
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 222 November 1981

Representing Constraint Systems with Omega

Phyllis E. Koton

Abstract

This paper considers two constraint systems, that of Steele and
Sussman, and Alan Borning's Thinglab. Some functional difficulties in
these systems are discussed. A representation of constraint systems
using the description system Omega is presented which is free of these
difficulties.

A.I. Laboratory Working Papers are produced for internal circulation,
and may contain information that is, for example, too preliminary or
too detailed for formal publication. It is not intended that they should
be considered papers to which reference can be made in the literature.

Representing Constraint Systems with Omega

I. Introduction

The process of deriving consequences from a set of constraints is

useful in many applications, and is an easy concept to understand.

Constraint systems are becoming increasingly popular, although they

were designed as far back as the early sixties, for example Sketchpad

[Sutherland 1963] and SIR [Raphael 1964]. More recent systems include

Thinglab [Borning 1979] and the constraint system described by Steele

& Sussman [Steele & Sussman 1978]. This paper will attempt to explore

the relationships between constraint systems and description systems

such as Omega [Hewitt 1980].

II. A Brief Overview of Omega

Omega is used to build and reason about a network of descriptions. An

Omega statement is made up of descriptions, such as the following:

(an office)

which describes an office (or any office). The inheritance relation

"is" is used to relate descriptions, for example,

(Room-812 is (an office))

Descriptions can be made more specific by giving them uttributes.

Attributes are of the form:

(attribution.. =Relation attr-description)

for instance:

(Room-812 is (an office (with floor-number 8.)
(with address 545-Tech-Squa.re)))

Omega has four types of attributions which differ in the extent to

which they restrict the objects which can fill the:role, of

attr-description. These are, in order of increasing restrictiveness;

of, with., must-be*, and with-unique:,

The "of" attribution places no restriction on the a.ttr-description.,

It merely:indicates that the.attribute "=Relation" exists for the-

description., For example, a sum of two numbers could: be described as

(a:.sum (of arg- (a number)) (of arg?2 (a. number)))

The,"Of~ attribution obeys: the: Axioms of Monotonicity, Commutativity 4

Omission, and Strictness.**

The "with" attribution is only slightly stronger. It obeys.the~Axiom: of

Merging in addition to the axioms obeyed by the "of" attribution, The. Axiom

of Merging states that attributions of the same description can be merged.***

The: mustWbe. attribution restricts every description which satisfies.

the relation =Reflation to be of the class attr-description.*+ It. obeys

* Must-be..is also-.called w-ith-every.

**'The axioms are:.given in Appendix A.

** An. explanation of why this should not hold for the "of " attribution, is
given- in Appendix A.;

*+ Formi;al definitions of the must-be and with-unique attributions are g:iven in
App , dix• -A.

the same axioms as the "with" attribution. For instance,

(John is (a father (mLst-be child (a male)))

states that all of John's children are males.

Finally, the with-unique attribution restricts there to be exactly one

description which satisfies the relation =Relation. It obeys the same

axioms as the "with" attribution. For example,

(2 is (a complex-number (with-unique real-part 0)))

III. Representing Constraints in Omega

Consider the following example, taken from [Steele & Sussman 1978].

An adder is described as a primitive constraint on three numbers, such

that the sum is constrained to be the addend plus the augend, and the

addend is constrained to be the difference between the sum and the

augend.

The same constraints can be represented in Omega as one statement,

which will be called the sum/difference rule:

(((a sum (of argl a) (of arg2 b)) same c) <==>
((a difference (of argl c) (of arg2 a)) same b))*

Steele & Sussman create an adder, "zap" which has three parts, al, a2,

and s. A2

ZA P

--
* Two descriptions dl and d2 are said to be the same if (d2 is dl) and

(dl is d2).

Tha same representation in Omega is:

(vp-i is (an a.rithmetic-viewpoint).)*

((s'um-zap. same (a sum (of argl al-zap)

(of arg2 a2-zap:)),) in vp-i)

((al-zap same (a difference (of argl sum-zap)

(of a,rg2 a2-zap)).) int vp-t)

((a2-zap same (a difference (of argi sum-zap)

(o:f arg2. al-zap.))) in vp-t)"**

Now, give the sum and al of zap a value.

-2.0

In Omega,;

1. ((sum-zap same 5.0) in vp-1)

2. ((at-zap same. -2.0) i-n vp-1)

The follow.iang descriptions can be derived by the system:

3. ((5.0 same (a sum (of argi al-zap). (of arg2 a2-zap.))) in vp-i):

[substitute (t)]

4.. ((5.0 same (a sum.(of argi.-2.0). (of arg2 a2-zap))). in vp-1),

[substitute (2.)]

5., ((a2-,zap same (a difference (of argl 5.0) (of arg2 -2..0))). in vp-i)

[by the sum/difference rule]

And the system establishes the following relationship:

((,a2-zap same 7.0) in vp-i)

* A view.po.int is an Omega mechanism for dealing with change. It will be
d'iss:cussed in a later section.

*. Any one of the. three descriptions abo-ve is sufficient to: specify zap
(since the.others can be derived using the sum/difference rule)., A.IT
three were given for the purpose of clarity.

IV. Building Compound Constraint.

Steele & Sussman next introduce a multiplier constraint, and create an

instance of it called foo.
Ml

Foo

To represent this in Omega, a new rule, called the product/quotient rule

is introduced:

(((a product (of argl a) (of arg2 b)) same c) <==>
((a quotient (of argl c) (of arg2 a)) same b))

Foo can be specified as:

(p-foo is (a product (of argl ml-foo)
(of arg2 m2-foo)))

In both Steele & Sussman's system and in Thinglab, a compound

constraint can be built out of simpler constraints by joining some of

their parts.

The same is true of Omega.

6. ((a2-zap same ml-foo) in vp-1)

7. ((p-foo same al-zap) in vp-1)

Using constraint information and the values already given, the

following.information is derived by the system:

8. ((m2-foo same (a quotient (of aral p-foo) [product/quotient rule]
(of arg2 ml-foo)) in vp-1)

9. ((m2-foo same (a quotient (of argi al-zap)
(of arg2 a2-zap))) in vp-1) [substitute (7)]

10. ((m2-foo same (a quotient (of arcl -2.0)
(of arg2 a2-zap))) in vp-1) [substitute (2)]

11. ((m2-foo same (a quotient (of argl -2.0)
(of arg2 (a difference

(of argi su.n-zap)
(of arg2 al-zap)))))

in vp-1)
[sum/difference rule on a2-zap in (10)]

12. ((m2-foo same (a quotient (of argi -2.0)
(of arg2 (a difference

(of argi 5.0)
(of arg2 -2.0)))))

in vp-i)
[substitute (1) and (2)]

13. ((m2-foo same (a quotient (of argi -2.0)
(of arg2 7.0))) in vp-i)

((m2-foo same -0.28) in vp-rl)

V. Changing .Information and Viewpoints

Io Steele & Sussman's system, when a premise is changed, all

information which; depended on it is withdrawn and new conclusions are

reached. Their system maintains the constraint dependencies on which

their conclusions are based. It cannot, however, remember the

previous values of changed parameters. For example, to change the al

of zap to 2.0, the new value is inserted in the system and changes are

propagated t

Omega does not permit changing a description. Information can be,

added that specifies a description in more detail, but if we want to

change some information a new viewpoint must be- created that has the

,ew: information in the appropriate field. Other information that was

ino d..e:endent. on the changed infornation is inherited to the new

vJiewooint.

(vp-2 is (an arithmetic viewpoint
(with n.lvious-viewpoint vp-1)
(with ,oidification

(an adder-arg-modification
(with adder zap)
(with arg al)
(with i-. w-die cfr iption 2.0))))

Since viewpoints are descriptions we can explicitly describe the

changes between vp-2 and vp-1 in creating the description of vp-2.

This helps the system determine what information should be inherited

by a new viewpoint and why, in addition to providing a record of-

changes in the database [Barber 1981, p.7].

The description of zap in the new viewpoint contains the new

information along with information inherited from the old viewpoint.

((a2-zap is (a difference (of argi 5.0))
(of arg2 2.0)) in vp-2)

The following information can be derived by the system:

((a2-zap same 3.0) in vp-2)

((m2-foo same 0.66) in vp-2)

There are several differences between the viewpoint mechanism and the

approaches to changed information used by Steele & Sussman or Borning.

First, the viewpoint mechanism allows Omega to have a complete record

of all changes made to the system. This includes dependency

information as well as previous values of objects. Although saving

the information takes up space, it is very useful to have a record of

changes for explaining why changes took place. In some applications,

a complete record of values is essential (for example, if the system

is being used to model a financial portfolio). Steele & Sussman's

system retains only dependency infortmation, but no history of previous

values. Thinlab dIes not even maintain dependency information.

A second dffference is that when changes are--made in Thinglabh nad

.Steee -•& ussman 's ystem, :both ,.old -a.d new informati on ,:exi•Es in •he

database while incremental deductions are ::mnde. Some of :the .61d

information is consistent with the new information and some is

inconsistent. At ý-any given 'time, -the informati.on in the system might

be incons istent :Barber 1981,.p p.,] because ,of the incremental .nature

'of the de'ductions. Omega :maintaitns iniformation .consstenCy'y keep ing

-old and new information in -separate :viewpoints.

Viewpoints .al:so .al 1 ow % the system to reason :aboot proposed ..changes.

For example, to compare the results of several potential changes, .we

could create a :new -viewpoint : for each .proposed :change a::a.d investigate

its :consequences, -withoot altering :our curreaft version of the

descripthion.

At'this potnt the reader imight ,•wonder -what i~s thed diffe cence ';between

viewpoints antd,;situational ;variables [IMCaithy 1969]. One :diffferenace

is that sy-tems-which luse; ittuationAl variablles have 'no inheritance

;mnechanisms '[Hew ttt, .pe rsonal .ommunication]. F.urthermore, -in Omega

v iewpo ints .a redescriptions ..and : thus 'may be described exp.o ttiy

. Barber 1981, :p.4].

V1. Dealing with Circularities

Now consider a simple problem which cannot be solved by local constraint

propagation in either Steele and Sussman's system or in lhinglab.

Although there are enough "knowns" in the system to solve the problem,

neither the adder nor the multiplier alone has enough information to

make any deductions. There are two factors which prevent Thinglab and

Steele & Sussman's system.from solving this network. First, their

.systems are dependent on having a direction of computational flow in

the network. The presence of the loop in the constraints prevents the

system from finding this flow [Steele & Sussman p. 24]. Second, their

systems are unable to make use of abstract information present in the

network (for example, that the product of any number and one is the number),

since they can only propagate concrete values.

The two systems had to expand their basic constraint propagation schemes to

handle circularities. Thinglab solves problems of this type using a

technique called "relaxation,"'which makes successive approximations

of the values until all constraints are satisfied. Steele & Sussman

employ multiple, redundant descriptions to re-organize the information

in such a way that the loops are bypassed.

Omega can use abstract information such as the rule of multiplicative

identity which is embe!ded in the system. This rule nives Omega a

more global knowledge. In addi4..-n to knowing the value at al-za~p, it

knows the ?relation of t'he value at al-zap :to the value at m.l-foo.

This allows 'Omega to derive the solution to the above problem using

only its rules of inference and so•me rules of arithmetic exp:r.esse.d as

Omega descriptions.

The network, expressed in Omega, is:

1. ((sum-zap same (a sum (of argi al-zap) (of arg2 a2-zap)).) in vp-3)

2. .((p-foo same (.a product (of argl al-ftoo) (of arg2 m2-foo))) in vp-3)

3. ((p-ifoo same al-zap) in vp-3)

4. ((a2-zap same ml-foo) in vp-3)

5. ((sum-zap same 5.0) in vp-3)

6. (f(m2-foo same 1.0) in vp-3)

,Using the sum/difference rule, the product/quotient rule, and

its ru'les of inference, the system can derive the following

des cript ions:

7. ((p-foo same (a product (of argl a2--zap)
(of arg2 1.0))) in vp-3)

[substitute (A4) and (-6) in (2)]

8. ((p-foo same .a2-zap) in vp-3) [multiplicative identity rule]

9. ((sum-zap same (a -sum (of argl p-foo)

(of arg2 a2-zap))) in vp-3)

[substitute (3) in (1)]

10. ((sum-zap same (a sum (of argl a2-zap)
(of arg2 a2-.zap))) in vp-3) .[by (8)]

.11. ((sum-zap same (a product (of argl 2) (of ar.g2 .aZ-zap))) in vp-3)

[A + A rule]

12. ((.5.0 same (a product (of argl 2) (with arg2 a2-zap))) in vp-3)

[substiLute (5)]

13. ((a2-zap same (a quotient (with argl 5) (with aro2 2',; in vp-3)

[product/quLient rule]

14. ((a2-zap same 5/2) in vp-3)

15. ((p-foo same 5/2) in vp-3) [hy (8)]

16. ((al-zap same 5/2) in vp-3) [by (3)]

VI. Contradictions

A critical property of constraint systems is the ability to

recognize contradictions. Sussman & Steele give the example of

setting the product of foo to 17.0 in the previous network:

Omega also finds tne contradiction:

(vp-4 is (an arithmetic-viewpoint
(with previous-viewpoint vp-3)
(with modification

(an adder-arg-modification
(with adder zap)
(with arg al)
(with new-value 17.0)))))

1. ((al-zap same 17.0) in vp-4)

2. ((sum-zap same 5.0) in vp-4)

3. ((ml-foo same 1.0) in vp-4)

4. ((sum-zap same (a sum (with argl al-zap) (with ara2 a2-zap))) in vp-4)

5. ((al-zap same (a product (with argl m!n-foo)(with arg2 a2-zap))) in vp-4)

6. ((sum-zap same (a sum (with argl 17.0) (with arg2 a2-zap))) in vp-4)

7. ((5.0 same (a sum (with argl 17.0) (with argZ a2-zap))) in vp-4)

8. ia2-ZD same (a di' erence `with arc,~ 5) (with :2 17.02)) i: vp-!)

9. ((a2-zap same -12.0) i:n vp-4)

1. ((;al-zap same ('a product (with :argl 1) (with :arg2 a.,-zap))) in .vp-4)

11. ((17.0 same (a product (with aorgl 1) (.with arg2 a2--zap))) in _p--4)

1'2. ((a2-zap same (:a quotient (,with argl 1:7.0) (with atrg2 1))) in vp-.4)

:13. (,(a2-zap same 17.0) in vp-4)

14. ((fa2-zap in vp-4) same 17.0)

15. (.(t2r-zap in vp-4) same -12.0)

1.6. (.(17.0 same -12.0) in vp-4) .coantradiction

VIIr. tAntecedent and :Consequent Reasoning

Omega uses :both -nt.c6dednt :and consequent reasonisng to solve problems..

Given a statement of -the fcorm. (a ==> t:b), antecedent -reas-oning ,says m'"1f

-a is asserted, t-hken iassert b:". ;Consequent reasoning :says '•-f ,goala .b,.

then -,establ'ish s-ubgoal a,'" Steele & 'Sussmanirs system and Thinglab

only -use ,anitecedent reasoning. This reduces the number of :different

types of problems that they can sol-ve. For exampile, "abso:lute value"

is a :constraint between two -numbers ;easily :represe:nte-d in any of the

three systems.

~1S-VM~ AR4 Aas- VAL

In -Omega.:

((an abs-v-wal (of arg abs-va:l-arg):) same
(a sq-.t (of ar.gl ('a product (of arg2 abs-val-arg)

(of arg2 abs-.val.-arg)))))

((.,an ab-s-.val-a'rg (of .arg x.)) i-s (or x -(minus .x)).)

If .wye pieesent .a numbe-r, say 4. as .-ar.1 of the -a-bsotlute va.lue

constraint, all systems will det.^mine that 4 is the value ihat should

le assigned to abs-val. If we .hange argl to -4, the system again can

determine abs-val. If, however, we present 4 as the value of abs--val,

and ask ! he system for the value of -,(i I , the pioble!n hr cores less

trivial. Thinglab and Steele & Sussman's system, if they came up with

any answer at all, would probably report that argi is 4 (by propagating

known values backwards through the sqrt and squarer constraints). This

is only part of the answer; furthermore it is possible that we intended

the value of argl to be negative. Omega will return the correct solution,

(or (-4) 4).

IX. Reasoning about Procedures

Steele & Sussman's system and Thinglab can execute procedures

implicitly by propagating constraints, however they have only limited

ability to reason about the procedures they use. Consider the following

example from Thinglab, a farenheit to centigrade temperature converter.

tem F
tempC

Thinglab and Steele & Sussman's system can provide information such as

"what is the centigrade temp if the farenheit temp is 32 degrees?" but

cannot answer questions such as "if the farenheit temperature

increases, does the centigrade temperature increase?" Omega can

reason about procedures explicitly, using rules such as:

((tempF in vp-1) > (tempF in vp-O)) ==> ((tempC in vp-i) > (tempC in vp-0))

In cther words, if the f arenheit Lemn!oerature at 2:00 pni is greater t.hij• the

14.

rarenheit temperature at 3:00 pm, the system can deduce that ýhe centigrade

tempertaure has also increassu.

X. Conclusions

All representation languages are not created equal, Omega has certain

feaures which m~kes it more powerful for dealing with constraint

system then some other languages, This is not to imply, however, that

Omega is the only knowledge representation language suitable for

this task, FRL [Goldstein 77] and KRL [Fikes 80] are two other

languages which have many features useful for this application. A

comparison of the relative powers of Omega, KRL, and FRL for dealing

with constraint systems is a topic for further research.

Functionally, Omega has advantages over Sussman & Steele's system and

Thinglab. This paper gives an example of a problem that Omega can

solve that the other systems cannot without stepping outside their

basic propagation mechanisms. Omegq uses both antecedent and

consequent reasqning, while the other systems are restricted to

anteqedent reassoning. The viewpoint mechanism allows Omega to reason

explicitly abOj0t changing processes, while the other systems can only

execute processes by propagating constraints.

15.

XI. I;cknowledgments

Many of the topics presented in this paper were pointed out to me by

Carl Hewitt, Gerald Barber, and Giuseppe Attardi.

Steele & Sussman's paper and Borning's work were very useful for pointing out

the issues involved in constraint networks.

Appendix A

Basic Omega Axioms

Some of the following is taken from [Hewitt 80].

Extensionality

((=descriptionl is =description2) <==>
(for-all =d ((=d is =descriptionl) ==> (=d is =description2))))

from which can be derived

Reflexivity of Inheritance

(=description is =description)

Transitivity of Inheritance

(((=descriptionl is =description2) A
(=description2 is =description3)) ==>
(=descriptionl is =description3))

Commutativity

Commutativity says that the order in which attributions are listed are

irrelevant.

((a =descriptionl
<<=attributionsl>>
=attribution2
<<=attributions3>>
=attribution4
<<=attributions5>>)

same (a =descriptionl
<<=attributionsl>>
=attribution4
<<=attributions3>>
=attribution2
<<=attributions5>))

For example:,

((a class (with lectuier, KRD) (with lecture.r PSZ)) same
(a class (with lecturer PSZ) (with lecturer KRD)))

Omnission

Omission says that attributions of a- description can be deleted to

form a more genera.l description,

((a =description1
<<attributionsl)>
=attribution2
<<attributions3>>) is

(a =descript:ionl
<<=attributionsl>>
<<=attribution3>>))

For example,

((a class (with lecturer KRD) (with lecturer PSZ)) is

(a class (with lecturer KRD)))

Merging

The Axiom of Merging says that attributions of the same concept can be

merged.,

(((=descriptionl is (a
(=descriptionl is (a

{f=descriptioni is (a

=description2 <<=attributionsl>>)) A
=des.cription2 <<=att;ributions2>>)))

=description2 <<=attributionsl>>
<<=attributions2>>)))

For example, if

(6..891 is (a class (with lecturer KRD)))
(.6..891 is (a class (with lecturer PSZ)))
(6S,891 is (a class (with lecturer HES)))

then
(6.891 is (a class (with

(with
(with

lecturer KRD)
lecturer PSZ)
lec.tur-er HES)))

ThL Axiom of Merging does not hold for the "of" attribution. For

c^ample, if x=7 we could say of x:

(x is (a sum (of argI 2) (of arg2 3)))
(x is (a sum (of argl 4) (of arg2 1)))

Then by the axiom of deletion, we could deduce the following:

(x is (a sum (of argI 2)))

(x is (a sum (of arg2 1)))

But from the above, we would not want to be able to conclude that

(x is (a sum (of argI 2) (of arg2 1))) 1

Monotonicity of Attributes

((=descriptionl is =description2) ==>
((a =concept (with =attribute =descriptionl))
is
(a =concept (with =attribute =description2))))

For example, if

(PSZ is (a knowledge-base-expert))
(6.891 is (a class (with lecturer PSZ)))

then
(6.891 is (a class (with lecturer (a knowledge-base-expert))))

Strictness

The Axiom of Strictness serves to get rid of garbage in the

description system.

((a Concept (of Relatibn nothing)), is nothing)

Fusion of Attributes

if
(x is (a Concept (with Rel descriptionl))) A
(x is (a Concept (must-be Rel description2))

then
(x is (a Concept (with Rel (and descriptionI description2))))

Fusion, cont'd.

i'f .(,x is .(a Concept (w:i:th Rel description:l)) -A
(vx is (a Concep-t (muSt-be Rel des'cription))

'then
(:x is (ýa Concept (with-unique Rel (and description1 description2))))

'Distribulti-viity Ax-iom for Viewpoints

((.(=des:cript.ionl is =descriptvion2) in vp)

((=descripti••nI in vp) 'is (-=,description2 in vp')'))

Th-is axioms states 'thit an inheritance relation holds :in a -viewpoint iff
the Udescript-iotrs are 'relativized to that viewpoint.

Appendix B

Axioms of Arithmetic

These axioms are used in the examples above. Some of these axioms

were taken from a 6.036 problem set.

Sum-Difference Rule

(((a sum (with argi =b)
(with arg2 =c)) same =a)

<==>
((a difference (with arg1 =a)

(with arg2 =b)) same =c))

Product-Quotient Rule

(((a product (with argl =b)
(with arg2 =c)) same =a)

((a quotient (with top =a)
(with bottom =b)) same =c))

Rule of Multiplicative Identity

((a product (with argl =a)
(with arg2 1)) same =a)

A + A Rule

((a sum (with argl =a)
(with arg2 =a)) same

(a product (with argi =a)
(with arg2 2)))

References

[Barber 1981] Barber, Gerald. "Reasoning About Change in
Knowledgeable Office Systems (draft)." (April 1981).

[Uorning 1979] Borning, Alan. "Thinglab -- A Constraint-Oriented
Simulation Laboratory." Ph.D. Thesis. Stanford U.o(March
1979).

[Hewitt 1980] Hewitt, Carl, Giuseppe Attardi, and Maria Simi.
"Knowledge Embedding in the Description System Omega" in
Proceedings of the First Annual National Conference on
Artificial Intelligence. Stanford U. (August, 1980).

[McCarthy 1969] McCarthy, J. and P.J. Hayes. "Some Philosophical
Problems from the Standpoint of Artificial Intelligence."
Machine Intelligence 4, pp.463-502. (Edinburgh University
Press, 1969).

[Raphael 1964] Raphael, Bertram. "SIR: A Computer Program for
Semantic Information Retrieval." Ph.D. Thesis. MIT
(Cambridge, 1964).

[Steele & Sussman 1978] Steele, Guy Lewis, Jr. and Gerald Jay Sussman.
"Constraints." MIT AI Lab Memo 502 (Cambridge, 1978).

[Sutherland 1963] Sutherland, Ivan E. "Sketchpad: A Man-Machine
Graphical Communication System." Ph.D. Thesis. MIT
(Cambridge, 1963).

