MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 222 November 1981

Representing Constraint Systems with Omega

Phyllis E. Koton

Abstract

This paper considers two constraint systems, that of Steele and
Sussman, and Alan Borning's Thinglab. Some functional difficulties in
these systems are discussed. A representation of constraint systems
using the description system Omega is presented which is free of these
difficulties.

A.I. Laboratory Working Papers are produced for internal circulation,

and may contain information that is, for example, too preliminary or

too detailed for formal publication. It is not intended that they should
be considered papers to which reference can be made in the literature.



Representing Constraint Systems with Omega

I. Introduction

The process of deriving consequences from a set of constraints is
useful in many appiications. and is an easy concept to understand.
Constraint systems are becoming increasingly popular, although they
were'designed as far back as the early sixties, for example Sketchpad
[Sutherland 1963] and SIR [Raphael 1964]. More recent systems include
Thinglab [Borning 1979] and the constraint system described by Steele
& Sussman [Steele & Sussman 1978]. This paper will attempt to explore
the relationships between constraint systems and description systems

such as Omega [Hewitt 1980].

II. A Brief Overview of Omega

Omega is used to build and reason about a network of descriptions. An
Omega statement is made up of descriptions, such as the following:

(an office)

which describes an office (or any office). The inheritance relation

"is" is used to relate descriptions, for example,
(Room-812 is (an office))

Descriptlions can be made more specific by giving them attributes.



Attributes are of the form:
(attribution =R27ation attr-description)
for instance:

(Room 812 is (am office (with floor-number 8)
(with address 545-Tech-Square)))

Omega: has' four types of attributions which differ in the extent to
which they restrict the objects which can fill the: role of
attr-description. These-are, in order of increasing. restrictiveness:

of, with, must-be*, and with-unique«

The: "of" attqibution-pﬂaces no restriction on the attr-description.

It meredly-indicates that the attribute "=Relation" exists for the-

description. For example, a sum of two numbers could be described as
(aast-(of'argl (a-number)) (of arg2. (a number)))

The: "of" attribution obeys: the: Axioms of: Monotonicity, Commutativity;

Omission, and: Strictness.**

The "with" attributien is only slightly stronger. It obeys:the: Axiom of
Merging in- addition to the axioms obeyed by the "of" attribution. The Axiom

of Merging states that attributions of the same description can: be:merged.***

The must-be. attribution restricts every description which satisfies
the relation =Relation to be of the class attr-description.*+ It obeys
* Must-be.is also-called with-every.

** The. exioms are.given in Appendix A

*** An: expianation of why this should not hold for the "of" attribution is
given in- Appendix A

*+ formal definitions of tne must-bte and with-unique attributions are given in
Mppundix: A,



the same axioms as the "with" attribution. For instance,
(John is (a father (must-be child (a male)))

states that all of John's children are males.

Final]y, the with-unique attribution restricts there to be exactly one
description which satisfies the relation =Relation. It obeys the same
axioms as the "with" attribution. For example,

(2 is (a complex-number (with-unique real-part 0)))

I11. Representing Constraints in Omega

Consider the following example, taken from [Steele & Sussman 1978].
An adder is described as a primitive constraint on three numbers, such
that the sum is constrained to be the addend plus the augend, and the

addend is constrained to be the difference between the sum and the

The same constraints can be represented in Omega as one statement,

augend,

which will be called the sum/difference rule:

(((a sum (of argl a) (of arg2 b)) same c) <==>
((a difference (of argl c) (of arg2 a)) same b))*

Steele & Sussman create an adder, "zap" which has three parts, al, a2,

and s.

- A = > G TP A - W - = T N = - - e M S b TS A SR B e Y D AR - - = =

(d1 is d2).



Thy same representation in Omeya is:
(vp-1 is (an arithmetiz-viewpoint))®*

((sum-zap. same (a sum (of argl al-zap)
(of arg2 a2-zap))) im vp-1)

((al-zap same (a difference (of argl sum-zap)
(of arg2 a2-zap))) im vp-t)

(¢(a2-zap same (a difference (of argl sum-zap)
(of arg2 al-zap))) in vp-I)**

Now, give the sum-and.él of zap a value.

&

In Omega,
i | (¢sum-zap same 5.0) in vp-1)
2. ((at~zap same -2.0) in vp-1I)

The following descriptions can be derived by the system:

3. (5.0 same (a sum (of argl al4z&p) (of arg2 aZ—zam)i) in vp-1)
[substitute ()]

4., ((5.0 same (a sum (of argl -2.0) (of arg2 a2-zap))) in vp~1)
[substitute (2)]

5. ((a2-zap same (a difference (of argl 5.0) (of arg2 -2.0))) in vp-1)

[by the sum/difference rule]
And the system establishes the.fotlowing relationship:
(QaZ*zép same 7.0) in vp-1)

" . . TS G W S My . . G M. e ok S S M W D e WS Mn A S e, SO E G - o - -

* A viewpeint is an Omega mechanism for dealing with change. It will be
discussed in a Tater section.

** Any-one of the three descriptions above is suffictent to specify zap
{since the.others can be derived using the sum/difference rule). AIT
three were given for the purpase of clarity.



Iv. Building Compound Constraint.

Steele & Sussman next introduce a multiplier constraint, and create an

instance of it called 00, "l

X P
F0O

M2 =

To represent this in Omega, a new rule, called the product/quotient rule

is introduced:

(((a product (of argl a) (of arg2 b)) same ¢) <==>
((a quotient (of argl c) (of arg2 a)) same b))

Foo can be specified as:

(p-foo is (a product (of argl ml-foo)
(of arg2 m2-foo)))

In both Steele & Sussman's system and in Thinglab, a compound

constraint can be built out of simpier constraints by joining some of

their parts. 7.0 A2 <om
+ -{5.0
'“|§;\\;Hubua' M Zap
e -3.0

The same is true of Omega.

6. ((a2-zap same mi-foo) in vp-1)

7. ({(p-foo same al-zap) in vp-1)

Using constraint information and the values already given, the

following.information is derived by the system:

8. ({(m2-foo same (a quotient (of argl p-foo) [product/qﬁotient rule]
(of arg2 mi-foo)) in vp-1)
9. ((m2-foo same (a quotient (of argl al-zap)
(of arg2 az-zap))) in vp-1) [substitute (7)]
10. ((m2-foo same (a quotient (of argl -2.0)

[\N]

z2-zap))) in vp-1) [substitule (2)]

{cf arg

{4



11. ((m2-foo same (a quotient (of argl -2.0)
(of arg2 (a difference
- (of argl sumn-zap)
(of arg2 al-zap)))))
in vp-1)
[sum/difference rule on a2-zap in (10)]
12, ((m2-foo same (a quotient (of argl -2.0)
(of arg2 (a difference
(of argl 5.0)
(of arg2 -2.0)))))
in vp-1)
[substitute (1) and (2)]

13. ((m2-foo same (a quotient (of argl -2.0)
(of arg2 7.0))) in vp-1)

((m2-foo same -0.28) in vp-1)
V. Changing Information and Viewpoints

Ia Steele &}Sussman's system, when a premise is changed, all
information which depended on it is withdrawn and new conclusions are
reached. Their system maintains the constraint dependencies on which
their conclusions are based. It cannot, however, remember the
previous values of changed parameters. For example, to change the al
of zap to Z,br the new value is inserted in the system and changes are

propagated through. 3.0

";6&6.:-—--V41;;;

Omega does not permit changing a description. Information can be

win

2.0

added that specifies a description in more detail, but if we want to
change some-in}ormation a new viewpoint must be created that has the
new information in the appropriate field. Other information that was
not d-ependent on the changed informaticn iz inherited to the new

viewpoint.



{(vp-2 is (an arithmetic viewpoint
(with 2. 2vious-viewpoint vp-1) -
(with wedificaticn
(an adder-arg-modification
(with adder zap)
(with arg al)
(with new-description 2.6)})))
Since viewpoints are descriptions we can explicitly describe the
changes between vp-2 and vp-1 in creating the description of vp-2.
This helps the system determine what information should be inherited
by a new viewpoint and why, in addition to providing a record of-

changes in the database [Barber 1981, p.7].

The description of zap in the new viewpoint contains the new
information along with information inherited from the old viewpoint.

((a2-zap is (a difference (of argl 5.0))
(of arg2 2.0)) in vp-2)

The following information can be derived by the system:
((a2-zap same 3.0) in vp-2)

({(m2-foo same 0.66) in vp-2)

: Therelare several differences between the viewpoint mechanism and the
approaches to changed information used by Steele & Sussman or Borning.
First, the viewpoint mechanism allows Omega to have a complete record
of all changes made to the system. This includes dependency
information as well as previou§ values of objects. Although saving
the information takes up space, it is very useful to have a record of
changes for explaining why changes took place. In some applications,
a complete record of values is essential (for example, if tﬁe system
is being used to model a financial portfolio). Steele & Sussman's
system retains only dependency informztion, tut no histcry of previous

ndancy information.

[1})

vaiuas. Thinglab daozs not even maintein dep



A second difference is that when .changes :are-made in Thinglah 2nd
Steete & <Sussman's system, :-both .01d-and new information-exises ¥n:the
.database -while :incremental deductions are-made. .Some -of the .6%d
information is consistent with the new informdation and some is
jnconsistent. "At:any given time, ‘the information :#n the system might
be inconsistent [Barber 1981, p.8] because :of the incrementdl ‘nature
-of “the ‘deductions. Omega maintains information .censistency by keeping

01d -and new information in -separate -viewpoints.

Viewpoints -also .allow the system to reason-about proposed.changes.
Eor-example.:tb-compare'the results .of -several potentidl changes, “we
could create .a- new viewpoint for-each .proposed  change :and investigate
“its ‘consequences, -withoot :attering -our current version of the

dascription.

‘At ‘thisypoint the reader might-wonder :what is.the 'difference between
viewpoint§eamd;situational:vaniables.[MCEacthy.fgﬁg]. ‘One -difference
is that .systems-which wse:situational variables :have 'no-inheritance
smechanisms . [Hewitt, .persondl .communication]. . Furthermore, :in Omega
-viewpoints :are ‘descriptions. and: thus may be ‘described expTicitly

.[Barber 1981, :ps4].



V1. Dealing with Circularities

Now consider a simple problem which cannot be solved by local constraint

propagation in either Sieele and Sussman's system or in lhinglab.

0

Although there are enough "knowns" in the system to solve the problem,

neither the adder nor the multiplier alone has enough information to

make any deductions. There are two factors which prevent Thinglab and
Steele & Sussman's system from solving this network. First, their

.systéms are dependent on having a direction of computational flow in

thé network. The presence of.the loop in the constraints prevents the
system from finding this flow [Steele & Sussman p. 24]. Second, their
systems are unable to make use of abstract information present in the
network (for example, that the product of any number and one is the number),

since they"can only propagate concrete values,

The two systems had to expand their basic constraint propagation schemes to
haﬁdle circularities. Thinglab solves problems of this type using a
technique called "re]axation,“'which makes successive approximations

of the values until all constraints are satisfied. Steele & Sussman

employ multiple, redundant descripticns to re-organize the information

in such a way that the loops are bypassed,

Omega can use abstract information such as the rule of multiplicative

identity which is empedded in the system, This rule oiv

(g

s Omega a



10.
more global knowledge. 1In addi*.»n to knowing the value at al-zap, it
knows the relation of the valuc at al-zap to the value at ml-foo.

This allows Omega to derive the solution to the above problem using
only its rules of inference and some rules of arithmetdic expressed as

Omega -descriptions,

The network, expressed in Omega, is:

1. {(sum-zap same (a sum (of argl al-zap) (of arg2 a2-zap))) in vp-3)
2. ({p-foo same (a product (of argl mi-foo) (of arg2 m2-foo))) in vp-3)
3. ((p-foo same al-zap) in vp-3)

4, ((a2-zap same mi-foo) in wvp-3)

5. ((sum-zap same 5.0) in vp-3)

6. ((m2-foo same 1.0) in wvp-3)

Using the sum/difference rule, the product/quotient rule, and

its rules of inference, the system can derive the following

descriptions:
7. | ((p-foo same (a product (of argl-a2-zap)
(of arg2 1.0))) in vp-=3)
[substitute (4) and (B) in (2)]
8. (Lé-ﬁoo §ame-a2-zap) in vp-3) [multiplicative identity rule]
9. ((sum-zap same (a sum (of argl p-foo)
(of arg2 a2-zap))) in vp-3)
[substitute (3) in (1)]
10. ((sum-zap same (a sum (of argi-az-zap)
(of arg2 azjzap))) in vp-3) [by (8)]
11. ({sum-zap same (a product {of argl 2) (of arg2 .a2-zap))) in vp-3)
[A + A rule]
12. ((5.0 same (a product (of argl 2) (with arg2 &2-zap))) +n vp-3)

[substitute (5)]



11.

13, ((a2-zap same (a quotient (with argl 5) (with arg2 2%, in vp-3)

[product/quucient rule]

14, ((a2-zap same 5/2) in vp-3)
15, ({(p-foo same 5/2) 10 vp-3) [by (8)]
16. ((a1-zap same 5/2) in vp-3) [by (3)]

VI. Contradictions

A critical property of constraint systems is the ability to
recognize contradictions, Sussman & Steele give the example of

setting the product of foo to 17.0 in the previous network:

< =-]1.0

<;'~:?\\—'—%"41'° /:;:;RAVK:::;JE ‘al,
(1% o)

Omega also finds the contradiction:

(vp-4 is (an arithmetic-viewpoint

(with previous-viewpoint vp-3)
(with modification
(an adder-arg-modification
(with adder zap)
(with arg al)
(with new-value 17.0)))))

1. ((al—zap same 17.0) in vp-4)

2. ((sum-zap same 5.0) in vp-4)

3. ((mi-foo same 1.0) in vp-4)

4. ({sum-zap same (a sum (with argl al-zap) (with argZ a2-zap))) in vp-4)
5. ((al-zap same (a product (with argl mi-foo)(with arg2 a2-zap})) in vp-4)
6. ((sum-zap same (a sum (with argl 17.0) (with arg2 a2-zap))) in vp-4)

7. ((5.0 same (2 gum (with argl 17.0) (with argz a2-zap))) in vp-4)

fwith arg2 17.85)) in vp-4)

{f

mn

——

a difference {(with argl &

wm

Z-zap sam

14



12.

9, ((a2-zap same -12.0) in vp-4)

10, ((al-zap same (@ product (with argl 1) (with arg2 .az-zap))) in vp~-4)
11. ((17.0 same (a product (with argl 1) (with arg2 a2-zap))) in -vp-4)
12. ((a2-zap same {a guotient (with argl 17.0) (with arg2 1))) ia vp-4)
13. ((a2-zap same 17.0) in vp-4)

14, ((a2-zap in vp-4) same 17.0)

15. ((a2-zap in vp-4) same -12.0)

16. ((17.0 same -12.0) in vp-4) contradiction

VIIT. Antecedent and Consequent Reasoning

Omega uses both antecedent .and consequent reasoning -to .s6lve problems.
Givenﬁaﬁstatememt.df'the*form;Ca-==>%b),aanteeedentfﬁeasoniqgasqys'"if
a ‘1s asserted, then assert b". .Consequent reasoning -says "if :goal-b,
-ihenweﬁt&bTish subg0a1 a." Steele & Sussman®s system-and Thinglab
-only ‘use -antecedent reasoning. This reduces the -number of .different
types of -problems that they can solve. For exampte, "absolute value"
is '‘a constraint between two numbers -easily :represented in any of the

‘three systems,

IABS-VAL- ARG -

‘Fn iOmega.:
{(an abs-wval (of arg abs-val-arg)) same
(a sgrt (of-argl (a-product (of -arg2-abs-val-=arg)
(of argZ abs-val=arg)))))

((an @bs-~val-arg (of :arg x)) ¥s (or x «(mious x)))

If .we present .2 ‘number, say 4. as argl of the absolute value



15.

constraint, all systems will det_~mine that 4 is the value 1hat should

l.e assigned to abs-val. If we change argl to -4, the system again can
determine abs-val. If, however, we present 4 as the value of abs-val,

and ask the system for {he vaiue of argtl, the probhlerm hecomes less
trivial, Thinglab and Steele & Sussman's system, if they came up with

any answer at all, would probably report that argl is 4 (by propagating
known values backwards through the sqrt and squarer constraints). This

is only part of the answer; furthermore it is possible that we iﬁtended

the value of argl to be negative. Omega will return the correct solution,

(or (-4) 4).

IX. Reasoning about Procedures

Steele & Sussman's system and Thinglab can execute procedures
implicitly by propagating constraints, however they have only limited
ability to reason about the procedures they use. Consider the following

example from Thinglab, a farenheit to centigrade temperature converter.

Thinglab and Steele & Sussman's system can provide information such as
"what is the centigrade temp if the farenheit temp is 32 degrees?" but
cannot answer guestions such as "if the farenheit temperature

increases, does the centigrade temperature increase?"” Omega can

reason about procedures explicitly, using rules such as:

((tempF in vp-1) > (tempF in vp-0)) ==> ((tempC in vp-1) > (tempC in vp—b))

In cther words, if the farenheit temserature at 2:00 pm is graater thuan the



14.
farenheit temperature at 3:00 pm, the system can deduce that .he centigrade

tempertayre has also ingreaseu.

X, Conglysions

A1l representation languages are not created equal. Omaega has certain
features which makes it more powerful for dealing with constraint
systems than some other languages, This is not to imply, however, that
Omega is the only knowledge representation language suitable for

this task, FRL [Goldstein 77] and KRL [Fikes 80] are two other
languages which have many features useful for this application. A
comparison of the relative powers of Omega, KRL, and FRL for dealing

with constraint systems is a tepic for further research.

Functiopally, Omega has advantages over Sussman & Steele's system and
Thinglab. This paper gives an example of a problem that Omega can
sqlve that the other systems cannot without stepping outside their
basiec propagation mechanisms. Omega uses both antecedent and
consequent reasqning, while the other systéms are restricted to
antecedent reaﬁeningq The viewpoint mechanism allows Omega to naaﬁpn
explicitly about changing processes, while the other systems can only

exacute processes by propagating constraints.



15.

X1. fcknowledgments

Many of the topics presented in this paper were pointed out to me by
Ca+r1 Hawitt, Gerald Barhber, and Giuszppe Attardi.
Steele & Sussman's paper and Borning's work were very useful for pointing out

the issues involved in constraint networks.



Appendix A

Basic Omega Axioms

Some of the following is taken from [Hewitt 80].

Extensionality

((=descriptionl is =description2) (==
(for-all =d ((=d is =descriptionl) ==> (=d is =description2))))

from which can be derived
Reflexivity of Inheritance
. (=description is =description)
Transitivity of Inheritance

(((=descriptionl is =description2) A
(=description2 is =descriptiond)) ==>
(=descriptionl is =descriptiond))

Commutativity

Commutativity says that the order in which attributions are listed are

irrelevant.

({a =descriptionl

.{<=attributionsid>>
=attribution2
{{=attributions3>>
zattributiond
{<=attributions5>>)

same (a =descriptionl
{{=attributions1>>
sattribution4
{K=attributions3>>
=attribution2
{{=attributionsb>>))

”

Al



For example;,

((a class (with lectuier KRD) (with lecturer PSZ)) same
(a: class (with lecturer PSZ) (with lecturer KRD)))

Omission

Omission says that attributions of & description can be deleted to
form a more general description,

({a =descriptionl
<{Lattributions1>>
=attribution2
< attributions3>>) is

(a =descriptionl
{<=attributions1>>
<K=attribution3>>))

For example,

({a class (with lecturer KRD) (with lecturer PSZ)) is
(a class (with lecturer KRD)))

Merging

The Axiom of Merging says that attributions of the same concept can be
merged.

(((=descriptionl is (a =description2 <{<=attributionsi>>)) A
{=descriptionl is (a =description2 <<=attributions2>>)))
==
{=descriptionl is (a =description2 ((=attributionsid>
' {K=attributions2>>)))

For exampie, if

(6.891 is (a class (with Tecturer KRD)))
(6.891 is (a rtlass (with lecturer PSZ)))
(6.891 is (a class (with lecturer HES)))
then :
(6.891 is (a class (with lecturer KRD)
(with lecturer PSZ)
(with lecturer HES)))



The Axiom of Merging does not hold for the "of" attribution. Ffor
crample, if x=7 we could say of «x:

(x is (a sum (of argl 2) (of arg2 3)))
(x is (a sum (of argl 4) (of arg2 1)))
Then by the axiom of deletion, we could deduce the following:

(x is (a sum (of argl 2)))
(x is (a sum (of arg2 1)))

But from the above, we would not want to be able to conclude that

(x is (a sum (of argl 2) (of arg2 1))) !

Monotonicity of Attributes

((=descriptionl is =description2) ==>

((a =concept (with =attribute =descriptionl))
is -
(a =concept (with =attribute =description2))))

For example, if

~(PSZ is (a knowledge-base-expert))
(6.891 is (a class (with lecturer PSZ)))

then .
(6.891 is (a class (with lecturer (a knowledge-base-expert))))

Strictnass

The Axiom of Strictness serves to get rid of garbage in the
~description system.

((a Concept (of Relation nothing)) is nothing)

Fusion of Attributes

if
(x is (a Concept (with Rel descriptionl))) A
(x is (a Concept (must-be Rel description2))
then
(x is (a Concept (with Rel (and descriptionl description2)}))))

A3



Fusion, cont'd.

f (x 7s -(a Concept (with Rel descriptionl))) A
(x is (a .Conicept (must-be Rel description2))
‘then
(x is (a Concept (with-unique Rel (and descriptionl description2))))

Distributivity Axiom for Viewpoints

(((=descriptionl is =description2) n vp)
(==>
((=descriptionl in vp) "is (=description2 in vp)))

This axioms stdtes that an <inheritance relation holds +in a wiewpoint iff
‘the descriptions are relativized to that viewpoint.

bt
4



Appendix B

Axioms of Arithmetic

These axioms are used in the examples above. Some of these axioms

were taken from a 6.036 problem set.

Sum-Difference Rule

(((a sum (with argl =b)
(with arg2 =c)) same =a)
(== ’
((a difference (with argl =a)
“{(with arg2 =b)) same =c))

Product-Quotient Rule

' (((a product (with argl =b)
(with arg2 =c)) same =a)
(==)
((a quotient (with top =a)
(with bottom =b)) same =c))

" Rule of Multiplicative Identity
((a product (with argl =a)
(with arg2 1)) same =a)
A + A Rule
((a sum (with argl =a)
(with arg2 =a)) same

(a product (with argl =a)
' (with arg2 2)))

[ %]
)



References

[Barber 1981] Barber, Gerald. "Reasoning About Change in
Knowledgeable Office Systems (draft)." (April 1981),

[Borning 1979] Bofning, Alan. "Thinglab -- A Constraint-Oriented
Simulation Laboratory." Ph.D. Thesis. Stanford U. (March
1979).

[Hewitt 1080] Hewitt, Carl, Giuseppe Attardi, and Maria Simi.
"Knowledge Embedding in the Description System Omega" in
Proceedings of the First Annual National Conference on
Artificial Intelligence. Stanford U. (August, 1980).

[McCarthy 1969] McCarthy, J. and P.J. Hayes. "Some Philosophical
Problems from the Standpoint of Artificial Intelligence."
Machine Intelligence 4, pp.463-502. (Edinburgh University
Press, 1969).

[Raphael 1964] Raphael, Bertram. "SIR: A Computer Program for
Semantic Information Retrieval." Ph.D. Thesis. MIT
(Cambridge, 1964). ' :

[Steele & Sussman 1978] Steele, Guy Lewis, Jr. and Gerald Jay Sussman.
“Constraints." MIT AI Lab Memo 5§02 (Cambridge, 1978).

[Sutherlahd 1963] Sutherland, Ivan E. "Sketchpad: A Man-Machine
Graphical Communication System." Ph.D. Thesis. MIT
(Cambridge, 1963). .



