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1. Focus on the data base.

LISP is really a programming language for a certain type of data bases, and it is less

interesting as a 'list processing' or 'list structure' language. The item in LISP that makes it

different from the other major programming languages is not the cons cell, but the atom.

Atoms are the carriers of property-lists, which is the primary representation in LISP's data

base. Atoms are also essential for the facility to read and write data structures, which is what

makes LISP a good interactive language. Similarly, the most significant built-in functionr in

LISP are not car, cdr, and cons, but get, put, and other functions for accessing property-lists in

the LISP data base. The language also contains some functions of secondary significance

which can be used to construct and decompose properties, for example cons, maknam, cdr, and

explode.

Such an alternative view of our favourite programming language is becoming increasingly

useful with the present trend toward larger and more complex data bases in Artificial

Intelligence systems. It is also supported by the fact that, with the on-going blurring of the

program/data distinction, programs become integrated parts of the data base in a less trivial

sense than used to be the case. A number of new aspects of the programming language and

its use arise when the focus of interest is changed to the data base, for example:

--- Current programming practice for using LISP's representational primitives. The structure

of atoms and lists is quite different from the record structure of other languages 'with data

structures', and encourages a different methodology. This methodology already exists, but it
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should be talked and written about, both for tutorial purposes, and as a basis for developing it

further.

--- Block structure in the data base. It is common practice to organize LISP programs into

'blocks', or groups of closely related functions. Such block structure encourages modularity and

facilitates maintenance. Both purposes would be worthwhile for the data base as well.

However, a number of new and interesting problems arise when one attempts to organize the

data base into blocks, for example because data items can be related in multiple ways, so that

clustering criteria are not trivial to decide.

--- Self-description in the data base, whereby the data base contains a description of itself, and

(in more developed systems) of its relation to the intended application. Such self-description

could be made useful both for the user (as a documentation aid), and for programs which use

it as parameters, to determine how operations on the data base are to be performed.

--- Utility programs for LISP data bases. By utility programs, I mean general programs which

are primarily intended to be called directly by the user, rather than as subroutines from

another program, and which do some service operation on a data base. Utility programs for

programs are in common use, for example compilers, editors, file grinders, and (to some extent)

indexers. Many of these operations generalize to data bases as well. Others can be added, for

example consistency checks.

Since programs is a special case of data in LISP, one can often extend the use of programs

that were written for operating on programs, to be used for other types of data as well. But it
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must be better to design such programs right from the start for data bases in general.

With data base techniques in LISP as my present major interest, I have been toying for a

while with the idea of a support system for data base management in LISP. Such a system

would be a collection of programs (and associated data) which support the user in his work

with the data base. The term 'data base' is here taken to mean collections of knowledge that

are used by one or more programs. It does not refer to temporary data such as hypotheses or

sets of subgoals, which are created during a computation and later garbage collected, or

discarded at the end of the computer run. Correspondingly, the 'user' whom the system

supports, develops not only programs, but also data bases in the given sense. The support

system could develop into a 'data base hacker's assistant'.

An experimental system, called DABA, has been instrumental in developing and testing some

of the ideas, and hopefully will also serve as an illustration of them. DABA is a MACLISP

program. This working paper is an attempt to summarize my ideas at present. For

concreteness, it uses some of the notation of the DABA system, but it is not a systematic

description of DABA.

The major service that a support system can offer its user is utility operations. Sometimes the

user will be writing down parts of a data base directly, much like he writes down a program.

He then needs the same kinds of utilities as for program development, which enable him to

administrate and update his data easily. At other times, the user will obtain parts of his data

base from computation. They may be the accumulated experience of a performing program,

or the result of running a utility program on previously existing data (for example a program
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for shift of representation). In either case, the user needs a program which can administrate

the new data, shovel them around, and integrate them properly in his data base.

Unfortunately, the user can not count on obtaining such a service without effort from his part:

he has to specify his representation and data base structure to the utiliity program. (Even if

the data base contains information about itself, he at least has to specify what conventions he

used for the self-description). Therefore, a support system for utilities must necessarily contain

a system for description of data bases. Ideally, one would like to have general-purpose

descriptions, which can be used by all utilities, and one would also like to store the description

in the data base (which was called self-description above), so that the utilities can be applied

recursively to the descriptions.

A user supporting system should of course allow for the variety of different representations

that are found in current LISP programming. Some LISP users'work directly with the data

base primitives provided by the language, but many develop their own higher-level

representations, or use available systems such as PCDB, or the data base handlers in Conniver

or QA4. A support system should therefore enable one to make a definition of for example

Conniver's data bae primitives (such as contexts) in terms of the underlying LISP primitives,

so that the user then can talk in Conniver terms when he describes his Conniver data base,

and when he calls for a utility operation on it.

A system for describing the representation in a part of a data base, could also be used to

describe a program with respect to what representation it assumes in its data. A program

which adjusts data to fit given programs, or vice versa, is then a desirable utility.
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The requirements of utility programs actually call for two different kinds of self-description.

There is self-description of representation, where the syntax and perhaps also semantics of the

chosen representation are specified. But many utilities can be characterized as scanners, in the

sense that they scan over a specified segment of a data base, and perform some operation

throughout it. Examples of scanner utilities are for saving data bases on files, for

presentation (as a generalization of prettyprinting), for checking, and for shifts of

representation. Scanner utilities then need a description of extent of parts of the data base. It

is not yet clear to me how one should properly handle the relationship between description of

representation and description of extent, but a tentative model is described in the present

paper.

One part of the description of a representation for a data base is the set of procedures which

access (in the sense of both 'get', 'put', 'modify', and 'delete') data bases that use the

representation. (Too often the access procedures are the only description). The DABA system

assumes that such access procedures are part of the self-description. This means that an

application program can access the data base through DABA, which knows where in the self-

description the access function is located. For efficiency of computation, one will often want to

open-compile such calls and eliminate the detour through DABA, but the idea of first storing

the access function in the description has advantages, for example that it becomes simpler to

generate and retain access procedures from other parts of the description.

Generation and default definition of access functions are achived in the prototype DABA

system by a recursive access mechanism: in order to use the data base, an access function is

retrieved and used, and at least in principle the access function is retrieved in the same way,
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using its access function, and so on. Such recursive access also provides a simple and elegant

basis for handling other features in the system, for instance description of data blocks. It has

some obvious efficiency problems, which I think however can be resolved. The next section

describes the access mechanism in more detail.

It is attractive to let the descriptions of the data base be in the data base itself, so that the

support system can be used recursively. This necessitates a choice of data representation for

phrasing the description in, but should not and need not imply a choice or a restriction of

what data representations can be described. I have preferred to use an object/property-type

structure for the descriptions, rather than for example a relational structure, since the former is

the closest to the property-list data base primitives in LISP system, and since the auxiliary

systems for alternative and higher-order representations are ultimately defined from such

primitives. The object/property representation is augmented with the well-known method of

nested property-lists. With this representation, for each pair of carrier and indtcator, the data

base may contain a property, which may be an arbitrary entity, but in particular may be a set

of assignments of sub-properties to sub-indicators.

A blocking concept as discussed above has also been useful for structuring the descriptions.

The data base is viewed as a collection of 'items' (which may be property assignments,

relations, some variety of frames, or something else that is an entity), and such items are

grouped into blocks. Some of the possible connotations of that term are however not intended:

no parenthesis-like nesting of blocks and no scope concept for identifiers are being used. The

term 'data set' would have been more appropriate if it had not already been taken for another

purpose. The primary intended analogy is with the practice to group sets of functions in large
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LISP programs into 'files'.

Blocks have some resemblance to contexts in Conniver and QA4, except that contexts are

mostly intended for 'scratchpad' data. Like for contexts, the same carrierlindicator pair may

have different properties in different blocks.

Blocks proved useful for structuring the data base descriptions, both the descriptions that the

DABA system expects the user to provide, and the higher-level descriptons in the system itself.

I believe that data base block structure can also be very useful in many applications. One

particular usage is for conserving storage in LISP systems which are plagued by space

problems in the heap: blocking enables one to keep little-used parts of the data base as text

files, and only bring them in when needed.

A question of terminology has to be resolved at this point. The words structure and

representation are easily overused when talking about data bases and data structures. We shall

use the term 'representation' for the constructs used in expressing information, for example

particular structures of atoms and lists. Property-list representations and relational

representations are other examples. The word 'structure' will as far as possible be reserved for

block structure, and for relationships between blocks or other groups of data in the data base,

for example the relationship between a block of data and the block from which it was

generated.

Finally, there is a third concept, for which one might be tempted to use the word

'representation', but where another term is chosen to avoid ambiguity. Different blocks in a
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system may use different data representations, in the sense just specified. But one block may

also appear in several forms which we call tncarnattons. For example, a block using the

object/property representation may have one incarnation as a text file of the form

(DEFPROP Cl V11 11)
(DEFPROP CI V12 12)

(DEFPROP Cm Vmn In)

A second incarnation of the same block is as a list of sub-lists of length three, in LISP

memory, and another obvious incarnation is to store the block in LISP memory on the

property-lists of the carriers Ci. The relations between various incarnations of a block, and

their relations to the programs which perform the conversion, are an aspect of the data base

structure, and as such is a topic of the self-description in the data base.
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2. Access functions.

Some DABA notation is necessary for describing its accessing mechanism. Access in a data

block with an object/property representation requires a basic function of three arguments,

dgetp[c,i,n] which gets the property of the carrier c under the indicator i in the block whose

name is n. (We distinguish between a block and a blockname. The block is for example a set

of trituples which represents property-list information. The blockname is an atom which

denotes the block). In the function name dgetp, d stands for derived (for reasons that will be

clear), and p stands for property.

For some simple purposes, it is sufficient to let each data block maintain its own set of

properties, but very often one wants the properties to be implicitly defined. The systematic

way of doing that is to associate an access function with each indicator. Since different blocks

may use different access functions, the access function shall also be in a data block, which is

then the meta-block of the block in which access is made. The major case in the definition of

dgetp is therefore:

dgetp[c,i,n] = apply[ dgetp[i,ACCESSFN,getp[n,META]], list[c,l,n]]
where getp is the ordinary LISP function for getting properties from the property-lists of

atoms.

This definition of dgetp begs two questions. One is where the recursion ends, and the other is

how the access function is to be written. We need in fact one function xgetp[c,i,n] which looks

up the property of c under i in the data block that is immediately associated with n. Thus one

could have
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dgetp[i,ACCESSFN, ... ] = XGETP

in some contexts, meaning that there are no default options for the data block. The function

xgetp is then a simple hack which enables one carrier/indicator pair to have different

properties in different data blocks as indicated by the third argument.

It follows that each block name is really associated with two data blocks: one block of explicit

information associated with the block name, and one amended, derived block. The functions

xgetp and dgetp make access in these respective blocks.

For example, suppose we have two data blocks named B and B', where the block of B is

explicitly specified, and the block of B' is a modification of B. The rule for getting something

in B' is first to look if it is explicitly in B', otherwise get the property from B. In other words,

the block B' which is a modification of B is the derived data block of B', and the explicit

block of B' is the difference set between B' and B.

Concretely, if we have

getp[B,M ETA] M

getp[B',META]- M'

getp[B',MODIFOF] = B

we define access functions as follows for each indicator in B and B':

dgetp[i,ACCESSFN,M'] = (LAMBDA (C I NXOR (XGETP C I N)

(DGETP C I (GETP N 'MODIFOF))))
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dgetp(i,ACCESSFN,M)] e.g. XGETP

The other question is where the recursion ends. The obvious answer is to let it terminate at a

fixpoint, so that the exact definition of dgetp is

dgetp[c,i,n] = if (n = OMEGA) then xgetp[c,i,n] else

apply[ dgetp[i,ACCESSFN,getp[n,M ETAl,lIist[c,i,n]]

A simpler solution might have been to look up the ACCESSFN property in the explicit rather

than the derived data block of getp[n,META]. However, using the derived block has the

advantage that defaults may be defined for access functions. In the above example, it would

be a nuisance to have to write out access functions for all indicators in B'. It is however

sufficient that each i has the appropriate ACCESSFN property in the derived data block of

M', which can be arranged by defining

getp[M',META] = MODACC

where MODACC contains the access information for data blocks which are updates of other

data blocks, phrased as follows:

dgetp[ACCESSFN,ACCESSFN,MODACC] =

(LAMBDA (C I N)(FUNCTION

(LAMBDA (C I N)(OR (XGETP C I N)

(DGETP C I (GETP N 'MODIFOF)) ))))

In order to be complete, the system should of course also include
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getp(MODACC,META] - OMEGA

dgetp[ACCESSFN,ACCESSFN,OMEGA) - XGETP

The last property establishes that the accessfn of accessfn in MODACC can be stored

explicitly, which otherwise would not be obvious.

It is the intention that access functions shall be part of the description of all data blocks, both

'system' blocks which themselves are descriptions, and blocks in the application. Access

functions have three arguments for carrier, indicator, and blockname (and in the actual DABA

program also a fourth argument, which we ignore here). This argument structure implies a

bias toward an object/property representation of information, but it does not exclude other

representations. This is important if the system shall ultimately be able to describe and

support a variety of user-defined representation schemes. For alternative representations, one

will often choose to let the carrier and indicator arguments of dgetp be non-atoms. This is

acceptable since these arguments are merely passed on to an access function, which can do

what it wants with its arguments.

For example, a sub-system for relational data bases could assume the first argument of dgetp

to be the list of arguments for the relation, and the second argument to be the relation name.

A block analogous to MODACC in the example above, but more complex, would contain

appropriate access functions which accept such arguments. As an extreme example, it is trivial

to define a block APPLY so that

dgetp[l,f,APPLY] = apply[f,I]
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The access function scheme, if used literally, implies a considerable overhead in access from a

data block, which increases with the block's distance from OMEGA. In a practical system, one

could speed up the scheme in several ways, for example modify the definition of dgetp so that

it recognizes a flag on a block name for 'explicitly stored', and does a lookup in the explicit

data block without further recursion if that flag is set. The blockname OMEGA would

immediately obtain such a flag. With that convention, it is worthwhile to compute access

functions once and for all, and save them for later use (memoization).

The memoization of access functions would be helpful, but it is not quite trivial. Sometimes it

must be combined with optimization of the memoized function in order to be effective. For

example, if an access function for one data block specifies that one should retrieve and use the

access function for the same indicator in another data block, then it is not sufficient to save it

-- one also wants to look up the substitute access function at memoization time.

Another complication arises because the computation of an access function may have involved

access to some properties which are later changed. Memoization should therefore be combined

with a forward deduction scheme, so that whenever a 'sensitive' property is updated, other

properties which depend on it are also updated. This requires data blocks for keeping track

of the dependency relations, and should therefore be considered as a sub-system, to be

implemented once the core of the system is going.
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3. Extent of blocks.

Several of the common utility operations on data blocks have to scan the contents of the block,

for example presentation, reorganization, saving on text files, etc. The system therefore has to

know the extent of each block. This is simple if blocks are stored in separate places, which

however is not always the case. When dgetp[c,i,n] is defined for only one n, we may want to

store it globally on ordinary property-lists for quicker access. Even if it is defined for several

n, we may consider one of the blocks as 'primary' and store its contents on global property-lists.

Finally, if we want to perform a block-scanning utility operation on a part of a block, or on

the union of several blocks, we should be able to make a description of the extent of a new

block in terms of old ones, without actually copying the contents to a new location.

For such reasons, it is desirable to have a catalogue for each block, i.e. a list of carriers in the

block, and information about what properties the carriers may .have. The catalogue may be

explicit, but we also want the option of computing it as needed. This is achieved by arranging

that the catalogue is retrieved using the function dgetp, and thereby by access functions which

can be appropriately defined to fit each purpose.

The catalogues in DABA assume that carriers are sub-divided into sorts, each sort being

represented as an atom (in the simplest case). The extent of the block is then specified in two

parts. The NODES property of a blockname is a free property-list of the form

getp[n,NODES] = [sl (cll c12 ... ) s2 (c21 c22 ...} ...]

where each sk is a sort and the corresponding ckj are property carriers in the sort sk.
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The following notation is used here and elsewhere in the memo: angle brackets <...> are used

for tuples; curly brackets {...} for sets, and square brackets [...] are used for free property-lists.

In principle, a property-list [il vi i2 v2 ...] is considered as a set of assignments of vk to ik, so

the square bracket expression is really an abbreviation for

{<il vl>, <i2 v2>, ...)

When running LISP, all three kinds of brackets degenerate of course into ordinary LISP

parentheses (...). We also use round parentheses in writing out function definitions in LISP.

The other part of the extent specification for a block is located in its META block, which

contains CARRPROPS properties for each sort. This property specifies the indicators under

which objects in that sort may have properties. Thus we could have

getp[n,M ETA] = m

dgetp[sk,CARRPROPS,m] = {ikl, ik2, ... }

where the latter property is the set of all iki such that

dgetp[ckj,ikl,n]

is defined for at least some ckj in the sort sk.

So far, we have located access functions for indicators, and carrprops properties for sorts, in

the meta block. The meta block needs of course a catalogue as well, which may contain two

sorts, called INDIC and SORT, with the obvious intended meaning.

A very simple example may be useful at this point. The data block USCITIES shall consist Of

some simple facts about cities in the United States, and may contain:

dgetp[BOSTON,INSTATE,USCITIES) = MASS
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dgetp[BOSTON,SUBURBS,USCITIES] - (LEXINGTON REVERE ...)

dgetp[NYC,INSTATE,USCITIES] - NY

dgetp[MASS,HASCITIES,USCITIES] = (BOSTON LEXINGTON ...)

dgetp[M ASS,HASCAPITAL,USCITIES] = BOSTON

In order to write out the catalogue, we have to make up our mind about what are the

appropriate sorts. In this case the decision is simple: we choose CITY and STATE as sort

names, and can write

ngetp(USCITIES,NODES] -

[CITY (BOSTON NYC ...) STATE (MASS NY ...)]

The function ngetp gets properties of datablock names, and will soon be defined. Notice that

the NODES property needs only include the occurring property-carriers. Thus if

LEXINGTON and REVERE do not have any properties in the block USCITIES, there is no

reason to include them in the NODES property.

We choose CITIES as the name of the description block for USCITIES, and should therefore

have:

getp[USCITIES,META] = CITIES

where the block CITIES contains the following information for the sorts:

dgetp[CITY,CARRPROPS,CITIES) - (INSTATE SUBURBS)

dgetp[STATE,CARRPROPS,CITIES] = (HASCITIES CAPITAL)

and the following information for the indicators:
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dgetp[INSTATE,ACCESSFN,CITIES) = XGETP

dgetp[SUBURBS,ACCESSFN,CITIES] = XGETP

dgetp[HASCITIES,ACCESSFN,CITIES] = XGETP

dgetp[CAPITAL,ACCESSFN,CITIES] = XGETP

If we have decided

getp[CITIES,META] = OMEGA

then the last four properties must be written out explicitly, but

we may also choose to refer to a sub-system which imposes defaults

for the access fuctions.

The meta block CITIES also needs a catalogue:

ngetp[CITIES,NODES] - [SORT (CITY STATE)

INDIC (INSTATE SUBURBS HASCITIES CAPITAL)]

The same analysis can be made on the next meta-level, resulting in

getp(CITIES,META] = OMEGA

dgetp[SORT,CARRPROPS,OM EGA] = {CARRPROPS)

dgetp[INDIC,CARRPROPS,OMEGA) = {ACCESSFN)

dgetp[CAR R PROPS,ACCESSFN,OM EGA] = XGETP

dgetp[ACCESSFN,ACCESSFN,OMEGA] = XGETP

We then need

ngetp(OMEGA,NODES] = [SORT {(SORT INDIC) INDIC (CARRPROPS ACCESSFN)]

getp[OMEGA,META] = OMEGA

whereby OMEGA adequately specifies its own extent.
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The goal is that all information in the system shall have a description also in the system.

However, we have not yet introduced any description for the properties of blocknames, such as

NODES and META properties which are always needed, and properties like MODIFOF

which was discussed in the previous section, and which are introduced by sub-systems. One

choice might be to form a master block of all information about block names known by the

system. However, we sometimes want to scan the properties of the block name together with

the properties in the block. For example, if a block is written on a text file, the file name's

properties should usually go with it.

It is therefore useful to form a tiny block of the properties of each block name. We shall refer

to this as the catalogue block of the block name and of the block it names. The catalogue block

contains not only the NODES property of the block name, but also the META property, the

MODIFOF property, etc.

If B is a block name, what is the name of the catalogue block of B? It would be a waste always

to have an atom for that purpose, and the risk of infinite regress is obvious. But the block

name is mostly needed for its properties, and we can specify the properties to a first

approximation: the NODES property shall be [BNAME (B)], if BNAME is the sort for block

names, and the META property shall be a block which knows about the properties of block

names. It is convenient to put that knowledge also into OMEGA. With that, the name of the

catalogue block of B can be constructed as a list

<*FPL.. META OMEGA NODES [BNAME {B)}]

This is a list which pretends to be an atom, in that its cdr is a property list. (,:,FPL* stands for

'free property list'). Property-list access functions such as getp and ngetp must of course be



PAGE 20

defined to play this game. Also, the list is a function only of B, and can be set up as such.

We define a function catname[n] which does that for a block name n.

To complete the description, we must add to OMEGA the properties

dgetplBNAME,CARRPROPS,OMEGA] = {META NODES)

dgetp[META,ACCESSFN,OMEGA)] XGETP (or something more suitable)

dgetp[NODES,ACCESSFN,OMEGA) = XGETP

and make the appropriate modification of ngetp[OMEGA,NODES].

The function ngetp used for getting the NODES property can then be defined as

ngetp[c,i) = dgetp[c,i,catname[c])

This solution works for block names with standard properties. However, we have already seen

the need for adding extra properties to block names, and it is also clear that we will want to

use non-standard access functions for NODES (namely if the NODES property shall be

computed from other information about the block). OMEGA should therefore be the default

value rather than the fixed value for the META property in the name of the catalogue block.

How are non-standard META properties then specified? One possibility would be to make it

a property of the name of the underlying block (such as B above). But then if that property

is to be retrieved with ngetp (which enables us to define an access function for it, assign

defaults, etc.), we get into an infinte regress. Suppose the indicator is called CM, and we

compute

ngetp[n,CM)
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By the definition of ngetp, we need to compute

catname(n]

which recursively needs ngetp[n,CM] in order to set up the META property in its value.

The problem is solved by keeping that knowledge in the META of n, so that the definition of

catname becomes

catname(c] - list[ ,FPL,, NODES, list[BNAME, list[c]],

M ETA, ngetp[getp[c,M ETA],CM ETA]]

The META property must always be retrieved using getp, rather than ngetp, since the use of

ngetp again would cause an infinite regress. This also means that the META property must

always be explicit. All other system properties can however be retrieved using dgetp or its

( derivative ngetp, and therefore the retrieval method can be manipulated by the system.

While working with the DABA system, it is in fact often useful to specify non-standard access

functions for the property CMETA. Consider again the example of the sub-system

MODACC which enables one data block B' to be a modification of another block B, where

the relationship is stored as

ngetp(B',MODIFOF] - B

The solution in the previous section involved defining

getp(B',META] - M'

getp[M',META] - MODACC

It also assumed that the reference from B' to B should be stored as

getp[B',MODIFOF] - B
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In view of the present section, it is of course better to represent it as

ngetp[B',MODIFOF] = B

We clearly want the description of the properties of the catalogue name B' to know, that B'

has a property under this indicator. For this purpose, catnamefB'] should have as its META

property a data block MODCAT which knows that

dgetp[BNAME,CARRPROPS,MODCAT] = {NODES META MODIFOF}

This holds for every B' that has M' as META, so we can safely set

ngetp[M',CM ETA] = MODCAT

But since this should be the case for every M' that has MODACC as META, we can define

dgetp[CM ETA,ACCESSFN,MODACC) =

(LAMBDA (C I N) 'MODCAT)

or (if we want to enable the user to override this choice):

(LAMBDA (C I N) (OR (XGETP C I N)'MODCAT))

The data block OMEGA must of course be modified to include information about CMETA

with respect to CARRPROPS and ACCESSFN.

The reason for introducing the NODES property was for the use of scanning utility programs.

It follows circularly that the property should include those carriers which the user wants his

utilities to scan over. Usually this will be the explicit data block associated with the

blockname, rather than the derived block name, , but it can be decided from case to case by

the user.
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4. Blocks with molecular names

Blocks need names, of course, and it is natural to use atoms as blocknames. However, it is also

sometimes useful to have blocknames which are combinations of atoms, or 'molecules'. For

example, for a given block B, we may wish to have also a block of comments about entities in

B, or a block which consists of optimized versions of corresponding elements in B. The need

for such blocks arises not only for blocks of procedures, but also for blocks of other data.

Molecular names for the added blocks could be for example

<COMMENTS B>

and

<OPTIMIZED B>

respectively. The molecular names have a mnemonic advantage in that they automatically

provide a systematic naming scheme, and also a technical advantage since the components of

the molecule are retrievable and may be used for deriving properties of the name. For

example, <COMMENTS B> should probably have the same catalogue as B, and this can then

be implicit in the operator COMMENTS.

The need for molecular names is of course not unique to data blocks; it arises very frequently

in data bases, and has been met by a variety of methods, such as 'relational' data base schemes

(e.g. Micro-planner), facilities for associating property-lists with tuples (OA4), 'internization' or

'normalization' procedures which generate a unique copy in the LISP heap of a cons cell or a

list, and so on.

The choice between using a molecular name and inventing a new atomic name, is sometimes
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quite arbitrary. Molecular names tend to be less useful when several alternative blocks with

the same purpose are to be named. For example, if there are two different comments blocks

for B, one will probably prefer to give them atomic names such as BCI and BC2, and

maintain property-list pointers between the atoms B, COMMENT, BCI, and BC2. On the

other hand, if B has been optimized using two different methods MI and M2, the resulting

blocks could best be named with molecular names such as <OPTIMIZED Mi B> or

<<OPTIMIZED Mi> B>. The latter naming convention is preferable if one wants to associate

properties with <OPTIMIZED Mi>.

When the choice between the two types of naming is arbitrary, one will want a representation

for molecular names which adapts as closely as possible to atomic names. In the DABA system,

molecular names which intuitively should be written <fn arg>, are internally represented as

<,FPL* META fn BASE arg>

This tuple is computed by a function with the historical name option, defined so that

option[x,fn] = list[ ,FPL*, META, fn, BASE, x)

Like the catalogue names in the preceding section, this is an entity which pretends to be an

atom, since its cdr is a property-list, and which moreover pretends to be an atomic block name

since it has a META property. The molecular name contains sufficient information, since the

system is arranged so that all properties in all data blocks are retrieved by using the access

function in the meta-block.

This representation of molecular names has the advantage that atomic and molecular names

can be handled by the same uniform access mechanism. Also, the same meta-block, for

example COMMENT, may be used for both atomic and molecular names. The blocks BCi
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and BC2 in the example above could be characterized using

getp[BCi,META) - COMMENT

getp[BCi,BASE] = B

although in this case additional references from B to the Bi are required.

The definition of the meta-blocks used in forming molecular names is often somewhat

intransparent for the novice, at least if one' sticks to the very pure access function design that

was described in section 2. Let us work out some of the details for an example. Consider the

case of fn - COMMENT, where the catalogue of option[x,COMMENT] shall be the same as

the catalogue of x. Thus

ngetp(option[x,COMM ENT],NODES] - ngetp[x,NODES]

By the conventions in section 3, this is equivalent to

dgetp(option[x,CO M M ENT,NODES,catname(option[x,COM MENT]]]

dgetp[x,NODES,catname[x]]

This can be arranged. by defining

dgetp[NODES,ACCESSFN,getplcatname(option[x,COM M ENT]], M ETA]] -

lambda[c,i,n)

comment c=option[x,COMMENT], and n-catnamedc];

ngetp(getp[c,BASE],NODES]

Thus it is easy to specify the access function, and it remains to decide where it is located. We

have, still according to section 3,

getp[catname[n],META] = ngetp[getp[n,META],CMETA]

and therefore
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getp[catnameloption[x,COM MENT]],M ETA] =

ngetp[getp(option[x,COM M ENT],M ETA],CM ETA] -

ngetp[COMMENT,CMETA]

Thus COMMENT must have a CMETA property. It is again a borderline case whether it

should be given an atomic or a molecular name, but let us assume for simplicity here that the

name is atomic and chosen as COMCM, so that

ngetp[COMMENT,CMETA] - COMCM

dgetp[NODES,ACCESSFN,COMCM] -

lambda[c,i,n] ngetp[getp[c,BASE],NODES]

This information specifies that the NODES property of option[x,COMMENT] shall be the

same as the NODES property of x. In practice, COMMENT would not need its own CMETA

block, since one would probably want several 'satellites' for data blocks, each of which adds

one or a few properties to the objects in the 'center' block. COMMENT would be one such

satellite, and all satellites could use the same CMETA block. In fact, if all satellites have a

common META (so that for example getp[COMMENT,META] = SATELLITE), then the

CMETA reference could be implicit in dgetplCMETA,ACCESSFN,SATELLITE].

The first argument of the function 'option' should always be a blockname, since it will be used

for deriving access functions and CMETA references. However, it clearly does not have to be

an atomic blockname. The second argument is only there so that the access functions can pick

it up and use it, so its structure is arbitrary as long as it accords with the access functions. For

example, if one wants to form a new data block which is the union (in some reasonable sense)
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of several other data blocks whose names are bnl, bn2,..., then the union could be completely

specified by its name

option[list[bnl, bn2, ... 1, UNION]

Data blocks formed by set-theory operations on data blocks are particularly useful in the

context of utility programs. To a first approximation, a scanning utility program could work

as follows: it accepts a block name as its argument, looks up the catalogue of the block (i.e. the

NODES property of the block name), and scans the catalogue. For each sort name in the

catalogue, it looks up its CARRPROPS property in the META-block of the given -block, to

find out which properties objects of this sort may have. It then makes a two-dimensional scan

over the objects in this sort according to the catalogue, and the indicators carried by this sort

according to the CARRPROPS property, and applies some operation to each combination of

these.

Clearly, one sometimes wants to use the utility on a collection of data which are not already a

named data block, or in other words, one wants to define the data block for the utility.

Molecular names for blocks formed by set operations are useful in such situations.

The definition of the data-block UNION involves two types of problems. First, one must

arrange so that access in the block

xuy = option[list[x,y,...], UNION]

attempts access in the blocks x,y, successively, and second, one must arrange that the name xuy

obtains the right properties, for example, the right NODES property. Let us work out this

example as well.
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The atom UNION must be the name of a data block UNION which contains the rules for

accessing unions of blocks. For example, in order to compute

dgetp[c,i,xuy]

a system using the accessing scheme described in section 2, computes

dgetp(i,ACCESSFN,UNION]

which must then come back as a function of the type

lambda[c,i,n]

comment n is xuy when this function is called;

search the list getp[n,BASE] for some member

which is a name for a data block in which c

exists and can have a property under the

indicator i;

retrieve and apply the access function for i in that

data block;

end

Since this is required for all i, it must be put in the accessfn of accessfn. Thus

getp[UNIO.N,META] must be a specialized block UNIONMETA, and

dgetp[ACCES.SFN,ACCESSFN,UNIONMETA] must be a function which always returns the

above lambda-expression.

Also, a utility operation which is to scan the catalogue of xuy will first compute
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ngetp[xuy,NODES]

which has to be handled in the same way as the previous example for the COMMENT

satellite. In the case of UNION, assume that

ngetp[UNION,CMETA] - UNIONCM

Then

getp[catname[xuy],M ETA]

will evaluate to UNIONCM, so that

dgetp[xuy,NODES,catname[xuy])

will first compute

dgetp(NODES,ACCESSFN,UNIONCM]

and apply the result with xuy as its first argument. The primary purpose of UNIONCM is

therefore to contain an ACCESSFN for NODES of the form

lambdatc,i,n]

comment c is xuy;

for each member bn of the list getp[c,BASE], compute

ngetp[bn,NODES]. Form and return the "union" (in the obvious

non-trivial sense) of those NODES properties;

end

As another example of the use of molecular names, consider the solution that was given above

to the problem of defining one data block B' as a modification of another data block B. That

solution assumes that access in the explicit data block of B' is done using the function xgetp,

which means it is an access in a data block with an object/property representation. This
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solution is not useful when one has auxiliary data base systems. Instead, one really wants the

following: if getp[B,META] = M, then getp[B',META] shall be option[M,MODIF], which is a

meta-block which prescribes that access in B' shall be made by first making access in B' using

the access function prescribed for B, and if that yields NIL, by making access in B. This is

accomplished by:

dgetp[i,ACCESSFN,option[M,MODIF]] =

lambda[c,i,n] comment n = B';

orlapply[dgetp[i,ACCESSFN,M], list[c,i,n]],

dgetp[c,i,ngetp[n,MODIFOFJ] ]

which in turn is accomplished by:

dgetp(ACCESSFN,ACCESSFN,MODIF] =

lambda[i,a,m] comment m = option[M,MODIF];

return function lambda[c,i,n]

or[apply[dgetp[i,ACCESSFN,getp(m,BASE]],list[c,i,n]],

dgetp[c,i,ngetp[n,MODIFOF]] ]

The use of m in the returned function requires that a closure or 'FUNARG expression' is

returned. -- With this content, the data block MODIF becomes a general tool for defining

modifications to data blocks that use arbitrary representations.

As a final example, consider the case of a 'programmable' utility program, that is a proram

which sometimes will look up and give control to procedures associated with its data. Let the

utility program be a data block U. (Programs are sets of functions = procedures, which are

properties of function names, and therefore programs are good examples of data blocks). U is

to operate on a data block B, whose meta is M. Suppose for concreteness that the purpose of U



PAGE 31

is to check the correctness and internal consistency of a data block B. A reasonable example of

programmability is then to associate a 'checking' procedure with each indicator that is used in

B. Let the set of such checking procedures be a data block C. The catalogue of C is clearly a

subset (in the obvious sense) of the catalogue of M. For this reasons, and also since several Bi

using the same M as meta probably need the same checking procedures, it is natural to

consider C as a satellite of M. It is therefore formed as

option[M,CH)

for some suitable CH which knows which indicator is used for storing the checking procedure.

This CH is simply an encoding of some of the conventions used by the program block U, and

it is reasonable to include CH in U (or consider it as a satellite of U, but that would make the

example too messy).

In summary then, the following data blocks are involved:

B the data block that is to be operated on

M its meta-block

U the utility program

option[M,U] a block specifying the behavior of U when operating

on blocks like B whose meta is M.

Also involved is getp[U,META], which should be a meta-block for programmable utility

programs, and would have the status of a system data-block.

The structure that develops of blocks, meta-blocks, catalogue blocks, satellites, and other blocks

with molecular names, seems at first very entangled. One has to get used to it, and one also
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has to develop a set of useful auxiliary blocks, just as one has to develop a set of auxiliary

functions in order to feel at home in a programming language. But the number of such

methods and tricks seems to be fairly limited. The block structure has been quite flexible and

useful for describing the structure and content of data bases.
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5. Where go next: up or down?

The previous sections in this paper have described my present ideas about what data base

management in LISP should be like. The ideas have been seasoned through a few iterations

of re-programming the DABA system, but neither the ideas nor the system are yet by any

means definite.

The present DABA system is partly a straight LISP program, but a large part of it consists of

system data blocks, which enables is to be self-describing. It includes a programmable block

saver DSAV, which prints data blocks or sets of data blocks on text files, a facility for

description of property syntax (whereby one can state e.g. that NODES properties shall be free

property-lists which bind sets of carriers to sort names), and a facility for maintaining a data

block of all data blocks that are in core at one time. The procedures used by DSAV are kept

as satellites, and so are the property syntax descriptions. In general, the DABA system has

provided an opportunity to play with various aspects of block structure in data blocks. A

reasonably user-friendly version of the system and a user's guide for the novice are available

to the curious. See the author for details.

One characteristic of the present system is that it is fairly slow. Single accesses are

instantaneous, of course, but the operation of saving the set of main system blocks using

DSAV may take more than 10 minutes even at low-load hours. This makes it unattractive to

use the system for maintaining itself, although it is sufficiently self-descriptive for making that

possible. The efficiency problems are partly because the system's structure has intentionally

been kept pure and simple while it is in the development stage. There are plenty of ways to
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speed it up, by compromising elegance and in other ways, when it develops to the point where

it finds usage.

The use of the system may be found in several direction, which can be characterized as

'straight ahead', 'up' and 'down'. The first possibility is that the representation of the

application is on the same level as the representation used in DABA itself, that is LISP

property-lists with minor extensions. There is a good deal to say for programming in LISP on

that level, perhaps even in fairly practical work, such as for writing pilot versions of 'real' data

base systems.

The 'up' direction has been mentioned earlier in the paper, and would serve to make utilities

available to users who design their own, higher-level representations on top of the LISP

system. The major problems to solve then are to develop specifications of higher-level

systems in terms of lower levels, which can be used efficiently by the utilities.

The 'down' direction, on the other hand, is to use LISP and utilities of LISP for maintaining

structure descriptions of large, simply structured data bases of commercial type. Such structure

descriptions are maintained by current supervisory systems for large data bases, for example

systems that implement the CODASYL proposal. But in such systems the descriptions are in a

rigid, pre-defined representation, and also hard for the user to get at. Sometimes, they are of

course unavailable by intention, but it would be nice to enable the user of a data management

system to use and extend the structure description, for example for the following purposes:

--- Documentation (like when DABA is used within the LISP context)

--- Advanced query languages, for example in natural language. Query systems relate the
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language of the user to the conventions and codes used by the system, and therefore need

access to a description of the data base.

--- Generation of application programs from specifications that can conveniently be made by

the user.

The large-data-base system would then consist of two. parts, a production part which

administrates the large volumes of data in an efficient way, and a monitor part which contains

and manipulates descriptions of the data base, and extends calls to the production part.* One

would very likely want to use different programming languages and data structures in the two

parts. LISP's unique, interactive and flexible data base facilities could make it well suited for

use in the monitor part of such systems.


