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Introduction

This paper describes GEL, a new geometry theorem prover. GEL

is the result of an attempt to transfer the problem solving abilities

of the EL electronic circuit analysis program of Sussman and Stallman

[Sussman and Stalluan 19751 to the domain of geometric diagrams. Like

its ancestor, GEL is based on the concepts of "one-step local

deductions" and "macro-elements." These methods, in the form of a

modified version of EL, are used to implement a theorem prover with a

mechanistic view of geometry. The performance of this program raises a

number of questions about the efficacy of the approach to geometry

theorem proving embodied in GEL, and also illustrates problems relating

to algebraic simplification in geometric reasoning.

One reason elementary plane geometry has been a popular domain

for illustrating problem-solving techniques is its semantic richness,

its quality of permitting many points of view [Brown 1974, p.7].

Geometry admits physical (mechanical), algebraic (analytic), Euclidean

(synthetic) and turtle drawing (differential) representations. Of

these, GEL illustrates the physical, mechanical view of geometry.

GEL's analysis proceeds in a fashion analogous to the fixing of certain

relationships in a jointed set of mechanical linkages. Given certain

parameters of the diagram (certain angles, lengths, etc.), GEL

propagates the constraints these parameters induce (the rigid
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relationships they determine) throughout the diagram and determines all

relationships in the diagram forced by the initial parameters.

Previous approaches to geometry theorem proving have been based

on a Euclidean view of geometry, or on a combination of this view and

the analytic view afforded by a metrically specified diagram.

Gelernter [Gelernter 1963a, 1963b] devised perhaps the best known

geometry theorem prover to illustrate the importance of "backward

chaining" as a problem solving technique and to explore the detection

and use of analogy between problems in solving them by detecting and

using "syntactic symmetries" between problems. Goldstein [Goldstein

19731 used the domain of geometry theorem proving to demonstrate the

power an'd simplicity of procedural representations of knowledge,

experts, and the PLANNER problem solving formalism [Hewitt 1975].

Nevins [Nevins 19741 introduced a new geometry theorem prover to call

attention to the somewhat neglected method of forward chaining,' which

was almost totally absent in Goldstein's theorem prover, and to observe

that the diagram need not be used as a filter for pruning the search if

the representation of the problem domain is sufficiently structured and

search sufficiently controlled. Finally, Ullman [Ullman 1975]

described a geometry theorem prover utilizing both forward and backward

chaining. His system derived considerable power from its use of the

diagram, not only as a filter, but as a means to structure the entire

database in such a way as to automatically constrain and guide the

search for a proof.
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Much of the power of the geometry theorem provers of Nevins and

Ullman stems from the use of concepts which are very similar to

concepts embodied in EL. Nevins' system is essentially completely

based on forward chaining, in that its backward chaining is limited to

a form which appears identical to forward chaining. It seem likely

that with a modification in the control of forward chaining, his

program would not need backward chaining at all, except to handle

constructions [de Kleer 1976, p. 11]. In Ullman's system, forward

chaining is constrained to be of the form of the one-step local

deductions of EL, with this mode of deduction made possible by

modelling each element of the diagram by a "reference-frame" similar to

the circuit-element structures utilized in EL, data structures with

"slots" to represent each of the important aspects of the object being

modelled. Ullman's system further employs a "middle-out" search

strategy for investigating interesting figures in the diagram which

seems analogous to the mechanism of macro-elements in EL.

These similarities in the operation of these programs and

Sussman's observation that human geometry problem solving seems to make

use of reasoning by constraint propagation to determine that structural

relationships exist in the diagram provided the motivation for the

current theorem prover. GEL was implemented by replacing EL's

electronics knowledge with geometric knowledge. It is almost the case

that GEL can do both electronic circuit analysis and geometry theorem
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proving - only small technical details and concerns for efficiency of

operation have dictated the expunging of electronics knowledge from

GEL. This is possible as EL separates its knowledge of its problem

solving domain from its problem solving mechanisms. GEL, however, does.

not make use at present of a number of the problem solving abilities of

EL (Note 1i.

An Example -- Pons Asinorum

To demonstrate the operation of GEL, we present the example of

the Pons Asinorum, the theorem that the base angles of an isoceles

triangle are equal. Like previous geometry theorem provers, GEL

produces a proof of this theorem by observing that an isoceles triangle

is congruent to itself. Unlike previous theorem provers, however, GEL

requires the traditional angle bisector, although only as an attention-

focusing device. If its attention is properly directed, GEL can prove

the theorem without this additional line, but we will present the more

complex diagram in order to illustrate some of the problems which can

arise. The diagram of the Pons Asinorum is as follows:

___
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B

Given: AB = BC

<DBA = <CBD

Show: <BAD = <DCB

A D C

To prove the theorem, GEL is given the following input:

;circuit for the ponse asinorum theorem

(WIRE PONS-ASINORUM
(VERTEX A B C 0)
(CONNECT
(A (B 0))
(B (C D A))
(C (D B))
(D (A B C)))

(LINE (A 0 C))
(TRIANGLE (A B 0) (B C D) (A B C))
(GIVEN (. (SEG A B) (SEG B C))

(- (ANGLE 0 B A) (ANGLE C B 0D))
(SHOW (- (ANGLE B A 0) (ANGLE 0 C B))))

Hopefully this method of specifying the diagram, hypotheses and

theorem is fairly clear. The diagram is.given the name PONS-ASINORUM.

Following this is a list of all the vertices of the diagram, and a list

of connections between vertices. The connections are specified by

naming a vertex and then listing its immediately adjacent vertices in

clockwise order. These connections are used to determine all angles

and simple line-segments, including the neighbor-sum relationships

between the angles at each vertex for use in performing angle

additions. Following the connections are lists of all lines (three or
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more collinear points, in linear order) and triangles in the diagram.

The list of triangles (with vertices in clockwise order) is not really

necessary, but was included to simplify the initial programming task.

At this point, the initial diagram wiring is complete. The

list of hypotheses is now given, and using these, GEL asserts the

initial constraints on the diagram. Each angle determined by a line is

given the value of 180 degrees, and for each set of objects listed as

equal in a given clause, a value of the form GIVEN82 is generated.

This value is specified as a basic value, one which is used strictly as

a symbolic value, and each item in the given clause is asserted [Note

2] to have this given value as its value, as in

(. (LENGTH SOAB) GIVEN82).

(All objects of the diagram are given canonical names prefixed with an

identifying letter and asterisk. Thus S*AB is the name for the segment

AB. For angles, an additional prefix of "e" denotes a reflex angle.)

Finally, the goals of the theorem are given as facts to show.

Each such fact expands into a.demon which monitors GEL's database for

the appearance of the desired facts. in PONS-ASINORUM, the SHOJ

statement compiles into a demon watching for the assertion of facts of

the form

(- (ANGLE A*BAC) valuel)) and (- (ANGLE AsBAD) value2)).

Upon completing these steps, GEL begins analyzing the diagram.
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The only deductive mechanism used at present in this analysis is the

one-step local deduction or antecedent theorem, in which each fact

asserted may fill a slot of an object and cause other slots of that

object to be filled as a result. In this example, the analysis

proceeds as follows until the goal is reached.

ANGLE-PROP: F98 (- (ANGLE (A#1 T*BCD)) GIVEN85)
ANGLE-PROP: F91 (= (ANGLE (A#2 T*ABD)) GIVEN85)
LENGTH-PROP: F92 (- (LENGTH (S#1 T*ABC)) GIVEN82)
LENGTH-PROP: F93 (= (LENGTH (S#3 T*BCD)) GIVEN82)
LENGTH-PROP: F94 (= (LENGTH (S#3 T*ABC)) GIVEN82)
LENGTH-PROP: F95 (. (LENGTH (S#3 T*ABD)) GIVEN82)
REFLEX-ANGLE: FS6 (= (ANGLE *A*ADC) 188.8)
ADD-ANGLES: F97 (- (ANGLE A*ABC) (&* 2.8 GIVEN85))
ANGLE-PROP: F98 (- (ANGLE (A#2 T*ABC)) (8* 2.8 GIVEN85))
TRI-SAS-21: F99 (. (ANGLE (A#1 T*ABC))

(FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82))
TRI-188: F188 (- (ANGLE (A#3 T*ABC))

(8+ 188.8
(8* -1.8 (FSAS1 GIVEN82 (&8 2.8 GIVEN85) GIVEN82))
(&* -2.8 GIVEN85)))

ANGLE-PROP: F181 (- (ANGLE (A#2 T*BCD)1
(&+ 180.8

(&8 -1.8 (FSAS1 GIVEN82 (8& 2.8 GIVEN85) GIVEN82))
(8& -2.8 GIVEN85)))

ANGLE-PROP: F182 (- (ANGLE A*BCD)
(8+ 188.8

(&* -1.0 (FSAS1 GIVEN82 (&8 2.8 GIVEN85) GIVEN82))
(&* -2.8 GIVEN85)))

TRI-188: F183 (- (ANGLE (A#3 T*BCO))
(&+ (FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82) GIVEN85))

ANGLE-PROP: F184 (- (ANGLE A*BDC)
(&+ (FSAS1 GIVEN82 (&8 2.8 GIVEN85) GIVEN82) GIVEN85))

ANGLE-PROP: F185 (- (ANGLE A*BAD) (FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82))
ANGLE-PROP: F18G (- (ANGLE (A#1 T*ABD))

(FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82))
TRI-188: F187 (- (ANGLE (A#3 T*ABD))

(&+ 188.8
(&* -1.0 (FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82))
(&* -1.8 GIVEN85)))

ANGLE-PROP: F188 (. (ANGLE A*ADB)
(&+ 188.8

(&8 -1.8 (FSAS1 GIVEN82 (8* 2.8 GIVEN85) GIVEN82))
(&8 -1.8 GIVEN85)))
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GOAL FOUND:

F185 (- (ANGLE A*BAD) (FSAS1 GIVEN82 (&W 2.8 GIVEN85) GIVEN82))
F182: (- (ANGLE A*BCD)

(&8 188.8
(&* -1.8 (FSAS1 GIVEN82 (8* 2.8 GIVEN85) GIVEN82))
(8* -2.8 GIVEN85)))

But these expressions (which will be explained shortly) are different!

We defer discussion of this anomaly for the moment and instead examine

the reasoning behind these calculations by querying GEL for

explanations of these facts.

(explain 'f185)

F185 (- (ANGLE A*BAD) (FSAS1 GIVEN82 (8* 2.8 GIVEN85) GIVEN82))
(F99 ANGLE-PROP)

F99 (- (ANGLE (A#1 T*ABC)) (FSAS1 GIVEN82 (8* 2.8 GIVEN85) GIVEN82))
(F98 F94 F92 TRI-SAS-21)

F98 (- (ANGLE (A#2 T*ABC)) (&* 2.8 GIVEN85)) (F97 ANGLE-PROP)
F97 (, (ANGLE A*ABC) (8* 2.8 GIVEN85)) (F87 F86 ADD-ANGLES)
F94 (- (LENGTH (S#3 T*ABC)) GIVEN82) (F83 LENGTH-PROP)
F92 (- (LENGTH (S#1 T*ABC)) GIVEN82) (F84 LENGTH-PROP)
F87 (. (ANGLE A*CBD) GIVEN85) (GIVEN)
F86 (- (ANGLE AsABO) GIVEN85) (GIVEN)
F84 (- (LENGTH S*BC) GIVEN82) (GIVEN)
F83 (- (LENGTH S*AB) GIVEN82) (GIVEN)
QED

(explain 'f182)

F182 (- (ANGLE A*BCD)
(&8 188.8

(8* -1.8 (FSAS1 GIVEN82 (8& 2.8 GIVEN8S) GIVEN82))
.(& -2.9 GIVENBS))) (F188 ANGLE-PROP)

F188 (- (ANGLE (A#3 TBABC))
(&+ 188.8

(8* -1.8 (FSAS1 GIVEN82 (&8 2.8 GIVEN85) GIVEN82))
(&* -2.8 GIVEN85))) (F99 F98 TRI-188)

FS9 (- (ANGLE (A#1 T*ABC)) (FSAS1 GIVEN82 (&* 2.8 GIVEN85) GIVEN82))
(F98 F94 F92 TRI-SAS-21)

F98 (- (ANGLE (A#2 T*ABC)) (8* 2.8 GIVEN85)) (F97 ANGLE-PROP)
F97 (. (ANGLE A*ABC) (8* 2.8 GIVEN85)) (F87 F86 ADD-ANGLES)
F94 (- (LENGTH (S#3 T*ABC)) GIVEN82) (F83 LENGTH-PROP)
F92 (. (LENGTH (S#1 T*ABC)) GIVEN82) (F84 LENGTH-PROP)
F87 (ANGLE A*CBD) GIVEN8S5) (GIVEN)
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F86 (= (ANGLE A*ABD) GIVEN8S) (GIVEN)
F84 (- (LENGTH S*BC) GIVEN82) (GIVEN)
F83 (= (LENGTH S*AB) GIVEN82) (GIVEN)
QED

The above proofs list each fact of the proof followed by its

antecedents and the law by which it was derived. Some of these laws

should be recognizable. TRI-188, for instance, is the law which

asserts that the sum of the angles of a triangle is 180 degrees. TRI-

SAS-21 is a law embodying part of the knowledge that any triangle is

determined by two sides and their included angle. The -21 suffix is

related to GEL's approach to the identification of parts of triangle

and other geometric objects. Each triangle has as parts its first,

second and third angles and sides, denoted A#1, A#2, A#3, S#1, S#2, and

S#3, where S#i is the side opposite A#i. These parts of the triangle

are identified with the appropriate actual angles and sides, so that

many triangles may share the same angles and sides. Thus the law TRI-

SAS-21 is applicable if A#2 and its adjacent sides S#1 and'S#3 are

known in a triangle, in which case the law determines the value of one

of the remaining parts of the triangle, A#l. There are also the TRI-

SAS-22 and TRI-SAS-23 laws, These three laws should really be only one

law, but programming details have required their separation in the

present implementation. ADD-ANGLES and REFLEX-ANGLE perform the

functions of specifying angle sums around vertices and reflex angles if

an angle's value is discovered. LENGTH-PROP and ANGLE-PROP are merely

propagation laws which serve to spread values assigned to one segment

or angle to all segments or angles identified with that segment or

angle. Altogether, GEL at present uses a set of laws comprised of the
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TRI-SAS, TRI-ASA and TRI-SSS groups, TRI-189, ADD-ANGLES and REFLEX-ANGLE.

The funny functions occurring in the above proofs describe the

geometric relations between the measures of parts of triangles, and are

really abbreviations for rather messy nonlinear, radical and

transcendental formulae. There are four such functions:

(FSAS1 X Y Z) is the measure of the angle opposite side X in a

triangle with side X, angle Y and side Z,

(FSAS2 X Y Z) is the measure of the side opposite angle Y in a

triangle with side X, angle Y and side Z,

(FASA X Y Z) is the measure of the side opposite angle X in a

triangle with angle X, side Y and angle Z, and

(FSSS X Y Z) is the measure of the angle opposite side X in a

triangle with sides X, Y and Z.

These functions have peculiar features, such as commutativity

in some (but not all) arguments, and many identities involving

compositions of these functions. In particular, there are a number of

identities relating simple compositions of these functions. For

example, one such identity is

188 - (FSAS1 X Y Z) - Y - (FSAS1 Z Y X),

which can be seen to be universally valid by examining the diagram

GEL Jon Doyle
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FSAS . (z Y X)

This simplification rule applied to F182 above proves the theorem, for

the expression for that angle then simplifies to the same value as that

in F1iS. GEL's inability to prove the theorem completely stems from

its use of a fairly unsophisticated pattern-matching system for

simplifying these geometric expressions.

Limitations of GEL

The first (and least important) limitation of this theorem

proving system is its limited set of geometric laws. GEL knows nothing

about quadrilaterals, parallelograms, or parallel lines. This

limitation is not very fundamental, as these capabilities can be added

to the program without too much difficulty. In fact, it appears that

the function of concepts like parallel lines is simply to allow

analysis without as many connecting lines in the diagram; that is,

parallel lines seem to serve as macro-elements in the sense of EL.

GEL Jon Dovle
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An important deficiency of GEL is its lack of direction, its

reliance on undirected law application for calculating its goals. In

large diagrams, this lack allows the theorem prover to calculate almost

all values before arriving at the goal values. GEL is easily forced

into much useless computation by the introduction of superfluous points

and lines into the diagram. Thus in the diagram

A B C D E

F G H I J K,

GEL would perform much wasted computation before it would determine

that <AFG - <JKE, whereas a backward chaining theorem prover

would prove this fact easily and quickly.

Another problem arising in GEL is attention focusing. To prove

the Pons Asinorum above, GEL required the angle bisector to give it

enough information about triangle ABC to be able to determine the

values of the base angles. If it had been given the diagram

Jon DoyleGEL
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B

A C,

nothing would have occurred, since there would be only two values known

in the triangle, the values of the sides. In this example, the remedy

is simple; a value is postulated for one of the unknowns (either <ABC

or AC will work) and everything is then solved for in term of this

unknown, as illustrated in the following. Giving GEL the wiring

diagram for the above diagram, with a value specified for <ABC, GEL

produces the following analysis.

(wire pons-asinorum
(vertex a b c)
(connect
(a (b c))
(b (c a))
(c (a b)))

(triangle (a b c))
(given (- (seg a b) (seg b c))

(- tangle c b a)))
(show (= (angle b a c) (angle a c b))))

ANGLE-PROP: F42 (= (ANGLE (A#2 T*ABC)) GIVEN38)
LENGTH-PROP: F43 (. (LENGTH (S#1 T*ABC)) GIVEN35)
LENGTH-PROP: F44 (. (LENGTH (S#3 T*ABC)) GIVEN35)
TRI-SAS-21: F45 (= (ANGLE (A#1 T*ABC)) (FSAS1 GIVEN35.GIVEN38 GIVEN3S))
TRI-188: F46 (- (ANGLE (A#3 T*ABC)) (FSAS1 GIVEN35 GIVEN38 GIVEN3S))
ANGLE-PROP: F47 (- (ANGLE A*ACB) (FSAS1 GIVEN35 GIVEN38 GIVEN35))
ANGLE-PROP: F48 (- (ANGLE A*BAC) (FSAS1 GIVEN35 GIVEN38 GIVEN35))

GOAL FOUND:

F48: (- (ANGLE A*BAC) (FSAS1 GIVEN35 GIVEN38 GIVEN35))

_~ .Tnn novipGEL
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F47s (. (ANGLE A*ACB) (FSAS1 GIVEN35 GIVEN38 GIVEN35))

(explain 'f48)

F48 (- (ANGLE A*BAC) (FSASI GIVEN35 GIVEN38 GIVEN3S))
(F45 ANGLE-PROP)

F45 (- (ANGLE (A#1 T*ABC)) (FSASi GIVEN35 GIVEN38 GIVEN35))
(F44 F43 F42 TRI-SAS-21)

F44 (- (LENGTH (S#3 T*ABC)) GIVEN35) (F36 LENGTH-PROP)
F43 (- (LENGTH (S#1 T*ABC)) GIVEN35) (F37 LENGTH-PROP)
F42 (- (ANGLE (A#2 T*ABC)) GIVEN38) (F39 ANGLE-PROP)
F39 (- (ANGLE A*ABC) GIVEN38) .(GIVEN)
F37 (- (LENGTH S*BC) GIVEN3S) (GIVEN)
F36 (- (LENGTH S*AB) GIVEN35) (GIVEN)
QED

(explain 'f47)

F47 (- (ANGLE A*ACB) (FSAS1 GIVEN35 GIVEN38 GIVEN35))
(F46 ANGLE-PROP)

F46 (. (ANGLE (A#3 T*ABC)) (FSAS1 GIVEN35 GIVEN38 GIVEN35))
(F45 F42 TRI-188)

F45 (. (ANGLE (A#l TsABC)) (FSAS1 GIVEN35 GIVEN38 GIVEN35))
(F44 F43 F42 TRI-SAS-21)

F44 (- (LENGTH (S#3 TTABC)) GIVEN35) (F36 LENGTH-PROP)
F43 (- (LENGTH (S#1 T*ABC)) GIVEN35) (F37 LENGTH-PROP)
F42 (- (ANGLE (A#2 TsABC)) GIVEN38) (F39 ANGLE-PROP)
F39 6( (ANGLE A*ABC) GIVEN38) (GIVEN)
F37 (M (LENGTH S*BC) GIVEN35) (GIVEN)
F36 (- (LENGTH S*AB) GIVEN35) (GIVEN)
QED

While this strategy allows GEL to prove this simple theorem completely,

it is not really the best answer, as it seems to be merely a poor

substitute for using knowledge of congruences to prove theorems.

The final problem arises in GEL's determining values as

expressions. The effect of this method of analysis is one of

transforming the problem from the domain of geometric diagrams to the

domain of algebraic expressions, and replacing theorems of geometry by

simplification rules. It appears that this transformation does not
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allow a more succinct set of rules of deduction; evidently the •

simplifier must understand algebraic simplification (which is in

general a notoriously difficult task [Note 31) as well as the geometric

function identities. Since the geometric function identities are

really just small geometry theorems involving relations within one or

between two triangles, transforming the geometric problem into the

functional form seems to require an unnecessary duplication of the

diagram analyzer's knowledge in the simplifier. Thus instead of

transforming the problem into a form involving fewer and simpler rules

of deduction, the value mechanisms of GEL make the problem harder by

involving the theorem prover in the problems of algebraic

simplification. As an example of the mess this puts GEL in, consider

the following theorem:

8

Given: rectangle ACDE

AB = BC.

Show: (BED = <EDB

E

When given this theorem to prove, GEL announces the following results

after considerable effort. The expressions below are simplified to the

limits of GEL's ability. Since GEL's simplifier is a crude pattern-

matching simplifier, the result is not impressive.

GEL Jon Dovle
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GOAL FOUND:

F163:

(- (ANGLE A*BED)
(&+ (FSSS GIVEN148 GIVEN137 GIVEN148)

(FSAS1 GIVEN134
(&+ 98.8 (FSSS GIVEN140 GIVEN137 GIVEN148))
GIVEN148)))

F174:

(. (ANGLE A*BDE)
(&+ 188.8

(&* -1.8 (FSSS GIVEN148 GIVEN137 GIVEN148))
(&* -1.8

(FSAS1 GIVEN137
(&+ (FSSS GIVEN148 GIVEN137 GIVEN148)

(FSAS1 GIVEN134
(&+ 98.8

(FSSS GIVEN148 GIVEN137 GIVEN148))
GIVEN148))

(FASA (&+ 90.8 (FSSS GIVEN148 GIVEN137 GIVEN148))
GIVEN134
(&+ 9S.8

(8* -1.8
(FSSS GIVEN148 GIVEN137 GIVEN148))

(8* -1.8
(FSAS1 GIVEN134

(8+ 98.8
(FSSS GIVEN148

GIVEN137
GIVEN148))

GIVEN140))) ))
(8r -1.8

(FSAS1 GIVEN134
(&+ 98.8 (FSSS GIVEN148 GIVEN137 GIVEN148))
GIVEN148))))

I will spare you the proofs of these facts.

Actually, the equivalence class mechanisms successfully

employed by Nevins and Ullman avoid the problems introduced by GEL's

value mechanisms. This method maintains equivalence classes for all

CRI. __Jon DoyleP.L
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equal angles, line-segments, triangles, etc. When a new pair of

objects are found to be equal, their equivalence classes are merged.

This approach fits hand in hand with the use of congruences and

parallelism in geometry theorem proving, for the primary function of

congruences and parallel lines is to assert equality between values

without ever having to specify what the values are.

Conclusion

Introspection suggests that human geometry problem solving

makes use of constraints which are determined in a manner somewhat

analogous to constraining mechanical linkages. While it appears

possible to use such information in planning a proof, this method of

analysis introduces more problems than it solves in a straightforward

implementation of a geometry diagram analyzer.
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Notes

1. EL has a number of facilities for using contradictions and

coincidences [Sussman and Stallman 1976] which are not used by GEL.

2. GEL uses the EL-ARSE database [Sussman and Stallman 1976, Mason

1976] to store facts and implement laws. This database system is in

some ways a descendant of the CONNIVER database system, but has many

additional capabilities.

3. Algebraic simplification has long been a stumbling block in symbolic

mathematical systems such as MACSYMA [Mathlab 1975, Moses 1971], and

seems to arise in many problems in many areas [de Kleer 1975, pp. 78-

81].
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APPENDIX I: The Geometry Laws of GEL

;triangle angle sum

(law tri-188 hipri-asap ((tM triangle) al a2 a3)

((= (angle (a#1 !?t*)) !>al)
(= (angle (a#2 !?t*)) !>a2)
(= (angle (a#3 !?t*)) !>a3))

(equation '(&+ al a2 a3) 188.8 tW))

;triangle side-angle-side laws

(law tri-sas-11 asap ((tM triangle) s2 al 93 sl)
((- (length (s#2 !?t*)) !>s2)
(= (angle (a#l !?t*)) !>al)
(= (length (s#3 !?t*)) !>s3))

((= (length (s#1 !?t*)) !>sl))
(equation 'sl "(fsas2 ,s2 ,al ,s3) t*))

(law tri-sas-12 asap ((t* triangle) s2 al s3 a2)
((- (length (s#2 !?t*)) !>s2)
(= (angle (a#1 !?t*)) !>al)
(- (length (s#3 !?t*)) !>s3))

((= (angle (a#2 !?t*)) !>a2))
(equation 'a2 "(fsasl ,s2 ,al ,s3) t*))

(law tri-sas-13 asap ((tt triangle) 92 al s3 a3)
((= (length (s#2 !?t*)) !>s2)
(= (angle (a#1 !?t*)) !>al)
(= (length (s#3 !?t*)) !>s3))

((= (angle (a#3 !?t*)) !>a3))
(equation 'a3 "(fsasl ,s3 ,al ,s2) t*))

(law tri-sas-21 asap ((tM triangle) sl a2 s3 al)
((= (length (s#1 !?t*)) !>sl)
(- (angle (a#2 !?t*)) !>a2)
(= (length (s#3 !?t*)) !>s3))

((= (angle (a#l !?t*)) !>al))
(equation 'al "(fsasl ,sl ,a2 ,s3) t*))
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(lao tri-sas-22 asap ((t* triangle) 1el a2 93 92)
((= (length (s#1 !?t*)) !>*l)
(= (angle (a#2 !?t*)) !>a2)
(- (length (s#3 !?t*)) !>s3))

((= (length (s#2 !?t*)) !>e2))
(equation 'e2 "(fsas2 ,el ,a2 ,e3) t*))

(law tri-sae-23 asap ((t* triangle) s1 a2 s3 a3)
((= (length (s#1 !?t*)) !>sl)
N( (angle (a#2 !?t*)) !>a2)
(= (length (s#3 !?ts)) !>e3))

((= (angle (a#3 !?t*)) !>a3))
(equation 'a3 "(feasl ,s3 ,a2 ,sl) t*))

(lau tri-eas-31 asap ((t* triangle) el a3 s2 al)
((= (length (s#1 !?t*)) !>sl)
(N (angle (a#3 !?t*)) !>a3)
(a (length (s#2 !?t*)) !>s2))

((a (angle (a#1 !?t*)) I>al))
(eqUation 'al "(feasl ,el ,a3 ,e2) t*))

(law tri-sas-32 asap ((t* triangle) el a3 s2 a2)
((a (length (s#1 !?ts)) !>sl)
(= (angle (a#3 !?t*)) !>a3)
(I (length (s#2 !?t*)) !>s2))

((N (angle (a#2 !?t*)) !>a2))
(equation 'a2 "(feasl ,s2 ,a3 ,1) tis))

(lau tri-eas-33 asap ((tM triangle) el a3 s2 s3)
((I (length (s#1 !?t*)) !>l)
(N (angle (a#3 !?t*)) !>a3)
(N (length (s#2 !?ts)) 1>s2))

((= (length (s#3 I?ts)) !>s*3)
(equation 's3 "(feas2 ,1 ,a3 ,e2) ts))

itriangle angle-side-angle laws

(law tri-asa-12 asap ((ti triangle) a2
((= (angle (a#2 !?ts)) !>a2)
(a (length (s#1 l?ts)) !>sl)
(= (angle (a#3 !?t*)) !>a3))

((= (length (s#2 .!?t*)) 1>s2))
(equation 'a2 "(fasa ,a2 ,9l ,a3)

al a3 s2)

ta))
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(law tri-asa-13 asap ((tM triangle) a2 sl a3 s3)
((I (angle (a#2 !?t*)) !>a2)

(= (length (s#1 !?t*)) !>sl)
(= (angle (a#3 !?t*)) !>a3))

((= (length (s#3 !?t*)) !>s3))
(equation 's3 "(fasa ,a3 ,sl ,a2) t*))

(law tri-asa-21 asap ((tM triangle) al s2 a3 si)
((= (angle (a#1 !?t*)) !>al)
(= (length (s#2 !?t*)) !>s2)
(- (angle (a#3 !?t*)) !>a3))

((= (length (s#1 !?t*)) !>sl))
(equation 'sel "(fasa ,al ,s2 ,a3) t*))

(law tri-asa-23 asap ((tM triangle) al e2 a3 s3)
(([ (angle (a#l !?t*)) !>al)
(= (length (s#2 !?t*)) !>s2)
(= (angle. (a#3 !?t*)) !>a3))

((- (length (s#3 !?t*)) !>s3))
(equation 's3 "(fasa ,a3 ,s2 ,al) t*))

(law tri-asa-31 asap ((tM triangle) al s3 a2 sil
((= (angle (a#1 !?t*)) !>al)
(= (length (s#3 !?t*)) !>s3)
(= (angle (a#2 !?t*)) !>a2))

((= (length (s#1 !?t*)) !>sl))
(equation 'sl "(fasa ,al ,s3 ,a2) t*))

(law tri-asa-32 asap ((tt triangle) al s3 a2 s2)
((= (angle (a#1 !?t*)) !>al)
(= (length (s#3 !?t*)) !>s3)
(= (angle (a#2 !?t*)) !>a2))

((= (length (s#2 !?t*)) !>s2))
(equation '92 "(fasa ,a2 ,s3 ,al) t*))

;triangle side-side-side laws

(law tri-sss-1 asap ((tM triangle) sl s2 s3 al)
((- (length (s#1 !?t*)) !>sl)
(= (length (s#2 !?t*)) !>s2)
(= (length (s#3 !?t*)) !>s3))

((= (angle (a#l !?t*)) !>al))
(equation 'al "(fsses ,sl ,2 ,s3) t*))
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(law tri-ess-2 asap ((ts triangle) sl s2 s3 a2)
((= (length (s#1 !?tO)) !>sl)
(= (length (s#2 !?ts)) !>s2)
(* (length (s#3 !?ts)) !>s3))

((= (angle (a#2 !?t*)) !>a2))
(equation 'a2 "(fsss ,e2 ,sl ,s3) ts))

(law tri-sses-3 asap ((ts triangle) sl s2 s3 a3)
(=i (length (s#1 !?t*)) !>el)
(N (length (s#2 !?t*)) !>s2)
(= (length (s#3 !?t*)) !>s3))

((= (angle (a#3 !?t*)) !>a3))
(equation 'a3 "(feess ,s3 ,s2 ,91l) t))

jangle addition at vertices

(law add-angles asap ((*a angle) val al a2)
((= (angle !?*a) !>val))

(do ((nbrs (get *a 'neighbors) (cdr nbrs))
(sums (get *a 'sumangles) (cdr sums))
(ante antecedents)
(unas unassigned)
(antecedents antecedents ante)
(unassigned unassigned unas)
(okI nil nil)
(ok2 nil nil))

((null nbrs))
(cond ((getv "(= (angle ,(car nbrs)) !>al))

(setq oki t)))
(cond ((getv "(C (angle ,(car sums)) !>a2))

(setq ok2 t)))
(cond ((or ok1 ok2)

(equation-nocheck (cond (ok2 a2) (t
"(&+ .val ,(cond (okI al)
,a)))))

(lau reflex-angle asap ((*a angle) val)
((I (angle !?*a) !>val))

(car sums)))
(t (car nbrs))))

(equation-nocheck 368.8 "(&+ ,(get sa 'reflexangle) ,val) *a))
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APPENDIX II: The GEL Simplifier Rules

Note: In addition to the following simplification rules (which

should be interpreted as lhs 4 rhs,) GEL also has a few rules

involving commutativity of function arguments embodied in the

arithmetic package.

(simp-rules
( (fsasl (fasa !#x !#y !#z) !,z !,y)

( (feas1 (fsas2 !#x !#y !#z) !>nil !,x)

( (feasl (feas2 !#x !#y !#z) !>nil !,z)

( (feasl !#y !#z (fasa !#x !,y !,z))

( (feas1 !#x !>nil (fsas2 !,x !#y !#z))

( (feasl !#z !>nil (fsas2 !#x !#y !,z))

( (fsasl !>nil (fsasl !#x !#y !#z) !,z)

( (fsas1 !#z (fsasl !#x !#y !,z) !>nil)

( (feas1 !#y (fees !#x !,y !#z) !,z)

( (feael !#z (fees !#x !#y !,z) !,y)

( (fees !>nil (fasa !#x !#y !#z) !,y)

( (fees !>nil !#y (fasa !#x !,y !#z))

( (fees (feas2 !#x !#y !#z) !,x !,z)

( (fees (feas2 !#x !#y !#z) !,z 1,x)

( (fees !#x (fsae2 !,x !#y !#z) !,z)

( (fees !#z (fsas2 !#x !#y !,z) !,x)

( (fees !#x !#z (feas2 !,x !#y !,z))

,x)

,y)

y)

(&+ 188.8 (&8-1 ,x) (* -1 ,y)))

(fsasi ,x ,y ,z))

(fsasl ,z ,y ,z))

,Y)

(fsas1 ,z ,y ,x))

(fees ,y ,x ,z))

(feess ,z ,x ,y))

,z)

,z)

,y)

,g)

(feasl ,x ,y ,z))

(fsasl ,z ,y 'x))

(feael ,x ,y ,z))
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( (fses !#z !#x (feas2 !,z i#y !,x)). (fsas1 ,z ,g ,x))

( (fesa2 (fasa !#x !#y !#z) !,z !,y) (fasa ,z , ,x))

( (fsas2 !#y' !#z (fasa !#x !,y !,z)) (faea ,z ,x))

( (feas2 !#z (feas1 !#x !#u !,z) !>nil ,x)

( (fsas2 !>nil (fsasl !#x !#y !#z) !,z) ,x)

( (feas2 !#z (feas1 !#x !#y !,z) !,y) ,x)

( (feas2 !#y (feaes1 !#x !,u !#z) 1,z) ,x)

( (fase (feasl !#x !#y !#z) l,z !,u) ,x)

( (fasa !#y !#z (fsael !#x !,y I,z)) (fsae2 ,x ,u ,z))

I (fasa (fees I#x I#y !#z) ,z I>nil) ,x)

( (fasa (feess !#x !#u !#z) !,y !>nil) ,x)

( (fasa !>nil !#z (fees I#x !#y !,z)) ,y)

( (fasa !>nil !#u (fuss !#x !,u !#z)) ,z)

( (fasa !#z (fasa !#x !#y !,z) l>nil) (fasa ,z ,U ,x))

( (&+ 188.8 (8* -1.8 (feas1 !#x !#y !#z)) (8W -1.8 !,u)) (fsasl ,z ,u ,x))

( (&+ 18W.8 (&s -1.8 !#y) (8* -1.8 (feas1 !#x !,u !#z))) (feas1 ,z ,u.,x)))
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