
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper No. 281 December 1985

Vision Utilities

Harry Voorhees

Abstract. This paper documents a collection of Lisp utilities which I have writ-
ten while doing vision programming on a Symbolics Lisp machine. Many of these
functions are useful both as interactive commands invoked from the Lisp Listener
and as "building blocks" for constructing larger programs. Utilities documented
here include functions for loading, storing, and displaying images, for creating syn-
thetic images, for convolving and processing arrays, for making histograms, and for
plotting data.

A.I. Laboratory Working Papers are produced for internal circulation and may contain
information that is, for example, too preliminary or too detailed for formal publication. It
is not intended that they should be considered papers to which reference can be made in
the literature.

Contents

1 Introduction 1
1.1 A Note about Notation 2
1.2 The Vision Package 2

2 Primitives 3
2.1 Mathematical Functions and Constants 3
2.2 Logical Functions 5
2.3 List Processing Functions 6
2.4 Sorting and Indexing Functions 8
2.5 Mapping. Functions 9
2.6 Interpreter .Functions 10
2.7 Stream Functions 10
2.8 System Utilities 11
2.9 Print Functions 12

3 APL Functions 14

4 Image Array Functions 19
4.1 Making and Copying Arrays 19
4.2 Allocating Temporary Arrays 21
4.3 Array Bookkeeping Functions 22
4.4 Array Processing Functions 23
4.5 Binary Array Functions 25
4.6 Computing Array Statistics 26
4.7 Mapping Functions Over Arrays 27
4.8 Synthetic Image Arrays 31
4.9 Histograms 33

5 Image Representation 37
5.1 Image Representation in Lisp 37
5.2 A More Flexible Image Representation 38
5.3 Image Representation in Files 38

6 Talking Functions 40

7 Screen Display Utilities 41
7.1 Grey Screen Display 41
7.2 TV Console Display 43

8 Convolution Utilities 44
8.1 Generic Gaussian and DOG Convolution 44
8.2 Sign and Zero Crossing Functions 46
8.3 Software Convolution. 47
8.4 Hardware Convolution 50

9 Plot Utility 55

10 Thoughts on an Image Manipulation Package 60

Acknowledgements 61

References 62

Index of Definitions

1 Introduction

This paper documents a collection of Lisp utilities which I have written while doing
vision programming on a Symbolics Lisp machine. Many of these functions are
useful both as interactive commands invoked from the Lisp Listener and as "build-
ing blocks" for constructing larger programs. Utilities documented here include
functions for loading, storing, and displaying images, for creating synthetic images,
processing arrays, for convolving images, for making histograms, and for plotting
data.

The purpose of this paper is two-fold: first, to document these utilities so that
others can use them, and second, to contribute to the development of a common
utilities package which everyone in the vision group can use conveniently. Hopefully,
many of the functions described in this paper merit inclusion in the vision package.
This paper may also serve as a prototype for the documentation of the forthcoming
set of utilities. In any case, the files where the functions currently reside are noted
so that anyone can use them now. All files reside in directory pig:[hiv.utils].

Writing general "building blocks" has the advantage of speeding code development,
since duplication of code is reduced. Here, utility functions have even been used
to write other utility functions quickly. This presents no problem to the user who
loads all the utilities (file utils does this). However, selectively loading certain
functions can be somewhat awkward, because a desired function may require a
function defined in another file. To solve this problem, a file which requires other
files automatically loads them. To prevent loading the same file over and over again,
a unique global variable is defined by a file as it is loaded. Other files which require
this file only load it if the global variable is not bound. For example, file apl begins
with the Lisp forms:

(defvar *apl-loaded* t)
(unless (boundp '*prim-loaded*) (load "pig:[hlv.utils]prim"))
(eval-when (compile)
(unless (boundp '*map-array-loaded*) (load "pig: [hlv.utils]maparray")))

Since functions in this file require functions defined in file. prim, that file is auto-
matically loaded when apl is loaded if it hasn't been loaded already. Of course,
prim may in turn load other files. By binding *apl-loaded* first, any circular
dependencies will not cause an infinite loop. In this example, some functions in apl
require a macro defined in maparray; this file need only be loaded when functions
in apl are recompiled. The simple convention described here frees the user from
keeping track of file definition dependencies.

Vision Utilities

1.1 A Note about Notation

This paper uses a format like that of the Lisp Machine Manual (e.g. Symbolics
[1985]): the documentation for each function, macro, variable, or method starts
with a header line containing its name, arguments, and type. For clarity, the de-
fault values of optional arguments are often omitted from the header line and are
described in the documentation instead. One should not assume that the absence
of a default value of an optional variable in the header line means that the default
value is nil.

The examples use the notation of Steele [1984]: The symbol ==> denotes eval-
uation; (between 4 0 10) ==> T means that evaluating (between 4 0 10) re-

turns the value T. Often, in examples which emphasize the side effects of a func-
tion (e.g. a print function), the value returned is not shown. The symbol -- >
denotes macro expansion; (between 4 0 10) -- > (and (>= 4 0) (<= 4 10))

means that the expression (between 4 0 10) macro expands to the code
(and (>= 4 0) (<= 4 10)).

1.2 The Vision Package

To avoid name conflicts with user programs, all functions described here are defined
in package vision, unless otherwise indicated. For convenience, the nicknames vis
and v can be used. Thus, the function vision:add can also be referenced as v:add
or vis:add from outside package vision. Of course, the function can simply be
referenced as add within its package.

2 Primitives

The file prim contains a number of functions which serve as an extension of Lisp
primitives and which are not particular to any application. Some of the functions
listed below are more generally useful than others, but almost all are used by one
or more of the utilities described in this paper.

2.1 Mathematical Functions and Constants

pi
2 pi
pi//2
sqrt2pl

Variable
Variable
Variable
Variable

Variables pi, 2pi, pi//2, and sqrt2pi are bound to single-precision values
of 7r, 27r, 7r/2, and v27r. In Release 6, the Lisp variable si:pi is bound to a
double-precision value, which can slow down computations significantly.

infinity
-infinity

Variable
Variable

Variables infinity and -infinity are bound to +leoo and -leoo, which are
hard to type.

square z Subst

Function square computes zx.

divide dividend divisor Subst

Function divide divides dividend by divisor, but unlike the Lisp primitive //,
it always returns a floating-point number:

(divide 3 2) ==> 1.5
(// 3 2) ==> 1

Vision Utilities

factorial n Function

Function factorial computes n! where n is a non-negative integer.

average list Function

Function average computes the average of'a list of numbers, returning a
floating-point number.

log2 x Function
loglO z Function

Functions log2 and loglO return the logarithm of z to bases 2 and 10, re-
spectively.

roundto x &optional (multiple 1) Function
roundup x &optional (multiple .) Function
rounddown x &optional (multiple 1) Function

Function roundto rounds x to the nearest multiple of multiple, which defaults
to 1. Functions roundup and rounddown do the same, rounding up or
down. For multiples other than 1, these functions are more convenient than
the Lisp primitives round, floor, and ceiling which return the quotient and
remainder of the two arguments.

(roundto 8 3.2) ==> 6.4
(rounddown 5.9999) ==> 5
(roundup 3.3 1\3) ==> 10\3

multiple-of radix number Function

Predicate multiple-of returns t if number is an integral multiple of radix and
nil otherwise.

(multiple-of 192 32) ==> T
(multiple-of 216 32) ==> NIL

Primitives 5

between x low high Subst

Predicate between returns t if low < x < high and nil otherwise.

(between 4 0 10) --> (and (<= 0 4) (<= 4 10)) ==> T

compare-all predicate list Function

Predicate compare-all applies function predicate between every pair of adja-
cent elements in list and returns t if no comparisons yield nil; it returns nil
otherwise.

(compare-all #'< '(i 4 9 16)) ==> T

eqall &rest args Function
=all &rest args Function

Predicate eq-all is a version of eq which takes any number of arguments; it
returns t if all args are eq and nil otherwise. Similarly, predicate =all is a
version of = which takes any number of arguments.

2.2 Logical Functions

and* &rest arga Function
or* &rest args Function

and* and or* are logical functions which take any number of arguments.
Unlike Lisp special forms and and or, and* and or* can be used as mapping
functions.

(apply #'or* '(nil t nil)) ==> T

Vision Utilities

2.3 List Processing Functions

one-of &rest arge Function

Function one-of is used to enumerate legal values of a variable or an argument
of a function for documentation purposes. It returns the first argument, which
is the default value of the variable or argument. For example, in the definition

(defun plot (... &key (curve (one-of :spline :line :none)) ...) ...)

the function one-of declares that :spline is the default value of keyword ar-
gument curve and that :line and :none are other legal values.

list-pairs cars cadra Function

Function list-pairs constructs an association list of lists (not dotted pairs,
which is what Lisp.primitive pairlis does).

(list-pairs '(A B C) '(1 2 3)) ==> ((A 1) (B 2) (C 3))

lastcar list Subst

Function lastcar returns the last element of a list.

rcons list element Function

Function rcons does the reverse of function cons: it adds an element to the
end of a list, returning a new list.

(rcons '(1 2) 3) ==> (1 2 3)

filter-mask mask list &optional predicate Function

Function filter-mask takes a mask and a list of the same length as arguments.
It returns those elements of list for which the corresponding elements of mask
satisfy a predicate. The predicate defaults to (lambda (x) (not (null x))).

(filter-mask '(t nil t) '(50 -1 40)) ==> (50 40)
(filter-mask '(1 0 4) '(X Y Z) #'zerop) ==> (Y)

Primitives 7

remove-elements of-list from-list Function

Function remove-elements removes all occurences of elements in of-list from
from-list.

(remove-elements '(1 2) '(7 1 1 8 2)) ==> (7 8)

list-non-nil &rest elements Function

Returns a list of elements which are not nil.

Vision Utilities

2.4 Sorting and Indexing Functions

min-n list n Function

Function min-n returns the minimum n elements of list by recursively finding
and removing the smallest remaining element.

(min-n '(30 20 10 40) 2) ==> (10 20)

sort-positions list &optional (predicate #'<) Function

Function sort-positions sorts list, returning the original indices of the sorted
elements instead of the elements themselves. The function predicate is used
for comparisons, which defaults to #'<. Indexing starts at 0. Function sort-
positions is like the APL operator "sort".

(sort-positions '(67 3 10 99)) ==> (2 3 0 4)

find-positions-in-list= n list Function

Function find-positions-in-list= returns a list of all indices of elements in
list which = n. If no such elements are found the function returns nil. Index-
ing starts at 0. This function differs from Lisp primitive find-position-in-list
which returns only the first index, using eq for comparisons.

(find-positions-in-list= 3 '(3 44 3 5)) ==> (0 2)

Primitives

2.5 Mapping Functions

mapcir function &rest arga Function

Function mapcir is a "smart" version of mapcar. Any arguments after the
mapping function which are not lists are coerced to lists of the appropriate
length (actually, circular lists). The function is then applied to corresponding
elements of each list and a list of results is returned. If no arguments are lists
mapcir is equivalent t6 apply.

(mapcir #'list 'i '(love spayed) 'my '(dog cat)) ==>
((I LOVE MY DOG) (I SPAYED MY CAT))

mapbetween function list Function

Function mapbetween applies a two-argument function between elements of
a list from left to right. It is like the APL operator "insert" ("/").

(mapbetween #'^ '(3 2 2)) ==> 81

mapexpand function list Function

Function mapexpand works like mapbetween, but a list of intermediate
results is returned. It is like the APL operator "expand" ("\").

(mapexpand #'* '(1 2 3 4)) ==> (1 2 6 24)

maptree function tree Function

Function maptree maps a function over atoms of a (nested) list tree, returning
a list of the same structure.

(maptree #'square '(((4 (3 2))) 5)) ==> (((16 (9 4))) 25)

cross function listi list8 Function

Function cross applies two-argument function to every pair of elements, one
from each of two lists. If listi and list2 contain n and m elements respectively,
cross returns a list of length nm. The first m elements are the results of
applying function to the first element of list1 and each element of liat2, etc.

(cross #'+ '(1 2) (10 20 30)) ==> (11 21 31 12 22 32)

Vision Utilities

2.6 Interpreter Functions

The following functions can be useful for writing macros which generate code and
which evaluate their own arguments.

symbol string &optional package Function

Function symbol creates a symbol from string, interning it to package pack-
age. If package isn't specified, the current package is used.

make-alist-of-bindings &rest variables Macro
make-plist-of-bindings &rest variables Macro

Function make-alist-of-bindings makes an association list of variable names
and their bindings. It is useful for saving function parameters. Each element
of the association list is a list, not a dotted pair. Function make-plist-of-
bindings is similar; it makes a property list of variable names and bindings.

(let* ((a 1) (b a)) (make-alist-of-bindings a b)) ==> ((A 1) (B 1))

(let* ((a 1) (b a)) (make-plist-of-bindings a b)) ==> (NIL A I B 1)

quotedp expr Function

Predicate quotedp returns t if expr a quoted s-expression; that is, if expr is
a list whose car is the symbol quote.

2.7 Stream Functions

tyi-now &optional stream Function

Function tyi-now is like function tyi but it clears any previous inputs first.
If stream is not specified standard-stream is used by default.

listen &optional stream Function

Function listen tells whether any inputs are in a stream's input buffer. It
is used by functions which run until the user types a character or clicks the
mouse. If stream is not specified standard-stream is used by default.

Primitives 11

2.8 System Utilities

clock &body body Macro

Macro clock executes form(s) or forms, while timing how long they take to
execute. The time is printed, and value of the last form is returned.

(clock (make-array '(1000 1000) :type art-8b))
Time elapsed = 9.2 seconds.
<#ART-8B-1000-1000 2345234>

apropos-msgs object substring Function

Function apropos-msgs returns a list of all valid messages to object which
contain substring. Argument object is an instantiation of a Flavor.

(apropos-msgs tv:initial-lisp-listener "save") ==> (:SAVE-BITS
:SAVE-INPUT-BUFFER :SET-SAVE-BITS :SAVE-RUBOUT-HANDLER-BUFFER)

warning format-string &rest format-arga Function

Function warning (usually) prints a warning message on the screen. The
function takes the same arguments as format-a format string followed by
arguments which specify the formatted message string. The action taken
depends on the value of global variable *warning-action*, which can be one
of the following:

:just-warn The warning message is printed and processing continues. This
is the default case.

:wait The warning message is printed. Processing waits until the user types
a space. This insures that the user sees the message and gives him a
chance to abort processing.

:ignore No message is printed and processing continues.

:error An error is signalled.

Vision Utilities

2.9 Print Functions

Some functions for printing objects, defined in file print, are described here.

pp array &key (tiny nil) (field '(9 3)) format Function

Function pp pretty-prints a one- or two-dimensional array. Assuming that
foo is bound to a 2 x 3 element array containing the integers 1 through 3 in
each row,

(pp foo)
123
1 2 3

Optional arguments control how array elements are printed. By default art-nb
and art-fixnum arrays are printed using a column width just large enough to
hold the largest possible value. Type art-q arrays are displayed as floating
point numbers; the total field width and digits after the decimal point is
specified by the two-element list field, which defaults to (9 3). By default
type art-boolean arrays are dislayed using letters T and F. Alternatively, a
format string format can be specified for any type of array. Also, if argument
tiny is t a tiny-sized font instead of the window's current font is used; this
option is useful for printing large arrays.

The function pp should not usually be used for printing image arrays because
such arrays are displayed in transposed order. pp follows the convention
that an m x n array contains m rows and n columns; on the other hand, an
m x n image array has width m columns and height n rows. For this reason,
function pp-image should be used for printing image arrays instead. This
incompatibility will be eliminated in Release 7, when arrays will be represented
in row-major instead of column-major order.

pp-image array &key from-pos size (tiny t) (field '(9 3)) format Function

Function pp-image pretty prints an image array. Keyword arguments can
be used to print. a portion of the array of size size starting at position from-
pos. Like function'pp, keyword arguments field and format control how array
elements are printed. By default a tiny-sized font is used unless keyword tiny
is nil. For printing mathematical matrices, use function pp instead.

Primitives

pp-list list Function

Function pp-list pretty-prints a list, one element per line.

(pp-list '(THIS IS (A LIST)))
THIS
IS
(A LIST)

pp-alist alist Function
pp-plist plist Function

Function pp-alist pretty-prints an association list (of lists, not dotted pairs;
see function list-pairs).

(pp-alist '((image-name "Pookie") (width 192) (height 200)))
IMAGE-NAME: Pookie
WIDTH: 192
HEIGHT: 200

Function pp-plist pretty-prints a property list using the same format.

print-values &rest expra Macro
print-more-values &rest expr8 Macro

Macro print-values takes one or more variables (or expressions) as arguments
and prints their names and values on a single line. This macro is useful for
debugging programs if you don't want to bother figuring out how to use the
debugger.

(let ((name "Zippy") (hundred 100)) (print-values name (1+ hundred)))
NAME="Pookie" (1+ HUNDRED)=101

Macro print-more-values does the same thing but prints the values on the
current output line rather than on a new line.

Vision Utilities

3 APL Functions

A number of functions based on the programming language APL [Polivka and Pakin,
1979] are defined in file apl. A major feature of this language is that its operators
are highly generic.

ravel elements Function

Function ravel takes an array, list, or atom elements and returns a list of the
elements. It does not fringe nested lists or arrays. It is a generalization of
listarray and list.

(pp foo)
123
123

(ravel foo) ==> (1 2 3 4 5 6)
(ravel '((1 2) 3)) ==> ((1 2) 3)
(ravel 3) ==> (3)

shape elements Function

Function shape is a generalization of functions length and array-
dimensions. It returns the shape of its argument elements: given an array,
it returns a list of its array dimensions; given a list, it returns a scalar which
is its length (nil is treated as an empty list); given a scalar, it returns nil.

(shape '(1 2 3)) ==> 3

(shape nil) ==> 0
(shape foo) ==> (2 3)
(shape 3) ==> nil

rho shape elements &optional array-type Function

Function rho is a generalization of functions list and make-array. It returns
a scalar, list, or array whose dimensions are specified by shape (see function
shape above). The item returned is filled with elements of elements, which
may be a scalar, list, or array; elements is ravelled and repeated until the
item is filled. If an array is to be returned, an array-type, which defaults to
art-q, can be specified.

APL Furctions

(rho 3 '(1 2)) ==> (1 2 1)
(rho 3 '((i 2))) ==> ((1 2) (1 2) (1 2))
(pp (rho '(3) '(1 2))) ;; a id array
121

(pp (setq foo (rho '(2 3) (1 2 3) art-2b)))
123
123

(pp (rho '(3 2) foo))
12
31
23

The function ident, which returns an identity matrix of specified size, illus-
trates the usefulness of function rho:

(defun ident (n) (rho (list n n) (cons I (rho n 0))))
(pp (ident 3))

100
010
001

vector &rest elements Function

Function vector is like list, but it creates a one-dimensional array.

(pp (vector 1 2 3))
123

vectorize elements &optional array-type Function

Function vectorize converts a list or array into a one-dimensional array con-

taining the same elements. Array type art-q is used unless array-type is speci-
fied otherwise. Note that ravel can be used to perform the inverse operation.

(pp (vectorize. foo))
123123

(pp (vectorize '(1 2 3)))

123
(pp (vectorize '((1 2) 3))) ;; an array of 2 elements

(1 2) 3

Vision Utilities

iota n Function
iotav n Function

Function iota generates a list of n integers from 0 to n - 1.

(iota 5) ==> (0 1 2 3 4)

Function iotav is like iota except that it returns a vector (a one-dimensional
array) instead of a list.

shift-list n elements Function

Function shift-list shifts the elements of list using wrap-around. If n is posi-
tive elements are shifted by n to the right; if n is negative elements are shifted
by -n to the left.

(shift-list 2 (iota 5)) ==> (3 4 0 1 2)
(shift-list -3 (iota 5)) ==> (3 4 0 1 2)

interval start stop &optional (increment 1) Function

Function interval is a generalization of iota, returning a list of integers be-
tween start and stop. If increment is specified, then a list of multiples of the
increment on the interval is returned.

(interval -1.1 1.9) ==> (-1 0 1)
(interval -1.1 1.9 0.5) ==> (-1.0 -0.5 0.0 .5 1.0 1.5)
(interval -1.1 1.9 1\2) ==> (-1 -1\2 0 1\2 1 3\2)

drop n elements Function

Function drop drops the first n or last -n elements of a list or one-dimensional
array elements.

(drop 2 (drop -1 '(1 2 3 4 5))) ==> (3 4)

APL Functions

index indices list-or-vector Function

Function index is a generic function for indexing a list or vector list-or-vector.
If indices is a scalar number, a scalar is returned; if indicies is a list of numbers,
a list of the same length as indices is returned. Indexing is zero-based.

(index 2 '(THIS IS A LIST)) ==> A
(index '(0 3) '(THIS IS A LIST)) ==> (THIS LIST)

row indices matrix Function
col indices matrix Function

Function row* extracts rows from a matrix (a two-dimensional array). If a
scalar row index is specified, a vector is returned; if a list of row indices are
specified, a matrix is returned. Function col works like row but extracts
columns instead. (Because image arrays are displayed in transpose order,
row extracts columns and col extracts rows of a displayed image array.)

(pp (row '(1 3) (ident 4)))
0100
0001

add &rest addenda Function
sub minuend subtrahend Function
mul &rest multiplicands Function
div dividend divisor Function

Functions add, sub, mul, and div are generic arithmetic functions which
operate on scalars, lists, and arrays. A scalar can be coerced to a list or
array; otherwise, arguments must be of the same size and type. Any array
result returned is of array type art-q, regardless of the array types of the
arguments. Functions add and mul take any number of arguments; sub
and div take exactly two. Function div calls function divide, which always
returns a floating point number.

(pp (add foo foo))
246
246

(sub '(10 20 30) '(1 2 3)) ==> (9 18 27)

Vision Utilities

(pp (sub (mul 3 (ident 3)) 1))
2 -1 -1

-1 2 -1
-1 -1 2

(div '(1 2 3) 2) ==> (0.5 1.0 1.6)

invert matrix Subst

Function invert inverts a matrix. It is another name for Lisp primitive
math:invert-matrix.

trans matrix Subst

Function trans transposes a matrix. It is another name for Lisp primitive
math:transpose-matrix.

det matrix Subst

Function det computes the determinant of a matrix. It is another name for
Lisp primitive math:determinant.

mul-mat-2 matrix1 matrix2 Subst

Function mul-mat-2 performs matrix multiplication on matrixi and matrix2.

It is another name for Lisp primitive math:multiply-matrices. Note that

function mul computes a different result.

Functions sort-positions, mapbetween and mapexpand, described in section

2, are also based on APL operators.

4 Image Array Functions

This section describes functions for manipulating image arrays, which are defined
in file array.

Functions which compute arrays can be used in two ways: either as pure functions,
which do not have side effects, or as mutators, which reuse arrays. Such functions
have an optional argument for their result. If the result is not specified, a new array
of the appropriate size is automatically allocated. This method of programming,
which frees the programmer from the chore of managing storage, is also quite ef-
ficient if the ephemeral garbage collector is on. Alternatively, a result array can
be passed to the function, allowing storage to be reused. Passing the same array
as the input and result arguments is thus equivalent to calling a function which
mutates its input. This implementation strategy thus supports both functional and
side-effect models of programming conveniently.

same-size-array array &optional array-type Function

Function same-size-array allocates and returns an array of the same size as
array. Its array type is the'same, too, unless specified otherwise by array-type.
This function is commonly used for the default value of the result argument
of array processing functions which create an array if one is not specified.

(defun find-edges (image-array &optional
(result (same-size-array image-array art-ib)))

;; body left as an exercise for the reader

4.1 Making and Copying Arrays

copy-array array &key to-array size from-poe to-poe Function

Function copy-array returns a copy of array. Optional arguments act as
constraints; size, from-pos, and to-pos must be lists whose lengths equal the
dimensionality of array. The whole array is copied by default, but a portion
can be copied by specifying size (e.g. the width and height) and/or from-pos,
the position :to:start copying from. If a destination array to-array is specified,
the result gets copied to it, starting at an optionally specified position to-pos;

Vision Utilities

otherwise, an array of the appropriate size is created. In other words, the
function always does the logical thing by default.

For efficiency, this function uses bitblt if it can, that is, if both arrays are
bitbitable (see function bitbltable? below) and are of the same type; oth-
erwise, it calls copy-array-portion which uses compiler array registers for
efficiency. The arrays need not be two-dimensional.

(pp (copy-array (setq bar (rho '(3 4) (add I (iota 12))))))
1234
5678
9 10 11 12 ;; a new copy of bar

(pp (copy-array bar :from-pos '(I 1)))
678
10 11 12

(pp (copy-array bar :to-array (rho '(4 6) 0) :to-pos '(1 2)))
00000
001 23
00567
0 0 9 10 11

zero-array array Function

Function zero-array fills array with zeros and returns it. It uses bitblt if
possible.

make-displaced-array size to-position to-array Function

Function make-displaced-array makes and returns a conformally-displaced
array of shape size displaced to to-array starting at position to-position. Both
size and to-position are lists whose lengths equal the dimensionality of to-
array.

bit-blit array &key to-array size from-pos to-pos alu Function

Function bit-blit is a version of Lisp primitive bitblt which uses the conve-
nient argument syntax and defaults of function copy-array. Unlike copy-
array, this function always calls bitblit, so it should be used by applications
which always require fast copying. It also has an optional argument to specify
the alu for combining elements, which defaults to tv:alu-seta (copy).

Image Array Functions

bitbltable? array Function

Function bitbltable? returns t if array is a valid argument to bitblt, that is,
if array is two-dimensional and its width times number of bits per element is
a multiple of 32. It returns nil otherwise.

bitbltable-shape shape type Function

Function bitbltable-shape rounds up shape, a list of two numbers repre-
senting array dimensions, so that an array of type type would be bitbltable. It
returns the new shape.

make-bitbltable-array shape type &rest keywords-and-args Function

Function make-bitbltable-array is like make-array except that is rounds
up shape, if necessary, to return a bitbltable array.

bitbltablize-array array Function

Function bitbltablize-array copies array to a new array, which it returns, if
array is not bitbltable; otherwise, it just returns array.

convert-array-type array array-type Function

Function convert-array-type copies an integer array to a new array of spec-
ified array type, returning the new array.

4.2 Allocating Temporary Arrays

The file temparray defines a utility for allocating temporary arrays. It is especially
designed to allow image processing functions to temporarily allocate big arrays for
holding intermediate results. The arrays are allocated from a stack and hence do
not require garbage collection. The file temparray defines a special area of memory
called *temporary- array-area* for allocating temporary arrays, over which the
garbage collector is turned off.

Vision Utilities

with-temporary-array (name shape &rest options) &body body) Macro

Macro with-temporary-array allocates a temporary array of specified shape
and options, which can be any keywords and arguments to function make-
array. While executing form or forms body, name is bound to the temporary
array. The last form of body is returned. The temporary array must only be
referenced dynamically within body, so body must not return the array as a
value or set any non-local variable to it.

4.3 Array Bookkeeping Functions

bits-per-element array-dr-type Function

Function bits-per-element takes an array, an array-type symbol (e.g. 'art-
8b), or an array-type code (e.g. art-8b), and returns the number of bits per
element (e.g. 8). For array-type art-q it returns nil.

max-value-of-array-type array-or-type Function
min-value-of-array-type array-or-type Function

Functions min-value-of-array-type and max-value-of-array-type return
the minimum and maximum values, respectively, which can be held in an array
of specified array type. As with function bits-per-element, the argument
array-or-type can be an array, an array-type symbol, or an array-type code.
The minimum and maximum values of array-type art-q are -leoo and +leoo,
respectively.

(max-value-of-array-type 'art-8b) ==> 255
(min-value-of-array-type art-8b) ==> 0

array-type-p array array-type Function

Predicate array-type-p returns t if array is of array type array-type, and nil
otherwise.

Image Array Functions

bit-array? array Function

Predicate bit-array? returns t if array is of one of the array types art-nb or
art-fixnum, and nil otherwise.

width array Function
height array Function

Functions width and height return the width and height of an image array,
which are the first and second dimensions, respectively, of the two dimensional
array array.

flip-image array &optional result Function
flip-image-rows array &optional result Function
flip-image-cols array &optional result Function

Function flip-image, also called flip-image-rows, reflects an image by re-
versing the order of rows of an image array.. It is used for flipping images
represented in a right-handed coordinate system (e.g. Keith Nishihara's for-
mat) to the left-handed coordinate system format currently used.

Function flip-image-cols is similar, but it reverses the order of columns of
an image array.

4.4 Array Processing Functions

complement-array array &optional array-type result Function
uncomplement-array array &optional amplify result Function

Function complement-array converts an art-q array of integers array to an
art-nb array in two's complement form, which can be stored more efficiently.
An art-nb array can store integers from -2 " - 1 to 2n- ' - 1. A result array of
type art-fiznuin is allocated, unless either result or array-type specify other-
wise.

Function uncomplement-array performs the opposite function. It returns
an art-q array result which is optionally multiplied by an amplification factor
amplify.

Vision Utilities

scale-array array &key offset factor type result - Function

Function scale-array linearly scales an array by an offset and scaling factor

optionally specified by keywords :offset and :factor. The resulting array or its

array-type can be specified using keywords :result or :type; otherwise, a result

array of the same type as array is returned.

(pp (scale-array (vector 1 2 3) :offset 2 :factor 10))

30 40 60

enhance-array array &key type result min-result max-result Function

Function enhance-array also scales an array, automatically choosing the

constants for function scale-array so that the full range of the result is used.

For example, for an art-8b result, the minumum value of array is mapped to

0 and the maximum value is mapped to 255. If neither result nor its type are

specified, a result array whose array type is that of the input array is returned.

One can also specify the range of the result using keyword arguments min-

result and max-result. These values can fall outside the range of the result

array type, in which case any scaled array values out of range are thresholded.

(pp (enhance-array (vectorize '(-1000 0 1000)) :type art-8b))

0 128 255

Function enhance-array returns three values: the enhanced array and the

offset and amplification factor used to enhance the array.

shift-array array cols-rows result Function

Function shift-array shifts a two-dimensional array by the number of columns

and rows specified by the two-element list cols-rows, returning a new array

result. Like the APL operator "rotate" ("0"), shift-array performs wrap-

around, so the result has the same size as array and is completely filled. Since

this function is implemented using function copy-array, it uses bitblt if

possible.

Image Array Functions

(pp bar)
1234
5678
9 10 11 12

(pp (shift-array bar '(2 -1)))
7856

11 12 9 10
3412

4.5 Binary Array Functions

The following functions are designed for creating or manipulating binary arrays-
1-bit arrays which represent boolean values. The value 1 represents "true" and 0
represents "false". Type art-lb arrays are used instead of art-boolean arrays since

the former can be displayed directly (e.g. by using bitblt).

binary-array boolean-array Function

Function binary-array converts an art-boolean array to an art-lb array by
returning an art-lb array which is displaced onto boolean-array.

threshold-array array threshold &optional result Function

Function threshold-array returns an array result (of type art-lb by default),
where l's indicate values of result > threshold and O's indicate otherwise.

threshold-array< array threshold &optional result Function

Function threshold-array< returns an array result (of type art-lb by de-
fault), where l's indicate values of result < threshold and O's indicate other-
wise.

equal-array array value &optional result Function

Function equal-array returns an array result (of type art-lb by default),
where l's indicate values of array = value and O's indicate otherwise.

Vision Utilities

and-array arrayl array2 &optional result Function

Function and-array maps the logical function AND over two art-lb arrays
arrayl and array2. It returns an array result (of type art-lb by default),
where l's indicate locations where arrayl = 1 and array2 = 1 and O's indicate
otherwise.

4.6 Computing Array Statistics

sum-array array Function
average-array array Function
max-array array Function
min-array array Function
min-and-max-array array Function

Functions sum-array, average-array, max-array, and min-array return
the sum, average, maximum value, and minimum value, respectively, of the
elements in an array. If both the minimum and maximum elements are to
be computed, function min-and-max-array should be used instead, which
returns both values while only looping through the array once. All of these
functions are implemented using compiler array registers for efficiency.

array-mean array Function
array-variance array Function
array-standard-deviation array Function
array-variance-and-mean array Function
array-standard-deviation-and-mean array Function

Functions array-mean, array-variance, and array-standard-deviation
compute the mean, variance, and standard deviation (square root of the
variance) of the elements of array. Function array-mean is the same as
function average-array. Functions array-variance-and-mean and array-
standard-deviation-and-mean return two values, only looping over the ar-
ray once, and hence are more efficient than calling the single-valued functions
separately. In all cases compiler array registers are used for efficiency.

count-elements array n Function

Function count-elements. counts the number of elements of array which =
number n.

Image Array Functions

4.7 Mapping Functions Over Arrays

Functions and macros for mapping functions over arrays are defined in file maparray.

map-array fn-or-expr &rest arg-arrays { :to &rest to-arrays} Macro

Macro map-array maps a function over elements of an array or arrays (arg-
arrays), returning an array or arrays (to-arrays) containing the results. All
arrays should be of the same size; they need not be two-dimensional, however.

If keyword :to is not specified, a single array of the same size and type as
the first arg-array is created and returned as the resulting to-array. The
specification of the n-argument function is followed by n arrays arg-arrays.
For example, (map-array '+ a b) adds corresponding elements of arrays a
and b, returning a new array containing the results. (map-array '+ a b :to
c) does the same thing, but stores the results in array c. The function can
be specified as a function, a symbol, a quoted symbol, or a quoted, lambda
expression.

If fn-or-expr is a Lisp function (e.g. #'square or (lambda (x y) (* 2 x
y))) or a symbol (e.g. f) the resulting code uses funcall to compute each
value.

(map-array f a b :to c) -- >
(LET ((%ARG-ARRAY-O A) (%ARG-ARRAY-1 B) (%VAL-ARRAY-0O C))
(DECLARE

(SYS :ARRAY-REGISTER-1D %ARG-ARRAY-O %ARG-ARRAY-1 /VAL-ARRAY-O))
(LET ((ARRAY-LENGTH (ARRAY-LENGTH A))

(INDEX 0)
%VALUE-O)

(LOOP REPEAT ARRAY-LENGTH DO
(MULTIPLE-VALUE (%VALUE-O)
(FUNCALL F (SYS:%1D-AREF %ARG-ARRAY-O INDEX)

(SYS:%iD-AREF %ARG-ARRAY-1 INDEX)))
(SYS:%iD-ASET %VALUE-O %VAL-ARRAY-0 INDEX)
(INCF INDEX))

(VALUES %VAL-ARRAY-O)))

It is faster if the body of the function (or the name of a primitive function)
can be coded inside the loop instead of doing a funcall at each iteration.
If fn-or-expr is a quoted lambda expression (e.g. '(lambda (x y) (* 2 x

Vision Utilities

y))), then the body of the lambda expression is macro-expanded inside the
loop, using setqs.

(map-array '(lambda (x y) (* 2 x y)) a b :to c) -- >
(LET ((%ARG-ARRAY-O A) (%ARG-ARRAY-1 B) (%VAL-ARRAY-O C))

(DECLARE
(SYS:ARRAY-REGISTER-1D %ARG-ARRAY-O %ARG-ARRAY-1 %VAL-ARRAY-O))

(LET ((ARRAY-LENGTH (ARRAY-LENGTH A))
(INDEX 0)
X
Y)

(LOOP REPEAT ARRAY-LENGTH DO
(SETq X (SYS:%ID-AREF XARG-ARRAY-O INDEX))
(SETQ Y (SYS:%ID-AREF %ARG-ARRAY-I INDEX))
(SYS:%1D-ASET (* 2 X Y) %VAL-ARRAY-O INDEX)
(INCF INDEX))

(VALUES %VAL-ARRAY-0)))

For convenience, a-primitive function can be specified by simply quoting its
name (e.g. '+), in which case the function name is macro-expanded inside the
loop without using setqs.

(map-array '+ a b :to c) -- >
(LET ((%ARG-ARRAY-O A) (%ARG-ARRAY-I B) (%VAL-ARRAY-O C))

(DECLARE
(SYS:ARRAY-REGISTER-iD %ARG-ARRAY-O %ARG-ARRAY-1 YVAL-ARRAY-O))

(LET ((ARRAY-LENGTH (ARRAY-LENGTH A))
(INDEX 0)
%VALUE-0)

(LOOP REPEAT ARRAY-LENGTH DO
(MULTIPLE-VALUE (%VALUE-O)
(+ (SYS:%1D-AREF %ARG-ARRAY-O INDEX)

(SYS:%1D-AREF %ARG-ARRAY-1 INDEX)))
(SYS:%1D-ASET %VALUE-O %VAL-ARRAY-0 INDEX)
(INCF INDEX))

(VALUES /VAL-ARRAY-0)))

Of course, this macro-expanded code will only work fast if compiled. For
convenience, though, map-array dispatches to pre-compiled functions using
funcall in the common cases of unary or binary mapping functions which
return a single value. Thus an expression which maps a compiled unary or
binary function by name can still be evaluated efficiently from a Lisp Listener

nIage Array Functions

(e.g. (map-array #'+ a b)), although not quite as efficiently as if compiled
open coded. In all cases, array registers are used for efficiency.

Mapping functions which return multiple values can be used by specifying
more than one to-array after keyword :to. If a quoted lambda expression
is used to specify the mapping function, its last outermost sub-expression
must be of the form (values (value-expr-1) ... (value-expr-m)) where m is
the number of values returned. Therefore the function specified by
'(lambda (x y) (incf sum x) (values (+ x y) (* x 2)))
returns multiple values while the function specified by
'(lambda (x y) (progn (incf sum x) (values (+ x y) (* x 2))))
does not.

Scalar attributes of arrays (e.g. the maximum value of an array) can be
efficiently computed by using mapping functions which return zero values.
Such functions are executed for side-effect, setting some variable or variables
defined outside the function's scope. A quoted lambda expression representing
a zero-valued function has as its last outermost sub-expression (values). The
keyword :to is used followed by nothing to indicate that no array should be
created for returning values. For example, function min-and-max-array is
efficiently implemented as follows:

(defun min-and-max-array (array)
(let ((max -infinity) (min infinity))

(map-array
'(lambda (x)

(if (< x min) (setq min x))
(if (> x max) (setq max x))
(values))

array :to)
(values min max)))

Finally, it should be noted that functions of zero arguments can be used as
well, with no arg-arrays specified. Of course the user must specify at least one
to-array in this case. For example, (map-array #'random :to a) fills array
a with random numbers.

Vision Utilities

map-array-offset fn-or-expr &rest arg-arrays { :to &rest to-arrays } Macro

Macro map-array-offset is a special version of macro map-array for two-
dimensional arrays which allows arrays to be offset relative to one another.
Each array is specified by a list (not quoted) consisting of the array optionally
followed by a list of two values representing the x and y offsets used for refer-
encing the array. These offsets may be negative, and one cannot be specified

without the other. For example, the expression
(map-array-offset '- (a) (a (1 0)) :to (b))

computes the first difference of array a in the x direction, storing the result

in b.

This macro does not employ wrap-around, so generally values near certain

borders of to-arrays are not set. Each array must be two-dimensional and of

the same size.

Like macro map-array, multiple- or zero-valued functions can be used, and
the code generated depends on whether fn-or-expr is a function or variable,
quoted lambda expression, or quoted function name. If keyword :to is not

present an array the same size as the first is created.

For efficiency, array registers are used. The two-dimensional arrays are ad-

dressed linearly (as one-dimensional arrays) without using multiplication to

compute their linear indices.

map-over-array array function &optional identity-element Function

Function map-over-array maps a function over a single array, combining

results and returning a scalar. The identity element for the function must

be provided unless the function applied to no arguments is so defined. For

example, functions sum-array and max-array could be implemented using

map-over-array as follows:

(defun sum-array (array) (map-over-array array #'+))
(defun max-array (array) (map-over-array array #'max -infinity))

Since this macro calls funcall for each array element, it is not as efficient as

the in-line code generated by macro map-array.

Image Array Functions

4.8 Synthetic Image Arrays

File synth defines functions for creating synthetic image arrays. An array of size
n x m is created by applying a function over a grid of points (2;i, Yj), for i = 1... n
and j = 1...m.

make-syn function &key x-range y-range size type amplify integer result
Function

Function make-syn makes a synthetic image array. The mapping function
specified must take two arguments. Keyword argument size specifies the size
of the array (i, j), a two-element list which defaults to (256 256). The z and
y ranges of the grid points are specified as lists of the form (low high) using
keyword arguments x-range and y-range; z-range defaults to the interval (0
1) and y-range defaults to z-range. To be precise, the interval (low high] is
used as the grid range in each dimension. The grid range is independent of
the size of the array; the grid range corresponds to the section of the surface
constructed, while the array size corresponds to the resolution of the discrete
representation.

Function function is applied to every element of the grid with result stored in.
array result. Either result or its type, which defaults to art-8b, can be specified
using keyword arguments.

To make the range of function match the range of array result, the values are
rounded to the nearest integer if result is a bit-array (but are not if result is
an art-q array); they are also multiplied by amplify, which defaults to 1.

(defun check (x y)
(if (eq (evenp (rounddown x)) (evenp (rounddown y))) 1 0))

(display-array (make-syn #'check :x-range '(0 8) :type art-lb))

Vision Utilities

map-syn-1 function &key z-range size type amplify integer result Function

Function make-syn-1 makes a synthetic image array which varies in only one
dimension. A mapping function of one argument is specified which is applied
in the z direction. Like function make-syn, keyword arguments specify the
range of z; the result array, its size, and/or type; amplification factor, and
whether result should contain only integer values. This function has the same
defaults as function make-syn, except that size defaults to '(256 128).

(defun staircase (x)
(cond ((< x 0) 0)

((< x 1) (// (fix (* 10.0 x)) 10.0))
(t 1)))

(display-array (make-syn-I #'staircase :size '(200 50) :amplify 255))

make-syn-r function &key range size type amplify integer result Function

Function make-syn-r makes a square synthetic image array which is rota-
tionally symmetric. A mapping function of one argument (r) is specified and
applied in the radial direction. Keyword argument range specifies the upper
bound of r in the z direction, which defaults to 1; to be precise, the interval
(0 range] is used. The size of the square array returned can be specified as
a single integer; it defaults to 256. As with function make-syn keywords
can also be used to specify the result array, amplification factor amplify and
whether result should contain only integer values.

(display-array (make-syn-r #'staircase :range 0.6))

C

Image Array Functions

4.9 Histograms

Functions for making and using histograms are defined in file histogram. Histograms
are implemented using Flavors.

make-histogram image &key range num-buckets amp-factor min-image
max-image graph Function

Function make-histogram makes and returns a histogram of array image,
which need not be two-dimensional. The range of values histogrammed de-
faults to an interval which is large enough to contain the minimum and max-
imum values of image, which are computed unless specified by keyword ar-
guments min-image and max-image. The actual default range may be larger
to insure that each bucket size is an integral value, preventing uneven bucket
sizes for fixed-point image arrays. Alternatively, range can be specified as a
list of two numbers, in which case the minimum and maximum value of image
need not be computed. Exactly num-buckets buckets are used, which defaults
to 100. A graph of the histogram is plotted (the default) unless graph is nil.

Argument amp-factor is recorded, but is ignored by all histogram methods; it
is used by functions which call these methods when image is a scaled version of
the actual array desired, such as a fixed-point array output by the convolver.

The following simple histogram is to illustrate the methods described below.

P (setq hist (make-histogran (vector -2 8 0 1 1) :nun-buckets 4))
inage ran9e=-2 to 8. Histogran'ran9e=-3 to 9. 4 buckets of size 3.

2.6-2.5

10."

0.5

7m
-101234557

make-positive-histogram image &key range num-buckets amp-factor
min-image max-image graph Function

Function make-positive-histogram is a version of function make-
histogram especially tailored for positive arrays (specifically, bit arrays).
The range starts at 0 by default, so only the maximum-value of image is
computed if neither range nor max-image is specified.

Vision Utilities

:image-min
:image-max

Method of histogram
Method of histogram

Methods :image-min and :image-max return, respectively, the minimum
and maximum values of the array histogrammed, if they were ever computed.

(send hist :image-min) ==> -2
(send hist :image-max) ==> 8

:num-buckets
:bucket-size

Method of histogram
Method of histogram

Methods :num-buckets and :bucket-size return, respectively, the number
of buckets and size of buckets in the histogram.

(send hist :num-buckets) ==> 4
(send hist :bucket-size) ==> 3

:buckets Method of histogram

Method :buckets returns a one-dimensional array of length :num-buckets con-
taining the number of elements in each bucket.

(pp (send hist :buckets))
130 1

:bucket value Method of histogram

Method bucket returns the number of elements of the bucket which represents
image value value, i.e., the bucket which would be incremented for image value
value. Note that (send h :bucket value) does not return the same result
as (aref (send h :buckets) value).

(send hist :bucket 0.5) ==> 3

Image Array nmctions

:total Method of histogram

Method :total returns the total number of elements histogrammed.

(send hist :total) ==> 5

:cumulative- buckets Method of histogram

Method :cumulative-buckets returns an array of length num-buckets which
represents the cumulative distribution of buckets.

(pp (send hist :cumulative-buckets))
1445

:bucket-bounds Method of histogram

Method :bucket-bounds returns an array of length 1+num-buckets which
represents boundaries of ranges of each bucket. Bucket i represents values :i
such that bucket-boundi •< x <bucket-boundi+l.

(pp (send hist :bucket-bounds))
-3 0 3 6 9

:bucket-midpoints Method of histogram

Method :bucket-midpoints returns anl array of length num-buckets repre-
senting the midpoints of ranges of each bucket.

(pp (send hist :bucket-midpoints))
-1.5 1.5 4.5 7.5

:amp-factor . Method of histogram

Method amp-factor returns value amp-factor specified when creating the
histogram.

(send hist :amp-factor) ==> I

Vision Utilities

:percentile-of-value value Method of histogram

Method :percentile-of-value returns the approximate percentage of image
values less than value. The percentage is expressed as a fraction between 0
and 1.

(send hist :percentile-of-value 3) ==> 0.8

:value-at-percentile fraction Method of histogram

Method :value-at-percentile is the inverse of method :percentile-at-value.
It returns the image value at a percentile specified by a fraction between 0
and 1, i.e., a value such that about 100 x fraction percent of image values are
less than value.

(send hist :value-at-percentile 0.8) ==> 3.0

:graph &key size y-origin &rest keywords-and-args Method of histogram

Method :graph graphs the histogram on the current window. Its keyword
arguments and their defaults are the same as those of function plot, described
in Section 9, except that size defaults to '(400 150) and y-origin defaults to

5 Image Representation

This section describes how images are represented and stored. Here, the word
"image" refers not only to grey-level images, but to any description of a scene. The
functions documented here are defined in file load.

5.1 Image Representation in Lisp

Images are represented as objects, using Flavors. A grey-level image is repre-
sented by flavor grey-image, which contains slots image-type, name, documen-
tation, width, height, array-type, and image-array. This description is somewhat
redundant, since array dimensions and type can be determined from the image ar-
ray, but it lets an image be clearly described by the describe function, for example:

IMAGE-TYPE: GREY-IMAGE
NAME: Westminster Abbey
DOCUMENTATION: Taken by John Canny on 04-01-82
WIDTH: 512
HEIGHT: 600
ARRAY-TYPE: ART-8B

Any of these slots can be accessed by sending a message to the object.

make-grey-image name array documentation Function

Function make-grey-image constructs and returns an instance of flavor
grey-image, using image array array with specified name and documenta-
tion strings. For example, if westminster is bound to the image array, the
grey-image described above could have been created by evaluating

(make-grey-image "Westminster Abbey" westminster "Taken by John Canny
on 04-01-82")

Special-purpose image flavors can be defined in a similar fashion. For example, a
flavor fingerprint is defined for representing multi-scale edge images. It includes
slots for storing a list of edge images at different scales, a list of scales, and the
number of scales. Methods are also defined for accessing the three-dimensional scale-
space image in a variety of ways; this is why flavors are used instead of structures

Vision Utilities

to represent images. Details and the design philosophy of this representation of
images are discussed in Section 2 of Voorhees [19841].

The image processing functions described in this paper operate on image arrays, not
images. Only the array data are relevant to these functions, and the construction of
images with associated parameters is unnecessary at this stage. If desired, higher-
level functions which operate on images can be defined which call the lower-level
functions described here.

5.2 A More'Flexible Image Representation

In the future, a more general image representation may be implemented. Images
would be represented by a structure of two elements. The first element would be
an association list or property list of attributes and values, and the second element
would be the image intensity array (or arrays). In addition to required attributes,
such as image size and name, any other attributes, such as image statistics would be
stored in the attribute list. This more flexible representation allows any attributes
to be added to an image without changing the definition of the image structure.
Functions which operate on images which require optional image attributes would
first check to see if the attribute had been computed; if not, the attribute, once
computed, would be memoized by adding it to the image attribute list, so it need
not be computed again. Furthermore, a facility which keeps track of and saves
modified images should be implemented.

5.3 Image Representation in Files

Images are stored in a file in two parts: a header and the data part. The header
contains information about the object in the file, such as its type, name, documen-
tation and size. It provides documentation about the contents of the file for the
user as well as information needed to read the rest of the file.

Functions for loading, saving, and describing images, defined in file load, are de-
scribed here. Each function is "smart" about pathname completion; an incomplete
pathname is merged with the last pathname specified, and the initial pathname
is merged with a default (determined by the global variable *default-image-
pathname*). Thus the user usually needs to specify only the first name of a
file.

Image Representation

save-image image pathname Function

Function save-image saves an image into a file. Currently defined image
types are grey-images and fingerprints. The data part is written to the file
as a single block for efficiency. The complete pathname is returned.

If dectalk is loaded, Dectalk reads the image name and documentation as the
image is loading, possibly distracting the user from noticing the time taken
to read the image from disk.

load-image pathname Function

Function load-image reads an image from a file. The type of image is deter-
mined from the file contents automatically. The data part is read from the
file as a single block for efficiency. The image object is returned.

load-image! pathname &optional symbol Function

Function load-image! is a special version of function load-image for loading
grey-images. It binds the image array to a symbol which defaults to the first
name of the file. The same symbol catenated with "-gr" is bound to the entire
image object.

(load-image! "pookie") -- >
(set 'pookie (send (set 'pookie-gr (load-image "pookie"))
:image-array))

(load-image! "pookie" 'poo) -- >
(set 'poo (send (set 'poo (load-image "pookie")) :image-array))

print-header pathname Function

Function print-header is used to examine a description of the contents of
an image file, without taking the time or storage to load the actual image
data. This is the main advantage of storing the image header separate from
the image data in the file.

Details and the design philosophy of image representation in files is discussed in
Section 3 of Voorhees [1984].

Vision Utilities

6 Talking Functions

System dectalk defines functions for using the Dectalk speech synthesizer. The file
dectalk loads this system and defines some interface functions outside the package
dectalk. Of course, this file should be loaded only when a Dectalk is connected to
the Lisp machine.

say string Function

Function say makes Dectalk say string, unless silenced.

voice new-voice Function

Function voice changes Dectalk's voice to new-voice. Defined voices are :hal,
:betty, :harry, :frank, :kit, and :val.

shut-up Function

Function shut-up makes function say a no-op, silencing the Dectalk in the
future.

speak Function

Function speak undoes the effect of function shut-up, reactivating function
say.

If a Dectalk is not connected or used with the Lisp machine, file nodectalk should
be loaded instead. This file defines function say and voice as no-ops. This allows
functions which call say and voice to function property without the Dectalk system.

7 Screen Display Utilities

This section describes functions for displaying results on Noble Larson's 8-bit color
"grey screen" and the Lisp machine console.

7.1 Grey Screen Display

A number of functions have been written to simplify use of Noble Larson's 8-bit
color "grey screen". These functions are defined in file grey, which automatically
loads file greycolor and Noble's code which drives the grey screen. The function
grey:help documents Noble's functions.

display-array array &optional (x 0) (y 0) Function

Function display-array displays a two-dimensional array on the grey screen
at position (x, y) on the grey screen, which defaults to the upper left-hand
corner. Type art-lb arrays are displayed using the brightest and darkest
intensities (255 and 0); art-2b and art-4b arrays are displayed using the most
significant bits of the screen; and the upper 8 bits of art-16b or art-fixnum
arrays are displayed. Type art-8b arrays, of course, are displayed as is. Type
art-q arrays are displayed by calling function enhance-array, which maps
the minimum and maximum values of the array to the darkest and brightest
intensities, scaling all values linearly.

If the default scaling method is not appropriate, the user can scale the array
himself to an art-8b array before calling display-array. Functions convert-
array-type, scale-array, and enhance-array are useful for this purpose.

overlay-array array &optional (z 0) (y 0) plane Function

Function overlay-array is used for displaying an art-lb array on a particular
plane of the screen at position (x, y). It is commonly used for overlays. The
default value of plane is grey:grey-array0, the least significant bit plane.

Using a straight grey map (Noble's function grey:straight-map), a 1-bit
image (e.g. an edge image) can be overlaid onto the least significant bit plane
of an 8-bit image without affecting the perceived intensity values. The overlaid
plane can be highlighted by calling (grey:highlight-plane plane r g b), or it

Vision Utilities

can be viewed exclusively by calling (grey:select-plane plane r g b), where r,
g, and b are optional intensity values; if not specified, they default to produce
white.

Philippe Brou's grey screen functions, not documented here, provide a cleaner
method of performing grey screen overlays.

erase-array array &optional (z 0) (y 0) Function

Function erase-array erases an area at position (z, y) on the grey screen.
The size of the area erased is that of the array.

erase-plane array &optional (x 0) (y 0) zero plane Function

Function erase-plane erases an area at position (x, y) of a plane of the grey
screen, which defaults to grey:grey-arrayO. The size of the area erased is
that of the array. The area is filled with zeros by default, but if zero is nil it
is filled with ones instead.

extract-array &optional width-multiple height-multiple Function

Function extract-array extracts a portion of the grey screen array using the
mouse, returning an array. Upon invoking the function, a rubber box cursor
appears on the grey screen, which the user sizes with the mouse. After clicking
left once the user positions the box and clicks left again to extract the array.
The operation can be aborted by clicking middle instead.

The box size is rounded up to the nearest multiple of optional arguments
width-multiple and height-multiple, which default to 32 and 1, so that any
arrays of this size are bitbltable. These arguments can also be used to extract
an array of a desired size (e.g. 256 x 256).

It is often convenient to display a number of images side by side on the grey screen,
without having to manually compute their positions. A number of functions for
automatically displaying images of the same size have been implemented. These
functions are convenient for displaying a sequence of images of the same size, such
as intermediate results of a computation.

Screen Display Utilities

make-grid array &optional (x-margin 8) (y-margin x-margin) Function

Function make-grid computes a list of coordinates for displaying arrays
whose size is that of array on the grey screen. Optional arguments specify the
widths of margins between the displayed arrays; extra arrays can sometimes
be squeezed onto the screen by using negative margin widths. Argument array
can be either an array or an image.

auto-display array Function

Function auto-display automatically displays an array (or image) at the
next location on the grey screen grid constructed by function make-grid.
It cycles back to the first location if the screen is full. (If make-grid has
not been called, it always displays array at the upper left-hand corner of the
screen). If array is an image, its name is also printed over a corner of the
array.

auto-erase array Function

Function auto-erase automatically erases an array (or image) where the last
one was drawn. The next call to auto-display will use this position. The
size of the area to be erased is determined from array.

7.2 TV Console Display

File plot contains a function for displaying images on the Lisp machine TV console.

tv:display-array array &optional position Function

Function tv:display-array displays an array on the Lisp machine console.
The array is displayed on the currently selected window at position (a list of
two numbers), which defaults to the position directly under the cursor. If the
default position is used the cursor is repositioned under the displayed array
so the display will not be overwritten.

Currently, this function only supports art-lb arrays, although this limitation
will be removed in the future by using a dithering algorithm.

Vision Utilities

8 Convolution Utilities

A number of utilities exist for performing convolutions either with or without a
hardware convolver. File gcon defines a number of functions for using Noble Larson's
digital hardware convolver to do convolutions using Gaussian and difference-of-
Gaussian (DOG) masks. File softcon defines functions for doing convolution in Lisp
without special-purpose hardware. Both files can be loaded simultaneously, since
each set of functions has different capabilities. Both files gcon and softcon load
file dog, which defines generic Gaussian and DOG functions which dispatch to the
hardware functions if loaded, and to the software functions otherwise. These generic
functions are described first.

8.1 Generic Gaussian and DOG Convolution

convolve-gauss image a &key zero-bc show-progress use-hardware result
Function

Function convolve-gauss convolves an art-8b image array image with a 2-D
Gaussian mask,

1 22 2G(a;x,y) = exp - 2)

of specified scale a pixels. The eight-bit result S and a scaling factor k are
returned such that I(x, y) *G(; x, y) = kS(x, y) where I(x, y) is the eight-bit
image array. If the hardware convolver is used, a must be less than 4.65 pixels.

The following keyword argments can be specified:

:use-hardware (t or nil) tells whether to use the hardware convolver. By
default the hardware convolver is used if file gcon is loaded.

:zero-bc (t or nil) tells whether to use zero boundary conditions. Its default
value is nil, in which case the borders of result should be ignored.

:result specifies an art-8b array for returning the result, which must be the
same size as image. If not specified, one is allocated.

:show-progress (t or nil) tells whether to print a message on the screen
which shows the progress of the software convolvution. Its default value
is t.

Convolution Utilities

If software convolution code is used, the legal values of certain arguments
are less restricted. Also, the exact result values returned by convolve-gauss
depend on whether hardware or software code is used. See functions gcon-
gauss and softcon-gauss for their respective restrictions and effects.

convolve-dog image a &key sign-bits zero-bc show-progress use-hardware
result Function

Function convolve-dog convolves an art-8b image array image with a 2-D
difference-of-Gaussian (DOG) mask G(a+; z, y) - G(_-; x, y) which approx-
imates a Laplacian of Gaussian of size a, V2G(a; z,y) [Marr and Hildreth,
1980]. In addition to the result S, a scaling factor k is returned such that
I(x, y) * V2G(*; x, y) = kS(x, y) where I(x, y) is the eight-bit image array.

The following keyword arguments can be specified:

:sign-bits (t or nil). If t, the default, only sign bits are returned in an art-lb
array; if nil, signed integers are returned in an art-q array. (The second
value returned, k, is only meaningful when sign-bits is nil.)

:zero-bc (t or nil) tells whether to use zero boundary conditions. If nil, the
default, zero boundary conditions are not used and the borders of result
should be ignored.

:result specifies an art-lb or art-q array, depending on the value of sign-bits,
for returning the result, which must be the same size as image. If not
specified, an array of the appropriate size and type is allocated.

:show-progress (t or nil) tells whether to print a message on the screen
which shows the progress of the convolvution. Its default value is t.

If software convolution code is used, the legal values of certain arguments
are less restricted. Also, the exact result values returned by convolve-dog
depend on whether hardware or software code is used. See function gcon-dog
and softcon-dog for their respective restrictions and effects. Table 1 shows
the amounts of time taken to perform sample DOG convolutions with and
without hardware.

The global variable *space-constant-ratio* controls the ratio a_/a+ [Marr
and Hildreth, 1980]. Its default value is 1.6. Different values can be used
when doing convolutions in software, but the hardware code is not currently
guaranteed to work for values other than 1.6.

Vision Utilities

Table 1: Sample software and hardware DOG convolution times
for 576 x 454 image

Scale a = 1.0 o = 4.0
Software mask size (pixels) 9 x 9 35 x 35
Hardware iterations 1 2
Software convolution time* 36.0 sec 97.0 sec
Hardware convolution time

Sign bits, quick b.c. 0.6 sec 1.3 sec
Sign bits, zero b.c. 0.9 sec 2.0 sec
Signed integers, quick b.c. 1.2 sec 1.9 sec
Signed integers, zero b.c. 3.6 sec 4.8 sec

*Sign bit mode and boundary conditions do not affect
software convolution time significantly.

8.2 Sign and Zero Crossing Functions

sign-array array &optional result Function

Function sign-array returns an art-lb array result containing sign bits of
art-q array of numbers array. Elements of result equal 1 when corresponding
elements of array are negative, and 0 otherwise. If result is not specified, an
art-lb array the same size as array is allocated.

zc-array sign-array &optional result Function

Function zc-array returns a zero crossing array result corresponding to a sign
bit array sign-array. Zero crossings are marked (using l's) in result at points
where the value of sign-array differs from its east or south neighbors; result is
zero everywhere else. If result is not specified, an art-lb array the same size
as sign-array is allocated.

Convolution Utilities

8.3 Software Convolution

Functions defined in file softecon perform convolution without using special-purpose
hardware. First, functions for convolving in one and two dimensions with arbitrary
masks are described.

convolve image mask &key result zero-bc bit-pos show-progress Function

Function convolve convolves image array image with a general mask repre-
sented by a 2-D array mask, and returns result. Both arrays image and mask
can be of any array type, but the function works fastest if both are fixed-point
arrays.

The following keywords can be specified:

:result specifies an array for returning result, which must be of the same size
as image, but of any type. If not specified, an array whose type is that
of image is allocated.

:bit-pos The integer bit-pos least significant bits are dropped from the convo-
lution values before being stored in array result. If not specified, function
bit-position-for-mask is called to choose a bit position based on mask
and the array types of image and result.

:zero-bc tells whether to use zero boundary conditions. If nil, the default,
convolution values are not computed at points where mask would extend
beyond the boundary of image. Values of result at these points near the
border are zero. Alternatively, if zero-be is t, zero boundary conditions
are used by padding the image array with zeros, and convolution values
are computed at every point of result.

:show-progress (t or nil) tells whether to print on the screen the row num-
ber currently being convolved. Its default value is t.

convolve-ld signal mask &key result zero-bc bit-pos Function

Function convolve-ld convolves a 1-D array signal with a 1-D array mask.
Both arrays signal and mask can be of any array type, but the functions works
fastest if both are fixed-point arrays. As with function convolve, keywords
:result, :bit-pos, and :zero-bc specify the 1-D result array, the number of
bits to be dropped, and boundary conditions.

Vision Utilities

bit-position-for-mask mask image-array-type result-array-type Function

Function bit-position-for-mask computes the number of least significant
bits to be dropped when convolving an image of type image-array-type with
mask to a result of type result-array-type. The bit-position increases as the
area of the mask increases and as the image-array-type increases, and it de-
creases as the result-array-type increases. The function assumes that the full
range of the image and result arrays are used. For convenience, image-array-
type and result-array-type can be arrays rather than array types.

Functions for convolving with 2-D Gaussian and difference-of-Gaussian masks are
described next.

softcon-gauss image a &key zero-bc show-progress result Function

Function softcon-gauss convolves an image array image with a 2-D gaussian
mask of scale a pixels. Arrays image and result can be of any fixed-point array

type. Like function convolve-gauss, softcon-gauss returns both result and
a scaling factor. Unless the convolution is always to be done in software,
function convolve-gauss should be used instead.

To perform the 2-D Gaussian convolution, the function convolves image in
the x and y directions with an eight-bit 1-D Gaussian mask. Unlike function

gcon-gauss, the mask is of odd length so the result is perfectly aligned with

the image.

The following keyword can be specified:

:zero-bc tells whether to use zero boundary conditions. If nil, the default,
convolution values are not computed at points where mask would extend

beyond the boundary of image. At these points near the border result

is set to zero. Alternatively, if zero-be is t, zero boundary conditions are

used by padding the image array with zeros, and convolution values are
computed at every point of result.

:show-progress (t or nil) tells whether to print on the screen the row num-

ber currently being convolved. Its default value is t.

:result specifies an array for returning the result. It must be of the same size

as image, but need not be of the same type. Provided that is a fixed-

point array type, the convolution values are scaled appropriately. If not

specified, an array of the same type as image is allocated and returned.

Convolution Utilities

softcon-dog image a &key sign-bits zero-bc show-progress
interm-result-type result Function

Function softcon-dog convolves an image array image with a 2-D difference-
of-Gaussian (DOG) mask approximating a Laplacian of a Gaussian of scale a
pixels. Like convolve-dog, softcon-dog returns both a result and a scaling
factor. Unless the convolution is always to be done in software, function
convolve-dog should be used instead.

To perform the DOG convolution, two Gaussian convolutions are performed
using decomposition (as described above) to yield two intermediate results,
which are subtracted to compute the result. Unlike function gcon-dog, the
masks are of odd length so the result is perfectly aligned with the image.

The following keywords can be specified:

:sign-bits tells whether to only return sign bits. If t, the default, an art-lb
array of sign bits is returned (1 means "negative"). If nil, an art-q array
of signed integers is returned. Note that the second value returned, the
scaling factor, is only meaningful in the latter case.

:zero-bc tells whether to use zero boundary conditions. If nil, the default,
convolution values are not computed at points where the larger (negative)
mask would extend beyond the boundary of image. Values of result at
these points near the border should be ignored. Alternatively, if zero-be
is t, zero boundary conditions are used by padding the image array with
zeros, and convolution values are computed at every point of result.

:result specifies an array for returning the result, which must be the same
size as image. If sign bit mode is used result should be of type art-lb;
otherwise, result must be of type art-q. If not specified, an array of the
same type as image is allocated and returned.

:interm-result-type specifies the type of the intermediate result arrays,
which should be at least as high as that of the image to maintain pre-
cision. Its default value is the next type higher than the type of image,
e.g. art-16b for an art-8b image.

:show-progress (t or nil) tells whether to print on the screen the row or
column number currently being convolved for each direction. Its default
value is t.

Vision Utilities

8.4 Hardware Convolution

A number of functions are defined for using Noble Larson's digital Gaussian con-
volver. With this special-purpose hardware attachment to the Lisp machine, one
can perform Gaussian convolutions much faster than in software. For example, a
500 x 500 size image can be convolved with a mask of size 32 x 32 and sign bits
returned in less than one second. (Table 1 on page 46 gives a comparison of DOG
convolution times with and without the hardware convolver.) Nishihara and Larson
[1981] give an overview of the convolver design.

The file gcon, which contains the functions described here, automatically loads file
oz:(ngl) gcon, which contains basic functions for running the convolver. The function
gcon:help describes Noble's functions.

General convolution function are described first. Two steps are needed to make the
convolver work: First, the appropriate mask must be loaded. Then the image data
is pipelined through the convolver to compute the result.

The convolver convolves the image with two decomposable 2-D masks, and returns
the difference of the two. Thus a difference-of-Gaussian convolution can be per-
formed in a single operation. Each of the 2-D masks is specified by two 1-D masks
(which may differ), the cross-product of which yields the desired 2-D mask. Since
different 1-D masks can be used in the x and y directions, 4 masks are specified
altogether. Each of these 1-D masks must be symmetric, so only half the mask is
actually specified. Each of these half masks is of length 16, so the effective size of
the 2-D mask is 32 x 32 pixels.

The negative convolution result is divided by two before it is combined with the
positive result, so the negative 1-D mask specification must scaled by V'. All half-
masks are specified as 8-bit integer arrays of length 16. Since the masks contain an
even number of elements, the convolution result is shifted by half a pixel in both
the horizontal and vertical directions.

The following functions load masks into the convolver to perform convolution with
isotropic 2-D masks:

load-masks mask+ mask- Function

Function load-masks loads the convolver with positive and negative half
masks. Each of the two masks is used in both the x and y directions.

Convolution Utilities

load-mask mask Function

Function load-mask loads the convolver with a positive half mask. A negative
mask of zeros is used, so the entire result is non-negative. The same mask is
used in both the x and y directions.

load-gauss-mask a Function

Function load-gauss-mask load the convolver with the appropriate masks
to yield a 2-D Gaussian mask of specified scale a. The full amplitude range
(0 to 255) is used, and a scaling factor is returned.

load-dog-mask a Function

Function load-dog-mask loads the convolver with the masks which yield a 2-
D difference-of-Gaussian which approximates a Laplacian of Gaussian of scale
o. The full amplitude range is used, and a scaling factor is returned.

Once the masks are loaded, a convolution routine is called with the image data.
Two parameters can be specified: the boundary conditions used and the type of
result to be returned.

For each of the functions described below, the keyword :zero-be specifies the bound-
ary conditions to be used. If t, zero boundary conditions are implemented by copy-
ing image to a larger, temporary array, padded with zeros. This large array is fed
to the convolver, which returns a large array, from which an image-size array is
extracted and returned. By default zero-bc is nil, and toroidal, time-dependent
boundary conditions are used, which avoid the need for extra copying. In this case,
the boundary of the result should be ignored. The keyword :result specifies an
array for returning the result; if not specified, an array of the appropriate size and
type is allocated.

Since the image range is 8 bits, the effective 2-D mask range 16 bits, and the effective
2-D mask size 25 x 25, the actual mathematical result would contain 8 + 16 + 5 + 5 =
34 bits. The convolver drops the 18 least significant bits during its calculation,
computing a result of 16. bits per pixel. The convolver can be run in one of four
modes, depending on the actual type of result to be returned. The following four
functions convolve an image array of any bitbltable size up to 1024 x oo.

Vision Utilities

gcon-half-word image &key zero-bc result Function

The full 16 bits per pixel is returned as an art-16b array. Since this is stored
in two's complement form (the most significant bit is a sign bit) this format
isn't very useful for doing calculations.

gcon-float image &key zero-bc result Function

The 16-bit result is returned as an art-q array of positive and negative integers,
a useful (although space-consuming) representation.

gc-on-byte image &key bit-pos zero-bc result Function

A contiguous 8-bit field is extracted from each 16-bit value, and returned in
an art-8b array. The position of the lowest-order bit is specified by keyword
:bit-pos. By default, the highest-order bits are extracted. The result is
useful only if an entirely positive mask is used, or if the highest-order bits are
extracted, since meaningful sign bits will be dropped otherwise. This mode is
useful if the result is to be fed back into the convolver, or for display on the
grey screen.

gcon-sign image &key zero-bc result Function

Only the sign bits are returned, as an art-lb array. This space-efficient result
is useful for computing zero crossings.

The above functions were used to define functions for convolving image arrays with
2-D Gaussian and difference-of-Gaussian masks, which are described next.

gcon-gauss image a &key zero-bc result Function

Function gcon-gauss convolves an 8-bit image array with a 2-D Gaussian
mask of specified scale a. Since the hardware convolve has a limited mask

size, a must be less than 4.65 pixels. Like function convolve-gauss, an
eight-bit result and a scaling factor are returned. The scaling factor will be

approximately one, and result will have the same range as image, at values

Convolution Utilities

of a given by *good-gauss-sigmas* = 0.94, 1.48, 2.18, 3.14, and 4.48 pix-
els. Unless the hardware convolver is always to be used, generic function
convolve-gauss should be used instead.

Since only even-sized masks can be used, the result is shifted relative to the
image down and to the right by one-half pixel.

The following keyword arguments can be specified:

:zero-bc tells whether to use zero boundary conditions. If nil (the default)
toroidal, time-dependent boundary conditions are used. If t, zero bound-
axy conditions are used by padding image with zeros, which involves some
extra copying.

:result specifies an art-8b array for returning the result, which must be the
same size as image. If not specified, an array is allocated.

gcon-dog image a &key sign-bits zero-bc show-progress result Function

Function gcon-dog convolves an 8-bit image array with a 2-D difference-of-
Gaussian mask. Like function convolve-dog, both a result and a scaling
factor are returned. Unless the hardware convolver is always to be used,
generic function convolve-dog should be used instead.

Convolution with large masks is accomplished automatically by smoothing
the image with a sequence of Gaussians followed by a smaller difference-of-
Gaussian convolution. Only *good-gauss-sigmas* are used, so precision is
not lost through attenuation. However, roundoff error does accumulate, so
no more than six iterations (five Gaussian, one DOG) can be executed. This
limits a to 10.64 pixels or less, corresponding to a maximum central width of
w = 2/a2a a 30 pixels. Also, values of a less than about 0.7 (w < 2) usually
give noisy results.

Since even-sized masks must be used, the result is shifted relative to the image
by one-half pixel down and to the right for each iteration.

The following keyword arguments can be specified:

:sign-bits tells whether to use sign bit mode. If t, only sign bits are returned
in an art-lb array. If nil, an art-q array of signed integers is returned.

:result specifies an array for returning the result. The array must be of type
art-lb if sign-bits is t and of type art-q if sign-bits is nil and must be the
same size as image. If not specified, an array of the appropriate size and
type is allocated.

Vision Utilities

:zero-bc tells whether to use zero boundary conditions. If nil (the default)
toroidal, time-dependent boundary conditions are used. If t, zero bound-
ary conditions are used by padding image with zeros, which involves some
extra copying.

The hack described below shows the hardware convolver running at full speed.'

fast-con channel &optional (sigma 3.0) (ze nil) Function

The function fast-con shows the hardware convolver running at full speed.
It continually grabs images from a TV camera, convolves them with a DOG
mask, and displays sign bits or zero crossings in a special window (which it
creates automatically) on the TV console.

The TV camera must be connected to channel channel, an integer between 0
and 3; see Noble's function grey:grab-frames. A DOG of standard deviation
sigma is used; for speed, sigma should be less than 4.65. Sign bits are displayed
by default, but zero crossings are displayed if zc is t.

'Actually, the speed is limited by the time the Lisp machine takes to write and read data to and

from the convolver; the hardware convolver itself can run considerably faster.

9 Plot Utility

Some functions for plotting one-dimensional data are defined in file plot. The func-
tions have been designed so that the plots can be made simply be specifying the
data points; details such as axes numbering and graph position can be computed
automatically. The user has control over formatting details, if desired, through the
use of optional keyword arguments. Many of these optional arguments default to
the values of global variables, providing a convenient way of changing the default
permanently. For example, the keyword :title-font can be used to change the font
of the title of a particular graph, or the value of global variable *title-font* can
be used to change the default font for all graphs.

plot x-values y-values &rest keywords-and-arg8 Function

Function plot plots list x-values versus list y-values.

The following keywords can be used:

:x-range, :y-range, each a list of two numbers, specify the range of data to
be plotted on each axis. By default the full range of data is plotted and
no more. If a restricted z-range is specified but y-range is not, y-range is
adjusted accordingly.

:x-origin, :y-origin, each a number, specify the origin where the axes cross.
The default value of each. is 0.

:x-interval, :y-interval specify the interval between axes numbers (and
ticks) on each axis. By default the intervals are chosen so that ap-
proximately five ticks (the values of variables *approx-number-x-, y-
ticks*) appear on each axis.

:x-numbers, :y-numbers can be used instead of :x-interval and :y-
interval to explicitly specify a list of numbers along each axis. This
option therefore facilitates irregularly-spaced axis numbers.

:x-number-format, :y-number-format specify the format strings for for-
matting the numbers along each axis.

:x-label, :y-label, and :title specify axis labels and a title.

:x-label-font, :y-label-font, and :title-font specify the fonts for printing
the labels and title; *label-font* and *title-font* are used by defaultd.
If only x-label-font is specified, y-label-font defaults to it.

Vision Utilities

:curve specifies how the curve between points is to be drawn. Straight lines
are drawn between each pair of data points by default, but the keyword
:curve can be followed by :line, :spline, or :none to control this option.

:points specifies how data points should be drawn. Points are not drawn
by default; but the keyword :points can be followed by :none, :dots,
:circles, :triangles, or :squares to control this option.

:graph-window and :position control the window and position on the win-
dow where the graph is drawn. By default the graph is drawn on the
currently-selected window under the current cursor position, and the
cursor is repositioned under the graph.

:size, a list of two elements, specifies the outer dimensions of the graph in
pixels, which defaults to *overall- graph-size*.

:inverse-video lets the graph be drawn in inverse video mode (the graph
background contrasts that of the screen) if t. By default the value of
inverse-video is used.

In addition to default variables listed above, a number of other global vari-
ables can be changed to modify the length of tick marks, the widths of various
margins between the axes, numbers, labels, and exterior, the number of inter-
polation points used for drawing splines, and the size of point marks.

(setq x (interval 0 2pi (// pi 8)))

(plot x (mapoar #'cos x))

11U

0.5

0.0

-0.5"

7-
N

/
7

/

4 /*

\ ~ S

1~

/,,
/

Plot Utility

(olot x (maocar #'cos x) :x-range (list pi//2 pi) :title "Cos up close"

(plot (napcar #'cos x) (Mapcar #'sin x) :curve :spline :size '(180 180)
:x-origin -1 :y-origin -1 :x-numbers nil :y-numbers nil
:x-label "Apples" :y-label "Oranges")

0
r

g
e
s

Apples

plot-y y-values &rest keywords-and-args Function

Function plot-y works like plot, except that z-values are not specified; the
values (0, 1, 2,...) are used instead. This function has the same keyword argu-
ments as plot.

(plot-y y ...) --> (plot (iota (length y)) y ...).

Vision Utilities

plot-times time-values &key keywords-and-args Function

Function plot-times plots functions of time. Time values are specified in

Zeta-Lisp integer format and time intervals are specified in seconds. This func-

tion is like function plot, except that keywords :time-range, :time-origin,
:time-interval, :time-numbers, :time-number-format, and :time-label
are used in place of ":x-" keywords. Time intervals default to even multiples

of or nice fractions of seconds, minutes, hours, days, and weeks.

For example, the function plot-weather-data, defined in file weather, uses

function plot-times to plot weather data from the top of 545 Technology

Square over a specified time period:

PLOT-WEHTHER-DATA: (FROM TO BY)

S(plot-weather-data "1 day ago" now" "30 minutes")

T
e
m
P 66
e
r
a
t 60
a

S65e *_

50F

50

/

p 1022
r

S1020

e

i1018

m 1016

r 10 14

1012

-a

10/11 12am I0/1 3sam 10/11 6am 10/11 San 10/11 12p 10/11 3pm 106/11 6pm 10/11 4pm

Time (EDT)

Temperature

DvS

10/ 12am 10/11 11 3am 10/11 6am 10/11 am 10/11 12pm 10/: 3p m 10/11 6pm 10/11 9pm
Time (EDT

Barometric Pressure

i' Y

Plot Utility

multi-plot values-spec &rest keywords-and-args Function

Function multi-plot plots multiple graphs on the same axes. Its first argu-
ment is a list, each of whose elements is a list of z-values, followed by a list
of y-values, followed by optional keywords for plotting that particular func-
tion. Following this required argument, optional keywords for controlling the
overall graph can be specified.

(nulti-plot '((,x ,(napcar #'cos x) :points :triangles)
(,x ,(napcar #'sin x) :points :squares))
:title "Circular Functions" :title-font fonts:eurexl2i)

Circular Functions

Vision Utilities

10 Thoughts on an Image Manipulation Package

Hopefully, many of the functions described in this paper are useful enough for
inclusion in a vision utilities package. Many of them can be used both as interactive
commands and as "building blocks" for constructing larger vision programs.

The design of a system for displaying and manipulating images, such as Keith Nishi-
hara's grey* program, is a separate issue from the design of a set of utility functions
to be available for vision research. The design of a window-oriented package in-
volves decisions about screen layout, what results are displayed in which windows,
etc. The basic functions described in this paper do not require any special windows.
I believe it is important to maintain the distinction between a set of basic utilities
and a user interface. In particular, the user should be able to use functions for dis-
playing and manipulating images without creating windows, if desired. If properly
designed, the window-oriented system can, in fact, call window-free functions like
the ones described here.

61

Acknowledgements

The assistance of Jim Mahoney, Jim Little, and Anita Flynn in proofreading this
paper is gratefully acknowledged. Dave Siegel helped fight Latex.

Vision Utilities

References

Marr, D. and Hildreth, E. "Theory of Edge Detection," Proc. Royal Society of
London, B, No. 207, pp. 187-217, 1980.

Nishihara, H. K. and Larson, N. G. "Towards a Real-time Implementation of
the Marr-Poggio Stereo Mathcer," Proc. Image Understanding Workshop, L.
Baumann, ed., SAI, College Park, MD, April 1981.

Polivka and Pakin. APL: The Language and Its Usage. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

Steele, Guy L., Jr. Common Lisp. Digital Press, 1984.

Symbolics, Inc. Reference Guide to Symbolics-Lisp. Cambridge, MA, 1985.

Voorhees, Harry. "Multi-scale Display Software for the Image Understanding Tool
Kit," TASC, EM-2322, 1984.

Index of Definitions

-infinity 3
2pi 3
:amp-factor 35
:bucket 34
:bucket-bounds 35
:bucket-midpoints 35
:bucket-size 34
:buckets 34
:cumulative-buckets 35
:graph 36
:image-max 34
:image-min 34
:num-buckets 34
:percentile-of-value 36
:total 35
:value-at-percentile 36
=all 5
add 17
and* 5
and-array 26
apropos-msgs 11
array-mean 26
array-standard-deviation: 26
array-standard-deviation-and-mean

26
array-type-p 22.
array-variance 26
array-variance-and-mean 26
auto-display 43
auto-erase 43
average .4
average-array 26
between 5
binary-array 25
bit-array? 23

bit-blit 20
bit-position-for-mask 48
bitbltable-shape 21

.bitbltable? 21
bitbltablize-array 21
bits-per-element 22
clock 11
col 17
compare-all 5
complement-array 23
convert-array-type 21
convolve 47
convolve-ld 47
convolve-dog 45
convolve-gauss 44
copy-array 19
count-elements 26
cross 9
det 18
display-array 41
div 17
divide 3
drop 16
enhance-array 24
eqall 5
equal-array 25
erase-array 42
erase-plane 42
extract-array 42
factorial 4
fast-con 54
filter-mask 6
find-positions-in-list= 8
flip-image 23
flip-image-cols 23

Vision Utilities

flip-image-rows 23
gcon-byte 52
gcon-dog 53
gcon-float 52

gcon-gauss 52

gcon-half-word 52
gcon-sign 52

height 23
ident .15

index 17
infinity 3

interval 16

invert 18

iota 16
iotav 16

lastcar 6

list-non-nil 7

list-pairs 6
listen 10

load-dog-mask 51
load-gauss-mask 51
load-image 39

load-image! 39
load-mask 51

load-masks 50

loglO 4
log2 4
make-alist- of-bindings 10

make-bitbItable- array 21

make-displaced-array 20
make-grey-image 37
make-grid 43
make-histogram 33
make-plist-of-bindings 10
make-positive-histogram 33

make-syn 31
make-syn-r 32
map-array 27

map-array-offset 30

map-over-array 30
map-syn-1 32
mapbetween 9
mapcir 9
mapexpand 9
maptree 9
max-array 26
max-value-of-array-type 22

min-and-max-array 26
min-array 26
min-n 8

min-value-of- array-type 22
mul 17
mul-mat-2 18

multi-plot 59
multiple-of 4
one-of 6
or* 5

overlay-array 41
pi 3
pi//2 3
plot 55
plot-times 58
plot-weather-data 58
plot-y 57

pp 12
pp-alist 13
pp-image 12
pp-list 13

pp-plist 13
print-header 39
print-more-values 13
print-values 13
quotedp 10
ravel 14
rcons 6
remove-elements 7

Index of Definitions

rho 14
rounddown 4
roundto 4
roundup 4
row 17
same-size-array 19
save-image 39
say 40
scale-array 24
shape 14
shift-array 24
shift-list 16
shut-up 40
sign-array 46
softcon-dog 49
softcon-gauss 48
sort-positions 8
speak 40
sqrt2pi 3
square 3
sub 17
sum-array 26
symbol 10
threshold-array 25
threshold-array< 25
trans 18
tv:display-array 43
tyi-now 10
uncomplement-array 23
vector 15
vectorize 15
voice 40
warning 11
width 23
with-temporary-array 22
zc-array 46
zero-array 20

