
WORKING PAPER 181

META-EVALUATION OF ACTORS WITH SIDE-EFFECTS

by

AKINORI YONEZAMA

Artificial Intelligence LaboratorU

Massachusetts Institute of Technology

June 1975

Abstract

Meta-evaluation is a process which symbolically evaluates an actor and
checks to see whether the actor fulfills its contract (specification).
A formalism for writing contracts for actors with side-effects is
presented. Meta-evaluation of actors with side-ef fets is carried out
by using sttuational togs which denotes a satuatton (local state of an
actor systems at the moment of the transmissions of messages). And
also it is Illustrated how the situational tags are used for proving
the termination of the activation of actors.

This report describes research done at thb Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-70-A-
0362-0004.

Working papers are Informal papers intended for Internal use.

INTRODUCTION

The purpose of this research is to develop a formalism which is both

intuitively clear and convenient for carrying out the "meta-evaluation"

[Hewitt et al 19731 of programs with side-effects based on actor concepts

[Hewitt & Greif 19751.

"Meta-evaluation" is a process which symbolically evaluates a piece of

code and shows whether the code fulfills its specification. (This

specification needs to be represented in a good formalism which is one of

the topics of our investigation.) Since meta-evaluation is expected to be

(a major component in a software system called the Programming Apprentice

(Hewitt & Smith 19751 which assists expert programmers in various

programming activities, it must provide sufficient information for

answering questions about various properties of programs as well as for

showing their correctness.

Meta-evaluation is closely related to the semantics of programming

languages and verification or proving the correctness of programs. These

topics have been extensively investigated. But all previous program

verifiers have not been able to deal with programs with real side-effects

because of the inadequacy of the formal systems on which these

implementations were based. Although a program with side-effects can

sometimes be transformed into a program without side-effects [Greif &

Hewitt 19751, the transformation decreases efficiency and need several

times the storage. And also there is a certain type of side-effect in

communication between concurrent processes which is Impossible to realize

without side-effects.

Therefore the need for a formalism which is able to treat side-effects ie

obvious. In what follows, we will discuss the limitations of previous works

on program verfication in dealing with programs with side-effects and

propose a new formalism which can cope with this problem.

Before starting our discussion, we will more precisely define a side-

effect.

WHAT IS A SIDE-EFFECT?

A definition of side-effect can be stated very clearly in terms of

actors. Furthermore meta-evaluation is based on actor concepts. So we

will begin with a brief description of actors.

An actor is a potentially active piece of knowledge (procedure) which is

activated when sent a message by another actor. No actor can treat another

actor as an object to be operated on; instead it can only send actors as a

message to other actors. Each actor decides itself how to respond to

messages sent to it. An actor can be characterized by stimuli (messages as

questions) and responses (messages as answers). In this actor paradigm,

the traditional concepts of procedure and data-structure are now unified.

Furthermore various kinds of control mechanisms such as go-to's, procedure

calls, and coroutines can be thought as particular patterns of messages

passing. Thus a complete model of computation can be constructed with a

system of actors.

We now define a side-effect in terms of actors:

An actor has a side-effect if it does not aluags give the same

response to the some message.

For example, an actor "random" which produces a random number when it

gets a request is an actor with a side-effect. The only primitive actor

with a side-effect is the "cell". A cell accepts a message which updates

its contents and a message which asks about its contents. Thus a cell has a

side-effect because it can give different answers to the "content?"

message, depending upon what it contains at the moment. Updating a cell

corresponds to an assignment statement in traditional programming

languages. Cells do not make serious troubles for program verification If

sharing is not involved. But as will be seen in the next section, serious

problems arise when data-structures such as lists, stacks, queues, bags

etc. are shared between procedures.

PREVIOUS WORK

Previous works on the implementation of program verification systems are

based on essentially three different ways of defining the semantics of

programming languages.

An implementation of LCF (Logic for Computable Functions) [Milner 19721

is based on the functional semantics proposed by D. Scott and C. Strachey

(19711. They define the semantics of a program as a mathematical object,

namely a function. As a result of this definition, in order to show some

properties of a simple program, at first we have to find a function for

which the program is supposed to represent and then show that the function

has those properties. There is no easy way to deal with data-structures

with side-effects in this functional semantics, although data-structures

without side-effects could be expressed by giving axioms for the operations

on data structures. Thus within the frame-work of LCF it is often difficult

to capture many interesting and important facts which must be dealt with

in meta-evaluation. There is some attempt (Cadiou & Levy 19731 to

describe several properties related to parallel processes in LCF. But it

has not been fully developed. And also some attempt is made to model

parallel systems by applying the functional semantics [Cohen 19751.

However a verification system based on this model has not been developed

and the model seems very complicated.

An automatic theorem prover for pure LISP functions [Boyer & Moore

19751 is considered to be based on the interpretive semantics. The

semantics of LISP is defined as an evaluator of LISP. In this system a

theorem is stated in LISP itself. For example, suppose a theorem to be

proven by this system is:

(EQUAL (REVERSE (REVERSE A)) A).

The system tries to prove it by evaluating a definition of REVERSE

symbolically. The following examples illustrate how symbolic evaluation

works on some LISP functions:

(CAR A) -- > (CAR A), (CAR (CONS A B)) --> A

(EQUAL A A) -- > T, (EQUAL A B) -- > NIL

(CDR (A B C)) -- > (B C) where A B and C are free variables.

So far as pure LISP functions are concerned, esybolic evaluation is a

good tool for proving theorems for the following reasones

1. Pure LISP functions are constructed solely by the composition of

functions. (namely pure LISP is an applicative language.)

2. The parameter mechanism of LISP is call by value.

3. There are no side-effects in pure LISP.

These three facts guarantee that all information necessary for carrying

out a proof are passed through as arguments (or parameters) and a returned

value of each function which is an element of composition. But once the

limitation of pure LISP is thrown away, namely where non-pure functions are

dealt with, symbolic evaluation confronts a serious problem. Let us

consider a non-pure function RPLACA. The symbolic evaluation of RPLACA

could be expressed as follows:

(RPLACA (A 8) C) -- > (C B)

but this description does not capture the most important fact which

distinguishes RPLACA from CONS. Namely (CONS 'a 'b) creates a new dotted

pair (a.b) while the result of (RPLACA '(a b) 'c) i.e. (c b) is the same

dotted pair as the first argument of RPLACA. The following example

illustrates the difference more clearly.

(SETQ x (CONS 'a 'b)) ; becomes (a. b)

(SETQ y (CONS 'c x)) ; becomes (c. (a.b))

(RPLACA x 'd) ; ???

The real effect is, of course, that x becomes (d.b) and y becomes

(c.(d.b)). But what we can expect from the symbolic evaluation is that x

becomes (d.b) while y remains (c.(a.b)), because the information passed

through the arguments does not reflect the fact that y is sharing the same

list with x. To get around this problem, we need some device to pass more

global information to a called function besides the arguments themselves.

Other program verification systems [King 1969, Deutch 1973, Igarashl

London & Luckham 1973, Suzuki 19741 are based on axiomatic semantics

originally proposed by R. Floyd [1967) for flow-chart like languages,and by

C. A. R. Hoare [1969] for Algol-like languages. The main idea of this

approach is as follows: Suppose that some assertion P holds before the

execution of statement Q. Then the semantics of statement 0 is defined as

the strongest assertion R among those which hold after executing Q. C. A.

R. Hoare uses the notation PlQR to express the above meaning. This way

of defining semantics is quite natural for a program written in an

imperative language whose structure is the juxtaposition of statements (or

commands) rather than the composition of functions. The following figure

illustrates how an assignment is treated in VCG [|garashi London & Luckham

19731.

P I A Q(e)

P (A ; x + e 1 Q(x)
where A is an arbitrary statement.

This rule claims that after x is assigned the value e, valid assertions

for e are also valid assertions for x. But this sort of simple

substitution of x for e in Q does not work correctly if pointer or list

structure is introduced. The reason is obvious, this simple substitution

does not take account of shared data. Suppose x and V are sharing the

number 3. After assigning 5 to x, y also has to be 5, but the above rule

has no way of telling that y became 5.

R. Burstall [19711 proposed some techniques which are able to handle

list processing languages by extending Floyd's proof system. He introduced

the notation (x 9->y '->nil) to denote the following linear list

structure.

x y
I I
I-------> La --- -> lD 1--> Ic L -

Figure 1

Although his technique is useful for statement-type list processing

languages, the lack of the concept of situationtwhich we will introduce

into our formalism limits the expressive power of his notation.

QUEUES WITHOUT SIDE-EFFECTS

C. Hewitt and B. Smith [1975) succeeded in the meta-evaluation of two

implementations of queues as actors without side-effects. A queue-actor is

characterized as follows: a queue accepts two kinds of messages, (nqs x)

which is a request to enqueue a new element x and (dq:(else-completa-toe

the-complaint-dept)) which is a request to return the front element of the

queue and the the remaining queue. However if the queue is emptu, the-

complaint-dept handles the situation. The essence of his implementation

is that every time the message (nq: x) is sent, a neu queue actor is

created which contains x as the rear element. The old queue is unchanged

after the operation and will respond the same way if sent (nq: x) again.

Therefore it has no side-effects. We observe that this Implementation of

the queue uses the successive composition of actors in the same sense as

the successive composition of functions. The meta-valuation of this sort

of implementation can be carried out by an idea similar to the symbolic

evaluation of pure LISP functions. In fact C. Hewitt and B. Smith [19751

used the following notation to express the effect of (nq: x).

(nq a at-rear-of (queue !q)) - (queue !q R)

But it should be noted that (queue !g) and (queue !q !) denote different

actors. i stands for the "unpack" operation (See Appendix-I.).

IMPURE QUEUES

In contrast to the queue without side-effects in the previous section,

let us consider an actor with side-effects which also behaves like a queue.

This actor accepts the same messages, namely (nq: x) and (dqs (else-

complain-to: cd)), but it behaves in a different way. When it receives the

(nq:...) message, it does not create a new queue-actor. And when it

receives the (dq:...) message it returns its front element and itself as

the remaining queue. Hereafter we call this actor an impure queue. In the

following section we will give a rigorous description (i.e. a contract) of

the behavior of this impure queue. An example of a concrete implementation

of such an actor is given in Figure 2. (A brief explanation of the PLASMA

syntax is given in Appendix-1.)

t(cons-impure-q !-initial-elements) Y
(let (Iqueuees - (cons-cell initial-elements)]) ;a cell which

;contaita initial-elements is created and denoted by queuees.
(self a ;a queue-actor is defined here and denoted by self.

(cases
(a> (nf: -x) twhen received the enqueutng message

(queuees <- [!Squeuees x]) ;the new element x is stored
;in the cell queuees with the old elements.

self) ;self is returned.
(N> (dq: (else-complatin-to: the-complaint-dept))

;when received the dequeutng message
(rules Squeuees

(a> [] (exhausted! => the-complaint-dept))
;if queuee is empty, exhaustedl message is

;sent to the complaetnt-dept.
(a> [-front !-rest] ;otherwise
(queuees <- rest) ;the contents of queuees is updated.
(next: front (rest: self))) i(nezts...) is returned.

))))))

Figure 2

Let us look at an example of the behavior of the above actor.

Suppose 0 is an actor which is created by (cons-Impure-q a). If a message

(nq: b) is sent to 0, then the cell, queuees, contains Ea bl, but no new

actors are created. If 0 receives (dq:...), a is sent back and the

contents of queuees becomes ([b, and if 0 receives (dqs...) again, b is

sent back and the contents of queuees becomes []. Thus Q has side-effects.

For this implementation the notation used in (Hewitt & Smith 19751 for a

queue without side-effects does not fully reflect the effect of sending the

(nq:...) message. It does not indicate that the same actor is returned,

after sending the (nq:...) to Q. The following example will clarify this

point.

(let {[queue-1 - (cons-impure-q 1)])
(let |[queue-2 - (queue-1 <- (nq: 2))])))

The effect of the above code is as follows: a cell which contains 1 is

created and bound to queue-1 and then (nq: 2) is sent the cell and the cell

is bound to queue-2. In the above example, in order to tell that the

length of queue-1 is equal to that of queue-2 after the two let-statements,

we have to know that queue-1 and queue-2 refer to the same actor. This

would not be the case if (cons-impure-q ...) made a queue without side-

effects.

Events and Situations

As been discussed in the preceding sections, in order to be able to

deal with side-effects, we need some device to describe the local state of

the world concerned at a given moment. Since our meta-evaluation is carried

out on an actor system, we are interested in the state of the world at the

time of message transmissions. I. Greif and C. Hewitt [19751 introduced a

notion of event for the purpose of defining their behavioral semantics. An

event consists of a target actor t, an envelope actor m, an activator ac,

and an event counter ec with respect to ac. Since we are primarily

concerned with an actor system without parallelism (Greif 1975), we will

not consider activators. Furthermore we will not need to introduce event

counters into our formalism initially. An event is defined as a

transmission of an envelope actor m to a target actor t which uwll

sometimes be denoted by the notation (t <= m) borrowed from the PLASIIA

synatx. A situation S can now be defined as the local state of an actor

system at the moment an event E occurs. In general the complete description

of the state of an actor system Is not only impossible,. but irrelevant. So

a situation S will be used as a tag for referring to a moment of a

*trensmission to state fragmental assertions which are true at the moment.

The following examples illustrate how the situational tags are used.

(length a-queues) - 8, ;the length of a-queue in a situtiton S ts. 8.

((t <= m)) in Se), ;the event (t (. m) occurs in a situatton S*.

(content a-cell s) - 19848the content of a-cell in a situation S is 1984.

If we are to state some relations between facts which hold at different

situations --for example, a certain order relation for showing the

termination of a program -- , the concept of situations is quite powerful.

A CONTRACT FOR ImPURE QUEUES

Now we will illustrate how a contract for impure queues is written

in our formalism. We use the term "contract" instead of "specification" to

emphasize the fact that it is an agreement between the implementer of a

module and users of the module. In meta-evaluation of an actor we are

checking to see that it meets its contracts.

The first thing we have to state in the contract is how an actor which

behaves as a queue with side-effects is created. We state it in our

formalism as follows (note that in the contract variables prefixed with "-"

are pattern variables or formal arguments as in the PLASMA syntax and that

underscored variables denote free variables.)

((cons-impure-q !-a) creates-an-actor
Q where ((Q ts (Impure-queue !a))))

Namely an actor 0 is created by (cons-impure-q !-a) and the property

that Q is a queue with queuees !a is expressed in the notation (Q ts

(Impure-queue !a)). As will be seen later, this notation is also used as

assertions in the date base for the meta-evaluation.

The next thing to state in the contract is how the actor Q responds to

the (nq:...) and (dq:...) messages. The important idea is, as we pointed

out earlier, that these messages do not cause the creation of new actors,

but rather that they cause the behavior of Q to change. For the (Rqg...)

message, we express its response as follows.

fto-stmplify
((Q <- (nq: -xl) where ((Q is (Impure-queue !bW)M)

try-using
(Q where ((Q is (Impure-queue !b x)).l)

This notation claims that if an event (Q <- (nq: x)) happens in a

situation where (0 is (Impure-queue !b)) holds, then in the succeeding

situation the actor Q is returned and (Q is (Impure-queue lb x)) holds.

(Impure-queue !b x) indicates that a new element x is enqueued at the rear

of the previous queuees 1!b. It should be pointed out that the notion of

situations is not explicitly introduced into the contract; Instead where-

-qlausss are used. But in the process of the meta-evaluation the notion of

situations is indispensable.

For the (dq:...) message the response is slightly complicated, because

(it depends on whether Q is empty or not. So us must split the cases. For

this purpose we introduced an (either (consider ...)) clause as below.

(to-stimplifu
(Q <. (dq: (else-complain-to: -cd)))

try-using
(either

(consider ((Q is (Impure-queue)))
(them:
(exhausted! a> cd)))

(consider ((Q is (Impure-queue x !•))
(then:

((next: x (rest: Q)) where ((is (Impure-queue !c)))))) i

Suppose that (Q <= (dq: (else-complain-to: ...)) happens in a certain

situation and if Q is not empty, namely (Q is (Impure-queue x !c)) holds in

the situation, then (next: x (rest: Q)) should be returned in the next

situation. For the case where 0 is empty, namely (Q is (Impure-quese))

holds. (exhausted! => cd) shnuld harnpn in tha nae* aituatinn. RuB nnt
holds (x u e !.. . s l In t. n t situ tion V1 n I

stating the property of Q in the new situation we implicitly assume that

the property of 0 which held in the previous situation still holds.

The whole contract for an impure queue is depicted in Figure 3. One

might be encouraged to compare the code in Figure 2 and this contract. In

Appendix II a contract for a cell actor in the same formalism is given.

[contract-for impure-queue a

(((cons-impure-q ! -a) creates-an-actor
0 where ((Q is (Impure-queue !a)))

(to-s impltf i
((0 <- (nq: -x)) where 1(0Q s (Impure-queue !b))))

try-using
(Q0 where ((Q is (Impure-queue !b x))}))

(to-stmplify
(Q <= (dq: (else-complain-to: -cdl))

try-usting
(either

(consider ((Q is (Impure-queue)))
(then:

(exhausted! => cd)))
(consider ((Q is (Impure-queue 1 !c)))

(then:
((next: u (rest: Q)) where i(Q is (Impure-queue Ic))l))))))

Figure 3

The CODE: AD COITRACT FOR (EMPTY QUEUEB- INTO QUEUB-2)

In this section we will give the code and contract for an actor which

is supposed to transfer the queuees in one impure queue to another impure

queue. This code and contract will be used to illustrate meta-evaluation

in the next section. This time we present the contract for this actor

(Figure 4) before presenting its concrete implementation because the

contract clearly states what this actor is supposed to do.

(contract-for (empty ... into ...)

((to-stiplify
((empty 01 into 02)

where((Q1 is (Impure-queue !~1))
(02 is (Impure-queue !q2))
(01 not-eq Q2)l)

try-using
((done: (emptied: Q1) (extended:Q02))

where (Q1 is (Impure-queue).)
(02 is (Impure-queue !Sg lgM))I))]

Figure 4

Figure 5 shows an implementation of this actor which is written not

directly in terms of passing messages. To facilitate its readability we

adopt extended syntax in which enqueuing and dequeuing look like operations

on the queue actor rather than the transmission of (dq:..) and (nq:...)

messages to it. The effect of such operations are easily translated into

the standard form of actor message passing. For example, in the case of

enqueuing, the translation is as follows.

[(nq -x at-rear-of -the-queue x
(the-queue <= (Uq: x)]

Furthermore in order to impose a certain constraint on the types of

incoming actors, a new syntactic device (<pattern> tis-a (<type>)) Is

introduced. For example (-ql ts-a (tmpure-queue ...)) requires that the

type of actors which are bound to q1 should be impure-queue (i.e. a queue

with side-effects). It should be pointed out that the implementation in

Figure 5 crucially depends on the fact that queue actors referred by ql and

q2 have side-effects. Suppose that these queue actors had no side-effects.

Everytime (dq:...) or (nq:...) messages are sent, a new actor would be

created but q1 and q2 would still refer to the same queue actors as they

originally referred. Therefore after completing of the evaluation of

(empty ql into q2), completely new actors would be returned as (done:

(emptied: ql') (extended: q2')) and the original actors referred by q1 and

q2 would remain intact. This violates the contract in Figure 4.

[(empty (-ql is-a (impure-queue ...)) into ;two queue-actors
(=q2 is-a (impure-queue ...)) ;with side-effects are sent

;and bound to qi and q2.
(dq ql ;the dequeuing message is sent to qi.

(next-to: ;if qi is not empty
(a> (next: =front-q1) ;the front element of qi and

(rest: =dequeued-ql)) ;remained queue are received
;and bound to front-qi and dequeued-qi.

(nq front-q1 at-rear-of q2) ;front-qi is enqueued.
(empty ql into q2))) ;qi and q2 ore sent to empty.

(else-complain-to: ;if qi is empty
(a> exhausted! ;exhausted! message is receivued

(done: ;emptied qi and
(emptied: q1) ;extended q2 are returned.
(extended: q2)))))]

Figure 5

META-EVALUATION OF (EMPTY QUEUE-i INTO QUEUE-2)

Meta-evaluation is a process which abstractly evaluates actors on

abstract data and checks to see whether the actors meet their contracts.

As briefly mentioned before, a contract is a kind of summary or

advertisement of a program for those who use it as a module in writing a

larger program. The meta-evaluation of a larger program should be carried

out by using only the contracts of its modules instead of being bothered by

the gorry details of the implementations of these modules. Of course

every program should have an explicit contract. The modularity of

contracts should reflect the modularity of programs. We will get some

flavor of such modularity in the meta-evaluation given below of the actor

(empty ...into...).

In general we assume that the meta-evaluator has a large uniform data

base (i.e. without the context mechanism of QA4 or Conniver) in which

assertions are made. If some assertions hold in a particular situation,

they are asserted in the data base with tags which indicate the situations

where they hold. Now let us consider the meta-evaluation of (empty

(...fato...) actor as an illustrative example.

In order to aid the meta-evaluation process the augmented code for

(empty ...tinto...) shown in Figure s is given to the meta-evaluator.

(Actually this augmentation of the code may be done in the interactive mode

between users and the meta-evaluator.) The large capital letter S

between the lines denotes the situations in which events occur. It mill be

used as a situational tag for assertions in the data-base.

18

-S -- InitIal

[(empty (-ql is-a (tmpure-queue ...)) into
(-q2 ts-a (impure-queue ...)))

-Sdq

(dq ql
(next-to:

Snext-S

(,> (next: -front-ql
(rest: adequeued-ql))

-S -

next-l

(nq front-q1 at-rear-of q2)

-S -- next-2

(empty ql trto q2)))
(else-complain-to:

-S -else--

(>. exhausted!

- S _ -

(done:
(emptted: ql)
(extended: q2)))))]

Figure 6

For example, the Sinitial at the top of Figure 6 denotes the situation in

which the transmission of two impure queues to (eapty...tnto...) occurs and

the S denotes the situation in which the transmission of (next: actor-next-I

1 (rest: actor-2)) to the continuation of the dequeuing message to qi

occurs.

In what follows a detailed demonstration of the meta-evaluation of the
augmented code cited in Figure 6 against the contract for (empty...tnto...)
in Figure 4 is shown. The contract for impure-queue in Figure 3 Is used
extensively. For the convenience of explanation the situations are
described as a collection of assertions instead being used as tags.

First, by reading the contract of (empty...tnto...) i.n Figure 3 the
meta-evaluator asserts the following assertions in the data base. 01, 02,
x1 and x2 are newly generated identifiers because they correspond to free
variables underscored in the contract.

Slnltlr I -
Sinitial

((01 is (Impure-queue !xD)) (02 is (Impure-queue !x2))
(01 not-eq 02))

After actors 01 and 02 are sent to (empty...into...) and the pattern
matching is performed, 01 and 02 are bound to identifiers qi and q2,
respectively. Such binding of actors to identifiers is generallU
expressed by an assertion of the form (<identifier> a. cactor>).

Sdq

I(ql a Q1) (q2 n Q2)
(01 is (Impure-queue !xl)) (02 is (Impure-queue !x2))
(Q1 not-eq 02))

Then the dequeuing message is sent to the actor bound to q1 in Sdq.
By interpreting the (to-sitpltfy...)-clause for dequeuing in the contract
in Figure 3 the meta-evaluator considers two cases, namely one case where
qg is empty and the other case where ql is not empty. Corresponding to
these two cases, two different situations, Sx and SI , are

considered as the next situation of Sdq. For SIs,,, the meta-evaluator
asserts the following assertions.

((xl = []) (Q1 is (Impure-queue !xl))
(ql a 01) (q2 a Q2)
(02 is (Impure-queue !x2))
(Q1 not-eq 02))

Now the exhausted! message is sent to the complaint department. But
since no binding of actors occurs, the next situation is the same as
Slse-8"

selse-I S eIse-o"

Then in Ses,_, the transmission of (done: (emptied: 01)(extendeds 02))

to the implicit continuation in the original message to (empty...tnto...)
occurs. Note that we have used the assertions (ql a Q1) (q2 a 02). It is
easily seen that what the contract of (empty...tnto...) in Figure 4
requires, namely:

(01 is (Impure-queue))
(Q2 is (Impure-queue !x2 !xl))

are satisfied by using knowledge about the sequences (See Appendix I for
PLASMA syntax):

[!x2 !xl] is equal to [!x2] if xl is equal to 0l.

So the case where q1 is empty is done.

For the other case, the meta-evaluator asserts the following assertions
with a tag S,,t-e where z1 and z2 are newly generated identifiers.

Snext-e

((xl = [zl !z21) (01 is (Impure-queue !z2))
(ql a Q1) (q2 a 02) (01 not-eq 02)
(Q2 is (Impure-queue !x2)))

In Snext-e, (next: z1 (rest: 01)) is transmitted and the pattern

matching is performed. So the meta-evaluator asserts the binding
information with a tag Snext-l*

snext-i 0
((front-ql a zl) (dequeued-ql a 01)
(xW - [z1 !z21) (01 is (Impure-queue Iz2))
(ql O Q1) (q2 a 02) (Q1 not-eq 02)
(02 is (Impure-queue !x2))1

The (nq: zl) message is sent to 02 in Sýxt.1. By using the (to-

simpltfy: ...)-clause for the enqueuing message in the contract in Figure
3, the meta-evaluator asserts the following assertions with a tag Snext-2'
Note that the crucial fact is that 01 and 02 are distinct impure queues.

Snext-2
((02 is (Impure-queue !x2 zl))
(front-q1 a zl) (dequeued-ql a 01)
(xl - [zl !z21) (01 is (Impure-queue !z2))
(qi * 01) (q2 w 02) (01 not-eq 02)11

Now the meta-evaluator encounters the transmission of 01 and 02 to
(empty ...into...) in Sext-2. Then in order to know the behavior of the

((empty...tnto...), its contract is refered to. The contract givess

(done: (emptied: 01) (extended: 02)) Is returned III

where (01 is (Impure-queue))
(02 is (Impure-queue ![!x2 zil !z21).

Again using knowledge about the sequences:

[![!x2 zil !z21 is equal to [! x2 !xl] if xl Is equal to [zl Iz21, which
holds in S

the meta-evaluator claims that

(01 is (Impure-queue)) and
(02 is (Impure-queue !x2 !xl)) also hold for this case.

Since the requirements stated in the contact for (empty...tnto...) are

satisfied for both cases, we conclude that the implementation of

(empty...into...) in Figure 5 is guaranteed to meet its contract in Figure

4, In fact the justification of this conclusion is essentiallg based on

induction on the sequence, namely the first case corresponds to the

induction base and the second case corresponds to the induction step and

the contract for (empty...into...) is used as an induction hypothesis.

Note that all of these conditions hold when control passes through the

situation. There is no guarantee that the situation will ever be reached.

The demonstration of convergence is another part of meta-evaluation which

is treated it in the next section.

CONVERGEICE OF (EMPTY ... INTO...)

In this section we focus our attention on the convergence of (empty

...tnto...) in Figure 5 as a special case of the more general concept of

the convergence defined in terms of events (For this general definition

and a general proof technique for the convergence see Appendix III). In

the following discussion we will not distinguish the identifiers q1 or q2

in Figure 5 from the queue-actors which are bound to ql or q2.

We can claim that the activation of (empty ...tnto...) always

converges, if for any q1 and q2 (done: (emptied: ql) (extended: q2)) is

always returned, provided that the pre-requisites of (empty ...into...) in

the contract are satisfied. I.e. that qg and q2 are both impure queues and

not the same actor. In showing the convergence of (empty ... ntto...), it

is enough to check that the number of the messages sent to (empty

...tnto...) in Sxt2 is bounded. In fact, the number of suchnext-2

transmissions corresponds to the number of elements contained in q1 (i.e.

the length of the queue) at the moment where the two queues are sent to

(empty ...into...) in SInMtal . So the number of the messages Is bounded by

the length of q1. What should be done here is just to present a more

formal and explicit account for this correspondence. Our technique Is to

show that the length of q1 in Smxt-2 is strictlu less than the length of ql

in Sdq.

We believe that programmers have an idea why the code they write

should terminate, and that it should be explicitly stated in the contract.

In the case of (empty ...into...), a clause for the convergence liket

(to-show-convergence:
((ordertng: less-than) in (doutin: (length-of 01))))

should be put in the contract in Figure 4. A definition or

(characterization of (length-of ...) should be given by the programmer if

the meta-evaluator does not know it. And to aid the meta-evaluator in

demonstrating the convergence, the following (Intentions...)-statement is

inserted just after -Snmxt-2- In Figure 6.

(Intention:
((lengt-of qlsext-2) less-than (length-of ql s)

In general (Intention:...)-statements serves as formal statements about

what is intended to be true at the places in the code where they are

inserted [Goldstine & von Neumann 1963, Naur 1966, Floyd 1967, Hoare 1969).

Here we use them as an aid for showing the convergence.

An actual demonstration of the convergence by the meta-evaluator

depends upon the formalisms adopted for the definition of (length-of ...).

So rather than going through the formal details, we restrict ourselves to

stating the essential facts used in the demonstration. These facts ares

(length-of q s t-2) is the length of !z2.
next-2

(length-of qs5) is the length of !xl.

xl is equal to [zl !z21 in Snext-2'

(The definition of the length of a "sequence" is given in the

simplification plans in Figure 8.) Before we leave this section it

should be pointed out that the whole argument on the convergence of

(empty...into...) relies on the pre-requisite that 01 and 02 are distinct.

A COITAACT FOR "AVERAGE"

Let us consider how a contract for an actor whose behavior depends

upon the history of incoming messages is written in our formalism.

Obviously such actors have side-effects. An example of actors of this type

is the "average!' actor. It receives a (new-elements: x) message uhich

enters a number x into the data base, and a message average? which asks for

the average element of all the numbers currently in the data base. Figure

7 below is a contract for this actor.

(contract-for average u

(((average -initial-element) creates-an-actor D
where ((0 has (History initial-element))))

(to-smplify
((0 <= (neu-elements -x)) where ((0 has (History !a))W)

try-using
(0 where ((0 has (History !a x))1))

(to-simplify
((0 <- average?) where ((0 has (History !b.))))

try-ustng
(uverage !b)))]

Figure 7

The idea is simple. We introduced a property that the actor q has the

history !a and expressed it in the notation (D has (History la)). This

(idea is similar to that of M. Clint[19731 who introduced a "mythical

pushdown stack" to have the history recorded. The definition or

characterization pf the notation (euerage !b) used in the contract should

be given together with the contract. A characterization of (awerage ...)

in the form of the simplification-plan will be found in Figure 8. One

might be invited to meta-evaluate an implementation of "average" In Figure

9 against the contract in Figure 7.

(to-simplify (length (1) try-using 8)

(to-simplify (length x !1) try-ustng (1 + (length I})))

(to-siMplijil (average !x) try-ustng ((sigm !x)/(length Ix)))

(to-stmplitfy (stgma [l) try-using 8)

(to-splitfy .(stgma x !1) try-using (x + (sigme IL)))

Figure 8

[(average minitial-elements) m
(let

([current-average - (cons-cell initial-elememt)l
;contains initial-element is created and bound

(counter u (cons-cell 1)])
(self I ;the following case-clause

;a cell whick
to current-average.

is defined as self.
(cases

(a> (new-element: -x) s;hen received a new date x
(counter * (Scounter + 1)) Icounter is incremented by I
(current-average ;the current average is calculaeted

((Scurrent-average * (Scounter - 1) + x)/Scounter))
;and store in the cell current-average.

self) :self is returned.
(N> average? ;when receired average?.

Scurrent-average) ;the content of current-average.
; is returned.

)))1

Figure 9

FURTEIR WORK

Using the "queues" and "average" as examples we have discussed the mete-

evaluation of actors with side-effects. It is rather straightforward to

apply our techniques to other types of actors with side-effects such as

stacks, sets, bags, tables, lists and trees.

One of the contributions of our work done so far is an explicit

introduction of the notion of situations in the context of meta-evaluation.

The successful meta-evaluation of actors with side-effects and the

demonstration of the convergence crucially depends on the use of

Ssituational tags which explicitly denote situations. As an extention of

our work, we would like to develop the idea of using the notion of

situations more thoroughly. In what follows, we propose three more

sophisticated examples of domains where the idea is expected to be

successfully extended.

We plan to construct a Programming Apprentice (Hewitt & Smith 19751

which will aid expert programmers in various activities such as debugging,

maintenance, and program understanding [Rich & Shrobe 19741 in large

software construction. In these activities one of the essential kinds of

information required is the dependency between or within modules. For

example, suppose that a certain module in a large systea is changed or

replaced by another module. In order to know what kinds of changes uill

appear in the overall behavior of the whole system, we must have precise

information about the dependency between modules. We will pursue the

development of a formalism in which these dependencies can be easily

described using the notion of situations.

Recently several garbage collection algorithms using parallel

processing have been proposed [Steel 1975, Oijkstra 19751. All the

currently used garbage collection algorithms assume that when a garbage

collector is running, no other programs operate on the whole storage area

being garbage collected. The proposed algorithms remove this

restriction. Namely the garbage collector and other programs can be

running concurrently and working on the same storage area. Since a

precise formulation of the required properties for such a parallel garbage

collector does not exist get, we will first try to write its contract. we

then hope to meta-evaluate implementations of these proposed algorithms

using the notion of situations.

The third example we plan to pursue is the problem of writing a

specification for a time-sharing file system. An intuitive description of

the specification is that no two files should attempt to use the same disk

track and that the track usage table should be consistent with the users

file directories. This problem was originally raised in [Hewitt & Smith

19751 as an example of a specification which is difficult to express in

declarative languages such as the first order logic while it is fairly easy

to give a procedural specification. We will try to formulate this problem

using the notion of situations in the hope to clarify the kinds of

specifications that can be used for such problems,

ACKNOWLEDGE•EIT

I would like to express my deep appreciation to Carl Heuitt who

suggested this topic, pruned irrelevant branches which I climbed or was

about to climb during this research, and carefully read drafts of this

paper. Thanks are also due to Keith Nishihara who made comments and has

been correcting my English.

(

Bibltography

Boyer, R.S. and Moore, J.S. "Proving Theorems about LISP Functions"
JACM. 22. 1. January, 1975.

f Burstall, R.M. "Some Techinques for Proving Correctness of Programs Which
Alter Data Structures" Machine Intelligence 7. 1972.

Cadiou, J.M. and Levy, J.J. "Mechanizable Proofs about Parallel
Processes" IEEE Conference record of 14th Annual Symposium on
Switching and Automata Theory. 1973.

Clint, M. "Program proving: Coroutines" Acta Informatica 2. 1973.

Cohen, E.S. "A Semantic Model for Parallel Systems with Scheduling" Proc.
of ACM SIGPLAN-SIGACT Conference Palo Alto, California, January
1975.

Deutch, L.P. "An Interactive Program Verifier" Ph.0 Thesis. University
of California at Berkeley. June, 1973.

Dijkstra, E.W. "A Parallel Garbage Collector" Unpublished Memo 1975.

Floyd, R.W. "Assigning Meaning to Programs" Mathematical Aspect of
Computer Science. J.T.Schwartz (ed.) Vol.19. Am.Math.Soc.
Providence Rhode Island. 1967.

Goldstine, H.R. and von Neumann, J. "Planning and coding problems for
electronic computer instrument". Collected Works of John von
Neumann. Macmillan. New York 1963.

Greif, I. "Semantics of Communicating Parallel Processes" Ph.D Thesis
MIT Forthcoming 1975.

Greif, I. and Hewitt, C. ."Actor Semantics of PLANNER-73" Proc. of ACM
SIGPLAN-SIGACT Conference. Palo Alto, California. January, 1975.

Hewitt, C.E. "A PLASMA PRIMER" MIT AI Lab. Working Paper in
preparation. 1975.

Hewitt, C.E et.al. "Actor Induction and Meta-evaluation" Conference
Record of ACM Symposium on Principles of Programming Lamguages.
Boston. October, 1973.

Hewitt, C.E. and Smith, B.C. "Towards a Programming Apprentice" IEEE
Transaction on Software Engineering, Vol. SE-1 No. 1. March,
1975.

Hoare, C.A.R. "An Axiomatic Basis for Computer Programming" CACM 12,
October, 1969.

Igarashi, S., London, R.L.,and Luckham, D.C. "Automatic Program
Verification i: A Logical Basis and Implementation" Stanford
A.I. Memo.209. 1973.

King, J. "A Program Verifier" Ph.D Thesis. Carnegie-Mellon University.
1969.

McCarthy, J. "A Basis for a Mathematical Theory of Computation" Computer
Programming and Formal System. North Holland, Amsterdam. 1963.

Milner, R. "Implementation and Applications of Scott's Logic for
Computable Function" Proc. of ACM Conference on Proving
Assertions about Programs, New Mexico. January, 1972.

Naur, P. "Proof of algorithms by general snapshots" BIT, Vol.6, No.4
1966.

Rich, C. and Shrobe, H.E. "Understanding Lisp Programs: Towards a
Programmer's Apprentice" MIT Al Lab. Working Paper 82. December
1974.

Scott, D. and Strachey, C. "Toward a Mathematical Semantics for Computer
Languages" Oxford University Computing Laboratory. Technical
Monograph PRG-G. August, 1971.

Steel, G.L. "Multiprocessing Compactifying Garbage Collection" CACMI
forthcoming.

Suzuki, N. "Automatic Program Verification II: Verifying Programs by
Algebraic and Logical Reduction" Stanford A.I. Memo.255 December,
1974.

APPENDIX - I

A SRORT TOUR ON PLASMA SYNTAX

For the sake of self-containedness of this paper the minimum
explanation of PLASMA syntax which is sufficient for understanding of codes
cited in the main content is given below. The most complete explanation
for PLASMA is found in A PLASMA PRIMER [Hewitt 19751. The meta-syntactic
variables are underlined.

<Sequences>

[ala2...an] is an expression which creates an actor called "sequence".
It is an ordered sequence of actors al,a2,..an. [] is also a sequence
called the "empty sequence". If a sequence receives a number as a
message, say k, it will returns its k-th element sk.

<Cells>

(cans-celle~ is an expression which creates an actor called a "cell"
which contains an actor a. If a cell receives a message "content?",
it returns its content and if it receives a message [* b], it replaces
its current content by an actor b. Sc is an abbreviation of sending
content? message to c where c denotes a cell.

<Transmitters>

(T<m-) and (T.>Mj) are equivalent expressions called
"transmitters". When a transmitter is evaluated, a message actor M is
sent to a target actor T. The following expressions are abbreviations.

(TI_) is equivalent to(T<l).
(ElE2 ... En) is equivalent to (El <- [E2...1_n]).

For example

(cons-cell) is equivalent to (cons-cell 11).
(factorial 3) is equivalent to (factorial <- 3).
(a-cell 1984) is equivalent to (a-cell < (<- 19841).

<Receivers>

(> pattern ly) is an expression actor called a "receiver". If a
receiver is sent a message which matches pattern, an evaluation of
body will start in an environment resulting from the pattern match.
For example,

((,> -n (factorial n)) <. 4) returns 24.

-n is an example of patterns and a prefix - Is an actor which binds
a message actor to an identifier. So in the above example 4 is bound
to n.

[-x a-y b c] is an example of patterns which expects a sequence of 5
elements whose 2nd, 4th and Sth elements are equal to a, b, and c,
respectively.

(a> [-xl .. -x])

is analogous to LISP form

(lambda (xl ... xn) body).

(<Package>

(pailckagename: a-ontnt) is an expression which creates an actor called
a "package". A package is considered as an actor which attaches a name
packagename to an actor a-content. When a package is used in a message
or a pattern, we do not have to worry about the order of components in
a message or pattern simply because a packagenames stands for a
selector of a component. And also some components can be optional.
For example, suppose

(dq:(next-to: -continuation)
(else-completn-to: -complaint-dept))

is used as a pattern, then

(dq:(else-complaun-to: (a> pattern-e bodu-e))
(next-to:(C> pattern-tbodu-t)))

is a package which matches the above pattern and it also matches
against the following patterns.

(dq:)
(dq: (next-to: -continuation))
(dq: (else-compltainto: =complaint-dept))

<Unpack>

There is an operator called "unpack" which manipulates linear data-
structures. An unpack is abbreviated as an exclamation mark.

For example,

If x is bound to [9 81,then (1 !x 41 evaluates to [1 9 8 41.
The following analogies to LISP functions might help.

is analogous
is analogous
is analogous
is analogous

(LIST X Y Z).
(CONS X Y).
(APPEND X (LIST Y)).
(APPEND X Y).

An unpack is extremely useful in a pattern. If [1984] Is matched
with the following patterns,

[1 !x1],
[!(y .4],

[!-x 8 !=y],
[-x !.y],
[!i-x -y],

x is bound to 19 8 41;
y is bound to [1 9)11
z is bound to [1 9 8 41;
x and y are bound to [1 91 and [41, respectively.

x and y are bound to 1 and [9 8 41, respectively.
x and y are bound to [1 9 8] and 4, respectivelu.

<Conditionals>

(case
(a> patternt btdft)
(a> pattern 4)

(R> a bd))

-is an expression called a "case-statement". When an case-statement is
sent a message m, if m matches against pattern1, then bodý1 is
evaluated, and if not, the next pattern pattern2 is tried and so on.
For example,

(1984 ->
(cases

(a> 1776 independence)
(i> 1976 bicentennial)
(a> 1984 hate-year))) will return hate-year.

[X :Y]

[x !y]
[!x !y]

(rules expression
(0> pattern, !9Y1)

(2> Heaenn Idy))

is an abbreviation for

(expression ->
(cases

(=> patternn bodu1)

(a> pattern, bo_.M))).

<Definitions>

The simplest way of defining an actor iset

[name a definition]

which means that name is. the name of the procedural call-by-name fixed
point of definition. Note name may occur in definition. For example,

[factorial ,
(a> -n
(rules n

(i> [81 11
(i> ? (n (factorial n-l))]

is a definition of factorial where ? denotes a pattern which gets
matched against any messages.

<Labels>

(labels
([nm.a v definitioni]

[nam definition])

is an expression which creates an actor with the following behavior.
When it is evaluated, body is evaluated in an environment with each
name defined as definition.

For example,

(labels
([factorial e

(cases
(> [81] 1)
(s> (-n] (n * (factorial n - 1)))])

(factorial 3))

evaluates to 6.

(name a body) is an abbreviation for

(labels
{[name E body]) name)

The value of the above expression is the value of bodu,except that
occurrences of name in body refer to the whole of body. For example,
if

(self a
(cases

(n> (nq: =x)
(queuees [(queuees x])
self)))

receives (nq: a), then it returns the case clause which the cell
queuees contains a sequence of the previous content of queuees and x.

(name E bdy) is also used in an iteration. For example,

[iterative-factorial a
(a> [=n]

([0 11 =>

(loop a
(N> [-count =accumulation)

(rules count
(a> n accumulation)
(a> ?

(loop <= ((count + 1) (accumulation * count)1)))))))]

After a message is sent to the above expression and it gets bound to
n, [8 11 is sent to (n> [-count -accumulation]...). If count is equal
to n, the result of iterative-factorial is the value of accumulation,
and otherwise [(count + 1) (accumulation * count)] is sent to (N>
[-count -accumulation) ...).

<Let>

Besides the use of binding prefix - in pattern, another way of

binding a value to name is the following expression.

(let
{[nae =- expression1]

[nam• = exprsio2 n]

[namen - sxpreionnl)

When this is evaluated, at first each expression is evaluated and
each value is bound to name and body is evaluated in the resulted
environment. The mutual recursion within equations is not allowed.

For example

(let
S[a-number - 31
[a-cell I (cons-cell 1984)])
(a-cell - a-number))

the content of a-cell becomes 3.

APPEND I X- 11

A CONTRACT FOR CELLS

[contract-for cell m
(((cons-cel I -a) creates-an-actor C where ((C is

(to-simpltfy
((C <= contents?) where ((C is (Cell b))))

try-ustng
b)

(to-stmpliify
(((C <= [- dl) where ((C is (Cell e))))

try-ustag
(C where ((C is (Cell d)))]

(Cell a))))

APPENDIX - Ill

A DEFINITION OF CONVERGEBCE AND PARTIAL ORDERING

From the view point of the actor concept the "convergence" or
"termination" of the activation of an actor (procedure) A is stated In
terms of events. Suppose A gets activated in the following events

[A <==** (apply: message
(then-to: continuation)
(else-to: complaint-dept))]

Then the activation of A always converges if in the succeeding
events there always happens one of the follouing eventes

[continuation <= ml and [complaint-dept <= m']

where m and m' are arbitrary messages.

The general technique of showing the convergence is to find a
partial ordering R in the events where the above events [continuation
<= m] and [complaint-dept <- m'] are the mintmel events in the ordering
R.

•s) The double shafted arrow <== is called the apply-level-send. The
apply-level-send is used for making the continuation and compalint-
department explicit in the transmission of messages. In the main
contents of this paper the ordinal single shated arrow Is used to
express the transmission of messages with defaulted continuation or
complaint-department. In fact, (a-target <= a-message) is an
abbreviation for

(a-target <=-
(apply: a-message

(then-to: defaulted)
(else-to: defaulted)))

