ingredients before baking a cake.

Bibliograohy

1. Butcharov, Payanot. Resemblance and identity: an
examination of the problem of universals. Indiana
University Press, 1966.

2. Eberle,. Rolf A. Nominalistic systems. D. Reidel
publishing Company, Dordrecht, Holland, 1970.

3. Feigenbaum, Buchanan, Lederberg. On generality
and problem-solving: a case study using the DENDRAL
program. in Meltzer, Michie (Ed.) Machine
Intelligence 6 . Edinburgh, 1971.

4. Freuder, Eugene. Suggestion and Advice. Vision
Flash 43 (internal memo), M. I. T. Artificial
Intelligence Laboratory, March 1973.

5. Goodman, Nelson. The structure of appearance.
Harvard University Press, Cambridge, Massachusetts,
1951.

6. , and Quine, W. V. 0. Steps toward
a constructive nominalism. Journal of Symbolic
Logic, XII (1947), 105-123.

7. Hewitt, Carl. Teaching procedures in humans and
robots. in Proc. Conference on structural learning,
Philadelphia, April, 1970.

8. PLANNER: a language for manipulating
models and proving theorems in a robot. in Proc.
International Jolnt conference on artificial
intelligence, 1969.

9. Kelly Michael D. Edge detection in pictures by
computer using planning, in Meltzer, Michie (Ed.)
Machine intelligence 6. Edinburgh, 1971.

10. Loux, Michael J. Universals and particulars.
Anchor Books, Doubleday and Company Inc., Garden
City, New York, 1968.

11. Minsky, Marvin L. Artificial intelligence. in
Project MAC progress report VIII. 1971.

12. Piaget, Jean. Structuralism. Basic Books, Inc.,
New York, 1970.

13. Polya, G. How to solve it. Princeton University
Press, 1954.

14. Winston, P. Learning structural descriptions from
examples. M. I. T. Project MAC TR-76, AD 713-988,
1970.

