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Abstract

This paper proposes three research topics within the general framework
of Automatic Programming. The projects are designing (1) a student
programmer, (2) a robot programmer and (3) a physicist's helper. The
purpose of these projects is both to explore fundamental ideas regarding
the nature of programming as well as to propose practical applications
of AI research. The reason for offering this discussion as a Working
Paper is to suggest possible research topics which members of the
laboratory may be interested in pursuing.
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SOME PROJECTS IN AUTOMATIC PROGRAMMING

1. INTRODUCTION

An important goal of automatic programming (AP) research is the

design of computer systems capable of planning, writing and debugging

programs. This paper discusses several projects which provide

manageable and profitable domains in which to explore this problem.

We shall not attempt an overview of the entire automatic
programming field and, in particular, will not discuss the
equally valuable projects oriented around certification,
high-level language design, programming assistants and expert
systems capable of natural language interactions.

The flavor of the type of research we propose is given by the

following list of projects:

1) designing a system capable of writing and debugging programs
for a robot manipulator.

2) designing a system capable of learning to program by being
educated.

3) designing a system capable of helping a physicist or engineer
to program the solution to numerical display problems.

The common thread of these projects is that they all involve problems

fundamental to being a programmer. They are intended primarily to

elucidate the nature of the programming process, although it should be

noted that all of these domains generalize into more complex problems

that have practical economic consequences. They are not "toy" problems

nor are they "dead ends".

We shall explore each of these projects in the following pages.

But before entering into the details of that discussion, it is worth

noting five concepts which supply an underlying unity to this

research--planning, debugging, annotation, learning and expertise. In

the following paragraphs, a brief discussion of each of these ideas is
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offered.

Debugging:

Debugging is not an ability that is required only when a program

has been incorrectly written: it is also a necessity in a

program-writing system whose approach is based upon an interaction

between proposing and testing. Such a design has the important virtue

that the program writer is not faced with producing a complex procedure

with total success the very first time. Program writing is simplified

by being factored into a process of planning trial solutions and

debugging.

An additional dividend is that such a system is in a
position to modify previously written programs in
response to new demands or resources.

This paradigm is a natural one. The design of operating systems, large

programs like MACSYMA and even smaller programs have this quality of

proposal and repair.

There is another sense in which this paradigm of proposal and

repair is essential. The user, initially, may not have an exact and

complete notion of his goals. The technique, then, is to propose a

tentative set of demands, generate a program and observe its

performance. This will often be iterated several times as the user

becomes more aware of his requirements. An AP system capable of

debugging is essential for supporting this evolutionary type of

development. See Minsky's discussion of "Why Programming is a Good

Medium for Expressing Poorly and Sloppily Formulated Ideas" [Minsky

1966].

Other approaches to automatic programming are based upon the

design of high-level programming languages and the problem of certifying
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that a particular program or system performs as advertised. These are

valuable and offer many practical benefits. However, we believe that

the problem of a computer system designing its own programs cannot be

solved unless the system has the capability to debug programs that do

not quite succeed. Without this ability, the system is helpless when a

proposed solution fails. Yet occasional failures cannot be avoided,

since the use of such essential techniques as detail-free planning,

generalization and simplification inevitably result in bugs. (See

[Sussman 1974] on the Virtuous Nature of Bugs.) Thus debugging skill is

necessary if the system is to escape the onerous burden of always being

right the first time.

Planning:

The first stage in proposing a program is to come up with a

trial solution from the task description on the basis of either previous

solutions to related problems or general planning paradigms.

An AP system should certainly have algorithmic descriptions of

important programming techniques. Typical examples would include

cognizance of optimal programs for sorting, calculating roots of

polynomicals, and managing databases. These algorithms would be indexed

by their purpose, performance characteristics and implementation

requirements. Ideally, an AP system should have a working knowledge of

Knuth.

General planning skills, however, are also necessary: otherwise

the system would be helpless in th3 face of a new problem that did not

quite match any indexed technique. Unfortunately, it is more difficult

to embody general planning skills in effective ways than it is to

catalog known algorithms. Nevertheless, a start at collecting powerful
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problem solving ideas for converting declarative task descriptions into

programs has been made [Sussman 1973, Goldstein 1974]. Three such

concepts are linearity, recursion and iteration. The last two are not

only control structures but also important techniques for organizing a

task into manageable sub-goals.

LINEARITY - First divide the problem into independent
subgoals and design subprocedures for each sub-goal.
Second, order the subgoals into some sequence and design
any necessary interfaces between subgoals. (The
important heuristic of linearity is that the concern for
interactions can be postponed and the sub-goals can be
solved independently as a first step.)

RECURSION - Divide the problem into (a) a generic goal
solved in terms of simpler cases of the same goal and
(b) solutions for the simplest cases.

ITERATION - Divide the problem into a generic goal to be
accomplished by the body of a loop. Determine the
number of iterations from the number of times this goal
must be satisfied to complete the task.

A fundamental goal of the research described in this paper is to

understand these and other planning techniques in procedurally effective

ways, i.e. in ways that can support a program-writing system on tasks

whose solutions have not been previously met. The STUDENT PROGRAMMER is

particularly important to explore these planning paradigms since it

specifically assumes that the system is not already an expert with

knowledge of Knuth at its fingertips.

Annotation:

Annotation is the generation of copious commentary describing

the purpose and prerequisites of code. Such commentary serves not only

to guide verification and monitoring (that the code achieves its

intended purpose) but also to suggest corrections to a debugger in the

event that the code fails.
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Description of the effects of running a program is also

necessary for both verification and debugging. The use of multi-layered

databases as in CONNIVER [McDermott and Sussman, 1972] and QA4 [Rulifson

1972] provide powerful formalisms in which to model a changing

environment. Systems must have "careful evaluation" modes in which a

record of the execution of the program is kept. This record is used to

decide whether the code succeeded and, if not, how to repair it.

All of the research projects in this paper are intended to aid

in the design of a language for program commentary that supports both

certification and debugging as well as in the improvement of "careful

evaluators".

Learning:

Ideally, one would like a system that learned from past problems

and improved with performance. This is a very difficult goal. Yet its

long-term significance is obvious. Sussman's HACKER program is the best

example of such a system at present but much development will be

necessary before its concepts are of practical use. Both the STUDENT

PROGRAMMER and the ROBOT CONTROLLER are intended to further investigate

procedural learning strategies.

Expertise:

Domain-dependent expertise is necessary in an AP system. The

research question is how best to represent such knowledge to support the

construction of programs. Can the process of learning such knowledge be

simplified or must an immense effort go into designing an AP system for

each problem domain? What is the trade-off between domain expertise and

general programming skill? The answer to these questions is not known.
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The answer, however, cannot be found by choosing trivial problem

domains. The ROBOT CONTROLLER and PHYSICS HELPER explore the

interaction between AP and two significant, difficult problem areas.
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2. THE ROBOT PROGRAMMER

Goal:

To build an AP system--the ROBOT PROGRAMMER--capable of

tailoring control packages for robot manipulators so as to manufacture

specific items, repair devices and operate machinery.

Rationale:

The outputs of such an AP system are genuine programs. These

programs consist of instructions for the arm which (1) may be run many

times and (2) will almost certainly have bugs either because the program

is inadequate or because the environment contains some surprise.

The practical need for such a system in industrial automation is

made clear by considering the primitive methods used to train UNIMATE

arms. A human operator must move the UNIMATE through some sequence of

actions. This direction is completely inadequate to instruct the robot

to handle slightly different situations, objects or surprises.

The ROBOT CONTROLLER currently under development as part of

MIT-AI's mini-robot project is a programming language for interacting

with a robot arm and eye. The controller supplies high-level primitives

for moving the arm, holding objects, manipulating tools and sensing the

environment. For a particular task such as circuit board construction

or repair, the job of the ROBOT PROGRAMMER would be to make such

decisions as:

(1) which primitive should be used to achieve each sub-goal;

(2) in what order should certain sub-goals be achieved;

(3) what amount of force (input to the arm) should be used.

These are programming decisions. They represent the use of procedural



The Robot Programmer

knowledge involving constraints on inputs, prerequisites, ordering, and

interfacing. The most interesting solution would be a system that was

clearly factored into programming knowledge and arm-manipulation

knowledge. Research by Goldstein [1974] and Sussman [1973] indicate

that this is possible but that the effective representation of

domain-dependent knowledge is crucial and cannot be ignored.

Debugging becomes an important ability when a particular control

package fails because of a change in the task or in the environment. An

immense reprogramming effort would hopefully not be necessary. Instead,

the AP system would make the appropriate patches to the current System

to take account of the new difficulties.

Previous Research:

Two recent robot problem solvers--HACKER and BUILD--are genuine

automatic programmers of an elementary sort. Both of these system

produce programs for a one-armed robot that direct it to build block

structures. Both of these systems initially design very simple linear

programs and both debug these initial plans in response to bugs.

BUILD's debugging expertise is oriented around blocks world

expertise. However, the control structure of the program-writer is of

general interest. Primitives "gripe" when they are unable to complete

their assigned action. The gripe is passed up the stack until some

higher level goal--the "gripe-catcher"--is prepared to offer a solution.

The gripe-catcher is capable either (1) of attempting a different

sub-goal sequence (the standard backtrack solution) or (2) of editing

the current sub-goal sequence perhaps for the purpose of inserting

missing prerequisites.

HACKER has less specialized blocks world expertise and more
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general debugging skill. The system contains knowledge of a variety of

typical bugs that arise when a collection of goals is ordered into a

procedure. Such knowledge consists of recognizing (1) when the goals

can be reordered, (2) when it is necessary to move a prerequisite out of

a particular location and to another, and (3) when there are unsolvable

conflicts that require a different choice of methods. The system also

contains a variety of basic design principles which include competence

to do pre-planning for certain sorts of brother goals that make demands

on the same resource (such as free space) and ability to subroutinize

common subgoal solutions.

Milestones:

Several possible short term milestones (2-3 years) to lay the

foundation for a competent ROBOT PROGRAMMER are oriented around further

development of the HACKER system. These would include:

Learning to debug programs for arches, tables, chairs

for the purpose of seeing whether the concepts in the

current HACKER apply to more complex programs than those

required for simple towers.

Building a larger catalog of bugs and patching

techniques.

Describing the purpose of variables and different

control structures in better ways.

Designing a HACKER capable of learning to be as

competent as BUILD.

A longer term goal (5-6 years) would involve the interaction of

the ROBOT PROGRAMMER with the ROBOf CONTROLLER for the mini-robot

system. The AP task would be to tailor packages of control programs for

specific industrial purposes such as the manufacture and repair of small

devices. Industrial automation will not succeed if the task of

programming the automata proves to be too expensive or difficult. The
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ROBOT PROGRAMMER would solve this difficulty by embodying both

programming and control expertise. Input to the system would be a

description of the task and objects, probably by means of both English

and visual descriptions. The ROBOT PROGRAMMER would be able to write

programs that make provision for such typical bugs as drift and

collision. It would also have knowledge of how to make effective use of

the computational resources available to the ROBOT CONTROLLER such as

space, time and reliability.



The Student Programmer

3. THE STUDENT PROGRAMMER

Goal:

To build an AP system that would become an expert programmer by

being educated. The goal would be to design a system capable of

gradually acquiring skill through learning the material taught in an

introductory programming course.

Rationale:

A good programming course is designed to introduce the students

to the fundamental concepts of computer science, provide experience

through exercises and offer a foundation for tackling more difficult

programming problems. Hence, there is a basis to believe that a

computer who had mastered the ideas of such a course would be in a

position to modify and extend itself. This represents the genetic or

ontological method w!iich posits that a means to understanding expertise

is through its development.

This project is more oriented towards fundamental research than

immediate practical applications. However, a difficulty of expert

systems is the effort needed to modify or extend them. Hence, in the

long-term, research designed to elucidate how an AP system can assume

the burden of learning to solve new programming problems is of

fundamental importance.

Previous Research:

A primary goal of the LOGO project at the MIT AI Laboratory has

been to study how programming, planning and debugging can be best taught

(and learned). Many introductory programming courses are not very
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successful at teaching programming. However, the LOGO

environment--language, projects, concepts--has been remarkably

successful in teaching programming to students of all ages ranging from

elementary school to college. This success is indicated by the facility

with which the students are soon able to tackle projects on their own.

The STUDENT PROGRAMMER project will benefit from this by choosing as one

milestone the conversion of a variety of the concepts which LOGO has

identified as being fundamental to programming skill to

machine-understandable form. Also, a natural choice for the training

sequence for the STUDENT PROGRAMMER will be the order in which these

concepts are presented by LOGO. For a deeper discussion of this, see

papers by Seymour Papert [Papert 1971a, 1971b].

Three recent theses at MIT provide further background and

foundational ideas for this research. These are by Sussman, Goldstein,

and Ruth. Goldstein's system debugs elementary graphics programs

written by beginners. Sussman's system writes and debugs programs for a

one-armed robot. Ruth's program debugs sorting programs written by

beginners.

Milestones:

Initially, it would be necessary to design some performance

systems that were capable of planning, writing and debugging the

programs typically assigned in an introductory programming course. The

actual problems and competence of students in programming courses

provides a real yardstick to judge the success of this research. As an

example, the major projects of 6.030, the introductory course in

programming for computer science majors at MIT, are:



The Student Programmer

(1) Calculate PI by rectangular approximations;

(2) Calculate the nth root of a number by Newton's method;

(3) Construct a random number generator;

(4) Write a program for computing the area of contiguous

"islands" of l's on a bit map;

(5) Write a TICTACTO program.

Eventually, it should be interesting to examine how much more the system

needs in terms of general problem solving skills and specific

programming competence to move on to the problems assigned in more

advanced courses such as Computational Methods, Programming of Small

Scale Computers and Operating Systems.

The long-term goal is for the system to become independent of

classroom exercises and be capable of solving programming problems which

it would actually meet as a computer programmer professional. This

requires that it learn general programming paradigms from the exercises.

The system must be capable of abstraction, analogous reasoning and skill

acquisition. Recent research by Sussman [1973] provides insight into

the skill acquisition process. The importance of the debugging approach

is that novices (whether automatic or human) acquire competence through

the debugging of their initially incorrect solutions. Thus, debugging

skill for the student programmer will be exhibited by the fashion in

which it learns to debug itself, and gradually produce more complex

programs.

Better Human Programmers:

The basic goal of AP research is to make the cost of software

less--both in design and maintenance. Another benefit from research
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into the design of a student programmer will be insight into how to

better train human programmers. The design of a student programmer will

involve research on the nature of learning, precise description of

important computational concepts, and the creation of proper training

sequences: all of which should have an impact on the education (and,

ultimately, cognitive power) of human programmers both through

suggestions for an improved computer science curriculum and through the

creation of intelligent monitors for aiding students.

Conclusions:

Although it is true that people have important generalized

learning abilities--and we wish to understand them as part of this

research--it is also true that the programmer knows a great deal about

computers and algorithms. This would include a bag of canned solutions,

debugging skills, abstract concepts about the form and purpose of

programs, data structures, and control. Most programmers do not invent

recursion, they are told about it. This research is directed towards

making these programming ideas explicit and machine-understandable.

The reader may feel critical of this project because it focusses

on the beginner rather than the expert. Indeed, it is true that writing

an AP system that captures the capabilities of the expert programmer

would be desirable. However, experts are not always articulate about

their abilities. By observing the development of programming skill, it

may be easier to see which knowledge is fundamental and which

irrelevant.

However, the most important reason for this project is to build

a model of the learning process. The human expert is even less helpful

at describing his learning mechanisms than at describing his field of
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expertise. The basic goal of AP research is to free the user from

writing particular programs. The most exciting way that this goal might

be met is with a system that had an ability to learn in new situations.

Such a system would not only free the user of writing programs, it would

also free the designer of the AP system from constantly having to

improve it. This is very ambitious but, we feel, worth undertaking as

part of the theoretical side of the current AP effort.
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4. THE PHYSICS HELPER

Goal:

To build a program capable of helping with the everyday

programming chores of a physicist or engineer. The program would have

to plan, write, and debug programs for the computation and display of

data useful to such an individual. The PHYSICS HELPER would be

entrusted with the maintenance of a library of useful procedures indexed

by problem types for which they are appropriate along with techniques

for retrieval of these routines, piecing them together for particular

problems, and preparing useful data-bases.

Rationale:

The MACSYMA system is a model of expertise; however, it suffers

from a lack of internal self-description. The user cannot ask it

questions regarding what methods it recommends for a given problem.

Instead, he must essentially be both an expert in his particular domain

as well as in programming. The solution is for MACSYMA to be capable of

generating and comprehending comments; knowing general planning

strategies; maintaining a library of solutions indexed by purpose; and

debugging and generalizing these routines on the basis of experience.

The PHYSICS HELPER will contribute to an understanding of these problems

by confronting them in a non-trivial situation.

Scenario:

A physicist who often needs plots of the equipotential lines of

an electric field might have a great deal of use for such a system. He

would, for example, want to see the equipotentials of a field caused by
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a rather complex charge distribution with some equally complex boundary

conditions. In general, this problem is theoretically trivial but

computationally a disaster. All one needs to do (theoretically) is:

1: Find a particular solution of Poisson's equation for the

given charge distribution, without regard for the boundary

conditions to be imposed. This can be done by evaluating

Poisson's integral at every point for which a potential value

is desired.

2: If this particular solution matches the required boundary

conditions, we are done. If not, we form a new set of

boundary conditions by subtracting the values of the

particular solution on the boundary from the given boundary

conditions, and then:

3: Solve the homogenous problem -- Laplace's equation with the

new boundary conditions calculated in 2. This can be

calculated by relaxation techniques, for example.

4: Return the sum of the homogenous and particular solutions.

Of course, this is really computationally quite ridiculous. One would

expect such a method to take nearly forever to produce the solution of a

very simple problem. A programmer, given the problem of producing the

equipotentials of a group of point charges, a dipole, for example, would

probably pull out of his library the potential function (or perhaps a

table of computed answers) of a point charge, and compute the answer by

superposition of point charge potentials, appropriately scaled and

translated. If there is, for example, a boundary condition of a simple

sort, such as a conducting sphere or a conducting plane, one can often
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simplify a problem drastically by the use of the method of "image

charges". Thus, it is often unnecessary to do an unfeasible relaxation

to satisfy the boundary conditions with a given charge distribution.

In order to be able to decide what really must be computed, the

physics helper must know lots of physics. Once the basic problem is

understood, and the quantities that must be computed are known, the next

question is how to efficiently compute them. The physics helper must

know quite a bit about numerical analysis. It must know how to

effectively compute an integral. It must know what kinds of algorithms

are good for particular kinds of integrands. It must know how finely to

divide the integration range to achieve the required degree of accuracy.

The numerical analyst part of the physics helper must compile algorithms

given specifications of what must be computed. It must know how to do

relaxation or sparse matrix methods for Laplace's equation with boundary

conditions. It must know how finely it must divide space to get a

stable solution of the correct degree of accuracy. It must know about

interpolation techniques.

Finally, the physics helper must know about the details of the

implementation of algorithms in the light of the available computational

resources. It must know about how to choose effective data structures

for representing the computational objects referred to by the numerical

analyst. It must know when it is cost effective to use marginal arrays

to implement multi-dimensional indexing, and when to use direct index

computations. It must know how to decide where it is appropriate to use

fixed, floating point, or double-precision arithmetic; where to use

arrays and where to use lists.
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Subgoals:

We believe that any project as deep and complex as this one must

be attacked in a multi-pronged approach each prong of which is likely to

yield valuable results as well as parts of an ultimate system. Some

subgoals we see as relevent are:

1. The design of a problem solver with enough knowledge of field

theory to be able to specify, in terms usable by a numerical analyst,

just what needs to be calculated for a particular problem -- just what

special properties of the physical situation limit the computational

hair.

2. The design of a problem solver who can take specifications produced

by the physicist program (1) and produce numerical algorithms suitable

for implementation. Again, we have a case where special knowledge of

the problem domain (numerical analysis) is essential to produce feasible

algorithms.

For both sub-goals 1 and 2, we expect to utilize
MaCSYMA's mathematical expertise. This will lead to
addressing the issues mentioned earlier regarding the
addition of problem-solving skill to mathlab.

3. The design of a specialist in numerical techniques for compilation

of the algorithms produced by the numerical analyst program (2). this

specialist should be capable of correctly allocating resources and

making declarations to a compiler (say the MACLISP fast number compiler)

which ensure the generation of near-optimal code.

4. The design of a display expert who can compile display routines

appropriate to the presentation of the results required by the user.

Conclusion:

The problem domain must be suitably limited or else the tasks of
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designing the physicist and numerical analyst modules become, in

themselves, enormously difficult. Also, it may prove that a system with

properly documented and sufficiently powerful numerical routines does

not require an AP system at all. However, from a more positive

standpoint, we feel that MACSYMA is now at the point that it would

clearly benefit from an AP module that would aid the user in

constructing his program. Hence, it is worth pursuing this research to

understand more precisely where the division of labor lies between

domain-dependent problem solver and automatic programmer.
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