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ABSTRACT

The Fourier transform is a convenient tool for analyzing the performance of an image-forming system, but
must be treated with caution. One of its major uses is turning convolutions into products. It is also used to
transform a problem that is more naturally thought of in terms of frequency than time or space. We define
the point-spread function and modulation transfer function in a two-dimensional linear system as analogues
of the one-dimensional impulse response and its Fourier transform, the frequency response,respectively. For
many imaging devices, the point-spread function is rotationally symmeteric. Useful transforms are developed
for the special cases of a "pill box,", a gaussian blob, and an inverse scatter function.

Fourier methods are appropriate in the analysis of a defocused imaging system. We define a focus function as
a weighted sum of high frequency terms in the spectrum of the system. This function will be a maximum
when the image is in focus, and we can hill-climb on it to determine the best focus. We compare this function
against two others, the sum of squares of intensities, and the sum of squares of first differences, and show it to
be superior.

Another use of the Fourier transform is in optimal filtering, that is, of filtering to separate additive noise from
a desired signal. We discuss the theory for the two-dimensional case, which is actually easier than for a single
dimension since causality is not an issue. We show how to construct a linear, shift-invariant filter for imaging
systems given only the input power spectrum and cross-power spectrum of input versus desired output.

Finally, we present two ways to calculate the line-spread function given the point-spread function.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory's artificil intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-70-A-0362-005.



FOURIER TRANSFORMS AND IMAGE FORMING DEVICES

The Fourier transform should be treated with caution when applied to problems in image analysis. It should
not be considered as a wonderful black-box like tool that has the potential to solve many problems without
involving us in the usual painful process of actually analyzing these problems. Instead it is a convenient tool
for analyzing image forming system performnance, much as it allows us to evaluate the performance of
audio-reproduction equipment. One of the main uses of the Fourier transform is in turning convolutions into
products, the latter usually being much simpler to understand. Certain problems also can be thought about
more clearly in terms of the frequency domain, rather than the spatial domain.

It is easy to extend the concept of convolution to two dimensions:

one-d: h = f g h(r) = f ) g(r - i) dt

two-d: h = f0 g h(ý, 4) = f fAx,y) g(- x, - y) dx dy

Convolutions most often occur in the analysis of linear systems. If the impulse response of a mechanism is
g(t), we can calculate its response to an arbitrary stimulus1t) simply by convolving these two functions. The
impulse response is obtained by applying an impulse to the input of the system and observing the behavior of
its output over time. Note that causality requires that this response be one-sided, that is g(t) better be zero for
t less than zero.

in(t) teear h(t)=f(t) @ g(t)f(t) • systemnr

A similar situation obtains in the case of image forming systems. Instead of an impulse (in time) we here use a
point source as the test imput. The pattern recorded in the image plane is the output. This is called the

point-spread function and depends on two (spatial) dimensions. It differs from the impulse response in that it

depends on two spatial dimensions instead of one time dimension and in that there is no restriction on

one-sidedness.

Time-invariance in a linear system means it produces the same impulse response at any time. This must be

the case for convolution to apply to the problem of calculating the response to arbitrary inputs. In imaging

systems we often find that the point-spread function is not quite constant as we image point sources in

different areas of the image plane. The performance tends to deteriorate as we move away from the center,
that is the point-spread function spreads out. This implies that the convolution method has to be applied with

a little caution and is exact only in small regions in which the point-spread function does not vary.

It is easy also to extend the concept of Fourier transform to two dimensions:

one-d: g(w) = (2) - 1 12/  f At) e-it dt

lt) = (2,u) -1 / 2 f g(w) eiwl dw



two-d: g(u,v)= (2w) I f fAw.y) ei(Uux +vy) dxdy

Ax,y) =(2r)" f f g(u,v) ei(ux+ vy ) dudv

We will ignore questions of existence and convergence and so on. Note that fand g may be complex-valued.
Also note that if we transform functions of two variables we must also have two variables in the frequency
domain. This makes sense if we realize that the transformed function contains exactly the same amount of
information and that the original function can be reconstructed from it by applying the inverse transform.

We have already seen how linear systems can be characterized by their impulse response or point-spread
function. One may also be interested in their frequency response. The frequency response is simply the
Fourier transform of the impulse response. The frequency response then can be used equally well to
characterize the system. Similarly we may define the modulation transfer function (or MTF) as the Fourier
transform of the point-spread function and it too can be used to characterize imaging systems.

The frequency response tells us how much attenuation or amplification and how much phase shift a sine wave
of any given frequency will suffer as it passes through the system. Similarly the modulation transfer function
tells us how much amplification or attenuation a scene consisting of sinusoidally varying intensity will suffer
in the imaging process. The sinusoidal variation here is along a particular spatial direction. Looking at such a
scene we would see a series of parallel stripes at right angles to this direction, the separation between
successive maxima being inversely proportional to the frequency. Unfortunately such scenes occur more
rarely in images than sine waves happen in electrical linear systems. This makes it a bit harder to see what is
going on.

Now we come to one of the main reasons one cares to think about the apparently unnecessary complication of
Fourier transforms at all. And that is that Fourier transformation turns convolutions into products. In our
simple linear system we have that:

one-d: h = f® g and ¶(h) = 5(j) * G(g), H(w) = F(I)*G(o)

So if we feed a function with frequency spectrum Finto a linear system with frequency response G, we get a
function at the output which has frequency spectrum H = F*G. This can be inverse transformed to get h(t) if
we want. Similarly for our imaging system we have:

two-d: h = f@ g and 5(h) = F(0 * 5(g), H(u,v) = f(u,v)*G(u,v)

The only difference is that the convolutions and Fourier transforms here are two-dimensional.

With imaging devices one often finds that the point-spread function is rotationally symmetric, at least for
points close to the center of the image. It is thus helpful to know how the two-dimensional Fourier transform
simplifies for such functions. The introduction of polar coordinates r, 0 for the source domain (xy) and of
p,a for the frequency domain (u,v), leads to the following formula:

00
g(p) = Jo r) rJo(rp) dr

Ar) = g(p)p J (rp) dp

J, here is the Bessel function of order zero. Note the symmetry in the two transformations and that both f
and g now are real-valued.
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Some examples might be helpful:

A) A "pill-box" of unit volume. That is a function which is constant within a disc
centered on the origin and zero outside.

•if r<R otherwise 0 transforms into 1 J1 (Rp)
wrR2  (Rp)

J1 here is the Bessel function of order zero and Jl(x)/x plays the same role

here as sin(x)/x does for one-dimensional problems. It behaves vaguely
similar, starting positive, becoming zero for x about 3.8 and then continuing
with diminishing oscillations.

B) A gaussian blob of unit volume.

1 exp(-1 r2/a2) transforms into L exp(_ .a 2p2)171 2 2w) 2

So it transforms into itself in some sense. This is another interesting property
of this function. It is the only function, by the way, that is rotationally
symmetric and can be decomposed into the product of two functions of one
variable.

exp(-Ir2 /a 2) = exp(- 1 2/c 2) exp(- y2 /a 2)
2 ;2

C) A scatter function of unit volume.

e --- transforms intol a2w r 2T
Note that all of the above transformations are also valid if we exchange r and p. So we have a total of six
useful transforms.

APPLICATION OF THESE TECHNIQUES TO ANALYSIS OF A DEFOCUSED IMAGE

I lens

A B

t
I I



To characterize the defocused imaging system we will determine its point-spread function. Consider a point
source imaged perfectly on the image plane A. Clearly if we now move the image plane to B we will cut the
cone of light emerging from the lens and focused on A in a small disc. Inside this disc the intensity will be
uniform, outside it will be zero. Hence the point-spread function of defocused imaging system is a pill-box.

The image in plane B then is the perfect image on plane A convolved with this pill-box. Since a convolution
is not intuitively easy to deal with, we will transform it into a product. That is, the Fourier transform of the
image at B will be the Fourier transform of the image at A multiplied by the Fourier transform of the
point-spread function, our pill-box. We already know that this comes out to (1/nr) J1(Rp)/(Rp), where R is
the radius of the pill-box. R = d (a/j), where d is the separation of plane A and plane 13, a is the aperture of
the lens, while fis its focal length. So R varies directly with the amount of image plane displacement. So as
defocusing increases, the first zero of J1 (Rp) will approach closer and closer to the origin. That is, more and
more of the high frequency components will be attenuated. So the effect of defocusing is mainly one of
progressively reducing the high frequency components of the image.

One can then define a focus function, the sum of higher frequency components in the spectrum. This
function will be at a maximum when the image is in best focus, and one can hill-climb on it to determine this
position. In practice a weighted sum of high frequency terms is taken to account for the fact that beyond a
certain frequency no detail will be seen even in the ideal image due to defects of the imaging device or
because they are absent in the scene. One also wants to give increasing importance to higher frequency terms
aside from this limitation.

This focus function can be compared against two others that are used at times:

a) SUM OF SQUARES OF INTENSITIES. It can be shown that the integral of
the square of the original function is equal to the integral of the square of the
transformed function. That is, total power can be calculated by summing up in
the original domain or the transform domain. We can thus conchide that the
sum of squares of intensities will equal the sum of squares of the transformed
values. This then clearly will have a peak at best focus, but a much wider peak
than our focus function defined above, since it includes the relatively constant
low frequency terms as well.

b) SUM OF SQUARES OF FIRST DIFFERENCES. This is like summing the
square of the derivative. Once again we can instead sum the square of the
transform of the derivative and get the same result. Now the transform of the
derivative of a function is the transform of the function multiplied by the
frequency (iw in the one-D case, -p2 in the two-D case of applying the
Laplacian). So we are getting an extra emphasis on the higher frequencies.
This function is much better than a) above, but not yet as good as our focus
function, defined earlier.

If this focusing method is to be implemented on a computer controlled system, we will have to deal with
intensity functions defined only at discrete points and will thus have to extend our Fourier transform from the
continuous case so far to the discrete Fourier transform. This is fairly simple and if we are dealing with a
function defined at N equally spaced points we get:



N-1

one-d: g(uJ) = 1 f(xT) w x u  u=0,1... N-1
Y N x-O

= 1 g(u))wU x= 0,1...N-1

where w = i 2wj / N T = 2,v/N j=

Tis the separation between points in the original domain, while w is the separation of points in the transform

domain. It appears at first sight that the calculation of a transform involves N2 operations since we have to
evaluate the sum over N terms a total of N times to get the N points in the transform. Fortunately it is
possible to combine intermediate results in such a way that a total of N log2N operations are required. This is

called the fast Fourier transform (or FFT). What is more, the above can be readily extended to two
dimensions:

I N-1 N-1
two-d: g(uwuvwv) = AxTxyT) w-(u+vy) uv= 0,1 ... N-1

x-0 y=O
N-1 N-1

f(xT yT Y = I +(xu+vy) xy = 0,1...N-1
u=o v=O

Fortunately the transform decomposes into succesive application of one-dimensional transforms along each
row in turn followed by one-dimensional transforms along each column of values. This implies that the fast
Fourier transform trick can still be used for two-dimensional data.

FOCUSING

Focusing is one aspect of the operation of optical systems which has so far eluded automation. Here we have
a method which can be used to automatically focus projectors, cameras and image sensors. The same method
of course can be used for determining range. This is one of the few image processing methods that depends in
any significant way on Fourier transforms. The focusing method processes image intensities at a number of
points at a very low level without trying to do anything akin to feature extraction. It thus requires an external
agent such as the person pointing the camera or the program using the image sensor to decide which image
area is to be used for focusing.

The central idea is that the effect of defocusing can best be described in the transform domain of the image as
a reduction of the higher frequencies. To focus then one has to try and maximize the highest frequencies that
are likely to be in the image at optimal focus. These will depend on both the scene being viewed and the
limitations of the optical and image sensing system. In the absence of noise and other image sensing defects
this would be very simple. In practice one has to investigate various trade-offs between noisiness and width of
the function to be maximized if one wants to achieve near-optimal accuracy.

THE EFFECT OF DEFOCUSING

Consider first the image of a point source in an optical system, ignoring any effects of distortion and
diffraction. It will be a point if the image plane is in the correct place. If however we displace the image
plane it will cut the cone of light emerging from the lens and instead form a disc. The intensity inside this disc
will be uniform and decreasing as we increase the size of the disc by further defocusing. The size of the disc
will depend on the amount of image displacement and the aperture of the lens.



Limited power spectrum versus lens position. This is the minimum of some value and the sum of squares of
real and imnaginary parts of the Fourier transform of the series of intensities measured in the image.
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Focusing function for two different scenes. This is the normalized sum of high frequency components of the
power spectrum. Note that the maximum for the cloth scene is much tighter. This is in part because the lines
in the cloth produce more high frequency components than the edges on the cubes and because the cubes are
not all at the same distance.
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Several tries at getting the focusing function for a particular scene. The focusing function is often noisier than
this and it is non-trivial to hill-climb on it.
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Effect of spherical abberation on ideal defocused point-spread function.
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The lens formula tells us that l/f1 + 1/f2 = 1/f It is useful to introduce the magnification parameter M =
f 2/fl. We then have f = (1 + 1/M)fandf 2 = (1 + M)f If we let the distance from the object image be d

= f + f2 we have:

df 1

df2dM - f

dM

1- MAdd 1 -M 2

dfj

df2 A 2

. . u rrIt
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OPTIMAL FILTERING

Consider the problem of designing a linear system which will recover a desired signal, given an input signal
corrupted by additive noise. Obviously we need some criterion for deciding how well a given filter will work.
The one most tractable is a least squares norm. That is we try and minimize the average square of the
difference between the desired signal and the output of the filter when given the corrupted input. We also
have to specify the class of possible filters. We have already said that we will consider only linear
translation-invariant filters. We further need to define how we will specify the three signals: input, additive
noise, and desired output. It turns out that all we need are the auto- and cross-correlations of these signals.
The problem of finding the optimal filter given these constraints was first formulated and solved by Norbert
Wiener. It turns out to be quite hard because of the fact that in the systems he was interested in, the response
is one-sided. That is he had to restrict the possible solutions to those obeying causality. This condition is hard
to express in the Fourier domain where the rest of the solution can be dealt with quite simply. Wiener solved
this by a method of factorization of the spectrum.

fi (t) fo (t)

4() = fm(t) + fn()

fo() f' f(t-T) K(,) dr

The average square error is then:

E = T-i 2fr - (jP 2d,

This must be minimized by choosing K(r) properly.

The average square error can be expanded to give:

E= I nd , (t) -2fft)fo(t) + fo (1 dt

E= I i m fd(T - 2 fj) f ' #1-) K(r)d1
T--o J- [T d((o + doi(1

E=ipO) - 2 f 0 0 4fT)K(T)d + f J00 0 IpTi(T-Cr)K(U)K(T)drdT

Ti v= f f1 r-O)f(t)dt

9pitj) = f 1(-t)f•fdt

Now to minimize the average squared error E we need something more than simple calculus since we are not
varying merely a parameter, but are looking for a function. Optimization with respect to functions can be
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handled by the calculus of variations.

The calculus of variation is invoked to solve this minimization problem. At a minimum we would expect that
adding a small function to K(T) would not change the resultant error very much. To be precise we have

d norm (K(T) + e K(,7)) = 0 for e = 0 for all 6K(r)

where norm(...) is the result of applying the above average square operation. (As in the calculus case we get a
local extremum; proof of global minimum is harder.) Substituting K(r) + e6K(r) in the above expression
for Einstead of K(7), then differentiating with respect to e and then setting e equal to zero:

0 = f' [Pi7) - f P1 (7 - a) K(a)do ] SK(7) dr

Since this must be true for all 6K(7) we can conclude that (for r > 0):

Pia() = f T pit( - a) K(c) do

Now, given all of the various auto- and cross-correlations indicated how do we find K(T)? One idea might be
to note that the integral is actually just a convolution:

TPid = .ii K

We could then take Fourier transforms and convert this into a product. Its then easy to solve for the required
filter function K:

Oid = Dii * 6J(K)

Here we are dealing with power spectrums and cross-power spectrums, which can be used equally well to
describe the signals. The solution seems at hand. But alas, we have a bug! We forgot that the equation only
applies for 7 > 0. And this is where all the hair comes in, that is, spectrum factorization.

Example: We want a predictive filter, given a noise-free input. Let the prediction interval be a, then:

fd(t) = f(1t+a), fn(t) = 0

So (Pid(T) = Pii(r + a)

If we were not constrained by causality, we could simply choose K(7) to be a unit pulse at t = - a! And the
above convolutional equation would be satisfied and we would have zero error.

OPTIMAL FILTERING IN THE CASE OF IMAGING SYSTEMS

These systems are described by their point-spread functions, much as a linear system in time is described by
its impulse response. The major differences are:

1) We have two dimensions for the point-spread function, instead of the
one in the case of the impulse response.
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2) The point-spread function is a function of position, not time.

3) The response is not restricted to any part of the plane for the
point-spread function, while the impulse response of a realizable linear
device is nonzero only for t > 0.

The analysis proceeds exactly as above except that fi, fom fn, f K are all functions of two variables instead of

one. Similarly the correlations rPii and pidare also functions of two variables, as will be the power spectra bii
and Qid

But the most important difference is that we can use the Fourier transform of the indicated convolution to get
at the filter response, since we are no longer restricted to solutions that have to be zero in certain areas.

9a ) = 0 ) ii (a- y, - 8) K(y,8) dyd8

This has to be satisfied for all a,ft

4ia(u,v) = DPit(uv) * K(uv)

So finally we get: K(uv) = id(uv)/Qi uv)

So given the power spectrum of the input, and the cross-power spectrum of input versus desired output, we
can easily calculate the filter required for optimal filtering.

CALCULATING LINE-SPREAD FROM POINT-SPREAD

y

r

x

Let the point-spread function be a(r) and the line-spread function b(x).

x = rcos 8, y = rsin 0, y = x tan 0

r = x sec 6, dy = x sec20 dO

b(x) = a(r) dy = / a(x sec 0) x secO dO

b(x) = 2 2 a(x sec 0) x see '0 d• 0
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0 = cos'(x/r), dO = (x/r) / 1 - (x/r)2 dr

b(x) = 2 f a(r) x (r/x)2 (xI 2) / 1 - (xlr) 2 dr

b(x) = 2 0  a(r) r/ -r -X dr

ALTERNATIVE DERIVATION OF LINE-SPREAD FROM POINT-SPREAD FORMULA

The line-spread b(x) is the convolution of the point-spread a(r) and the impulse-line 6(x) in two dimensions.

b(x,y) = a(x,y) 0 6(x)

B(uv) = A(u,v) 8(v)

where A and B are the two-dimensional Fourier transforms of a and b. Since a is rotationally symmetric we
can use the special formula for the forward transform. Since A(u,v) 6(v) will be zero except on the u-axis we
can use a one-dimensional inverse transform to obtain the essentially one-dimensional b(x,y).

g(p) = a(r) r JO(rp) dr

b(x) = 2 cos (xp) g(p) dp

i=00 r00
b(x) = 2 a(r)r J0(rp) cos(xp) dp dr

The inner integral is zero for r< x and 1/ -r 2 - x for r> x

b(x) = 2  a(r)rl/ 2/ -x 2 dr

It usually makes more sensee though to actually perform the indicated transformations.


