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ABSTRACT: In this paper we analyse several approaches to the design of
Cooperative Algorithms for solving a general problem: That of computing
the values of some property over a spatial domain, when these values are
constrained (but not uniquely determined) by some observations, and by
some a priori knowledge about the nature of the solution (smoothness,
for example).

Specifically, we discuss the use of: Variational techniques; stochastic
approximation methods for global optimization, and linear threshold net-
works. Finally, we present a new approach, based on the interconnection
of Winner-take-all networks, for which it is possible to establish precise
convergence results, including bounds on the rate of convergence.
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1. Introduction.

The purpose of this paper is to discuss several approaches to the design of
algorithms for the solution of a general problem, which often arises in the context
of modeling perceptual processes: That of computing the values of some property
over a spatial domain, given observations that place some constraints on these
values, but do not define them uniquely.

Well known examples of this problem are, for instance, the computation of
stereo disparity [MP1], [MP2] and of visual flow [H1]; the computation of structure
from motion [U1] and the problem of region discrimination [D1].

We will be interested specifically in the design of "Cooperative Algorithms"
[MP1] -Networks of locally connected simple processors which cooperate to
perform a global computation.

First of all, let us introduce some notation, and make this definitions more
precise.

2. The Problem.

Consider a finite set fn (which in general corresponds to the discretization of
some region of R2), and some property C, which can take values from a finite set
Q = {C1,.., C }.

Suppose we have some observations which define a "compatibility function"
O:Q X 0 - R which has the following property:

(C1 l, x) > O(C 2, x) iff assigning C1 to x is more compatible with the observations
than assigning C2.

We suppose that for some x E 0, • is a multimodal function of C, and so,
it is not possible to assign a unique value of C to every z, based only on the
observations.

Our problem (to which we will refer to as "Problem Pl") is to reduce this
ambiguity as much as possible using some measure of the compatibility of the
assignment C(x) with C(y), for y E Nx (some neighbourhood of z), which we will
denote by g(x, C) (we will refer to g as the "smoothness constraint").

To perform this task, we will construct a network by associating with each
x E 0, either an element C, which can be in one of N states: C, E Q (in the case
of an N-ary network), or a set of N elements {C,ad:d E Q}, with Cx,d E {0, 1}
(binary network).

In any case, a Cooperative Algorithm is a rule for updating the state of the
network C. It can be represented formally as:

Cx,d(t + 1) = fx,d(C(t), t) (or C,(t + 1) = fx(C(t), t),



with the additional requirement that each element is locally connected, that
is:

fx,d(C(t), t) fx,d({Cy,s(t):y E Nx, 8 E Nd}, t)

The algorithm will be adequate for solving problem P1, if given some initial
state, it converges reasonably fast to a fixed point C* which satisfies "as much as
possible" the constraints:

a) Uniqueness.
b) Compatibility with the observations.
c) Smoothness.

Remarks:

(i) In general, it will not be possible to satisfy completely and simultaneously
all these constraints. Therefore, any algorithm will have to compromise.
If we are using this algorithm to model a perceptual process, its behaviour
will be satisfactory if this compromise is the same as the one made by
the biological system.

(ii) In the case of a binary network, it is possible to have ambiguous
configurations at any time t (i.e., states for which C,,d(t) = 1 for more
than one d E Q) and therefore, it is necessary to include the uniqueness
constraint explicitly in the design. For an N-ary network, of course, this
constraint is implicitly incorporated and always satisfied.

(iii) The operation of the network will be Synchronous if all its elements
are updated in parallel at the same time, and Asynchronous if they are
updated sequentially, one at a time. Note that one synchronous iteration
is equivalent to ICJ (the number of elements of C) asynchronous ones
(we will refer to CIJ succesive iterations as a Global Iteration), and that
the evolution of the asynchronous network will depend, in general, on
the order in which its elements are updated.

In the next sections, we discuss several approaches to the design of cooperative
networks whose steady states correspond to solutions of problem P1. Specifically,
we will explore the following:

a) Variational approaches.
b) Linear Threshold Networks.
c) Winner-take-all Networks.

To make this discussion more specific, we will use throughout as a particular
instance of problem P1, a simplified version of the Stereo Disparity Problem (See,
for example, [MP1] for a detailed description):

Given two "retinal" binary images R(z), L(z), z E fl, which correspond
to the right and left eye views of a surface whose distance from the observer



is piecewise constant, the problem is to find, for each x, a disparity d(z) which
satisfies the following conditions almost everywhere:

(i) R(xl + d(xl, x2), x2) = L(xl, x2) (Compatibility with the observations).

(ii) d(y) = d(x) for y E Nx (Smoothness).

Note that condition (i) is violated in regions close to the vertical boundaries
of planes lying at different depths (occluded regions), and condition (ii) is violated
at every depth discontinuity.

3. Variational Approaches to the Design of Cooperative Networks.

The formulation of problem P1, suggests the definition of an "Energy" function
of the form:

E(C) = [-g(x, C) - B (Cx, x)] (1)
xEA

for some constant B. Then, the solution to P1, will correspond to the
variational problem of finding a function Cx = C(x):{2 ý Q that minimizes (1).

To find a formal solution to this problem, we generate a set of simultaneous
equations, either by putting:

aE
=•0

ac(x)

for all x E n, or by considering the continuous problem that is generated as the
high resolution limit of (1):

min E(C) [-g(zC) ) - BO(C(x), x)]dx (2)

and then discretizing the resulting differential equations (the answer should be the
same in both cases).

To be specific, consider the following example, for the stereo disparity
computation:

Let C(x) be the disparity surface we are looking for, and let g(x, C) be a
measure of the curvature of the surface, such as:

g(x, C)= -- 1 grad (x)12 (3)
2

and let 0 be defined as:

(c, x) = -- [R(xi + c, x2) - L(xi, x2)]2  (4)
2



Note that even though R and L are in general formally discontinuous functions,
one could argue that due to the blurring produced by any optical system, they
will become continuous in the high resolution limit. For a fixed x, 0 will look
somewhat like Fig. 1.

The Euler equations for the variational problem (2) are:

C(,z)

with natural boundary conditions:

BC = 0 on the boundary nf)an

Using a finite difference approximation for the derivatives, we get, for the
interior points, the non-linear equations:

C(x1 + 1, 22) + C(Xs - 1, Z2) + C(X1, a2 + 1) + C(z, a - 1) C()
4

+B [(O(C() + 1, x) - q(C(x) - 1, z)] = 0 (6)

which in principle could be solved with the following relaxation scheme:

C.(t + 1) = [C ±1,(t) + (t) + C,1(t) + ()

+ B[(Cz(t) + 1, X) - ,(Cm(t) - 1, ;)] (7)

Note that if 0(c, x) were not worse than quadratic on c, (5) would generate
a sparse system of linear equations, whose unique (under some mild assumptions)
solution could then be obtained by a relaxation scheme which would correspond
to an N-ary cooperative network [T1]. However, the multimodality of q is crucial
to the definition of problem P1, and in this case, it is clear that it is not possible
to guarantee the convergence of (7) to the global minimum of (1).

4. Global Optimization and Statistical Thermodynamics.

Since a straightforward application of variational methods to P1 will not work
in general, one could try to find the global minimum of (1) directly, using a
stochastic approximation scheme.

We will now describe a method, recently published by Kirkpatrick et. al.
[K1], which may be useful in this connection.

Consider a many-body system C, where C,(t) represents the state of the xth
element at time t, and suppose that to each configuration C corresponds an energy



function E(C); if the elements C, change their state randomly, in such a way that
every feasible configuration is equally probable, when the system reaches thermal
equilibrium at a given temperature T (which is related to the variance of the
fluctuations in the state of each element), the probability of finding the system at a
state C, will be proportional to exp(-E(C)/kT), where k is Boltzmann's constant
(see,for example [M2]).

On the other hand, Metropolis et. al. [M1] have shown that it is possible to
simulate the behaviour of such systems, for arbitrary energy functions, so that if
we change the state according with certain rules, we will get each configuration C
with a probability given by the Boltzmann distribution.

Since as T 1 0 this distribution collapses into the lowest energy state or states,
Metropolis Algorithm provides us, in principle, with a method for finding the
global minimum of an arbitrary function of many variables.

Metropolis Algorithm, for updating the state of C, is:

1: Choose u E Q - {C5(t)} at random. (Q is the set of admissible values for
the state).
2: Compute AE = E(C(t)) - E(C'(t)), where C' is obtained from C by
replacing C, by u.

3: If AE < 0, put Cx(t + 1) = u. Otherwise, put C,(t + 1) = u
with probability exp(-AE/kT), and C,(t + 1) = C7(t) with prob. (1 -
exp(-AE/kT).

In Kirkpatrick's scheme, the system is initially "melted", by allowing it to
reach thermal equilibrium at high temperature. (This has the effect of providing a
randomized initial state). Then, the temperature is lowered very slowly, allowing
the system to stay at each temperature long enough as to reach a steady state
("simulated annealing"), until the system "freezes" and no further changes occur.

In the particular case of (1), since for the stereo disparity computation Cs E
Q, Q being a finite set, we can apply Kirkpatrick's Algorithm -which can be
considered as a stochastic N-ary asynchronous cooperative network- directly.
Note that the computation of AE is local in this case: For example, for g and 4
defined by (3) and (4), we get:

AE = (C.- u) C..- 1 , + c, 1 ,,2 I1 + C,+1,T 2 + CX, 1 +

2(u 2 - C)+ B[(Cx, z)- 0(u, x)] (8)

This solution,however, is not completely satisfactory, because of the following
reasons:

a) The convergence of Kirkpatrick's Algorithm for "melted" initial states is
very slow.



b) In general, we can only guarantee the convergence of the algorithm to a
configuration C that will give, with high probability, a value of E(C) close to
the global minimum, and it is not easy to characterize these configurations in
terms of the solution to P1 (See appendix A).

5. "Linear Threshold" Networks.

A different approach to the solution of P1 is to specify first the form of the
cooperative network, and then try to find a set of parameters that will cause the
algorithm to have the desired behaviour. In particular, we will discuss in this
section binary algorithms of the form:

ci(t + 1) = a(pC)

with pi = + ni - O i, jE n X D; (9)

(1, if p> 0
~p)= 0, otherwise ;

wii satisfying wij = wju, for all i, E fl X Q

and Ci E {0, 1}, for all i

The parameters wj, 77i and 0 must be chosen in such a way that the constraints
to the solution of P1 are implemented locally.

5.1 Synchronous Algorithms.

For the case of the stereo computation, Marr and Poggio [MP1] have shown
that it is possible to define a binary network {C,,d}, where d E Q = {d ,...d7 } is
the disparity associated with point z E n, to solve P1.

The smoothness constraint is implemented by defining:

Wx,d,y,d = 1, for y E N,

where N, is an excitatory neighbourhood of z. The uniqueness constraint, by:

w,,t,,d, = -e, for (y, d') E M,,d

with M.,d an inhibitory neighbourhood corresponding to multiple matches at z
(see [MP1] for a precise definition of these neighbourhoods), and

W,d,y,d, = 0 elsewhere.



The compatibility with the observations is enforced by putting

x,d = -= 1, if R(xl + d, 2) = L( 2) (10)
0,d - , otherwise

Although it has not been possible to this date to find a rigorous proof for
the convergence of this algorithm, numerical experiments and a probabilistic
analysis [MP2] show that the synchronous network defined above will converge
to reasonably good solutions for random dot stereograms portraying piecewise
constant surfaces. It is not clear, however, how to extend this formulation to the
more interesting cases of slowly varying disparities - although some ideas are
suggested in [MP2] -, and different sized elements placed in points that do not
correspond to a regular lattice.

5.2 Asynchronous Algorithms.

We now consider algorithms of the form (9) that operate asynchronously. In
this case, it has been shown [H2,H3] that if we choose the parameters in such a
way that pi is never 0 (this can be done, for example, if wiy and r1i are integers,
by giving B a non-integer value), the "Energy" function:

E(C) = 2- jC1CGi - E Ci(,i - 0) (11)

will decrease monotonically at every global iteration of the asynchronous algorithm
in which the state of every element is updated, unless the network is at a fixed
point.

It is interesting to note that with the parameter definitions given above for
the stereo problem, we can identify the smoothness constraint:

1
g(x, C)= - C,d E Cy,d2 yENa

the compatibility with the observations:

O(C, d, x) = Cm,dC ,d

and the uniqueness constraint:

U(x, C) = -C,,d 0 + ,d E ,da]
2 y,d'EM.,d

Then, the asynchronous operation. of (9) may be considered as an algorithm for
finding a local minimum of (11), which is a particular case of the function:

E(C) = - C [g(x, C) + (C, d, z)+ U(s, C)] (12)
z,dEfl XQ



It is also possible to use Kirkpatrick's Algorithm, and define an asynchronous
stochastic binary network that will converge to a value of (11) close to its global
minimum [H2]. However, it is possible to show (see appendix A) that although
the correct solution is a local minimum of (11), in general it is not the global
minimum, and there are many local minima with values of E close to it that
correspond to incorrect solutions.

6. Winner-take-all Networks.

Linear threshold networks are not the only form of local implementation of
the constraints generated by PL. A different possibility is to associate with each
point x E 0 a binary "Winner-take-all" network [Fl] with IQI cells: {C.,d:d E Q}.

The input u(x, d) to each cell will be of the form:

u(x, d) = g(Z, C) + Bb(d, x) (13)

The output (the new value of CS,d) is given by:

C,d = fo'(q(d, x) - 0), if u(z, d) = maxd'EQ u(x, d') (14)
0, otherwise

with a defined as in (9). This means that Cx,d will be "on" at time t + 1 only
if it is maximally stimulated with respect to its neighbours at time t, and if it is
"compatible enough" with the observations.

The main advantage of this design is that it is possible to prove its fast
convergence to the correct solution of P1. As an example, we will analize the case
of the stereo disparity computation. We will need the following definitions:

1. f2 will be defined as a connected set of points lying on a square lattice.

2. For every point z e f, we define N, as:

N, -- f=n {y:iz- y < 2} (15)

For the interior points of [1, N, is shown in Fig. 2.
3. Given a connected region R C 0f, we define the set of its interior points I(R)
as:

I(R)= {x E R:IN, lRI = lN 2 1 (16)

In a similar way we define:
I 2(R) = i(I(R))

and so on. We call the points x E R - I(R), Boundary points of R.
4. Given a connected region R _C 0, we define its Diameter D(R) as the smallest
integer such that:

IBn(R) = 0



Now consider the following algorithm for the stereo disparity problem:

C,ad(t + 1) =- C°, if uz,d(t) = maxd'EQ ux,d'(t) (17)10, otherwise

where u,ad(t) = aC ,d + E Cx,d(t)
yENx

with C ,d = C,ad(O) given by (10), and a a constant > 8.

We have the following:

Theorem 1: Given a random dot stereogram of a domain fl portraying n non-
overlapping constant depth regions {R,...R,,} with disparities {dl...d,} satisfying
the condition:

if INfnRjl < 8 andC,d , = 1, then INzflRI > IN, Hd'I, (18)

for d' dj; for all xERj, andall Rj E f  with Hd={x:C, d=1},

then, algorithm (17) will converge to a fixed point C* in which:

(i) For every x on a non occluded region at disparity d, C*,d = 1 and
C*l,, = 0 for d' = d.

(ii) For x on an occluded region, either C* d = 0 for all d, or C,d = 1 for
one or more isolated d, corresponding to false targets.

Further, the convergence to C* will take less than K iterations, Where K is the
diameter of the largest connected cluster of "on" cells on a wrong layer of CO,d.

Proof:

Consider a non--occluded region R at disparity d. For any interior point
x E R, we have:

ux,d(0) = max u,d'(0) (21)

and therefore, C.,d(1) = 1.

For a point x near the boundary, INXI < 8, and condition (18) guarantees
that (21) holds for this point too.

Now consider a cluster A C Hd, n. R, for some d' = d. For all its boundary
points y, we will have

Ud'(0) < Uy,d(O),



since y is either interior to R, in which case

E Cz,d(O) > E Cx,d'(0),
zEN, zEN,

or it is in the boundary of R, in which case (18) holds. Therefore, we have:

A(1) C I(A) and R(1)= R

where A(1) = {z E A:C,,d'(1) = 1}

and R(1)= {z E R:C,,d(1) = 1}.

The recursive application of this reasoning establishes the first part of the
theorem.

Finally, for occluded regions, there will be no dense sets in Coat any disparity,
and since the form of (17) precludes the growth over regions with Co = 0, if there
are any isolated points for which CO,d = 1, they will remain "on" in C*, and
otherwise, C* = 0 uniformly over these regions. M

Remarks:

1. Condition (18) means that there should not be dense clusters of "on" cells on the
wrong layers of Co along the boundaries of any region Rj. If this happens, limit
cycles, involving some cells along the problematic segments of these boundaries,
may appear. However, if we extend the definition of C* to include configurations
which are invariant, except for these limit cycles, it is clear that Theorem 1 still
holds for 0' C .l, where f' is a subdomain in which (18) holds. The final
configurations in this case, will have some boundaries misplaced, and there may
be some leftover ambiguity (C ,d = 1 for more than one d) along the boundary
points. It is interesting to note that the human visual system exhibits an analogous
behaviour in similar situations.

2. Algorithm (17) will not grow regions into occluded (uncorrelated) areas.
Psycophysical experiments show that these areas should be included with the
adjacent region that is at the greatest depth. It can be verified that an algorithm
such as the following:

C,,d(t +1) = 1, if EZEN C,,d(t) > 2Cx,d'(t)[EVEN. Cy,d'(t) I d'4 d (19)
(0, otherwise

with Cx,d(O) = C*,d (the fixed point of (17)), will converge to a solution in
which these regions are correctly filled in, provided there are no wrong clusters
in the occluded regions, and that each layer of constant d is allowed to converge
separately, starting with d = dmin = min(d E Q).



3. When defining a stereo computation, one can work either on right (or
left) eye-centered coordinates, or on "object-centered" coordinates (see Fig. 3).
This distinction becomes particularly important near the boundaries of partially
occluded regions, since a single-valued (discontinuous) surface on object-centered
coordinates can become multivalued on eye-centered ones. The strictly correct
version of algorithm (1.7) should be considered to be defined with x expressed in
object-centered coordinates. In this case, d is not disparity, but depth, and CO
should be defined by:

co 1, if FR(x, d) = FL(X, d)X d 0, otherwise (20

where FR(x, d) and FL(x, d) are the points on the right and left retinas correspond-
ing to the point (x, d) (XL and zR in Fig. 3). However, for a random dot
stereogram, the behaviour of the algorithm on non-occluded regions is the same if
we work on, say, right eye-centered coordinates, and its description is simpler, so
we adopt it here. Theorem 1 holds for both cases.

4. Note that even when (xl, X2) E 6, (xl + d, x2) may not be, and so, if we load the
network using (10), some cells near the boundaries of f may remain undefined,
and (17) may give incorrect results. Therefore, we implicitly assume the existence
of a larger region no D2 n such that for all xE 12, Co,d is defined for y E N, U{z}
and d E Q. Also, the operation of (17) should be understood in a modified sense,
so that Cz,d(t) = C0,d for all z E o0 - f, all d E Q, and all t.

One useful corollary, which follows directly from remark (1) is that if we have
a stereogram with sparsely located tokens, algorithm (17) will not misplace them,
although condition (18) may be violated in the blank areas. In precise terms, we
have:

Corollary 1: Suppose that within each region Rj of constant disparity dj there is
a set of sparse points Xj C Ri, and suppose that it is possible to find a region
Rj' (not necessarily connected) such that X i C R' _C Rj, and that (18) holds for
every Ri'.

Then, for every x E Xj, C:,d = 1 and C *d = 0, for d # dj, where C* must be
taken in the sense of remark (1). 0

A second corollary establishes that it is not necessary to process all fl at the
same time, but that a complete representation can be built up by defining local
networks corresponding to windows W C n, provided the boundary conditions
are handled correctly.

Let Cn(x, d) and C~(x, d) be the state of the (x, d) cell at time t in the
complete and local network respectively. We have:



Corollary 2: Suppose (18) holds in f2, and consider the sets W1 C W C [. Suppose
that W and W1 are chosen in such a way that for every x E W1, C~,(y, d) = C(y, d),
for all y E Nx U{z}, and all d E Q.
Suppose further that either W1 intersects at least two regions at different disparities
or, if W1 C Rj, for some j, then, for some x E Wt,

IN•lW1I > IN, Hd lnwli, for all d di

(i.e., the stereogram is not completely ambiguous inside WI).
Then, algorithm (17), modified in such a way that Ct(x, d) = Cwo(x, d) for all
t, all x E W - W1, and all d E Q, will converge to a fixed point C* for which
Cw(x, d) = Cn(x, d) for all x belonging to unoccluded regions inside W1.

Proof:

Consider a region R of constant disparity d such that R' = R W1 w 0, and
let B1 = R nB(W1). For every point x E R' - B1, C'(sx, d) = 1, by the same
arguments as in Theorem 1. For x E B1, C '(x, d) = 1 too, since C (y, d) =
C°(y, d) for y E Nx, and (18) holds in 0. Therefore, R'(1) = R'.

On the other hand, for any cluster A C R' n Hd, d' = d, A(1) _C A and A(1) - A,
since the stereogram is not completely ambiguous inside W1.Applying this reasoning
recursively, we get, for every x E R', that C(zx, d) = 1, and Cw(x, d') = 0, d' 3 d,
which, together with Theorem 1, completes the proof. M
Note that W - W1 defines the overlap that should exist among local windows, so
that the complete representation, defined by

is correctly formed.

6.1 Extensions.

Algorithm (17) can be extended to the case where depth is not constant, but
varies slowly within each region Rj, as long as the local depth variation within
each region is smaller than the local variation across boundaries between regions.
Formally, we can express this condition by requiring the existence of a known real
number p such that:

max Id - d-l < P < mmin Id,- d,J, forall j (22)
zERj zER6

YEN, nRj WEN. Ri,

where d. is the depth at z.



It is not necessary to have the sites over which the matching is done distributed
on a regular lattice, as long as there is enough information to solve the ambiguities
at every point. In this case, NZ has the form:

N = {y:Ix - yl < r} (23)

and we require that:

IN,( > 1 for every x E f such that

E u,(x, d') > 1
d'

where uO is a function that replaces C°,d on (17). It may be defined as:

(24)

u(x, d) = 1,
0,

if O(x, d) < 0
otherwise

Note that the measure of compatibility with the observations 0 need not be as
simple as (7), but may have a more complex form that incorporates the matching
of other attributes, such as color, orientation, etc.

Finally, the extended version of (17) will be:

Cx,d(t + 1) = {u(x, d),

ux,d(t) = Buo(x, d) + E Cz,d'(t) ;
YENz

d'ENp(d)

Np(d) = {d' E Q:ld - d'I < #} ;

B > maxjlN I and Cz,d(O) = 0, for all z, d.
Condition (18) becomes:

Condition (18) becomes:

If IN•fRN I < INiI, then INfnRil > INnHd,'l

for all xERj and Rj C fl,

where Hd' = {z:u(x, d) = 1, for some di E Np(d)}

With these modifications, Theorem 1 still holds for the modified algorithm
(26).

(25)

where:

if U~,d(t) = maxd'EQ Uz,d'(t)
otherwise (26)

for d' 0 N2#(dj),

(27)



6.2. Numerical Results.

To test the performance of algorithm (17) with random dot stereograms, a
simulator was implemented in a Lisp-Machine. Figure 8 shows the fixed points
corresponding to dense and sparse stereograms portraying a pyramid. As predicted
by the theory, the convergence to the correct solution is fast (less than 4 iterations)
in both cases. In the case of the sparse stereogram, the boundaries are slightly
misplaced, but, as can be verified by direct inspection of the stereogram, all the
dots are correctly located. The fixed point corresponding to the synchronous
operation of (9) is also presented, for comparison.

7. Conclusions.

We have discussed in this paper several approaches to the design of cooperative
networks for a general class of computational problems that consists on finding
the value of some property C for every point on a set, given that the available
observations do not define this value unambiguously, using as a constraint the
relations that must hold between the value of C for a given point and for its
neighbours.

We found that even when this problem leads naturally to the formulation of
an associated variational problem (via the definition of an appropriate "Energy"
function), the multimodality of the functions involved (the ambiguity of the
observations) preclude the direct use of standard variational techniques (which are
based on the satisfacion of necessary conditions for a minimum), that would lead
to the formulation of relaxation schemes.

On the other hand, it is conjectured that stochastic approximation methods
for global optimization -Specifically, Kirkpatrick's algorithm - should be able
to find configurations that correspond to values of the energy close to the global
minimum (even though the rate of convergence might be slow). However,there
is no guarantee that these configurations will correspond to correct solutions of
the original problem, unless the energy function is defined in a very precise way
(paraphrasing Alan Oppenheim, any configuration is optimal, given an appropriate
choice of the energy function), and the problem of defining precisely the required
function, may be as difficult as finding the solution to the original problem directly.

A more promising approach seems to be to define the form of the cooperative
algorithm based on the local enforcement of the original computational goals. In
this context, we discussed the use of Linear Threshold networks, which for specific
computations (the stereo disparity problem) give reasonably good solutions and
rates of convergence. Their main disadvantage is that it has not been possible to
analys<e them rigurously in order to characterize their fixed points, bound their
rate of convergence, etc.

A recent attempt, based on the definition of a monotonically decreasing
energy function for the asynchronous operation of these networks, was found to



be unsatisfactory, mainly because of the difficulties encountered in characterizing
the configurations that correspond to minima of this function.

Finally, a new scheme for the implementation of local constraints, using
interconnected Winner-take-all networks was introduced. This design seems very
attractive for the following reasons:

(i) It is possible to prove rigurously its convergence to the desired solution.

(ii) It is possible to find an upper bound for the number of iterations needed
to reach the solution. This number is in general much smaller than the
average number required by other schemes.

(iii) It is possible to extend these results to more general situations, such as:
non-regular lattices, different types of matching attributes, etc.



Appendix A: Experimental Analysis of the Stereo Disparity Computation Using
Linear Threshold Networks.

For the experimental study of these algorithms, a simulator was implemented
on a Lisp-Machine of the Artificial Intelligence Laboratory, with the following
features:

a) The state of the network is displayed on the screen and updated on line, so that
it is possible to observe its evolution continuously.
b) It is possible to simulate both synchronous and asynchronous modes of operation.
In this last case, several ordering schemes for updating the state of the elements
are possible:

(i) "Gauss-Seidel" ordering. This corresponds to three nested loops, for d,
xz and z2: The innermost loop corresponds to z2 , and the outermost one
to d.

(ii) Random ordering: Three uniformly distributed pseudo-random numbers
corresponding to d, zx and z2 are generated each time.

(iii) Randomly permuted ordering: In this case, the three-dimensional array
Czl,z 2,d is scanned along its diagonals, but before updating an element,
its indices are mapped into a new set using random permutations of the
sequences {0, 1,...64}, {0, 1, ... 64} and {-3, -2, ... 3}. In this form, a
"disordered" sequence is generated, but it is guaranteed that each element
will be updated exactly once every global iteration.

c) For each type of asynchronous iteration it is possible to specify a "temperature"
greater than zero, and simulate an "annealing" scheme using Hinton's algorithm
[H2J.

Al. Results

The "stimulus" used for the set of experiments performed, was a random dot
stereogram portraying a square of 21 X 21 elements floating at disparity -2 in front
of a flat background at disparity 0 (Fig. 4-a).

Both the synchronous and asynchronous algorithms (except for the "Gauss-
Seidel" ordering, which gives large clusters of "on" cells on wrong layers at its fixed
point) converge to configurations that roughly correspond to a central "squarish"
area at disparity -2, and a flat background at disparity 0. These configurations
may differ considerably along the boundary between regions (Figs. 4-c,d). The
asynchronous algorithm tends to produce some small clusters in wrong disparity
layers, particularly along the edges of the background (Fig. 5-b). The rate of
convergence is in general better for the asynchronous algorithm (particularly for
the randomly permuted ordering) than for the synchronous one.

In both cases, the behaviour of the algorithm shows two distinct phases: In the
first iteration, most of the elements that are "on" on the wrong layers (and some



on the correct ones) are turned "off'. As a result of this, at succeding iterations,
the probability of having a cluster capable of growing is relatively high for the
correct regions, which begin to fill in, and very small for the wrong ones, for which
the remaining "on" cells are turned "off'.

This form of operation causes the convergence behaviour described above:
The precise shape of the boundaries between regions will depend on the exact
shape and location of the random clusters that are formed after the first iteration
on the correct layers. Also, it is easy to see that the form of the inhibitory
neighbourhood [MP1] causes the cells lying on wrong layers along a narrow band
near the edges of the background to be on the average less inhibited by the "on"
elements in the correct layers (which in turn are less stimulated) than the interior
points, making thus more likely the formation of wrong stable clusters in these
regions. This effect is more pronounced in the asynchronous case, since a wrong
cell that is left "on", can increase the excitation of a neighbouring one on the
same global iteration, increasing the likelihood of a stable cluster, whereas on the
synchronous case, all the cells of the cluster must be left "on" ot the same time.

A.2. Behaviour of the "Energy". function.

For the values used for the parameters (E = 2, 0 = 3.5) the energy defined in
(11) decreases monotonically at each global iteration of the asynchronous network,
and thus, it converges to a configuration that is a local minimum of (11). On the
other hand, it can be shown that the correct solution is a local minimum of (11)
as well. In fact, all the stable configurations described above correspond to local
minima whose value is very close to that of the correct solution.

Furthermore, it can be easily shown that a uniform layer of "on" cells at
disparity 0, will give a lower energy value than the correct solution, if the ratio
of area/perimeter of the central figure is less than a critical value (for the current
values of the parameters, this critical ratio is approximately 13).

These observations mean that the function (11) exhibits, in phase space, a
large valley with a lot of local minima in it, which correspond to "squarish" central
figures at the correct disparities (and maybe some small incorrect clusters), and
with high probability, with the initial conditions given by (15), the algorithm will
converge to some minimum in this valley.

A.3. Effect of Temperature.

The simulation of "annealing", in the sense of Kirkpatrick, is difficult to
perform on a Lisp-machine, due to the large amount of computation involved.
However, the results obtained so far (Fig. 6) and the above considerations, indicate
that the algorithm will converge to a local minimum located on the " alley of
the squarish figures" (note that the convergence to the global minimum may be
undesirable in some cases).



For the particular case of the stereo problem, however, the initial conditions
already have a lot of structure which does not make sense to destroy by "melting"
the system (Fig. 6-a). Instead, the following modified version may be used:

1: Load the network using (10).

2: Allow the asynchronous algorithm to converge at zero temperature (the
fixed point may contain stable clusters in wrong layers).

3: Rise the temperature a little (say, put T = 1) and perform a few iterations
(this will eliminate the wrong clusters, and make some holes in the correct
layers).

4: Allow the network to converge at zero temperature (this gets rid of the
holes).

This procedure is illustrated in Fig. 7.



Fig. 1: Function 0 for eq. (4)

Fig. 2: N. for eq. (15)
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Fig. 3: Relation between Right-eye-centered coordinates (zR, dR)
and Object-centered ones (Xo, do) for point P. The position of the
projection points AR, AL depends on the position of the right and left
eyes.
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Fig. 4: (a) Random dot stereogram portraying a 21 X 21 square
at disparity -2. (b) Initial state of the network for loading rule (10).
(c) Fixed point for the Synchronous Algorithm. (d) Fixed point for the
Asynchronous Algorithm.
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Fig. 5: (a) State of the network after the first iteration of the
Asynchronous Algorithm. (b) Fixed point showing a wrong cluster at
disparity 1.
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Fio. 6: State of the network after 5
tures: a) T = 50 (Initial state as in Fig.
(a)). (c) T = 1.5 (Initial state: (b)).
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Fig. 7: (a) Fixed point at T = 0. (b) State after 4 iterations at
T= 1. (c) Fixed point at T = 0 with (b) as initial state.
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Fig. 8: (a) Dense Stereogram (density = 0.4) portraying a pyramid.

(b) Fixed point for algorithm (17) (c) Sparse stereogram (density = 0.1)
portraying a pyramid. (d) Fixed point for algorithm (17). (e) Fixed point
for the Synchronous algorithm (9).
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