
WORKING PAPER 73

ANOTHER APPROACH TO ENGLISH

by

MARTIN BROOKS

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

June 1974

Abstract

A new approach to building descriptions of English is
6utlined and programs implementing the ideas for sentence-
sized fragments are demonstrated.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research program
supported in part by the Advance Research Projects Agency of the
Department of Defense and monitored by the office of Naval Research
under Contract Number N00014-70-A-0362-0005.

Working Papers are informal papers intended for internal use.

This is a progress report on the natural language system

I have been building during the last few months. I now have

almost-debugged LISP programs that build.descriptions of

English inputs over a small vocabulary. All examples are

taken from the programs' output.

The principal strategy behind my programs is that one

should teach the computer about concepts in a frame-like

manner and this knowledge should include information about

(communicating the concept in English. (I have only worked on

understanding, not generation.) This is similar to recent

vision theories where one teaches concepts including how they

are to be parsed out of a visual scene. This approach indicates

that grammar consists of analogies over the similarities of

linguistic presentations of different concepts. As such, it

must be built upon many specific instances and constructing

some of these instances is my concern now.

I have written frame-program-definitions of ten concepts:

three actions, four entities and three descriptive concepts.

For the most part they are limited to the world of text-editing.

My image of the semantics of this world is that there are enti-

ties of two types: places (e.g. pages, lines, spaces) and

text (e.g. paragraphs, diagrams, sentences, words, letters,

punctuation). Each type admits relationships within, e.g. is-

part-of and is-part*of, the transitive closure of is-part-of,

and there are relationships between the classes, e.g. contain-

ment; paragraphs usually occupy a portion of a page, sentences

are contained in several lines, letters are contained in spaces,

etc. One can structure them via a geometry that is between

one and two dimensional, not too complex but not trivial. There

are actions which a person (another type of entity) may perform

on and/or with these entities, e.g. inserting, deleting, moving,

underlining, making-room-for, etc.

For the purposes of perceiving and communicating aspects

of the actions and entities one builds descriptive systems

such as size and the geometry already mentioned. One might

also include a system for indicating identifications between

concepts referred to in sentence or extended discourse.

Of the concepts mentioned I have programmed insert

(F8-INSERT), delete (Fl-DELETE), move (F5-MOVE), sentence (F3-SENTENCE),

paragraph (F4-PARAGRAPH), page (F6-PAGE), size (F7-SIZE),

Martin (F2-MARTIN), and Barbara (F2*5-BARBARA), (two people

distinguishable only by name). I have also programmed two

STATIVE-DESCRIPTORS, have (F9-HAVE) and be (FIO-BE), devices

for attaching properties and descriptions to actions and entities.

I will now discuss some aspects of my implementation of

frame-like structures. A frame has two distinguished parts,

a control section and a slot section. The control section is

a program that receives messages and responds to them, perhaps

by binding one of its slots to another structure. The slot

section is the data structure with those slot bindings. When

one talks about a specific frame-description of a concept one

must talk about an instance of that frame description. In my

scheme different instances of (what has been decided for now

to be) the same concept share the control section but have

different slot structures. This is done by making the control

section be a program of two inputs: a message and an atom.

The atom's property list has all the slot bindings for that

instance of the frame-description. The pair of the control

section and the slot section together make an instantiated

frame, which is given a name.

My frames each have several parts, also inplemented as

frames. The basic structure is that all messages sent to an

instantiated frame that come from outside the frame pass through

a clearinghouse. Depending on the kind of message (to find

out - ask it) it is relayed to one or another of the frame's

parts. There are three important kinds of messages:

INFO-MSG, MOD-MSG, RSVP-MSG.

An important part of a frame-system is a language inter-

nal to the system describing the frames themselves. For

instance, F3-SENTENCE and F4-PARAGRAPH are ENTITIES and

TEXT, F2-MARTIN is an ENTITY and a PERSON, F10-BE is a STATIVE-

DESCRIPTOR, PF8-INSERT is an ACTION. Often a frame will want

to know whether another frame referred to in a message is a

PLACE, or whatever. It does this by asking the frame itself

whether it is a PLACE. It asks this with an INFO-MSG. Thus

when a frame receives an INFO-MSG it sends it off to the part

of itself that knows these sorts of things.

When a string of words is read it is converted to a list

of lists of morphemically decomposed words each of which is then

replaced with whatever the DICTIONARY says it should be replaced

with. For prepositions and conjunctions (and eventually deter-

miners) this is the token itself. For others, a newly instan-

tiated frame for the concept the word stands for will replace

the word. This newly instantiated frame will also contain

information about the affixes or irregular presentation (e.g. is)

of the concept's word. I call this list of instantiated frames

and tokens a CONTEXT. Now that we have this CONTEXT the problem

is to interconnect the frames with the relationships indicated

(to a reader of English) by the string. The knowledge needed

for determining these relationships is in the frames. The top

level interpreter in my system sets up "conversations" between

adjacent frames to see if they should be interconnected. (This

interconnection is entirely controlled by the frames, the

possibility of the connection is controlled by the interpreter,

it recognizes the frames to be adjacent, furthermore it does

not set up these conversations in random order (see below)).

When two adjacent frames do become interconnected the pair is

removed from the CONTEXT (along with any prepositions, conjunc-

tions, etc., that the frames want) and a new CONTEXT with the

interconnected structure or whatever the frames designate,

as the result of their conversation (see discussion of F10-BE

and F9-HAVE below) replacing the pair is made (i.e. given a

name). Further processing proceeds on this new CONTEXT. When

there is only one structure in the context, processing is

successfully completed.

The order in which the interpreter sets up the conversa-

sations between frames is determined so as to make a non-

deterministic version of the control structure Vaughan Pratt

espouses in CGOL (Reference: -Vaughan Pratt, (1973) with

operator precedence replaced by the conversation. This guarantees

(assuming certain restrictions on the frames' behavior) that

all modifications among frames are nested and that no frame

gets taken as a modifier to another until it has received all

of its modifiers.

Even though all relationships between frames are done

via two way links (i.e. if an instance of F3-SENTENCE knows

it is BEFORE an instance of F4-PARAGRAPH then the F4-PARAGRAPH

knows it is AFTER the F3-SENTENCE) the acquisition of this

relationship is asymetric. When a conversation between FRAME 1

and FRAME 2 is set up (either by the interpreter or an instance

of F10-BE or F9-HAVE, see below) it may typically proceed as

follows:

A message is sent to FRAME 1 asking it if it is

interested in taking FRAME 2 as a modifier. This is

a MOD-MSG, and being a MOD-MSG tells FRAME 1 what

the situation is. If FRAME 1 does not want FRAME 2

then the conversation is restarted by asking FRAME 2

if it would like FRAME 1 as a modifier. If FRAME 1

does want FRAME 2 (perhaps along with some tokens

in the CONTEXT (prepositions, conjunctions, etc.)

it sends a message to FRAME 2 saying that it wants it

and in what capacity it will be used. This is done

with an RSVP-MSG and being an RSVP-MSG is what clues

FRAME 2 in to what is happening. FRAME 2 may now reject

the whole idea, in which case FRAME 1 is not allowed

to take FRAME 2, or if FRAME 2 approves the suggestion,

it will record the relationship in its slot structure

and send a message of approval back to FRAME 1 which

will then record the relationship in its slot structure

(and decide what structure should replace the two in the

CONTEXT. Very often this is simply itself, although

in the cases of subordinate clauses and most usages

of F10-BE and F9-HAVE this will not be the case.

I should mention that the interpreter is a small recursive

algorithm (less than one page of LISP). All the work is done

by the frames since they have the knowledge to do it. This

also results in there being no concept of sentence.

What kinds of knowledge do frames use in responding to a

MOD-MSG? A MOD-MSG has two slots, called BODY and LEX. BODY

contains the frame which is the proposed modifier. LEX says

(where the proposed modifier is coming from. This might be

LEFT, RIGHT, FIO-BE, or F9-HAVE. LEFT and RIGHT indicate that

the proposed modifier was lying in the CONTEXT (immediately)

to the frame's left or right. The

frames F10-BE and F9-HAVE each take two frames as.slot-fillers,

upon receiving the second one it sends a MOD-MSG to one asking

if it would like the other as a possible modifier. In this

case LEX of this MOD-MSG would be F10-BE or F9-HAVE. (F9-HAVE

and F10-BE perform some other functions, discussed below).

Where the proposed modifier comes from (i.e. what LEX is)

is very important. Other important things are the way the

proposed modifier responds to certain questions about itself

and what prepositions and conjunctions (i.e. tokens, in general)

appear in various places in the CONTEXT.

In Example 1, F3-SENTENCE uses the fact that LEX = RIGHT,

that the proposed modifier (F4-PARAGRAPH) is TEXT and something

it could be PART* of (transitive closure of PART) (F3-SENTENCE

knew that itself), and that there was a CONTAINMENT-PREP (i.e.

one of t in, on, of J) in between them (see Example 1)(I have

not done determiners yet, read them in as you please).

These structures are printed so that the name (the second

name of a frame is the name of the atom with the slot-structure

in its property list) appears above a vertical list of its bound

slots. (There are no slots bound by default for these purposes).

The contents of the bound slot is printed recursively after the

colon following the slot's name. To avoid problems with circular

pointers any structure to be printed which is already being

printed has its name printed only. The slot called MOD-ORDER

is a list of the frame's modifiers in the order they were received

(most recent on the top), including the slot the modifier fills

and where it comes from. (LEFT, RIGHT, FIO-BE, F9-HAVE as before,

or RSVP if it was taken as a result of an RSVP-MSG). This is very

useful for understanding a frame's history which is in turn useful

for debugging and parsing CONTEXTS with conjunctions.

Example 1:

(SENTENCE IN PARAGRAPH)
&&&&&8&&&888 &&888&68&•&4 8&& &&8&&&&&88&8&&8 &&&&&&
F3-SENTENCE FR#1156

IS-PARTi-OF : F4-PARAGRAPH FR#1153
HAS-AS-PART* : F3-SENTENCE FR#1156

NOD-ORDER : F3-SENTENCE FR#1156
HAS-AS-PART*
RSVP

HOD-ORDER : F4-PARAGRAPH FRI1153
IS-PART*-OF
RIGHT

As well as initiating relationships between the two frames

filling their slots F10-BE and F9-HAVE determine the time

relationships between these two frames, and in case one is

an action, inform it of its VOICE and ASPECT. ASPECT (either

COMPLETED or ONGOING) is not important to the action at this

point, however VOICE determines which of the two forms of presen-

tation (PASSIVE and ACTIVE) it should use as a first assumption

about its presentation in the CONTEXT. This decision relates to

what modifiers it expects to receive from where.

When one makes a description of something, it is a descrip-

tion of the something a certain time. Furthermore, a description

of X at time T1 may include that at time T2 X will have a certain

property. I have observed that English transmits descriptions

of this form via the instances of F10-BE and/or F9-HAVE between

an entity (or in some cases this will be an action) and an action

the entity is involved in, as follows (this is not all these

"auxiliary verbs" determine): they determine the relationship

(either BEFORE, AT, or AFTER) between TIME-OF-UTTERANCE and the

time of the description of the entity and the relationship between

the time of the description of the entity and the time of the

description of the action. For example, compare the TIME slots

in F2-MARTIN and F8-INSERT in examples 2, 3 and 4. There are nine

such pairs of relationships and it is easy to figure out how to

Example 2:

Example 3:

(MARTIN WILL HAVE INSERTED)
8488488&&&a& &aa88 8&&a8& &8a 88abaaaaaa8aaa 88888
FB-INSERT FR#4816

TInE s BEFORE
MHO

VOICE : ACTIVE
SUFFIX s ED
ASPECT : COMPLETE
WHO : F2-NRRTIN FR14817

TINE : AFTER
TIME-OF-UTTERENCE

ACTIONS-INVOLVEO-IN : F8-INSERT FR#4816

MOD-OROER : F8-INSERT FR#•416
ACTIONS-INVOLVEO-IN
RSVP

HOD-ORDER : F2-MARTIN FRD#817
WHO
LEFT

(MARTIN HAS INSERTED)
88a8888888a8884a88a8•8&8&•888&&•&&888488&&&&&&&&&&
F8-INSERT FR15066

TIME : BEFORE
WHO

VOICE : ACTIVE
SUFFIX s ED
ASPECT : CONPLETE
WHO : F2-MARTIN FR#5867

TIME : AT
TIME-OF-UTTERENCE

ACTIONS-INVOLVEO-IN i F8-INSERT FR#5866

MOD-ORDER : F8-INSERT FR#5866
ACTIONS-INVOLVED-IN
RSVP

HOD-ORDER : F2-HARTIN FR#5867
WHO
LEFT

Example 4:

(MARTIN HAD INSERTED)

FB-INSERT FR#5281
TINE : BEFORE

WHO
VOICE : ACTIVE
SUFFIX t EO
ASPECT s COMPLETE
WHO a F2-MARTIN FR#5282

TINE i BEFORE
TIME-OF-UTTERENCE

ACTIONS-INVOLVEO-IN : F8-INSERT FR#5281

MOD-ORDER : F8-INSERT FR#5281
ACTIONS-INVOLVED-IN
RSVP

MOC-ORDER : F2-4ARTIN FR#5282
UHO
LEFT

say each in almost any voice or aspect

in English, using the "auxiliaries" have, be and going.

This theory can be extended to include the appropriate

filler for the TIME slot (i.e. time of description) for every

frame in the CONTEXT, It has interesting aspects when considering

subordinate clauses, However, I have not yet implemented this

extension.

The actions in Examples 5 and 6 use knowledge about the

VOICE of their presentation (in 5 deduced by default, in 6

informed by F10-BE), where they receive the proposed modifier

from (RIGHT, LEFT or F10-BE), the way the proposed modifier

answer their questions and the prepositions occurring in order

to fill in the appropriate slots.

To be precise F10-BE and F9-HAVE expect one modifier from

the LEFT and another either also from the LEFT or from the RIGHT.

In the latter case it sends a MOD-MSG to the one from the LEFT

asking if it would like the one from the RIGHT as a modifier,

If the one from the RIGHT is an action and the one from the

LEFT an entity then the entity will know (since the message it

receives in from F10-BE or F9-HAVE) that it should send a

MOD-MSG to the action proposing itself as a possible modifier.

If the one from the RIGHT is not an action then the one from the

Example 5:
(TO PAGE MARRTIN MOVED LONG PARAGRAPH)

F5-IOVE FR#5722
WH4T a F4-PRRAGRRPH FR#5786

ACTIONS-INVOLVED-IN : FS-MOVE FR#5722

SIZE i F7-SIZE FR#5787
PARTICULAR-VALUE : LONG
UHAT : F4-PARAGRAPH FR#5786

nOD-ORDER : F6-PARAGRAPH FR#5786
WHAT
RSVP

MOO-ORDER a FS-MOVE FR#5722
ACTIONS-INVOLVED-IN
RSVP
F7-SIZE FR#5787
SIZE
LEFT

TIME A RT
UHO

VOICE A: CTIVE
SUFFIX s ED
RSPECT a COMPLETED
UHO : F2-MARTIN FR#5735

TIME s BEFORE
TIME-OF-UTTERENCE

ACTIONS-INVOLVED-IN : FS-MOVE FR#5722

NOD-ORDER a F5-MOVE FR#5722
ACTIONS-INVOLVED-IN
RSVP

TO-UHERE s FS-PAGE FR#5723
ACTIONS-INVOLVED-IN : FS-HOVE FR#5722

MOD-ORDER i FS-MOVE FRI5722
ACTIONS-INVOLVED-IN
RSVP

MOO-ORDER : F4-PRRAGRAPH FR#5786
WHAT
RIGHT
FS-PAGE FRA5723
TO-UHERE
LEFT
F2-MARTIN FR#5735
UHO
LEFT

(SENTENCE WAS INSERTED IN PARAGRAPH ON PAGE BY MARTIN)

Example 6: F8-INSERT FR#691
WHO : F2-MARTIN FRI#88

ACTIONS-INVOLVED-IN : F8-INSERT FR#691

MOD-ORDER : F8-INSERT FR#691
ACTIONS-INVOLVED-IN
RSVP

TIME : AT
WHAT

qSPECT : COMPLETE
SUFFIX : ED
VOICE : PASSIVE
WHAT i F3-SENTENCE FR#719

TIME : BEFORE
TIME-OF-UTTERENCE

RCTIONS-INVOLVED-IN : F8-INSERT FR#691

MOO-ORDER : F8-INSERT FR#691
ACTIONS-INVOLVED-IN
RSVP

WHERE : IN F4-PARAGRAPH FR#692
CONTAINED-IN t F6-PAGE FR#696

CONTAINS : F4-PARAGRAPH FR#692

MOD-ORDER : FA-PARAGRAPH FR#692
CONTAINS
RSVP

ACTIbNS-INVOLVED-IN : F8-INSERT FR#691

MOD-ORDER : F8-INSERT FR#691
ACTIONS-INVOLVED-IN
RSVP
F6-PAGE FR#696
CONTAINED-IN
RIGHT

MOD-ORDER : F2-MARTIN FR#688
WHO
RIGHT
IN F4-PARRGRAPH FR#692
WHERE
RIGHT
F3-SENTENCE FR#719
WHAT
LEFT

left will consider it as a possible modifier, (see Examples

7, 8, 9 and 10. One might also wish to communicate the

relationship in 10 but with more emphasis on F4-PARAGRAPH

(perhaps for the purpose of further modification). This is

done as in Example 11. In this example F10-BE receives both

of its modifiers on the LEFT, which is what distinguishes

it from Example 10.

When it is presented in the ACTIVE voice F8-INSERT "expects:'

to fill its WHAT slot with some TEXT from its RIGHT as in Example 12.

However, if it receives some TEXT from the LEFT it will use it

as WHAT but also take it as an indication that it should not

(return itself as a replacement for the pair in the CONTEXT, but

rather it should return the TEXT, as in Example 13. This is the

general idea behind how I do subordinate clauses, having "expec-

tations" that are broken. (See Examples 14, 15, and 16).

More complex constructions are easily recognized by looking

for a preposition in the right place. Compare Examples 17 and 18.

Example 17 involves a change, in F8-INSERT, F4-PARAGRAPH is

taken as WHAT until F3-SENTENCE is considered as a possible

modifier. Then, since the preposition comes after the occurrence

of F3-SENTENCE, a switch is made, IN F4-PARAGRAPH becomes WHERE

and F3-SENTENCE becomes WHAT.

Example 7
(PARAGRAPH HAD SHORT SENTENCE)

FI-PARAGRAPH FR#5542
HRS-AS-PART* : F3-SENTENCE FR#5526

IS-PART*-OF : F4-PARAGRAPH FR#5562

SIZE i F7-SIZE FR#5527
PARTICULAR-VALUE : SHORT
WHAT t F3-SENTENCE FR#5526

MOD-ORDER : F3-SENTENCE FR#5526
WHAT
RSVP

MOD-ORDER : F4-PARRGRAPH FR#5542
IS-PART*-OF
RSVP
F7-SIZE FR#5527
SIZE
LEFT

TIME : BEFORE
TIME-OF-UTTERENCE

MOD-ORDER : F3-SENTENCE FR$5526
HAS-RS-PART*
F9-HAVE

Example 8:

(PARAGRAPH IS SHORT)

F4-PARRGRAPH FR#4474
SIZE t F7-SIZE FR#4471

MHRT : F4-PARAGRAPH FR#4474

PARTICULAR-VALUE : SHORT
MOD-ORDER : F4-PARAGRAPH FR#4474

WHAT
RSVP

TIME : AT
TIfE-OF-UTTERENCE

OO-ORDER : F7-SIZE FR#4471
SIZE
FIB-BE

Example 9:

(PARAGRAPH IS ON PAGE)

F4-PARAGRAPH FR#S473
CONTAINED-IN : F6-PAGE FR#4578

CONTAINS : F6-PARAGRAPH FR#4573

MOD-ORDER i F4-PARAGRAPH FR#4573
CONTAINS
RSVP

TIME ART
TIME-OF-UTTERENCE

MOD-ORDER : F6-PASE FR#4570
CONTA!NED-IN
FIB-BE

Example 10:

*** * *** ****** ***** *************=****** ***** ***

(SENTENCE MRS BEFORE PARAGRRPH)
8 4888&ss &a8&888488888888&& 818& 8888&&a 88u8s'
F3-SENTENCE FRJ92

LOCALE i BEFORE F4-PARAGRAPH FR#88
LOCALE i AFTER F3-SENTENCE FR192

MOD-ORDER t AFTER F3-SENTENCE FRJ92
LOCALE
RSVP

TIME : BEFORE
TIME-OF-UTTERENCE

NOD-ORDER s BEFORE F4-PARAGRAPH FR#88
LOCALE
F10-BE

Example 11: (SENTENCE PARAGRAPH UAS BEFORE)
a&&a&&&&&&&&&&&&&&&&&&&&&&&&&&&&&a&&8&8&&&8a88a&88
F3-SENTENCE FR#4686

LOCALE : AFTER F4-PARAGRRPH FR#4682
LOCALE a BEFORE F3-SENTENCE FR#4686

MOD-ORDER : BEFORE F3-SENTENCE FR#4686
LOCALE
RSVP

TIfME i BEFORE
TIHE-OF-UTTERENCE

MOD-ORDER : AFTER F4-PARAGRAPH FR14682
LOCALE
F8I-BE

Example 12:

Example 13:

(BRRBARA HAS BEEN INSERTING SENTENCE)

F8-INSERT FR#684
NHAT : F3-SENTENCE FR#681

ACTIONS-INVOLVED-IN : Fl-INSERT FR•604

HOO-ORDER : F8-INSERT FR#604
ACTIONS-INVOLVEO-IN
RSVP

MHO : F2*5-BARBARA FR#686
ACTIONS-INVOLVED-IN : F8-INSERT FR#604

TIME : AT
TIME-OF-UTTERENCE

NOD-ORDER i F8-INSERT FR#680
ACTIONS-INVOLVED-IN
RSVP

ASPECT : ONGOING
SUFFIX :.ING
VOICE : ACTIVE
TIME : BEFORE

RHO
HOD-ORDER : F3-SENTENCE FR#681

WHAT
RIGHT
F25-BARBRRR FR#686
LHO
LEFT

** * ** * * **ss*ses* ss*sse s*** ***** ** ***t*****
(SENTENCE BARBARA HAS BEEN INSERTING)

aa888a8&&88888888a8a88888886888a888888888g8&8g&g&a
F3-SENTENCE FR#i0e9

ACTIONS-INVOLVED-IN : F8-INSERT FR#118
SUBORDINATE i: HAT
TINE : BEFORE

RHO
VOICE : ACTIVE
SUFFIX i ING
ASPECT : ONGOING
1HO : F2*S-BRRBARA FR#1121

TIME : AT
TIME-OF-UTTERENCE

ACTIONS-INVOLVED-IN : FS-INSERT FR#11I 8

HOD-ORDER : F8-INSERT FR#1188
ACTIONS-INVOLVED-IN
RSVP

UHAT : F3-SENTENCE FR#1189
NOD-ORDER : F3-SENTENCE FR#1189

UHAT
LEFT
F2*5-BARBARA FR#1121
1HO
LEFT

MOD-ORDER : F8-INSERT FR#1188
ACTIONS-INVOLVED-IN
RSVP

(MARTIN DELETED LONG SENTENCE FROM PARAGRAPH BARBARA INSERTED)
Example 14: 8u488848asa8 a8a& 88888888& g8888888a&a&8aa

Fl-DELETE FR11264
FRON-MHERE : F4-PARAGRAPH FR#1233

RCTIONS-INVOLVED-IN a FI-DELETE FR#1264
FS-INSERT FR#1234

UHAT a F4-PARAGRAPH FR#1233
UHO a F2*5-BARBARA FR#1236

ACTIONS-INVOLVED-IN r F8-INSERT FR11234
TIME : BEFORE

TIME-OF-UTTERENCE
NOD-ORDER s F8-INSERT FR#1234

ACTIONS-INVOLVED-IN
RSVP

ASPECT : COMPLETED
SUFFIX : ED
VOICE : ACTIVE
TIME t AT

UHO
SUBORDINATE : UHAT
NOD-ORDER s F4-PARAGRAPH FR#1233

UHAT
LEFT
F2*5-BARBRRA FR#1236
MHO
LEFT

MOD-ORDER a Fl-DELETE FR#1264
ACTIONS-INVOLVED-IN
RSVP
FB-INSERT FR#12346
ACTIONS-INVOLVED-IN
RSVP

TIME s RT
UHO

VOICE A RCTIVE
SUFFIX a ED
ASPECT s COMPLETED
UHO : F2-MARTIN FR#1298

TIME : BEFORE
TINE-OF-UTTERENCE

ACTIONS-INVOLVED-IN : FI-OELETE FR#1264

NOD-ORDER s Fl-DELETE FR#1264
ACTIONS-INVOLVED-IN
RSVP

UHRT a F3-SENTENCE FR#1265
SIZE : F7-SIZE FR#1269

WHAT s F3-SENTENCE FR#1265
PARTICULAR-VALUE s LONG
NOD-ORDER : F3-SENTENCE FR#1265

UHAT
RSVP

ACTIONS-INVOLVED-IN : FI-DELETE FR#1264
MOO-ORDER i Fl-DELETE FR11264

ACTIONS-INVOLVED-IN
RSVP
F7-SIZE FR#1269
SIZE
LEFT

NOD-ORDER : F4-PARAGRAPH FR#1233
FROM-MHERE
RIGHT
F3-SENTENCE FR#1265
UHAT
RIGHT
F2-MARTIN FR#1298
MHO
LEFT

20

Example 15: (SENTENCE URS INSERTED ON PAGE PARAGRAPH URS nOVED TO)

F8-INSERT FRD2459
UHERE £ ON FB-PAGE FR#2427

RCTIONS-INVOLVED-IN s FS-INSERT FRI2459
FS-MOVE FR#2428

TO-MHERE : FG-PAGE FR#2427
UHAT t F4-PARAGRAPH FR#2n38

ACTIONS-INVOLVED-IN : FS-MOVE FR#2428

TIME a BEFORE
TIME-OF-UTTERENCE

MOD-ORDER : FS-MOVE FR#2428
ACTIONS-INVOLVED-IN
RSVP

VOICE i PASSIVE
SUFFIX s ED
ASPECT : COMPLETE
TIME : RT

MHAT
SUBORDINATE : TO-WHERE
NOD-ORDER : F6-PARGE FRI2427

TO-MHERE
LEFT
FI-PARAGRAPH FR#2438
UHAT
LEFT

HOD-ORDER a FS-INSERT FR#2459
ACTIONS-INVOLVEO-IN
RSVP
FS-MOVE FR#2428
ACTIONS-INVOLVED-IN
RSVP

NHRT a F3-SENTENCE FR#2461
ACTIONS-INVOLVED-IN : F8-INSERT FRI2459

TIME t BEFORE
TIME-OF-UTTERENCE

HOD-ORDER i F8-INSERT FRI245I
ACTIONS-INVOLVED-IN
RSVP

VOICE : PASSIVE
SUFFIk : ED
ASPECT : COMPLETE
TINE i AT

WHAT
HOD-ORDER : ON F6-PAGE FR#2427

MHERE
RIGHT
F3-SENTENCE FR12461
MHAT
LEFT

Example 16:
(PARAGRAPH BEING DELETED HAS SHORT SENTENCE)

F4-PARAGRAPH FR#4336
HAS-AS-PARTs : F3-SENTENCE FR14318

IS-PART*-OF : F4-PARAGRAPH FRI4334

SIZE t F7-SIZE FR#4319
PARTICULAR-VALUE : SHORT
HRAT : F3-SENTENCE FR#4318

ODO-ORDER t F3-SENTENCE FRi4318
WHAT
RSVP

MOD-ORDER : F4-PARAGRAPH FR#4334
IS-PART*-OF
RSVP
F7-SIZE FR#4319
SIZE
LEFT

RCTIONS-INVOLVED-IN , F1-DELETE FR#4336
WHAT t F4-PARAGRAPH FR#~334
TIME : ART

WHAT
VOICE : PASSIVE
SUFFIX : ED
ASPECT : ONGOING
SUBORDINATE : UHAT
NOD-ORDER : F4-PRRRGRAPH FR#4334

UHAT
LEFT

TIME : AT
TINE-OF-UTTERENCE

HOD-ORDER 3 F3-SENTENCE FR14318
HAS-AS-PARTs
F9-HRVE
FI-DELETE FR#1336
ACTIONS-INVOLVED-IN
RSVP

(PARAGRAPH BARBARA INSERTED SENTENCE IN)

Example 17: a:aa *aaaaaaaaaaaaaaa aa aaaa aaa
F4-PARAGRAPH FRI328
ACTIONS-INVOLVED-IN : FB-INSERT FR#296

MHERE i IN F4-PARAGRAPH FRI320
WHO s F2*5-BARBRRA FR#387

ACTIONS-INVOLVED-IN : F8-INSERT FRD296

TIME : BEFORE
TIME-OF-UTTERENCE

NOO-ORDER i F8-INSERT FR#296
ACTIONS-INVOLVED-IN
RSVP

ASPECT : CONPLETED
SUFFIX : ED
VOICE : ACTIVE
TIME : AT

WHO
SUBORDINATE : WHERE
MHAT : F3-SENTENCE FR#297

ACTIONS-INVOLVED-IN : F8-INSERT FR#296

NOD-ORDER : F8-INSERT FRI296
RCTIONS-INVOLVEO-IN
RSVP

NOD-ORDER : F3-SENTENCE FR#297
UHAT
RIGHT
IN FI-PARAGRAPH FR9328
CHANGEO-TO
MHERE
F4-PARAGRAPH FR1328
MHAT
LEFT
F2*5-BARBARR FR#387
WHO
LEFT

NOD-ORDER a F8-INSERT FR#296
ACTIONS-INVOLVED-IN
RSVP

23

(PNA,'FGRNPH I;nRTIN INSERTED ON PAGE)

&&&A AAKEMAARSSES

Fernanonna Fasss

CONTAINED-IN : F

ACTIONS-INVOLVED-

601Example 18. Notice the
6-PAGE FR -PRRPH R ambiguity. The paragraph
CONTAINS i F4-PARACRAPH FR#552

MOD-ORDER F4-,A~RAGRAPH FR#SS2 could be the one that
CONTAINS Martin inserted which is
RSVP

-IN: FB-INSERT FR#553 on the page, or it could
WHAT : F4-PARAGRAPH FR#552.
WHO F2-MARTIN FR#555 be the one Martin inserted

ACTIONS-INVOLVED-IN : F8-INSERT FR#S53
on the page.

TIME : BEFORE
TIME-OF-UTTERENCE

MOD-ORDER : F8-INSERT FR#553
ACTIONS-INVOLVED-IN
RSVP

ASPECT : COMPLETED
SUFFIX : ED
VOICE : ACTIVE
TIME : AT

WHO
SUBORDINATE : WHAT
MOD-ORDER : F4-PARAGRAPH FR•b52

WHAT
LEFT
F2-MARTIN FR#555
WHO
LEFT

MOO-ORDER : F6-PAGE FR#549
CONTAINED-IN
RIGHT
F8-INSERT FR#553
ACTIONS-INVOLVED-IN
RSVP

F4-PARRGRAPH FR#613
RCTIONS-INVOLVED-IN : F8-INSERT FR#681

WHERE : ON F6-PAGE FR#597
ACTIONS-INVOLVED-IN : F8-INSERT FR#601

MOD-OROER : F8-INSERT FR#IG1
ACTIONS-INVOLVED-IN
RSVP

WHAT : F4-PARAGRAPH FR#613
WHO a F2-MRRTIN FR#603

ACTIONS-INVOLVED-IN : F8-INSERT FR#601

TIME : BEFORE
TIME-OF-UTTERENCE

MOD-ORDER : F8-INSERT FR#601
ACTIONS-INVOLVED-IN
RSVP

ASPECT : COMPLETED
SUFFIX : ED
VOICE : ACTIVE
TIME : AT

NFJ
SUBORDINATE : WHAT
MOD-ORDER : ON F6-PAGE FR#597

WHERE
RIGHT
F4-PARAGRAPH FR#613
WHAT
LEFT
F2-MARTIN FR#603
WHO

LEFT
OO-ORDER : FA-ItJSERT FR#601

ACTIONS-INVOLVEO-IN
RSVP

When filling certain of its slots, a frame will make sure

that the proposed modifier has certain properties as I have been

describing and then, before binding it to the appropriate slot,

will look in that slot and make sure that it is empty.

If not it does two things. It looks for a conjunction immediately

before or after (depending on whether the proposed modifier comes

from the RIGHT or the LEFT) the proposed modifier in the CONTEXT

and it looks at its MOD-ORDER slot to see if the most recent

modification was the modifier already in the slot in question.

If both conditions hold, the conjunction is removed from the

CONTEXT and a new structure which indicates the conjunction

is put in the slot. (See Example 19). Simple conditions like

these can also be used to parse more complex conjunctions involving

deletions, etc., however, I have not implemented this.

The only serious problem I have encountered in my approach

is that my programs run terribly slowly. Their time basically

increases exponentially with the number of frames in the original

CONTEXT. For a medium length sentence, e.g. Example 6, the

running-time is about thirty.seconds, not counting time spent

garbage collecting, with most of my programs compiled. This is

a result of some inefficient programming on my part and the

non-determinism of the control structure. If other procedures

intervened at the branch points within the non-deterministic

Example 19:
(MARTIN OR BARBARA MOVED PARAGRAPH)

FS-MOVE FR#3267
MHAT z F4-PARAGRRPH FR#3264

ACTIONS-INVOLVED-IN : F5-HOVE FR#3267

NOD-ORDER : F5-MOVE FR13267
ACTIONS-INVOLVEO-IN
RSVP

UHO : OR
F2-MARTIN FR#3278

ACTIONS-INVOLVEO-IN : FS-MOVE FR#3267

MOO-ORDER i FS-MOVE FR53267
ACTIONS-INVOLVEO-IN
RSVP

F2S5-BARBARA FR#3279
ACTIONS-INVOLVEO-IN : FS-MOVE FR#3267

TIME t BEFORE
TIME-OF-UTTERENCE

MOD-ORDER : FS-nOVE FR#3267
ACTIONS-INVOLVED-IN
RSVP

ASPECT : COMPLETED
SUFFIX : ED
VOICE : ACTIVE
TINE : AT

WHO
UHO

MOD-ORDER : F4-PARAGRAPH FR#3264
IHAT
RIGHT
OR

F2-NARTIN FR13278
F25-BARBARR FR#3279

UHO
LEFT

structure and made decisions based on expectations, preferences,

and perhaps a global concept of grammar I suspect the slowness

would be relieved.

The first logical continuation at this point is a larger

vocabulary of concepts, some expansion of linguistic presentations

of concepts including more complicated conjoined structures,

negation, etc. Introduction of means for specifying identifica-

tions between concepts, i.e. determiners, numbers, and ordinals, and

implementation of my extended time-reference theory would also

be easy; all these things should be straightforward constructions

within the structure I have already built.

A more important continuations is to build a mechanism for

integrating new information into a body of information already

received in d scourse. Aside from deductions, etc., that are

specific to the reader's purposes, a most important function of

such a mechanism is to make identifications between actions or

entities in the information being integrated and those already

processed. Such a mechanism will also be very useful for deter-

mining pronoun references,.opaque references, and the like.

Beyond that, generation of English is a good goal.

BIBLIOGRAPHY

Pratt, Vaughan R., Top Down Operator Precedence, published in:

ACM Symposium on Principles of Programming Languages,

October, 1973.

Minsky, Marvin, Frames: A Framework for Representing Knowledge

forthcoming.

