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The Jordan Form over field Zp of Jp., is diagonal for p > 3 with characteristic

polynomial, #(z) = 3 - 1, for p prime, n natural number. These matrices have
dimension pn x p", with entries (i+j). I prove these results with the method of generating
functions.
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In this paper, I will prove the theorems necessary to construct a Binomial
Coefficient superidentity. By the termn, superidentity, I wish to indicate the set
of four identities which taken together, provw, the existence of an entity which
is most properly expressible in matrix language. This entity is the Jordan
form of the class of matrices .~,., over the finite field Zp. All operations are
taken modulo p.

Let J,, be a n x n matrix such that

J(i, j) = (i+ j )

for 0 < i, j < n. Let .1J be the salme matrix with entries taken modulo p. This
paper considers the class of matrices pP., for p prime, and n positive integer.

In summary, I introduce four theorems to prove the existence of the
Jordan Form which is stated in Theorems 4 and 5.

Theorem 0 states that each matrix in this class is expressible hi terms of
an iterated tensor product of more elementary matrices.

Theorem 1 states that the characteristic polynomial for any matrix in
this class is:

(zX) = z3 - 1

Thus there are only three eigenvalues, the cube roots of unity. The method

of proof involves well-known generating function techniques, though there

are major simplifications due to the finite field. For example: (x - 1)P-l =
•p-1 ti

Theorems 2 and 3 completely specify the multiplicity of the eigenvalues.

By a second application of Theorem 1, it follows immediately that the matrices

are all diagonal for p > 3.

To reduce terminology, I refer to the formula, () = (P•) + ( ~-) as the

recurrence relation for Binomial Coefficients. This is the well-known formula

used in constructing Pascal's Triangle.

Theorem 0

JP = @=Jpp

where p is prime, and 0 is the Kronecker product. The Kronecker product is

also sometimes referred to as a Tensor product.

Proof Consider JpP. The left to right diagonal, consists of terms (P- 1)

for k = 0,..., p-1 But (P•') = (-1)k by the recurrence relation for Binomial

Coefficients and (I) = 0. Thus the lower right half of the square is all zero,

the left to right diagonal is (-1)k. The recurrence relation for Binomial

Coefficients then induces a recurrence relation for these matrices. The 1 in

the lower left corner and the 1 in the upper right corner grow a copy of J.P to
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either side. These in turn, add to form 2,1'. The p)rocss continues until the
priule modulus is reached and then a giant J*, matrix has been constructed.

The proof then follows by induction. Wolfram termed the prime case "strongly

regular".

Theorem 1

(J ") = I

for any p prime, for any n positive integer.

Proof All equalities are mod p. The statement above is equivalent to
showing,

r+) j+k k+s )
p=E ( k = '

j,k= I

since Jp, = JP (... JpP by Theorem 0. 6r is the Kronecker delta. Let

r+j j+k k+s
fr E ) k s

j,k=0

Introduce generating function, F(x, y) = Er,,>o fr-,z Y

oo p-1 (r+) j+k k+s
r,a20 j,k=O

p-I ( (+k 11,k=o k (I- z)i+ 1(1 -y)k+1

p-1
1 j+ k 1

(I - )(1 - y) ,=o k (1 - )(l -y)k

The theorem is true if,

(1 - -y)P- j+k 1
(1 - x) 1 - y)- k k (1 - X)j(1 - y)k

ik=O

since

Sf.y (1 - zy) P- 1

r,8yo (1 - z)P(1 - y)P

Let a = 1/(1 - z),i3 = 1/(1 - y). The above formula is equivalent to,

p-1

(a+/ -1)P- = + k a i k

j,k=O
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Let right hand side be denoted G(a, P).

p-1 r

p--1

=D(a +)'
r=O

But left hand side is
p-1

(a+E-1) - (P 1 (+j )'(-1)P 1r
r=O

But

This proves Theorem 1.

Theorem 2

(Rp.JJ.) - IJP,

where In is the p" x pn identity matrix, and Rp. is the p" x p" matrix of
ones on the lower left to upper right diagonal such that (Rpn.) = Ip.. The
equality is mod p, p as always is prime.

Proof By theorem 0, the above statement is equivalent to proving that

F(i, k) = p - 1- i+j - j + •k
i=o

Introduce the generating function,
p-1 oo

G(z, y) = E F(i, k)z'yk

i=O k=O

p-p-1 (
i=0 i=0

p-I1 p-1  

P 1

(1 - )P +

(y1 - l)p -

(1 - y)P
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This is the desired conclusion, hence Theorem 2 is proven.

Theorem 3

trcace(P) = - 1, if (p-l)/ 3 integer;
trac(J) = 1, otherwise.

Proof The above statement is equivalent to showing that,

2k) { -1, if (p-1)/3 integer;
k 1, otherwise.

But, (2~) = (_ -- /2) = (- 4 )k((p- )/2). And the entries in the suni from

(p - 1)/2 to p - 1 are zero. So,
(p- 1)/2 (p -.1)/2k (P - 1)/2

k=O k=O

which is, (-4 + 1)(p- l )/ 2 or (-3)(P- )/ 2 . This proves Theorem 3.*

All four theorems have been proven and construction of the superidentity
is a straightforward task. There are two cases, when (p - 1)/3 is integer, and
when it is not.

Theorem 4 The Jordan form of JP is diagonal for p > 3, and has three
eigenvalues. In the real case, when (p- 1)/3 is an integer, then the eigenvalues
are 1, f, f2 where f is a cube root of unity in Z,. These have multiplicities
(p + 2)/3, (p - 1)/3, and (p - 1)/3. In the complex case, when (p - 1)/3 is not

an integer, then the eigenvalues are 1, ý, ý* where ý is an extension element
to the field Zp and f* is its conjugate. These eigenvalues have multiplicities
(p - 2)/3, (p + 1)/3, and (p + 1)/3.

Proof For p > 3, off-diagonal terms remain after cubing, since the cube
of the Jordan block of any such matrix has off-diagonal terms. Only 2 x 2 or
3 x 3 Jordan blocks could have diagonal cubes. This contradicts the cube of
the matrix being the identity. Hence the Jordan form must be diagonal. In
the case p = 3, there is one eigenvalue 1, and one 3x3 Jordan block for this
eigenvalue. Cubing this matrix, modulo 3, results in the identity.

In the complex case, when (p - 1)/3 is not integer, the characteristic
polynomial 4(t) can be factored.

b(t) = (t2 + t + 1)a(t - 1)b

where t2 + t + 1 is irreducible. In the real case, when (p - 1)/3 is an integer,
the characteristic polynomial factors.

I(t) = (t - 1)'(t - f)b(t - f2),

*The proof given here is due to Professor I. Gessel. There is a slightly longer proof
of the same result by Professor R. Stanley. Both were proven in response to my
conjecture.
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a, b, c are the nmultiplicities which we seek.

In the real case, the following three equations hold.

a+b+c=p

af2 + bf + c = 1 (mod p)

b= a

The first expresses the dlimensional constraint, the second from Theorem 3,
the trace being equal to the second coefficient of the characteristic polynomial,
and the third from Theorem 2.

In the complex case, the following two equations hold.

2a + c = p

c - a = -1 (mod p)

The first equation is the dimensional constraint and the second again from
Theorem 3.

Solving these linear equations, in the first case gives, a = 1/(/2 + f - 2)

(mod p) or employing fa + f + 1 = 0 (mod p) we get a = -1/3 (mod p).
Thus a = (p - 1)/3.

In the complex case, a = 1/3 (mod p). Hence a = (p + 1)/3. Thus
Theorem 4 is proven.

Theorem 5 The Jordan form of JP. is the Kronecker product of the
Jordan form found in Theorem 4.

Proof This follows immediately from Theorem 0.

I term Theorem 5, a superidentity because it ties together several iden-

tities into one result clearly expressible in matrix form. The result is quite
suprising, and I ask the reader to find me another matrix whose cube gives
the identity.

This matrix superidentity results in a whole class of combinatorial iden-

tities which are new. They are all modular and concern finite sums. There is

also some identities that can be seen by considering Stirling numbers of the

first and second kinds as matrices. This work has not yet been completed.

Binomial Coefficients and Stirling numbers, modulo an integer, when ex-
hibited in tabular form exhibit fractal structure termed, "self-similar". How-
ever, "self-similar" does not imply Tensor product. Stirling numbers do not
form Tensor products, and neither do Binomial Coefficients to a composite

modulus. That such pleasing patterns have such important algebraic conse-

quence is suprising. In the case of a prime modulus, the binomial coefficients
form a tensor product. At the present time, there is no explanation for this.
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I acknowledge my use of MACSYMA ** for its flawless modular arith-

metic. I wish to thank Professor G.J.Sussman, Professor R.P.Stanley, and

David Meyer.
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