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Abstract
A lightweight reentry vehicle is perturbed by the deployment mechanism and by the

post-boost vehicle's plume. These perturbations induce coning and axial velocity
deviations on the reentry vehicle. A control system, with volume and mass constraints, is
designed for removing these perturbation effects. It is comprised of four cold gas
thrusters, two accelerometers, and electronics for implementing the control laws. A test
apparatus was constructed to verify the system design for coning angle control. The
experimental evidence supports the theoretical conclusion that the system removes the
vehicle's induced coning.
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Nomenclature

Note: all units are meter, kilogram, second, and radians unless otherwise specified.

x,y,z Earth-fixed coordinate system unit vectors

u ,v,w body-fixed coordinate system unit vectors

U,V,W linear velocity along u,v,w respectively

P,Q,R angular velocity along u,v,w respectively

D,9,', Euler angles

9c coning angle

Iu2IvI, moment of inertia about u,v,w respectively

FU,FV,Fw net forces along u,v,w respectively

Mu,MV,MW net moments about u,v,w respectively

H angular momentum

Isp specific impulse

mprop propellant mass

g gravity

m mass

timetime



Chapter 1

Introduction

Volume and mass constraints of a launch vehicle's payload limit the number of

reentry vehicles (RVs) which can be deployed, simplifying the task of tracking and

eliminating all the RVs. One solution is deployment of many RV replicas (called LREPs)

along with the RVs. Because the LREPs have no functional purpose, they can be made

small and lightweight.

There are problems with this scheme. The ejection mechanism imparts an initial

moment on the LREPs and RVs, and the post-boost vehicle's plume induces both forces

and moments on them. As a result of their different mass properties, RVs and LREPs

exhibit different dynamic behavior when perturbed by these forces and can be differentiated

by observation of their motion. A detailed analysis of these forces is provided in

Chapter 2 and the governing dynamic equations are presented in Chapter 3.

The objective is to develop a system of minimal mass and volume and contained

inside the LREP, which will control its attitude and axial velocity. The system presented

consists of two accelerometers, a state estimator, four solenoid valves, and electronic

feedback compensation. The solenoids, which are connected to a pressurized argon tank,

are used to deliver the needed control forces. Details of the LREP's controller are

presented in Chapter 4. The control laws which are implemented are nonlinear and system

stability is proven using Lyapunov theory. The performance results are determined by

numerical simulations using the full order, nonlinear equations and are presented in

Chapter 4.

In addition to the theoretical results and simulations, a test apparatus was

constructed to provide experimental evidence of the system's stability and raise any

practical issues involved in implementation. The experimental model consists of the

rotational dynamics of the LREP and includes all the details necessary for full evaluation of
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the coning angle control scheme. Experimental tests demonstrated system stability and

raised practical problems pertaining to the accelerometers and solenoid valves.

Experimental results and their impact on the LREP's control system are discussed in

Chapter 5.
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Chapter 2

Design Specifications and System Parameters

The objective is to design a control system which will suppress the effects of the

ejection and plume forces, while meeting packaging requirements. The discriminants of

interest are axial velocity and coning angle.

2.1 System Parameters

The LREP's physical parameters, as shown in Figure 2.1.1, are [1]:

mass = 3.0 kg

spin moment of inertia = 0.244 kg-m2

inertia ratio = 0.12

base diameter = 0.76 m

height = 1.9 m

CG location = 0.92 m (from base).

1.9m

----. 76 m -
Figure 2.1.1: LREP Dimensions.

F



14

The control system's packaging requirements, which satisfy the LREP

specifications given above, are [1]:

mass = 1.5 kg

height = 0.03 m

diameter = 0.76 m (cylinder).

2.2 Ejection Performance Specifications

The control system must remove the initial conditions placed on the LREP by the

ejection mechanism. This mechanism inflates the LREP, rotates it to the desired spin rate

of 72 deg/sec, and then ejects it off the post-boost vehicle. However, the ejection force is

not coincident with the LREP's center of mass. This gives the LREP an initial tip-off rate,

causing precession. Figure 2.2.1 shows the ejection force.

Ejectic

Figure 2.2.1: LREP Ejection Force.

The conditions and requirements during ejection are [1]:

ejection conditions: ejection velocity = 2.5 m/s

spin rate = 72 deg/s

tip-off rate = 3 deg/s

coning half-angle = 0 deg + 3 deg.ejection requirements:
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2.3 Plume Event Performance Specifications

The post-boost vehicle's plume induces both forces and moments on the LREP,

resulting in precession and axial velocity deviations. The plume interaction does not occur

immediately after ejection because there are shrouds mounted around the post-boost vehicle

which initially protect the LREPs. This allows the controller to remove the initial tip-off

rate before the plume event occurs. Figure 2.3.1 shows the shrouds' location. It is

important to realize that there is some uncertainty as to when the plume event will occur and

therefore the LREP's orientation is unknown. The assumption is made that the plume

event occurs at least 1.0 sec after ejection.

There is a plume induced axial velocity change of +1.5 m/s and lateral velocity

change of +0.3 m/s, for an uncontrolled 3.0 kg LREP [1]. For purposes of simulation

and analysis, the induced velocities are converted to applied forces, Faxi and Flateral, by

dvaxial
Faxia =m dt (2.3.1a)

Flateral = m dvter (2.3. lb)

Assuming the plume forces are exponential with a time constant, r, of 1.25 sec, the

induced disturbance forces are found by integrating Equation 2.3.1. This gives
00

f F(t) dt = m Av (2.3.2)
to

where to = plume interaction time. Completing the integral gives the axial and lateral

disturbances for the plume event by

(t -t)/c

Faia = 3.6e Vt > to  (2.3.3a)

Flatera 0.72 e (t -t > t
=0 O ~t> t,, (2.3.3b)

v
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Plume

Figure 2.3.1: Plume Interaction.

The LREP has a spin angular momentum due to its spin rate, P, of 72 deg/sec.

Before the plume's interaction, an uncontrolled LREP has a precession rate, ;cP, of

8 deg/sec and a coning angle, 0 c, of 20 deg due to the ejection force [1]. This information

can be converted to an angular momentum by [2]

Ho = Iv, ' sin Oc . (2.3.4)

Substituting numbers yields Ho = 0.098 kg m2/sec. Figure 2.3.2 shows the spin

momentum and the ejector's induced momentum.
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Ho

IuP

Figure 2.3.2: Angular Momentum Before Plume Interaction.

After the plume's interaction, an uncontrolled LREP has a precession rate of

10 deg/sec and a coning angle of 28 deg [1]. Using Equation 2.3.4 gives an angular

momentum of H1 = 0.168 kg m2/sec. Therefore, the plume gives an increase in angular

momentum, AH = 0.07 kg m2/sec. Figure 2.3.3 shows the plume's momentum

contribution graphically.

AH

Ho

IuP

Figure 2.3.3: Angular Momentum After Plume Interaction.

The change in angular momentum caused by the plume's interaction is converted

into an equivalent induced moment, for simulation purposes, by

dH
Mplume = . (2.3.5)

The induced moment, unlike the induced forces, can be treated as an impulse. Assuming

the induced angular momentum is constant over an interval At = 0.01 sec, then

Mplume = 7.0 Nm. The performance requirements for the plume event are [1]:

plume event requirements: coning half-angle = 0 deg ± 3 deg

axial velocity = 2.5 m/s ± 0.2 m/s.
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Chapter 3

Dynamic System Model

3.1 Coordinate Systems

Two natural coordinate systems come about from the dynamics of the LREP. One

system is Earth-fixed and the other is body-fixed. In the Earth-fixed system, x is defined

parallel to the Earth's surface and in the direction of the LREP's initial axial velocity, z is

defined positive toward the earth's center, and y is defined such that x,y,z form a right

triad. For the body-fixed system, u is defined as the spin axis of the LREP, and v and w

are defined as initially parallel to y and z with origin at the LREP's center of mass. Thus,

u,v,w also form a right triad. See Figure 3.1.1 below.

Z X
Z W

Body Fixed

Figure 3.1.1: Earth-Fixed and Body-Fixed Coordinate Systems.

The performance specifications are given in the body-fixed system while the external

forces, such as the plume forces and gravity, are in the Earth-fixed system. Therefore,

conversion between coordinate systems is necessary. Three Euler angles, 0, 0, and W,

describe the orientation of the body system with respect to the Earth system. D is the

rotation of x,y,z about y, which forms a new coordinate system x',y',z'. E is the

rotation of x',y',z' about z', and thus forms a new coordinate system x",y",z".

Finally, Y is the rotation of x",y",z" about x", and forms a new system

x"',y'",z"'. The body system u,v,w is defined as x'",y'",z'" and the rotations
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are classified as a Type 1, 2-3-1 rotation sequence [3]. Figure 3.1.2 shows the angle

rotations.

Rotation About Z' Body Axis System
X' t, X X"=U

Y
Z' Z'= Z"

Rotation About Y Rotation About X"

Figure 3.1.2: Euler Angle Rotations.

The direction cosine matrix, A, can be defined in terms of the appropriate sine and

cosine functions of the Euler angles, and is used to convert a vector between systems. If

xb and xe are vectors in the body and earth systems, respectively, then they are related

by [4]

xb = A xe (3.1.1)

e = ATxb (3.1.2)

where A is defined as
rux uy uzi

A= vx vy vz
wx wy wz

and ux = cos(d)cos(O) (3.1.3a)

uy = sin(O) (3.1.3b)

uz = -sin(D)cos(E) (3.1.3c)

vx = -cos(I)sin(E)cos(Y) + sin(O)sin(Y) (3.1.3d)

vy = cos(e)cos(Y) (3.1.3e)

vz = sin(D)sin(O)cos(T) + cos(1)sin(Q) (3.1.3f)

wx = cos(Q)sin(E)sin(Y) + sin(O)cos(Y) (3.1.3g)

wy = -cos(O)sin(Y) (3.1.3h)

wz = -sin(1)sin(8)sin(Y) + cos(4)cos(Y) . (3.1.3i)
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Because u,v,w are fixed with respect to the LREP, then (, 8, and T are functions

of the LREP's rotation rate and the relationship is given by [3]

dI cos(Y) sin(YI)
s= ( Qcos( R (3.1.4)dt cos(@) cos(G)

dO
@= Q sin(Y) + R cos(Y) (3.1.5)

dY
-= P- Qtan(O)cos(T) + Rtan(O)sin(Y) (3.1.6)

where P,Q,R are the LREP's rotation rate about u,v,w, respectively.

3.2 Rotational Dynamics

The governing equation for the rotational dynamics of a rigid body is given by [5]

dH
M= + = + xH (3.2.1)

where M is the applied moment about u,v,w,

.0 is the rotation rate of the reference axis, and

H is the angular momentum of the LREP.

The angular momentum, H, about the LREP's center of mass, is given in body

components as [6]

HU = IuP -IuvQ -IwR (3.2.2a)

HV =- IuvP + IvQ- IvwR (3.2.2b)

Hw =- IuwP -IvwQ + Iw R .  (3.2.2c)

Since the reference axis is fixed to the LREP, then 92 = Pu + Qv + Rw and the inertias are

time invariant. Using these assumptions in Equation 3.2.1 yields

Mu = ut I •- + Iw(R2 - Q2 ) + (Iw- Iv)QR + P(IuvR - IwQ) (3.2.3a)

dP dQ dR (3.2.3b)
My = -I vt +I ~I (2 

-R -- R ) + (I w)PR + Q(Iw P -IvR) (3.2.3b)M -uvdt v+dt vwdt fuwr
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M 1 = - _Iw dd t +di + I(Q2 _ p2 +( v - u)PQ + R(IUwQ - IvwP). (3.2.3c)

However, the products of inertia are zero because the body system's origin is at the center

of mass and the LREP is symmetric. Simplifying Equation 3.2.3 gives the rotational

dynamic equations of motion for the LREP as

dP Mu-d = -(3.2.4a)

dQ MV Iu-Iw
dt v  I-T PR (3.2.4b)

dR M, I,-I ud = I I- PQ (3.2.4c)

3.3 Translational Dynamics

The equation governing the translational motion of the body, assuming constant

mass, is given by

dV
SF = m d" (3.3.1)

where V is the LREP's velocity vector and is given by V = Uu + Vv + Ww. Taking the

velocity's derivative yields

dV dU dV dW du dv dw
d-= -u+ -v+ -F w+U -+ V• -+ W- (3.3.2)dt - dt dt dt dt dt dt

and
dudu= x u (3.3.3a)

dv
d= xv (3.3.3b)

dwdt = Q x w. (3.3.3c)
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Substituting Equations 3.3.2 and 3.3.3 into 3.3.1 gives the governing translational

dynamic equations of motion as

dU Fu
- = - - Q + RV (3.3.4a)

dV Fv_ RU + PW (3.3.4b)dt m

dW = - PV+QU. (3.3.4c)

3.4 Coning Angle

The performance specifications are given in terms of the LREP's coning angle, Oc.

It can be determined from the angular momentum along the three body axes, and is given

by:

cos c =  IuP (3.4.1)
(Iup)2 + (IvQ) 2 + (IwR) 2

P is the desired spin rate of 72 O/sec. Thus the lateral rotation rates, Q and R, must be

controlled in order to meet the coning angle specifications.
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Chapter 4

Control System

4.1 System Overview

The control system presented consists of two accelerometers, four solenoid

controlled valves, a state estimator, and electronic compensation. A block diagram of the

system is shown in Figure 4.1.1. Control is achieved by activation of the solenoids and

release of pressurized argon gas to produce the necessary control thrust. Two

accelerometers are used as sensors. One accelerometer measures axial acceleration, U,

while the second accelerometer measures a linear combination of the LREP's rotation rate,

Q, and the rotational acceleration R. Hence, a state estimator is needed in order to

reconstruct the accelerometers' outputs and give estimates of Q and R. Using these

estimates along with U, the compensator makes decisions as to which thrusters must be

activated.

Figure 4.1.1: Control System Overview.

4.2 Sensor Configuration

The variables of interest are Q, R, and U, because the goal is to minimize the

coning angle and axial velocity deviations. Accelerometers measure inertial accelerations

and output them in the body coordinate system. All corriolis forces are zero because the
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accelerometers are rigidly attached to the LREP, and the measurement equations are derived

from the general acceleration equation [7]
dK2

a = acm + -- x r + t x (9 x r). (4.2.1)

The acceleration of the LREP's center of mass, acm, is expressed as

dU dV dW
acm = u + -v + w. (4.2.2)

The rotation rate of the LREP about it's center of mass, 02, is given by

i=Pu+Qv+Rw (4.2.3)

and the location of the accelerometer, r, is

r = ru + rvv + rwW. (4.2.4)

The accelerometer output equations, found by substituting acg, Q, and r into Equation

4.2.1, are
au -(Q + R2)ru + (pQ -d)r + (PR + dQ)r (4.2.5a)

a dt dt dt2 2

a =d + (Q +dR )ru _ (p2 + R2)r + (QR)r (4.2.5b)

dW dQaw = + (PR- d)r + (QR)r - (p2  Q2)r (4.2.5b)

where au, av, or aw is the measurement for an accelerometer's sensitive axis aligned with u,

v, or w respectively.

One accelerometer is located at r1 = 0 and a second accelerometer is located at

r2 = r,v because Q, R, and U must be measured. Figure 4.2.1 shows the location of the

accelerometers. This configuration requires that both accelerometers are mounted in a plane

orthogonal to u, with the first accelerometer located at the center of mass. The

accelerometer outputs in terms of the variables of interest are
dUa d =d (4.2.6)

dU dR
a2 -dt + (PQ -)r . (4.2.7)
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The measurements for axial velocity and coning angle control are expressed in terms of the

two accelerometer outputs as

Yattitude = PQ
dR 1

-d = r(a2- al,)-Utrav

Yaxial al dt

W

Accelerometer 1
Accelerometer 2

Upper Plate : Top View

U

Upper P

Base Plate

LREP: Side View

Figure 4.2.1: Accelerometer Mounting Configuration.

(4.2.8)

(4.2.9)
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4.3 Actuator System

The actuator system consists of an Argon tank, pressure regulator, and four

solenoid valves. See Figure 4.3.1. Argon is chosen because it is inert, storable, and safe

to handle. Control forces are obtained by energizing a solenoid valve and releasing

pressurized Argon when thrust is needed. A pressure regulator is used to supply constant

pressure to the solenoids.

Y uVC

Figure 4.3.1: Actuator System.

The propellant mass needed is given by

m 1.0 [Fl(t) + F 2 (t) + F(t) + F4 (t)] dt (4.3.1)
prop- g'Isp

where F1, F2, F3 4 F4 are the thrusts delivered by each valve,

I is the specific impulse of Argon, and

g is the gravitational constant.

Since solenoid valves are binary devices, the control thrust can be expressed as
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0 valve closed
Fi = 1.5 N valve open •

The theoretical specific impulse of a gas is [8]

1 2R T y
Ip = M (4.3.2)sp g0 Mo (-_1)

where y = specific heat ratio,

T = temperature of the gas (OK),

Mo = molecular weight of the gas, and

Ro = ideal gas constant.

Assuming that the Argon temperature at deployment, Td, is 243 OK [9], the specific

impulse is 51 seconds. The maximum amount of Argon needed for this system,

determined from computer simulations, is 4.0 grams.

4.3.1 Pressurized Tank

The size of the pressurized tank is important in determining if mass and volume

specifications can be achieved. The orifice diameter, d, for the chosen solenoid valves is

2.5 mm [10] and the control thrust level, I F I, is 1.5 N. This dictates a regulator secondary

pressure, Ps, of

41FI
Ps d2 = 0.3 MPa. (4.3.1.1)

The following boundary conditions must be met in order to choose the primary pressure,

PP:
a) after disturbances are removed Pp > P s and m = Am > 0

b) on the ground before launch Tg = 293 oK and m = mo + Am

where mo = Argon mass needed for control (including a safety factor of 2.5) = 10 grams,

Am = residual Argon mass, and

T = temperature of the Argon on the ground.
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The ideal gas law gives the governing equations for the tank volume, Vt , as

Ps Vt = Am Ro Td  (4.3.1.2a)

Pg Vt= (Am + mo) Ro Tg (4.3.1.2b)

where Pg is the pressure of the tank on the ground.

Combining Equations 4.3.1.2a and 4.3.1.2b gives

1 T
Pg= (1-+ 1)T Ps (4.3.1.3a)

p Td

m = (1 + p) m (4.3.1.3b)

mo RT
V p m ) R(4.3.1.3c)

S S

Am
where p = .

The goal is to choose p such that Pg, m, and Vt are minimized, but it is apparent

from Equation 4.3.1.3 that this cannot be accomplished. Thus a cost function, J, which

weights each of the three parameters is used and the optimal mass ratio, popt, is chosen

such that J is minimized. The cost function is

m V PJ= 0.2 + 0.2 t + 0.6 P (4.3.1.4)
mmax Vt max g max

and the optimal mass ratio is restricted between 0.1 and 1.0 because of the excessive values

of m and Pg beyond this range. P is weighted more heavily because of the structural

stresses caused by large internal pressures. Substitution of each parameter and the

corresponding maximum value gives the cost function, J, in terms of the mass ratio as

0.055
J = 0.155 + 0.3 p + 0.055 (4.3.1.5)

P
dJThe optimal p, found by setting -= 0 and solving for p, is
dp

Popt = 0.426
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and the optimal parameters are

Vt= 7.2*10-4 m3

P = 1.21 MPa

m= 14.3 grams.

Figure 4.3.1.1 shows the optimal mass ratio.

0.8

0.7

0.6

0.5

0.4
0.0 0.2 0.4 0.6 0.8

Mass Ratio

Figure 4.3.1.1: Tank Cost Function vs Mass Ratio.

4.3.2 Solenoid Configuration

The solenoids are mounted in the base plate of the LREP because it is made of a

rigid material which will not deform under loading. Three solenoids are mounted on the

outer perimeter of the base plate, and positioned 1200 apart with their nozzles angled 600

from the LREP's bottom. The fourth is positioned directly in the center with its nozzle

pointing in the -u direction. Figure 4.3.2.1 shows the mounting configuration.

The three outer valve nozzles are angled at 600 in order to achieve full controllability

of U, Q, and R with the minimum number of valves. This allows simultaneous control of

axial velocity and coning angle. Figure 4.3.2.2 shows that the 600 thruster angle is optimal

1.0
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F1, F2, F
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600

4F4
LREP: Side View

Solenoid Mounting Configuration.Figure 4.3.2.1:
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for minimizing the propellant mass. The effective moment arm, reff, for the outer solenoid

valves is given by

reff = r1cos.t + r2sing. (4.3.2.1)

where r1 = orthogonal distance from the center of mass to the base plate, and

r2 = base plate radius.

Therefore, the effective moment arm is 0.78 meters.

10

U,ca 8
6

4

2
10 20 30 40 50 60 70

Thruster Angle (deg)

Figure 4.3.2.2: Propellant Mass vs Thruster Angle.
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4.4 Modified Dynamic System Model

The governing equations of motion are modified in order to include the solenoid

configuration. The net forces on the LREP, in terms of the individual solenoid forces, are

where .t is the nozzle angle

forces, are

Fu = - (F1 + F2 + F3)sing + F4  (4.4.1a)

Fv = {F1 - (F2 + F3)sin300)cosg (4.4.1b)

Fw = (F2 -F3)cos300 cosg (4.4.1c)

of 600. The net moments, in terms of the individual solenoid

MU =0

M = (F2 - F3)cos300 reff

Mw = {- F1 + (F2 + F3)sin30 0 }reff.

(4.4.2a)

(4.4.2b)

(4.4.2c)

A new variable, L, is introduced in order to normalize the solenoid forces and is

defined by

Li= 1
r 0 if solenoid is offV i = 1,2,3,4 such that Li = 11 if solenoid is on

where I F I is the thrust level of 1.5 N. Using the normalized variable in Equation 4.4.2,

and combining with Equation 3.2.3 gives

dP
dt

dQ I IFI reff cos300

d)P R + )PR + c (L2 - L3)
V

dR I IFI reff- (1 -L )P Q - v [L1 - sin30 ° (L2+L 3)]

(4.4.3a)

(4.4.3b)

(4.4.3c)
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and substituting numbers yields the modified rotational dynamics

dQ 1.1 R + 0.5(L2 - L3) (4.4.4a)

dR
R= -1.1 Q - 0.6L 1 + 0.3(L2 +L3). (4.4.4b)

The modified translational dynamics are found by substituting the normalized

variable in Equation 4.4.1, and combining with Equation 3.3.4 to give

dU
= - QW + RV - 0.43(L 1 + L2 + L3) + 0.5 L4  (4.4.5a)

dV
-t = PW - RU + 0.25 L 1 - 0.13(L2 + L3)  (4.4.5b)

d= QU - PV + 0.22(L 2 - L3). (4.4.5c)

Equations 4.4.3 and 4.4.4 are the dynamic equations used for control law design.

The only assumptions are zero products of inertia and zero resultant moment about u.

4.5 State Estimator

A state estimator is needed to convert the attitude measurement, yattitude, into

estimates for Q and R. From Equation 4.2.8 , the measurement is

dR 1
YattitudePQ - - =  (a 2 -al). (4.2.8)

The LREP's attitude dynamics are given by Equation 4.4.4 as

dt - 1.1 R + 0.5 (L2 - L3) (4.4.4a)

dR
R= -1.1 Q - 0.6 L 1 + 0.3 (L2+L3). (4.4.4b)
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Combining Equation 4.4.3b with the measurement gives

dR
Yattitude = PQ - = 2.36Q + 0.6 L1 - 0.3 (L2 +L3). (4.5.1)

Define the state vector, x, and the control input, u (Note: x and u are not the unit vectors) as

L

The LREP's attitude dynamics are given by

x= Ax + Bu (4.5.2a)

and the measurement as

y=Cx+Du (4.5.2b)

where A= [ 1.1 = [ 0 .5 -. 5
where A=-l.l 0 -. 6 .3 .3

C= [2.36 0] D= [.6 -.3 .3] .

The purpose of the state estimator is to reconstruct the rotation rates, Q and R, from

the measurement, y. The estimator structure is given by [11]

= A +Bu + H (y- ) (4.5.3a)

S= C X+ Du (4.5.3b)

where x is the state estimate of x,

y is the estimated measurement, and

H is a gain matrix which determines how the estimation error affects the estimator.

The state estimator block diagram is shown in Figure 4.5.1.
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Control
Sign

Accelerom
Measurem

Figure 4.5.1: State Estimator Block Diagram.

The LREP and estimator states are combined to give

Sx. HC A-OH CB u .
-x

(4.5.4)

The estimator dynamics are coupled with the LREP dynamics by the gain matrix,

H. The estimation error state, R, is defined by
A

X = - (4.5.5)

and the estimation error dynamics are given by

Xi= (A-HC) . (4.5.6)

Therefore, the estimator gain matrix, H, must satisfy

Re { X(A-HC))} 0 (4.5.7)

for a stable estimation of Q and R. The solution for a constant gain matrix, H, is given

by [12]

H = S CT V21 (4.5.8)

where S is the solution to the algebraic observer Riccati equation
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0 = AS + SAT + V1 - SCT V2
1 C S. (4.5.9)

This estimator gives the minimum mean square linear estimate of x [13] for a system driven

by white process noise of intensity

V1 = G V3 GT V3 > 0 (4.5.10a)

and with white measurement noise intensity

V2 >0. (4.5.10b)

Therefore, H minimizes the cost function [14]

J = trace[ E { R(t) 2 T(}))]

where E is the expectation operator. The noise matrices chosen for the LREP system are

GT = [ 1 1] V3 = 1 V2 = 4 .4 * 10 -5

and the optimal gain matrix is

H = [151.2 150 .2]T.

The state estimation error matrix, A - HC, is

'- 356.4 1.1]

HC = 1-355.1 0

and the eigenvalues and corresponding eigenvectors are

X1 = -1.1 rad/sec t 2 = -355.3 rad/sec

[.0031 ]  
r.707

1 1 
2 =  .7071

It is clear from examination of the eigenvectors that estimation of Q is dominated by

X2 while estimation of R is dominated by X1. This result is consistent with the

measurement since y is a linear combination of Q and k.

This estimator provides an optimal compromise between estimator bandwidth and

sensor noise immunity [15]. The noise-bandwidth tradeoff is best shown by a root locus
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of the state estimation error poles as the sensor noise varies. Using the same G and V3 as

given above, the sensor noise intensity is varied by

0.01 < V2 5 10.

The root locus is shown in Figure 4.5.2. As the sensor noise increases, the estimation

error poles approach s = ± 1. lj rad/sec which are the open loop eigenvalues of the LREP

system. Thus, the estimator approaches open loop estimation because the sensor

measurement becomes excessively corrupted by noise. As the sensor noise intensity

decreases, the bandwidth of the estimator increases as is evident from one pole moving

toward -co. However, the second pole moves toward a fictitious zero at s = -1.1 rad/sec.

The result arises from the fact that the poles of the estimation error dynamics approach the

zeros of

H(s) = C (sI - A)-'G (4.5.11)

as the sensor noise approaches zero[16]. For the LREP's estimator, H(s) has a zero at

s = -1.1 rad/sec as verified by Figure 4.5.2.

2

1

C0

-1

-2
-10 -5 0

Real

Figure 4.5.2: Estimation Error Root Locus.
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4.6 Control Laws

The control laws are presented in two sections: attitude control and axial velocity

control. Equations 4.4.4 and 4.4.5 show that the rotational dynamics are independent of

the translational, but the converse is not true. Therefore axial velocity control is dependent

on attitude control. The control laws are bang-bang with a dead band because of the

switching nature of solenoid valves.

4.6.1 Attitude Control

The attitude control law is derived by considering the performance criteria along

with the degrees of freedom established by the actuator configuration. The coning angle is

given in Equation 3.4.1 as

luPcos Uc =  (3.4.1)
(IuP)2 + (IvQ) 2 + (IwR) 2

Since P is constant, the above equation can be rewritten in terms of the control variables, Q

and R, as

Q2 + R2 = IP tan(O) . (4.6.1.1)
V

Substituting numbers and using the 30 coning angle performance criteria gives

Q2 + R2 = 0.008 . (4.6.1.2)

The coning angle performance criteria is expressed by the equation of a circle of radius

0.008 rad/sec and is depicted graphically in Figure 4.6.1.1.

An acceptable control law is one which maps any initial conditions of the attitude

states into a trajectory which ends inside the performance region. The performance region

is defined as
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0.024

0.016

0.008

0.000

-0.008

-0.016

-0.024
-0.024-0.01 6-0.008-0.000 0.008 0.016 0.024

Q (rad/sec)

Figure 4.6.1.1: Attitude Control System's Performance Region.

B0.008 = x :11 x 112 0.008 , x }

where x = [Q R]T and the set of all acceptable control laws, L, are given by

LL: x(0) -+ x(oo) where x(0)e 912 and x(oo) E B0.008 .

The attitude control law chosen is given by

L1 = Rpos + (Qpos Roff)

L2= Qneg
L3 = Rneg +(Qpos Roff)

where + and * denote the logical operators OR and AND, respectively.

variables Rpos , Rneg, Qpos' neg and Roff are defined by

(4.6.1.5a)

(4.6.1.5b)

(4.6.1.5c)

The logical

R ={ ftrueRpos = false

= { truefalseneg

R > dead band
otherwise

R < - dead band
otherwise

(4.6.1.3)

(4.6.1.4)

(4.6.1.6a)

(4.6.1.6b)
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Qneg

true Q > dead band
false otherwise

true Q < - dead band
false otherwise

(4.6.1.6c)

(4.6.1.6d)

true IRI < dead band (4.6.1.6e)
Roff= false otherwise •

Dead band is chosen to meet performance specifications and is discussed in greater detail at

the end of this section.

A physical interpretation of the control law can be established by state trajectory

analysis. Since there are three solenoids, each on or off, there are 23 possible operating

regimes which may occur. These regimes, along with the corresponding dynamic

equations of motion, are

I) Ll = 1,2 = L3 = 0

II) L1 = 1, L2 =L 3 =0

III) L1 = 0, L2 = L3 = 1

IV) L1 =L 2 = 1, L3 =0

V) L =L 3 = 1, L2 =0

VI) L2 = 1, L1 =L3 =0

VII) L3 = 1, L 1 = L2 = 0

dQ
dt -

dQ
dt•

dQ
dt -

dQ
dt

dQdt -
dQ
dt-

1.1 R

1.1 R

1.1 R

dR
-= -1.1 Q

i= -1.1 Q- 0.6

dR = -1.1 Q + 0.6

1.1 R + 0.5

1.1 R - 0.5

1.1 R + 0.5

1.1 R- 0.5

dR
dt

dR

dR
dt

dR
dt -

-1.1 Q-0.3

-1.1 Q - 0.3

-1.1 Q + 0.3

-1.1 Q + 0.3.
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The eighth region of operation corresponds to all solenoids on and is equivalent to region I

(i.e., all solenoids off). Assuming that Q,R << 0.3 rad/sec, the state trajectories can be

sketched for each region of operation. Figure 4.6.1.2 shows the trajectories where each

region of operation is valid. It can be seen from this figure that the control law results in

the terminal states inside the performance circle.

0.024

0.016-

0.008-

0.000-

-0.008-

-0.016 -

-0.024-

I[1
IV

A--*--
V

A
VIIT ~'T

p p

-0.024-0.016-0.008-0.000 0.008 0.016 0.024

Q (rad/sec)

Figure 4.6.1.2: State Trajectories for the Attitude Control System.

Lyapunov Stability Theory is utilized to prove the control law a L. Choosing the

continuous positive definite function, V, as

V= (Q +R2)

Setting the dynamic equations for each region of operation into the form

= 1.1R+a
dt

(4.6.1.7)

d = -1.1 Q+b

gives

V(t,Q,R) = a Q + b R.

I--... .....----.-......I.. .....- .l.

(4.6.1.8)
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Comparison of a and b for each region of operation shows that

V(t,Q,R) < 0 for " Q + R2 > dead band

and

V(t,Q,R) = 0 for Q + R2  _ dead band

and proves a) global asymptotic stability [17] of the attitude control system as

dead band -- 0

and

b) the control law E L for dead band 5 0.008 rad/sec.

The dead band is chosen as 0.006 rad/sec because it meets the performance specifications.

As the dead band is reduced below this level, the required propellant mass increases. At

the same time, it should not be any larger than 0.006 rad/sec because variations in the spin

rate or inertias could result in a coning angle larger than 30.

4.6.2 Axial Velocity Control

The modified translational dynamics given by Equation 4.4.5, combined with the

gravity contribution yields

dU
dt - QW + RV-.43(L1 + L2 + L3) + .5 L4 - g [sin()cos()] (4.6.2.1a)

dV
r = PW - RU+ .25L 1 - .13(L 2 + L3) + g[sin(D)sin(0)cos(TC)+cos(Q)sin(TY)] (4.6.2.1b)

dW
dt = QU - PV+ .22(L2 - L3) - g [sin(Q)sin(0)sin(T)+cos(O)cos(T)]. (4.6.2.1c)
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Initial conditions on the Euler Angles, (, 0, and T, are

< (0) =0

8 (0) = 0
Y (0) = Yo.

The attitude control law guarantees that Q,R << 1 and, more specifically,

4Q2 + R2 0.008 rad/sec in steady-state. Assuming the attitude control system

performs as designed, the Euler angle derivatives given by Equations 3.1.4, 3.1.5, and

3.1.6 can be approximated as

dOdt

dO

dt

dY
7t- = P = 72 o/sec .

Combining with the initial conditions yields

a (t) << 1

0 (t) << 1

T (t) = Yo + Pt.

Equation 4.6.2.1a is simplified, using these approximations, to

dU - -0.43(L 1 + L2 + L3) + 0.5 L4 . (4.6.2.2)

The axial velocity error, ii, is defined as

if = 2.5 - U.

The performance criterion is expressed in terms of if as

I i I 5 0.2 m/sec

and the set of all acceptable axial velocity control laws, M, is given by
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M : ff (0) --+ i () where ii (0) E , f (0) a 0.2 (4.6.2.3)

where

B0.2 = ii: I I I 0.2, if 9 }. (4.6.2.4)

The axial velocity control law is given by

L1 = neg (4.6.2.5a)

L2 = Uneg (4.6.2.5b)

L3 = neg (4.6.2.5c)

L4 = if os (4.6.2.5d)

where i~ pos and if neg are defined by

~ true if > dead band (4.6.2.6a)
u pos =  false otherwise

~ true i < - dead band (4.6.2.6b)
u neg =  false otherwise

Dead band is chosen to meet performance specifications and is discussed in greater detail at

the end of this section. Figure 4.6.2.1 shows a block diagram of the axial velocity

controller.

2.

Figure 4.6.2.1: Block Diagram of the Axial Velocity Control System.
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Lyapunov Stability Theory is again utilized to prove the control law e M. Choose

the continuous, positive definite function, V, as

1 2

dt dUV(t,u) u T u = -

(4.6.2.7 )

(4.6.2.8)

Examination of the axial velocity control law yields

dU- =- 1.29dt

dU
-= + 0.5dt

dU
-= 0

for

for

if < - dead band

ii > dead band

for I if I < dead band.

Therefore,

V< 0 for iff I>deadband

and proves

V = 0 for I f- I 5 dead band

a) global asymptotic stability [17] of the axial velocity control system as

dead band --- 0

and

b) the control law E•M for dead band 5 0.2 rad/sec.

Dead band is chosen as 0.18 rn/sec because it meets the performance specifications. As the

dead band is reduced below this level, the required propellant mass increases. At the same

time, it should not be any larger than 0.18 m/sec because variations in the thrust level or

LREP mass could result in axial velocities outside the specified 0.2 m/sec performance

band.

then
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4.7 General Design

The control algorithms described in Section 4.6 can easily be applied to LREP's

with inertias and spin rates other than those specified in Chapter 2. The LREP can be

characterized by its spin rate, P, and inertia ratio, Ir, where the inertia ratio is defined as
I

I = . (4.7.1)

The attitude control law's dead band, for the general case, can be specified as

dead bandQ < Ir P tan0c . (4.7.2)

where 8 = maximum allowable coning angle given in the specifications. Equation 4.7.2 is

based on Equation 4.6.1.1 and 4.6.1.3.

The state estimator optimal feedback matrix, H, can be chosen for the general case

such that the estimation error dynamics are equivalent. Therefore, H must be chosen such

that the eigenvalues of A-HC are the same as those specified in Section 4.5, for the general

A and C. From Equation 4.4.3, the general dynamics matrix is given by

A=[ ao] where a = (1- Ir)P. (4.7.3)

The general measurement matrix is derived from Equations 4.4.3 and 4.5.1, and is given

by

C=[c 0] where c = (2 -Ir)P. (4.7.4)

For H = [h, h2]T, the characteristic equation for the general case is

= det {I - A + HC) = 2 + hl(2 - Ir)P X + (1 - Ir) 2p 2 + h2 (1 - Ir )(2 - Ir )P2 (4.7.5)
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and the characteristic equation for the current system is

-= X2 + 356.4 X + 390.8 .

H can be specified as:

356.4
h = (2 -Ir ) P

2 =
390.8 - (1 - Ir )2 P2

(1 - Ir ) (2 - Ir)P 2

and can be chosen for any Ir and P such that the estimation error dynamics are always

identical to those specified in Section 4.5.

The attitude control moment comes from Equation 4.4.3, and is given by

IFI reff = 0.6
V

(4.7.8)

and the axial velocity control force, for the general case, is given by Equation 4.4.5 as

IFIm = 0.5
m

(4.7.9)

where m = mass of the LREP. Combining Equations 4.7.8 and 4.7.9 gives the effective

moment arm as
1.2 I1

reff = m (4.7.10)

Thus, the thrust magnitude, IFI, and the effective moment arm, reff, can be chosen in terms

of the LREP's mass and moment of inertia.

The axial velocity control law's dead band can be chosen by

dead bandu < IUnom - Um I .

where Unom = nominal axial velocity, and

(4.7.9)

(4.7.6)

(4.7.7a)

(4.7.7b)
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Umin = minimum allowable axial velocity, as given in the specifications.

Therefore, the control system specified in Chapter 4, although it appeared to be a

point design, is actually a general design which can be applied to LREPs of all spin rates

and mass properties.

4.8 Simulation Results

All computer simulation programs were written in ACSL [18], and the simulation

code is included in Appendix A.

Figure 4.8.1 shows the axial velocity for the uncontrolled LREP. The initial axial

velocity is 2.5 m/sec (the ejection velocity). The center of gravity is moving in the

x direction (i.e., horizontally) at 2.5 m/sec, but the LREP is pitching up due to the tip-off

rate induced by the ejector. The LREP's axial velocity is, therefore, decreasing due to the

change in coordinate system. The plume event is assumed to occur 2.0 sec after ejection

although the exact time is unknown. This assumption is valid because the LREP's axial

velocity is predominantly independent of the plume event's time. The plume gives the

LREP forward acceleration, but has little overall effect due to the large tip-off rate which is

imparted during ejection.

Figure 4.8.2 shows the axial velocity for the controlled LREP. The spin axis, u, of

the controlled LREP is approximately parallel to the horizontal axis, x, because the LREP's

orientation is maintained by the attitude control system. There is an initial negative

acceleration because the attitude control system is removing the tip-off rate. The LREP

pitches up due to the residual rates left by the attitude control system. This causes a slow

decrease in the axial velocity. The center thruster is activated to keep the axial velocity

inside the performance boundary when the lower bound set by the dead band is reached.

The plume gives the LREP an acceleration directly along the spin axis because the

orientation is maintained. The axial velocity is kept within the performance boundary by

activating the outer solenoids when the upper bound is reached.
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Figure 4.8.1: Uncontrolled Axial Velocity.
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Figure 4.8.2: Controlled Axial Velocity.
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Figure 4.8.3 shows the coning angle for the uncontrolled LREP. The tip-off rate

caused by the ejector gives an initial coning angle of 180, and the plume event gives an

additional 80 of coning. Any lateral rates imparted on the LREP result in a constant coning

angle (see Equation 3.4.1) because the LREP dynamics are dissipationless (see Equation

4.5.2).

The coning angle response for the controlled LREP is presented in two sections.

The first section presents the coning angle response to the tip-off rate and the second

section shows the response to the plume event.

Figure 4.8.4 shows the coning angle tip-off response for the controlled LREP. The

attitude control system reduces the initial 180 of coning to below the desired 30 in

100 msec. The plume event response is presented independently because the tip-off

coning is removed before the plume event occurs.

JU

25-

20-

S15-

10.
0 1 2 3 4 5

Time (sec)

Figure 4.8.3: Uncontrolled Coning Angle.

Tip-Off Plume Event

I
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Figure 4.8.4: Controlled Coning Angle Tip-off.

The controlled LREP's response to the plume event is shown in Figures 4.8.5 and

4.8.6. The LREP's orientation during the plume event is unknown, and therefore the axis

which the induced moment occurs is also unknown. Figures 4.8.5 and 4.8.6 show the

plume event occurring at t = 2.0 sec, but this does not correspond to 2.0 sec after ejection.

The plume is shown at t = 2.0 sec for consistency with the previous plots. As described in

Section 4.5, the state estimator has a fast and slow axis of estimation, which implies a

best and worst scenario for the plume event response. The worst scenario corresponds to

the plume imparting a moment about the w axis, and the best scenario corresponds to the

plume imparting a moment about the v axis. The worst scenario shows the coning angle

reduced to the desired 30 in 1.6 sec, while the best scenario shows the coning angle

removed in 50 msec.

Finally, the LREP's pointing angle gives a better understanding of the LREP's

motion. The pointing angle is defined as the angle between the spin axis, u, and the

horizontal axis, x. The pointing angle for an uncontrolled LREP is shown in Figure 4.8.7.

The pointing angle is initially increasing at 3 O/sec (the tip-off rate) and the plume event

--
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increases the rate to 4.3 O/sec. This gives a better understanding of the axial velocity

response for the uncontrolled LREP.

0 1 2 3 4 5
Time (sec)

Figure 4.8.5: Plume Event's Worst Scenario for Controlled Coning Angle.

15
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5

0

Figure 4.8.6: Plume Event's Best Scenario for Controlled Coning Angle.
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Figure 4.8.8 shows the pointing angle for the controlled LREP. This figure shows

that control of the coning angle implies that the orientation of the LREP is maintained.

Thus, any latency in coning angle control corresponds to an increase in pointing angle.
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Figure 4.8.7: Uncontrolled Pointing Angle.
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Figure 4.8.8: Controlled Pointing Angle.
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Chapter 5

Experimental Testing

Control systems are only as good as the model used for their design, and many

times these models can neglect a seemingly trivial, but very important aspect of the dynamic

system they represent. Therefore, experimental testing is necessary to verify theoretical

results. The purpose of these experiments is to verify stability of the attitude control law

and to address any practical issues which may have been overlooked.

5.1 Experimental Model

The model used for experimentation represents the LREP's 3 rotational degrees-of-

freedom. Any meaningful experiments for axial velocity control would require testing of a

free-fall model because the LREP's axial velocity is highly coupled with the rotational

dynamics. Therefore, practical considerations limit testing of attitude control only.

The LREP's rotational dynamics are given by Equation 4.4.3 as

dPdP 0 (4.4.3a)
dt

dQ ( IFI reff cos30
S(1 - )PR + (L2 - L3) (4.4.3b)

dR Iu  IFI reff
dt- (1 -)P Q - [L1 - sin30(L2 +L3)]. (4.4.3c)

V V

The experimental model will have the same dynamics as the LREP provided that the

conditions

Iv
V

and
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eff = 0.6 (5.1.2)
V

are satisfied.

Figure 5.1.1 shows the experimental test apparatus and Appendix C gives the

detailed drawings for each component. The round plate represents the base plate of the

LREP and is attached to a DC motor, which provides the desired spin rate, P. Three

thrusters are mounted to the bottom of the plate around the perimeter and the two

accelerometers are mounted to the interior of the plate. A motor is attached to a differential-

type system which allows the plate to swing freely about two perpendicular axes. The

LREP's center of mass corresponds to the intersection of the two differential shafts.

The body-fixed coordinate system is shown in Figure 5.1.2 and the corresponding

Earth-fixed system in Figure 5.1.3. u is the motor's spin axis and points upward, v is

parallel to the accelerometers and passes through the center of mass, and w is perpendicular

to u and v in order to form a right triad. x passes through the intersection of the

differential shafts and points upward, while y and z correspond to the differential shafts'

directions, as shown in Figure 5.1.3.

The center plate does not contain the entire control system, as the LREP would,

because this would require construction of a miniature pressure vessel for the argon gas,

mounting the solenoids to the base plate, and powering the system by batteries. This

added complexity was considered non-essential to the goals of the experiment. Tubing is

required to connect the thrusters to the solenoid valves because the system is not self-

contained.
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Figure 5.1.2: Body-Fixed Coordinate System.
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The initial design of the test apparatus had a counter-weight mounted to the top of

the motor and by removing any gravitational effects, resulted in the desired dissipationless

system . However, small forces exerted on the plate by the tubing resulted in significant

experimental errors because of the dissipationless system. These errors could not be

accounted for in the experiment because they were unrepeatable, and therefore the counter-

weight was removed to minimize these errors. However, removal of the counter-weight

added additional dynamics to the system because of gravitational contributions to the plate.

These new dynamics are referred to as pendulum dynamics. The equations of motion must

be modified to incorporate the additional dynamics.

The original rotational dynamics were given by Equation 3.2.4 as

dQIv L + (I - I ) P R = Mv  (5.1.3a)

dRIv L + (I - Iv ) P Q = Mw . (5.1.3b)

For the LREP, Mv and Mw were comprised of the control forces and disturbances only, but

the experimental apparatus has additional contributions from gravity and bearing friction.

The pendulum model depicted in Figure 5.1.4 is utilized in order to include the additional

forces. The equation of motion for the pendulum is given by

d20 dO
I =- b gml sin 0 (5.1.4a)

dt2  dt

where O = pendulum angle with respect to vertical,

I = moment of inertia of the pendulum,

m = mass of the pendulum,

1 = length of the swing arm, and

b = friction in the bearing.
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m

Figure 5.1.4: Pendulum Model.

The linearized pendulum equation is given by

d20 dO
I dt2 + b• + gml =0. (5.1.4b)

This equation assumes that the pendulum is a point mass, and therefore 1 can be interpreted

as the radius of gyration of the pendulum. With this interpretation, the moment of inertia

can be expressed as

I = m 12 (5.1.5)

and the pendulum equation becomes

d2 0 b dOdt2  b d 9 = 0. (5.1.6)

The standard second order dynamic model is
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d2g dO

d20 + 2Co n  + = 0 (5.1.7)

where o = natural swing frequency of the pendulum, and

S= damping ratio.

Therefore, the moment of inertia and bearing friction can be expressed as
2

I= (5.1.8)
(n

and

b = 2 onI . (5.1.9)

The moment of inertia and the bearing friction can be determined experimentally by pushing

on the base plate, observing its swinging motion, and computing n and C. Figures 5.1.5

and 5.1.6 show the angle of the motor shaft with respect to vertical for perturbations of the

base plate about y and z, respectively. Figure 5.1.5 shows a relatively well behaved

response, while Figure 5.1.6 shows the nonlinearities caused by the tubing.

0.s

0.4

0.0

.-0.4

-.0.8
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (sec)

Figure 5.1.5: Base Plate Tapping Response About y.
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Figure 5.1.6: Base Plate Tapping Response About z.

The period of swing between various peaks is calculated from Figures 5.1.5 and

5.1.6, and shown in Table 5.1.1.

Table 5.1.1: Experimental Swing Periods.

Ts about y Ts about z
(seconds) (seconds)

peak 1 to 3 .68 .70

peak2 to 4 .64 .70

The average swing period, Ts , is 0.68 sec, which gives the natural frequency of the test

apparatus as
270

on = T = 9.2 rad/sec
ST

and a radius of gyration of

1 = 0.116 m.

The total mass; of the swinging section is 1.25 kg, which gives the lateral moment of inertia

as

I = I = 0.0168 kg m2.
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The damping ratio can be determined from the ratio of peaks, assuming a pure

second order response, and is calculated from Figure 5.1.5 and shown in Table 5.1.2. The

data from Figure 5.1.6 could not be used for the damping ratio calculation because of the

guessing involved in extrapolating the necessary information.

Table 5.1.2: Experimental Damping Ratios.

Sabout y

eak1 to 3 .13

pek2 to 4 .11

peak 3 to 5 .17

The average damping ratio is

S=0.137

which gives a bearing friction of

b = .042 N m sec.

The bearing friction and lateral moment of inertia fully characterize the test

apparatus in terms of the additional pendulum dynamics. Two new angles, a and 0, must

be defined to incorporate this information into the rotational dynamics given by Equation

5.1.3. They are defined as
t

a= J Q dt (5.1.10a)
0

t
S= JR dt. (5.1.10b)

0

Gravity and bearing friction can now be incorporated as part of the applied moments, Mv

and M, . The dynamic equations of motion become
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+ (Iu-I) PR =-

+ (Iu-I v )P Q =-

bdt

dt

- gml a+ IFI reff cos300 (L2 -L3)

- gml p + IFI reff [L1 - sin300 (L2+L3)].

(5.1.11a)

(5.1.11b)

Combining Equation 5.1.10 with Equation 5.1.11 yields

I - I
+ U V

Iv
doP T b da

+ IV dt

b dP
Vdt

+ glmIv

+ g =
vV

IFI reff cos300
Iv (L- L3)
v,

IFI rff
I [L -Iv sin300 (L2+L3)].

(5.1.12a)

(5.1.12b)

Using the following physical parameters of the test apparatus,

m = 1.25 kg,

Iu = 0.0024 kg m2 , and

reff = 0.127 m,

I F I and P are chosen as

I F I = 0.08 N

P = 73.3 O/sec

to meet the criterion specified in Equations 5.1.1 and 5.1.2. The final equations of motion

for the test apparatus are found by substituting numbers into Equation 5.1.12 to give

df- 1.1 -d + 2.5dt
da

+ 84.6 a = 0.5 (L2 - L3)

d2+ 2.5 L + 84.6 1 = 0.6 [L1 - sin300 (L2+L3)] .dt2.

dQ
v dt

dR
Iv F-

d2a

dt2

d2a
it2

dot
+ 1.1-

(5.1.13a)

(5.1.13b)
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The test apparatus dynamics, although not identical to the LREP's rotational

dynamics, contain the required dynamics specified in Equation 4.4.3. The control system

is identical in structure to the system described in Chapter 4 and only differs by the

additional pendulum dynamics which must be included in the state estimator.

5.2 State Estimator

The state estimator is designed using the dynamics specified in Equation 5.1.13.

Equation 5.1.13 is converted into state space representation in order to calculate the optimal

estimator gains. The state vector is defined as:

x = 0. (5.2.1)

The measurement comes from the two accelerometers whose sensitive axes are along u.

Their locations are

r = + 0.038 v

r2 = - 0.038 v.

The measurement, in terms of the accelerometer outputs, is given by

al - a2
Y = .076 (5.2.2)

and using the accelerometer equations derived in Section 4.2 yields

y=PQ P -"•. (5.2.3)

The state space matrices are

0 0 1 0-
0 0 0 1

-84.6 0 -2.5 1.1
0 -84.6 -1.1 -2.5
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and

C = [0 84.6 2.38 2.5].

The state estimator is designed by the method described in Section 4.5 and the

optimal gain matrix is given by

H = [0.03 0.26 1.29 9.10]

for

GT = [0 0 1 10] V2 = 1 V3 = 1.

The state estimation error eigenvalues are

X1,2 = -1.2 ± 9.0 j X3,4 = -25.2 + 15.6 j.

5.3 Test Configuration and Data Acquisition

A block diagram of the experimental set-up, along with the data acquisition system,

is shown in Figure 5.3.1. A picture of the overall experiment is presented in Figure 5.3.2.

Two potentiometers are used to measure the rotation angles of the base plate about the two

differential shafts. Figure 5.1.3 shows the potentiometer layout and the Earth-fixed

coordinate system. The pot which measures the rotations about z, called pot-z, is rigidly

attached to the test apparatus structure. See Figure 5.1.1. Pot-y, is attached to the

differential system and therefore rotates with the base plate about z.

The coning angle can be directly obtained from these two measurements by

selecting the appropriate Euler angles. Using the notation of Section 3.1 and the coordinate

system layout described in Section 5.1, the Euler angles, 0, E, and W, are defined by

D = rotation about z to form x',y',z'

O = rotation about y' to form x",y",z"

Y = rotation about x" to form x"',y'",z"' which is the body system u,v,w.
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These rotations are classified as a Type 1, 3-2-1 rotation sequence [3]. Therefore, pot-z

measures Q and pot-y measures O. As explained in Section 3.1, these angle rotations are

functions of the body fixed rotation rates, P, Q, and R. The relationship is given by [3]

de cos(tY) sin(Y)-- = R + Q (5.3.1)dt cos(@) cos(O)
dO

S= Q cos(Y) - R sin(l) (5.3.2)

dY
- = P + Rtan(O)cos(C ) + Qtan(O)sin(Y) . (5.3.3)

Figure 5.3.1: Test Configuration Block Diagram.
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The coning angle is given in Section 4.6.1 as

VQ2 + R2 =IbPtan(Oc) (4.6.1.1)

for constant spin rate and inertias. A small angle approximation can be used for E since the

test apparatus allows the base plate to swing a maximum of +100. The Euler derivatives

become

dO
= R cos(Y) + Q sin(I) (5.3.4)

dO
= Q cos(Y) - R sin(C) (5.3.5)

and then

( ••) 2+ (d) 2  Q2 + R2 . (5.3.6)

Therefore, the coning angle can be determined by differentiating both potentiometer

measurements and applying Equation 4.6.1.1.

The potentiometer readings were acquired by a Hewlett-Packard 9000/300

computer with a Hewlett-Packard 98640A data acquisition board. The sampling rate for

each potentiometer was 100 Hz and corresponds to a Nyquist frequency of 50 Hz. Anti-

aliasing filters were needed to attenuate any signals comprised of frequencies above the

Nyquist frequency. The transfer function of the anti-aliasing filter, F(s), is

62.82
F(s)= 2 2 (5.3.7)

(s + 62.8)

As shown in Figure 5.3.1, the data acquisition is completely independent of the control

system. Appendix D contains the schematic of the electronics useded in the experiments.
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5.4 Experimental Results

The experiment begins with the orientation of the base plate such that y is parallel

to -w and z is parallel to v. At t = 0, the motor drive starts the spin rate motor whose initial

torque imparts a moment on the base plate and causes precession. The initial configuration

is necessary so the disturbance torque is imparted on both v and w. Figure 5.4.1 shows

the coning angle for the uncontrolled test. The coning angle initially rises to 290, but the

tubing quickly reduces the coning angle to 100. The relatively slow decay is due to bearing

friction. The: pendulum effect causes the coning angle to oscillate whereas the LREP's

dissipationless system would maintain constant coning. Nonlinear effects are seen at

t = 1.0 sec, where the peak decreases and then suddenly increases, and are also seen by

comparing the third and fourth peaks. Peak 4 is larger than peak 3 which indicates that

energy is being added to the system. This effect can only be due to the tubing.

Figure 5.4.2 shows the coning angle for a controlled test. During the first 0.5 sec,

the controlled response is nearly identical to the uncontrolled response. However, the

coning angle is reduced after t = 0.5 sec and is under the specification of 30 at t = 0.8 sec.

This result is consistent with the eigenvalues specified in Section 5.2.
30

:25

. 20

E 15

E 10
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5

0
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Time (sec)

Figure 5.4.1: Uncontrolled Coning Angle for the Experimental Test.
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Figure 5.4.2: Controlled Coning Angle for the Experimental Test.

Many practical issues were addressed during these experiments. The

accelerometers made testing impossible during business hours because they can detect any

ground vibrations, such as those caused by people walking or equipment turning on.

Although the state estimator provided some filtering, an additional filter was needed to

further reduce the noise corruption. The filter transfer function is

1442
M(s) = + 1442 (5.4.1)

(s+ 144)
The solenoid valve interfacing was also a problem. The solenoid specifications

gave an on time and off time of 10 msec for the valve. Initially, a first order filter with a

rise time of 10 msec was used to condition L1, L2, and L3 before they were fed back to the

estimator. See Figure 5.4.3. This is incorrect because the 10 msec on time is actually an

energizing time. A problem occurs if L1, L2, or L3 is true for less than 10 msec. The

solenoid valves would never turn on but the estimated states are based on these thrusts

being applied. The solution is shown in Figure 5.4.4. A monostable flip-flop is used to

ensure that every command issued to the solenoids is at least 10 msec in duration. This
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experimental result significantly changed the theoretical calculations and simulations shown

in Chapter 4.

to i th Solenoid

to the

State Estimator

Figure 5.4.3: Incorrect Processing of the Commanded Thrust Signal.

state Estsmator

to i th Solenoid

Figure 5.4.4: Correct Processing of the Commanded Thrust Signal.
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Chapter 6

Conclusion

The control system is capable of removing the tip-off rate induced during ejection

and the plume induced forces and moments. The LREP's axial velocity is maintained

within the bounds specified by the performance criteria, and the coning angle imparted

during ejection is reduced below the 30 performance criteria in 100 msec. The plume

induced coning angle response is dependent on the orientation of the LREP at the time of

interaction. The minimum response time is 50 msec, while the maximum is 1.6 sec.

Coning angle: control also implies pointing angle control, and the controlled LREP has a

pointing angle error less than 1.30.

The coning angle of a test apparatus was controlled by the system presented in

Chapter 4. The experimental results demonstrate system stability for attitude control.

Valuable knowledge about the accelerometers and solenoid valves was obtained from the

experiments.

Section 4.7 shows that although this design appears to be a point design, it can be

applied to LREP's of any spin rate and inertias by a change of estimator matrices, thrust

magnitude, moment arm, and dead bands. These can be calculated by the equations given

in Section 4.7 and computer simulated using the program of Appendix A. Therefore, the

system is completely general and easy to apply to any type of simple reentry vehicle.

The electronic circuits needed for the LREP system are given in Appendix B. They

are based on those used in the experimental tests. The analog building blocks are

integrators, amplifiers, and summers. The state estimator's analog signals are converted to

digital levels by voltage comparators and digital logic gates are used for control law

switching. Power MOSFETs drive the solenoid valves and are activated by logic level FET

drivers. The control system electronics require only 21 integrated circuit chips, 11
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capacitors, and 67 resistors. The battery/power system is presented in Appendix E and is

comprised of' 30 batteries and two voltage regulators.

Mass and volume for this system is based on items chosen from manufacturer's

catalogs. The parts chosen are not necessarily the smallest or lightest available, but are

chosen to demonstrate that mass and volume requirements have been met. Table 6.1

shows the mass and volume for each item. Every item is below the height specification of

30 mm and the total system mass is 0.974 kg. Therefore, all performance criteria specified

in Chapter 2 have been met.

Table 6.1: Mass and Volume Breakdown.

Item Mass (kg) Dimensions (mm) Manufacturer and Model No.

2 Accelerometers 0.10 24x25 dia (each) Sundstrand, QA-700

4 Solenoid Valves 0.38 25x25x51 (each) Festo, 9712 MNH-3-M5

Tubing 0.018

Argon Tank 0.002 176x30x30(donut) custom manufactured

Argon Gas 0.01 -- --

Pressure Regulator 0.084 30x30x58 custom manufactured

20 Batteries 0.10 12.6 dia x 300 Gates, ptP80

10 Batteries 0.17 16.8 dia x 280 Gates, 2/3Af

Electronics 0.11 15xlOOxl00 --

Possible future work in the control of lightweight reentry vehicles is virtually

unlimited. Modifications to this system may include alternative sensors. Rate sensors

eliminate the need for a state estimator, but two of them would be required in addition to the

axial velocity accelerometer. This translates to additional power requirements and larger

batteries. Therefore, a sensor vs. mass vs. performance trade-off study can be addressed.
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Electronics are not the only type of computational hardware available. Fluid signal

processors, called fluidics, have been successfully used in attitude stabilization systems.

This technology has the advantage that it can operate in very harsh environments.

Disadvantages are that fluidic systems have computational limitations and are not as easily

modified as electronic systems. However, the possibility of a fluidic control system should

also be investigated.

The ejection and plume events are not the only operating regimes. Atmospheric

reentry is another source of disturbances that may be addressed in the future. In addition,

axial velocity and coning angle may not be the only parameters of interest. Investigation of

controlling additional parameters, such as lateral velocity, will provide a challenge for the

researcher who attempts to meet the current mass specifications.



75

References

[1] David Immerman, MIT Lincoln Laboratory, Aerospace Engineering Group.

[2] J. L. Meriam, Engineering Mechanics Volume 2: Dynamics, John Wiley & Sons,

New York, 1978, page 456.

[3] James Wertz, Spacecraft Attitude Determination and Control, D. Reidel Publishing,

Holland, 1978, page 765.

[4] Wertz, page 514.

[5] Meriam, page 443.

[6] Meriam, page 434.

[7] Meriam, page 424.

[8] Y. M. Timnat, Advanced Chemical Rocket Propulsion, Academic Press, Inc.,

London, 1987, page 4.

[9] James Davis, MIT Lincoln Laboratory, Control Systems Engineering Group.

[10] Festo Corp., Pneumatic Products Catalog, Hauppauge, NY, 1986, page 14.

[11] Huibert Kwakernaak and Raphael Sivan, Linear Optimal Control Systems, John

Wiley & Sons, Inc., New York, 1972, page 330.

[12] Kwakernaak and Sivan, page 331.

[13] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and Prediction

Theory", J. Basic Eng., Trans. ASME, Ser. D, 83, 1961, pp 95-108.

[14] Michael Athans, "Lecture Notes on the Kalman Filter", MIT Department of Electrical

Engineering and Computer Science, Reference No. 830405/6232, 1983.

[15] Kwakernaak and Sivan, page 346.

[16] Kwakernaak and Sivan, page 371.

[17] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1978, page 154.



76

[18] Mitchell and Gauthier Associates, Advanced Continuous Simulation Language

Reference Manual, Concord, MA, 1986.

[19] Gates Energy Products, Inc., Gainesville, Fl, Reference No. GEP-0520, 1987.



77

Appendix A

LREP Simulation Program

LREP.CSL'

ACSL program for a 6 degree of freedom simulation of an LREP'

4 solenoids are used for control'

algorithm is bang-bang with deadband'

program Irep simulation

logical upos,uneg,qpos,qneg,rpos,rneg,roff,11,12,13,14

Define the simulation environment'

cinterval cint = .005

algorithm ialg = 5

maxterval maxt = .0005

minterval mint = .005

nsteps nstp = 1

Declare Constants'

g = 9.8, mass = 3.0,

,tstop = 5.0, ptime = 2.0,

,bl = .57, b2 = .494,

,mu = 1.047, pc = 1.2,

,rl = .9, r2 = .38

isp = 51.0,

thrst = 1.5

udead = .18,

hl = 150.0,

icross = -.88 ...

qdead = .0006 ...

h2 = 145.0 ...

Initialize variables'

initial

constant
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p = 1.2565

qic = .037

ric = .037

xic = 0.

yic = 0.

zic = 0.

uic = 2.5

phiic = 0.

thetic = 0.

psiic = 0.

qest = 0.

qestd = 0.

rest = 0.

restd = 0.

yest = 0.

tu = 0.

tv = 0.

tw = 0.

offl = -1.

off2 = -1.

off3 = -1.

off4 = -1.

end $'of initial'

Macro for the switching function'

macro swch(out,in,band)

out = .5*(sign(1.0,in-band) + sign(1.0,in+band))
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macro end

Initial calculations'

reff = fl*cos(mu) + r2*sin(mu)

Start the integration'

dynamic

derivative

Plume Event'

plfx = rsw(t.ge.ptime, 3.6*exp(-(t-ptime)*.8), 0.)

plfy = rsw(t.ge.ptime, .72*exp(-(t-ptime)*.8), 0.)

plmomt = rsw((t.ge.ptime).and.(t.lt.(ptime+.01), 7.0, 0.)

Mass and moment of inertia decreasing as the propellant is used'

mass = mass0 - mprop

iu = .08133*mass

iv = iu/.12

iw = iu/.12

Control system

Accelerometer Measurement for Attitude Control'

ymeas = p*q - rd

State Estimator'

procedural(qest,rest = ymeas)

yest = 2.36*qest + bl*(tl - .5*(t2+t3))/thrst

ul = b2*(t2-t3)/thrst + hl*(ymeas - yest)

u2 = -bl*(tl-.5*(t2+t3))/thrst + h2*(ymeas - yest)
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qestd = 1.1*rest + ul

qest = integ(qestd, 0.)

restd = -1.1*qest + u2

rest = integ(restd, 0.)

end $'of procedural'

Axial Velocity Error'

uerr = uic - u

Switching Function'

procedural(upos,uneg,rpos,rneg,roff,qpos,qneg = uswch)

upos = (swch(uerr, udead) .gt. .5)

uneg = (swch(uerr, udead) .It. -.5)

qpos = (swch(qest, udead) .gt. .5)

qneg = (swch(qest, udead) .It. -.5)

rpos = (swch(rest, udead) .gt. .5)

meg = (swch(rest, udead) .lt. -.5)

roff = (abs(rest) .lt. .qdead)

end $'of procedural'

Thruster Decision Making'

11 = uneg.or.rpos.or.(qpos.and.roff)

12 = uneg.or.qneg

13 = uneg.or.meg.or.(qpos.and.roff)

14 = upos
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Convert the logical variables into the cooresponding 10 msec on'

time and 10 msec off time'

offl = rsw(ll.and.(t.ge.offl), t+.01, offl)

off2 = rsw(12.and.(t.ge.off2), t+.01, off2)

off3 = rsw(13.and.(t.ge.off3), t+.01, off3)

off4 = rsw(14.and.(t.ge.off4), t+.01, off4)

tl = rsw(t.lt.offl, thrst, 0.)

t2 = rsw(t.lt.off2, thrst, 0.)

t3 = rsw(t.lt.off3, thrst, 0.)

t4 = rsw(t.lt.off4, thrst, 0.)

Convert Solenoid Forces Into Body Forces and Moments'

tu = t4 - (tl+t2+t3)*sin(mu)

tv = (tl - .5*(t2+t3))*cos(mu)

tw = .866*(t2 - t3)*cos(mu)

momv = .866*(t2 - t3)*reff

momw = (-tl + .5*(t2+t3))*reff

6 degree of freedom model

Rotation Rates'

qd = -icross*p*r + (momv + plmomt*vz)/iv

q = integ(qd, qic)

rd = icross*p*q + (momw + plmomt*wz)/iw

r = integ(rd, ric)
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Euler Angles'

phid = (q*cos(psi) - r*sin(psi))/cos(theta)

phi = integ(phid, phiic)

thetad = q*sin(psi) + r*cos(psi)

theta = integ(thetad, thetic)

psid = p - (q*cos(psi) - r*sin(psi))*tan(theta)

psi = integ(psid, psiic)

Translational Velocities'

ud = -q*w + r*v + g*uz + (tu + plfx*ux + plfy*uy)/mass

u = integ(ud, uic)

vd = -r*u + p*w + g*vz + (tu + plfx(vx + plfy*vy)/mass

v = integ(vd, vic)

wd = -p*v + q*u + g*wz + (tw + plfx*wx + plfy*wy)/mass

w = integ(wd, wic)

Direction Cosine Matrix Elements'

ux = cos(phi)*cos(theta)

uy = sin(theta)

uz = -sin(phi)*cos(theta)

vx = -cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi)

vy = cos(theta)*cos(psi)

vz = sin(phi)*sin(theta)*cos(psi) + cos(phi)*sin(psi)

wx = cos(phi)*sin(theta)*sin(psi) + sin(phi)*cos(psi)

wy = -cos(theta)*sin(psi)

wz = -sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi)
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---------- Additional Information

Axial Distance Off The Post-Boost Vehicle'

xd = u*uy + v*vy + w*wy

x = integ(x, 0.)

Pointing Angle'

point = 57.3*sqrt(phi**2 + theta**2)

Coning Angle'

cone = 57.3*atan2(sqrt((iv*q)**2 + (iw*r)**2),

sqrt((iu*p)**2 + (iv*q)**2 + (iw*r)**2))

Propellant Mass'

mprop = 1.0/(g*isp) * integ(tl+t2+t3+t 4 , 0.)

Power Consumed By the Solenoids'

energ = integ(pc*(rsw(ll, 1.0, 0.) + rsw(12, 1.0, 0.) + ...

rsw(13, 1.0, 0.) + rsw(14, 1.0, 0.)), 0.)

end $'of derivative'

termt(t .ge. tstop)

end $'of dynamic'

terminal

end $'of terminal'

end $'of program'
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Appendix B

LREP Circuitry
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Appendix C

Test Apparatus Drawings

C.1 Motor Mount Assembly

Motor

Motor Mount

Bearing Mount
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C.2 Overall Assembly

/Top

Cross Member:B

Motor Mount

Plate Shaft

Plate

Bearing Mount

Cross Member:A

2 2 1/4

W-'

2 1/4

I-

I / r

m
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C.3 Upper Yolk Assembly

ber:B

iru, 4 Places

r 4-40 Cap, 8 Places

z

-2 1/2 -

2 1/2 3

1/4

r% - - IA
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3/16
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3/4

Mtrl: Aluminum

88

C.4 Plate
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C.5 Motor Mount

1/R rhri A Plrnpc

5/32 Thru, 4 Places
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C.6 Cross Member A

2 Thru 1/8

40 Tap, 4 Places

2

1/4- L

Mtrl: Aluminum
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C.7 Cross Member B

1/2 Thru

- 1/8 Thru, 4 Places

-2 1 2

1/4 --0

Mtrl: Aluminum

1/2 "--
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C.8 Bearing Mount
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C.9 Plate Shaft

1 /-44-40 Tap
1 / 4 ,.--1 - 1/2 Dia
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Appendix D

Experimental Circuitry
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Appendix E

Battery/Power System Design

Required Voltage Supplies

+ 5 VDC for digital @ 0.05 amps

+ 12 VDC for solenoid valves @ 0.375 amps/sol * 3 sol = 1.125 amps

+ 15 VDC for analog @ 0.2 amps

Notes:

a) maximum of 3 solenoids are simultaneously energized

b) only ± 15 VDC supplies are regulated

c) assume 50 % efficiency for the voltage regulators

d) minimum operating time = 5.0 sec

e) battery cells are + 1.2 volts each

f) discharge temperature = -30 OC

g) battery information based on GATES NiCd battery cells [19]

h) design is based on the battery configuration in Figure E. 1

5 VDC

VDC

Figure E.1: Battery Configuration.



96

1) First 10 batteries supply the solenoid valves, digital, and analog

0.2 Aa) total current = 1.125 A + 0.05 A +50 % effeciency
2

b) use GATES, 3Af cell: C rating = 0.475 Ahr

1.575 A

c) discharge rate calculation

1.575 A
0.47 5 C = 3.3 C multiples =* 90 % of cell capacity available

d) temperature discharge calculation

discharge at -30 OC =: 20 % of cell capacity available

e) cell lifetime at full discharge rate

0.475 Ahr * 0.9 * 0.2
1.575 A = 0.054 hr = 195 sec

2) 20 batteries for supplying analog only

0.2 Aa) total current = 0.4 A50 % effeciency

b) use GATES, IiP80 cell: C rating = 0.065 Ahr

c) discharge rate calculation

0.4 A
0.065 C = 6.15 C multiples = 80 % of cell capacity available

d) temperature discharge calculation

discharge at -30 OC =* 20 % of cell capacity available

e) cell lifetime at full discharge rate

0.065 Ahr * 0.8 * 0.2
= U.U02 nr = 94 sec0.4 A
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3) Mass
2

10 Af cells * 16.9 gr/cell = 169 gr

20 gP80 cells * 5.10 gr/cell = 102 gr

total battery mass = 271 gr

4) Volume
2
2-Af cell volume = 28 mm x 16.8 mm diameter3

C±P80 cell volume = 15 mm x 12.6 mm diameter

5) Battery Packaging

use packaging depicted in Figure E.2

overall size: 29.4 mm height

300 mm length

16.8 mm wide

16.8 mm DIA

10 - 2/3Af Cells I
29.4 mm

300 mm

Figure E.2: Battery Packaging.

20 - uP80 Cells
C


