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Abstract

We consider a single-hop cellular wireless system with a single source (base station)
broadcasting a stream of incoming files to multiple receivers over stochastic time-
varying channels with non-zero erasure probabilities. The base station charges a
price per receiver per file with the aim of maximizing its profit. Customers who
wish to transmit files to the receivers decide to enter the system based on the price,
the queuing delay, and the utility derived from the transaction. We look at net-
work coding and scheduling as possible strategies for file transmission, and obtain
approximate characterizations of the optimal customer admission rate, optimal price
and the optimal base-station profit as functions of the first and second moments of
the service time processes under mild assumptions. We show that network coding
leads to significant gains in the base station profits as compared to scheduling, and
also demonstrate that the optimal network coding window size is highly insensitive
to the number of receivers, which suggests that pricing and coding decisions can be
decoupled. We also investigate the behavior of network coding in the case where the
number of receivers is sufficiently large, and derive scaling laws for the asymptotic
gains from network coding. We subsequently propose a way to extend our analysis of
single-source, multiple-receiver systems to multiple-source, multiple-receiver systems
in general network topologies and obtain explicit characterizations of the file down-
load completion time under network coding and scheduling, also taking into account
the effects of collisions and interference among concurrent packet transmissions by
two or more sources. Our formulation allows us to model multi-hop networks as a
series of single-hop multiple-source, multiple-receiver systems, which provides a great
deal of insight into the workings of larger and denser multi-hop networks such as over-
lay networks and peer-to-peer systems, and appears to be a promising application of
network coding in such networks in the future.
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Chapter 1

Introduction

The advent of wireless networks has revolutionized the whole domain of packet net-

works. The arrival of third-generation cellular systems has resulted in an increased

demand for wireless networks for the purpose of data transmission, and has also ex-

pedited the growth in the capacity of wireless networks. Wireless networks are now

being employed for a vast variety of purposes including data transmission in multicast

settings such as video-conferencing and file transfer.

Traditional approaches such as routing from hop to hop, which work reasonably

well in wireline networks, fail to exploit the full capacity of wireless networks: first,

because wireless links are considerably more unreliable than wireline links, which re-

sults in a higher likelihood of packet erasure; and second, because traditional routing

is incapable of utilizing the wireless broadcast phenomenon, i.e., in a wireless network,

transmission to all nodes within a given radius can be achieved without incurring addi-

tional cost. Moreover, in tree-based multicast settings, hop-by-hop routing translates

into solving the directed Steiner tree problem, which is known to be NP-complete

[5, 41].

In light of the inefficacy of the hop-by-hop routing approach, it has been recognized

that broadcasting to multiple destinations may be accomplished much more efficiently

if network coding is used ([2, 27, 29]). Network coding is a recent idea in the domain

of communication networks; however, ever since network coding was first proposed

by Ahlswede et al. [2], the growth in the range of its applications to networking has



been phenomenal. In the next section, we describe the fundamental idea of network

coding and discuss the research work that has subsequently been done on network

coding. We outline the body of the thesis and state our main contribution in Section

1.2.

1.1 Network Coding: Background

In traditional routing, each node is constrained to only relaying and replicating in-

coming packets. The idea behind network coding is to relax the constraints on nodes

and allow them to perform a much broader range of functions including algebraic

operations on incoming packets. This notion of performing coding on incoming pack-

ets so that outgoing packets are arbitrary, causal functions of incoming packets was

proposed by Ahlswede et al. [2]. Ahlswede et al. were one of the first to consider

the problem of multicast. Previous work had predominantly focused on unicast set-

tings in which packets were transmitted from multiple sources to a single node [30].

The work of Ahlswede et al. was met with considerable interest in the networking

community, and other work quickly followed. In particular, Li et al. [29] and Koet-

ter and Medard [27] showed that capacity could be achieved in the multicast setting

using simple linear codes. Further capacity-achieving codes were provided by Jaggi

et al. [22], Ho et al. [20], and Fragouli and Soljanin [12]. As the benefits of net-

work coding were begun to be realized, research on network coding grew at a rapid

pace. The utility of network coding was investigated in a wide variety of applica-

tions: network management [19], overlay networks [14, 23, 44], wireless networks (e.g.

[15, 39, 24, 25, 42, 43]), capacity of random networks [36], network security against

Byzantine adversaries [6, 7, 18, 21, 11] and multiple multicast [24, 34, 28, 37, 38, 9].

More recently, it was shown by Lun et al. [31] that in addition to providing

an immediate increase in the capacity of the network, network coding allows effi-

cient computation of a minimum-cost subgraph for a single multicast session given a

fixed (i.e., inelastic) rate demand. Lun et al. proposed decentralized algorithms for

minimum-cost subgraph construction in coded packet networks. Previously, finding a



minimum-cost multicast tree without network coding was done using approximation

algorithms for solving the directed Steiner tree problem, which were suboptimal and

required full knowledge of the network topology. The coding-based decentralized ap-

proach proposed in [31] is not only optimal but is also fully decentralized and does not

assume full network knowledge. This approach has also been extended to solve the

problem of minimum-energy multicast in wireless networks [32]. More recent work

by Sundarajan et al. [40] has characterized throughput gains from network coding in

crossbar switches serving multicast traffic flow.

Most of the work described above has focused on capacity, throughput, and energy

gains from network coding, and has demonstrated that network coding does indeed

provide significant advantages in these areas. However, one aspect of network coding

that is still not well understood is its delay performance. The single-most important

reason for this apparent difficulty in analyzing the delay performance of network

coding is the way network coding operates: packets that are encoded have to be

decoded, and this must be carried out in 'bulk', i.e., a certain number of packets

must be successfully transferred before decoding can be done. In such a scenario,

the concept of a 'rate of packet flow' (i.e., the number of bits transferred per unit

time) is rendered meaningless. This phenomenon proves to be the inherent difficulty

in any analysis that attempts to compare the delay performance of network coding

with traditional rate-based schemes such as routing and scheduling.

One of the first steps taken in this direction - to study the delay performance

of network coding - was by Eryilmaz et al. [10]. They proposed a model to analyze

and compare expected delays in file downloads using various transmission schemes in-

cluding network coding and scheduling. In order to overcome the analytical difficulty

posed by the bulk encoding and decoding of packets in network coding, they used a

rateless transmission scenario to assess the delay performance of network coding. In

other words, the delay performance of network coding is analyzed after all the data

has been successfully transmitted. The logical metric to quantify delay in this case is

the completion time of the file download. The work of Eryilmaz et al. is distinct in

that it is the first to explicitly model and quantify delay gains from network coding.



They consider the cellular downlink scenario with time-varying stochastic channels.

This is a standard model for wireless networks, and often serves as the underlying

topology of wireless systems used for diverse applications such as video-conferencing

and satellite communication. Eryilmaz et al. investigate the delay performance of

various file transmission schemes under a variety of conditions, including the pres-

ence/lack of channel side information (CSI), and broadcast and multiple unicast.

Among the various coding and scheduling strategies, they use random linear coding,

which is the optimal coding strategy for network coding (as shown by Li et al. [29]),

and round robin, which is the optimal scheduling strategy in this case.

The work of Eryilmaz et al. demonstrates that there are significant delay gains to

be had from network coding in wireless systems as compared to traditional scheduling

methods. The two scenarios which are studied are single file broadcast (i.e., one file

was to be broadcast to all the end nodes), and multiple unicast (i.e., different files were

to be sent to different end nodes). In the absence of CSI, network coding performs

significantly better than scheduling in both scenarios. In the presence of CSI, however,

network coding yields gains in the broadcast case, but performs worse than scheduling

in the case of multiple unicast. In practice, nevertheless, the assumption that channel

side information is available is unrealistic at best, and therefore, the results of this

work illustrate that network coding does indeed seem to be a promising approach in

real-world delay-constrained systems with no CSI.

1.2 Thesis Goals and Outline

Our goal in this thesis is to further our understanding of the delay performance of net-

work coding in wireless systems as compared to traditional transmission schemes such

as scheduling. We start with a simple extension of the cellular downlink scenario to a

dynamic setting - a single base station broadcasting a continuous stream of incoming

files (users) to a number of receivers - and rigorously analyze the various aspects of

the dynamic model in order to gain a better insight into the delay characteristics of

network coding. The main contribution of this thesis is to show that



* delay gains from network coding can be translated into economic gains in a

dynamic setting,

* network coding can provide significant delay gains in the asymptotic case where

a sufficiently large number of receivers exist in the cellular downlink,

* the single-hop cellular downlink model can be readily extended to a layered

multi-hop topology which can be used to model general multicast settings, and

* significant delay gains from network can be realized in the multi-hop topology.

In Chapter 2, we introduce economic motives (such as profit maximization on the

base station's part and delay minimization on the users' part) into the model and

quantify the economic gains from network coding in the resulting dynamic setting.

The economic aspects of queueing systems have been studied in other works [1, 33, 35].

None of these works, however, considers the broadcast scenario with the possibility

of network coding. Moreover, we are interested in the effect of practical parameters

such as the coding window and the number of receivers will have on the performance

of the system.

In Chapter 3, we consider the case in which the number of receivers is sufficiently

large, and analyze the delay performance of network coding in this asymptotic case.

The assumption of a large number of receivers is realistic in that many real-world

networks spanning a large area often involve packet transmission to a large number

of nodes. We first derive scaling laws for a large number of receiver, a fixed coding

window, and elastic traffic. Subsequently, we look at the case in which the user traffic

is inelastic, and compare the number of users that can be supported by the system

under network coding and round robin scheduling.

In Chapter 4, we delineate a way to extend the single base station cellular downlink

case to one in which there are multiple base stations. Furthermore, we consider a

scheme whereby a general multi-hop network topology can be arranged as a chain of

single-hop cellular downlink networks, which can then by analyzed using the results

for the single-hop cellular downlink scenario.



In Chapter 5, we provide a summary of our work and discuss future research

directions.



Chapter 2

Economic Gains from Network

Coding

2.1 The Cellular Downlink Scenario

We consider the downlink of a base station broadcasting a sequence of incoming files

(users) to N receivers over time varying channels. This model has been presented in

[101. We extend the model in the following way: upon arrival to the system, each

user decides whether it will enter the queue for service based on its valuation of the

service and the price charged by the service provider. The files that have entered the

queue are served in a First-In-First-Out (FIFO) fashion. Thus, the transmission of

the next file starts after the current file has been received by every receiver.

Each file is assumed to be composed of K packets, where Packet-k of a given file is

referred to as Pk, which is a vector of length m over a finite field Fq, for some q E Z+.

Transmissions take place in regularly arranged time slots with each slot long enough to

accommodate a single packet transmission. The channel between the base station and

each receiver has a time varying nature to capture the influence of changing channel

conditions, possible interference effects and the mobility of the receivers. Specifically,

we assume that the channel condition in slot t between the base station and the nt h

receiver is captured by a Bernoulli distributed random variable C, [t] with mean c"

that is independent across users and time slots. When C,[t] = 1, the channel is



assumed to be ON and the transmission of the base station is successfully received

by the nth receiver. If, on the other hand, C,[t] = 0, the transmitted packet does not

reach receiver n. We will refer to c, as the mean channel rate for channel n.

2.1.1 The Scheduling Mode

Let P[t] denote the packet chosen for transmission in slot t. If the base station is

not allowed to code, then at any given slot it must transmit a single packet from

one of the files. Thus, we have P[t] E {Pk}{k=1,..,K}. This is the typical mode of

transmission considered in literature. We will refer to this mode as the Scheduling

Mode (or simply Scheduling).

2.1.2 The Coding Mode

If coding is allowed, then in one time- slot, say t, any linear combination of the packets

can be transmitted. Specifically, we have

K

P[t]= E ak[t]Pk,
k=1

where ak[t] E Fq for each k e {1, 1- , K}. The transmitter chooses the coefficients

{ak[t]} at every time slot t. This mode of transmission will henceforth be referred to

as the Coding Mode (or simply Coding).

2.1.3 Channel Side Information

The strategy employed by the base station to broadcast the head-of-the-line file to

the receivers has a critical effect on the service time distribution of the base station.

In [10], an extensive analysis of the delay performance of such a file download is

provided under Network Coding/Scheduling, and the presence/lack of Channel-Side-

Information (CSI). The authors propose a randomized coding strategy, where at every

time slot ak[t] is chosen uniformly at random from Fq\{0}. It is shown that such a

policy is delay optimal both in the presence and lack of CSI. Unless N is very small,



the assumption of the availability of CSI is impractical because of the requirements

of frequent feedback and training signals. Therefore we focus on the realistic scenario

where no CSI is available at the base station, and feedback is sent only when a receiver

gets the whole file. Such a system is not only simpler to implement, but also dissipates

less energy and bandwidth resources.

2.2 System Dynamics

Throughout, we will use the terms file and user interchangeably. We assume that

users arrive according to a Poisson process of rate 7 > 0 to be broadcast to all the

receivers. The base station charges each user a price p per receiver for the file transfer.

Thus, broadcasting to N receivers costs a total amount Np to the user. Each user has

the option of either accepting or refusing the services provided by the base station.

This model is depicted in Figure 2-1. The decision is based on the utility derived by

the user on accepting the service, the delay it will experience before the completion of

the download, and the price it will pay to the base station. In particular, we assume

that each user will derive a utility U(N,K) from transferring a single file of size K to the

N receivers, where U(N,K) is a random variable with distribution function FU(N,K) ().

Figure 2-1: System model.

2.2.1 Expected Queueing Delay

The system can be effectively modeled as an M/G/1 queue, and each user will expe-

rience a delay D(y, p, N) depending on the transmission strategy used by the base-

station (network coding or scheduling) and the number of users waiting in the queue

F
Receiver I

Receiver 2

Receiver N



(dictated by the arrival rate -y). The expression for the expected delay is given by

the celebrated Pollaczek-Khinchin formula:

_AE[Z
2]E[Delay] = 2(1- (2.1)2(1 - AE[Z])'

where Z is the service time of a single file broadcast. The distribution of Z will

depend on the transmission strategy employed at the base station.

2.2.2 Utility Theory

The utility theory from microeconomics dictates that a user will decide to enter if

and only if its net utility from the file transfer is non-negative. More specifically, a

user will enter the system if and only if

U(NK) - Np - qE[D(y, p, N)] > 0, (2.2)

where E[D(-y,p, N)] is the expected delay experienced by the user, and q > 0 is a

constant, which we introduce to change the units of delay from time units to monetary

units.

This implies that the effective input rate A is given by

A = yP (U(N'K) - Np - qE[D(y, p, N)] 2 0) (2.3)

= 7 U >Np+qE fU(N,K) (u) du, (2.4)

where fu(N,K) (-) gives the probability density function of U(N,K). We drop the depen-

dence of D on -y,p and N for ease of exposition. Throughout this paper, we adopt

the following assumption on the utility U(N,K).

Assumption 1. U(N,K) is uniformly distributed over the interval [0, Nb(K)], where

b(K) is a non-decreasing concave function of the file size K.

The concave dependence of the upper support of the utility value on the file size

K suggests that the utility derived from file transfer has diminishing returns. This is



a standard assumption in the literature and leads to a tractable analysis.

Under Assumption 1, the relation in (2.4) simplifies to

1 A1 (Nb(K) - Np - qE[D]) = A (2.5)
Nb(K) *

The revenue ir generated by the base station per unit time is the amount each

user pays, times the rate at which users enter the system, i.e., i = NpA. Therefore,

the base station's profit maximization problem can be written as

max NpA, (2.6)
\>O,p>o

1
subject to (Nb(K) - Np - qE[D]) = -,(2.7)

Nb(K) 7

A< 1 (2.8)
X1

The constraint A < 1/X 1 is necessary in order for the expected delay to be non-

negative [cf. (3.10)]. The model we have outlined corresponds to a dynamic game

with the following timing of events:

* The base-station sets an entry price p.

* Incoming users decide whether or not to accept the services of the base-station

given p.

Characterizing the optimal price Popt and the optimal file size Kopt from the per-

spective of the base-station corresponds to finding the subgame perfect equilibrium

of this dynamic two-stage game. Here, every p defines a different subgame. The

subgame perfect equilibrium of this game is given by the optimal solution of problem

(2.6) and the corresponding input effective rate A [cf. (2.4)]. The above game can

also be viewed as a Stackelberg game [4], with the base-station as the leader and

potential users as the followers.



2.3 Revenue Maximization

We next characterize the optimal solution to problem (2.6). It can be seen that the

objective function is continuous and the constraint set is compact, and therefore there

exists an optimal solution to (2.6) denoted by Aopt. Also note that in order to have

a finite E[D] in (2.7), A should satisfy A < 1/X 1 and thus Aopt < 1/X 1. This implies

that the optimal Lagrange multiplier associated with (2.8) must be zero due to the

slackness constraint. Therefore, it is omitted from the subsequent discussion. In order

to find Apt, we first construct the Lagrangian function £(A, p, y) for problem (2.6),

which is given by

C(A,p, /)-= NpA

2Nb(K)(1 - AX1) nb(K) y

where b(K) defines the utility of incoming users (cf. Section 2), t is the Lagrange

multiplier for constraint (2.7), and X 1 and X2 are the first and second moments of

the service time distribution at the base-station, respectively. Then, the first order

optimality conditions for problem (2.6) yield the following relation between p and A:

p ( A qX )2 + b(K) (2.9)2N(1 - AXX)2
Together with the feasibility constraint [cf. (2.5)], we obtain the following cubic

equation in A:

alA3 + a2A2 + a3A + a4 = 0, (2.10)

where

al = 4Nb(K)X1,

a2 = -(8Nb(K)X 1 + 2NbX + qXX 2

a3 = (4Nb(K) + 27yqX 2 + 4Nb(K)7X1),

a4 = -2Nb(K)y.



Since there exists an optimal solution to problem (2.6), the optimal admission rate

Aap is a solution to the above equation. Our goal is to understand the dependence of

Apt on the number of receivers N and the file size K. In the next section, we show

that, when network coding is used, X1 and X 2 can be expressed as functions of N

and K through the use of extreme value theory.

2.3.1 Extreme Value Theory

In order to better understand the behavior of Apt that is described by (2.10), we need

to characterize X1 and X 2 as functions of N and K. To that end, we use results from

Extreme Value Theory, which is stated next.

Theorem 1 ([8]). Let hi,... , h be i.i.d. real random variables with a common

distribution function F(h) and density f (h) satisfying the following conditions:

(a) F(h) is twice differentiable for all h.

(b) f(h) is such that

lim d [1- F(h)
h-*oo dh f (h) . (2.11)

Let 1N be such that F(lN) = 1 - 1. Then, the random variable given by

max Kf(lN)(hi- lN), (2.12)
l<i<N

converges in distribution to a random variable as N -* oo with cumulative distribution

function exp(-e-x), and mean 0.5772, which is the Euler-Mascheroni constant.

Let Z denote the completion time of a single file broadcast. It was shown in [10]

that when network coding is used, Z is the maximum of N Pascal variables. It is diffi-

cult to find exact, closed-form expressions for the first and second moments of Z. The

Pascal distribution is a discrete-valued distribution and does not have a continuous,

invertible density function. Our current formulation, therefore, does not readily lend

itself to extreme value theory. However, a Pascal distribution of order K describing



the number of experiments until K successes are achieved can be approximated by

an Erlang distribution of order K if the probability of success c in every experiment

is sufficiently small [?]. In the following, we adopt this approximation and make the

following assumption:

Assumption 2. The mean channel rate cn = where h(N) is some monotonically

increasing function of N with lim h(N) = oo, and Yn > 0 is a constant.
N--oo

Assumption 2 implies that as the number of receivers N increases, channel con-

ditions between the base-station and the receiver deteriorate, which in turn implies

that the probability of a successful packet transmission, i.e. cn for channel n, becomes

smaller. This scenario is particularly relevant in the case where multiple transmitters

are situated in the vicinity of the base station, and it is not possible to disregard

the possibility of packet erasure due to interference with another transmission. The

transmission probability c, is proportional to the constant /n. Therefore, A, can be

considered to be a measure of the reliability of the channel. In general, the larger Atn

is, the better the chances of a successful transmission are.

We will concentrate on symmetric channel conditions in this paper in order to

avoid technical complications, i.e., we will set Apn = A > 0 for all n E {1,..., N}.

Under Assumption 2, cn -* 0 as N -,+ o, and the service time at the base station

converges in distribution to a random variable T, which is the maximum of N Erlang

variables. The analysis for the general case follows the same line of argument.

Lemma 1. The Erlang distribution satisfies the conditions of Theorem 1.

Proof. The Erlang distribution of order K and rate It has probability density f(x)

and cumulative distribution function F(x) given by

K x K-l e-ix
f(x) = (K-l)

F(x) (K, •X) - e-' X (-i-)'
where =) is the incomplete gamma function.

where -y() is the incomplete gamma function.



It follows that F(x) is twice differentiable for all x. We next show that f(x) and

F(x) satisfy (2.11). We have

1 - F(x) e-, ZK- 1 (x)'1

f(x) (K-1I),
(K-1)!

K-1
(K- )! xi-K+1

i=O

which implies that

d 1 - F(x) _(K -1)! -i X
dx L () f- •= (i - K + 1)xi- K

Since i < K for all i in the summation above, each term in the summation goes to

zero as x --, o. Since there are a finite number of terms in the summation, the whole

expression goes to zero as x -- oc. Thus

d 1 - F(x)]lim= 0,
-+00 d[ f (x) ]

showing that (2.11) is satisfied, and completing the proof. O

We use Theorem 1 to characterize the distribution of the completion time of

a single file Z. By definition, Z = maxl<i<N Yi, where Y1 (the completion time for

receiver i) is an Erlang distributed random variable of order K and rate /, representing

the completion time of the file for Receiver-i. If we now use (2.12) and Theorem 1,

a simple linear transformation of variables shows that as x --+ oc, Z converges in

distribution to a limiting random variable with cumulative distribution function

exp(-e-(z-tN)Nf(lN)),



with first and second moments given by

0.5772
X1 =IE[Z] = N+0.5772

Nf(lN)'

1 r2
X2 =E[Z2] = (E[Z])2 6 (Nf(lN))2

2.3.2 First and Second Moments of the Service Time

In order to completely characterize the first and second moments of Z, we need

an explicit expression for 1N. Theorem 1 defines 1N implicitly as F(1N) = 1- 1N

Replacing F(.) by the expression for the cumulative distribution function of the order

K-Erlang, we obtain

1
F(lN) = 1-

N'
K-1 (L.g)i 1

1-e-N K-1 1

i=O

K-1 (ulN)i  1

eIN i! N
i=O

We assume that AlIN > K, which is a reasonable assumption since 1N diverges

to infinity as N increases. Thus, for a sufficiently large number of receivers, this

assumption holds. Then, the last term in the summation would dominate, and we

can omit all the other terms and retain the last one. Therefore, the above summation

simplifies to:
pK K-le-1-N 1

(K- 1)! N

Even though this expression is still intractable, we can use it to obtain upper and

lower bounds on IulN. If we substitute IlN = log N in the expression, we obtain

p (log N)(K- 1 )
(K- 1)! N

which is Q2(1/N). Therefore, •IN can be lower-bounded by log N. Furthermore, if we



substitute PlN = clog N, where c is a positive constant greater than 1, we obtain

p1 c(K-1) (log N)(K- 1 )

(K - 1)! Nc

which, for a sufficiently large c, is 0(1/N). Therefore, IlN can be upper-bounded by

clog N. In other words, there exists an No such that for all N > No, log N < PlN 5

clogN. More precisely, lN behaves as e(logN) as N -- oo. Given the asymptotic

behavior of 1N, upper and lower bounds can be obtained on the first and second

moments of Z.

If we plot X1 and X 2 as a function of the file size K, then, for N sufficiently large,

we observe that X 1 is almost linear in K for a large range of values of K. In fact, X 1

and X2 can be approximated as:

X 1 =
1.15(K - 1) + 2.42log(N)

X2 = X2 .

These approximations are plotted for N = 50 and p = 1 in Figures 2-2 and 2-3

along with the actual X1 and X 2 .

10 20 30 40 50 60 70 80 90 100

K K

Figure 2-2: Approximation of X 1 as a function of Figure 2-3: Approximation of X 2 as a function of
file size K, N = 50, I = 1 file size K, N = 50, p = 1



2.3.3 Optimal Admission Rate in Low Traffic Regimes

Among the solutions of (2.10), we pick the one that yields the maximum revenue and

is a feasible solution of (2.6).

We adopt the following assumption in our analysis:

Assumption 3. The number of receivers N is sufficiently large, and the arrival rate

-y is sufficiently small so that -yqX 2 < 2b(K)N.

With this assumption, we focus our attention on the low-traffic regime with rel-

atively dense network model. Note that this does not imply low throughput since

the number of receivers is high and hence the aggregate throughput will typically

be large. Also note that it is worthwhile to investigate the behavior of the optimal

admission rate in the low-traffic mode, since in reality downlink systems are designed

and deployed to avoid an inordinately large number of users demanding service, and

the assumption that the base-station is operating in the low-traffic regime is a realistic

one.

An inspection of the coefficients in (2.10) shows that all the terms are multiples

of N, except for the terms 'yqXIX 2 in a2 and 2yqX 2 in a3 . Interestingly, these two

terms are also multiples of q. No other term contains q. Consequently, if q is small,

then by using Assumption 3, we can modify the terms yqX 1X 2 in a2 and 2yqX 2 in a3

without significantly affecting the values of the coefficients a2 and a3. Our goal will

be to use the roots of the modified cubic equation to obtain simpler expressions for

the roots of the original cubic equation. If we change the term 2-yqX 2 in a3 to yqX 2,

without altering any other term, the resulting cubic equation admits the following

three roots, which under Assumption 3 are close approximations to the roots of the

original cubic equation:

1

1 7 + qX2
2X 1  4 8b(K)NX 1

1 y + yqX 2

-2X 1 4 8b(K)NX 1



where
S/(2b(K)NYyX - 4b(K)N + yqX 2)2 + 16b(K)NyqX 2

8b(K)NX 1

Out of these three roots, only A3 < 1/X 1 and is therefore the optimal solution

of (2.6). In order to gain more insight into the expression for the optimal admission

rate, we rewrite A3 as follows:

8b(K)NX 1

where y A 4b(K)N + 2b(K)yNXi + y-qX 2, and z A 32b(K)2 yN 2Xi. The term within

the square root can be expressed as

N/y 2 - z

+ (2 + y7X) 'qX 2+(2 -
(2 - yXi)2 b(K)N

+ (4b(K)N
-yqX2

- 2b(K)7 NX1

By Assumption 3, we can neglect the term in (b )2. To simplify the expression

for the optimal effective input rate, we further adopt the following assumption:

Assumption 4. If Assumption 3 holds, then (2 i) b()N 1.

Proposition 1. Let Assumptions 3 and 4 hold. Then the optimal effective input rate

is given by

opt = A3 =
2 (y)2qX2
2 4b(K)N(2--yXi)

1 2 yqX2
X1 2b(K)NX1 (yX 1 -2)

yX < 2

yX1 > 2

Proof. Use a first order Taylor approximation to write

(2 + -X1) yqX 2  1
(2 - -yX) 2 b(K)N 2

2 + yX 1 'yqX2

(2 - yX 1)2 b(K)N'

Under Assumptions 3 and 4, A3 can be written as

y - V(4b(K)N - 2b(K)7NX) 2 (1

8b(K)NX 1

+ 1 2+yX1 yqX 22 (2--yX1)2 b(K)N )



We note that the term (4b(K)N - 2b(K)yNXI) is positive for yX1 < 2, and is

negative for -yX1 > 2. Therefore, we consider the following two cases, and derive a

piecewise expression for A3.

CASE 1. yX1 < 2.

In this situation, (4b(K)N - 2b(K)yNX1) is positive, and therefore

4b(K)N7Xi + yqX 2 - yqX 2 2-

8b(K)NX 1

7 (-)2qX2
2 4b(K)N(2 - yX 1)

CASE 2. yX 1 > 2.

In this case, (4b(K)N - 2b(K)7NX1 ) is negative, and we must negate it in order

to take the positive square root. Therefore

8b(K)N + yqX 2 - qX 2 (

8b(K)NX1

yqX 2

X 1 2b(K)NXl(QX 1 - 2)"

This completes the proof.

Note that, Aopt is constant at y/ 2 for small values of K, i.e. for yX 1 < 2, and

decreases approximately as 1/X 1 for larger values of K, i.e.

constraint yX 1 > 2 is the same as y/2 > 1/X 1, we can write

2- (y)2 qX2
Aopt 2 4b(K)N(2-yX 1 )

1 2b(K)N (X2
X1 2b(g)NXl(-yX1 -2)

yX 1 > 2. Since the

y/2 < 1/X 1

y/2 > 1/X 1

which can essentially be re-written as

Aopt = min {7/ 2 , 1/X 1} - f(-y, N, X 2 ),

for an appropriately defined f(.).



Figure 2-4 shows the optimal admission rate as a function of the file size K for

N = 50 and A = 2.
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Figure 2-4: Optimal admission rate as a function of file size K, N = 50, p = 2

2.4 Optimal Price and Revenue

In this section, we study the optimal price and revenue behavior of our system with

changing system parameters. Figure 2-5 plots the optimal revenue of the base station

as a function of the corresponding file size K for varying values of N. We observe two

features:

* The optimal revenue is a unimodal function of K, with a single stationary point

* The file size K,, which maximizes the revenue does not change as the number

of receivers N is varied.

We next characterize the optimal price and revenue under Assumptions 3 and 4.

Proposition 2. Let Assumptions 3 and 4 hold. Let pp be the price that maximizes
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problem (2.6) and 7ropt be the corresponding optimal profit. Then,

b(K) + qX2 7X 1 < 2
2 4N(1_- _ )2 '
1 2Nb(K) 2 (yX-2)2 b(K)

Popt Xi L ('y) 2
qX2 + -Y

b(K)(yXi-2) - qX 22N(-yXi 2)] , X > 2

( -y)2 qX2 + Nb(K)'y yX_• 2
S 2(2-yX1)

2  4

pt 1 2N 2 b(K)2 (yX 1-2) 2  Nb(K) yX > 2
Xy () 2qX2 +

Proof.

CASE 1. If yX 1 < 2, then under Assumption 3, 4b(K)N(2-X2 is negligible compared

to 'y/2 and Aopt y/2 . Therefore

qX2  b(AK)
Popt t t 2N(1 - YI)2 +

b(K) + yqX 2
2 4N(1 Yx1)2

o70pt = NPopt opt

= (Aopt)2 [2(qX2 +Nb(K)
=(°) 2(1 - Y ) + N

b(K) + yqX 2
- +

2 4N(1 - )2

(y)2qX2  Nb(K)7
+

2(2 -'X 1) 2  4

We notice that when the file size K is small enough so that -yX1 < 2, then under

Assumption 3, Popt • b(K)/2, and 7ropt • Nb(K)7/4.
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Figure 2-5: Revenue as a function of file size K for various values of N, [t = 2.

CASE 2. If "yX1 > 2, then Aot = 2b(K)N XI-2) Therefore,

SA qX2 + b(K)
Popt opt 2N(1 - -Y )2

2

= 1 - ( qX2

Xi 2b(K)NX(-IXx - 2)

1 [2Nb(K)2(yX 1 - 2)2 b(K)

-Xl L (-y) 2qX 2  7
b()(X 2) qX 22N(yX - 2)

opt (Aot) 2  qX2 b(K)

2(1 - )2

+Nb(K)]7= 1 ( 7qX2

Xi 2b(K)NXj(Xj - 2)

1 1 1
= + (2b(K)N(QX 1 - 2)2 - 7qX 2) 2jqx 2 ± 4yb(K)N(-X 1 - 2)2

1 [2N 2b(K)2(2 XI - 2)2 Nb(K)]
XI (7)2qX2 p

This completes the proof.

K)

b(K)
+



These expressions are only approximate expressions because the revenue and price

functions are extremely sensitive to A. This is due to the presence of the (1 - AX1)

term in the denominator and the fact that Ao is very close to 1/X 1.

1. The optimal revenue is a unimodal function of the file size: We note that for

yX 1 < 2, the dependence of optimal revenue on K is given by Nb(K)y/4. For

-yX1 > 2, the revenue function contains terms in b(K)/Xj2 and b(K)2 /Xj4. Since

b(K) is a concave function in K, and X1 is linear in K (cf. Section 2.3.1), the

revenue function is monotonically nonincreasing. We note further that since

the revenue is monotonically increasing in the region -yX1 < 2, the optimum file

size Kop which maximizes the revenue occurs in the range -yX1 > 2.

2. The file size that maximizes the revenue is insensitive to changes in N: We next

find the file size that maximizes the revenue, denoted by Kop (cf. Figure 2-5).

We know that Kot occurs in the range -yX1 > 2, so we need only look at

the revenue function in that range. We assume b(K) = clog(K) where c is a

constant. Using the approximations for X 1 and X 2 from Section 2.3.1 and taking

first derivatives with respect to K, we obtain the following implicit expression

in K and N, which characterizes Kot in terms of N.

2y2 ( 2 X log(K) - 2.3X2log(K)2 - 4y 2X(2 loK) - 3.45Xlog(K)2

+8 2X1log(K) - 4.6log(K)2 - ((3- 2.3X2log(K) =
K NX K 1

The above equation is a transcendental equation, and does not admit a tractable

solution. However, our primary objective is not to solve for Kot, but to under-

stand its relative stability as the number of receivers N changes. Towards this

end, we differentiate the above equation implicitly with respect to N in order

to obtain an expression for WKopt/N.

From Figure 2-5, we observe that Kopt 20. We can calculate the values of

Kopt/aN for Kopt 20 and different values of N. If we let N = 50, the value

of &Kopt/ON turns out to be approximately 0.003. In other words, if N changes



by 100, K, would change by only 0.3. In fact, for the range of N that is of

interest to us, Kp is constant as shown in Figure 2-5.

In the above analysis, we assumed that b(K) = a log K. However, it can be shown

that the same implications hold for other concave functions such as VK and functions

of the form K 1/p where p > 1.

2.5 Sensitivity of System Variables

We next study through simulations the dependence of the optimal admission rate,

the optimal price and the expected delay as functions of the file size K. Figures 2-4,

2-5 2-6 and 2-7 show plots of the optimal admission rate, the optimal revenue, the

optimal price, and the expected delay respectively as functions of K.

a,
0

&

Figure 2-6: Optimal Price as a function of file size Figure 2-7: Expected queueing delay as a function
K, N = 50, p = 2 of file size K, N = 50, p = 2

2.5.1 Optimal Admission Rate

The optimal admission rate offers a great deal of insight into the dynamics of the

system. As noted in Section 2.3.3, the optimal admission rate is approximately y/ 2

for small values of K, and approximately 1/X 1 for larger values of K. Therefore,



if the system is operating in the low-traffic regime, and the file size is small, the

optimal admission rate is y/2. Intuitively, this makes sense because the queueing

delay is negligible (Figure 2-7), and the major cost experienced by the users is price.

As noted earlier (cf. Section 2.4), price per receiver increases as b(K)/2 for small

values of K, and given that the utility function is uniform between [0, Nb(K)] (cf.

Assumption 1), we would expect half of the arrivals to accept the service, and half to

reject it.

As the file size progressively increases, the expected queueing delay also increases.

The threshold at which the effects of delay can no longer be ignored is 2 = -L. As2 X"

this threshold is crossed, the effects of the delay become sufficiently appreciable, and

the expected service time X1 increases rapidly. The optimal admission rate is then

constrained by the reciprocal of the mean service time. The second moment X 2 plays

an important role in this case. It perturbs the optimal admission rate so that it is

slightly below 1/X 1. If X2 were zero (physically impossible since this would mean

that the service time has a negative variance), then A~o, would be exactly 1/X 1, which

would lead to an infinite revenue, infinite price, and an infinite delay (all of which

are physically impossible). The effect of X2 implies that the users' decision is also

affected by the variance of the service time. A higher variance will lead to a lower

admission rate.

2.5.2 Optimal Revenue

The optimal revenue is proportional to the product of the optimal price and the

optimal admission rate. For smaller values of K, the revenue of the base-station

increases because the queuing delay is not very significant and the admission rate is

constant. The base-station can therefore increase its price with the guarantee that

the admission rate will not decrease as long as the file size is small. For larger file

sizes, the delay becomes significant and the base-station is no longer able to increase

its price. The optimal admission rate begins to decrease as a result of large queuing

delays. Consequently, the revenue of the base-station reaches a maximum, and then

begins to decrease as K increases. Qualitatively, this describes the unimodal shape



of the optimal revenue function depicted in Figure 2-5.

2.5.3 Expected Delay

The expected delay increases rapidly (Figure 2-7), in fact almost linearly, as K in-

creases. This increase in the expected delay is due to the fact that as the file size

increases, it takes the base-station progressively longer to transmit the file to the

receivers, which in turn increases the waiting time for other users in the queue.

2.5.4 Optimal Price

The optimal price (Figure 2-6) initially increases as K increases, but eventually tapers

off in a sub-linear fashion. This observation can be understood if we think of the price

and the expected delay as two different costs that users will experience upon entering

the system. As the expected delay increases and the optimal admission rate begins

to drop, the base-station cannot afford to keep increasing its price, since that would

exacerbate the drop in the optimal admission rate. In order to mitigate the effect of

the increased delay on the admission rate, the base-station must check its price in

order to encourage more users to join the system.

2.5.5 Effect of Channel Conditions

The dynamics of the system are also affected by the channel conditions. The quality

of the channel is captured by p (cf. Assumption 1). From the analysis of Section

2.3.1, we know that X 1 is inversely proportional to 1L. Therefore, if M is larger (i.e.

the channel conditions are better), the mean service time will be smaller, and files

will be transferred more quickly. Since X 1 will be smaller, the threshold -y/2 = 1/X 1

will be crossed at a much larger value of K. In other words, the optimal admission

rate will remain constant at -y/2 for larger file sizes as well. The base-station will

be able to increase its revenue over a larger range of values of K. The optimum file

size Kopt will also be larger. This result is shown in Figure 2-8. The optimum file

size increases almost linearly with It. The implication, therefore, is that given better



channel conditions, the base station will choose to transfer larger files, and will attain

higher profits at the same time.

Figure 2-8: Kot as a function of /_, N = 50

2.6 Coding vs. Scheduling

In order to quantify the economic gains from network coding, we must compare it

with the traditional scheduling approach, which is currently the common mode of

packet transmission. A comprehensive analysis of various scheduling policies with

and without CSI is given in [10]. The authors find that the optimal scheduling policy

for a system with no CSI is the round robin approach, in which the base station sends

a single packet to every receiver in turn. We denote the first and second moments

of the service time distribution in the round robin case by X1R and X R R , and the

first and second moments of the service time in the network coding case by X c and

X2NC

It is shown in [101 that XRR is lower-bounded as

XR - + KE[ max U]
- 2 1<k<K,1<n<N

where Uk is a geometric random variable with parameter c, representing the number of



slots until a given channel is ON. The geometric distribution converges to exponential

distribution with rate p as N gets large. Again, we use extreme value theory to

compute the upper bound, and then use the fact that XR 2 (XtRP)2 in order to

get a lower bound on XR. Since a lower bound ion both XRR and XRR improves

performance, we use the above bounds to compute a lower bound on the expected

delay for round robin. In the following analysis, we use this lower bound to compare

the two transmission strategies.

Since the mean service time of round robin scheduler is larger [10], we would

expect the threshold y/2 = 1/XZRR to be crossed at a much smaller file size than

that for network coding, and the revenue of the base station would start to decrease

for small K. In other words, Kpt for round robin will be very small, and thus the

revenue earned by the base station will be much lower compared to the revenue from

network coding. Figures 2-9 and 2-10 present a comparison of the optimal admission

rate and revenue from network coding and round robin, respectively. As expected,

the revenue in the round robin case begins to decrease at a much smaller value of

K, and the difference between the revenues from network coding and round robin is

also very significant. The optimal admission rate for round robin is also much lower

than that for network coding, while the expected delay in the case of round robin is

considerably larger.
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Chapter 3

Asymptotic Delay Gains from

Network Coding: Scaling Laws

Our goal in this chapter is to investigate the asymptotic mean delay performance

of network coding versus scheduling as transmission strategies in cellular downlink

wireless networks. Such an analysis is first provided in [10] in the case of single hop

wireless networks with erasure channels. In the previous chapter, we had extended

this model and had studied the economic gains from network coding in a dynamic

setting. For the purpose of the asymptotic scenario which will be investigated in this

chapter, we revert to the original cellular downlink model in [10]. The utility of this

model is that it has the potential to serve as the fundamental building block of larger

networks. For instance, its extension to tree-structured networks has recently been

considered in [13].

In this model, the strategy employed by the base station to broadcast the head-

of-the-line file to the receivers has a critical effect on the service time process at the

base station. In (10], an extensive analysis of the delay performance of such a file

download is provided under Network Coding/Scheduling, and the presence/lack of

Channel-Side-Information (CSI). The authors propose a randomized coding strategy,

where at every time slot ak [t] is chosen uniformly at random from a finite field Fq\{0}.

It has been shown that such a policy is delay optimal both in the presence and lack of

CSI. Unless N is very small, the assumption of the availability of CSI is impractical



because of the requirements of frequent feedback and training signals. Therefore we

focus on the realistic scenario where no CSI is available to the base station, and

feedback is sent only when a receiver gets the whole file. Such a system is not

only simpler to implement but also dissipates less energy and bandwidth resources.

This downlink scenario can also be used to represent a multi-hop network where

base station represents the source node, receivers represent end users, and each link

represents a path to the corresponding end user. In this case, there appears to be an

interesting situation where paths to different users may share links, and therefore the

failure events of different links may be correlated.

The economic benefits of network coding versus scheduling in this specific scenario,

as detailed in Chapter 2, have previously been studied in detail in [3]. Both [3] and

[10] use the file download completion time as a measure of delay, and demonstrate

that network coding provides significant delay and economic gains as compared to

scheduling in such rateless transmission schemes.

We build upon the analysis in [3] and [10] and evaluate the asymptotic gains

of network coding over scheduling as the number of receivers N increases without

bound. In a subsequent work, Ghaderi et al. [13] have considered a network with

a tree topology. They evaluate the performance of end-to-end and link-to-link error

control techniques based on ARQ (Automatic Repeat Request) and FEC (Forward

Error Coding) in tree-based multicast systems. While their model involves multi-hop

trees, the building block in their analysis is the single-hop scenario that we focus on.

Consequently, our arguments extend naturally to tree networks. In Chapter 4, we

will describe a way to make this extension in the case of general network topologies.

3.1 File Download Completion Times for Network

Coding and Scheduling

Let TNC and TRR denote the file download completion times for the case of network

coding and scheduling (round-robin) respectively. It has been shown in [10] that



TNC =max Y, (3.1)
l<i<N

where Y1 follows a Pascal distribution of order K and parameter c, K is the file

size, and

TRR = max max KWk + k, (3.2)
1<i<N 1<k<K

where Wk is a geometric random variable with parameter c.

Following the analysis in [10], we obtain

IE[TNc] = K +
t=K

(3.3)

where n
m

gives the number of combinations of size m of n elements, and

E [TRR]
K

00

= 7- + E [1 - (1 - (1 - c)t)KN] ,
t=1

for some y E (1/2, 1).

3.2 Maximum Order Statistics for the Geometric

and Pascal Distributions

Although the mean file completion times as given by equations (3.3) and (3.4) are

exact, they are not explicit, closed-form functions of N and K, which makes it impos-

sible to acquire a qualitative understanding of the dependence of E[TNc] and IE[TRR]

on N and K from these equations. In this section, we approximate (3.3) and (3.4) by

more tractable expressions in order to gain a better understanding of how the mean

completion times behave with N and K.

(3.4)

1 - (1 - c)(r-K)CK  ,
i=1 r=K K- 1



Using the analysis given in [16] for the maximum statistics of Pascal random

variables of order K , we obtain

E[TNc] = log 11_ N+(K-1) loglog 1 N+(K-1)-log 1 (K - 1)!+o(logN). (3.5)

Furthermore, by observing that a geometric random variable is a Pascal random

variable of order 1 and using equation (3.5), we obtain the maximum statistics of

geometric random variables. Hence, from (3.4), we have

K
+ K log i KN < E[TRR] <_ K + K log 1 KN. (3.6)2 1-C 1-C

3.3 Asymptotic Performance Analysis of Network

Coding and Scheduling

In this section, we provide an analysis of the asymptotic performance of network

coding and scheduling. There are two cases to consider: elastic traffic and inelastic

traffic. Elastic traffic corresponds to the case in which each user derives a fixed

amount of utility from the service regardless of the time it takes for the service to be

completed. In other words, all users are willing to join the system regardless of how

large a queuing delay they will encounter upon accepting service. Inelastic traffic,

on the other hand, refers to the case in which users have stringent delay constraints

and enter the system only if their delay constraints are guaranteed to be met. The

performance of network coding and scheduling for these two cases is analyzed in

Sections 3.3.1 and 3.3.2.

3.3.1 Elastic Traffic

Let G = E[TNCI Hence G denotes the ratio of the file completion time of networkE[TRR]

coding to that of scheduling, and is a measure of the delay gains provided by network



coding as compared to scheduling. Since there are no delay constraints, the behavior

of G in the limit N -+ co will provide us with the asymptotic delay gains from network

coding as compared to scheduling.

G E[TNc]
E[TRR]

In order to get an upper bound on G (i.e., delay gains from network coding in

the worst-case scenario), we use the lower bound on E[TRR] from (3.6). We therefore

have

log 1 N + (K - 1) loglog N + (K - 1) - log 1 (K - 1)! + o(log N)

S+ K log i KN

If we fix K and consider the limit N - co, the dominant term in the numerator

will be log N, and the dominant term in the denominator will be K log N. Therefore,

in the limit N -- oo,

log NG logN (3.7)
K log N
1K (3.8)

Figure 3-1 shows the behavior of G versus k. As N increases, the curves approach

the line G = 1/K.

The asymptotic ratio of the the file completion time of network coding to that of

scheduling is the reciprocal of K, which signifies that as the number of receivers N

increases to a sufficiently large value, file downloads take K times longer to complete

if scheduling instead of network coding is used. The value of K, i.e., the file size, can

be chosen arbitrarily, and therefore larger asymptotic gains from network coding can
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Figure 3-1: Behavior of G versus

be realized for larger file sizes. Thus, although the gain is fixed for fixed values of K,

it is essentially unbounded since the value of K can be chosen arbitrarily.

3.3.2 Inelastic Traffic

The gain expression in the previous section was obtained under the rateless transmis-

sion scenario, i.e., the expected delays for both network coding and scheduling were

compared for the case when file transfer to all the receivers had been completed and

the number of receivers was fixed. Furthermore, the demand for file downloads was

assumed to be elastic, i.e., users were willing to join the system regardless of how

large a queueing delay they had to encounter. This is often not the case in practice,

and therefore, we must approach scaling laws such as the one above with caution. In

the more realistic scenario where the demand for file download is inelastic', the above

scaling law, G = I ceases to hold. In such a scenario, the more relevant questions to

consider are:

* Given a fixed queueing delay constraint of d time slots, a fixed file size K, and

a fixed user admission rate A, how many more receivers (i.e., N) can the system

support with network coding than with scheduling?

'that is, users are willing to join the system as long as the queueing delay is below a certain
threshold; if the queueing delay exceeds the threshold value, no user is willing to join the system
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* How does N scale with d under the previous setting, i.e., how does relaxing the

delay constraint affect the number of users the system can support?

* Given a fixed N and a fixed K, how does A scale with d, i.e., how does the

relaxing the delay constraint affect the user admission rate or the throughput

of the system?

* Given a fixed N and a fixed d, how does A scale with K, i.e., how does changing

the file size affect the throughput of the system?

We expect that the system will be able to support a larger number of receivers

with network coding than with scheduling. In order to illustrate this point better, let

us consider the following scenario. Assume that users 2 arrive according to a Poisson

process of rate 7 > 0 (the offered load to the system) to be broadcast to all the

N receivers. Each user has the option of either accepting or refusing the services

provided by the base station. The decision is based on the utility derived by the

user on accepting the service and the delay it will experience before the completion

of the download. In particular, assume that each user will derive a utility U(D) from

transferring a single file of size K to all the N receivers, given a queueing delay of

D. Assume further that demand for the file transfer is perfectly inelastic, i.e., users

are only willing to join the system if the queueing delay is below a certain level, say,

dmax. In order to model this behavior, let U(D) be uniformly distributed over the

interval [0, dmax]. Hence, the utility of each user as a function of the queueing delay

D takes the following form:

1 if D < dmax

U(D) = d if (3.9)
0 if D > dmax

This form for the utility function signifies that users gain a fixed amount of utility

from files that meet the delay constraint, i.e., files that take less than dmax time slots

to be transferred do not provide additional utility to the user. This is motivated by
2or files; we will use the terms user and file interchangeably



real-time applications where it is often the case that users are not concerned about

how long it takes for the file to be transferred as long as the transfer is completed

within a certain time. In Section 3.3.3, we analyze the performance of this system

and compare the performance of network coding and scheduling under various scaling

laws

3.3.3 Analysis

The system can be modeled in general as a G/G/1 queue. In order to derive expres-

sions that represent the general case, we focus on the scenario in which the arrival

process is Poisson and model the system as an M/G/1 queue. For more general arrival

processes (such as a deterministic arrival process), various bounds such as Kingman's

bound [26] can be employed to characterize the system delay.

We now focus on the M/G/1 case. Each user will experience a delay D(y, N, K)

depending on the transmission strategy used by the base station (network coding or

scheduling) and the number of users waiting in the queue (dictated by the arrival

rate y). The expression for the expected delay is given by the Pollaczek-Khinchin

formula:

_AE[Z
2]

E[Delay] AE[Z2] (3.10)
2(1 - AE[Z])'

where Z is the service time of a single file broadcast. The distribution of Z will

depend on the transmission strategy employed at the base station. Henceforth, we

will use m, and m 2 to denote E[Z] and E[Z 2] respectively. We characterize the user

admission rate A in the following proposition.

Proposition 3. Assuming Poisson arrivals with rate -y and utility function given by

3.9, the user admission rate A takes the following form:

2A ydmaxml + ym2 + 2dmax - V/(2ydmaxri + 'ym 2 + 2dmax)2 - 16(dmax)2 1
4 dmaxml



Proof. Let the queuing delay be p at any given instant. Each user will decide to enter

if and only if its net utility from the file transfer is non-negative, which will be the

case only when p < dmax. This implies that the effective input rate or accepted load

A is given by

A = yIP (M < dmax) = dma dD.

We therefore have

A ={ dma
if p < dmax

if /, > dmax

For the case where p < dmax, we have

A = 1 =7 1- Am2
S y(- dmax) Y - 2dmax (1- Am,)

using the Pollaczek-Khinchin formula (3.10). With a little algebra, we obtain a

quadratic equation in A,

2dmaxml A2 - (27dma.ml + ym2 + 2dma)A + 27dma. = 0, (3.12)

with roots

27dmaxnmi + 7m2 + 2dmax +

27dmaxmi + ^7m 2 + 2dmax -

V(2ydmaxmi + 7m2 + 2dmax) 2 - 16(dmax) 27y1
4 dmaxml

/(27dmaxml + 7 2 + 2dmax) 2 - 16(dmax) 27ynl
4 dmaxni

In order to satisfy the constraint that the delay p is finite and positive, we must

have A < 1- (so that the term (1 - Am 1) in the Pollaczek-Khinchin formula (3.10) is

(3.11)



positive). Out of A1 and A2 , only A2 satisfies this constraint, and therefore

27Admaxml + ym2 + 2dmax - \/(2,dmaxml + ' m2 + 2dmax) 2 - 16(dmax 27m1
4 dmaml

This completes the proof.

The characterization of the user admission rate A given by Proposition 3 involves

mi and m2, the first and second moments of the service time process. Both mi and

m2 are functions of N and K. Therefore, in order to observe the dependence of N

on dmax using (3), K and A must be held constant and dmax must be varied. We now

derive explicit expressions in order to efficiently compute mi and m2 . Since our goal

is to compare the performance of network coding with that of scheduling, we will need

to compute mi and m2 for both network coding and scheduling. Let us introduce the

subscripts NC for network coding and RR for round robin scheduling. Consequently,

miNC and m2-NC will denote the first and second moments of the service time

distribution using network coding, and ml-RR and m2-RR will denote the first and

second moments of the service time distribution using round robin scheduling. Recall

that mi-Nc and m1-RR are the same as E[TNc] and E[TRR] and are given by equations

(3.3) and (3.4) respectively. In order to characterize m2-Nc and m2-RR, we will need

the distributions of TNc and TRR. We first provide a characterization of m2-Nc by

means of the following proposition.

Proposition 4. Let F(y, K, p) denote the cumulative distribution function of a Pascal

random variable of order K and success probability p. Then

m-NNC = i2 Ii i-- (1 - c)(-K)CK c)(-r-K)CK
i=1 W n =K K- 1 Tx=K K- 1

Proof. We know from (3.1) that TNC = maxl<i<N Y , where each Y2 is a Pascal random



variable of order K and success probability c.

P(Y1 • y) = F(y, K, c),

and

P(TNc < Y) = ( max Yi < y) = P(niYi < y)
1<i<N

= (P(Yi y))N since the Yj's are i.i.d.

= F(y, K, c)N.

Therefore,

P(TNc =- ) = P(TNcc y - P(TNcY- 1)

= F(y, K, c)N - F(y - 1, K, c)N

and so

00

m2-Nc = E[Tc] = i2 [F(i,K,c)N - F(i - 1,K,c)N]
i=1

00oo

i=l (=K

K--1

K-1
(1 - c)(r-K)CK) -- ( K-2 (1 - C)(r-K)CK )

This completes the proof. O

The characterization of m2-NC given in Proposition 4, although accurate, is cum-

bersome and inefficient to compute, requiring the computation of combinations and



sums of large orders. In order to make m2-NC computationally more efficient, we

use the Pascal-to-Gamma approximation suggested by Guenther [17]. More specif-

ically, we approximate the Pascal distribution function F(y, K, p) by the Gamma

distribution function as follows:

F(y, K,p) P(M,X)
fx t(N-1)e-t/2

o 2NF(N)

where IP(M, X) is the Gamma distribution function with parameters a and Q, and

M = a = k(1 - p) and X = (2y + 1)p.

This approximation of the Pascal distribution by a Gamma distribution is not

only accurate but also significantly easier to evaluate. Consequently, we can replace

F(y, K, p) by P(k(1 - p), (2y + 1)p) in Proposition 4 to obtain

00

m2-NC = i 2 [P(K(1 - c), (2y + 1)p)N - P(K(1 - c), (2y - 1)p)N] (3.13)
i=l

Since our goal is to characterize the delay gains from network coding as compared

to scheduling, it is sufficient to obtain lower bounds for the first and second moments

of the service time distribution using round robin scheduling. The use of lower bounds

for scheduling (if attainable) corresponds to the worst-case scenario in some sense,

because in practice, the queueing delay for scheduling will always be larger than the

queueing delay obtained using lower bounds for m1-RR and m2-RR, and delay gains

from network coding will be better.

A lower bound on ml-RR can be trivially obtained from (3.4):

ml-_R 2 + K [1 - (1 - (1 -c))KN]. (3.14)
t=1

In order to obtain a lower bound on m2-RR, we first define a lower bound on TRR



in the following proposition.

Proposition 5. Let TRR = maxl<i<N KWk, where Wk is a geometric random vari-
l<k<K

able with parameter c, and TRR be given by (3.2). Then

TRR < TRR V K N E N.

Proof. Suppose Proposition 5 is not true. Then there exist K and N such that

TaR = max KWF > max KWk + k = TRR.
i,k i,k

Let u denote the Wik which maximizes TaR. Then, by a cut-and-paste argument,

Ku > Ku + k, which leads to a contradiction since k > 0 by construction. Therefore,

TRR < TRR by contradiction. This completes the proof. O

Let rn2-RR be the second moment of TaR. Since TRR is a lower bound on TRR,

r2-RR constitutes a lower bound on m2-RR. We characterize Mr2-RR in the following

proposition.

Proposition 6. Let FG(y, p) denote the distribution function of a geometric random

variable with parameter p. Then,

oo

mn2-RR = K2 E i2
i=l

where c is the probability of a

given time slot.

Proof. The proof is very similar to

Then

[FG(i, C)KN _ FG(i - 1, C)KN] ,

successful packet transmission on a channel in a

the proof of Proposition 4. Let #max = maxi,k Wk.

m2-RR = E[(aRR) 2] = E[(KImax)2] = K2 E[(max)2].



Now, since P/1 ax = maxi,k We ,
max ~ ~ ,IikW

P(bp)max < r

and so,

P(timax = r)

) = P(k < )KN = FG(r,p)KN

= P(Pmax < ) - (max) < r - 1)

= FG(r,p)KN - FG( - 1,p)KN

Consequently, we have

E[(iimax) 2] S
i=1

oo

=5
i=1

i2 FG(max - 1, )KN]

i2 [FG(i, C)K N - FG(i - 1, C)KN].

SK 2E[(,max)]

SK2  i 2 [FG(i, C
i=1

)KN FG(i - 1, C)KN]

This completes the proof.

Since the geometric cumulative distribution function FG(i, p) = (1 - (1 - p)i), we

obtain the following expression for 7r2-RR:

(3.15)mn2-RR = K 2 5 i2 [(1 - 1 - C)i)KN - (1 - (1 - C)i-1)KN]
i=1

Hence,

rm2-RR



3.3.4 Performance of Network Coding and Scheduling for In-

elastic Traffic

We use equation 3 along with the first and second moments of the service times

process to observe the effect of the maximum allowable delay dmax on the system

capacity, i.e., the number of receivers the system is able to support. The coding

window K and the user admission rate A are held constant.

Figures 3-2 and 3-3 show plots of the number of receivers N the system can

support against the maximum allowable delay dmax for network coding and scheduling

respectively. The coding window was held constant at K = 20.

z

Figure 3-2: Number of receivers N against dmax for network coding, K = 20

We observe that with network coding, the system can support a large number of

receivers (N = 100) for a significantly smaller delay than scheduling. Moreover, the

user-to-delay curve for network coding is much steeper than that for scheduling. The

number of receivers rises from about N = 10 to N = 100 as dmax increases from 0.9 to

1.3, a change of only 0.4. In the case of scheduling, on the other hand, the number of

receivers rises from N = 10 to N = 100 as dmax increases from 1.69 x 107 to 1.74 x 107,

which is an much larger change of 5 x 106. In other words, the delay constraint on

the system must be considerably relaxed before scheduling can accommodate a larger

number of receivers.
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Figure 3-3: Number of receivers N against dax for scheduling, K = 20

Figure 3-4 shows plots of the user admission rate A against the maximum allowable

delay dmx for network coding and scheduling. The number of receivers and the coding

window was held constant at N = 50 and K = 20 respectively.
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Figure 3-4: User admission rate A against dmax, N = 50, K = 20

In this case, it is again evident that for a given number of receivers and a given

coding window, network coding admits a much higher rate of user admission than

scheduling for a wide range of values of the maximum allowable delay. For K = 20,

the ratio of the user admission rate for network coding to that of scheduling is about

six. In other words, over a long duration of time, network coding can on average
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support six times the number of users that scheduling can support. Figure 3-5 shows

how this ratio varies as the coding window changes.

Figure 3-5: Ratio of the two admission rates for network coding and scheduling against
the coding window K, N = 50

We observe that for K = 5, this ratio is about 3.5, increasing monotonically to

approximately 7 at K = 30. This result serves to illustrate that network coding can

accommodate significantly more real-time traffic than scheduling. from Figure 3-5,

it may seem that K -- oo will yield the best "relative" gain for network coding as

compared to scheduling. It is worth pointing out that although the ratio of the two

throughputs may increase, the absolute values of both throughputs will decay to zero

as the queueing delay becomes large on account of the increase in K. Therefore, in

this case, a comparison of the throughput ratios for large K does not make much

sense.

b•





Chapter 4

Network Coding in Multi-hop

Networks

So far we have considered wireless networks consisting only of a single hop. Packets

are sent directly from the transmitter to the receivers over time-varying stochastic

channels. In other words, packet transmission from the source to the receivers is

accomplished over a single link, without any intermediate transmission or routing

mechanism. Although such a model is quite helpful for gaining an insight into the

workings of wireless systems, it provides a very simplistic view of a wireless network.

Most real-world wireless systems are multi-hop: packet transmission between two

end-to-end nodes is accomplished by relaying packets between intermediate nodes

over multiple links. This is primarily due to the widespread deployment of the 802.11

protocol, and the fact that from relaying packets from node to node results in energy

and capacity gains. Wireless mesh architectures for the provision of broadband inter-

net, for instance, constitute an important and widely-used class of multi-hop wireless

networks.

In light of the significance and prevalence of multi-hop wireless networks, it seems

worthwhile to extend our model to include multi-hop wireless networks and quantify

the performance gains to be had from network coding in this more general case.

A secondary motivation for doing so is that recently there has been an appreciable

interest in multi-hop wireless applications such as message sharing and file transfer



over peer-to-peer networks, and there has been considerable ongoing research into

optimizing packet transmission in these systems. Such systems can be readily modeled

as a tree-based multicast topology, which is a classic model for multi-hop networks.

In this chapter, we extend the single-hop cellular downlink model to a multi-hop

case. The multi-hop link can be conceived of as a chain of single-hop links placed in

series. The utility of this approach is that it enables us to analyze multicast settings

in general network topologies using the results derived for the single-hop case. We

take the following approach while analyzing general network topologies:

* Rearrange the general topology into a layered topology from which multi-hop

paths between the source and the terminals can be readily identified.

* Analyze the multi-hop paths as a series of single-hop paths, using the previously

derived results for single-hop networks.

4.1 An Example of the Multi-hop Case

Consider as an example the multicast setting shown in Figure 4-1. The multicast set

consists of two terminal nodes, and there is a single source node and a number of

intermediate nodes. Such a network topology can be representative of a peer-to-peer

network with the source as a central server and the terminals as peers requesting

information from the server.

The first step is to modify the network and rearrange it in a layered topology as

shown in Figure 4-2. Each layer in the layered network topology consists of all nodes

which are located at a given number of hops from the source. For instance, Layer 1

consists of all nodes that are a single hop away from the source, Layer 2 consists of

all nodes that are two hops away from the source, and so on.

While rearranging the network into layers, we make the assumption that there is

no communication among nodes within the same layer. In other words, we drop all

links (that may have existed in the original network) between two nodes within the

same layer. For instance, consider node A in Figure 4-1. It is a single-hop away from
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Figure 4-1: A multicast setting in a general network topology
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Figure 4-2: A layered network



the source node, and therefore should be placed in Layer 1. However, node A can

also be reached from the source in two hops via node B. In this case, we take the

distance of a node from the source to be the minimum number of hops required to

reach that node starting at the source node. In order to resolve any ambiguity in case

there are multiple paths from the source to a given node (as is the case for node A),

we drop all links between any two nodes within the same layer. This translates to the

aforementioned assumption that nodes within the same layer cannot communicate

with one another.

It is easy to identify the layer in which each node is located with respect to a given

multicast by simply flooding the network or by using more sophisticated shortest

path algorithms. We assume that all nodes which are members of the same layer

compete for the same network resources and therefore can interfere with one another.

On the other hand, nodes which are members of different layers are assumed to be

operating in orthogonal channels (for instance, disjoint frequency bands or time slots),

and consequently are assumed not to interfere with one another. Note that such a

separation of channels can be achieved through a simple scheduling mechanism. This

separation allows us to focus exclusively on transmissions between adjacent layers.

Once the layered network topology has been created, the next step is to analyze

the layered network as a series of single-hop networks. More specifically, the layered

network in our model operates in the following manner. The source transmits the

file to the first layer, the first layer then transmits the file to the second layer, and

so on. The file is thus transmitted from layer to layer until it reaches the receivers.

Receivers can be in different layers, in which case the layer-to-layer transmission will

continue until the file is successfully received by the receiver in the last layer. We

thus define the depth of the network as the number of hops required to reach the last

layer, starting at the source. The depth of the network in the example given above is

3.

Notice that packet transmission from one layer to the next (adjacent) layer is the

same as the single-hop case we have previously looked at, with two important differ-

ences; first, both the transmitting layer and the receiving layer may have more than



one node (i.e., there can be multiple transmitters and multiple receivers), and second,

the presence of multiple transmitting nodes in the same layer may lead to collisions

at the receivers. We assume that a receiver successfully receives a packet only if one

of the transmitters transmits a packet. Otherwise, the transmission fails. Therefore,

before we can apply our results from the single-hop scenario to the layered net-

work topology, we must extend our analysis of the single-hop case from single-source

multiple-receivers to multiple-sources multiple-receivers. This extension is described

in the following section.

4.2 The Multiple-source Multiple-receiver Model

Consider a system with N, sources and Nr receivers. Transmissions take place in

regularly arranged time slots with each slot long enough to accommodate a single

packet transmission. Assume for simplicity that each receiver is linked to a randomly

chosen subset of the sources, and that the cardinality of the subset is the same for

each receiver, i.e., all receivers are connected to an equal number of sources. This

is the symmetric case. In the asymmetric case, each receiver will be connected to a

different number of sources. The channel conditions on each link are identical to the

channel conditions for the single-source multiple-receiver case. Figure 4-3 illustrates

the system topology for N, = 3 and Nr = 4. Each receiver is connected to two sources.

Sour4
(Nodes in

Receivers
(Nodes in Layer i+1)

Figure 4-3: Multiple-source multiple-receiver system with three sources and four re-
ceivers



Initially, all the sources within the layer possess a single file consisting of K pack-

ets. Our goal is to minimize the amount of time necessary for the file to be transmitted

to all the receivers. In particular, we are interested in finding the mean file completion

times for the cases of network coding and scheduling, and evaluate the delay perfor-

mance of network coding as compared to scheduling in the more general scenario of

multiple sources and multiple receivers.

As we mentioned, we assume that when a receiver receives packets from more

than one source in a single time slot, the packets collide and are erased. Therefore,

a successful transmission occurs only when a receiver receives one packet in a single

time slot. In such a scenario, it clearly does not make sense for each source to

attempt transmission in every time slot. Assuming that the sources are not able

to communicate with one another, a better transmission strategy is for source Si to

attempt transmission with probability pi in every time slot. In order to keep the

analysis simple, we restrict our attention to the symmetric case in which pi = p

for all sources Si. Consider the scenario in which source Si attempts to transmit

a packet with probability p. The channel between Si and, say, receiver R- is ON

with probability c. The probability that Ri successfully receives a packet from Si is

therefore pc. Suppose each receiver is connected to L nodes (L < N). Then, the

number of packets a receiver receives in one time-slot, X, is given by a binomial

distribution with parameters (L, pc). Then,

P(Receiver Ri successfully receives a packet) = P(Receiver Ri receives one packet)

= P(X = 1)

= Lpc(1 - pc)L - 1

In order to minimize the file download completion time, we must maximize the

probability of a successful transmission/reception given by the expression above. This

expression is identical to the probability of a successful capture in the Aloha system.

Assuming that the number of sources L is reasonably large, say L > 10, we can use our



knowledge of the Aloha system to conclude that the above probability is maximized

when p = 1/L, attaining a maximum value of 1/e. Therefore, the number of packets

a receiver receives in one time slot is Bernoulli distributed with a success probability

of 1/e.

4.3 Performance Analysis

4.3.1 Network Coding

Let TNc denote the file download completion time for all receivers of the optimal

network coding policy. Since the number of packets a receiver receives in one time slot

is Bernoulli distributed with a success probability of approximately l/e, the expected

file completion time is simply the mean of the maximum of Nr Pascal random variables

according to the analysis in [10], and is given by

S N t 7-1 1 (-K) K
E[TNc] -K +E 1 - H E--

t=K i=l -=K K - 1

where n gives the number of combinations of size m of n elements.
m

4.3.2 Scheduling

Based on our previous assumption that there is no communication among the sources,

a source cannot know which packet other sources will attempt to transmit in a par-

ticular time slot unless there has been a previous agreement among the sources to

transmit packets in a particular order in successive time slots. It has been shown in

[10] that in scheduling without CSI, one of the optimal scheduling policies is Round

Robin (RR), where Packet-k is transmitted in time slots (mK + k) for m = 0, 1, ---

until all the receivers get the file. Consequently, one of the simplest strategies to

consider for multiple sources is the case in which all sources attempt to transmit the



same packet in a particular time slot, i.e., all sources transmit Packet-k in time slots

(mK + k) for m = 0, 1, ... with probability p. Again, throughput is maximized when

p = 1/L, and the maximum throughput is 1/e.

Let TRR denote the the file completion time for this strategy. Then, using the

analysis in [10],

E[TRR + 0oo

t=1

- 1 (1 )t K N

e

for some y E (1/2, 1).

4.3.3 Comparison

Figure 4-4 illustrates the delay performance of network coding versus scheduling for

K = 30. There is approximately a four-fold gain in delay from network coding for

Nr = 10, which increases to five-fold as N, increases to 40.

I

Figure 4-4: Delay Performance of Network Coding versus
for K = 30

Scheduling (Round robin)

The gains from network coding as shown by Figure 4-4 seem very promising.

Indeed, during the course of packet transmission from one layer to the next, we

would expect the gains from network coding to accumulate from layer to layer. If the



depth of the network is sufficiently large, the cumulative gains from network coding

will be significantly higher.





Chapter 5

Conclusion

Network coding indeed appears to be a promising approach as far as efficient uti-

lization of resources in communication networks is concerned, and has provided sig-

nificant gains in various aspects of networking theory - chiefly energy, throughput,

and capacity. However, one area in which network coding has previously not been

analyzed is delay minimization. Delay is an important practical consideration in com-

munication networks and in particular wireless networks: networks with large delays

become infeasible to operate in practice. Analyzing network coding with the goal

of optimizing delay is made especially challenging by the fact that network coding

requires packets to be encoded and decoded in bulk. This feature of network coding,

as we have mentioned earlier, necessitates the use of a rateless transmission scenario,

in which the delay performance of a scheme is quantified only after transmission has

been successfully completed.

The delay performance of network coding in such a rateless transmission scenario

had previously been studied in [10]. However, [10] constituted the only work that

presented a quantification of the delay gains from network coding. Our goal in this

thesis was to further our understanding of the delay characteristics of network coding.

We proposed a number of extensions to the model in [10] and analyzed the perfor-

mance of network coding in each of those settings. We now summarize our efforts

and results.

In Chapter 2, we looked at a simple file transfer system with a single base station



and multiple receivers. We investigated the system from an economic viewpoint and

obtained characterizations of the optimal user admission rate and its dependence

on the moments of the service time at the base station. We also approximated the

optimal price and maximum revenue of the base station, and showed that the revenue

was a unimodal function of the file size with a single maximum. Furthermore, we

showed that the optimum file size (i.e., the file size at which the revenue is maximized),

is highly insensitive to changes in the number of receivers, suggesting that pricing

decisions can be decoupled from coding decisions. We also compared the revenue,

price and delay obtained from network coding to those obtained from scheduling, and

observed that network coding yielded significant gains in revenue while allowing for a

higher user admission rate at the same time. We also discussed the effect of channel

conditions on the maximum revenue generated by the base station and the optimum

file size.

In Chapter 3, we studied the asymptotic performance of network coding and

scheduling under the scenarios of elastic and inelastic traffic. For the case of elastic

traffic, we showed that the ratio of the the file completion time of network coding

to that of scheduling asymptotically approached 1/K (i.e., the reciprocal of the file

size K) as the number of receivers increased to a sufficiently large value, signify-

ing that file downloads took K times longer to complete in the case of scheduling.

Arbitrarily large gains could be realized by appropriately choosing the file size. In

the case of inelastic traffic, we analyzed the behavior of the number of receivers and

throughput as functions of the delay constraint under various scaling laws, and ob-

served that network coding allowed significantly more receivers to be supported and

permitted an appreciably higher throughput as compared to scheduling for the same

delay constraint.

In Chapter 4, we proposed a way to extend the single-hop model in [10) to general

multi-hop network topologies. We described a method to structure a multi-hop net-

work as a chain of single-hop networks. We further enhanced the single-hop model

to include multiple base stations, and demonstrated that gains from network coding

for each single-hop unit accumulated over the whole chain to yield significantly larger



delay gains as compared to scheduling.

The possibilities for future work are vast. In the cellular downlink model that we

have used, we have made the assumption that the user arrival process is Poisson. This

assumption is reasonable and leads to a tractable analysis. However, some real-world

networks cannot always be modeled by a Poisson arrival process. For instance, if

arrivals are very rapid and the arrival rate does not change much over time, which

can often be the case, it may be more realistic to model arrivals as a deterministic

process. A potential future research direction, therefore, is to relax the assumption

of Poisson arrivals and use more general processes to model arrivals to the system.

Much scope for future work exists in the generalization of single-hop networks

to multi-hop networks that we have delineated in Chapter 4. As we mentioned,

we assume in our analysis that each single-hop layer within our layered multi-hop

topology is symmetric, i.e., each receiver is connected to an equal number of sources.

This assumption is somewhat restrictive; many general network topologies cannot

be modeled under the assumption of symmetry. A good example is networks with

non-uniform density, i.e., networks which are densely connected in some regions and

sparsely connected in other regions. Ideally, we do not want to impose any constraints

on the topology of the network we wish to model. However, without the assumption

of symmetry, the single-hop case will be tough to tackle. In the presence of erasures

and collisions, the transmitters will need to optimize their individual probabilities

of transmission so that total throughput is maximized. This leads to an interesting

non-convex min-max problem.

Another open question related to the previous one pertains to finding the optimal

scheduling strategy in our model of multi-hop networks. In Chapter 4, we have

used a simplistic method based on round robin to schedule file transmissions in the

presence of collisions; each transmitter sends the same packet in a give time slot. This

scheme constitutes one way to schedule packet transmissions. It is most likely not

the optimal way, and therefore, an potential research direction would be to evaluate

different scheduling schemes and find the one which gives the highest throughput.

In fact, solving the aforementioned min-max problem to optimize the transmission



probabilities at each transmitter will provide sufficient insight into the nature of the

optimal scheduling strategy in our case.

Yet another research direction can be identified with regard to the topology of the

layered network. In our model, we have discarded all links present between any two

nodes within the same layer under the assumption that nodes within the same layer

are not able to communicate with one another. The removal of these links serves to

decrease throughput in some sense. The presence of links between two nodes within

the same layer results in more efficient transmission. This is certainly the case in peer-

to-peer networks in which peers help improve download rates by forwarding packets

to other peers. In order to improve the model in Chapter 4, it is worthwhile to relax

the assumption that there is no communication among nodes in the same layer, and

investigate how the presence of links between two nodes in the same layer affects the

efficiency of the file download.

Another point that requires further consideration is the synchronization of layers

in the layered network. In the model we have proposed, we have assumed that nodes

in Layer i begin transmitting the file to Layer (i + 1) only after all the nodes in Layer

i have successfully received the file. This may introduce an undesirable delay in the

system, since file transmission can surely be achieved more quickly if nodes begin

transmission as soon as they have received the file themselves, without having to

wait for other nodes in the same layer to receive the file. The resulting asynchronous

system will lead to smaller file download completion times, and an interesting future

research direction would be to focus on quantifying the throughput gains from the

lack of synchronization within layers.

Finally, a worthwhile extension to the model in Chapter 4 would be to model

multiple multicast, i.e, to have multiple sources transmitting multiple files over the

layered network. Such a model would involve multiple flows across one link. Since

most routed packet networks operate in this fashion, analyzing such a model will

deepen our understanding of the delay gains from network coding and will provide a

solid basis for the comparison of the delay performance of network coding to that of

traditional routing.



Bibliography

[1] D. Acemoglu, A. Ozdaglar, and R. Srikant. The marginal user principle for

resource allocation in wireless networks. In Proceedings of IEEE Conference on

Decision and Control, Paradise Island, Bahamas, December 2004.

[2] R. Ahlswede, Ning Cai, S. R. Li, and R. W. Yeung. Network information flow.

IEEE Transactions on Information Theory, 46:1204-1216, July 2000.

[3] E. Ahmed, A. Eryilmaz, A. Ozdaglar, and M. Medard. Economic aspects of

network coding. In Proc. 44th Annual Allerton Conference on Communications,

Control and Computing, Monticello, IL, September 2006.

[4] T. Bayar and G. J. Olsder. Dynamic Noncooperative Game Theory. SIAM Series

in Classics in Applied Mathematics, Philadelphia, PA, 1999.

[5] K. Bharath-Kumar and J. M. Jaffe. Routing to multiple destinations in computer

networks. IEEE Transactions on Communications, 31(3):343-351, March 1983.

[6] K. Bhattad and K. R. Narayanan. Weakly secure network coding. In Proc.

WINMEE, RAWNET and NETCOD 2005 Workshops, April 2005.

[7] N. Cai and R. W. Yeung. Secure network coding. In Proc. 2002 IEEE Inter-

national Symposium on Information Theory (ISIT 2002), page 323, June/July

2002.

[8] H. A. David. Order Statistics. John Wiley, 2003. Second Edition.



[9] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network

information flow. IEEE Transactions on Information Theory, 51(8):2745-2759,

August 2005.

[10] A. Eryilmaz, A. Ozdaglar, and M. Medard. On delay performance gains from

network coding. In Proceedings of Conference on Information Sciences and Sys-

tems (CISS), Princeton, NJ, March 2006.

[11] J. Feldman, T. Malkin, R. A. Servedio, and C. Stein. On the capacity of secure

network coding. In Proc. 42nd Annual Allerton Conference on Communication,

Control, and Computing, September/October 2004.

[12] C. Fragouli and E. Soljanin. Decentralized network coding. In Proc. 2004 IEEE

Information Theory Workshop (ITW 2004), pages 310-314, October 2004.

[13] M. Ghaderi, D. Towsley, and Jim Kurose. Reliability benefit of network coding.

In preparation.

[14] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content dis-

tribution. In Proc. IEEE Infocom, volume 4, pages 2235-2245, March 2005.

[15] R. Gowaikar, A. F. Dana, R. Palanki, B. Hassibi, and M. Effros. On the capacity

of wireless erasure networks. In Proc. 2004 IEEE International Symposium on

Information Theory (ISIT 2004), page 401, June/July 2004.

[16] P. Grabner and H. Prodinger. Maximum statistics of n random variables dis-

tributed by the negative binomial distribution. Combinatorics, Probability and

Computing, 6(4):179-183, 1997.

[17] W. C. Guenther. A simple approximation to the negative binomial (and regular

binomial). Technometrics, 14(2):385-389, 1972.

[18] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. R. Karger. Byzan-

tine modification detection in multicast networks using randomized network cod-

ing. In Proc. 2004 IEEE International Symposium on Information Theory (ISIT

2004), page 144, June/July 2004.



[19] T. Ho, M. Medard, and R. Koetter. An information-theoretic view of network

management. IEEE Transactions on Information Theory, 51(4):1295-1312, April

2005.

[20] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.

A random linear network coding approach to multicast. IEEE Transactions on

Information Theory, 52:4413-4430, October 2006.

[21] S. Jaggi, M. Langberg, T. Ho, and M. Effros. Correction of adversarial errors in

networks. In Proc. 2005 IEEE International Symposium on Information Theory

(ISIT 2005), pages 1455-1459, September 2005.

[22] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M.

Tolhuizen. Polynomial time algorithms for multicast network code construction.

IEEE Transactions on Information Theory, 51(6):1973-1982, June 2005.

[23] K. Jain, L. Lovasz, , and P. A. Chou. Building scalable and robust peer-to-peer

overlay networks for broadcasting using network coding. In PODC '05: Proc.

24th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, pages 51-59, 2005.

[24] D. Katabi, S. Katti, W. Hu, H. Rahul, and M. M6dard. The importance of being

opportunistic: On practical network coding for wireless environments. In Pro-

ceedings of Annual Allerton Conference on Communication, Control and Com-

puting, October 2005.

[25] R. Khalili and K. Salamatian. On the capacity of erasure relay channel: Mul-

tirelay case. In Proc. 2005 IEEE Information Theory Workshop (ITW 2005),

August 2005.

[26] J. F. C. Kingman. Some inequalities for the queue GI/G/1. Biometrika, 49:315-

324, 1962.

[27] R. Koetter and M. Medard. Beyond routing: An algebraic approach to network

coding. IEEEACM Transactions on Networking, 11:782-795, October 2003.



[281 A. Rasala Lehman and E. Lehman. Complexity classification of network infor-

mation flow problems. In Proc. 41st Annual Allerton Conference on Communi-

cation, Control, and Computing, October 2003.

[29] S.-Y. R. Li, R. W. Yeung, and Ning Cai. Linear network coding. IEEE Trans-

actions on Information Theory, 49:371-381, February 2003.

[30] D. S. Lun. Efficient operation of coded packet networks. PhD thesis, Mas-

sachusetts Institute of Technology, June 2006.

[31] D. S. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee. Achiev-

ing minimum cost multicast: A decentralized approach based on network coding.

In Proceedings of IEEE Infocom, pages 1607-1617, 2005.

[32] D. S. Lun, N. Ratnakar, M. M6dard, R. Koetter, D. R. Karger, T. Ho, E. Ahmed,

and F. Zhao. Minimum-cost multicast over coded packet networks. IEEE Trans-

actions on Information Theory, 51:2608-2623, 2005.

[33] C. Magalaras and A. Zeevi. Pricing and performance analysis for a system with

differentiated services and customer choice. In Proc. Allerton Conference on

Control, Communications and Computing, 2003.

[34] M. Medard, M. Effros, D. Karger, and T. Ho. On coding for non-multicast

networks. In Proc. 41st Annual Allerton Conference on Communication, Control,

and Computing, October 2003.

[35] I. Ch. Paschalidis and J. N. Tsitsiklis. Congestion-dependent pricing of network

services. IEEE/A CM Transactions on Networking, 8(2):171-184, 2000.

[36] A. Ramamoorthy, J. Shi, and R. D. Wesel. On the capacity of network coding for

random networks. IEEE Transactions on Inofrmation Theory, 51(8):2878-2885,

August 2005.

[37] N. Ratnakar, D. Traskov, and R. Koetter. Approaches to network coding for mul-

tiple unicasts. In Proc. 2006 International Zurich Seminar on Communications

(IZS 2006), pages 70-73, February 2006. invited paper.



[38] S. Riis. Linear versus non-linear boolean functions in network flow. In Proc. 2004

Conference on Information Sciences and Systems CISS 2004), March 2004.

[39] Y. E. Sagduyu and A. Ephremides. Crosslayer design and distributed mac and

network coding in wireless ad hoc networks. In Proc. 2005 IEEE International

Symposium on Information Theory (ISIT 2005), pages 1863-1867, September

2005.

[40] J. Sundararajan, M. Medard, M. Kim, A. Eryilmaz, D. Shah, and R. Koetter. To

appear in proc. ieee infocom. In Network Coding in a multicast switch, Alaska,

May 2007.

[41] B. M. Waxman. Routing of multicast connections. IEEE Journal on Selected

Areas in Communications, 6(9):1617-1622, December 1988.

[42] Y. Wu, P. A. Chou, and S.-Y. Kung. Information exchange in wireless networks

with network coding and physical-layer broadcast. In Proc. 2005 Conference on

Information Sciences and Systems (CISS 2005), March 2005.

[43] Y. Wu, P. A. Chou, and S.-Y. Kung. Minimum-energy multicast in mobile ad

hoc networks using network coding. IEEE Transactions on Communications,

53(11):1906-1918, November 2005.

[44] Y. Zhu, B. Li, and J. Guo. Multicast with network coding in application-

layer overlay networks. IEEE Journal on Selected Areas in Communications,

22(1):107-120, January 2004.


