
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 303 September, 1987

PLANNING IS JUST A WAY OF AVOIDING FIGURING OUT
WHAT TO DO NEXT

Rodney A. Brooks

Abstract. The idea of planning and plan execution is just an intuition based decomposi-
tion. There is no reason it has to be that way. Most likely in the long term, real empirical
evidence from systems we know to be built that way (from designing them like that) will
determine whether its a very good idea or not. Any particular planner is simply an ab-
straction barrier. Below that level we get a choice of whether to slot in another planner
or to place a program which does the right thing. Why stop there? Maybe we can go up
the hierarchy and eliminate the planners there too. To do this we must move from a state
based way of reasoning to a process based way of acting.

A. I. Laboratory Working Papers are produced for internal circulation and may contain
information that is, for example, too preliminary or too detailed for formal publication. It
is not intended that they should be considered papers to which reference can be made in
the literature.

@ Massachusetts Institute of Technology 1987





What To Do Next

[McDermott 1987] recently asked the following questions in regard to the need to do
resarch in interleaving planning and run-time monitoring of senors:

Are sensors good enough yet for us to be thinking about how to reason about their inputs?
Is planning research just a typical AI moonshine enterprise, thinking about hypothetical
scenarios that don't resemble what will actually be possible once high-quality sensors are
available? We can distinguish three positions on this question:

Theism: Execution monitoring is important enough, and the issues clear enough, for
us to be thinking about them right now.

Atheism: The whole idea of plan execution and the run-time maintenance of something
called a "plan" is misguided. Controlling the behavior of a robot is a matter of putting
sensors and effectors together using a program.

Agnosticism: We won't be able to settle the issue until much better sensor technology
is available.

This is my reply to McDermott.
I am an atheist in McDermott's sense:

An atheist usually has very little hope of convincing a theist of his folly. The theist
afterall has his own self consistent set of beliefs. Likewise I expect to make little progress
arguing with planning theists. I expect they will make little progress arguing with me.

But religous theists and atheists have an extra problem to deal with. The only possible
resolution of the debate involves one of the participants dying, and even then at most one of
them learns the true facts. In the matter of plan execution, however, we have an empirical
test available! We can try to build real robots that operate in real environments and see
which ones work better and appear more intelligent; those with traditional AI planning and
execution monitoring systems or those with reflexive or subsumption architectures. One of
us will have to eat our words!

But will this happen soon; aren't our computers too small yet? Heck no. Part of my
thesis is that it actually takes very little computational power; we've just been organizing
it all wrong up until now.

1. Wrong decomposition.

I'll start with some seemingly irrelevant fables. However, I do believe they are precisely
relevant and applicable to the debate about planning and execution.

Fable 1: How does a FORTRAN computer work?

Once upon a time in a land far away a young boy was given a book on FORTRAN pro-
gramming. The boy had never seen a real computer, nor had any idea how one worked or
what it really did, but he had seen pictures of "giant brains" in '50s juvenile science books
along with a discussion of binary arithmetic, and simple relay-based switching circuits.

He started reading the FORTRAN book and was immediately convinced of the power
of computers. He wanted to program one. And he started thinking about how one might
be built.

It was pretty clear how to break the problem down into functional units. There must be
a method of encoding the characters on the FORTRAN coding sheets into binary numbers
which then control the switching paths in the rest of the computer. There also must be a
big set of memory registers (he thought of them as little cubby holes that you could put



What To Do Next

numbers in). One sort for REAL numbers (about twenty twenty-sixths of them) and one
sort for INTEGER numbers (the other six twenty-sixths). Actually there must be a lot of
these registers; one named A, one named B, one named XYZZY, one name B365QL, etc.
In fact there must be 26 x 36 x 36 x 36 x 36 x 36 of them. He never bothered to multiply it
out, but, gee, there's an awful lot of them. Maybe thats why computers cost over a million
dollars (and remember this is when a million dollars was real money!). Oh, and then there
must be a set of circuits to do arithmetic (pretty easy to see how to do that) and a way of
getting numbers back and forth to the cubbyholes.

So that was how to build a computer. Then the boy read the chapter on arrays and did
a few multiplications with pencil and paper. Oh, oh!

Fable 2: OK, How does a FORTRAN computer really work?

In another universe some neuroscientists were given a FORTRAN computer. They wanted
to figure out how it worked. They knew that in running a porgram there were three different
processes: compilation, linking and loading. They decided to first isolate in the machine,
subareas where each of these things were done. Then they'd be able to study each of them
in isolation and in more detail. So they got some oscilloscopes and started probing the
wires and solder points within the machine as it ran programs, trying to correlate the signal
trains with what the operator console reported was happening.

They tried for many years but activity throughout most of the circuits from a global
perspective seemed uniformly like white noise. Locally they could establish correlations,
but not correlate that with what the console reported. The only susbstantial clue was that
a rotating mechanical device made a different pattern of noises when the different computer
behaviors were dominant. One popular hypothesis was that all the real computing was done
mechanically in thus unit somehow and that all the electrical circuits where just a routing
network to get stuff to and from the I/O devices. But there were other hypotheses too.
Maybe the computer was using holograms.

The point.

The point of these fables is that without having designed a device yourself, or thought
through a design completely, you may very well make completely the wrong functional
decomposition by simply observing its behavior. The same is true of observing human
behavior. Ethologists have discovered this in observing insects and lower animals. Early
and folk or intuitive explanations of what the creature is doing have had to undergo radical
change when more careful observation and experiment with the total system (creature and
environment) have been carried out.

The idea of planning and plan execution is just an intuition based decomposition. It may

well be the wrong decomposition. There may be no reason it has to be that way. All we
have to go on is our intuition of how we work-historically that intuition has been wrong.
Most likely in the long term, real empirical evidence from systems we know to be built
with planners and plan execution modules (from designing them like that) will determine
whether its a very good idea or not.



What To Do Next

2. What's wrong with models and plans?

Plans provide a useful level of abstraction for a designer or observer of a system but provide
nothing to a robot operationally.

If you allow the notion of explicit plans for a robot you run into a problem of which level
of abstraction should the plan be described at. Whatever you decide, upon examination it
will turn out to be a bogus and arbitrary decision.

How much detail?

Consider a mobile robot which must cross from one part of a room to another. A traditional
AI planner would ignore the geometry of the room and simply have a list of known named
places and would issue some plan step like MOVE from A to B. Then it is up to some
assumed runtime system to execute this step, and perhaps re-invoke the planner if it fails
for some reason. In simulation systems the runtime system typically achieves such plan
steps atomically. But when many AI-roboticists came to implement the runtime systems
on physical robots they found they needed to use a planner also (e.g. [Moravec 1983]).
This planner takes into account a floor plan modelled from sensor data and plans a collision
free path for the robot (and usually it is only intended for static environments, not those
with people moving about in them). Some such robots then send the individual path
segments off to subroutines which execute them. Others rely on yet another level of explicit
planning to decide on how to accelerate the motors, perhaps based on a model of the
mechanical dynamics of the vehicle. All such planners that I know of then pass a series
of commands off to some lower level program which does the right thing; i.e., it takes the
action specification and directly translates it into signals to drive motors. One could imagine
however, yet another level of planning, where an explicit model of the drive circuits was
used to symbolically plan how to vary the motor currents and voltages!

We thus see that any particular planner is simply an abstraction barrier. Below that
level we get a choice of whether to slot in another planner or to place a program which does
the right thing. What could this mean? Let's look at some examples from robotics.

Previous examples from Robotics.

Below are two pertinent examples from robotics. In both cases early attempts to control
a robot by telling it how to set its joints in space have been replaced by telling it the
parameters to use in tight feedback loops with its environment. The controlling program
no longer tells it, nor knows, nor cares, where to set its joints. Rather, in each case, the
robot acts differentially to the environment, trying to maintain set points in a higher order
space. As a result of interaction with the environment the overall goal is achieved without
the robot controller ever knowing the complete details of how it was done.

In the early days of research robotics, and even today in most of industry it was assumed
that the right abstraction level for talking to a manipulator robot was to tell it to go
someplace. The driver program, or planner perhaps, sends down a series of desired locations
and orientations for the end effector (some systems operate in joint coordinates, while others
operate in cartesian coordinates). This is known as position control.

Experience over many years has shown some problems with this approach. First, in
order to interact well with the world, the world model must have extremely high precision;
making sensing difficult and expensive. Second, in order to carry out tasks with low error



What To Do Next

tolerances, it is necessary to have precise position control over the robot; clearly making
it more expensive. But since position accuracy is critically dependent on the available
dynamic model of the robot and since grasping a payload alters the manipulator dynamics
we have seen a trend towards more and more massive robots carrying smaller and smaller
payloads. Manipulator to payload mass ratios of 100 to 1 are almost the rule and ratios of
1000 to 1 are not unheard of. Compare this to the human arm.

Recently researchers have realized that position control was not the best way to approach
the problem. Now research abounds on force control and ways to use it (automatically) to
achieve delicate and precise goals. The major idea in force control is that rather than tell
the robot to achieve some position it is instead told to achieve some force in its interaction
with the environment. As long as the desired force is appropriate for the circumstances,
the physical interaction of the robot and the world guide it to achieving some desired goal.
For instance holding a peg tilted at an angle and applying a force outside the friction (or
sticking) cone, the peg slides across a surface until the lowest corner drops into a tight
fitting hole, whereafter the peg slides down the hole. Much tighter tolerance assemblies can
be achieved in this way than with the use of pure position control. Indeed many of the force
control strategies used tend to be similar to those used by humans.

Notice that at no time does any program have to know or care precisely where the robot
will be. Rather a "planner" must arrange things so that the constraints from the physical
world are exactly right so that the robot, operating so as to do the specified right thing,
can't but help achieve the higher level goal. The trick is to find a process for the robot
which is stable in achieving the goal over a wide range of initial conditions and applied
forces. Then the world need not be modelled so precisely and the manipulator dynamics

need not be known so precisely.

In a second example of this trend, Raibert [Raibert et al 1984] has elegantly demon-
strated that the intuitive decomposition of how to walk or run is maybe not the best. Most
previous work in walking machines had concentrated on maintaining static stability and
carefully planning where and when to move each leg and foot. Raibert instead decomposed
the running problem for a one (and later two and four) legged robot into one of separately
maintaining hopping height, forward velocity and body attitude. There is certainly no no-
tion of planning how the running robot will move its joints, where exactly the foot will

be placed in an absolute coordinate system, or where the body will be in six dimensional
configuration space at any give time. These questions do not even make sense within the

decomposition Raibert has developed.

Both these are example of redefining the right thing is in a way that radically redefines

the "planning" problem.

What does this all mean?

[Brooks 1986] has shown that there is another way to implement MOVE from A to B.* A
simple difference engine forces the robot to move towards B while other parallel activities

take care of avoiding obstacles (even dynamic ones). Essentially the idea is to set up

appropriate, well conditioned, tight feedback loops between sensing and action, with the

external world as the medium for the loop.

*Although his work suggests that this is not an appropriate subgoal to be considered for a higher
level plan.



What To Do Next

So it looks like we can get rid of all the planners that normally exist below a traditional AI
planner. Why stop there? Maybe we can go up the hierarchy and eliminate the planners
there too. But how can we do this?

We need to move away from state as the primary abstraction for thinking about the
world. Rather we should think about processes which implement the right thing. We
arrange for certain processes to be pre-disposed to be active and then given the right physical
circumstances the goal will be achieved. The behaviors are gated on sensory inputs and
so are only active under circumstances where they might be appropriate. Of course, one
needs to have a number of pre-disposed behaviors to provide robustness when the primary
behavior fails due to being gated out.

As we keep finding out what sort of processes implement the right thing, we continually
redefine what the planner is expected to do. Eventually we won't need one.

3. Simulation.

[McDermott 1987] also asks whether it is sufficient to pursue these questions using sim-
ulated systems. The answer is a clear no.
I support the use of simulation as an adjunct to real world experiments. It can cut develop-
ment time and point up problems before expensive hardware is built. However it requires
a constant feedback from real experiments to ensure that it is not being abused.

The basic problem is that simulation is a very dangerous weapon indeed. It is full of
temptations to be mis-used. At any level there is a temptation to over idealize just what
the sensors can deliver. Worse, the user may make a genuine mistake, not realizing just how
much noise exists in the real world. Even worse than that however, is the temptation to
simulate the 'perception' system. Now we jump right into making up a decomposition and
stating requirements on what the perception system will deliver. Typically it is supposed
to deliver the identity and location of objects. There exists no computer perception system
today that can do such a thing except under very controlled circumstances (e.g., a small
library of machined parts can be localized and recognized in a small field of view from a
fixed camera). I don't believe a general such system is even possible; for instance I don't
believe humans have such a perception system. The idea that it is possible is based on the
wrong-headed decomposition that gives us planning systems.

Don't use simulation as your primary testbed. In the long run you will be wasting your
time and your sponsor's money.

Bibliography.

[Brooks 1986] "A Robust Layered Control System for a Mobile Robot", Rodney A. Brooks,
IEEE Journal of Robotics and Automation, RA-2, April, 14-23.

[McDermott 1987] Drew McDermott, position paper for DARPA Santa Cruz panel on
interleaving planning and execution, October.

[Moravec 1983] "The Stanford Cart and the CMU Rover", Hans P. Moravec, Proceedings
of the IEEE, 71, July, 872-884.

[Raibert et al 1984] "3-D Balance Using 2-D Algorithms?", Marc H. Raibert, H. Ben-
jamin Brown, Jr., and Seshashayee S. Murthy, Robotics Research 1, Brady and Paul eds,
MIT Press, 215-224.


