
WORKING PAPER 68

X-Y TABLE USER'S MANUAL

by

NOBLE LARSON

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

May, 1974

Abstract

This working paper describes the mini-robot group's X-Y table and
associated hardware.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advanced Research Projects Agency of the
Department of Defence and monitored by the Office of Naval Research under
Contract number N88814-78-A-8362-8885.

Working Papers are informal papers intended for internal use.

X-Y TABLE

I. General Description

A numerically controlled "X-Y" positioning table has been

interfaced to the 11-40 processor for use in the Micro-Automation

lab. The table consists of a moveable cast aluminum platform on a

heavy base. The platform can be moved throughout a 6" interval in

either of two horizontal directions, referred to subsequently as

the "X-direction" and the "Y-direction". The motion is

accomplished by two Fujitsu 109 stepping motors, the unit of

rectilinear motion, or step being 1/1000th of an inch.

The interfacing hardware allows the platform to be moved

forward or backward in either direction by a programmable amount

and at a programmable rate. The platform, however, cannot be moved

outside of the 6" by 6" area mentioned above, on account of limit

switches, which when triggered, prevent any further motion in a

particular direction. Motion is initiated by the program providing

a count, which is interpreted as a number of steps that the table

is to be moved in a particular direction, and a rate. The program

is then free to do something else. Upon completion of the motion,

either by exhausting the count or by triggering of a limit switch,

the hardware will reset a status bit and attempt to interrupt the

processor. Programming-wise and hardware-wise the mechanisms for

effecting motion in the two directions represent completely

independent channels.

PAGE 2

II. Programming Information

Software communicates with the interface hardware through 4

memory locations.

164000 X Count register
164002 X Rate/Status register
164004 Y Count register
164006 Y Rate/Status register

The count register is a buffer for one's complement

representations of numbers of steps the platform is to be moved in

the corresponding direction. As the table moves this count gets

continuously decremented [one's complement] by hardware until the

count is exhausted. The terminal value is 777777 [one's complement

zero]. The rate/status register has several sections with the

following intepretation:

bits 0-11 constitute an encoded rate value [See Table I];
bit 12 is the busy bit;
bit 13 is the forward/backward bit;
bit 14 the limit/reset bit; and
bit 15 is the interrupt enable bit.

The rate value bits can be loaded and read by software, and

are never cleared or otherwise-altered by hardware. The busy bit

is set by software to initiate motion of the platform in the

corresponding direction. Depending on whether the forward/backward

bit is set or reset, the motion initiated will be forward or

backward respectively. Upon either completion of the motion or

triggering of a limit switch, the busy bit is reset by hardware,

and an interrupt condition will occur in the channel. If the

PAGE 3

interrupt enable bit is set, an interrupt request will be made on

the bus at level 4.

The interrupt vector for the X-channel is at 340.
The interrupt vector for the Y-channel is at 344.

After having been interrupted or having tested the busy bit

and found it reset, software can determine the reason for the

interrupt by testing bit 14. If it is on, a limit switch was hit,

otherwise, the reason was normal completion of motion. In the

event of the former, the state of the forward/backward bit

indicates which way the platform had been moving, and therefore

determines which limit switch was triggered.

Once a limit switch has been hit, it is necessary to issue a

software reset to the channel involved, so as to clear certain

conditions in the hardware. Unless this is done it will not be

possible to back the platform out of the limit switch. Software

reset is accomplished by writing a one in bit 14. It must be

understood that status bit 14 refers to two completely different

signals depending on whether it is read or written, Reading it, as

stated above, gives the value of a signal which tells if a limit

switch is depressed. Writing a one in it, however, causes a reset

pulse to be issued to the channel. Moreover, due to -the way

bit-set instructions are implemented in hardware, it is not

possible to use them to alter the rate/status register when the

platform is depressing a limit switch. Instead, the full word move

instruction must be used [Byte moves have not been implemented in

the table hardware].

PAGE 4

The standard procedure for moving the platform in a given

channel is as follows: The one's complement count is loaded into

the count register. Then the rate/status register is loaded with

the proper value for the desired rate, direction, and interrupt

enabling. The busy bit can be set along with the other bits [With,

say, the same move instruction], or it can be set subsequently with

a bit-set instruction [Unless the platform is depressing a limit

switch]. As long as one avoids running the platform into one of

the limits, it is possible to set up a rate and an interrupt

enabling in a channel and then move the platform back and forth in

that channel using only move instructions to reload the count

register, and bit-sets to control the busy bit and forward/backward

bit.

Table I

Rate Counter[Octal]

1000
2000
3000
4000
5000
6000
7000
7100
7200
7300
7400
7500
7550
7600
7650
7700
7704

Rate Counter = -(240000./PPS)

PPS[Decimal]

67.
78.
94.
117.
156.
234.
469.
536.
625.
750.
938.

1250.
1579.
1875.
3000.
3750.
4000.

PAGE 5

III. Mechanical Information

Design Components DC-66 X-Y Positioning Table:

6" by 6"
10" by 10"
5"
50 lb
15 arc-sec

.00015"

.0004"

.001"t

Motion
Work Surface
Height
Weight
Perpendicularity

Repeatablility
Linear Accuracy
Step Size [For 2.25 degree shaft rotation]

[Icon Motor Translators and Buffer Amplifiers 601-TR's are used to
drive the motors].

Fujitsu Pulse Motor 109 [Specifications]:

Angular increment:
Steps per revolution:
Maximum stepping rate:

2.25 degrees
160.
8000 PPS

[However, the motors driving the table should not be driven faster
than 4000 PPS.]

PPS Torque [lb-in]

0. 2.6
1000. 3.3
2000. 2. 8
4000. 1.9
8000. 1.2

Power: .05 hp [at 8000 PPS]

Weight: 3.3 lbs.

Electrical: R - . 4 ohms
L = 1.5 mH
I = 3.5 amp

[One winding]
[One winding]
[Per active phase]

Switching frequency of coils = 1/10 pulse rate

PAGE 6

Inertia [Calculated]:

Rotor: Froemmotor specs
Lead-screw (.8 lbs): J = mer*r/2 (r = .3")
Reflected table (20 lbs): J a m*p*p (p a-.16"/2It)

Rotor: .000030 lb-in/sec/sec
Lead-screw: .000085 lb-in/sec/sec
Reflected table: .000035 lb-in/sec/sec

Total Inertia: .000150 lb-in/sec/sec

[The actual total inertia may be a bit higher than this]

Natural Oscillations [Estimated]

Let Je be the inertia in addition to that of the rotor.

t [2ph] = .95*SQRT[Je+.000045] t[3ph] = .70*SQRT[Je+. 000045]

Expected in our case: Je+.000045 = .00015

So: t[2ph] = 11.5 ms t[3ph] = 8.6 ms

(Damping is much stronger with 3 phases on than with 2.]

Stiffness [Estimated]:

L- 21r /t
(J.= SQRT[k/J]
k =J [2Il"/t]2

k[2ph] = 45 lb-in/radian
k[3ph] = 80 lb-in/radian

k[2ph] = 1.8 lb-in/step
k[3ph] = 3.0 lb-in/step

[A 2:3 ratio is to be expected]
[These figures are consistent with torque figures.]

PAGE 7

(Single Step Time [Estimated]:

Angular acceleration: t(= T/J

The angular motion of the shaft in time t: 0 =()[t/2]'

So: t = 2*SQRT[()J/T]

T a 3 lb-in
J = .00015 lb-in/sec/sec
e = 27r/160 - .0392 radians

So: t = 2.8 ms

[This agrees with 1/4 to 1/2 cycles of oscillation.]

Multiple Step Time [experimental]:

n t [ms] t/n distance

1 2.6 2.6 .001 "
3 6.5 2.2 .003
7 15 2.1 .007

15 30 2.0 .015
31 60 1.9 .031
63 100 1.6 .063
127 180 1.4 .127

These measurements are dependent on gain adjustments in the pulse

ramping [buffer] modules. The present settings are conservative:

to achieve reliability at the expense of speed.

When the busy bit goes off the platform is within +2 or -2 steps.

PAGE 8

Maximum Start-Stop Rate [Torque = .5 in-lb]:

PPSO = 16./SQRT[Je + .00045] = 1300. PPS for our case.

Acceleration Time Constant [Torque= .87 in-lb] [To 8000 PPS]:

t[accel] = 500[Je+. 00003]
= 500[.00015] = 75 ms [for our case]

Deceleration Time Constant[Torque= 0 in-lb] [From 8000 PPS]:

t[decel] = 500[Je+. 00003]
= 500[.00015] = 75 ms [for our case]

[For lower top speeds, time constant can be less.]

The above figures are theoretical maximum values. It is doubtful

that one can use such low time constants and such high start-stop

pulse rates in actual practice.

PAGE 9

IV. Software

The assembler directive

.MCALL .TABLE

will define a macro called .TABLE which, when called, expands into

a set of subroutines for moving the x-y table. These routines are

called using the convention JSR PC,SUBR. The table subroutines

are:

CALTBL calibrates the x-y table and leaves it in position

(0, 0)

VELTBL sets up the velocity for the next table movement.

RO should contain the velocity for x and R1 should

contain the velocity for y

ABSTBL moves the table to the absolute location (x,y),

where x is contained in RO and y is contained in R1

RELTBL causes the table to move relative to its current

location. The x and y in RO and R1 respectively

are taken as offsets for the relative motion

and are preserved so that successive calls of

RELTBL will reference them.

PAGE 10

Note: neither ABSTBL nor RELTBL wait for the table to finish

moving. Neither should be called if there is a chance that

the table is in 'motion without first calling WTTBL.

WTTBL waits for the table's motion to finish. WTTBL will

take a skip return if the table motion completes

normally (without running into a limit stop). If

a limit stop is encountered, WTTBL will take a

non-skip return. Thus:

JSR PC,WTTBL

(error return)

(normal return)

WHRTBL returns the table's x position in RO and its y

position in Ri.

NOTE: These macros will protect the user from moving the table to

a negative position; motion will stop at zero, and the table will

not have been decalibrated. Similarly, attempting to move the

table too far forward in either x or y will result in a cessation

of the table's motion without running into the physical limit stops

or decalibrating the table. WTTBL will take the error return

whenever such a premature *stoppage occurs. Note also that all

coordinates kept by the .TABLE routines are relative to the

calibration point, and thus CALTBL always should be the first

routine called.

