
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Working Paper No. 310 July 1988

Parallel Flow Graph Matching
for

Automated Program Recognition

by

Patrick M. Ritto

Abstract

A flow graph matching algorithm has been implemented on the Connection Machine
which employs parallel techniques to allow efficient subgraph matching. By constructing
many different matchings in parallel, the algorithm is able to perform subgraph matching in
polynomial time in the size of the graphs. The automated program recognition system can
use this algorithm to help make a more efficient flow graph parser. The process of automated
program recognition involves recognizing familiar data structures and algorithmic fragments
(called cliches) in a program so that a hierarchical description of the program can be con-
structed. The recognition is done by representing the program as a flow graph and parsing
it with a graph grammar which encodes the clich6s. In order to find clich6s in the midst
of unfamiliar code, it is necessary to run the parser on all possible subgraphs of the graph,
thus starting the parser an exponential number of times. This is too inefficient for practical
use on large programs, so this algorithm has been implemented to allow the matchings to be
performed in polynomial time.

Copyright @ Massachusetts Institute of Technology, 1988

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is,
for example, too preliminary or too detailed for formal publication. It is not intended that they should be
considered papers to which reference can be made in the literature.

Contents

1 Introduction 3

2 Undirected Graphs 4
2.1 Data Descriptions 4
2.2 M atchings 4
2.3 Storage of G and H 4
2.4 The Algorithm 5
2.5 Complexity Analysis 6
2.6 Memory Management 9

2.6.1 Local Memory Organization 9

2.6.2 Free Processor Availability 10

2.6.3 Lim itations 11

3 Flow Graphs 11
3.1 Labels 11

3.2 Directed Edges 12
3.3 Ports 12
3.4 Free Processor Availability 13
3.5 Multiple Graph Matching 14
3.6 Program Recognition 14

4 Conclusion 15

1 Introduction

The process of automated program recognition involves determining the design and

function of a program from its source code. This is done by recognizing familiar data

structures and algorithmic fragments in the source code so that a hierarchical description

of the program can be constructed. These fragments are called cliches. A prototype

recognition system [7] has been developed for use in the Programmer's Apprentice

project [6]. In this system, source code is converted into a graph and then parsed with

a graph grammar representing the clich6s and the implementation relationships between

them. A language-independent graph representation for programs based on the Plan

Calculus ([4, 5]) is being used. This graph is then converted into a flow graph for use in

the parser. The resulting parse tree gives a description of the program's function and

design based on the clich&s that were found. In order to recognize clich6s embedded

in unrecognizable code, the graph parser must be started an exponential number of

times (see [7]). Thus, a new approach involving parallel techniques was attempted.

This paper describes an algorithm implemented on the Connection Machine [2], which

performs parallel flow graph matching in polynomial time for later use in a flow graph

parser for program recognition.

The Connection Machine is a SIMD array of up to 64K processors each intercon-

nected by a high bandwidth communication network. It is particularly efficient for

pattern recognition because each processor can construct a local matching in parallel

with the others. The graph matching algorithm (described in more detail in Section

2.4) stores a partial graph matching in each active processor. Then, at each step of the

algorithm, a new set of partial matchings is generated with one more vertex matched.

These new matchings occupy a new set of processors and the old processors join the

free pool. The algorithm terminates when all the matchings are complete.

The undirected graph algorithm is described in Section 2 and then generalized in
Section 3 to allow flow graph matching and the matching of many different graphs in
parallel. Section 4 contains conclusions and future work.

2 Undirected Graphs

The undirected graph form of this algorithm is based on Little's proposed subgraph
matching algorithm [3] for use in matching large highly interconnected graphs. This
algorithm involves finding all occurrences of a graph H as a subgraph in G.

2.1 Data Descriptions

G and H are connected graphs where H is typically small, on the order of 30 vertices,
while G can be very large, around 100 vertices. The maximum vertex degrees of G and

H, Gdeg and Had,, are typically no larger than 10 (see Section 2.6).

2.2 Matchings

Each active processor (i.e., each processor not in the free pool) has one partial

matching stored in its local memory. The partial matching is a mapping from vertices

in H to vertices in G. It is stored as a table indexed by the vertex number, 0,..., IHI-1,
containing vertices of G as elements. If a particular vertex is unmatched, a special value

is stored to note this.

2.3 Storage of G and H

The description of G is stored in a distributed way (due to its size, it will not fit

in local memory) by storing each element of its adjacency list in a different processor.

Thus, if a particular processor needs to lookup the information about G, it must use

the communications network to obtain that data. In the existing implementation, the

ith vertex of G has its neighbors stored in the processor with cube address i. Then,
when an active processor needs to lookup the neighbors of vertex i in G, it performs a

cm:get instruction to obtain those neighbors from processor i.

The description of H is stored directly in each active processor's local memory. It

is stored in the form of an adjacency list in the local memory. Thus, H must be small

enough so that it can fit in the 4K bits of memory along with the matching (see Section

2.6).

The vertices of H must be ordered such that every vertex in the ordering (except
the first vertex) is adjacent to at least one vertex earlier in the ordering. The first

vertex may be any arbitrary vertex in the graph. Thus, there can be many different

valid orderings of a given H. Each vertex in H is matched in this order so that as the

matching proceeds, the next vertex to be matched will always have at least one neighbor

which is already matched. The motivation for this special ordering is discussed in more

detail in Section 2.4. It requires that the graph H be connected.

2.4 The Algorithm

The algorithm works by generating an initial set of partial matchings where vertex 0
of H is matched to each vertex in G, creating an initial set size of IGI active processors.
Then, successive generations of the algorithm are performed where each processor first
computes all of the possible extensions to its matching in which one more vertex of H
is matched to a vertex in G; then, new processors are allocated with the new extended
partial matchings. Thus, sets of partial matchings are continuously generated until all
the vertices of H are matched. Here is the algorithm:

1. Initialization: IGI partial matchings are generated by taking each vertex in G in
turn and matching it with vertex 0 of H. Thus, each possible match for that H
vertex is attempted.

2. Successor Generation: For k = 1 to IHI generate a new set of partial matchings
with vertices 0 through k matched as follows:

(a) Lookup the neighbors of vertex k in the description of H. Call this set Nh.
Nh < Hdeg.

(b) For each element n in Nh, check the partial matching to see if n has already
been matched. For those n that have been matched, collect their matches in

the set M. (Due to the ordering of H discussed above, at least one element

of Nh must have a match). IMI M INh| : Hdeg.

(c) For each element m in M, lookup the neighbors of m in G. Call this set Nm.

This gives IMI such sets of neighbors, each IN,I 5 Gdeg.

(d) Take the intersection of the sets N, to obtain one set NT. Remove vertices

from NT which are already matched in the local matching. INTrl Gdeg.

(e) For each element v in NT, allocate a new processor from the free pool and

copy the old partial matching into its local memory adding the match of

vertex k to v to that matching. If NT is empty, then no new partial matchings

are allocated and the matching has failed.

(f) Join the free pool.

When the algorithm terminates, the remaining allocated processors contain all of

the possible completed matchings. The algorithm guarantees the generation of all

possible matchings (i.e., occurrences of H in G) because it attempts all feasible matching

combinations (assuming an infinite free pool of processors - see Section 2.6). The

ordering of the vertices of H is necessary so that in step 2b above, the set M will have

at least one element. If M were empty, then, to insure all possible matchings, every

vertex in G must be matched to k. This causes the generation of O(IGI) new partial

matchings which is undesirable due to the size of G and the exponential growth of the

search tree.

A sample execution of the algorithm can be found in Figure 1. The graph G contains

5 vertices and H contains 3 vertices. The levels of the execution tree show all the partial

matchings existing after each successor generation. The leaves of the tree at level IHI

represent all the possible completed matchings.

2.5 Complexity Analysis

The algorithm takes up time for initialization (i.e., storing graph descriptions into

the processors) and performs IHI iterations of successor generation. Initialization time

(
` - - - - - - - - - - - -- - e`1

Key: completed matchings

mx y = O matched to x,

1 matched to y,

2 matched to s.

Figure 1: A Sample Algorithm Execution

is linear in the size of H and the size of G; typically, initialization takes no more than
50ms of CM time.

The time for one successor generation can be divided up into the following steps:

* Finding the set Nh : constant time, tlookuph.

* Calculating the set M : Hdeg * tlookupm.

* Calculating the sets Nm : Haeg * tlookupg.

* Intersecting the sets N, : O(Hd&9 * Gde9).

* Allocating new matchings; this must be done a maximum of Gdg times:

- Allocating a new processor : constant time, tco,,.

- Copying the description of H : IHI * t,,,d.

- Copying the partial matching : k * t,,nd.

The time constants given above are typically very small. On the average, they fall
roughly into the following ranges (measured in CM time):

* tlookuph, tlookjup : 3 5 0 ps - 700ps

* tlookupg : 50ps - 1.5ms

* to., : 5ms - 6ms

* tend : 100ps - 2ms

The ranges for tlookupg and t,, 1e are wide because they depend on the traffic along
the network at any given time (they are cm:send instructions). The present imple-
mentation of the algorithm makes no attempt to optimize such traffic. The ilookuph

and tlookupm times are from the cm:aref instruction; the to,,, time is derived from

the cm:processor-cons instruction. In tests performed with IGI = 50, IHI = 10,
Hdeg = Gdeg = 5, the total CM time for algorithm execution is on the order of 3s.

This gives about 300ms per generation as compared with Little's estimate of 50ms per

generation. The large difference between these times is primarily due to the amount

of time required to copy matching information into the successor processors; optimiza-

tion of the copying process (i.e., using larger message packets and optimizing successor

allocation for less traffic) would increase the algorithm's efficiency significantly.

The dominating factor in the above analysis is the time it takes to copy the de-

scription and matching into the new processor (step 2e of the algorithm). This takes

O(IHI * Gdeg) time per generation, and therefore, since there are IHI total generations,
O(IH12 * Gdeg) time overall. Thus the execution time is polynomial in the maximum

degree of G and the size of H.

2.6 Memory Management

The memory management consists of two separate issues: how to store the informa-

tion in 4K bits of local memory and what to do when there are no more processors left

to allocate.

2.6.1 Local Memory Organization

The information stored in each processor's local memory is shown in Fig. 2. In the
low memory addresses, below the stack, are stored various flags for indicating processor
state (i.e., whether or not the processor is in the free pool), and the value of k for
that matching. If the processor's cube address is in the range 0 to IGI - 1, then it
will also contain the neighbors of one of G's vertices as well. If not in this range, then
that area is left blank. In the high memory addresses, above the stack, are stored the
description of H, including its size and adjacency list, and the partial matching. The
partial matching is stored as a table indexed by vertices of H. An array of IGI bits is
also reserved so that checking whether a G vertex has been matched is efficient (as in
step 2d of the algorithm). The rest of the high memory is used as temporary storage

a k (if G entry Gap Stack
(if Present)

200 500 a096

Figure 2: Local Memory Map

space during the calculation of the successor matchings. The optimal size of the stack
depends on the size of the problem. Several of the CM instructions used require stack
space in proportion to the size of their arguments. Since the problems found in program
recognition give rise to relatively small arguments requiring little stack space, a size of

around 300 bits is employed.

2.6.2 Free Processor Availability

The algorithm causes an exponential growth in the number of selected processors

during the first few generations and later on is pruned by the vertex neighboring con-

straints. For a large problem, it is not clear how quickly this constraint will take effect.

Thus, an exponential growth in the number of selected processors must be anticipated.

If the number of processors in the free pool is not enough to generate the new match-

ings, the present algorithm fails. The problem of running out of processors to allocate

has not yet been solved and is still being researched.1 It seems possible to solve it by

checking the free pool at each step and postponing some matchings until others have

completed. However, the amount of bookkeeping and memory management this would

involve becomes unwieldy. Furthermore, with the added constraints introduced by flow

graphs (see Section 3.4), the branching factor of the tree is greatly reduced on the

average.

'Jim Little, Todd Cass [personal communication].

li[

i tt

2.6.3 Limitations

The problem of memory management becomes important as the sizes of G and

H become large. There are only 4K bits of memory per processor, and the entire

description of H plus the partial matching must be stored there. Since the description

of G is stored in a distributed manner, the size of G does not play as crucial a role as

the size of H. The two most important sizes in the local memory are the description of

H and the matching.

It takes log2(|H|) bits to encode an H vertex. There are IHI adjacency list entries

stored in the description, each of size Hade * log2(IHI) bits. Thus, the description of H

takes up IHI*Hdeg*log2(|HI) bits. For the matching, IHj*log2(jGI) bits are required since

there are up to IHI vertices matched, each one to a G vertex. Therefore, an approximate

formula specifying these constraints is: [IHI*Hdg,*log2(IHI)]+[IH|*log2(lGI)] : 4K bits.

3 Flow Graphs

In order to apply this graph matching algorithm to program recognition, it was
necessary to adapt it to deal with flow graphs. A flow graph is a directed acyclic graph
where the vertices have distinct labels and input and output ports. For any given vertex,
each incoming edge arrives at an input port and all the outgoing edges exit from an
output port. An example of a simple flow graph is shown in Figure 3. By definition, flow

graphs are acyclic. However, the parallel matching algorithm works on cyclic directed

graphs as well.

In order for two flow graphs to match, their vertices must have the same labels and
port structure as well as the same edges and directivity. The undirected graph version
of the algorithm was easily adapted to work on flow graphs as described in this section.

3.1 Labels

The label for each vertex is stored along with the graph description. So, the labels
of the vertices of H are stored in each processor, and the labels of the vertices of G

Figure 3: A Simple Flow Graph

are stored in a distributed manner where the label for vertex i is stored in processor

i. Since H is small, this fits within the local memory of the processors and does not
limit the size of H significantly (it presents no problem for G since it's representation

is distributed). Whenever a new set of matchings is to be allocated, the labels of the
newly matched vertices are checked and if they do not match, then that matching is
discarded. The time required for this extra checking is not significant and the search

tree is pruned a large amount due to this constraint.

3.2 Directed Edges

Having directed edges makes it necessary to store an extra bit of information for each

vertex in the graph adjacency lists to indicate the direction of the neighbor connection.

This direction is checked similarly to the labels above when a new partial matching is

allocated. If the direction is not correct, the new matching is discarded. This also helps

prune the search tree and requires only constant time per generation.

3.3 Ports

In order to check ports correctly, the entire flow graph is represented internally as

)

Figure 4: A Flow Graph With Port Vertices

a directed graph where each port becomes a uniquely labeled vertex. All the input

port vertices have edges which are directed into the output port vertex. An example

of this is shown in Figure 4 where the graph in Figure 3 has been converted into this

representation. In order for a successful match to take place, each of the new port

vertices must match and thus the original node in the flow graph containing those ports

will match.

3.4 Free Processor Availability

With these additions to the algorithm, a great deal of new constraint is introduced:

labels must match, edges must have the same direction, and ports must match. Since

these are checked dynamically (i.e., at every generation), the average branching factor

drops dramatically. As yet, no tests with flow graphs derived from typical programs

have given rise to exponential growth of the processor tree. They have all followed a

polynomial growth. However, the problem is not eliminated by these new constraints,
merely made less threatening. More testing must be performed to determine whether

or not the added constraint enforces a better than exponential growth.

3.5 Multiple Graph Matching

More than one H can be matched to the same G at the same time by storing
different H's in each of the processor's local memories. This presents no major problem
as each processor must merely keep track of where it is in the matching and when it has
completed. Then, completed matchings Are returned as the algorithm executes (not
just at the end) as the smaller H's finish before the larger H's do. When new matchings

are allocated, both the partial matching and the description of H must be copied to

the new processor(s) since the same H isn't stored in every processor any longer. Thus,
the time is still polynomial in the size of the largest H, but all of the smaller matchings

are also obtained. If the size of the largest H is Hma,, the algorithm will run in time

O(H ax* Gdeg). This works quite well and adds very little extra time to the algorithm.

The space required in local memory will be proportional to H,,,, (as described by the

constraint in Section 2.6.3). With this new feature, the algorithm becomes more useful

for program recognition because several cliches can be matched at once.

3.6 Program Recognition

Flow graphs are useful in automated program recognition because they can canon-

ically and abstractly represent the data flow constraints found in programs. In the

prototype recognition system, programs are converted into flow graphs whose vertices

represent operations and whose edges structurally represent the data flow between the

operations. Control flow constraints are represented by annotations, called attributes,
on the flow graph's vertices and edges.

Clich6s are found by searching the program's flow graph for subgraphs structurally

matching the cliches' flow graphs and then checking that the attributes of these sub-

graphs satisfy the cliches' control flow constraints. The parallel algorithm presented

in this paper can be used to perform the search for subgraphs which satisfy data flow

constraints of clich6s. The algorithm is able to match multiple cliched subgraphs all

over the program's flow graph simultaneously. Not only does this allow cliches to be

found in polynomial time, but it also facilitates partial recognition, which is the ability

to recognize clich6s in the midst of unfamiliar code.

4 Conclusion

An algorithm has been presented which performs multiple flow graph matching in

parallel on the Connection Machine in polynomial time in the sizes of the two graphs. In

the future, an automated program recognition system can employ this algorithm in order

to perform flow graph parsing by hierarchically matching the clich&s to the program.

More research is required to enable it to perform this hierarchical subgraph matching.

A possible approach is to perform a bottom-up parse by matching, substituting with
"non-terminals" and then matching again repeatedly.

The problem of free processor availability must be solved, though in the context of
automated program recognition it may not be necessary. One possible approach is to
suspend some processors when there are not enough to allocate the next generation.

The suspended processors would then complete their matchings only after the other
processors had finished. This algorithm operates under the assumption that there are
always enough processors in the free pool to continue execution. The CM-2 [1], which
has the ability to simulate a large space of "virtual" processors existing on some smaller
set of physical processors, makes this assumption reasonable. Given enough memory to
store the graph information, it can provide a very large free pool which is sufficient for
most real problems.

References

[1] Connection Machine Model CM-2 Technical Summary. Technical Report, Thinking
Machines Corporation, April 1987.

[2] William D. Hillis. The Connection Machine. MIT Press, Cambridge, MA., 1985.

[3] J. J. Little. Parallel Algorithms for Computer Vision on the Connection Machine.
Memo 928, MIT Artificial Intelligence Lab., November 1986.

[4] C. Rich. A Formal Representation for Plans in the Programmer's Apprentice. In

Proc. 7th Int. Joint Conf. Artificial Intelligence, pages 1044-1052, August 1981.

[5] C. Rich. Inspection Methods in Programming: Cliches and Plans. 1988. Submitted.
Also published as MIT-AIM-1005.

[6] C. Rich and R. C. Waters. The Programmer's Apprentice Project: A Research

Overview. Memo 1004, MIT Artificial Intelligence Lab., November 1987. Submitted

to IEEE Software/IEEE Expert Special Issue on the Interactions between Expert

Systems and Software Engineering.

[7] L. M. Wills. Automated Program Recognition. Technical Report 904, MIT Artificial

Intelligence Lab., January 1987. Master's Thesis.

