
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Working Paper No. 312 November 1988

Support for Obviously Synchronizable Series

Expressions in Pascal

by

Jonathan L. Orwant

Abstract

Obviously synchronizable series expressions enable programmers to write
algorithms as straightforward compositions of functions rather than as less
comprehensible loops while retaining the significantly higher efficiency of
loops. A macro package supporting these expressions in Lisp has been in
use since December of 1987.

However, the theory behind obviously synchronizable series expressions is
not restricted to Lisp; in fact, it is applicable to any programming language.
Because many people view packages designed in Lisp to be dependent on the
qualities which make Lisp different from other languages, it was decided to
support the macro package in the all-purpose language Pascal. This paper
discusses its implementation.

Copyright @ Massachusetts Institute of Technology, 1988

A.I. Laboratory Working Papers are produced for internal circulation, and may contain
information that is, for example, too preliminary or too detailed for formal publication. It is
not intended that they should be considered papers to which reference can be made in the
literature.





Introduction

Programming normally entails a compromise between legibility of code and speed
of execution. If algorithms are expressed as compositions of functions operating on
collections of data elements rather than as loops, they are generally easier to understand
and modify but run significantly slower than equivalent algorithms expressed as loops.
Conversely, algorithms expressed as loops are difficult to comprehend but compile into
more efficient code.

To avoid having to make this compromise, the Obviously Synchronizable Series (oss)
macro package was developed [4, 5]. The oss macro package allows programmers to write
code as compositions of functions instead of loops without the disadvantage of inefficient
execution inherent in non-loop methods. This inefficiency is avoided by using macro
package supported oss expressions in the construction of code and then passing the
completed code to the oss preprocessor, which substitutes loops for the oss expressions
where appropriate. This system has been in use since December 1987.

Often, packages designed in Lisp are perceived as being dependent upon the qualities
that make Lisp different from other languages. However, the theory behind oss expres-
sion support is not limited to Common Lisp; in fact, it is applicable to all programming
languages. Lisp was chosen as the original language for implementation because of the
ease with which extensions to the language can be made. To demonstrate the feasibil-
ity of the oss package in other languages, it was supported in the all-purpose language
Pascal.

Since it was only necessary to demonstrate the feasibility of oss expressions in Pascal
and not to recreate the entire macro package, a parser was built to convert Pascal code
into a Lisp-like syntax for use by the oss preprocessor in Lisp. The resulting code is
searched for fragments that involve oss expressions. These code fragments are grouped
with type and variable declaration information and are then passed to the preprocessor,
which returns code in loop format that avoids the creation of intermediate series objects.
Then, the code is substituted back into the pseudo-Lisp and, using specialized rules devel-
oped for a Lisp pretty printer [3], printed out in standard Pascal suitable for compilation.
It is important to note that the preprocessor removes all traces of oss expressions, leaving
algorithms in loop form suitable for compilation by a standard compiler.

Background

Loops vs. Compositions of Functions
The inefficiency of compositions of functions operating on collections of data elements

is caused primarily by the creation of intermediate series. Consider a function that
computes the sum of the square roots of a series:

(defun sum-sqrts (vect)
(reduce #'+ (map 'vector #'sqrt (remove-if-not #'plusp vect))))

(sum-sqrts #(4 -4 -16 9)) = 5



To compute the sum-sqrts of a vector vect, two intermediate series are created and
stored: the first containing the positive elements of vect, and the second containing
the square roots of the elements of the first. Only when both of these aggregate data
objects have been computed can the answer be returned. In contrast, the same algorithm
expressed as a loop runs significantly faster (an order of magnitude on the Symbolics Lisp
Machine), but is much more opaque to the human reader:

(defun sum-sqrts-loop (v)
(prog (element last index sum)

(setq index 0)
(setq last (length v))
(setq sum 0)

L (if (not (< index last)) (return sum))
(setq element (aref v index))
(if (plusp element) (setq sum (+ (sqrt element) sum)))
(incf index)
(go L)))

Such opacity has led to the encouragement of concise, legible programming styles at
the expense of run-time efficiency. To avoid the time and space overhead necessitated
by the creation of intermediate series expressions in an algorithm, it is necessary to
parallelize the algorithm as much as possible. Instead of computing the functions within
an algorithm successively over the entire series and creating a new series expression for
each function mapped, the functions are applied to each element individually. In this
manner, each element is transferred directly from the function that computes it to any
functions which use it without the need for intermediate storage. At the symbolic level,
the same number of operations are computed, but intermediate series objects are never
created.

Elimination of intermediate series

Unfortunately, elimination of intermediate series objects in an algorithm is not al-
ways possible. Functions such as sort, which require all elements of the input series
before any elements of the output series can be generated, cannot avoid the generation
of intermediate series.

Furthermore, it is often difficult to determine whether or not it is possible to eliminate
all intermediate series expressions. Making the optimal choice of which intermediate
series to eliminate is NP-hard [2]. This is another perceived obstacle to the use of series
expressions-unless detailed knowledge of the compiler is known, the programmer cannot
be assured of maximal efficiency. The problem is compounded by the fact that inefficiency
is not directly proportional to the number of intermediate series expressions created; the
creation of just one intermediate series expression typically leads to a significant loss of
efficiency [5].

To guarantee elimination of intermediate series objects, restrictions must be placed
on the functions allowed. A suitable restriction is that all expressions allowed must be
obviously synchronizable [5]. All predefined oss functions in the macro package are
obviously synchronizable, and built-in checking prevents the user from constructing code
that violates this restriction.



The OSS macro package

To support use of obviously synchronizable series expressions, an oss data type and a
library of predefined functions operating on oss expressions were added to Common Lisp,
and an oss preprocessor was implemented to ensure that the restrictions described above
were obeyed and to transform the oss expressions into loop format. The example above
that computes the square roots of the positive elements of the vector *(4 -4 -16 -9)
would look like this using oss expressions:

(Rsum (TmapF #'sqrt (TselectF #'plusp (Evector *(4 -4 -16 9))))))
- 5

Evector converts a vector to an OSS series, TselectF returns a series that contains
only the elements that satisfy the predicate plusp, and Rsum computes the sum of its
elements. Sqrt is implicitly mapped using TmapF.

These three functions exemplify the three classes of oss functions: enumerators,
transducers, and reducers. The first letter of each function, pronounced as a separate
syllable, designates the class to which it belongs. Enumerators generate series outputs
from non-series inputs, transducers generate series outputs from series inputs, and reduc-
ers generate a non-series output from a series input. Higher-order functions, currently
designated by a final F, accept functions as arguments.

In addition to predefined operations on oss expressions, the macro package supports
user construction of oss functions using defunS, and permits local binding of oss variables
with lets. Similar in syntax to the Common Lisp defun and let, these functions employ
checking that prevents the programmer from building oss expressions that violate any
of the restrictions necessary to ensure conversion to loops [4].

Once code has been written, the oss preprocessor converts the oss expressions in the
code to loop format consisting of a prolog containing statements to be executed before
the actual loop; the body of the loop; and an epilog containing statements to be executed
after the loop. The resulting code is suitable for normal compilation and retains no traces
of the original oss expressions. Thus, no change needs to be made to the actual structure
of Lisp.

Lisp was chosen as the language for the original implementation of the oss macro
package because of the ease with which new language constructs can be developed in
it. However, the theory behind the development of the macro package applies to all
programming languages. Since Lisp is commonly viewed as an idiosyncratic language,
and any developments to it to be intrinsically specific to Lisp, a project was undertaken
to support the oss macro package in standard Pascal [1]. Pascal was chosen because of
its all-purpose nature; demonstrating the feasibility of oss expression support in Pascal
provides a compelling argument for its adoption across all programming languages.



Implementation

The above diagram illustrates the architecture of the implementation. Pascal code
containing oss expressions is parsed into a Lisp-like notation suitable for the oss prepro-
cessor. Then, the oss locator searches for fragments that contain oss expressions and
OSS functions, and passes these to the preprocessor. The preprocessor converts the oss
expressions into loop format optimized for speed. An integrator then incorporates the
code back into the pseudo-Lisp, making some minor modifications to handle the intrica-
cies of the preprocessor output. Finally, a pretty printer converts the pseudo-Lisp back
into standard Pascal, suitable for compilation by a standard Pascal compiler.

The OSS data Type

The most visible change to Pascal to support obviously synchronizable series expres-
sions is the introduction of the oss data type. This provides the capacity to construct
oss variables, expressions, procedures, and functions following the same syntax as regular
Pascal. oss declarations resemble vector declarations:

type Integers = oss of Integer;
var Inputstream : oss of Char;
function Outputstream(x: integer) : oss of Real;

Also supported in Pascal is most of the library of predefined oss functions developed
for Lisp [4]. However, not all of the predefined oss functions are applicable to Pascal.
Functions such as defuns need no analog in Pascal; an oss function is defined in the
normal manner but is given oss inputs and/or an oss output. Other functions, such as
those operating on lists, are excluded from the Pascal library.

The predefined library of functions violates the Pascal convention of strong typing.
This could be avoided by expanding the set of functions to include identical functions



that operate upon different types, but this is not necessary as all traces of oss expressions
are removed once the oss preprocessor has completed its task and converted the code to
loop format. Normal type checking can then be enforced by the Pascal compiler.

An Example

As an example of how oss expressions might be used in Pascal, a job queue data
abstraction which could serve as part of an operating system was implemented. The
type definitions are shown below. A JobQ is a pointer to a chain of entries which point
to records describing jobs. These records have a number of fields, the first of which is a
numerical priority.

type JobQ = ^JobQentry;
type JobQentry = record job: JobInfo; rest: JobQ end;
type JobInfo = ^JobRecord;
type JobRecord = record priority: real; ... end;

Several functions are defined which operate on job queues. AddToJobQ allocates space
for a new queue entry and then adds the entry to the front of the queue:

procedure AddToJobQ (J: JobInfo; var Q: JobQ);
var E: ^JobQentry;

begin
nev(E);
E'.job := J;
E-.rest := Q;
Q := E

end

EJobQtails and EJobQ are OSS functions with series outputs. Once routed through
the oss preprocessor, they will disappear, and any expressions that reference them will
have the reference replaced by the appropriate code in loop format. EJobQtails uses
the predefined higher-order oss function EnumerateF to enumerate tails of a queue: <Q,
Q^.rest, Q^.r.rest^.rest, ... >, and EJobQ enumerates the jobs in a queue by calling
EJobQtails and implicitly mapping the operation of following a pointer and selecting the
job field over the pointers returned by EjobQtails.

function EJobQtails (Q: JobQ): oss of JobQ;
function JobQrest (Q: JobQ): JobQ;
begin JobQrest := Q^.rest end;

function JobQnull (Q: JobQ): Boolean;
begin JobQnull := Q=nil end;

begin EJobQtails := EnumerateF(Q, JobQrest, JobQnull) end

function EJobQ (Q: JobQ): oss of JobInfo;
var Qs: oss of JobQ;

begin
Qs := EJobQtails(Q);
EJobQ := Qs'.job



The function RemoveFromJobQ removes a job from the end of a queue. RemoveFromJobQ
first enumerates the tails of the queue using EJobQTails, and then uses the predefined oss
functions Riast and Tprevious to obtain a pointer to the penultimate queue entry. The
"rest" pointer in this entry is then set to nil to remove the last entry from the queue. If
there is no next to last entry, then the queue variable itself is set to nil. RemoveFromJobQ
then locates the last entry in the queue and frees the storage associated with it via
dispose, returning the contents of its job field. It is assumed that there is at least one
job in the queue. Since there is only one instance of EJobQtails in RemoveFromJobQ, the
oss preprocessor will create code which only traverses the queue once.

function RemoveFromJobQ (var Q: JobQ): JobInfo;
var Qs: oss of JobQ;

NextToLast, Last: JobQ;
begin

Qs := EJobQtails(Q);
NextToLast := Rlast(Tprevious(Qs), nil);
if NextToLast=nil then Q := nil else NextToLast.rest := nil;
Last := Rlast(Qs, nil);
RemoveFromJobQ := Last- job;
dispose(Last)

end

SuperJob, below, inspects a job queue and returns the last (i.e., longest queued) job
in the queue whose priority is more than two standard deviations larger than the average
priority of all of the jobs in the queue. If there is no such job, nil is returned. The
first four statements in the function compute the mean and deviation of the priorities.
The fifth statement selects the jobs which have sufficiently large priorities. The last line
selects the last of these jobs, if any.

function SuperJob (Q: JobQ): JobInfo;
var Jobs, SuperJobs: oss of JobInfo;

Count: Integer;
Mean, Deviation: Real;

begin
Jobs := EJobQ(Q);
Count := Rlength(Jobs);
Mean := Rsum(Jobs.priority)/Count;
Deviation := sqrt(Rsum(TmapF(sqr,Jobs.priority)/Count - sqr(Mean));
SuperJobs := Tselect(Jobs.priority>Mean+2*Deviation, Jobs);
SuperJob := Rlast(SuperJobs, nil)

end

This code is a good example of the way oss expressions are intended to be used. It
is important to realize from the above example that oss expressions are used to convert
relatively straightforward programs into simple programs rather than to convert truly
complex programs into less complex programs. Most applications involve very simple
OSS expressions.

The Parser

The first step in implementation is to convert the Pascal code into a Lisp-like syntax
for use by the oss preprocessor. The parser used for this task utilizes standard methods,
creating a recursive-descent parse tree.



When parsed into Lisp, EJobQTails and RemoveFromJobQ, taken as samples for brevity,
are converted into:

(DEFUN-FUNC EJOBQTAILS ((Q JOBQ)) (OSS JOBQ)
(DEFUN-FUNC JOBQREST ((Q JOBQ)) JOBQ
(PROGN (SETQ JOBQREST (FIELD (FOLLOW^ Q) 'REST))))

(DEFUN-FUNC JOBQNULL ((Q JOBQ)) BOOLEAN
(PROGN (SETQ JOBQNULL (= Q NIL))))

(PROGN (SETQ EJOBQTAILS (ENUMERATEF Q JOBQREST JOBQNULL))))

and

(DEFUN-FUNC REMOVEFROMJOBQ ((VAR Q JOBQ)) JOBINFO
(V-LET ((QS (OSS JOBQ)) (NEXTTOLAST JOBQ) (LAST JOBQ))
(PROGN (SETQ QS (EJOBQTAILS Q))

(SETQ NEXTTOLAST (RLAST (TPREVIOUS QS) NIL))
(IF (= NEXTTOLAST NIL)

(SETQ Q NIL)
(SETQ (FIELD NEXTTOLAST 'REST) NIL))

(SETQ LAST (RLAST QS NIL))
(SETQ REMOVEFROMJOBQ (FIELD (FOLLOW^ LAST) 'JOB))
(DISPOSE LAST))))

Functions such as DEFUN-PROGRAM, DEFUN-FUNC, DEFUN-PROC, FIELD, and FOLLOW- need
not be valid Lisp functions as the code is not required to actually run in Lisp; it only
needs to resemble Lisp to the extent that the oss preprocessor is able to deal with the
fragments received from it.

The most important consideration when parsing the Pascal code into Lisp is to make
sure that all of the information needed to reconstruct the Pascal code is retained in
Lisp. The best example of this concerns typing. SincePascal has strong typing and Lisp
has weak typing, some means had to be developed of retaining the type information in
Lisp. This is done using variations on the Lisp LET statement: type, variable, constant,
and label declarations are retained using T-LET, V-LET, C-LET, and L-LET macros, each of
which contains a list of declarations and the body of statements lexically enclosed by the
declaration.

Most high-level constructs in Pascal, such as while...do and if...then statements
are never seen by the oss compiler extension. Since only the immediate context of oss
expressions are necessary to convert them to loops, the high-level functions need not be
valid Lisp. Most often, just the oss expression itself will be passed along.

Locating OSS expressions

After the Pascal code is converted to this pseudo-Lisp, oSS expressions are located and
passed off to the Lisp oss preprocessor. Some minor modifications must be made to put
the code into the appropriate format for the preprocessor, such as prefacing functional
arguments with #' and specifying the type of some of the variables. The above example
yields:



(DEFUNS EJOBQTAILS (Q)
(ENUMERATEF Q #'JOBQREST #'JOBQNULL :TYPE JOBQ))

For RemoveFromJobQ, only the body of the function is used, with the V-LET parameters
turned into a form more palatable by the oss preprocessor:

(LETS ((qS (EJOBQTAILS Q)))
(LETS ((NEXTTOLAST (RLAST (TPREVIOUS QS) NIL)))
(IF (= NEXTTOLAST NIL)

(SETQ Q NIL)
(SETF (FIELD NEXTTOLAST 'REST) NIL))

(LETS ((LAST (RLAST QS NIL)))
(SETQ REMOVEFROMJOBQ (FIELD (FOLLOW^ LAST) 'JOB))
(DISPOSE LAST))))

Oss functions must be passed in their entirety so that the preprocessor can replace
references to them in other segments of the code with the appropriate code in loop
format. To simplify the identification of oss functions in other parts of the code, the oss
functions are passed to the preprocessor first.

If oss variables are declared, all lexically enclosed statements are passed to the prepro-
cessor. Hence, the entire bodies of RemoveFromJobQ and SuperJob are collected, including
statements in the code that do not involve oss expressions. Had no oss variables been
declared, then only statements using oss functions, either predeclared or defined else-
where in the program, would have been returned. Although the code given here does not
present any such examples, they are common in simpler applications of oss series.

The oss expression locator compiles a list of triggers as it searches through the decla-
ration statements of a program.' These triggers act as "cues" which signal that the code
containing them should be sent to the oss preprocessor. Any OSs variable, procedure,
or function is appended to the list of triggers when declared.

When the locator encounters a code fragment that might need processing by the oss
preprocessor, it first searches to see if the expression contains a reference to a predefined
oss function. Barring that, it looks to see if there is a reference to a member of the list
of triggers. If either of these two cases succeed, the code fragment is passed to the oss
preprocessor. Type information, conveyed by the :TYPE keyword, is also passed to the
preprocessor.

Once this information has been found, code is ready to be passed to the oss prepro-
cessor. The preprocessor converts the code fragment into loops and then returns the new

code with loops included where possible.

The code returned for RemoveFromJobQ is as follows:



(LET (NEXTTOLAST LAST QS #:OUT-3868 #:SHIFTED-3855
#:STATE-3846 #:STATE-3856)

(DECLARE (TYPE JOBQ NEXTTOLAST)
(TYPE JOBQ LAST)
(TYPE JOBQ QS)
(TYPE JOBQ #:SHIFTED-3855)
(TYPE JOBQ #:STATE-3846)
(TYPE JOBQ #:STATE-3856))

(TAGBODY
(SETQ #:STATE-3846 Q)
(SETQ #:STATE-3856 NIL)
(SETQ NEXTTOLAST NIL)
(SETQ LAST NIL)

#:L-3870 (COND ((JOBQNULL #:STATE-3846) (GO OSS:END))
(T (SETQ QS *:STATE-3846)

(SETQ #:STATE-3846 (JOBQREST #:STATE-3846))))
(SETQ #:SHIFTED-3855 #:STATE-3856)
(SETQ #:STATE-3856 QS)
(SETQ NEXTTOLAST #:SHIFTED-3855)
(SETQ LAST QS)
(GO #:L-3870)

OSS:END )
(SETQ REMOVEFROMJOBQ (FIELD (FOLLOW" LAST) 'JOB))
(DISPOSE LAST)
(IF (= NEXTTOLAST NIL)

(SETQ Q NIL)
(SETF (FIELD NEXTTOLAST 'REST) NIL))

AddToJobQ is not passed to the preprocessor because it contains no oss expressions.
The oss functions EJobQTails and EJobQ are not returned, as their processed code is
substituted for references to them in RemoveFromJobQ and SuperJob.

Unparsing

Once the substitution is made, the pseudo-Lisp is used to produce a Pascal pro-
gram ready for compilation. In effect, a "de-parser" is being used. Using a Lisp pretty
printer, an early version of which is described in [3], a dispatch table was built containing
approximately forty simple rules to reconstruct the modified Pascal program from the
pseudo-Lisp. For example, the rule to process if... then... else statements is contained
in a dispatch entry that looks like this:

(set-dispatch-entry (cons-with-car if)
#' (lambda (xp obj)

(if (= (length obj) 4)
(format* xp #""!if "W -"then -W '"else "W-." (cdr obj))
(format* xp #""!if "W ".then "W-." (cdr obj)))) 0)

This rule triggers on any cons that has a car equal to if. It then tests to see
how many elements are in the list; if there are four elements, as in (if (= foo bar)
(writeln foo) (writeln bar)), it will be parsed into an if... then... else statement.
Otherwise, the pseudo-Lisp is parsed into an if...then statement. The final number



5 indicates the priority of the rule relative to other rules in the dispatch table. The
•w declarative, particular to the PP pretty printer, causes a dispatch of its argument.
Thus, the (= foo bar) in the above example would be printed out as foo = bar after it
triggered on a dispatch entry dealing with =.

Lower-priority rules handle more general functions, such as the conversion from the
Lisp format of functions, (function paramil param2 param3 ... ) to the Pascal format,
function(paraml, param2, param3, ... ).

Once printed back out again into Pascal, with the oss expressions converted to loops,
the code in the Job queue example looks like this:

label 1,2,3,4,5,6,7;

procedure AddtoJobQ (J: JobInfo; var Q: JobQ);
var E: ^JobQentry;
begin

new(E);
E^. job := JobInfo;
E^.rest := Q;
Q := E

end;

function RemoveFromJobQ (var Q: JobQ): JobInfo;
var NEXTTOLAST: JOBQ;

LAST: JOBQ;
QS: JOBQ;
SHIFTED3812: JOBQ;
STATE3803: JOBQ;
STATE3813: JOBQ;

begin
STATE3803 :- Q;
STATE3813 :- nil;
NEXTTOLAST :- nil;
LAST := nil;
1:

if JOBQNULL(STATE3803) then
goto 2
else begin QS := STATE3803;

STATE3803 := JOBQREST(STATE3803)
end;

SHIFTED3812 := STATE3813;
STATE3813 := QS;
NEXTTOLAST := SHIFTED3812;
LAST := QS;
goto 1;

2:
REMOVEFROMJOBQ := LAST^. JOB;
if NEXTTOLAST = nil then Q := nil else NEXTTOLAST.REST := nil;
dispose(last)

end;



function SuperJob (Q: JobQ): JobInfo;
var

ITEM3869, JOBS, ITEMS3874: JOBINFO;
ITEMS3829, ITEMS3873, STATE3828, STATE3872: JOBQ;
ITEMS3838, ITEMS3847, NUM3837, NUM3846, OUT3863: REAL;
ITEMS3858: BOOLEAN;
COUNT: INTEGER;

begin
STATE3828 := Q;
COUNT := 0;
NUM3837 := O;
NUM3846 := 0;
3:
if JOBQNULL(STATE3828) then

goto 4
else begin ITEMS3829 := STATE3828;

STATE3828 := JOBQREST(STATE3828)
end;

JOBS := JOB.ITEMS3829;
COUNT := COUNT + 1;
ITEMS3838 := JOBS.PRIORITY;
NUM3837 := NUM3837 + ITEMS3838;
ITEMS3847 := SQR(JOBS.PRIORITY);
NUM3846 := NUM3846 + ITEMS3847;
goto 3;
4:
MEAN := NUM3837 / COUNT;
DEVIATION := SQRT(NUM3846 / COUNT - SQR(MEAN));
0UT3863 := MEAN + 2 * DEVIATION;
STATE3872 := Q;
ITEM3869 := nil;
5:

if JOBQNULL(STATE3872) then
goto 7
else begin ITEMS3873 :f STATE3872;

STATE3872 := JOBQREST(STATE3872)
end;

ITEMS3874 := JOB.ITEMS3873;
ITEMS3858 := ITEMS3874.PRIORITY > OUT3863;
if not(ITEMS3858) then goto 6;
ITEM3869 := ITEMS3874;
6:
goto 5;
7:
SUPERJOB := ITEM3869

end;

Conclusion

Use of oss expressions in Pascal allows the programmer to avoid the compromise that
must normally be made between readability and efficiency of code. While oss expressions
cannot guarantee that efficient code will automatically be produced, they are a significant
step forward in permitting programmers to design code as they wish without having to



concern themselves with efficiency issues. Through the support of oss expressions, these
benefits can be obtained in any programming language.

Acknowledgements

Dr. Richard C. Waters played an instrumental part in nearly every aspect of this
project. The theory involved is all his. For a more thorough explanation of the oss
macro package, see [4] and [5].

References

[1] K. Jensen and N. Wirth, "Pascal: User Manual and Report, 3rd ed.",
Springer-Verlag, 1985.

[2] A. Goldberg and R. Paige, Stream Processing. Rutgers report LCSR-TR-46, Aug.
1983.

[3] R. Waters, "PP: A Lisp Pretty Printing System", MIT/AIM-816, December 1984.

[4] R. Waters, "Synchronizable Series Expressions: Part I: User's Manual for the OSS
Macro Package", MIT/AIM-958, November 1987.

[5] R. Waters, "Synchronizable Series Expressions: Part II: Overview of the Theory
and Implementation", MIT/AIM-959, November 1987.


