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I. Introduction

It is by now a trite observation, but it is worth mentioning.

that Artificial Intelligence research tends to have two

contradictory goals: the production of intelligent expertise,

and the capture of the general nature of intelligence. The

exercise of subduing a particular intellectua.l domain by

formalization has now been done for several domains: assembly-

line balancing, checkers, symbolic integration, and mass-

spectrogram interpretation, to mention a few. Critics of our

assumptions can point out with much justification that doing such

an exercise fails to capture the notion of intelligence-in-

general.

Some of us retaliate by claiming that there is no such

notion, if we examine matters closely. This claim has merit when

used to refute the criticism that doing a formalization exercise

removes the domain involved from intelligence altogether, which

is absurd. (Hubert Dreyfus <1972> is a good source of such inane

criticism.)

But most workers have recognized that there is an problem

here. People have spent much effort on the problem of generality

since Al began. Projects that were or are concerned with

achieving it include GPS <Newell and Simon, 1963>, QA3 <Green,

1969> and other theorem.provers, MULTIPLE <Slagle and Bursky,

1968>, and STRIPS <Fikes and Nilsson, 1971>. I think all of them
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can be characterized by their attitude that "problem solving in

general" is a domain for which there ought to be an expertise.

The programs that result often use obviously useful techniques,

such as goal achievement and deduction, in an extremely elegant

fashion.

But none of them are experts in anything. All of them can

trg to work on any problem that can be expressed to them, and

they are designed so that a wide class of problems can be

expressed. But on interesting problems they fail. Evidently

"problem solving in general" is not a coherent domain apart from

a lot of special knowledge in each field. This is only fair:

human beings are not great in a new field without a lot of

practice.

But let us say GPS were modified to take hints. Each.time a

decision as to which goal to work on came up, it would pose this

as a goal. Then hints, in the form of suggestions for choosing

goals, would allow it to make more directed choices of how to

proceed.

This in itself is just not going to work, although the

principle is good enough for me to adopt it among others in Sect.

II.. It is too magical on the face of it. Closer consider-ation

reveals that the goal-chooser is going to have to tie together a

lot of very disparate information on any interesting problem.

This information is going to be scattered around a large data

base, so the system has traded a bush of simple goals for a goal
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of great complexity.

Sussman <1973a> has pointed out the problem here. The expert

has a procedure for solving problems-in its domain. The hints do

not get in the way precisely because the problems of what to do

next, at some level, has been taken care of--just follow the

procedure. The procedure knows what deductions to make, what

hints to use, what goals to propose or attack.

The fact that procedures are so good at this has led some to

embrace the Procedural Utopia view of AI, a more subtle

restatement of the claim that there is no "intelligence-in-

general." The utopian view is that hints and knowledge are just

procedures; that all we should be allowed to tell a program is

more program; that any natural-language or other declarative

input must be converted to imperatives. (Cf. <Winograd, 1971>.)

Then, since universality is a simple property for a programming

language to possess, generality must some day follow. To be

sure, it helps to have sophisticated languages and programs, with

features like pattern-directed procedure calls <Hewitt, 1972>,

multiple co-routines <Sussman and McDermott, 1972>, "multiple-

body interrupts" <Brown, 1973>, etc. There may also be some

simple (even declarative) information about procedures, such as

recommendations <Hewitt, 1972> or frames <Minsky, in progress>.

But the procedure must be king.

It has been my experience that this approach will not

succeed; that is, not at creating an intelligence. There are
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two reasons for this: (1) a program can only apply the knowledcgc'

it has in ways that were foreseen; -and (2) a new program; that is

added to the system is not at all guaranteed to work correctly

with its old programs, These two problems are related.

Allan Newell <1962> has the best example of (1). He cites

the difficulty of getting a chess program to answer a slightly

different question from the one it was written to answer. The

only controls you have on the behavior of such a program are the

inputs you wrote it to look at. If they aren't the right ones,

the program can't help you. The problem is clear: some

knowledge Went into writing the program, but the program is not

that knowledge; it is at best a knower. The phrase "procedural

embedding of knowledge" <Hewitt, 1972> is misleading. (Cf.

<Hayes, 1974>.)

As an example of (2), I can draw on my own TOPLE program for

finding plausible interpretations of declarative sentences.

<McDermott, .1974> When interpreting ambiguous sentences about the

spatial relation of two objects, it tried to visualize the

desired relation. If told "objectl is in object2," it tries to

believe objectl is smaller than object2. It if knows nothing

else, it reasons from its knowledge of what kinds of objects 1

and 2 are; it doesn't like to hear that a table 'is in a ball.

Having decided that object1 is smaller than object2, it next

inquires whether object2 is enclosed (e.g., a covered box as

opposed to a pen). If it is, object1 must be less tall than
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object2 as well. In isolation, tallness is like overall size (a

floor lamp is not likely to be in a music box), so TOPLE looks

for facts about individuals, then reasons from categories. But,

since often dimensions are considered together, it would be nice

if the system knew, "All other things being equal, the bigger

object is likely to be the taller." This might save it sonie

tedious computation about what kinds of objects it is thinking

about.

But there is no way to tell the dimension-comparison routine

this fact, short of rewriting it. That routine doesn't look for

advice; it just computes. And there is no way to add an

entirely new routine so that it can communicate with the old on,.

The old one is not taking calls.

One example like this may not be convincing. You can alw.ays

imagine a better, "more modular" way to have written the old

routine in the first place. But experience with computer

programs leads me to believe that all modularity has a finite

lifetime. You leave some slots and interfaces where later

changes can occur, but they get used up. Eventually a change

straddles two interfaces, or demands the creation of a newi slot.

Besides, as Sussman <1973a> has argued, there is a conflict

between modularity and efficiency. Procedures work precisely

because they ignore a lot of information that might be relevant.

In this proposal, I will trace the outline of a system that

is both expert and potentially general, that is willing to ignore
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probable irrelevancies, but able to make them relevant when they

are pointed out by a human. That. is, I have in mind a system

like McCarthy's Advice Taker <McCarthy, 1968>, a program that is

not necessarily brilliant, but is able to use any hint that is

given to it. I will use this name for want of something better.

Since even simple schemes often sound good on paper, I intend to

describe a concrete domain -- proposal of electronic-circuit

designs. The advice taker's expertise is intended tobe sound

enough so that the circuit proposer may interface with other

parts of the electronic circuit-design project being organized by

Gerry Sussman <Sussman, 1973b: Brown, 1973>. In what fol lows, I

first outline the structure of a deductive advice taker, then

describe its application to electronic-circuit design, and

finally attempt to meet the many objections that I anticipate.
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11. Ideas for the Structure of an Advice Taker

To start as down-to-earth as possible, let us imagine that a

decent problem solver must always think of itself as executing at

least one procedure, at some level. This procedure is associated

with one or more goals the system believes that it will help

accomplish. In keeping with standard termino.logy, I call the

execution of such a procedure a process.

The current process may be the result of the interpretation

of a program, a "plan," or some other such structure, by an

appropriate interpretive procedure, or it may be an abstraction,

such as a commitment to review every step with respect to a

global strategy. An important example is the control on a

deductive process represented by a declarative belief. For

example, one way (IMPLIES A B) might direct a deduction is to

instruct a suitable interpreter to propose (PROVE A) as a subgoal

of (PROVE B).

There may be more thaI. one active process; that is, a

process that "thinks" it is now running; whose interpreter has a

next step in mind. If one process knows the language in which

another process's interpreter thinks, the first can alter what

the second thinks, or "put ideas in its head," i.e., advise it.

It should also be able to give it control.

To facilitate such communication, it seems right to make each

interpreter (except for the machine, or Conniver interpreter)



PAGE 10

speak the same declarative language. Each interpreter keeps a

data base in this language that describes the state of

interpretation of its procedure. (I am indebted for many ideas

such as this to Scott Fahlman.) Fetching from such a data base

may be as general as a deduction, or it may be as narrow and

efficient as desired.

Thus the current interpreter of a robot executing a plan

might keep a data base describing the current piece of the plan

being worked on, and the current state of the world the plan .wao•:

affecting. "Careful-mode" execution of the plan could be

enforced by adding to the data base a statement, "Between plan

steps, the next step is: check for agreement between the

expected world model (as given by comments on the plan) and the

actual result of each step." (This won't work unless the

interpreter reads such messages. Having a common declarative

language is not sufficient to make messages understandable.

Further conventions will be necessary.)

The example may be extended. In testing a plan, the robot

will want to run it without affecting the real world. This

requires a new interpreter which simulates the effect of each

real-world action (or just the old one with still other

statements that redefine the meaning of action).

Finally, a plan is merely an object of some sort, which may

be altered or inspected as well as executed. We might as well

have it be denoted by an expression in our declarative language.
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So far,. except for a certain type of uniformity, this system

is no different from generalized control-structure <Bobrow and

Wegbreit, 1973>, ACTOR's <Hewitt, 1973>, Fahlman's frame system

<1974>, or any of a number of systems whose good ideas I am

trying to use.

The really important notion is that deduction is to be a

smoothly-integrated part of the system. A deduction is just the

operation of a (deductive) interpreter, using a data base as a

program. The deductive goal is to prove something from this data

base. (For technical reasons, the real goal may be to deduce a

contradiction from the negation of the given goal.) There is a

conceptually separate data base which records the current state

of the deduction, and holds advice to the deductive process, just

as for other processes. (This will be described in detail

shortly.)

Deductions are to occur, at least in principle, whenever a

process (including an interpreter) wishes to know something. For

example, a robot might ask, did execution of that step result in

what I expected? A circuit designer might ask, does the propos,':d

coupling circuit between two stages load the second stage? A

chess-move explorer, upon noticing a problem with a move, might

ask, is the reason this move failed likely to be a problem for

other moves as well? (...If so, amend the plausible-move

generator with a procedure that reminds every subsequent move

explorer to check this problem first.)
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The last example is an instance of an important kind of /

knowledge: how to exploit "bugs." <Sussman, 1973a>

The emphasis on deduction is likely to worry the many people

who feel deduction is a trap for naive Al researchers. (If the

following list of advantages is not convincing, section IV.

countering objections, may help. A helpful remark to make is

that I am using "deduction" in a very broad sense, analogous to

that in the phrase "probable deduction.'~ <Hume, 1955> 1 allow

reasoning processes such as induction, and "buggy reasoning"

(e.g., from general statements that are not true in every case),

in addition to necessary deduction. I could give this process a

new name (like "duction"), but I think a revival of the original

1967
word in Sherlock Holmes' sense <Doyler> is in order.)

Here is my list of advantages of deduction:

(1)(i) It is the obvious way to utilize information expressed in
declarative form.

(ii) It is a good way to discover relations among previously
unrelated data.

(iii) Deduction is a good framework for study of the
modularity problem.

(iv) A deductive system may look at much the same information
in simple or complicated ways.

(v) Communication conventions between deductive processes are
easy to establish.

In detail:

(i) I take it for granted that some information is

declarative.

(ii) The pattern matching used in deduction is able to

express looser relations between variables in formulas being
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combined than PLANNER-type matching, because matching semnantics

is more general than assignment semantics. If discovery of neii

relations seems to be too grandiose a goal, I will settle for the

ability to state new lemmas to the advice taker in a general

language.

(iii) A deductive framework is a good one for the study of

the modularity problem, because we can always take at least the

step of adding a new piece of information. Then, in many case.

knowledge of how to use that datum may be accumulated in the form

of comments on it.

Let me explain this further. Remember that a data base way

be regarded as a "program" to a deducer. It is not perfectly

ordered, because more than one rule of inference may be

applicable at each stage. If it is too expensive just to try

them all, the deducer may use comments about them to decide which

rule to try (this is another deduction); or it may set up a

longer-range plan (e.g., "this rule, then that one on its

output") in the form of an abstract process which the deducer is

aware that it is responsible for; or it may try one rule or

path, and use its knowledge of typical bugs associated with that

technique to make a better guess if it fails. (Cf. <Sussman,

1973a>.) At least while studying the modularity problem, this

framework helps to organize the different kinds of information

that are around.

In the long run, it is most probably true that more powerful
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methods of organization (analogous to compilation) will be

necessary. See sect. IV.C.

(iv) A deductive framework enables a system to look at much

the same information in simple or complicated ways. Sometimes a

deduction is a brute-force "filtering" of simple assertions.

Other times, it is a sophisticated problem-solving process, each

step of which must be considered carefully. This is not always a

domain-dependent variation; the same domain may require both

kinds of deductions. For example, in solving a design problem, a

goal of the form "does there exist a circuit that does so-and-so"

may arise in two differenL ways: when a complete such circuit,

completely thought out, is desired; and when planning is being

done for a higher-level circuit, and.quick verification that a

proposed module is feasible is required. In the latter case,

elaborate testing and criticism of suggested plans is out of

place. I believe that, in a deduction, these phases may be

skipped by alteration of appropriate inference rules. It would

obviously be harder to alter the behavior of an expert procedure.

(v) It is easier to establish communication conventions

between parts of a deductive process, or between a deductive

process and some other type, because the objects manipulated in a

deduction are so natural: deductive goals, rules of inference,

"brother goals" (e.g., in (PROVE (AND A B)), A and B are

brothers).

Conventions are important for the reason mentioned before:
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you can't send a computer a message unless it is listening. Two

arbitrary processes cannot communicate unless each knows the data

and control structures of the other. Any Conniver program has

all the potential power of the system I have been describing, but

it is usually illusory.

For example, a chess program might formulate its search for a

move as a deduction

(AND (PLAUSIBLE-MOVE ?M) (ACHIEVE ?M (CURRENT-GOALS)))

(This might seem a little strange for a deductive formulation as

opposed to a procedural one. This point will be addressed below,

Sect. IV.A.) Let us say a move M is proposed in deducing

(PLAUSIBLE-MOVE ?M). The brother goal then might discover a

problem with the move, a threat by the opponent that refutes it.

A plausible course of action might be to find a move M' to meet

the threat, and instruct the deductive interpreter (via

appropriate assertions) to return to the previous goal. now

formulated as (PLAUSIBLE-MOVE M'). Because a deductive process

is so transparently organized, it is easy to test its state and

alter it.

This last point is not completely obvious without some

comments on the concrete structure of the deductive interpreter.

Any process at all is clearly organized at the level of

subroutine calls, iteration, etc. A clear deductive interpreter

must be organized in terms of higher-level entities: goals and
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inference rules.

Within this constraint, there are several ways to organize a

deducer. The method explored by Nevins <1972, 1974a> in his

theorem-proving research seems excellent to me. It uses both

forward and backward deduction when appropriate, and is capable

of managing very subtle interactions in achieving brother goals,

It represents knowledge procedurally when that is the obvious

representation.

There are several changes and additions I would make to such

a theorem prover. First, I would make explicit some of the

information implicit in Nevins' program. For example, a goal of

the form (AND Al A2...An) may be attacked in several orders:

some of the A's should be tried first in parallel; others should

be postponed and used to filter the initial early results. All

of these possibilities should be stated and pondered explicitly.

Second, alternatives such as these must be considered

whenever a decision comes up as to what inferences to make. So

that this may be reasonably efficient, the deducer should fol low

certain principles like, "Generally, keep working on the current

goal." When an action is tentatively selected, a quick search

should show whether there is any possibility of some other action

beating it out. Only if relevant advice appears should it be

thought about. (This is a crucial example of being able to treat

information simply and efficiently when necessary (point (liv)

above). The most common deduction of what rule to apply next is
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of the form, "This looks good. Any objections? No? Then....")

It should be noted thct the actions to be picked from are

inference rules of all sorts, not just a member of a finite set.

Besides rules like

(2)(i) "if A is proved and (IMPLIES A B) is proved, you may
assert B,"

we might also have

(ii) "if you can't prove there are any blocks in the box. 'jo'.j
may assert that there are no blocks in the box."

(This rule is handled procedurally by something like the

THNOT device. <Hewitt, 1972> Notice that this latter method

requires the decision as to what inference rule to use to be

specified by the caller of the.deducer. Eg., the two statements

(THGOAL (NOT (EXISTS X (IN ?X BOXI)))) and (THNOT (THGOAL (EXISTS

X (IN ?X BOX1)))) have quite different procedural semantics,

where no such underlying difference exists. The only relevant

information here is how much knowledge you think you have about

BOX1. A box you can see deserves a THNOT; others may not.)

Information about choosing between rules may be called

"quasi-procedural" in that it specifies a preferential ordering

of actions. For example, an electronics designer might know the

following two coupling tricks:

(3.)(i) An appropriate buffer amplifier may be used to couplle any
two circuits

(ii) A transformer sharing a winding with an inductor is a
good way to couple something to a tuned circuit.

Then it should also have the further knowledge that (3ii) is more
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specific than (3i), hence, is preferable if they both apply.

Such orderings have been studied by Richard Brown <1973>, and

been shown useful in a procedural framework. The present

approach has the advantage of explicitness; the reasons for an

ordering, for example, may be stated in a natural way. Further,

there is no more order specified than is justified.

It is very important to be able to represent facts of the

form, "Generally so-and-so." This requires use of modal and non-

monotonic inference rules. (The THNOT rule is an example of the

latter; see Sect IV.A.) An instance of a rule for using such a

fact is from <McCarthy and Hayes, 1969>: "From (NORMALLY P) and

inability to prove (NOT P), infer P." (.0f course, the concept "I

am able to prove so-and-so" must be represented procedurally.)

Another such rule is, "From (NORMALLY (IMPLIES A B)) and A, infer

(NORMALLY B)." Connectives like "presumably" have been studied

by logicians in recent years, in mostly uninteresting I.ays.

<Prior, 1967; Kripke, 1963> I will freely use such concepts in

what follows.
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II. Electronic Circuit-Design Proposal

The program I expect to write as part of this project is

intended to be a module in an electronic circuit designer, which

is a joint venture between Gerry Sussman, Allen Brown and me, and

possibly others. The structure of this entire device is.

beginning to be sketched now. The basic idea is that circuits

are designed by a process of proposal and testing. My module,

the proposer, is to use its knowledge of electronics to propose

solutions to electronics problems, and criticize and alter them

until they are ready for testing. The tester (a human being in

early incarnations of the system) reports how the circuit

performed, and whether it works properly. If it doesn't, it is

handed to the "bug localizer" to be built by Allen Brown <1973>,

which reports, after any necessary tests, on which module is

malfunctioning (and possibly why). Then control is given back to

the proposer, with enough new criticism added for the proposer to

know what the problem is and try something else.

In this section, I will describe the structure of the

circuit-design proposer. In keeping with my desire for

explicitness, all of this structure will be in the form of

knowledge in a uniform language rat-her than hidden in an expert

program. However, a given piece of knowledge may appear in a

variety of formats. For example, an instruction to "do this,

then do that," may be expressed as a procedure ("this; that")
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which is chosen and interpreted, as the left side of an

implication ("this and that imply desired result"), or as a

statement that "this is preferable to that as a method to achievr

the result." In this part of my proposal, I suspend judgment .v.

to the best representation for each piece of information.

However, my bias toward the deductive representation should be

obvious by now. Particularly for the high-level organization of

the design proposer, the deductive notation seems most

perspicuous.

A. Recalling Old Results

When given a design problem, the proposer first attempts to /

see if it knows the answer already. That is, it tries to use

knowledge about particular circuits that solve "about the same"

problem as the one given. Recognizing such similarities is, of

course, a very hard problem in general, but I envisage here

nothing more sophisticated than template matching.

Generalizations will be as simple as having "18MHz" in the

problem statement match "high-frequency" in the stored circuit.

One could imagine a complex indexing scheme that enabled the

proposer to pull out appropriate circuits, but I prefer to keel)

the indexing simple, and treat this as a deductive problem.

Other advantages of this decision will appear shortly.
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For example, a desire for a "high voltage-gain AC amplifier"

should cause the common-emitter circuit to be proposed:

+..

NO~

CA ý -

(4 0-.C J t. 1
L.

This diagram, which is incomplete, expresses a lot of differenrt

kinds of knowledge. The visual part states the basic topology r-t

a common-emitter connection. This topology is "what comis; to

mind" when a common-emitter amplifier is under discussion. Paci'

of it, however, are more essential than others. The transistor

is the necessary transconductance that is part of any amplifier.

Almost everything else is merely suggested, or "typical," as

indicated by the comments surrounding the diagram. R1, R2, and

Re are part of a typical biasing network. C1 and the RL-C2

network are suggested capacitive coupling to other stages. Th,,rjI

are only suggestions; deeper comments explain what role they

play, so that they may be replaced by more useful circuits that

serve the same purpose plus others that may be required. For
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example, RL and C2 convert a dc-offset current into a decoupled

ac voltage with no offset. For some purposes, where an impedance

match with the next stage is harder to obtain, they may be

-. I 'rarI kI',

How knowledge like this may be used will be described later.

When a circuit is fetched from memory, the most immediate

task is to relate the circuit parameters to the given desired

parameters. In the circuit of Fig. 1, there must be comments to

the effect that:

(4) i.f there is no Re, or Ce is present, the (incremental) gain
of the stage is beta*RL/Rs (where beta is transistor gain and Rs
is source resistance). If Re alone is present, the gain is
RL/Re.

When the circuit is pondered, to some degree these facts

constrain beta, RL and Rs automatically, in the process of

pattern-matching. There are, of course, other constraints on RL

and Rs, and the proposer must be aware that it has little control

over beta. In addition, the fact as given must cause the

proposer to think about which of Re and Ce is present. This

depends on several considerations, including the type of

transistor, the bias stability needed, and the purpose of the

amplifier. (Ce would be wasted on a dc amplifier.) All of this

I ~r I a~Fiu ~yi

~~-~ ·d'Z
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is by way of illustrating that pulling a circuit from memory is n

very active process, which must automatically cause suggestioný.

to be considered, constraints to be posed, and subproblems to be'.

put forth.

I visualize this as a deducti've process, with advice on how

to proceed being on hand at the appropriate moments. The reason

for using deduction is that it provides the required active

framework for what is essentially index-searching. When there is

a goal of the form (IS ?X (AMPLIFIER (GAIN 108))), a simple

indexer suffices to fetch

(IMPLIES (IS ?X (COMMON-EMITTER (GAIN ?G)))
(IS ?X (AMPLIFIER (GAIN ?G))))

from the data base. The pattern-matcher binds X and G

appropriately, and proposes a goal (IS ?X (COMMON-EMITTER (GAIN

188))). Immediately this goal makes relevant the clauses of Fact

(4). At this point, straightforward deduction would generate two

goals: "?X has Re only"; and "?X has Re or Ce." These lead

through other facts to consideration of the role of the amplifier

and of RL and Re in it. Details are not possible to give no.w,

but it is clear that exactly these considerations are relevant.

(Although some, like biasing, should be postponed.)
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B. Inventing New Results

The proposer will not always know a type of circuit adaptable'

to the problem at hand. In this case, it must invent one.

Nothing mystical is meant by this:; we cannot expect a pr-ogram :ias

intelligent as the average technician to invent something brand-

new, like the superheterodyne radio.. Instead, the proposer mur:nt

leave the domain of standard circuits and enter the domain of

standard tricks. Many of these are methods of breaking probl'om

down along useful dimensions, then solving the subproblems

generated, and the subproblem of hooking the solutions together.

Here is a preliminary list of tricks:

(5)(i) Frequency division
(ii) Time division
(iii) Cascading
(iv) Substitution

in more detail:

(i) If a circuit is to have different behavior at different

frequencies, a group of circuits, each of which does the correct

thing in its frequency range, connected in parallel, w ill solve

the problem:
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(Each module is assumed to turn out a zero signal for frequencies

it doesn't handle.)

(ii) If the circuit's response is to be piecewise linear

(like a detector), do much the same trick, only decompose the

signal over the time domain, and use diodes to apportion the

pieces:

S .% I



(Again, each parallel module must give a U-signal for ranges it

is not concerned with.)

(iii) If a circuit behavior can be expressed as a product of

behaviors, a cascade of circuits, each of which realizes a

factor, will do the job:

A cascade is a more complicated idea than might first appear.

Usually, two circuits may not be hooked together without some

kind of coupling network. The following fac.t is relevant:

(6) if there is a coupling network cc that does not load the
output of cl or the input of c2, which transforms cl's output-
signal representation into c2's input representation, then cl--
cc--c2 is a cascade of cl and c2.
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Notice that this fact may be useful in applying tricks (i) and

(ii) as well. (In this fact, "loads" means "alters the 1iehavior

of." This requires study to pin down precisely; it is exactl'j

the sort of knowledge that is not taught in textbooks on the

subject.)

(iv) The next trick, substitution, is tougher to state, and

may just be an addendum on number (iii). It involves the

replacement of a part of a known circuit with a new part that

does what the old one did, and performs.the new function as we!l.

Practically stated, this is a cascade guided by the old circuit

as though it were a plan for the new one. That is, if the

problem is broken down as for Trick .(iii), and this breakdown,

except for a box or two, matches the breakdown for a previously

generated cascade, then use the old circuit, with the new,

differing blocks cascaded in in place of the old. This trick is

a little gl.ib, as stated. The intent is to be able to make use

of old coupling circuits and special knowledge -(e.g., special

multi-stage biasing tricks) noticed while assimilating the old

cascade. I admit that this is non-trivial, An example of it

will be given below. (Research may show that this trick is

actually a variant strategy in applying all the other tricks.

That is, it is an attempt to use an old plan of any sort.)
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Let me trace an example of the invention of a new circuit,

the tuned amplifier. Specifically, the problem is to design an

AC amplifier (low gain), which amplifies signals around 455 kHz,

rejecting all others.

Trick 5(iii) applies here. I will gloss over how it factors,

this description (this ability requires a lot of electronics

knowledge), and assume it can do it. In visual terms, then, the

response

I.

f i r

has been factored into

ts+~
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r"A .y n

~LI IIILII

where the AC amplifier is as given in Fig. 1, and the tuned

circuit is

The cascade trick has generated some subproblems: design an

AC amplifier, find an LC "tank" with resonant frequency 455kHz,

and cascade them. Presumably, the "problem factorer" doesn't

blindly generate breakdowns of problems, but uses it knowledge nf

circuit responses to propose good blocks. As it fetches them,

using the same active index-search process earlier, some

submodule design problems are solved "automatically." In

V'. 0.-

CM~u·~
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particular, before cascading, the range of beta and the values of

RL, Re, L and C will be picked.

Now, to cascade the amplifier and LC circuit, we need a

coupling network. The "suggested coupling" (capacitive),

unfortunately "loads" the tuned circuit, in the sense of altering

its resonant frequency, which is fixable, and lowering its

quality, Q, which is not.

This failure, I assume, occurs inside a goal generated by

Fact (6). The proposer tried the coupling that "came to mind"

and it failed. This should cause an "informed backtrack" (as

executed by, e.g., Fahlman's <1973> "gripe-catchers.") That is,

attached to the tuned-circuit description should be the notion

that

is a good coupling circuit for an LC tank. (This comment doesn't

have to be present, but if it isn't, the proposer will have to

thrash a bit.) Since a current is a possible output for an

amplifier, this suggestion results in the coupling-circuit

generator suggesting:
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+V

as the coup!er.

Now we are essentially done. However, whenever a circuit (at

least an "important" one) has been generated, it is usually

worthwhile to think a little more about it. For one thing, it

must be filed away with comments, the cascade plan that led to

it, etc. I shall have something to say about this later, under

"Learning."

But before doing this, the proposer should make sure it has

done the best it can. In this case, it has had to introduce an

expensive inductor on the amplifier side. Although this may be

justified, let us assume the existence of a demon that catches

use of expensive parts (like a very large capacitor) and

concludes that a substitution (Trick (Siv)) might save money.

(Because a substitution replaces parts as well as adding them, in /

fact, it may be that Trick (iv) should always be tried first, but

that doesn't affect the overall plan.)

Is there a cascade plan for a device that approximately

matches "high, flat gain" + "tuned impedance"? If there are

adequate comments on the IF amplifier, it will do! The amplifier
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should have a comment that it is a cascade of the form

Vb'It&

where a transconductance is a wide-band voltage-controlled

current valve. (in this case, a transistor). Now we need a

circuit that takes a current and converts it to a voltage the way

Fig. 6(b) suggests. This is just the tuned .circuit

4- .MaI fv-ý

C c rrem

(from which the circuit of Fig. 7 may have been derived using

Trick (Si)). The resulting substitution yields
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/
/

(with comments) as a new version of the tuned amplifier, with

only one inductor.

This concludes the sketch of the proposer, except for a few

comments. First, it is obvious that the Circuit Tricks (5) are

not the only knowledge the proposer has. There must also be

gripe-catching, problem-factoring, and other electronics

knowledge. These have been assumed, and occasionally alluded to,

in what I have sai.d.

Second, there is some quest.ion as to the dividing line

between circuits and invention tricks, which are distinguished

only by having more comment (or "proposal") and less actual

circuit. In some cases, the line between recall and invention

will be quite fuzzy. The recaller might discover a very definite

-plan for a problem, whose boxes are not filled in with complete

circuit detail. For now, I classify all such things.as tricks.

The reason tricks are special is that they involve
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"recursive" calls to the proposer to generate sub-circuits. In

the example, these were subproblems that could be solved

immediately, by recall of generic devices. Thus there was no

substantive recursion of the entire proposer.

It is to be hoped that, at least on a first pass. the

proposer may retain this simplicity. There are lot of probleln

with the intelligent organization of a recursive tree of problrem--

solving processes. However, for other problem domains, like

digital design and program writing, subproblems are generated

which have never been solved before. This is not clone blindly.

but in such a way as to propose subproblems that "look easy."

The solutions to these subproblems are often postponed until the

higher level is worked out in detail, or even debugged. This

looks like another degree of complexity, whose introduction

should be postponed as long as possible.
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IV. Objections and Replies

Predicate-calculus theorem provers have gotten a bad name in

Al research, and most agree they deserve it. It seems that this

is because too many logicians have been involved in it., who have

spent too much time worrying about abstruse issues like

completeness and consistency, and too little worrying about

computation and understanding. These people have obscured the

really valuable work in the field, by people like Gelernter

<1963>, Bledsoe, Boyer. and Henneman <1971>, and Nevins <1972,

1974a> (to name only a few). I have attempted to follow their

lead in allowing the use of information of all sorts when

appropriate, not just axioms and theorems, and ignoring abstract

completeness when practical completeness, the ability of a systcm

to deduce something in the next year or so, is still an issue.

Even consistency is, as Minsky <in progress> has observerl, a red

herring at best; even a formally consistent theorem prover is

going to make practical mistakes (when its axioms fail to confo'ri-

to reality), and must learn how to correct them. An inconsiktnl:

theorem prover can use the same techniques to work around its

inconsistency.

Despite my ideological purity, my espousal of formal

reasoning is going to encounter objections. In this section, I

attempt to meet them in advance.
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A. Logisticity

Marvin Minsky <in progress> has noticed several drawbacks of

"logistic" systems. Briefly, they seem to be:

(7)(i) The dependence of the success of a logistic system upon
the isolation of a relevant micro-world small enough for it to
operate on.

(ii) The absence of THNOT in addition to NOT. (The inability
to draw conclusions from the inability to draw other
conclusions.)

(iii) Monotonicity: the inability of new information to block
a deduction.

(iv) Inability to specify qualifications on how some belief is
to be used. (Example: "near-to," a somewhat transitive concept,
whose transitivity cannot be applied repeatedly or, worse yet,
inductively.)

Another frequent criticism is:

(v) The requirements of logical rigor lead to axiom systems
that are too remote from real problems. For example, rigorous
geometry axioms require proof of collinearities which people
usually take for granted in order to get on to the interes-ting
questions. (The presumed reason is that relaxing this vigilance
leads to fallacies, i.e., inconsistencies.)

My system is not logistic in Minsky's sense, but it is likely

to appear as a fellow-traveler to a lot of people, so it is worth

checking how it fares against these points.

(i) This point is undoubtedly correct. Any deductive plan

must notice when it is really just bewildered, and should stop

and think first about que3tions like, what is the real structure

of the problem before me? The domain in which this question is

asked must be "micro" enough to make the answer clear.

Otherwise, it should switch to the following two-step plan:
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a. Ask, is the problem really the one I should be
working on?

b. If so, ask a human for more. information (for a good
plan, an overlooked lemma, etc.)

This point appears to apply equally well to a procedural system.

In fact, the use of a program does not apply at all to a

completely unstructured domain. In this case, we must start with

declarative information and figure out what the program should /

be. (Cf. <Sussman, 1973a>.)

(ii) & (iii) The monotonicity problem is real, but does not

occur in the system I have sketched. (Sect. II.) Besides, a

general analysis shows it to be part of a more interesting

problem, the problem of "passivity." Theorem provers tend to be

incapable of "actions," in the sense of "conscious actions

consciously taken." This is unfortunate, since in many cases

there are external actions that may be taken for deductive or

information-gathering ends. For example, there may be many

logical principles, memories, etc., that might tell you wjhether

there is a person in front of you; at a bank windoW, e.g., it is

likely there is a teller there. But it is much better just to

look and see rather than attempt a proof, in almost any case.

Logistic systems cannot usually state the former strategy,

although the latter is trivial:

(IMPLIES
(AND (ATROBOT ?W) (IS ?W BANK-WINDOW))
(EXISTS X (AND (IS ?X HUMAN) (FRONTROBOT ?X))))

It is easy, in Planner, to write a program to execute the "look

and see" strategy, but that avoids the usual issue ducked by the
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procedural approach: how do you state the strategy, e.g., as an

alternative being considered?

This is not a serious problem. A proposition of the form.

"under such-and-such condition, it is good to include 'look for i

person in front of you' in the current plan," is close to wIhat is

needed.

But this solution to the passivity problem solves the

monotonicity problem as well! All we have to do is let "try to

deduce so-and-so" be an action analogous to "look in front of

you." It is a primitive action, which, like other actions.

should be done only when it is cheap and useful compared to the

alternatives. I have stated it in Sect. II as a part of an

inference rule, inference rules being the actions available to .i

deduction routine.

(iv) Like Minsky, I have no theory right now about nearnew;.

But I think I have some top-level suggestions to make. First,

you need a rule that says, whenever you apply near-transitivity.

be sure to verify that you are not using it excessively. This

rule might be turned on conditionally. For example, if B is very

Ilong, (NEAR A B) and (NEAR C B) do not imply (NEAR A C). If I

(NEAR A C) was deduced from (NEAR A B) and (NEAR B C), verify

that A and C are not on opposite sides of B before concluding

(NEAR A 0) from (NEAR C D):
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('or (NEAR A t)

(Z~i fu( rC A f%

Second, suppose there is some kind of inductive rule like

(IMPLIES (TRANSITIVE ?P)
(FOR-ALL Y (IMPLIES (EXISTS S (SEQUENCE ?S ?P ?X ?Y))

(?P ?X ?Y))))
Where (SEQUENCE ?S ?P ?X ?Y) means ?S is a sequence S1, S2....Sn

such that (?P ?Si ?Si+l) and S1=?X, Sn=?Y. Then, we must amend

this rule to include the precondition (INDUCTIVE ?P). In this

terminology, if NEAR is transitive, it must not be inductive.

(v) This traditional criticism of logistic systems does not

carry over to more general deductive systems. For example, 1.here

Gelernter's <19•3> geometry-theorem prover was logistic, and

required a diagram as a subgoal filter, Nevins' <1974b> r ecrýlt

program thinks in higher-level, diagrammatic terms from the

start, and achieves much more directed behavior.

A program like this is, of course, as susceptible to

fallacies, in this case from a misleading or subtly impossible

diagram, as a human would be. Thus such a program will

occasionally generate inconsistencies like, "All triangles are

isosceles." This would bother a lot of theorem-proving

researchers, but there is no reason for it to. The proper

conclusion from such an inconsistency is, "I made a mistake,"

I
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not, e.g., "I must be insane." The right course of action is to

debug the data base to remove the problem. (Ways of doing this

in simple cases are discussed in McDermott <1974>.)

There is a stylistic criticism to be answered here as well.

Deduction as classically investigated seems to be in opposition

to plausible inference. People who believe in this distinction

are apt to think I am cheating when I use formulations (cf.

Sect. II) of chess-move generation like "look for plausible

moves and see if they work." They might say this is not really

deductive; a deduction would have to be of the form, "Prove

beyond a shadow of a doubt that some x is the best move

available." Others might say it is idle to cast it as a

deduction; I am just hiding a procedure.

This last criticism is the best; it may indeed be correct

that this level of chess-move generation should be procedural.

The issues, however, are not whether chess is a proper topic, or

the necessity of the answer desired, but are more like: are the

concepts really separable as shown (into plausibility and

verification)? is chess well enough understood so that an expert

should be written once and for all, at least at this level? is

the chess schema an instance of a more general problem of this

structure (e.g., the problem of "satisficing" search, that is.

finding a "good" element of a set in a reasonable length of

time)?
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B. Why Deductive Interpretation?

It might seem that we can dispense with a deductive

interpreter, and express all the knowledge we need in programS

directly. That is, instead of having

(8)(i) machine interprets deducer interprets data base

we might have

(ii) machine interprets Planner theorems

or something like them. (By "machine," I mean "Lisp

interpreter," or the equivalent.) Then, instead of a data base,

we would have a set of "theorems" compiled from a data base.

Indeed, this would be possible, but forcing this scheme in all

domains seems completely unnecessary, for the following reasons: /

a. To begin with, in the cases where (8ii) is more natural,.

my proposal allows its use. Some knowledge is naturally

expressed as procedures, and should be so expressed.

b. Experience has shown that the use of procedures is

successful only if they are well organized and well commented.

<Sussman, 1973a> <Fahlman, 1973> If this approach is carried to

its logical conclusion, the resulting programs seem equivalent to

commented declaratives.

c. The declaratives have the advantage of making as much

information as possible explicit rather than buried in the syntax

of a program. A declarat;ve goal like (AND A B) may be tackled

in more than one order, depending on circumstances. This is
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harder to arrange in a program.

d. Uniform use of procedures requires translation of all

incoming information into procedures. Most declaratives

correspond to more than one possible program. (IMPLIES A B), for

example, may be used in an "antecedent" or "consequent" manner,

either to deduce B from A, or pose (GOAL A) from (GOAL B). In

the many cases where it is unclear how to pick the proper

program, or even how to generate it among other choice!:;, it see,-m.-

harder in an imperative system to represent the uncertainty

involved.

e. A layer of interpreter always gives more control over .nl

process. This is because an interpreter maintains data

structures regarding the process it is performing, which are

close to the surface representation of the structure that it is

interpreting, and which may be inspected or altered. Compli Ilat i on

suppresses this information for efficiency's sake. This is a b:i:l

idea for a process elaborated from an undebugged structure (a

program or data base).

f. Besides, the real efficiencies depend on how well the

system understands the structure of its problems. This

understanding results from knowledge of mini-worlds, including

knowledge of how to use other knowledge. This requirement must

be met one way or another, and is independent of whether the

knowledge is represented procedurally or otherwise. (Bob Moore

pointed this out to me.)
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C. Building on Good Ideas

This section is aimed at a criticism that I think lies behind

most I have received: that by embracing deduction I am rolling

back the clock, and abandoning all the good ideas of the last few

years in A.I. From people's comments on early drafts of this

paper, I have compiled the following list of such "endangered"

good ideas:

(9)(i) Subproblemization
(ii) Ignoring information unlikely to be relevant
(iii) Goal orientation
(iv) "Defaults" and when they are overriden (one of many

concepts associated with "frames" <Minsky, in progress>)
(v) Consequent vs. antecedent computations
(vi) "rational form criteria" <Goldstein, 1974> (perhaps the

same as "local optimization criteria")
(vii) Gripe catching <Fahlman, 1973>, criticism <Sussman,

1973a>
(viii) Demons <Charniak, 1972>
(ix) Plausible Inference
(x) Information about using information.

In fact, I am aware of these ideas, and consider them very

important. Not to use them would be to admit stagnation in A.I.,

which is out of the question. Some of them, like

subproblemization, goal orientation, and consequent vs.

antecedent computations, obviously fit in my scheme. Others,

especially expression and use of information about information,

especially information about what to ignore, I have dealt with iat

length in Sect. II and elsewhere, precisely because recognitirvn
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of them would be the major advance of my deducer over previous

ones. The other issues I am aware of, but could not really claim

to have dealt with. If, however, the system I design is not

capable of exploiting them, I will consider it a failure. What I

expect is that the organization I have described will in fact

make it easier to exploit them.

I am comforted in this research by my impression that

disparate sections of the A.I. community are coming together over

a lot of these issues. "Proceduralists" are having to recognize

the uses of declarative comments <Sussman, 1973a: Goldstein,

1974>, and "declarativists" are recognizing that their data bas~e

are essentially non-deterministic programs. (Cf. Hayes <1973>

and Kowalski <1974>, two old theorem-provers whose current work

was brought to my attention after the first draft of this

proposal was written. They have things to say about implications

as programs which are similar to my theory, and are equally vague

as to the exact nature and use of a deductive control language.)
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D. Learning from Experience

Two contradictory objections must be met in this section, for

some people will say that my account of advice taking has left

learning from experience out altogether, and others w.ill think

that I have implicitly appealed to it too often.

I think this kind of learning has been downgraded too much b'h

many workers ih Al. The reasonable observation that there are

strong limits on what humans can discover has been used to

conclude that independent learning is not a very important

component of everyday adult intelligence. The. claim is made that

this kind of learning has been confused with learning "from a

teacher," which is much easier to tackle, and much less

mysterious. <Winston, 1970> 1 obviously agree that understandingj

is more profitable to study than discovery, or I would not be

studying advice taking, but I think that there is an important

component of discovery in understanding.

To illustrate what I mean, let me pursue an example of how a

"Mark 0" Advice Taker might learn from teaching. Assume it has

been taught about dc amplifiers and biasing, and about low-

frequency incremental models of transistors. These enable it to

design good ac amplifiers. It must know about capacitors and

passbands in order to choose coupling capacitors that do not

block signals. So, when I give it a problem requiring the design

of a high-frequency amplifier, it will just go ahead and design
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it as before, and it won't work. The Advice Taker won't know

this until I tell it (or Brown's bug-finder tells it) why the

amplifier failed: because it neglected transistor capacitances.

Once I tell it about these problems, including ways of

calculating them and minimizing their effect, it should be more

careful.

But here's *a problem; now it is altogether too cautious.

Its inclination will be to make sure with everu amplifier it

builds that the capacitors are not causing trouble. This is an

old AI problem; a program must usually be aware of how to use a

piece of knowledge as well as what it is, or it bogs down

examining irrelevancies. In this case, it is clear that one's

model of the transistor should depend on the frequencies

involved. This is a kind of "antecedent," or forward-deductive

knowledge.

Since this is a humble Mark 0, I will just go ahead and tell

it when to include transictor capacitances and when not. But I

think most people are smarter than that. They know that the

simple model used to work, and must still work, for the simpler

amplifiers. They figure out when to stay with the simple model

from their knowledge that essentially one detail, the frequeIC.I,

has changed. There is nothing brilliant about this reaý:oning.

but we still don't know how to automate it. Winston <1970> ha.

studied reasoning like this under more isolated circumýstinceF,

but a design situation appears to be more loosely structured th;l:n
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a Winston similarity network.

(Note: it may well be that for the particular example I have

given, some peop.le might think instead, "Let me start with the

full model of the transistor. Well, right away I can neglect all

the capacitors, which look open at signal frequency." This just

pushes the problem back to how to learn about capacitors.)

As ever, the learning problem has many facets. Here are four

concrete problems I expect to encounter:

a. In the long run, there must be More and more information

about assimilating new information. Initially, this will just be

an indexer of declaratives. But just having a piece of

information does not tell you how to use it. This must be

deduced from the way it is stated, knowledge about the domain

involved, and experience in trying it.

The most pragmatic such problem is that of understanding new

electronics ideas and circuits. When a human technician is shwon

a sample circuit of a given class, say a detector:
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he can usually understand what is the essential idea (here, thi-

diode), the signal path, merely the suggested coupling or

application (the left half of the circuit), the idealized load

(the resistor), etc.

As explained above, for now I would like merely to study honr

to tell this information to a machine. How to derive it from the

meaning of circuits and conventions in writing them is a probl )ii

Al en Brown, Gerry Sussman and I plan to attack later.

b. When a problem has been solved, the answer should be

stored in a form useful for the solution of future problems.

This is the closest thing to "independent learning" that I wish

to study. The problem here is that the way in which an answer is

stored influences whether it will be found later. For exa-mple, a

receiver filed away under "10MHz" will never be found again;

"high frequency" is much more useful. Clearly, how to store

particular circuits, cascade plans, etc. depends on electronics

knowledge, (This actually seems like a relatively easy problem,

at least for minimal results.)

c. The most interesting question is whether the Advice-
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Taking Proposer can learn from its brother modules' experience in

testing proposed circuits. Initially, a human begin will check

its output and tell it the things it has obviously overlooked.

In the long run, the proposer, the bug-localizer, and possibly a

global "Learning Module" must conspire to set the proposer

straight. (Whether there is learning in each module, or global

learning, or both, is a problem we are keeping in mind.)

d. A seemingly interesting problem that has been

indefinitely shelved is the.problem of compilation of know.iledge

into procedures. This was studied enough by Sussman <1973a> to

show that it is crucial and complex, but we are aiming for a

deeper knowledge of electronics than his HACKER had of blocks.

Compilation is not conceptually necessary (cf. Sect. IV.B). and

seems to follow a preliminary exploration of a domain. Beside•.

proper study of it seems to involve the question of progrf3am

design, which is more complicated (apparently) than circuit

design (cf. Sect. III, last comment).

To avoid any grandiosity, let me admit that I have little

understanding of these problems now, without having built a Mark

8. Humans seem to have an ability to summarize the difference

between one problem and another, as as to provide plenty of clues

later on as to which models and facts to use on a subsequent

problem. My hope is that a well-constructed Mark 8 will be a

good laboratory for the study of ways of attaining this ability.
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