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Abstract

This paper describes a hardware system designed to facilitate position and
velocity control of a group of eight stepping motors using a PDP-11. The
system includes motor driver cards and other interface cards in addition to
-a special digital control module. The motors can be driven at speeds up to
3000 rpm. Position feedback is provided by shaft encoders, but tachometers
are not used.
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I.O'Intrqductibn

The control system described in this paper has been built specifically for
driving a manipulator arm designed at the A.I. Lab by John Purbrick. This
requires position control to within 1 mil and stable velocity control for
speeds up to 3000 RPM. The manipulator has three rectilinear joints and
three rotational joints, two of the latter driving a differential wrist.
Two additional motors are provided to control a vise, which is part of the
manipulator. Since this system is quite general in structure, it should
lend itself to a fairly wide variety of stepping motor applications.

- Several features of stepping motors make them attractive for this
application. First, the discrete and repeatable nature of their motion
makes preciSe positioning easy. Second, shaft encoders are available with
~ outputs commerisurate with the motor steps, facilitating the entire design.
Third, in addition to being capable of high speeds, stepping motors can
move very slowly without "stick-and-slip® problems. Fourth, the holding
torque of the motors eliminates the need for brakes. Finally, open loop
stepping -provides a means of achieving smooth velocities without heavy
dependence on velocity feedback, in particular, tachometers.

1.1 Stepping Motors

The contrpl system is designed around Superior Electric M Series stepping
motors. The latter are 200 step/revolution 4 phase DC permanent magnet
motors, with bifilar windings. In this type of winding, the four coils are

- grouped into two pairs, the coils within a pair being tightly linked,

inductively. The motors are used here as shown in fig. 1. One coil in
each pair is always activated, resulting in four distinct states as shown
below (coils are identified by lead color, referring to fig. 1.):

Coil State G GM R RM
0 ) 1 0 1
1 0 1. 1 0
2 1 0 1 0
3 1 0 0 1
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The arithmetic code on the left is used throughout the control system. An
incrementing sequence of coil states(0,1,2,3,0,...)represents forward
motion of the motor shaft. This in turn is defined as counter clockwise
rotation, viewed from the motor label.

Associated with the four coil states are four static torque curves, which
represent torque as a function of position for a given coil state, assuming
a fixed rotor. Typical curves are shown in fig. 2(the position
representation used in figs. 2 and 3 is explained in the next_soction).

Here as elsewhere in this paper, it is assumed that these curves are
sinusoidal.

An important factor in this system is the back EMF generated by the motor
itself. This quantity, a voltage, is also roughly a sine wave, with
amplitude proportional to the(signed)angular velocity. Measured with
respect to the center taps(see fig. 1), the voltages at the four end
leads, for forward motion, are as shown in fig. 3.

1.2 Feedback

Position feedback is provided by pulse generating shaft encoders. These
devices are mounted on each motor, and output two TTL square waves in
quadrature as the shaft rotates. Each square wave has 200 cycles per shaft
revolution. By virtue of the quadrature relationship, the two phases
partition a complete shaft rotation into 800 segments. These occur as a
repetitive sequence of the following encoder states:

Encoder State B Phase A Phase

0 0 0
1 0 o1
2 1 1
3 1 0

Both the arithmetic code and the gray code are used in the system. A
single XOR gate suffices to convert between codes. Unless otherwise
stated, it is the binary code that is referred to in this paper. An
incrementing sequence of encoder states(0,1,2,3,0,...--arithmetic
code)represents forward motion.
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It should be noted that the four encoder states--0,1,2,3--constitute
exactly one step. The encoders are aligned on the motor shafts so that the
1->2 encoder transition occurs at the rest or detent position of the motor.
This convention gives rise to a natural position representation, with the
encoder state serving as the rightmost two bits, and an arbitrary number of
bits to the left(14 in the case of this system), corresponding to the step.
The step portion of the position is programable, but the encoder state or
quarter step portion is strictly dictated by the encoder. By convention we
will assume that the detent position of coil state 0 corresponds to the
1->2 encoder transition of step 0. This must be effected by
initialization.

The shaft encoders also output an index pulse, or mark, once per
revolution. This 1is used for calibration of the manipulator during
1n1t1alization.

Except for limit switches no other feedback is used in the stepping motor
control system. In particular, there are currently no plans for using
tachometers.

1.3 Phase Angle and Lead Angle

In discussing stepping motors it very useful to have a simple terminology
. to describe the relationship between the coil state and the motor shaft.
The concepts of phase angle and lead angle are introduced for this purpose.
The phase angle is defined as the amount by which the coils are leading the
shaft,or, more specifically,as the rightmost 4 bits of the
quantity(PA)obtained by subtracting position(POS)from four times the coil
state(CS):

PA = 4*CS -~ POS . [rightmost 4 bits]

The multiplicative factor is necessary since a motor step consists of four
encoder steps. This representation allows for 16 phase angles: 0, 1
through 7, -1 through -7, 8, and -8, the last two being equal and
ambiguous. Since the unit is a quarter step, we can represent phase angles
up to +2 or -2 steps. Phase angles with magnitudes greater than 2 motor
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steps are equivalent to smaller phase angles, namely, those represented by
the rightmost 4 bits. Phase angles are arbitrary in so much as the step
portion of position is arbitrary, prior to initialization. In other words,
even though it may seem reasonable to choose the detent position of step 0
as corresponding to coil state 0 at initialization, resulting in an initial
phase angle of -1 or -2, it is an arbitrary choice. The phase angle, a
periodic'fUnction of position and coil state, is always defined.

The lead angle is one of the two phase angles associated with the instant
.thatjthe'motdr coils are switched from one state to the next. In the case
~of forward motion, the phase angle after the coil transition is indicated.
In the case of reverse motion, it is the phase angle before the transition.
Negative lead angles are sometimes referred to as lag angles. Lead angles
are discussed further in the next section.

1.4 Low Level Control

An. important method for controlling stépping motors can now be introduced.
This method will be called lead angle control since it consists of imposing
a fixed lead angle(LA)upon .the motor. This amounts to solving the phase
angle equation for coil state: '

CS = (POS + LA)/4 [rightmost 2 bits]

Static torque curves are also meaningful in reference to lead angles. In
fig. 4 the static torque curve for LA = § is superimposed on those of the
four coil states. Associated with each lead angle is an average static
torque.-proportionalito the integral of a single period. These average
static torques are sinusoidal as functions of lead angle. A circular
representation, suggested by Matt Mason, is shown in fig. 5. The aqgle 0
is equal to LA*»/8; the y-axis represents torque. The static nature of
this quantity must be emphasized. The average dynamic torque, is a much
more difficult quantity to derive, other than gualitatively. The main
effects to consider are the delay time in turning one coil off and another
on, and motor back EMF, which subtracts from the driving voltage. At even
moderate speeds these factors significantly affect motor torque. The net
result is contraction and rotation(clockwise for forward motion and counter
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clockwise for reverse motion)of the torque diagram. Both effects increase
with motor ‘'speed. An important consequence of this is that lead angles
with negative static torques can have positive dynamic torques at high
speeds, and vice versa. Control schemes must take this effect into
account.

Associated with the average dynamic torque is a terminal velocity. This is
the velocity at which the average torque exactly compensates for the losses
due to friction and other effects. Assuming that the static torque
associated with a lead angle is sufficient to start the rotor in motion in
the fight'directibn, the velocity will slew up to this value and stay
there. Terminal velocities for one of the motors used here are plotted in
fig. 6. Unfortunately, the terminal velocity corresponding to a
particular lead angle has a tendency to drift in time. As a result, lead
angles, while providing a convenient way of slewing between velocities, do
not constitute, in themselves, a means for stable velocity control. This
does not rule out higher level control schemes, such as lead angle
modulation, which Matt Mason has employed with considerable success. Fig.
7 shows phase-angle plotted against time for a motor running at a terminal
velocity, under lead argle control.

Probably the most common method of controlling stepping motors is the open

loop method. This consists of stepping the coils at uniform intervals,
determined by the desired step rate. The result, in general, is rotation
of the motor shaft in the direction of the coils. Unfortunately, this is
not necessarily the case. First, the rotor may not be able to follow the
coils at all, the result being stalling. Second, whereas the coils may be
advanting forward at rate X, the rotor may actually move backward at rate
3X, or even forward at rate 5X. This is due to the existence of harmonics,
as illustrated in fig. 9. They do not pose much of a problem, since the
higher order harmonics are increasingly unstable.

It is instructive to plot phase angle vs. time for a motor running under
open loop control. Some examples are shown in fig. 8. It can be seen -
from these that open loop control also results indirectly in a lead angle.
Presumably theSe lead angles are precisely those required to achieve the
open loop stepping rate as a terminal velocity, under lead angle control.
At resonant frequencies the phase angle goes through more complicated
gyrations.
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Figure 1. 4 Phase Stepping Motor in Drive Circuit
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1.5 Motor Drivers

The foremost design consideration in this, as in any such system, is the

motor driver circuit. A simplified diagram of the type used here is shown
in fig. 1. ' '

In order to achieve even moderate speeds, it is necessary to rapidly switch
coil currents. Rapid current switching implies putting a fairly high
voltage(40V-100V in this case)across the coils in the process of turning
them on. It also implies large voltage spikes in the same place when
shutting them off. These spikes may have to be limited in order to protect
the.driving-circuitry. The duration of the spike depends on the current,
the coil inductance, and the spike voltage. If the driving circuit is
designed to block current coupling between the bifilar wound coil pairs,
then the coil currerit will have to be shut off entirely by the spike. The
transistors used to switch the coils must be able to withstand these
conditions without secondary breakdown occuring. It is significant that in
this type of circuit the coil being shut off will induce a voltage in the
coil being turned on. This voltage tends to delay the buildup of current
in the latter until the former has been shut off. On the other hand, if
the driving circuit is designed to allow current coupling, then most of the
current in the coil being shut off will be transferred instantly into the
other coil. It will be flowing backwards, i.e. toward the center tap, but
since the paired coils are 180 degrees out of phase, the resulting torque
is the same. This reverse current must, of course, be stopped before
current can begin to flow in the proper direction in the coil being turned
on. The remaining, uncoupled current must be dissipated through the spike.
This scheme has the advantage of greatly reducing power dissipation, in
particular; during the spike, when secondary breakdown of the transistor
can occur.

Back EMF's have a significant effect on coil switching. In the case of the
Superior Electric M061-FD302, the peak-to-peak EMF amplitude increases by
roughly 20 volts for every 1000 steps/sec of velocity. Careful examination
of figs. 3 and 4 shows that this voltage tends to oppose both the
switching on and switching off of coil currents.

The voltages and currents involved can cause a power dissipation problem,
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calling either for large heat sinks, or power-efficient current control.

1.6 Limit Switches

A very important practical consideration in this design is that of limit
smitches. Since the speeds desired and the gearing employed raise the
possibility of severe damage to the mechanical system in the event of a
software failure, protection is required. In particular it is essential to
prevent the control hardware from running a joint with finite travel into
one of the stops. The approach here has been to run signals from
mechanical or optical limit switches directly to the motor driver circuits,
and to cause this signal to inhibit further motion toward the stop. It is
also desirable to be able to back out of a limit switch condition without
manual intervention.

The existence of the differential wrist in this manipulator arm, poses
- special problems in the limit switch area. This wrist has two
joints--rotation and elevation--driven by two motor channels. Both
-channels are réduired to move either of these joints. Rotation has no
travei limits, but elevation requires limit detection at two extremes. For
each of these limits, only one direction of motion in each channel can
result in further travel into the limit. It is sufficient to cause each
- elevation limit to inhibit motion in one direction in both motor channels.
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2.0 Control System Qverview

Fig. 10 shows a fairly general picture of a motor control algorithm. It
is organized as a nested heirarchy of control processes. The inner process
performs low level control, described in section 1.4, in addition to
position tracking. It is nested within a velocity control process, which
is in turn nested in a position controller. The outer process performs the
higher level tasks such as trajectory control.

2.1 The Need for Special Hardware

Although it is possible to control the motors with a PDP-11, by simply
making the encoder state and coil state directly accessible to the
processor, the consequent limitations are too severe for our application.
These limitations originate, at least partly, in three problems, associated
with the inner control process.

At maximum motor speed, 10000 steps/sec, encoder transitions can occur at
18 us intervals (this figure takes into account certain departures from the
ideal in encoder behavior). In order to keep track of positions it is
necessary to sense every such transition. Clearly, monitoring even one
such motor is barely feasible for an unaided minicomputer. In short,
keeping track of joint position is a very time consuming job for the
processor.

The implementation of lead angles is another demanding task. It requires
computing coil states from joint position at frequency comparable to the
encoder step rate, i.e. four times the motor step rate.

Open loop stepping also presents a problem. Stepping rates are most
conveniently generated by a clock driven interrupt routine. In order to
generate a reasonable spectrum of step rates, this routine would have to be
run at an unfeasibly high frequency(typically, 100 KHz).
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2.2'Hardware Requirements

The most difficult problem which has been considered in this design is that
of velocity control. It is complicated soméwhat by the absence of
tachometers, requiring that velocity be computed by differentiation. This
computation is affected by encoder resolution, joint inertia, and sampling
rate. In the course of the design, a number of velocity control schemes
have been studied. The common denominator of all of them is the need for a
hardware solution to the three problems described in the last section. In
essence the goal is to relieve the PDP-11 of the time consuming drudgery,
allowing it to maintain tight control over the motors through relatively
infrequent commands to hardware. While doing this, it is important to
retain maximum flexibility as to the nature of the higher lever control
processes. In addition to this, the hardware must support: Jjoint
calibration, detection of limit conditions, detection of encoder tracking
errors(these will arise if the frequency of the encoder transitions, 1i.e.
motor speed, overruns the position tracker), and rotary Jjoints with
periodic position values(i.e., unlimited travel).

2.3 Controller Functionality

The most basic function of the controller is position tracking. It
maintains 16 bits of position information, in the format described in
section 1.2., for each of the eight motors. The controller can accurately
track motors at speeds up to 15000 steps/sec.(4500 RPM). Motor positions
are always directly accessible by the processor via the UNIBUS(Trademark of
- Digital Equipment Corporation).

The controller provides software with four different control modes, for
each motor channel. Direct mode allows software to force load a particular
coil state in any motor, or to step a motor forward or backward. Loading
is necessary for initialization and calibration. Direct stepbing is a
programming convenience. Lead Angle mode activates lead angle control for -
a p&rtichlar motor. Separate modes are defined for Open Loop Forward and
Open Loop Reverse. In either mode, the step rate is determined by a
programmable 16-bit set count. Steps are generated by repeatedly
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d'e'cr'ementglg this quantity in a counter. Both the set count and the
counter are _ac_cessible by the processor, via the UNIBUST".

_The coil state, limit condition, tracking error status, and index mark for
each motor, is accessible by the processor at all times.
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3.0 HardWare'Description

An overall block diagram of the hardware is shown in fig. 11.

The controller contains the logic for unigyus™ interfacing, position
tracking, lead angle control, and open loop step generation. It also
collects information on limit and error conditions, coil states, and index
pulses. All of this is can be accessed by the processor via the unisus™,
The limit signals also get passed on to the driver cards for joint
protection.

Feedback signals(shaft encoder and limit switch lines)are collected at the
manipulator arm in a junction box. This box contains 4 occurances of the
samé.card including +5 volt supplies for powering the cards and the
encoders, Each of these feedback interface cards services two motors,
providing support circuitry for limit switches in addition to line drivers
for shaft encoder signals.

The motor drivér'cards are plugged into a separate DEC backpanel. Each
card contains the driving circuitry necessary for a single motor, in
addition to a small amount of coil state logic.

The cdntrol interface card allows the controller to operate on the coil
state logic of any one driver card. It is plugged into the motor driver
backpanel.

A limit signal cable card is necessary for bringing the limit signals into
the motor driver card cage. It is also plugged into the motor driver
backpanel.

A'maintenance box can be connected to the controller for trouble-shooting.
It is not normally plugged in.

Except for the controller itself, all cards in the system are printed
circuit cards. Both the artwork layout and fabrication of these was done
by Fred Drenckhahn.
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Figure 13.

Controller Cycle Flow
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3.1 Controller

The controller is implemented on a single Augat LG-576 wire wrap board. It
is a quad high board and plugs directly into a standard DEC small
peripheral slot. This board has 110 dip locations, of which 100 are used.
All external connections are made via the seven 26-pin cable connectors
provided on the LG-576.
These are allocated as follows:
4 - Cabling to the four feedback interface cards

1 ~ Cabling of limit lines to motor driver card cage

1 - Cabling of motor commands to the control interface card

1 - Internal clock control(goes to maintenance box)
Connection to the UNIBUS™™ is made in the standard fashion via the four
edge connectors, which also provides power(+5 volts, only). '

A block diagram of the controller is given in fig. 12.
All_signal names used below refer to the logic drawings.

The unit is a synchronous device, driven by a delay line oscillator clock,
‘with an 82 ns. cycle time. The clock can be stopped, stepped, and
restarted by the maintenance box logic. During normal operation, the clock
always free-runs at a constant frequency. The main timing reference is the
signal, TIM0O00+0. From this are derived the main clock, CLOCK+0, and
‘several other offset timing signals: CLOCK-0, ENCLK+0, and ENCLK-0.

The initialization logic consists mainly of two one-shots, MCLR-0 and
ICLR-0. These can be triggered by the UNIBUSTM(BINIT-0)or by the
maintenancelbox logic(MINIT-0). MCLR-0, a 200 ns negative going pulse, is
used for resetting the oscillator. ICLR-0, a 240 ns negative going pulse,
is used for resetting certain synchronous elements. The length of MCLR-0
is fixed. As it is necessary that ICLR-0 be between 30 and 50 ns longer in
dhration. a trimpot(Z007)is provided to allow for adjustment.

Control logic timing is derived from the state counter, SC(3-0). This
element is cleared at initialization, and increments repetitively through
16 states, 0-F. For each state, both a level(e.g. T0-0)and a pulse(e.g.
PO-0)are created. These are generated from SC and ENCLK-0, by. four
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748138‘5.' These signals, together with machine state are used to create
the various control signals such as register strobes, counter clocks,
counter enables, and write pulses. The control logic is totally hardwired
and repetitive in nature.

The controller 1is organized around a 16x32 register file, FIL(15-00),
constructed from eight 82S2l's. Four 16-bit words of storage are provided
for each of the 8 motor channels. All relevant information on the motors
is kept in this file, in the layout shown in fig. 20. It serves as the
buffer between software and the control system hardware. The file is
addressed by a 2-input mux, AMX(4-0). This permits access either from the
UNIBUS™ interface, A(5-1), or from the internal address register, AR(4-0).
File data is written from a 4-input mux, FDI(15-00). This allows data to
be written from the UNIBUS™M, BD(15-11); the main counter, CT(15-00); or
from various control elements.

The 16-bit counter, CT(15-00), is provided for performing the arithmetic
needed for position tracking and open loop stepping. The associated
quantities in the file can be loaded into CT, operated on, and written
back..

The coil state logic generates commands for the motor driver cards, in
addition to maintaining a local copy of motor coil states, accessible to
software. The commands can either be coil state load(used in lead angle
control and direct load)or coil step(used in open loop control). The coil
state logic has storage elements for control mode, direct load state,
direct load command, coil state, tracking error, lead angle, and bits 3-0
of position. As a hardware convenience, lead angle and phase angle are
stored in negated form. In lead angle mode a 4-bit subtractor, DIF(3-0),
is used to generate coil state from position and lead angle. For all other
modes, the same subtractor is used to compute the phase angle from position
and current coil state. A 4-bit mux, DMX(3-0), determines which operation
is. occuring. In essence, the following versions of the phase angle
equation are beihg used:

=PA = POS - 4xCS

and Cs = (POS - (-LA))/4
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The command to the motor drivers is encoded into 7 signals:

MRO+0 - MR1+0
MR2+0 - MR3+0
ARZ2+0 - AR4+0

Command type
Coil load state
Motor channel #

where the command type codes are:

00 - Null
01 - Load
10 - Step forward
11 - Step backward

These, together with a strobe(STRB+0)are transmitted to the motor driver
card cage by line drivers(26LS31).

The feedback interface contains 24 line receivers(26LS32)for the encoder
signals(A phase, B phase, and index pulse), five 8-to-1 muxes, and two sets
of flip-flops for synchronizing these external signals with the controller
clock. The five{multiplexed)external signals are strobed into the first
set of flip-flops by the clock. The latter are in turn strobed into the
second set of flip-flops, also by the clock. This double bufferring is
done to minimize "synchronizer" problems. In order to compensate, the
signals going into the muxes are rotated once to the right. This way the
first set of flops gets loaded with the signals for motor N+1 at the time
that motor N is being worked on.

The bus logic contains the UNIBUSTN drivers and receivers together with
address decoder and a data output register. The controller can respond to
data-in and data-out cycles, but never becomes bus master. Its UNIBUST"
address block consists of 32 consecutive words in 1/0 space. These words
are precisely the 32 register file locations. All can be read and written
via the bus, although writing is inhibited in certain bits. This block can
be located on any 32-word boundary in I/0 space by means of the address
select switches, X(12-06). Controller bus cycles cause the flop BUSCYC+0
to be set. This in turn is passed through synchronizing logic to create
BUSCYC+G, which either causes bus data to be written into the file, or data
to be read from the file to the data-out register, DR(15-00). The
controller processes bus cycles only at one point in its cycle flow,
resulting in a bus delay of up to 2 us{worst case).
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One pass of the controller cycle flow is shown in fig. 13. A single
motor, and the associated file locations are updated in the process. Eight
such passes constitute a complete update cycle(10.71 us). The cycle being
"executed is determined by the incrementing state counter, SC(3-0); the
motor being operated on, by AR(4-2). The rightmost two bits of AR address
the 4 file locations of given motor.

3.2 Feedback Interface Card

A block diagram for this card is given in fig. 14.

Three outputs(A and B phases and index mark, X)from each shaft encoder come
in. on short twisted pair lines. These signals are fed into 1line
drivers(26LS31)which transmit the information to the controller over a
26-conductor flat cable through series terminated{90 ohm)lines.

Current mode limit switch signals(FL and RL)also come in on short twisted
pair lines. These signals are received by current sensing
devices({74L563)and then transmitted to the controller over the flat cable.
The optical limit switches are mounted on small specially designed printed
circuit cards, which facilitate wiring.

.The_feedhéck interface cards are provided with a separate 5 volt power
supply,”which also services the shaft encoders and the optical switches.

3.3 Control Interface Card

A block diagram for this card is given in fig. 15. It occupies a single
slot in the motor driver backpanel.

Eight pairs of parallel terminated(180 ohm)lines come in on a 26-conductor
flat cable from the controllier. These signals, described in section 3.1,
are received by 26LS32's. In each pass of the controller flow one of the 8
select lines is pulsed, sending a decoded command to the corresponding
motor driver card. This information is transmitted over the wire-wrapped
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backpanel. The decoded signals are: FORWX(step forward), REVR*(step
reverse), LOAD*(load coil state), ST0 and STl{(coil state), and SELO*
through SEL7*(channel select pulses).

3.4 Limit Switch Cable Card

This card occupies a single slot in the motor driver backpanel. The limit
signals, originating on the encoder/limit switch cards, are wired straight
through the controller onto a single 26-conductor flat cable, and out to
the backpanel pins via this card. There are 16 limit signals: RLO through
RL7(reverse limits)and FLO through FL7(forward limits). Signals from
different channels are separated by ground wires. The forward and reverse
limit signals from each channel are carried on adjacent wires. Since a
transition of either one implies recalibration of the channel, cross talk
between the two does not present a problem. Moreover, since the limit
signals are active high, all signals on the cable are normally low. The
system is fail-safe in that pull-ups will cause a limit signal to be
asserted should a cable come unplugged.

3.5 Motor Driver Card

A block diagram for the motor driver card is given in fig. 16.

It exploits the coil pairing scheme referred to in section 1.1, and places
each pair in series with a current source, making separate the problems of
current control and coil switching. '

The artwork of the motor driver PC card supports three different current
control schemes: chopper, dual voltage, and resistive.

In the chopper scheme, the current source is a
transistor connected to a voltage source between 40V and 100V. A current
sensing circuit, with hysteresis, provides a chopper mode control for the
transistor. When the transistor is on, the supply voltage is applied to
the coil. When the transistor is off, the coil current free-wheels from
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ground through a diode. In order to prevent the chopped current from being
coupled into the off coil, a diode is placed in series with each phase.
This circuit is borrowed from a driver card designed by John Roe. The
chopper operates in the 2KHz-4KHz range.

'l'__he: dual voltage scheme is identical to the chopper, with the exception
that the free-wheeling diode is connected to low voltage supply rather than
~ground. The value of the low voltage depends on the motor type, and must
be such that the steady state coil current lies in the dead-band of the
current sensing circuit. There is no power sequencing requirement on the
supply voltages, due to the chopper.

In the resistive scheme, the current sensing circuit is omitted and the
current source transistor is replaced by a resistor. The value and power
rating of the resistor depends on the supply voltage and the motor current.

The coil switching circuitry is the same for all three current schemes.
 High voltage darlington transistors are used to switch the individual
coils. ‘A zenér diode between base and callector limits inductive spikes.
" Diodes between the collector of each darlington and ground provide a path
for current coupling within the bifilar windings. Some transistors, such
as Motorola MJ10002, have built in collector-emitter diodes, eliminating
the need for the external diodes. Optionally, the diodes can be placed in
series with the coils to block current coupling. This is necessary only
- for' the chopper scheme. Typical coil current and voltage waveforms are
shown in fig. 18.

A small amount of logic resides on the card. A counter is provided for
storing the coil state in addition to logic to permit incrementing,
decrementing, and loading of the counter. The limit lines can inhibit
these operations.

Voltage levels for driving the coils come in on lugs on the rear edge of
the card. The high voltage should not exceed 100 volts. The low
voltage(dual supply scheme only)depends on the DC voltage rating of the
motor. +5 volts is provided via the backpanel.
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3.6 Motor Driver Backpanel

Slot allocation is shown in fig. 17.

The 'backpanel provides power(+5 V), mounting and interconnect for driver
cards, the control interface card, and the limit switch cable card. It it
constructed out of double height DEC blocks.

3.7 Maintenance Box

The maintenance box provides the means for controlling the delay line

oscillator clock, in addition to displaying machine state and creating sync
pulses.

A block diagram is given in fig. 19.

The box is connected to the controller by a 26-conductor flat cable, with
alternating signals and grounds. Eight bits of machine state(in this case,
SC(3-0), AR(4-2), and one spare)are received and buffered. The buffered
signals are displayed as hex or octal digits depending on a jumper
dip(All). The same signals also feed two comparators. Here they are
compared against two sets of switches to provide syncs and stop conditions.
The clock(i.e. controller)can be either stopped or cleared on a given
machine state. Once stopped, it can be single stepped or restarted. A
local initialize can be triggered by a pushbutton on the box.
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4.0 Programming

4.1 Software Interface

N

Software monitors and controls the stepping motors via a 32-word control
block in 1/0 space. This block is divided into 8 equal sections, each of
" which corresponds to a motor channel. The layout of this block is shown in
fig. 20.

The first word of each section represents the position, in quarter
stepS(encoder steps), of the channel. All except the rightmost two bits
can be written. This is normally done only during initialization, and when
the motor is at rest. If necessary, software can extend position to an
arbitrary number of bits by maintaining an actual position record, separate
from the hardware record.

The second word is the control word and is partitioned as shown in Table 1.
The mode bits determine the control, if any, being imposed on the motor.
Direct mode is further defined by the sub-mode field and can call for a
no-op, a single step or an direct coil state load. The latter two
operations will be performed exactly once, the sub-mode bits being cleared
automatically by hardware. Lead angle mode causes the quantity in bits 3-0
to be enforced as a lead angle. The two open loop modes cause stepping to
occur at regular intervals, determined by the count and the set count(see
below). The tracking error indicator will stay on, once set, until either
an initialize occurs or a byte write(e.g. CLRB)is done to this word with an
operand having bit 7 off. The limit bit goes high in the event of either a
forward or a reverse limit condition. The F/R/X bit allows software to
distinguish between these extremes. In the absence of either it is equal
to the index mark. When a limit signal is activated, further movement into
the limit is inhibited. The joint can be moved out of the limit only by
.open loop -or direct stepping. Since the limit signal may have blocked coil
sequencing on the driver card, the coil state stored in the control word
may no longer agree with the actual coil state. After moving out of the
limit, a direct load should be done to remedy this situation. The use of
the A-bit is explained in section 4.2. The meaning of bits 3-0 during mode
01 was explained above. In the other three modes it represents the phase



PAGE 32

angle as defined in section 1.3. However, upon leaving mode 01, this field
may not be valid for up to 11 gs.

The third word is the open loop counter, used for decrementing set counts
to generate steps. It can be read or written at any time. Upon entering
open loop mode, it is first decremented to zero, at which time the motor is
stepped. The set-count(fourth word)is then repeatedly loaded into the open
loop counter and decremented to zero, the motor being stepped each time
around. The counter is decremented at 10.7]1 us intervals. Before entering
open loqp'mbde it should be loaded with the number of such intervals
desired prior to the first step.

The fourth word is the open loop set-count. It determines the number plus
one of 10.71 us intervals between steps. The step rate(steps per sec.)can
be calculated from the formula:
: Rate = 93388.8/(Set-count + 1)

During open loop mode, it can be changed at any time. In this case, the
current value in the open loop counter is first exhausted before the new
stepping interval goes into effect. Set counts less than 5 represent
stepping rates which exceed the tracking logic capability and should not be
used.
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4.2 Initialization and Calibration

The following steps will result in proper initialization and calibration:

1.

w

Issue a master clear with all joints at rest.
(This step should only be necessary following power-up.)

. Move all joints slowly into reverse limits.
. Move each joint 5 steps away from limit.
. Direct load state 0 to all driver cards.

(This guarantees that coil states are consistent with
values in control word.)
Wait for all joints to settle

. Move each joint slowly forward until index mark is on.

At this point, all joints should be in predictable positions.

. Load the desired initial value into the position word.

Bits 1,0(R/0)are dictated by the encoder phases.
Bits 3,2(R/W)are affected by the encoder index mark.
E.g., if the encoder is aligned such that the index
mark is on during coil state 0, then defining this
position as step 0 would result in lead angle
terminal velocities similiar to those in fig. 6.
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Bits .Name Access
15-14 Mode R/W
13-12  Sub-mode R/W
11-10 State R/
09-08 Coil State R/0

Error R/IW
06 Limit R/0
05 FIRIX  R/O
04 A R/O
03-00 Phase Ang. R/W

(negation)

Table 1.
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Use
Control Mode 00 - Direct
01 - Lead Angle
10 - Open Loop(forward)
11 - * " (reverse)

Sub-mode for Direct Mode only
00 - Null
01 - Step Forward
10 - Step Backward
11 - Load Coil State
(bits 13-12 are self-clearing)

State to be loaded{Direct,Load only)
Current state of motor coils

Tracking erfor(active high)

Limit condition{active high)

Meaning depends on state of bit 6:
If bit 6 = 0, then bit 5 = index pulse
If bit 6 = 1, then bit 5 = forward limit

Encoder A-phase
When on, motor near middle of a step.

Meaning depends on mode(bits 01-00):

If mode = 01, then bits(03-00) are the
negation of lead angle(R/W)

For all other modes, bits(03-00)are the

negation of phase angle(R/0). Upon

leaving mode 01, this field
hgy not be valid for 11 us.

Control erd Format
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4.3 Rotational Joints

Rotational joints can pose a problem in the position record keeping area.
In particular, it may be desirable to define position as a periodic
quantity. This can be done by maintaining actual position separate of the
hardware record. Alternatively, the hardware record can be made to reflect
the actual position. If the joint period is exactly 2%**15 quarter steps,
then there is no problem, since the position word will wrap around at
exactly the right point. A similar situation exists for smaller powers of
2. For other periods it is necessary for software to change the position
record dynamically, at the wrap-around point. In order to avoid hardware
race conditions, this must be done in the middle of a step (encoder state
01 or 10, i.e. A-phase on). To facilitate testing for this condition, the
A-phase 1is made directly accessible(R/0) in the control word. Once this
condition has been detected, software has an interval of time dependent on
motor speed to write the position register. At 15000 steps/sec., this
interval is at least 12 us. The following code will test for the condition
and either load the position word, if the condition is present, or exit:

WRAP: MOV #POS, R4 ;address of position reg -> R4
Mov #CTL,R5 ;address of control reg -> R5
MOV NEWVAL,RI1 ;new position value =-> Rl
MOV #20,R0 ;A-bit mask -> RO
BIT RO, (RS) ;test A-bit
‘BEQ EXIT ;on ?
MoV R1,(R4) iyes

EXIT: e ;no

The last three instructions execute in less than 12 us, on an 1145.'as
required. ’

Software should never change bits 3-2 of position after initialization.
This will not be necessary, provided that rotational joints have periods
which are exact multiples of four steps. If this is not the case, lead
angle terminal velocities may change at wrap-around points. ;
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APPENDIX

A Velocity Control Program

As an example of how the controller can be used, a velocity control program
will be described. Its objective is simply to maintain ‘a
constant(programmable)velocity on a given joint, assuming this is
physically possible, and in any event, apply torque in the right direction.
Lead dngle mpd'e is used to accelerate or decelerate the motor to
approximately the right velocity. The controller is then switched to open
loop mode in the appropriate direction.

At the 1ns_ta_ht of mode transition, the phase angle is computed. An
approximate lead angle for the desired velocity is compared against the
computed phase angle. The difference is used to compute an initial count,
prior to the first step. This procedure achieves a smooth transition to
open loop mode. '

. The use of lead angle mode to achieve velocity transitions avoids stalling.
While the controller is in open loop mode, software continues to monitor
motor velocity. Should the rotor show signs of slowing down or speeding
up, lead angle mode is resumed to correct the error. This scheme takes
advantage of the smoothness of open loop velocities, without sacrificing
clo-sé'd -loop control. Moreover, the usual requirement of tachometers 1is
eliminated. However, there is the drawback of being limited to the open
loop stepping rates, which are spaced rather far apart at the fast end(see
Table 2). '

The program can control eight motors simultaneously, achieving stable
velocities up to 10000 steps per sec. The degree of stability is dependent
~on the open loop behavior of the driver cards and the motors. Transitions
between velocities are quite rapid and exhibit little if any overshioot.

The program was implemented on an 1145. It is driven by the programmable
clock at 2000 Hz, servicing one motor on each tick (i.e., each motor is
serviced at 250 Hz). Approximately 15 % of the processor time is used by
the program. A flowchart is given in fig. 21.
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Velocity(SPS) Set Count(octal)

Table 2.

15565
13341
11674
10377
9339
8490
7782
7183
6671
6226
5837
5493
5188
4915
4669
4447
4244
4060
3891
3735
3591
3459
3335

3220

3112
3012
2918
2830
2747
2668
2594
2524

Open Loop Velocities(> 2500 SPS)

~N O ;

10

12
13
14
15
16
17
20
21

22

23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
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