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Abstract: The competence being investigated is causal modelling, whereby the behavior of a
physical system is understood through the creation of an explanation or description of the underlying
causal relations.

After developing a model of causality, I show how the causal modelling competence can arise
from a combination of inductive and deductive inference employing knowledge of the general form
of causal relations and of the kinds of causal mechanisms that exist in a domain.

The hypotheses generated by the causal modelling system range from purely empirical to more
and more strongly justified. Hypotheses are justified by explanations derived from the domain
theory and by perceptions which instantiate those explanations. Hypotheses never can be proven
because the domain theory is neither complete nor consistent. Causal models which turn out to be
inconsistent may be repairable by increasing the resolution of explanation and/or perception.

During the causal modelling process, many hypotheses may be partially justified and even the
leading hypotheses may have only minimal justification. An experiment design capability is proposed
whereby the next observation can be deliberately arranged to distinguish several hypotheses or to
make particular hypotheses more justified. Experimenting is seen as the active gathering of greater
justification for fewer and fewer hypotheses.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain infor-
mation that is, for example, too preliminary or too detailed for formal publication. It is not inteded
that they should be considered papers to which reference can be made in the literature.
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Chapter 1

Introduction

1.1 The Problem, the Motivation, and the Domains

One of the most important skills underlying common sense is the ability to recognize, describe,
and reason about regularities and dependencies in the world in terms of causal relations. Causal
descriptions enable us to generate useful explanations of events, to recognize the consequences of
our actions, to reason about how to make things happen, and to constrain our theorizing when
unexpected events occur, or expected events do not occur. The ability to identify causal relations
and to construct causal descriptions underlies our ability to reason causally in understanding and
affecting our environments.

Imagine waking up in the morning to find the refrigerator door ajar. It is not hard to understand
why the food is spoiled, even if one is not quite awake. People commonly turn down the volume
control on the home stereo before turning the power on, anticipating and knowing how to prevent
a possibly unpleasant jolt. When the flashlight does not work, we will sooner or later check the
batteries.

The causal reasoning tasks implicit in the scenarios above include ezplaining the spoiled food;
predicting a possible consequence of flipping the power switch on the stereo and planning to prevent
that event; and diagnosing the faulty behavior of the flashlight.

Before any of this useful causal reasoning can take place, the causal descriptions which support
it have to be constructed or learned. Often they are not available, complete and appropriate for the
problem at hand. Instead these causal descriptions have to be proposed on the basis of observations
of the system to be understood and perhaps knowledge already in hand about such systems. The
problem of causal modelling - the recognition and description of causal relations - in the context of
a causal reasoning task is the competence which is the subject of this thesis investigation.

The class of domains which will test the principles emerging from this research effort, and the
implementation based on them, is that of physical devices and gadgets - simple designed physical
systems. Examples are cameras, showers, toasters, and air conditioners.

Causal reasoning is very important in domains like these. A photographer knows he or she has
just wasted time setting up a shot when he or she notices that the lens cap was on when the shutter
clicked. The light which would have created an image on the film never reached the film. Someone



drawing a bath knows lie or she can leave the room to attend to other affairs because the safety
drain will prevent overflow of water onto the floor. Someone who drops some bread into the toaster
and starts reading the morning paper may, after a while, not having heard the toast pop up, check
if the toaster is plugged in.

The reasoning outlined in each of these scenarios is supported by a causal model of the particular
physical system involved. I propose to show how these causal models can be acquired in the context
of a causal reasoning task. The causal reasoning task serves both to constrain the learning task, and
to demonstrate that the learning does indeed produce useful causal descriptions.

1.2 The Issues

There are several issues associated with the causal modelling competence. This research will address
these issues and attempt to provide principled solutions to them. Indeed, any performance results
I present will be suspect if they are not accompanied by such general arguments.

" When/how to construct multi-level causal descriptions/explanations?

Physical systems usually admit to description at more than one level of abstraction. Obser-
vations also come at various levels of granularity. I want my learning system to be able to
construct causal descriptions at different levels of abstraction. I also want it to be able to de-
termine when it might be useful/necessary to examine or explain a physical system at a finer
level of detail. The causal reasoning task motivating the learning task can help to determine
to what level explanation and perception should go.

* How to learn from experiments?

The ability to design experiments to test and distinguish hypotheses is useful to a learning
system. My example-driven inductive inference method can benefit from an analysis of the
current set of hypotheses to determine what next example can maximally distinguish the
hypotheses. Also, my domain theory can be exploited to determine what next observation can
lead to more justified causal hypotheses.

* What kinds of causal relations exist in the physical system domain?

This issue is a knowledge engineering issue. The result of the knowledge enginnering is the
domain theory that guides the learning system. I assume that this domain theory is not
necessarily complete or consistent. I have looked to the field of physics to ensure that the
domain theory has some basis, and is not simply ad hoc.

* How to learn new compositions of causal relations for the domain?

This issue concerns extending the domain theory which drives learning. I show how new,
composed causal relation types for the domain can be acquired through an explanation-based
learning technique. This approach does not support acquisition of new primitive causal relation
types.

* How can empirical and analytical learning techniques complement each other?

Although this research was originally motivated by the specific problem of learning causal
models, some issues have arisen that are relevant to learning in general. In particular, my



learning systen combines inductive and deductive inference and has both empirical and ana-
lytical learning components. I attempt to step back from the specific interactions of inference
methods and learning paradigms in my system, and considcr whether there are principled ways
of combining these approaches.

What is a good representation for causal relations?

Choice/design of a representation language is an important step in the construction of any
learning system. I have looked to the field of philosophy to come up with a model of causality;
this model has guided my design of representations for causal relations. The representations,
in turn, have more or less suggested inference methods, both inductive and deductive, which
drive the learning of causal models.

1.3 The Learning Tasks

The primary learning task of my system is to construct causal models of physical systems to support
a given causal reasoning task. The models are constructed from observations of the physical systems
and from knowledge of the general form of causal relations and of the kinds of causal relations that
exist specifically in the physical system domain.

The primary learning task is, more formally,

Given a causal reasoning task concerning a physical system, construct a causal model which
supports the causal reasoning task, as follows:

* Given structural and sequence-of-events behavioral descriptions of a physical system,

* Hypothesise causal relations which can account for the observed behavior, and when possible,

* Justify proposed causal relations by determining if their types of interaction and supporting
system structure indicate a known causal mechanism.

This primary learning task is supported by a background learning capability. The task of this
second learning component is to identify and generalize compositions of the known causal mecha-
nisms in the causal models produced by the primary learning component. These new, composed
causal mechanisms can then be incorporated into the domain theory which drives the first learning
component, enhancing its performance.

The secondary learning task is, more formally,

Given a causal model,

* Identify within the causal model new compositions of known causal mechanisms.

* Generalize these new composed causal mechanisms by generalizing their components without
violating the constraints of the composition.
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Figure 1.1: The Learning Systems

* Add the composed causal mechanisms and their generalizations to the set of known causal
mechanisms.

This secondary learning system falls into the class known as Learning Apprentice Systems. These
are learning systems which lurk in the background of other AI systems, extending their knowledge
bases by monitoring and analyzing the activities of the systems (and perhaps the users) whose
shoulders they are looking over. In my setup, the Learning Apprentice System identifies and gener-
alizes justified compositions of causal mechanisms in the causal models constructed by the primary
learning system.

1.4 A Scenario - The Camera Domain

This section contains a brief outline of the steps my learning system goes through in constructing
a causal model of a camera to support the causal reasoning task of how to control the exposure of
photographs (a plamling problem). I give some hints of the kinds of knowledge it brings to bear and
the inferences it makes in performing this learning task.

The learning system's initial observation of the camera includes a description of the various
physical objects that make up the camera system and structural and geometrical relations between
these objects.

... The lens, the flash, and the release button are attached to the camers.

The aperture ring and the focus ring are attached to the lens.

The film is inside the camera. ...

This structural description is complemented by a behavioral description which tells how the
structural and geometrical relations, as well as the values of quantities of the objects, change over
time.

... Initially, the f-stop of the aperture ring is 5.8.

The distance of the focus ring is 8 feet.



The intensity of the flash is dark. ...

... Next, the intensity of the subject is bright.

The position of the release button is down.

The intensity of the flash is bright. ...

... Later, the film is outside the camera.

The film is overexposed. ...

At first, almost any hypothesis about what could be affecting what is supported. The only con-
straints in force are that effects cannot precede their causes and that values and relations established
by external actions must be primitive causes.

Already though, some hypothesized interactions have the earmarks of causal mechanisms that
the learning system knows about. The simultaneous brightening of the flash and the subject could
be light transmission. Covering up the flash might be a useful experiment.

Some of the proposed causal relations cannot be instantiated as instances of known causal mech-
anisms, either because the relevant mechanisms are unknown, or they can not be observed. For
these uzinstantiable causal relations, the learning system can still gather further empirical evidence
by performing know-tweaking experiments. This evidence can strongly suggest, for example, that
the setting of the aperture ring seems to affect the fihn exposure, while settings of the focus ring do
not.

Eventually, when the learning systerii can distinguish or characterize its hypotheses no further,
and there is strong empirical evidence for some causal relations, it should be motivated to look
inside the camera. Perhaps mechanisms will be revealed which can justify the causal relations which
have only an empirical basis. After opening the camera, the learning system can in fact instantiate a
mechanical coupling between the aperture ring and the iris in the lens, indicated by the simultaneous
changes in position or shape. It can also note a light path between the subject and the film and
note that the iris and the shutter control the flow of light along this path.

As a final step, the learning system might note how the f-stop can affect the film exposure via
interacting mechanical coupling and flow mechanisms. This complex mechanism might appear in
other physical systems and should be incorporated into the learning system's domain theory.

This scenario reveals some of the sources of constraint my learning system employs and some of
the reasoning it uses in constructing causal models. The number of hypotheses the learning system
may entertain at various times is only suggested. A simplified version of the causal model of the
camera which is the output of the learning system appears in the following figure.

The learning task cannot be considered complete until the constructed causal model can be
shown to support the original planning problem of how to control the exposure of photographs.
Planning involves finding sequences of operations which achieve a goal. When the causal model has
revealed chains of causality which originate in available operations (e.g., setting the aperture ring)
and terminate in the specified goal (values of the film exposure), then the learning task is complete.
The causal model above can be used to generate plans for controlling exposure.



Figure 1.2: A Causal Model
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Chapter 2

What is Causality?

In order to convincingly address the issues underlying this research into the causal modelling com-
petence, I have looked to the field of philosophy for ideas on what exactly is the concept of causality.
The theory of causality which I have adopted is due to Mackie [Mackie 74]. In his theory, causation
has three aspects, regularity, direction, and mechanism. Regularity and direction are necessary ex-
plicit attributes of any causal relation, while mechanism is not. Regularity refers to the consistent
repeatability of an observed co-occurrence of a cause (an event, a state, a relation, or some collection
of them), and an effect (similarly defined). Direction refers to the cause being always somehow prior
to the effect.

Causal relations which incorporate regularity and direction may be called the associationist
causal relations. They are based purely in empirical evidence of an association that always has been
observed to hold. However, some causal relations also incorporate a notion of mechanism, which
gets at the question of why the effect should necessarily follow from the cause, or what is the tie,
or process, by which the cause produces the effect. This notion of necessity is common to all causal
relations, but the mechanistic causal relations are the only ones which make the justification for it
explicit.

2.1 Causal Direction

Causal relations always have a direction. An effect never precedes a cause. This property of causal
relations is based partly in temporal direction. If event A occurs at time t, and event B occurs at
time t + 1, then A must be the cause. But causal direction does not arise solely from temporal
direction for often events which are perceptually simultaneous can be separated as to which is cause
and which is effect.

The competence of identifying causal direction may also make use of knowledge (perhaps heuris-
tic) about primitive causes. These are events which are taken to be always external inputs to a
system. An example of an event which is a primitive cause is the action of an agent on a physical
system. I

IThis may not be a primitive cause in a domain where there are causal interactions among agents; e.g., one agent
may "cause" another agent to perform some action.



Thus the direction of causality between two causially linked events can be determined in several
ways:

I. The cause is the ievent which is temporally prior to the other.

2. The cause is the event known to be a primitive cause.

3. The cause is the event which is causally linked to an event which satisfies any of these three
conditions.

This analysis in no way closes the book on the origins of causal direction. In fact, it somewhat
begs the question because primitive causes are defined only extensionally, i.e., no way is given of
identifying primitive causes not known a priori.

2.2 Mechanistic vs. Associationist Causal Descriptions

A causal description should have more than an empirical basis; it should do more than associate some
set of conditions or changes - the cause, with another - the effect. A causal description also should
provide a mechanistic explanation of why the observed interaction occurs. Such an explanation
should answer questions like: "What is the medium which supports the causation?", "What kinds
of barriers can prevent the interaction from taking place?", and "What class of causal mechanism
or process does this interaction fall into?"

An associationist explanation of why the film in a camera came out blank might be: "One of the
conjunctive preconditions for the dependence between the brightness of the subject and the intensity
value on the negative, namely the lens cap being off, was unsatisfied." A mechanistic explanation
might be: "The camera works by providing a controlled channel through which light may flow from
the subject to the film. In this case, the lens cap acted as a barrier, preventing light from reaching
the film."

The associationist explanation can be justified by noting that the film comes out blank/non-blank
whenever the lens cap is on/off the lens. But there may be other statements whose truth-value is
correlated, perhaps coincidentally, with the exposure or non-exposure of the film. Perhaps the
camera was always on/off a tripod when the film came out blank/non-blank. The associationist
description cannot further distinguish the lens cap and the tripod as being possible preconditions.

However, a mechanistic explanation of the lens cap in terms of a barrier to a light path does
distinguish it a priori from the tripod. Such an explanation of the tripod is not forthcoming.

Associationist descriptions are restricted to aspects of the form of a causal relation: conjunctive
or disjunctive, necessary or sufficient, the number of contributions, the sign of a dependence. They
can never be supported by anything more than empirical evidence. On the other hand, mechanistic
descriptions involve concepts like media supporting causation and barriers inhibiting causation.
They provide hooks into domain knowledge, knowledge that can justify the proposal of a causal
relation by revealing the a priori known mechanism that underlies the causation. An empirical,
associationist causal description can never be justified in this way.



2.3 What is a Causal Mechanism?

I have spoken of mrchanistic descriptions of causal relations without being entirely clear on what
I mean by "mechanistic." Roughly, I mean causal descriptions which say something about what is
the tie between the cause and the effect? What is it about the cause and perhaps the immediate
enviromnent which produces the effect?

These questions get at what philosophers call the necessity of causes. This necessity, if detectable,
gives license to the inference that the cause, in the right circumstances, always results in the effect.

It is exactly this necessity which a mechanistic causal description is intended to reveal. This is
the primary reason why a purely associationist representation of causal relations, which lacks this
necessity, is inadequate. Such a representation may capture the form of a causal relation, but it says
nothing about why the effect should and does follow from the cause.

A causal mechanism, to be called a mechanism at all, must describe some kind of process by which
the cause produces the effect. Examples of processes are flow of material, transfer of momentum from
one object to another, expansion of a material, transformation of electrical energy to light, heat, or
motion. Processes, in turn, need some kind of medium, or structural link between the cause-object
and the event-object, through which the interaction occurs. For example, flow of material requires a
channel of some sort while transfer of momentum needs a physical connection between the objects.
A complementary notion to medium is that of barrier. Whereas a medium is the structural link
which enables a causal mechanism, a barrier is a disruption of the structural link which disables the
causal mechanism. A channel can be nullified by a blocking of some kind which prevents flow. A
physical connection which is broken cannot transfer momentum.

Processes reveal that there is considerable continuity between perceptually distinct causes and
effects. They remove the mysteriousness that sometimes might be associated with a causal link.
Processes typically describe a kind of persistence as well; some quality or form, present in the cause,
is still present in the effect, although this persistence may not be always immediately perceivable.

A few examples of causation in physical systems and their mechanistic descriptions are illustrative
here: A flashlight is turned on and a wall across the room brightens. The mechanistic explanation
is that the flashlight emits light which flows through the intervening space to fall on the wall and
brighten it. The cause-event and the effect-event are the changes in brightness of the flashlight
and the wall, respectively. The medium is the straight-line, unobstructed path between them. The
mechanism itself, or the process, is the continuous flow of light radiation from the flashlight to the
wall. Finally, there is a persistence, or conservation of form, across the cause and effect; both involve
changes in brightness.

Another example. The faucet in a shower stall is turned and momentarily, water emerges from
the shower head. The mechanistic explanation runs thus: The faucet is connected to a pipe which
runs to the shower head. Turning the faucet opens a valve in the pipe, allowing water to flow to
the shower head and emerge there. There are two causal mechanisms involved. First, there is a
mechanical coupling between tile faucet and the valve. Turning the faucet results in movement of
the valve. A physical connection, perhaps a rod, acts as medium here. The valve itself is a removable
barrier to the flow of water to the shower head. This flow is the second causal mechanism. The
pipe is the medium through which the flow occurs. In both of these causal mechanisms the cause
resembles the effect. A movement of the faucet at one end of a mechanical connection is transferred
to the other end, resulting in movement of the valve. A change in amount of water at one end of a
pipe is propagated to the other end, where water emerges from the shower head.



The flashlight, straight-line path, and wall make up a system of light transmission. The faucet,
rod, and valve comprise a mechanical coupling. The pipe and shower head are only part of a larger
system of water transport, which includes a water source somewhere up the line.

There are appropriate barriers which could have disabled each of these causal mechanisms. The
flashlight would not have brightened the wall if an opaque card was held in front of it. Turning
the faucet would not have moved the valve if the rod was broken. And water would not reach the
shower head if the pipe was clogged.

Each causal interaction consisting of a cause-object, medium, and effect object helps to locate
the boundaries on the closed system inside which events can affect one another. This is roughly the
spatial part of Pat Hayes' notion of causal enclosure, which he calls history [Hayes79]. What barriers
do, cssentially, is chanlge the boundaries on the closed systems within which causal interactions occur.
The flashlight does not stop emitting light, but it only brightens the card. Turning the faucet does
move the rod, but only up to the break. And water flows to the clog but no further.

To summarize the notion of causal mechanism developed in this section: A causal mechanism
describes how a cause-event propagates through some medium via some process, in the absence of
relevant barriers, to produce an effect-event. The identified cause, medium, and process comprise
a sufficient causal explanation for the observed effect, in that they provide a full accounting of
why the cause, in these such and such circumstances, should result in the effect. This elaborate
description goes further than any. associationist causal description could; it reveals what is the tie,
the philosophers' necessity, between cause and effect.



Chapter 3

Representations for Causality and
Methods for Generating Empirical
and Justified Causal Hypotheses

All learning systems are ultimately limited by the representation languages they use. A learning
system cannot learn what it cannot represent. An important part of this research is the design of
representations for causal relations.

I present both associative and mechanistic representations for causal relations, and inference
methods based on them which perform the task of constructing causal models. The associative rep-
resentations describe the general form of causal relations and support empirical, inductive inference
methods. The mechanistic representation, on the other hand, supports the description of specific
types of causal mechanisms which comprise a domain theory of causal relations for physical systems.
The inference method which operates on this representation is deductive, and can generate justified
hypotheses of causal relations, which the inductive methods can never do.

Although I argue that the mechanistic representation and its deductive inference method are
preferable, nevertheless the associative representation and the inductive inference method have their
place. This is because the domain theory driving deductive inference has inadequacies. For example,
the domain theory is not considered to be complete. There may be causal mechanisms which operate
in the domain which are unknown. The deductive method would fail utterly in its attempt to
recognize an instance of an unknown causal mechanism. On the other hand, the inductive method,
which does not utilize the domain theory, is unaffected by its incompleteness, and could still generate
hypotheses purely from empirical evidence.

3.1 A Boolean Representation for Causality

I begin my survey of representations for causality and inference methods which operate on them by
considering the work of John Stuart Mill, a philosopher who worked on the causal induction problem
[Mackie 671. In his scheme, the simplest representation for a causal relation is as in Figure 3.1.



Figure 3.1: A Simple Boolean Representation for Causality
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Figure 3.2: A Better Boolean Representation for Causality

A single cause (a condition, an event) results in an effect.

In an inductive context, the only constraints available for exploitation are regularity and direc-
tion. If the effect does not occur every time the suspected cause does (but not necessarily vice versa),
then the correct cause has not been found.

This representation is too simplistic for several reasons. Causes typically do not cause in a
vacuum. There is usually a set of relevant enabling preconditions which must be satisfied to bring
about an effect. Or, there may be several disjoint ways in which an effect can be produced. Finally,
it may be the absence, rather than the presence of some condition which brings about an effect.

A more sophisticated representation of causal relations would allow arbitrary conjunctions, dis-
junctions, and negations in the cause. Also, the cause may be considered necessary, or sufficient, or
both for the effect.

3.1.1 Mill's Methods of Causal Induction

Mill formalized a set of methods of causal induction which operate on this general boolean repre-
sentation for causal relations. Perhaps the most interesting aspect of his work is his careful analysis
of the interactions between assumptions. observations, and inductive inferences. A more accessible
account of Mill's methods may be found in the appendix to Mackie's book on causation [Mackie 74].
The examnples to come are drawn from Mackie.

To illustrate Mills's methods of causal induction, consider the following example. Suppose that
A, D, C, and D are possible causes I of E and we have the following observation.

I There is an unaddressed issue lurking here - namely the identification of possible causes. How are A, B, C, and
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There is one positive example in which the effect E occurs, and one negative example in which it
does not. The inductive task is to determine what cause for E was present in the positive example
and absent in the negative one.

If we assume that some single, unnegated condition is necessary and sufficient as a cause for
E then we can conclude that A is this cause. D and D are eliminated because their presence in
the negative example, when the effect did not occur, shows they are not necessary. C is eliminated
because its absence in the positive example shows it is not sufficient.

If instead we assume that a cause may be negated, i.e., the absence of some condition may be
the relevant cause, then the observation above camlot eliminated C and D. We need a stronger
observation which shows that C was false in both examples and D was true in both.

If we relax our assumption about the form of the cause to allow conjunctions (with unnegated
conjuncts), then the hypotheses AD, AD, and ABD must be kept under consideration. We can
conclude that A is necessary, but perhaps not sufficient.

The interactions between assumptions, observations, and inductive inferences become more com-
plex as we admit various combinations of negations, conjunctions, and disjunctions. In general, the
weaker the assumption (the greater the number of possible forms for the cause), the more under-
constrained the conclusion, given the same observation.

The manipulation of assumptions and inferences is familiar to the AI community as non-monotonic
reasoning [Doyle 791. The role of assumptions in inductive reasoning specifically also has been treated
[Utgoff 85). What is impressive about Mill's work, and perhaps sobering for AI researchers, is that he
was attentive to the need for making assumptions explicit and was able to analyze the consequences
of manipulating them. In the context of his methods of causal induction, he made a quite complete
treatment of these issues.

3.2 A Representation for Causality Based on Quantities
and Functional Dependencies

In the representation scheme for causal relations outlined above, the conditions, events, and/or
changes which make up causes and effects are represented by statements which are true or false.
This is an inadequate representation for describing the physical systems which my learning system
will investigate. In particular, there is no easy way to describe the continuous properties of objects
in such systems, properties such as height, temperature, velocity, etc. In the boolean representation,
we would have to say that at any time, one possible value of a quantity was true and all others were
false. An awkward representation.

Instead, I have adopted Forbus' qualitative representations for quantities, their value spaces,
and functional dependencies between them [Forbus 84]. These form the basis for another associative
representation for causality which supports inductive inference. This representation is designed to
easily capture the kinds of continuous phenomena that occur in physical systems, which the boolean
representation could not.

D brought under suspicion as possibly participating in a cause for 8 in the first place? The inductive methods given
in this section provide no handle on this issue. I return to it later.
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Figure 3.3: A Simple Representation for Causality Based on Functional Dependencies

3.2.1 Another Set of Methods of Causal Induction

The task now is to develop a set of inductive methods which operate on the representation for
quantities and dependencies. The inductive method presented in this section is an expanded version
of work done in my master's thceis [Doyle 84].

In this new representation, the simplest kind of causal relation is a single direct proportionality
relation between two quantities: y = p(x). To make life as simple as possible, we can assume further
that the proportionality relation is monotonic and that the zero values of the two quantities coincide
(i.e., y = 0 when x = 0).

The single direct proportionality assumption under the functional dependencies representation of
causality is analogous to the single unnegated cause assumption under the boolean representation.
The inductive task is also correspondingly simple.

For example, consider the following set of observations. Observations under the new representa-
tion consist of the signs of quantities. 2

OBSERVATION A B C E
Example 1 + - 0 0
Example 2 + - + +
Example 3 + 0 + +

Under the single direct proportionality assumption, causes (independent quantities) are those
quantities whose signs are always the same as the sign of the effect (dependent quantity). In the
example above, with this assumption, only C could be a cause of E.

This representation of functional dependencies is too simplistic. Just as we were forced to consider
various compositions of negation, conjunction, and disjunction under the boolean representation,
now we must consider compositions of functional dependencies under negation, multiplication, and
addition.

Allowing negation admits the possibility of inverse proportionality relations: y = -p(z). The
following table shows how the signs of quantities are transformed under negation.

asign -aign
0 0
+
- -+

Thus a negative dependent quantity can now result in two ways. A direct dependence and a
negative independent quantity, or an inverse dependence and a positive independent quantity. This

2Actually, the qualitative values of quantities, from which dgns can be derived.
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loosening of the assumptions about the form of the cause does not admit any further hypotheses
for the observation above, but it might have. In particular, a quantity whose signs in the three
observations above were 0,-,-, respectively, would now have to be considered as a cause for E.

As long as we assume that only one independent quantity is affecting any dependent quantity
at any time, the inductive task is still highly constrained. This is the analog of the single cause
assumption for the boolcan representation of causes and effects.

Once we relax the single-cause assumption by admitting multiplication and addition, things
become more complicated.

We need to describe how contributions of several functional dependencies combining multiplica-
tively can affect the values of dependent quantities. The arithmetic form of this type of multiple
functional dependence is y = pi(zX) x p2(z2) x .. p- ,,(,). Combinations of the signs of two contri-
butions under multiplication are listed in the following table.

signi sign2  signs x signs

0 0 0
+ 0 0
- 0 0
0 + 0
+ + +
- +
0 - 0
+-

-- +

These two-operand combinations can be applied recursively 3 to determine how several contribu-
tions combine multiplicatively. Alternatively, this knowledge can be aggregated to the general case
of n contributions a priori, as has been done in the following table.

signs = 0 signs = + signs = - signs x sign2 X ... x sign.
>1 >0 >_0 0
0 > 0 even +
0 > 0 odd

31n any order, since multiplication is communutative and asociative.

1,41N S



Using this knowledge of how contributions combine under multiplication we find that there are
now more causal hypotheses that are consistent with the given observations, namely A x C and
(-A) x (-C).

Now we consider multiple functional dependencies of the form y = pi(zl)+p2(zX)+... +pn(,).
Combinations of the signs of two contributions under addition are listed in the following table.

sign, sign2  sign, + aign2
0 0 0
+ 0 +
- 0

0 + +
+ + +
- + 0+-
0 - -

+ - 0+-

Again, we can compute combinations of n contributions under addition by applying the two
operand combinations recurisively. Or we can aggregate the knowledge a priori as in the following.

signs = 0 aigns = + signs = - sign, + sign2 + ... + aignn
>0 0 0 0
>0 >1 0 +
>_0 0 >1
>0 >1 >1 0+-

Notice the ambiguity when contributions of opposite sign are added together. This indeter-
ininism makes the additive induction problem inherently less constrained than that of negation or
multiplication.

Armed with this knowledge of how contributions combine additively, we must now consider the
following causal hypotheses, given the above observations: A + B, A + B + C, and A + B + (-C).

Finally, we can consider the most general case, that of arbitrary compositions of negation, multi-
plication, and addition. Again, we can determine which compositions are consistent with the given
observations by applying the appropriate combinations from the tables for negation, multiplica-
tion, and addition recursively. The hypotheses which now have to be admitted are (A + B) x C,
(A + B) x (-C), and ((-A) + (-B)) x (-C).

Transitions

This new set of inductive methods operate, like Mill's methods, through elimination of hypotheses.
Hypotheses which do not satisfy constraints which specify the valid combinations of functional
dependencies under negagtion, multiplication, and addition are removed from consideration. The
constraints I have described so far concern how the Rigns of quantities from individual observations
must combine under these operations. This is not the only source of constraint which can drive these
inductive methods. Also of relevance are the ways in which the values of quantities change from
one observation to the next. For example, a quantity whose value was positive in two successive
observations may have actually decreased, stayed the same, or increased. These transitions also
combine in well-defined ways wider negation, multiplication, aid addition. The value of specifying
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Figure 3.5: The Transitions

the exact transitions is that not all of them may be consistent with the given observations. Knowledge
of transitions also can drive these eliminative, inductive methods.

The following table and above figure define the possible transitions of quantities between succes-
sive observations.

Transition New Direction of Abbreviation

STAYO
STAY+
STAY-
ADD+
ADD-
SUBTRACT+
SUBTRACT-
ENABLE +
ENABLE-

DISABLE+
DISABLE-
REVERSE +
REVERSE-

sign
0

change
0
0
0

STO
ST+
ST-

+ + + AD+
-- - AD-

SB+
SB-
EN+
EN-
DB+
DB-
RV+
RV-

The calculi which describe how these transitions combine under negation, multiplication, and
addition appear in the appendix.

This knowledge of transitions and how they combine umder negation, multiplication, and addi-
tion now can be used to make further inductive inferences. Observed transitions can be combined
recursively according to the operations specified in the various causal hypotheses. The closures of
the transitions of the causes (independent quantities) under the compositions specified in an hy-

StAY-
STAYO



pothesis nmust contain the observed transition of the effect (dependent quantity) for all observations;
otherwise that hypothesis cannot be considered viable.

3.2.2 Examples of Inductive Inference

Consider again the earlier set of observations, now extended to include not only the signs of quantities
in each observation, but also the transitions of quantities between observations.

OBSERVATION A B C E
Example 1 + - 0 0
Transition 1--2 AD+ ST- EN+ EN+
Example 2 + - + +
Transition 2-+3 AD+ DB- SB+ SB+
Example 3 + 0 + +

Recall that one of the hypotheses that survived the earlier inductive inferences was (A + B). Now
we show that this hypothesis can be eliminated because the observed transitions are inconsistent
with the form of (the composition of operators specified by) this hypothesis.

Quantity A underwent an AD+ transition from example 1 to 2.

Quantity B underwent a ST- transtion from example 1 to 2.

The combination of AD+ and ST- under addition is (AD+ SB- EN+ DB- RV-).

The transition of the dependent quantity E from example 1 to 2 is EN+ which is in this closure.
The hypothesis is still viable.

Quantity A underwent an AD+ transition from example 2 to 3.

Quantity B underwent a DB- transtion from example 2 to 3.

The combination of AD+ and DB- under addition is (AD+ SB- EN+ DB- RV-).

The transition of the dependent quantity E from example 2 to 3 is SB+ which is not in this
second closure. The hypothesis can now be eliminated.

Interestingly, the hypothesis (A + B + C) does survive this analysis.

Recall that the set of possible transitions of (A + B) from example 2 to 3 is (AD+ SB- EN+
DB- RV-).

Quantity C underwent a SB+ transition from example 2 to 3.

The combination of (AD+ SB- EN+ DB- RV-) and SB+ under addition is (STO ST+ ST- AD+

AD- SB+ SB- EN+ EN- DB+ DB- RV+ RV-) - all possible transitions. This hypothesis cannot be

eliminated.

Continuing this analysis, the final set of hypotheses consistent with the given observations is C,

A x C, (-A) x (-C), (A + B + C), (A + B) x C, (A + B) x (-C), and ((-A) + (-B)) x (-C).

The knowledge about how signs and transitions combine under negation, multiplication, and

addition makes up a kind of qualitative calculus which can be exploited to make inductive inferences.



This knowledge reveals two sources of constraint. There are a limited number of ways in which the
signs of several contributions due to functional dependencies on a quantity can combine to produce
the sign of that quantity. And there are a limited numbcr of ways in which changes in the underlying
contributions on a quantity can combine to produce changes in that quantity.

3.2.3 Qualitative vs. Quantitative Values

My set of inductive methods is driven by observations of the qualitative values of quantities. It
is important to point out that qualitative vawues inherently carry less constraint than quantitative
values. For examnple, ml hypothesis involving two additive contributions, one of +4 and one of -2,
say, can be eliminated as a possible explanation for a value of +3. On the other hand, if we know
only the signs of these values, this hypothesis cannot be eliminated.

One valid characterization of my inductive method is that it is a qualitative version of a program
like BACON [Langley et al 83), which performs quantitative function induction. Given quantita-
tive observations, it is true that a quantitative induction method would outperform my qualitative
method because it would make use of additional constraint to eliminate hypotheses more effectively.

However, I am assuming that my learning system will have access to qualitative values only.
Specifically, the learning sytem will know the signs and the relative magnitudes of different symbolic
values for quantities, i.e., whether the value of a quantity is greater than, less than, the same as, an
earlier value of the same quantity or a value of another quantity of the same type. I think this is a
realistic assumption for any Al system in a simulated (or real) visual environment. I do not assume
the existence of perceptual equipment that can quantize observations.

3.2.4 Assumptions and Inductive Inferences Again

Mill's inductive methods can make inductive inferences only relative to assumptions about the form
of boolean causal relations - in particular, whether negations, conjunctions, and/or disjunctions
were to be admitted. Similarly, the set of inductive methods outlined above - based on a quanti-
ties and functional dependencies representation of causal relations - can make inductive inferences
only relative to assumptions about how these causal relations might combine. Now the possible
combination operators are negation, multiplication, and/or addition.

There are other assumptions we might make within the quantities and functional dependencies
representation which can eliminate some hypotheses and hence constrain the induction problem.

For example, we might assume that there are never contributions in opposing directions (both +
and -). Or we might assume that in the case of additive contributions, the equilibrium state is stable
and robust, i.e., that opposing contributions always relax to the equilibrium state. Another possibly
reasonable assumption is that the equilibrium state is unattainable. Yet another is that multiplicands
never can be negative, so that quantities can only be amplified and reduced via multiplication by
non-negative values.

These possible assumptions can apply equally, in most cases, to the signs of contributions and
their combinations and to transitions of contributions and their combinations. For example, the no
equilibrium assumption applied to transitions of contributions means that transitions cannot cancel
out under addition, i.e., combinations such as ADD+ + SUBTRACT+ -* STAY+ are disallowed.



Another assumption, more subtle than the others, has to do with knowing the zero points of
proportionality relations. As mentioned earlier, we asnsume by default that for any proportionality
relation y = p(z) (or y = -p(z)), y = 0 when z = 0. This need not be the case. Yet not knowing
where these zero points are means it is impossible to determine whether a contribution is null,
positive, or negative. 4

Similarly, it is impossible to determine which of several transitions of the same direction of change
is the correct one. Without some assumption about where zero points are, there is no alternative but
to consider all possibilities for the signs and transitions of contributions - a severely underconstrained
induction problem.

Yet another insidious assumption, one which is inescapable because of the impossibility of con-
firming hypotheses through induction, is that all relevant causes (independent quantities) are being
considered. If this asstumption is violated, there may be no hypotheses which are consistent with
observations. This would be the case if the quantity C was ignored in the above observations.

One reason why a relevant independent quantity might be ignored is because it cannot be ob-
served at the given level of perceptual granularity. It is possible to propose hypotheses which include
"ghost" or hidden quantities and test them with the inductive methods I have outlined. This, too,
leads to a terribly underconstrained induction problem because, clearly, all possibilities have to be
considered for the signs anid transitions of hidden quantities.

All of these assumptions are posable and retractable in the non-monotonic reasoning sense. They
constrain the number of hypotheses which have to be considered either by affecting the number of
valid combinations of functional dependencies, or by affecting the number of valid interpretations of
observations.

Still other assumptions are more or less hard-wired and are not amenable to non-monotonic
treatment. One of these assumptions is that all proportionality relations are monotonic. Once the
sign of one of these primitive functional dependencies is determined, it is known for all values of the
independent quantity. Without this assumption, the best that could be hoped for with qualitative
values is to try and isolate intervals in the range of values of the independent quantity within which
the sign of the dependence does not change. A recent paper has shown how a conceptual clustering
algorithm might be used for this task [Falkenheimer 85].

Another hard-wired assumption is one I call omniregponsivity. This assumption states that all
perceivable changes in independent quantities result in perceivable changes in dependent quantities.
Combined with the monotonicity assumption, this becomes strict monotonicity combined with a
statement about perceptual resolution.

Making assumptions explicit is an important task in building any AI system. Inferences are al-
ways affected by assumptions iand it is virtually impossible to design representations and procedures
which operate on them which are assumption-free. Non-monotonic reasoning allows some assump-
tions to be manipulated. But even for those assumptions which are hard-wired, exposing them helps
to reveal, in turn, limitations of the AI system that uses them.

3.3 A Representation for Causal Mechanism

In this section, I present a representation designed to capture the notion of mechanism which is cen-

tral to the concept of causality in physical systems. Knowledge of the kinds of causal mechanisms
4 Tbis inference also depends on the nmonotaicity asmimption for proportionality relations.
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Figure 3.6: A Mechanistic Representation for Causality

that exist in the physical system domain can be described in this representation. The representation
supports an alternative, more knowledge-intensive approach to the causal modelling problem involv-
ing a deductive metlhod. This inference method generates justified hypotheses of causal relations as
instances of known causal mechanisms.

The representation I have developed combines, at the level of form, the boolean representation
and the quantities and functional dependencies representation for causal relations. In addition,
and most importanutly. it directly incorporates a mechanistic vocabulary. The set of ontological
descriptors is extended to include ternis like medium and process, instead of just domain-independent
terms like precondition and dependence. Also, physical objects and quantities can be classified, which
aids in the recognition of particular causal mechanisms.

This representation can be thought of as a template for causal mechanism schemata. The basic
causal relation remains the functional dependence between quantities. Quantities are associated
with physical objects, and all can be typed. Processes are essentially typed functional dependencies.
There are two kinds of relevant preconditions. One is an enabling condition: there must be a
structural link, a medium, between the cause object and the effect object. The other is a disabling
condition: there must be no barriers which would disrupt the medium and decouple the cause and
effect objects.

A mechanical coupling is an example of a causal mechanism relevant to the physical system
domain which can be described within this representation.

A mechanical coupling is characterized by co-occuring motions of two objects. The relevant
quantities are those that describe position. The medium between the objects is some kind of physical
connection. A possible barrier is a break in the connection.

The representation for causal mechanism is an abstract structure with objects whose types are
quantities, media, barriers, etc. Each causal mechanism described within this representation has
the same structure but objects are specialized to particular classes of quantities, media, etc. The
domain theory I present later includes not only a set of causal mechanisms for the physical system
domain but also a generalization hierarchy for those mechanisms. Part of the domain knowledge is
of the generalizations that are possible within the domain.



DEPENDENCE

QUAIJT ITy
OF

alA

~SPA1\ (PHYSyCL COakNEcT 0r4 (IcAlslZ

-ATCH 4REA9

Figure 3.7: A Mechanical Coupling

3.3.1 A Deductive Method

The inference method which operates on the causal mechanism representation is deductive, and
is concerned with recognizing proposed causal relations as instances of the a priori known causal
mechanisms in the domain. Each causal mechanism description embodies a deductive inference rule
of the form:

3(iq)3(dq)3(m)-3(b)
(IndependentQuantityType(iq) A IndependentQuantityType(dq)A

MediumType(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))
DarrierType(b) A Along(m, b))

= FunctionalDependence(iq, dq)

When a causal mechanism template can be fully instantiated (unified) into an observation, an
instance of that causal mechanism is strongly suggested. However, the domain theory is not nec-
essarily consistent. There may be exceptions to these inference rules. For this reason, the causal
explanations generated from the domain theory are justified, but do not necessarily constitute proofs
in the strong truth-prescrving sense.

Sometimes the causal mechanism templates include information about the signs of proportionality
relations, which can be instantiated along with the rest of mechanism descriptions. Furthermore, and
of more interest, some compositions of causal mechanisms correspond to combinations of functional
dependencies under addition and multiplication. The ways in which structural relations in causal
mechanisms interact can give clues about how functional dependencies are combining additively or
multiplicatively.

For example, several disjoint media adjoining the same physical object may indicate that the
functional dependencies supported by those media are combining additively. An example is the
several charmels through which water may enter or leave a sink. There is the tap overhanging the
basin, the drain at the bottom of the basin, and the safety drain close to the top of the basin. The
net change in the level of water in the sink is the sum of the flows, some positive and some negative,
associated with these separate media. Since the media, and the contributions, are disjoint, any one
is sufficieint to produce an effect. Addition is similar to disjunction in this respect. The definition of
media as enabling conditions also suggests this disjunctive property.



Barriers, on the other hand, may indicate multiplicative contributions. Barriers can be thought
of as controlling the magnitude of causal interactions along media, with a complete barrier corre-
spouding to multiplication by zero. For example, a stopper placed over the drain in a sink will
change the flow out of the drain by a multiplicative factor. When the stopper is placed securely in
the drain, there is no flow. Just as addition bears similarities to disjunction, multiplication resembles
conjunction, in that a single intact barrier can inhibit causation. This is also in keeping with the
definition of barriers as disabling conditions.

These observations can be construed as a very simple theory of deriving function s from structure.
I do not claim any definitive, or even terribly insightful contribution to this interesting issue. I
am more interested in how deductive inference, supported by a domain theory, can complement

inductive inference. There are ways in which additive and multiplicative contributions might arise
other than the ones I have pointed out. For example, addition may occur via integration over time;
multiplication may arise via iteration.

3.4 Feature Selection

The methods of causal induction outlined above are based on elimination of hypotheses. The
inductive inferences made by the methods implicitly rely on the argument: "These are the only
known possible causes which satisfy the constraints imposed by our assumptions about the form of
the cause and our set of observations." But there is never a guarantee that the relevant causes have
been considered. What is needed is some means of identifying possible causes.

This is the feature selection problem in learning. Inductive methods, in general, do not address

it. These methods take as input a set of possible causes (or features), but they do not say how

to arrive at this set. On the other hand, the domain knowledge driving the deductive approach

to causal modelling does provide a partial solution to the feature selection problem. The domain

knowledge is of what kinds of causal mechanisms there are. IKnowledge of these mechanisms with

their associated media, potential barriers, and characteristic physical objects and quantities gives

the learning system guidance in knowing what is relevant, i.e., what are the possible causes. This

knowledge is brought to bear during the generation of hypotheses.

It is important that this knowledge be used only as a focussing, and not an eliminative mechanism.

The set of known causal mechanisms for the domain is not taken to be complete; there may be other

causal mechanisms which operate in the domain. For this reason, the domain knowledge provides

only a partial solution to the feature selection problem. The learning system may have to and should
be able to consider causal hypotheses which cannot be justified with the current domain theory.

3.5 Combining Inductive and Deductive Inference

My causal modelling system utilizes both inductive and deductive inference. I have hinted at how
these two inference methods interact in my system. Now I step back and consider whether there are

principled ways of combining inductive and deductive inference in a learning system.

Inductive inference methods are inherently eliminative, or falseness-preserving [Michalski 83]
while deductive methods are truth-preseruing, or confirmative. After an inductive inference, there

S As in functional dependence; not in the teleological sense of function.



are more statements known to be false and anything that was false prior to the inference is still
false. And conversely fir deductive inference and true statements.

In the search for the correct hypothesis, inductive inference can never produce the conclusion
that a particular hypothesis is the correct one, except in the unlikely event that only one hypothesis
remains. Even in this situation, any such conclusion must be relative to any assumptions made,
including the assumption that the correct hypothesis can be represented at all.

Deductive inference, on the other hand, can identify a correct hypothesis, as long as the domain
theory is correct. Deductive inference can in fact short-circuit the need to search the hypothesis
space at all.

Thus an effective strategy for combining inductive and deductive inference in a learning system
is: Confirm hypotheses via deduction from the (hopefully correct) domain theory whenever possible.
Fall back on induction when the domain theory does not apply (because of incompleteness). Because
inductive methods are data-driven, they can continue to converge on the correct hypothesis on the
basis of further observations, after the theory-driven deductive methods have nothing further to
contribute.

In my learning system, the inductive method can generate hypotheses about multiple and in-
teracting functional dependencies. The deductive method can generate justified hypotheses about
individual instances of causal mechanisms. After each inductive inference, some hypotheses are elim-
inated. After each deductive inference, search is focussed on those causal hypotheses which have
some justification. Because the domain theory consists of descriptions of individual causal mecha-
nisms, this focussing process proceeds incrementally. If the domain theory included knowledge of
compositions of causal mechanisms these focussing steps could be larger. The next section addresses

exactly this shortcoming.

3.6 Learning New Compositions of Causal Mechanisms

The deductive method outlined above gives the learning system the ability to strongly suggest indi-

vidual instances of causal mechanisms. I now show how the learning system can learn and generalize

new compositions of causal mechanisms. These extensions to the domain theory of the learning sys-

tem give it the ability to generate justified hypotheses involving several causal mechanisms at once.

This implies a top-down approach to constructing justified causal explanations which complements

the bottom-up strategy of constructing individual justified causal hypotheses.

New compositions of causal mechanisms are learned via an explanation-based, analytical learning

technique [Mitchell 83, DeJong 83, Winston et al 83, Mahadevan 85). An example in the camera

domain illustrates the method. Suppose that the deductive method has strongly suggested instances

of the light transmission and mechanical coupling mechanisms:

(Intensity (SubjectIntenaity) A Intensity(FilmIntensity)A

StraightLinePath(Path) A Between(Path, Subject, Film)A

Opaque(Iria) A Along(Iria, Path))
=- FunctionalDependence(SubjectIntensity x IrisArea, Filmlntensity)

(Position(AperturcRingFStop) A Position( risArea)A
PhysicalConncction( Connection) A Between(Connection, ApertureRing, Iris))

- FunctionalDependence(ApertureRingFStop, IrisArea)



Figure 3.8: A Learned Causal Mechanism Composition

There is an interesting interaction between these causal mechanism instances. The iris, because
of its opacity and its location along the straight-line path from the subject to the film, acts as a
barrier to the light transmission between subject and film. The iris also participates in a mechanical
coupling.

This causal model now shows how the f-stop setting can affect the film exposure - via a mechanical
coupling and a flow mechanism. This multiple dependence is proposable, but not justifiable in the
inductive method.

As a final step, the learning system can generalize this new composed causal mechanism by
generalizing its constituent causal mechanisms. o Light transmission is one kind of flow. The
constraint that the dependent half of the mechanical coupling also plays the role of barrier in the
flow mechanism must carry through. This new mechanism corresponds to the familiar concept of a
valve.

In summary, new compositions of causal mechanisms can be learned by inspecting the causal
models generated by a combination of inductive and deductive inference. The inductive method
generates possible structures of interacting causal relations (quantities and dependencies), and the
deductive method justifies parts of these structures (individual causal mechanisms). Then the an-
alytical learning method lifts out and generalizes entire justified substructures (compositions of
causal mechanisms). These composed causal mechanisms can be thought of as macros or as search
heuristics.

One can imagine an alternate way of "acquiring" compositions of causal mechanisms. Given
the set of primitive causal mechanisms for the domain, it is possible to generate, a priori, all valid
compositions of 2, 3, ... , n causal mechanisms.

eLater, when I present the wt of causal mechanisms for the physical system domain, I present also a generalisation
hierarchy for these mechanisms.



But there is no reason to believe that all compositions of the known causal mechanisms are
interesting, useful, or even possible. The analytical learning technique uses experience as a guide
in extcending the domain theory. The only compositions of causal mechanisms which are generated
and generalized are those which have proved relevant in the context of the construction of causal
models.

3.7 Combining Empirical and Analytical Approaches to Learn-
ing

Recently, the field of machine learning haus begun to explore knowledge-intensive analytical ap-
proaches to learning. The most successful of these methods has been explanation-based learning.
This development is in contrast to the early stages of the field when virtually all of the results
concerned general, domain-independent, empirical, inductive methods. The next logical step for the
field would appear to be in exploring how these alternate approaches to learning can complement
each other.

Already, some research efforts have considered how this might happen. The LEX2 system
[Mitchell 83] has demonstrated how constraint back-propagation can extend the representation lan-
guage supporting inductive learning by generating new terms in the language. Reid Smith et al
[Smith et al 85] have shown how an empirical method can refine a knowledge base which might have
been generated by an analytical method. I propose another way in which empirical and analytical
learning methods can complement each other. In particular, I propose a way in which empirical
methods can drive analytical methods.

Analytical learning methods offer what empirical methods cannot: the possibility of a guarantee
that the generalizations produced by the method are correct. However, it may be not always
possible to employ an analytical method, for any of several reasons: the computational cost of
employing the analytical method may be deemed too great; the observation which the method is to
analyze may be incomplete; the recognition of the applicability of the method is somehow inhibited.
Intuitively, these axe the situations in which humans, although they in principle know how to explain
something, forbear from constructing the explanation because of laziness, or insufficient data, or an
inappropriate censor. Often what is needed in these situations is some hint that there is indeed
something which might be explained and that the effort involved in constructing the explanation
or in collecting additional data is justified. Conjectures generated by empirical methods can play
exactly this motivating role.

In my causal modelling system, one reason why the domain theory cannot always be brought to
bear is that observations may come at a too-coarse level of perceptual granularity. Initially, obser-
vations approximate what is externally visible in the physical system at hand. Causal mechanism
schemas may not be fully instantiable because the needed observations of media, quantites, etc. are
not available. Assuming that the learning system has the capability of procuring observations at a
finer level of granularity, - "opening up the system" - the question to ask is when should it do so?

The empirical, inductive method which proposes configurations of dependencies between quanti-
ties is less sensitive to the level of perceptual granularity as it needs only observations of quantities
and can even propose quantities which are not observable. It is precisely when such empirical con-
jectures about dependencies between quantities exist that the learning system should be motivated
to look inside the system and try to verify the presence of known causal mechanisms underlying the
conjectured dependencies.



A scenario in the camera domain illustrates how the inductive method can drive the construction
of justified explanations and, in turn, the explanation-based learning method. The causal modelling
system can propose, purely on an empirical basis, that the film expomure appears to be proportional
to the product of the brightness of the subject miand the f-stop setting of the aperture ring.

FunctionalDependence(Subjectlntensity x ApertureRingFStop, FilmEzposure)

This empirical conjecture provides evidence that there are causal mechanisms at play which might
be instantiable by looking inside the camera. Indeed, upon procuring observations of structure
and behavior inside the camera, the learning system does instantiate several causal mechanisms
to explain the dependencies which were empirically proposed (see Figure 1.2). Furthermore, the
amdlytical learning method which identifies and generalizes compositions of causal mechanisms can
now come into play as well and lift out the composition between the mechanical coupling of the
aperture ring and iris, and the flow between the subject, the iris, and the film.

There are doubtless many other interesting ways in which empirical and analytical methods (and
not just learning methods) can complement each other. This is likely to remain a fruitful research
issue to pursue for some time.

4.



Chapter 4

The Domain Theory: What Kinds
of Causal Mechanisms are There?

The problem of constructing causal models is being viewed from two complementary perspectives
in this research. One is a traditional inductive learning perspective which casts causal modelling as
going from observations or examples (structural and behavioral descriptions of physical systems at
different times) and knowledge of the general form of causal relations (compositions of dependencies
between quantities) to causal models. The other perspective, embodied by the causal mechanism
schema matching which tries to recognize instances of known causal mechanisms, might also be cast
as a kind of learning - that of making explicit assertions which' have always existed in the deduc-
tive closure. But this approach is more fruitfully interpreted as knowledge-based causal analysis -
"understanding how physical systems work." The advantage of this viewpoint is the focussing of
attention on the knowledge needed to make the approach successful. This knowledge is of the kinds
of causal mechanisms that exist in the physical system domain.

4.1 The Set of.Causal Mechanisms

In this section, I present the set of causal mechanisms which make up the domain theory of the
causal modelling system. This part of my research is knowledge engineering. Although I have relied
on my own knowledge in enumerating this set, to guard against ad-hocness I look to the field of
physics to argue for the well-foundedness of these causal mechanisms. I show how they approximate
some of the established concepts from that field.

I see no way of arguing for the completeness of this domain theory. In fact, its very incompleteness
argues for a complementary inductive learning capability. However, the results of this thesis will
argue for the utility of the domain theory in a number of causal modelling scenarios.

Although my system does not explicitly use teleological knowledge (i.e., knowledge of the purposes
of things), nor does it construct explicitly teleological descriptions of physical systems, this kind of
knowledge is implicit in the domain theory. For it is precisely knowledge of the kinds of causal
mechanisms that exist which is exploited in the design of physical systems. The discovery or better
understanding of such mechanisms has always led to the design of new devices. For example, a



theory of photochemical reactions in salts of silver paved the way for the design of image-recording
devices.

There are three broad classes of causal mechanisms appearing in the domain theory. All describe
interactions that take place in physical systems. These classes are propagations: causal connections
between events of similar type taking place in separate objects; transformations: causal connections
between events of dissimilar type taking place within a single object; and field interactions: causal
connections between a field and an event taking place in an object.

All of the following causal mechanisms are described in the representation for causal mechanism
given earlier.

4.1.1 Propagations

Two perceptually similar events occurring in different objects suggest a causal connection. This
section contains descriptions of causal mechanisms which manifest in interactions of this type.

PROPAGATION

This is the generic description for the class.

3(iq)3(dq)3(m)-3(b)

(QuantityType(iq) A QuantityType(dq)A
McdiumType(m) A Bctween(m, PhysicalObject (iq), PhysicalObject(dq))
BarrierType(b) A Along(m, b))

=t FunctionalDependence(iq, dq)

MECHANICAL COUPLING

A mechanical coupling is a transfer of motion from one object to another, mediated by a physical
connection which is not broken or latched.

3(iq)3(dq)3(m)-3(b)
(Position(iq) A Position(dq)A
PhysicalConnection(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))A
((Discontinuity(b) A Along(m, b)) V (Anchored(b) A PhysicallyConnected(m, b))))

= FunctionalDependence(iq, dq)

FLOW

A flow is a transfer of stuff from one location to another, mediated by a channel which can carry
the stuff and which is not broken or blocked. Four specific types of flows are described after this
generic description.

3(iq)3(dq)3(m)-3(b)
(Amount(iq) A Amount(dq)A
Carrica(m, PhysicalObject(iq)) A Between(m, PhysicalObject(iq), PhysicalObject(dq))A
(Discontinuity(b) V Blocka(b, PhysicalObjeet(iq))) A Along(m, b))

= FunctionalDependence(iq, dq)



MATERIAL FLOW

A material flow is a transfer of material stuff fron one location to another, mediated by a channel
which can carry the material and which is not broken or blocked.

3(iq)3(dq)3(m)-3(b)
(Material Amount (iq) A MaterialAmount(dq )A
Carrics(m, PhysicalObject(iq)) A BDetween(m, PhysicalObject(iq), PhysicalObject(dq))A
(Discontinuity (b) V Blocks(b, PhysicalObjcct(iq))) A Along(m, b))

-• FunctionalDependence(iq, dq)

LIGIHT TRANSMISSION

A light transmission is a transfer of light energy (measured by brightness) from one location to
another, mediated by a straight-line path which is not blocked by an opaque object.

3(iq)3(dq)3(m)-3(b)
(Intensity(iq) A Intensity(dq)A

StraightLinePath(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))A
Opaquc(b) A Along(m, b))

=- FunctionalDependence(iq, dq)

HEAT FLOW (CONDUCTION)

A heat conduction is the transfer of heat (measured by temperature) from one location to another,
mediated by a path which is not broken by a vacuum (thermal conduction cannot occur across a

vacuum) or blocked by a thermal insulator.

3(iq)3(dq)3(m)-3(b)
(Temperature(iq) A Temperature(dq)A

HeatPath(m) A Between(m, PhysicalObject (iq), PhysicalObject(dq)) A

(Vacuum(b) V Thermallnsulator(b)) A Along(m, b))
=- FunctionalDependence(iq, dq)

ELECTRICITY

Finally, electricity is the transfer of electric charge from one location to another, mediated by an

electrical conductor which is not physically broken or blocked by an electrical insulator.

3(iq)3(dq)3(m)-,(b)
(ElectricCharge(iq) A ElectricCharge(dq)A

ElectricalConmuctor(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))A

(Discontinuity(b) V Electricall nulator(b)) A Along(m, b))

=> FunctionalDependence(iq, dq)

4.1.2 Transformations

Transformations describe causal connections between different events occuring in the same object.

The events are the externally observable aggregate manifestations of internal processes occurring at

a finer level of granularity within the object. These causal mechanism descriptions do not include

knowledge of media and barriers because the internal processes are assumed to be unavailable for

scrutiny.

Transformations across separate objects are explained by a combination of a transformation

within one of the objects and a propagation from or to the other object.



TRANSFORMATION

This is the generic description for the class. Transformation descriptions are impoverished relative
to propagation descriptions.

3(iq)3(dq)
(Independent QuantityType(iq) A DependentQuantity Type(dq))

=- FunctionalDcpendence(iq, dq)

ELECTROMECHANICAL

In the electromechanical transformation, electrical energy at an object is transformed into motion.

3(iq)3(dq)
(ElectricCharge(iq) A Position(dq))

= FunctionalDependence(iq, dq)

ELECTROPHOTIC

In the clectrophotic transformation, electrical energy at an object is transformed into light energy.

3(iq)3(dq)
(ElectricCharge(iq) A Intensity (dq))

= FunctionalDependence(iq, dq)

ELECTROTHERMAL

In the electrothermal transformation, electrical energy at an object is transformed into thermal
energy.

3(iq)3(dq)
(ElectricCharge(iq) A Temperature(dq))

= FunctionalDependence(iq, dq)

PHOTOCHEMICAL

In the photochemical transformation, light energy at an object is transformed into a change of
appearance (e.g. color).

3(iq)3(dq)
(Intenaity(iq) A Appearance(dq))

= FunctionalDependence(iq,dq)

THERMOCHEMICAL

In the thermochemical transformation, thermal energy at an object is transformed into a change
of appearance. This mechanism describes burned objects.

3(iq)3(dq)
(Temperature(iq) A Appearance(dq))

= FunctionalDependence(iq,dq)

EXPANSION

Finally, in the expansion transformation, thermal energy at an object is transformed into a change
in size or position.

3(iq)3(dq)
(Temperature(iq) A Position(dq))

= FunctiomalDcpendence(iq,dq)



4.1.3 Field Interactions

Field interactions are the most bizarre of the causal mechanisms included in the domain theory of
the causal modelling system. The strangeness comes from the fact that the field source does not do
anything observable which can be correlated with the motion of an object interacting with the field.
The "causc" is really the relative position of the affected object within the field.

FIELD INTERACTION

This is the generic description for the class.

3(f s)3(dq)
(FieldSource(fa) A Position(dq)A
FicldPropcrty (Physical Object (dq)))

= FunctionalDependence(PositionOf ( fa) - dq,dq)

GRAVITATION

Any object with mass interacts with a gravitational field.

3(fa)3(dq)
(GravitationalFieldSource(f a) A Position(dq)A
Masaed(PhysicalObject(dq)))

== FunctionalDependence(PositionO f (f - dq, dq)

MAGNETISM

Any magnetic or electrically charged object interacts with a magnetic field.

3(fs)3(dq)
(MagneticFieldSource(fs). A Position(dq) A
(Magnetic(PhhysicalObject (dq)) V Charged(PhysicalObject(dq))))

== FunctionalDependence(PositionO f(f a) - dq, dq)

ELECTRIC FIELD INTERACTION

Any electrically charged or magnetic object also interacts with an electrical field.

3(fs)3(dq)
(ElectricFieldSource( fs) A Position(dq)A
(Charged (PhysicalObject(dq)) V Magnetic(PhysicalObject(dq))))

== FunctionalDependence(PositionOf(fe) - dq,dq)

4.1.4 The Generalization Hierarchy

Knowledge of the valid generalizations within a domain is clearly knowledge which can drive a

learning system. The causal mechanism types listed above fit into a generalization hierarchy as
follows:

This knowledge is used by the explanation-based learning method described earlier to generalise
new compositions of causal mechanisms found in the course of constructing causal models.
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4.2 Looking to Physics: Conservation

In this section, I argue for the well-foundedness of the causal mechanism descriptions which comprise
my causal modelling system's domain theory. I relate these descriptions to the conservation concept
from physics.

Conservation is one of the most important concepts in physics. In its most abstract form this
concept states that the amount of any quantity associated with any isolated closed system must
remain constant.

Zqi = c

The distribution of the total amount of a quantity within a closed system may change. In other
words, fractions of the total amount of a quantity may propagate to different locations within the
system. In addition, a quantity may manifest in different forms and fractions of the total amount of
a quantity may change from one form to another within the system. But at no time does the total
amount of a conserved quantity within the system change.

A corrollary of the statement of conservation states that when some amount of a conserved
quantity is introduced (or removed) from an otherwise closed system, the total amount of that
quantity in the system changes by exactly that amount. 1

E qi + Aq = c + Aq

Again, the introduced or removed amount may be propagated or it may undergo transformations.
But at no time is some fraction of the total amount of a conserved quantity in a closed system
consumed or created.

I submit that all of the causal mechanisms listed above can be interpreted in terms of conserved
quantities in closed systems. An effect is never an isolated self-generative incident; it can always be
explained in terms of a propagation or a transformation within a closed system, or ultimately, in
terms of a propagation or transformation originating in an external input to a system.

The causal mechanisms called propagations are straightforwardly interpreted as reflections of
conservation laws. The conserved quantities are the ones which appear in the causal mechanism
descriptions as both cause and effect. The mechanical coupling mechanism describes co-occuring
changes in position. This corresponds to conservation of momentum. Similarly, material flow is
conservation of mass; light transmission and heat flow are conservation of (electromagnetic) energy;
electricity is conservation of charge.

The causal mechanisms involving transformations also reflect conservation laws. However, the
quantities being conserved take on different perceptual forms, which makes the effect difficult to
recognize as another manifestation of the cause. For example, in expansion, a change in the kinetic
energy of molecules in an object, manifested as a change in temperature, is also manifested as a
change in the physical size of the object. In the photochemical reaction, electromagnetic energy im-
pinging on an object is transformed into an increase in the kinetic energy of the object's molecules.
The agitated molecules rearrange various chemical bonds - a process which manifests as a change

'In the case of conservation of energy, for example, this introduced/removed amount is characterised as work done
on/by the system.



in appearance of the object. The other transformation mechanisms are also interpretable as conser-
vations of energy in its various forms. Thus transformations really are propagations; the quantity
being transferred is energy.

In field interactions, potential energy is interchanged with kinetic energy. The strangeness of
these mechanisms (and perhaps one source of difficulty for scientists who tried to understand them)
probably arises from the fact that potential energy is not observable as a local property of an object,
rather it is related to the global position of an object within a field. Hence a cause or effect involving
potential energy is not easily identified. In any event, field interactions are also a kind of propagation
governed by a conservation law, once again conservation of energy.

Of course, very few designed physical systems which "implement" these conservation laws are
truly closed, as the strict interpretation of conservation requires. In other words, the amount of a
quantity at the effect after a propagation from a cause may not be totally conserved. For example,
some of the kinetic energy of a mechanical coupling may be dissipated as thermal radiation; a
material transport system (e.g. plumbing) may have leaks; some of the energy of motion of a rock
falling in a gravitational field may be dissipated as thermal radiation via air resistance, etc.

But this is not the point of this conservation-based interpretation of causality. Rather, the point
is to demonstrate that the causal mechanisms which make up the causal modelling system's domain
theory really are causal, in keeping with the philosophers' notion of necessity in causality. For
conservation tells us that indeed the effect necessarily follows from the cause, is produced by the
cause, emerges from the cause, for the effect - propagations and transformations notwithstanding -
is always the same stuff as the cause.

4.3 Indexing the Mechanisms

Earlier, I argued that a deductive inference method can constrain search through an hypothesis
space. Once a strongly justified hypothesis is found, there may be no need to consider alternate hy-
potheses which are consistent with observations, and which an inductive method could not eliminate.
However, a deductive inference method substitutes a search for a structure of deductive inferences
(a proof or explanation) in place of a search for hypotheses.

A search for hypotheses can be heuristically constrained by making assumptions about the form
of the correct hypothesis. One way to heuristically constrain the search for an explanation is to
index inference rules under summaries of their contents. If an explanation is desired for something
which matches the summary of a rule, this provides motivation for an attempt to fully instantiate
the rule. Indexing can be even more useful if macros (compositions of several inference rules) exist.
Matching the summary of a macro can motivate the instantiation of an entire network of inferences.

In my causal modelling system, explanations are instantiated causal mechanism schemata. Prim-
itive causal mechanism schemata are indexed under the types of quantities appearing in the func-
tional dependencies for which they can provide justified explanations. As compositions of causal
mechanisms are acquired, they are indexed for all the functional dependencies they can explain.

For example, the mechanical coupling mechanism is indexed under position and position. The
composed flow and mechanical coupling mechanism (the valve mechanism) is indexed under amount
and amount, position and position, position and amount.

Causal mechanism schemata are summarized for indexing in terms of quantity types precisely
because the empirical conjectures about causal relations generated by the inductive method are in
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Figure 4.2: Indexes for the Valve Mechanism

terms of dependencies between quantities. Empirical conjectures may be abstractions of the more
detailed causal explanations embodied by the mechanism descriptions. It is this abstraction relation
which is captured by indexing and presented as a search heuristic.

b



Chapter 5

Levels of Abstraction

Multiple levels of abstraction impinge on the causal modelling problem in two ways: Physical systems
can be observed at different levels of perceptual resolution; and causal ezplanations of observations
can be constructed at different levels of detail. The interesting issue concerning multiple levels of
abstraction is one of control: To what level should perceptions and explanations go?

In the rest of this section, I elucidate the following arguments towards a principled solution to
this issue. In general, the tasks of controlling levels of perception and levels of explanation are not
independent. The level of explanation is determined in part by what needs to be explained, i.e.,
by the motivating causal reasoning task which provides the context for causal modelling. Some
explanations intrinsically require more detail than others. The required level of explanation in turn
determines the required level of perception. Certain observations must be collected to instantiate
an explanation. Conversely, difficulties in obtaining the required observations can affect the level of
explanation. In the worst case, it is not possible to contruct an explanation because the required
observations are unobtainable. In other cases, it is possible to construct an alternate explanation at
a different level of abstraction.

5.1 Levels of Explanation in the Domain Theory

The causal mechanism descriptions which make up the causal modelling system's domain theory
become explanations for observations when they are instantiated into observations. Only a single
level of explanation in these causal mechanism descriptions has been discussed thus far. Recall the
description for propagations:

3(iq)3(dq)3(m)-3(b)
(QuantityType(iq) A QuantityType(dq)A
MediumType (m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))
BarrierType(b) A Along(m, b))

= FunctionalDependence(iq, dq)

Actually, each mechanism description implicitly contains many layered explanations, each ap-
proximating the one at the next level of detail, until the description bottoms out.



The most abstracted causal explanation derivable from a propagation description is simply that
two quantities are both of the same type.

3(iq)3(dq)

(QuantityTypc(iq) A QuantityType(dq)A
=- Functional Dcpendencc(iq, dq)

For example, ant explanation for why bread placed in a toaster gets hot can be simply that the
coils in a toaster also get hot.

SThis explanation is an abstraction of one which includes the structural link between the physical
objects of the quantities.

3(iq)3(dq)3(m)

(QuantityTypc(iq) A QuantityType(dq)A
MediumType(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))

- FunctionalDepnden ce(iq, dq)

Now the explanation for why bread placed in a toaster gets hot can include the thermally con-
ducting medium of the air between the coils and the bread.

This explanation in turn approximates one which states that there must be no barriers which
can decouple a structural link.

3(iq)3(dq)3(m)-3(b)
(QuantityType(iq) A QuantityType(dq)A
MediumType (m) A Between(m, PhysicalObject (iq), PhysiealObject(dq))
BarrierType(b) A Along(m, b))

=- Functional Dependence (i, dq)

The toaster explanation now can be elaborated to state that there must be no insulating material
along the path front the coils to the bread.

Finally, this description of a barrier can be fleshed out to state that in general the effectiveness
of a barrier depends on how much of the medium it blocks. Notice that this level of description
reveals a dependence which does not appear at any of the higher levels.

3(iq)3(dq)3(m)3(b)
(QuantityType(iq) A QuantityType(dq)A
MediumType(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))
BarrierType(b) A Along(m, b))

=- FunctionalDependence(iq x Cros SectionalAreaOf(b, m), dq)

The statement about insulators in toasters now can be generalized to: Any thermal insulator
reduces the change in temperature of the bread due to a change in temperature of the coils by an
amount proportional to the amount of cross-sectional area along the path from the coils to the bread
blocked by the insulator.

5.2 A Continuum of Explanations from Empirical to Proven

There is an even more abstract explanation in this hierarchy of explanations than any of those deriv-
able from the domain theory. This type of explanation has been described previously as associative;



it merely associates one event, the cause, with another, the effect, without offering any justified
reason why the effect should follow from the cause.

3(iq)3(dq)
(ValueAt(iq,tl) A ValueAt(dq,t2)A (tl, t2))

== FunctionalDependence(iq,dq)

Associative causal explanations exploit the regularity and direction aspects of causality, but not
the mechanism aspect. It is entirely consistent that these associative explanations are arrived at via
inductive inference. An inductive inference is never justificd; it can have only an empirical basis.

The other explanations in this hierarchy, derived from the domain theory, are all mechanistic to
varying degrees. They all attempt to offer justified causal explanations in terms of known mechanisms
underlying causal interactions. These explanations make use of deductive inference and are proof-
like, but they should not be construed as proofs in the full truth-preserving sense. Each mechanistic
explanation has exceptions, namely the ones specified at lower levels in the explumation hierarchy. In
other words, each explanation is a non-truth-preserving approzimation of explanations found lower
in the hierarchy. And there is no reason to believe that further exceptions do not exist below where
the explanation hierarchy bottoms out.

Rather than a simple dichotomy between associative and mechanistic causal explanations, or
between inductive and deductive inference, the explanation hierarchy represents a continuum of
explanations from ones with only an empirical basis, to ones with less and less of an empirical flavor
and greater and greater justification. Because the domain theory is not strong enough to provide
real proofs grounded in irrefutable axioms, even the most justified explanations in this hierarchy
still have a touch of empiricism, in that they are not full accountings of all situations in which they
apply; they are not universal statements.

One kind of abstraction which is different from the approzimations discussed above is aggregation.
This is the kind of abstraction in which many primitives at one level are subsumed under a single
primitive at the next. Furthermore, the vocabulary of primitives at different levels may change.
Some of the causal mechanism descriptions characterized as transformations involve aggregations.
For example, the expansion schema describes a causal relation between two aggregate properties
of physical objects - temperature and size. Both of these macroscopic properties have microscopic
explanations in terms of the motions of molecules. These low-level explanations do not appear in the
expansion schema because I do not have a way of representing,. how many objects and mechanisms
at one level can be subsumed under a single object and quantity at the next level. ' I represent
aggregations only at the aggregate level. The following discussions only relate to approximation
abstractions.

5.3 Some Properties of Explanations

Before discussing the issue of how to control the level of explanation and perception, I introduce
some properties of the assertions which appear in causal mechanism descriptions, and of explanations
derived from them.

1See IWeld 84) for a solution to this problem.



5.3.1 Instantiability

An assertion is instantiable if and only if it is easily computable or, better yet, directly unifiable from
the perceptions in an observation input to the causal modelling system. For example, the assertion:

Between(m, PhysicalObject (iq), PhysicalObject(dq))

from the material amount flow schema is instantiable from the following set of perceptions

In(Pipel, Waterl)
In(Pipc1, Water2)
QuantityOf (Waterl, Amountl)
QuantityOf (Water2, Amount2)

with the following unifications

(m/Pipel) (iq/Amountl) (dq/Amount2)

and some simple inference rules concerning the definition of Between and the inverse relation
between QuantityOf and PhysicalObject.

Instantiability is essentially an operationality criterion.

An explanation is instantiable if and only if all of its assertions are instantiable.

5.3.2 Observability

An assertion is observable if and only if there is an observation in which the term is instantiable.
The same assertion

Between(m, PhysicalObject(iq), PhyaicalObject(dq))

from the heat flow schema is unobservable in the toaster domain because perceptions needed to
instantiate it, such as

Contiguous(Airl, Coiltl)
Contiguous (Airl, Breadl)

will never appear in an observation. Observability is a statement about the limitations of some
assumed perception equipment.

An explanation is observable if and only if there is an observation in which all of its assertions
are instantiable.



5.3.3 Consistency

An explanation is consistent if anid only if the inferences which it supports are corroborated in all
observations in which the explanation is instantiated.

Thus an explanation which includes media but not barriers can be inconsistent with a set of
observations which includes at least one where a harrier is intact. If the explanation is instantiable
for the observation involving the intact barrier, it would support the conclusion that the causal
mechanism whose medium was instantiated is active, i.e., that the indicated functional dependencies
will hold. This would be the wrong conclusion.

An explanation which includes the appropriate barriers would be consistent with the same set
of observations. In the case where the barrier was in place, it would support the inference that the
indicated functional dependencies will not hold.

5.4 Controlling the Levels of Explanation and Perception

The issue "To what level should explanation and perception go?" can be clarified by first determining
what kinds of causal descriptions, independent of level, the causal modelling system should produce.
I want my causal modelling system to produce mechanistic, consistent causal descriptions.

The argument for mechanistic descriptions is twofold: Mechanistic descriptions have some jus-
tification; they are an attempt to reduce the empirical basis of causal explanations. From the
philosphers' viewpoint, mechanistic descriptions begin to get at necessity in causation; they suggest
why the effect emerges from the cause; is produced by the cause.

The other argument for mechanistic descriptions has to do with differences between inductive
and deductive inference. Associationist descriptions are arrived at via inductive inference. Inductive
inference involves exponential search through a hypothesis space. Deductive inference can short-
circuit this search by providing "proofs", i.e., justified explanations for particular hypotheses. This
focussing must be traded off against the amount of search required to generate explanations. This
kind of search is kept manageable by indexing causal mechanism descriptions - the templates for
explanation - under the types of causal hypotheses they can explain.

The argument for consistent explanations is in the context of the causal reasoning tasks which
causal models are intended to support. The utility of learned causal models is severely restricted if
they do not incorporate consistent causal explanations/descriptions, because any inference made by
a reasoning program operating on an inconsistent causal model is suspect.

Given that the causal modelling system should produce mechanistic and consistent causal de-
scriptions, the question "To what level should explanation and perception go?" can be rephrased to
"What level of explanation and perception is required to produce mechanistic and consistent causal
descriptions?"

5.4.1 Controlling the Level of Explanation

For the moment, I ignore the perception issue and consider only the level of explanation required to
produce mechanistic and consistent causal descriptions.



* What level of explanation is required to produce mechanistic causal descriptions?

There is a glib answer to this question. All levels of explanation in the domain theory are mech-
anistic. Thus any explanation derived from the domain theory is sufficient to produce mechanistic
causal descriptions.

But this glib answer ignores the fact that different causal descriptions/explanations, all mecha-
nistic, require different amounts of detail. For example, the most detailed flow schema

3(iq)3(dq)3(m)-3(b)
(Arnount(iq) A Amount(dq)A
Carric (mn. PhysicalObject(iq)) A Between(m, PhysicalObject(iq), PhysicalObject(dq)) A
(Discontinuity(b) V Blocka(b, PhysicalObject(iq))) A Along(m,b))
FunctionalDependcnce (iq x CrossSectionalAreaOf(b, m), dq)

can be used to generate an explanation for a causal relation between two amount quantities, or
an explanation for a causal relation between an area quantity and an amount quantity.

A sufficient explanation, still mechanistic, for the amount-amnount proportionality could have
been generated from a higher-level abstraction of this schema, such as:

3(iq)3(dq)3(m)
(Amount(iq) A Amount(dq)A
Carries (m, PhysicalObject(iq)) A Between(m, PhysicalObject(iq), PhysicalObject(dq)) A

== FunctionalDependcnce(iq, dq)

However, the area-amount proportionality requires the more detailed explanation. The area
quantity cannot be instantiated until both a medium and a barrier are instantiated. From another
viewpoint, a medium can be described in the absence of barriers, but a barrier without the context
of a medium makes no sense.

To summarize, many causal mechanism descriptions can explain more than one functional de-
pendence. 2 For each explainable functional dependence, there is a minimal context which must be
instantiated; this corresponds to the required level of explanation.

* What level of explanation is required to produce consistent causal descriptions?

There is no a priori answer to this question. The consistency of a description is relative to
the observations into which it has been instantiated. For example, a causal explanation for water
flowing into a sink in terms of a pipe carrying water from somewhere else is perfectly consistent
until the faucet is turned off. Then this description becomes inconsistent because it still supports
the prediction that water will flow into the sink. However, a causal explanation at a greater level
of detail which incorporates knowledge of barriers remains consistent. It explains both why water
flows when the faucet is on and why it does not flow when the faucet is off.

Thus explanations may have to become more detailed to become more general, i.e., to be con-
sistent with more and more observations. The determination of the level of explanation required
to maintain consistency is failure-driven. Only if the domain theory itself is known a priori to be
consistent, can the explanations derived from it also be declared a priori to be consistent. This is
not the case for the domain theory of the causal modelling system, or any domain theory which
contains layered approximations. Approximations imply inconsistency.

2 Tbis is always true of composed causal mechanism descriptions.



5.4.2 Controlling the Level of Perception

An explanation is of no use until it has been instantiated into an observation. The level of explanation
required to produce a mechanistic and consistent causal description can he derived directly from a
domain theory, but whether or not an explanation can be instantiated depends ultimately on the
limitations of the perceptual equipment which procure observations. There are two reasons why an
explanation might not be instantiable in an observation. One is that the required perceptions can
only be obtained at a finer level of perceptual granularity. The other is that the explanation involves
terms which are intrinsically unobservable.

In this section, I explore how limitations of perception interact with the level of explanation, in
some cases limiting the attainable level of explanation, in others suggesting that a more detailed
explanation would be useful.

When an explanation is uninstantiable, this does not necessarily imply that the explanation is
unobservable. It may be that the perceptions which would instantiate the explanation are available
at the next level of perceptual granularity. In other words, if the physical system in question were
"opened.up", the revealed perceptions might be sufficient to instantiate the explanation.

For example, explaining a light bulb in terms of a source of electricity and a wire conducting
that electricity might require looking inside the wall to observe the wire.

This suggests a heuristic for controlling the level of perception in support of the instantiation of
a desired explanation. This heuristic might be called the Look-Inside heuristic.

IF an explanation cannot be instantiated at the current level of perception,
THEN obtain an observation at the next level of perception.

Presumably, there is always some finest level of perception beyond which the Look-Inside heuris-
tic cannot be applied. This finest level of perception limits the attainable level of explanation.
Explanations which require perceptions beyond this level cannot be instantiated. It is possible
that no mechanistic explanations for a causal relation can be instantiated, in which case the causal
modelling system has no choice but to employ inductive inference and generate purely empirical
explanations. In the absolutely worst case, even the observations of quantities required to support
inductive inference may be unavailable, so that no causal modelling is possible.

It may be the case that an explanation is uninstantiable because it involves an assertion which
is intrinsically unobservable. Examples of unobservable 3 terms might be the conducting medium
of the air inside a toaster supporting heat flow or the vacuum which is a sufficient channel for light
(or any electromagnetic) transmission.

There is no level of perceptual granularity at which an intrinsically unobservable assertion can
be instantiated. An explanation which requires an unobservable assertion also must be declared
unobservable.

But this does not mean that a partially instantiated explanation is useless, particularly since all
explanations derived from the domain theory have some empirical basis. A partially instantiated
explanation can be checked for consistency in the same way as a fully instantiated explanation -
by corroborating the predictions it supports for other observations into which it can be (partially)

"Observability is always relative to some assumed perception equipment.



instantiated. If the partially instantiated explanation is found to be consistent, this is empirical
evidence that the unobservable assertion does in fact hold. Empirical evidence for the explanation
has to be substituted for the justification that the instantiated assertion would have provided.

The greater empirical nature of an rxplanation enforced by an unobservable assertion can be
countered by switching to an explanation that is intrinsically more justified, i.e., a more detailed
explanation in the explanation hierarchy which applies to more situations. If the explanation at the
more detailed level is found to be consistent, this empirical evidence makes for a stronger case that
the unobservable assertion holds and is supporting the causal mechanism. This empirical evidence,
coupled with the stronger intrinsic justification of the more detailed explanation, comnters the loss
of justification due to the unobservable term.

As an example, the following explanation from the light transmission schema might be chosen
for instantiation as part of the construction of a causal model for a camera.

3(iq)3(dq)3(m)
(Intensity(iq) A Intensity(dq)A
StraightLinePath(m) A Between(m, PhyaicalObject(iq), PhysicalObject(dq))A

- FunctionalDependcnce(iq,dq)

Assume that the term StraightLinePath(m) in this explanation is unobservable. Further ob-
servations in which the expected proportionality between intensities holds can provide empirical
evidence for the existence of the light path. Better yet, a more detailed, more justified, more gen-
eral explanation can be partially instantiated and tested for consistency empirically; the greater
intrisic justification of the more detailed explanation counters the loss of justification due to the
unobservable light path.

For the camera, the barrier which appears in the next most detailed explanation can be instan-
tiated (e.g. a lens cap) and the expected disablement of the light transmission mechanism can be
corroborated.

3(iq)3(dq)3(m)-3(b)
(Intensity(iq) A Intensity(dq)A
StraightLinePath(m) A Between(m, PhysicalObject(iq), PhysicalObject(dq))A
Opaque(b) A Along(m, b))

== FunctionalDependence(iq, dq)

A partially instantiated explanation surely cannot guarantee truth-preserving inferences, but the
inferences it does support are no less useful than purely inductive inferences or the other non-truth-
preserving inferences supported by the layered approximations in the domain theory.

5.5 Summary

In summary of this chapter, the insights gained into the issue of "To what level should explanation
and perception go?" appear below:

* The domain theory embodies a hierarchy of explanations from purely empirical to more and
more justified.

* There is a minimal context which must be instantiated for any explanation; this context

corresponds to some level in the explanation hierarchy.



* A more detailed explanation may be required to maintain consistency.

* An uninstantiable explanation may be instantiable in an observation at a finer level of percep-
tual resolution.

* An unobservable term implies loss of justification which can be countered with a more detailed,
less approximate explanation.



Chapter 6

Learning from Experiments

The ability to design experiments changes a learning system from a passive one to an active one. The
overall goal of the causal modelling system is to converge on a single, strongly justified hypothesis of
what causal relations exist in a given physical system. This process can be accelerated by deliberately
arranging for observations which provide further justification for leading hypotheses or distinguish
competing hypotheses.

There is a recurrent theme of two flavors of knowledge in the causal modelling system: one
kind of knowledge is about compositions of functional dependencies between quantities; this kind
of knowledge supports inductive, entirely empirical reasoning which only can eliminate hypotheses.
The other kind of knowledge is about the kinds of causal mechanisms which exist in the physical
system domain; it supports reasoning which is more analytic, deductive in form, and leads to justified
hypotheses with less, but some empirical flavor. Both of these kinds of knowledge can support the
design of experiments to accelerate the causal modelling process. Not surprisingly, the knowledge
which supports inductive reasoning can be used only to design experiments to eliminate hypotheses;
the knowledge which supports analytic reasoning can be used to design experiments to both further
justify hypotheses and to distinguish hypotheses.

In general, learning from an experiment involves designing an experiment which generates certain
expectations or predictions, and then adjusting hypotheses according to the results of the experi-
ment. The ideal experiment intended to distinguish hypotheses is one which generates different and
unamnbiguous predictions for all competing hypotheses. The results of such an experiment isolate
exactly one hypothesis as the correct one.

More formally, an experiment partitions hypotheses into equivalence classes corresponding to
different predictions. The ideal experiment is one where each equivalence class contains a different,
and exactly one, hypothesis. In practice, these ideal experiments are extremely difficult to come by.

Experiment design involves instantiating a situation and mapping hypotheses into equivalence
classes based on the predictions they make for that situation. The hard part of experiment design
is that the situation should be chosen so that hypotheses are evenly distributed over as many
equivalence classes as possible.



6.1 Experiments Based on Knowledge of Functional Depen-
dencies

The inductive learning method used by the causal modelling system generates hypotheses about
causal relations in the form of possible compositions of functional dependencies under negation,
multiplication, and addition. An example of one of these hypotheses is the composed functional
dependence E = (-A) x (B + C). Experiment design involves assigning values to the independent
quantities in hypotheses and evaluating for predictions of the values of dependent quantities.

One way to design an experiment to distinguish hypotheses is to enumerate situations (value as-
signments) until one is found in which the set of hypotheses show some divergence in their predictions
for that situation.

For example, say we want to design an experiment to distinguish the hypotheses E = (-A) x (B + C)
and E = A x (B x C). We can simply enumerate assignments from the set of possible values {0+ -}
to the variables A, B, and C until one is found in which the two hypotheses generate different pre-
dictions for the value of E.

SITUATION PREDICTION OF PREDICTION OF
A B C (-A) x(B+C) Ax(BxC)
0 0 0 0 0
0 0 + 0 0
0 0 - 0 0
0 + 0 0 0
0 + + 0 0
0 + - 0 0
0 - 0 0 0
0 - + 0 0
0 -- 0 0
+ 0 0 0 0
+ 0 + + 0

In the worst case, the search for a useful experiment is clearly exponential in the number of
independent quantities which appear in hypotheses. 1

This search can be constrained heuristically by making use of knowledge about constraints on the
ways functional dependencies combine under the composition operators. For example, knowledge
that the result of multiplication by 0 is always 0 could have prevented the experiment designer from
considering any assignments in which A, which is a top-level multiplicand in both hypotheses above,
is 0. Also, knowledge that sums and products diverge when one operand is zero and one non-zero
could have focussed the experiment designer to assignments where exactly one of B and C is zero.
This kind of heuristic knowledge should be made available to the experiment designer.

6.1.1 Ambiguity in Experiments

The design of experiments can be complicated by the fact that there may be several possible outcomes
for a situation. For example, the sum of a positive and a negative value may be positive, negative,

' The number of predictions that may have to be computed in the worst case is h x p` where p is the number of
possible predictions, v is the number of independent quautities, or variables, and h is the number of hypotheses to be
distinguished. The experiment design problem is clearly in NP.



or zero. Some indeterminism is unavoidable with qualitative values and can lead to ambiguity in
the results of experiments.

Three types of experiments of varying degrees of ambiguity can be distinguished:

* An unambiguous experiment is one where the sets of predictions for all hypotheses are mutually
disjoint. The results of an unambiguous experiment isolate exactly one hypothesis as the
correct one.

The experiment corresponding to the last line in the table above is unambiguous.

* A potentially ambiguous experiment is one where there is a pairwise intersection among the
sets of predictions for all hypotheses which is non-null. The results of a potentially ambiguous
experiment may eliminate any nmunber of hypotheses from none to all but one.

The following experiment, not shown above, is potentially ambiguous.

SITUATION PREDICTION OF PREDICTION OF

A B C (-A)x(B+C) Ax(BxC)
+ + - 0+-

If the outcome of the experiment is 0 or +, then (-A) x (B + C) must be the correct hypothesis;
if the outcome is -, there is no conclusipn.

* A hopelessly ambiguous experiment is one where the sets of predictions for all hypotheses are
equal. The results of a hopelessly ambiguous experiment cannot eliminate any hypotheses.

All the experiments in the table above except the one corresponding to the last line are hopelessly
ambiguous.

The built-in indeterminism of the qualitative calculi is not the only source of ambiguity in
experiments. The pigeonhole principle reveals another source. Whenever the number of hypotheses
is greater than the number of possible predictions, there must be ambiguity.

This observation exposes a rather severe limitation on experiment design imposed by the qualita-
tive representation for the values of quantities. Given that there are only three possible predictions
for the values of quantities under the qualitative representation, any experiment involving four or
more hypotheses is potentially ambiguous.

This points up once again the loss of expressive power between quantitative and qualitative
representations for the values of quantities. A quantitative representation implies an infinite number
of possible values for quantities. Under such a representation there can be no ambiguous experiments
because of the pigeonhole principle. However, there is a tradeoff: the size of the search space of
experiments grows as a power of the number of possible predictions.



6.1.2 Experiments Based on Transitions

Experiments can be designed from knowledge of how transitiona between the values of quantities '
combine, as well as from knowledge of how the values themselves combine. Transitions are specified
by a previous value, a new value, and a direction of change of a quantity. Predictions of transitions
are constrained only by the current value of a quantity. In general, there are a maximum of five
possible transitions for a quantity.

The design of an experiment based on transitions for the same example as above proceeds as
follows: (Assume that the current value of A is 0; of B is +; of C is -).

SITUATION PREDICTION OF PREDICTION OF
A B C (-A) x(D+C) Ax (DBxC)

STO ST+ ST- STO STO
STO ST+ AD- STO STO
STO ST+ SB- STO STO

(as long as A is STO, all predictions are STO)

EN+ ST+ ST- STO EN+ EN- EN-
EN+ ST+ AD- STO EN+ EN- EN-
EN+ ST+ SB- STO EN+ EN- EN-
EN+ ST+ DB- EN- STO

After a string of hopelessly ambiguous experiments, three are found that are only potentially
ambiguous and finally one that is unambiguous.

As is the case for experiments based on the values of quantities, the search for an experiment based
on transitions of quantities can be heuristically constrained by utilizing higher-level knowledge of
constraints on the ways in which transitions combine under negation, mulitplication, and addition.
For example, knowledge that the result of multiplication by STO is always STO can prevent the
experiment designer from considering many situations which must give rise to hopelessly ambiguous
experiments.

Transitions offer a tradeoff concerning ambiguity. Although the ambiguity due to the pigeonhole
principle is slightly ameliorated because the number of possible predictions increases from three to
five, the ambiguity due to indeterminism in the calculi is greater, as can be easily seen from an
inspection of the transition calculi in the appendix.

6.1.3 Experiment Design via Constraint Back-Propagation

Experiment design also can be approached by constraining predictions rather than situations. In
other words, another way to design an experiment is to enumerate assignments of predictions to
hypotheses and determine if there is a single situation which implies all those predictions.

Using the same example as above, we can enumerate the assignments of value predictions 3 to
the two hypotheses E = (-A) x (B + C) and E = A x (B x C) which correspond to unambiguous
experiments.

2 e.g. STAY tf. DISABLE-, etc. See the appendix.
3 This alternate approach to experiment design using constraint back-propagation applies equally well to predictions

of tfr&unaiona between values of quantities.



PREDICTION OF PREDICTION OF

(-A) x (B + C) A x (B x C)
0 +
0
+ 0
+

- 0
- +

This alternate approach to experiment design involves searching through a space of prediction
assignments for hypotheses which is exponential in the number of hypotheses to be distinguished.
4 The enumeration of prediction assignments can halt at an assignment for which a situation can
be found which predicts all the desired values of the assignment. This situation is the design for an
unambiguous experiment.

The situations which manifest a particular desired value for a particular hypothesis can be found
by constraint back-propagation. The predicted value for the dependent quantity is back-propagated
through the constraints corresponding to the composition of operators in the hypothesis to determine
the assignments of values to the independent quantities which result in the desired value for the
dependent quantity.

Consider the assignment of predictions in the fourth line of the table above. We must determine
the assignments of values to A, B, and C which result in a value of + for E in the hypothesis
E = (-A) x (B + C) and in a value of - for E in the hypothesis E = A x (B x C). Any common
assignment is the design for an unambiguous experiment.

The constraint back-propagation proceeds as follows:

The first relevant constraint is "A product is + when both multiplicands are the same and neither
is 0."

-A B+C (-A) x (B + C)
+ + +

The next relevant constraint is the definition of negation.

A -A
- +
+ -

The next constraint is "A sum is positive/negative when at least one operand is positive/negative
and neither is negative/positive."

B C (B + C)
0 + +
+ 0
+ +
0 - -

- 0

4It had better be exponential in something; otherwise this reformulation of the experiment design problem would
be suspicious.



These constraints are combined via back-propagation.

A B C (-A) x (D + C)
- 0 + +
- + 0
- + +

+ 0 -
+ - 0
+ --

Constraint back-propagation also is applied to the other hypothesis.

A B C Ax (BxC)
+ + -

- + +

All that remains to be done is to determine if there is an assignment which predicts the desired
values for both hypotheses. There is exactly one, namely (A/-)(B/+)(C/+). This is the sought-
after design for an unambiguous experiment. If the result of this experiment (the value of E) is +,
then (-A) x (B + C) is the correct hypothesis; if the result is -, then A x (B x C) is the correct
hypothesis.

6.1.4 Ambiguity Again

Ambiguity still must be dealt with in this alternate approach to experiment design. Ambiguity
due to indeterminism in the calculi also appears during constraint-back propagation. For example,
the constraint concerning positive sums stated above as "A sum is positive/negative when at least
one operand is positive/negative and neither is negative/positive" has a more general form which
reads "A sum may be positive/negative when at least one operand is positive/negative." This more
general constraint reflects the fact that the assignment of one positive operand and one negative
operand may also produce negative or zero sums.

Ambiguity due to indeterminism in the calculi can be removed during constraint back-propagation
by simply pruning out assignments which have indeterminate predictions. This was done in the ex-
ample above by using the constraint concerning positive sums which implicitly prunes out ambiguous
assignments.

On the other hand, there is nothing to be done about ambiguity due to the pigeonhole principle.
This ambiguity appears before constraint back-propagation, during the assignment of predictions to
hypotheses. There simply is no way to assign p predictions to h hypotheses, p > h, such that no
prediction is repeated.

6.2 Experiments Based on Knowledge of Causal Mecha-
nisms

The mechanistic hypotheses which are derivable from the domain theory may be only partially
justified because of uninstantiable assertions or because of intrinsic approximations in the domain



theory. For this reason, the learning system may propose more than one partially justified hypothesis
to explain the same observation. The uame constraint back-propagation techlmique used to design
experiments to distinguish entirely empirical hypotheses also can be used to design experiments to
distinguish partially justified, mechanistic hypotheses.

For example, suppose that the causal modelling system is presented with the following observation

... QuantityOf(Taillightl, Intensityl)

QuantityOf (Sun, Intensity2)

PhysicalConnection(Automobilel, Taillightl)

ValueOf(Intensity l, Bright)
ValucOf (Intensity2, VeryBright) ...

and the causal reasoning task of explaining (finding the cause of) the glowing taillight.

The causal modelling system can propose two different causal explanations for the brightness of
an object, one involving light transmission and the other involving the electrophotic transformation
and electricity. Both of these causal explanations can be partially instantiated into the above
observation.

An explanation in terms of light transmission looks like:

3(m)-3(b)
(Intenaity(Intensity2) A Intensity (Intensityl ) A
StraightLinePath(m) A Between(m, Sun, Taillightl)A
Opaque(b) A Along(m, b))

=-= FunctionalDependence(Intensity2, Intensityl)

An explanation in terms of the electrophotic transformation and electricity looks like: 5

3(ql)
(ElectricCharge(ql) A Intensity(Intensity 1))

== FunctionalDependence(ql, Intensity l)

3(q2)3(ql)-3(b)
(ElectricCharge(q2) A ElectricCharge(ql)A
ElectricalConductor(Wirel) A Between(Wirel, Batteryl, Taillightl)A
(Diacontinuity(b) V Electricallnsulator(b)) A Along(Wirel, b))

= FunctionalDependence(q2, ql)

Both of these explanations are partially instantiated, and hence partially justified. The task now
is to design an experiment which can gather further evidence to distinguish them.

Experiment design proceeds in several steps. First, different predictions are assigned to the two
hypotheses. Then constraint back-propagation determines the instantiations for the two hypotheses
under which their assigned predictions can be realized. Finally, an instantiation common to both
hypotheses is chosen as the experiment.

Suppose that the light transmission hypothesis is assigned a prediction stating that the value of
the intensity of the taillight is 0. Further suppose that the electrophotic transformation hypothesis

is assigned a prediction stating that the value of the intensity of the taillight is +.

sThe instantiation of this explanation requires perceptions inside the automobile.



Using constraint back-propagation, the range of situations for light transmission in which the
intensity of the taillight turns out to be 0 is determined to be:

= (Intensity2,0)v

-,3(m)
(= (Intensity2, +)A
StraightLinePath(m) A Between(m, Sun, Taillightl))v

3(m)3(b)
(= (Intensity2, +)A
StraightLinePath(m) A Between(m, Sun, Taillightl)A
Opaque(b) A Along(m, b))

These are the situations in which the intensity of the sun is zero or the light transmission
mechanism is inactive.

The range of situations for the electrophotic transformation in which the intensity of the taillight
turns out to be positive is determined to be:

3(q2)3(ql)"3(b)
(ElectricCharge(q2)A = (q2, +)A
ElectricCharge(ql)A
ElectricalConductor(Wirel) A Between(Wirel, Batteryl, Taillightl)A
(Discontinuity(b) v Electricallnsulator(b)) A Along(Wirel, b))

These are the situations in which the battery does generate a current and the electricity and
electrophotic transformation mechanisms are active.

Finally, the sought-after experiment, which can further distinguish these two hypotheses is any
instantiation which satisfies the back-propagated constraints for both hypotheses, such as:

3(q2)3(ql)-3(b)3(m)
(ElectricCharge(q2)A = (q2, +)A
ElectricCharge(ql)A
ElectricalConductor(Wirel) A Between(Wirel, Batteryl, Taillightl)A
(Discontinuity(b) V Electricallnsulator(b)) A Along(Wirel, b)A
= (Intensity2, +)A
StraightLinePath(m) A Between(m, Sun, Taillightl)A
Opaque(Cardl) A Along(m, Cardl))

If the intensity of the taillight turns out to be zero when this experiment is executed, then the
light transmission hypothesis is supported; if the intensity of the taillight turns out to be positive,
then the electrophotic transformation hypothesis is supported.

6.2.1 Uninstantiable and Uncertain Experiments

The results of experiments derived from the domain theory ultimately suffer from the same lack
of certainty as do hypotheses generated from the domain theory. The correct interpretation of the



results of an experiment may depend on an uninstantiable assertion or on an exceptional case which
is hidden by an approximation. Experiments do actively gather greater justification for hypotheses,
but they can never completely erase their empirical nature.

In the example above, a disrupting magnetic field may be the exceptional explanation for an
outcome in which the intensity of the taillight is zero. This possible explanation does not appear
in the abstracted electricity schema. Another possible interpretation of the intensity of the taillight
being zero is that the battery is not generating any current. An assertion that the battery is
generating current does appear in the specification of the experiment, but the current does not
appear in a perception, aid this assertion remains uninstantiated.

An assertion in the specification of an experiment may be uninstantiable for several reasons: it is
unobserved (e.g. the current); it is intriniscally unobservable (e.g. the heat path in a toaster); or it
is unachieveable, i.e., it has an unalterable instantiation other than the desired one. The experiment
specification above suggests setting the intensity of the sun to zero as one way to render the light
transmission mechanism inactive. This is not an achieveable assertion. On the other hand, an
opaque barrier placed between the sun and the taillight is an achieveable assertion.

A planner can determine (or fail to determine) how to achieve assertions specified in the design
of an experiment. The issues involved in the interaction of an experiment designer and a planner
deserve further exploration.

6.2.2 Experiments for a Single Hypothesis

Experiments designed to distinguish hjpotheses gather more justification for the hypothesis(es)
whose predictions are corroborated. The justification amplification associated with experimenting
also can be applied to a single hypothesis. This use of experimenting is particularly appropriate
when there is a single relevant known causal mechanism which can explain an observation, but which
could not be fully instantiated.

The way to further justify a single hypothesis is to design an experiment which is more fully
instantiable (possibly at a more detailed level of explanation) than the current version of the hy-
pothesis. The experiment may generate a prediction which is different from previous observations.
If the prediction is corroborated, the hypothesis is now more strongly justified.

For example, suppose that the scenario above involves a taillight sitting in the middle of the
street, unattached to any automobile, so that the only relevant hypothesis is the one involving light
transmission. The experiment involving the placement of an opaque card between the sun and the
taillight can make this single hypothesis more justified. An instantiated light transmission barrier is
now part of the hypothesis; furthermore, it is now possible to explain why the taillight sometimes
is dark.

6.3 Summary

This chapter can be summarized in the following observations towards a set of principles for learning
from experiments.

a Experiment design can proceed either by searching for a situation for which there is a divergent
set of predictions, or by searching for a set of divergent predictions for which there is a common
situation.



* Experiments can be designed either for hypotheses with a purely empirical basis, or for hy-
potheses partially justified by explanations derived front a domain theory.

* Experiments can distinguish several hypotheses or can more strongly justify a single hypothesis.

* Most experiments are ambiguous - it is difficult to design an experiment in which every com-
peting hypothesis predicts a different result.

* The best experiments are those that involve only instantiable (observable and achieveable)
assertions.

* The interpretation of the results of an experiment can be uncertain because the experiment
is not fully instantiated or because the experiment is derived from an approximate domain
theory.



Chapter 7

Constructing, Using, and Refining
Causal Models

In this section, I present the procedure for constructing causal explanations/descriptions/models to
support a causal reasoning task. This procedure makes use of the representations for causality, the
inductive and deductive inference methods, and the domain theory presented in previous sections. I
demonstrate also how the causal models produced by this procedure support their motivating causal
reasoning tasks. Finally, I show how causal models which prove to be inconsistent may be repaired.

7.1 Specifying the Causal Reasoning Task

Some examples of causal reasoning tasks in the domain of physical systems are:

* (Planning involving a camera). How to control film exposure by using the aperture ring, a
flash, and/or different film?

* (Prediction involving a bathtub). What will happen if the drain is plugged and the faucet
turned?

* (Diagnosis involving a toaster). Why did the bread not turn to toast?

The most conceptually simple causal reasoning tasks involve searches through causal networks,
beginning from certain nodes specified a priori to be causes or effects. These search problems can
be stated as one of the following questions:

* What are the effects of these causes?

* What are the causes of these effects?

* What are the causal relations between these causes and effects?
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Figure 7.1: How the Causal Reasoning Task Constrains Causal Modelling

The planning problem above involves finding causal relations between the actions of changing
the setting of the aperture ring, changing the intensity of a flash bulb, and changing the type of film
(all taken to be causes), and the exposure on a piece of film (taken to be an effect). The prediction
and diagnosis problems above can be similarly interpreted as a search problem in a causal network.

All of the causal reasoning tasks which provide contexts for my causal modelling system are
presented in this form. The task of the causal modelling system is to produce causal networks
(models) on which the motivating causal reasoning tasks can be performed successfully. This is the
yardstick of success for the causal modelling process.

The motivating causal reasoning tasks serve to constrain the causal modelling process by pro-
viding anchor points (the specified causes and/or effects) around which the construction of causal
models can begin. The modelling process can be terminated heuristically, by computational resource
constraints, or by exhausting the observations. When both causes and effects are specified, causal
modelling is terminated when all specified causes and effects have been causally linked. There is a
degenerate case where no causes and effects are specified. In this case, an unconstrained causal mod-
elling task is generated where the initial causes are taken to be the earliest events in the observations
and the final effects are taken to be the latest events.

7.2 The Causal Modelling Procedure

The following is the procedure for constructing causal models in the context of a causal reasoning
task. Step 6 can be executed in the background. Step 8 is non-deterministic.

Given a causal reasoning task concerning a physical system: (The causal reasoning task is spec-
ified as a set of causes and/or effects).
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1. Procure an observation of the physical system.

An observation is a structural and behavioral description of the physical system over time.

2. Generate primitive causal hypotheses relevant to the causal reasoning task.

These are proportionality relations (the simplest functional dependencies) between quantities
specified as causes and/or effects in the causal reasoning task, or between quantities already shown
to be causally related to a cause and/or effect specified in the causal reasoning task.

3. Remove those hypotheses which do not satisfy causal direction constraints.

Effects must be after or simultaneous with causes. Known actions can be only causes. Primitive
causes and effects specified in the causal reasoning task cannot be other than as specified.

4. Retrieve and instantiate causal mechanism schemata.

For each primitive causal hypothesis, retrieve relevant causal mechanism schemata. Schemata
are indexed under the types of cause and effect pairs they can explain.

For each retrieved causal mechanism schema, attempt to instantiate the schema to a level which
generates a mechanistic, justified hypothesis/explanation which is consistent with the observation.
A schema may not be fully instantiable because of unobserved assertions.

5. Generate compositions of causal hypotheses.

Compositions of causal hypotheses can be generated empirically by combining functional de-
pendencies under negation, multiplication, and addition and corroborating the expected values of
quantities. Justified compositions of hypotheses are generated when schemata already containing
compositions are instantiated or when causal mechanism schema instantiations intersect.

6. Learn new compositions of causal mechanisms.

If there are instantiated causal mechanism schema which intersect, then generalize the con-
straint(s) at the intersections and index the new composed causal mechanisms under the types of
causes and effects they explain.

7. Is the causal model adequate?

If there remain competing hypotheses, then go to 8.

If there are causes and/or effects specified in the causal reasoning task which have not yet been
incorporated into the causal model, and other termination conditions have not been reached, then
go to 2.

Otherwise, stop.

8. Open up the system.

If there are causal hypotheses for which there are relevant causal mechanisms which could not
be instantiated, then procure an observation at a finer level of perceptual granularity. Go to 2.

8. Design experiments to distinguish hypotheses.

If there are competing causal hypotheses, purely empirical or partially justified, then design an
experiment which can distinguish the hypotheses. Designing an experiment involves determining
a situation for which the competing hypotheses generate divergent predictions. Instantiate the
situation, procure an observation and eliminate hypotheses whose predictions are not corroborated.
Go to 7.
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Figure 7.2: The Causal Modelling Procedure

8. Design experiments to further justify hypotheses.

If there are causal hypotheses for which there are relevant but uninstantiable causal mechanisms
which involve inherently unobservable assertions, then determine situations which involve observ-
able assertions which can further justify the causal hypotheses. Instantiate the situations, procure
observations and further justify those hypotheses whose predictions are corroborated. Go to 7.

This procedure is depicted in flowchart fashion in Figure 7.2.

7.3 Constructing a Causal Model

In this section, I present a somewhat detailed example of how the learning system, using the above
procedure, constructs a causal model of a camera.

The causal reasoning task which provides context, constraint, and motivation for the causal
modelling system is specified below:

Determine causal relations between these causes:

The f-stop setting of the aperture ring.
The speed of the film.



and this effect:

The exposure on the film.

1. Procure an observation.

The following is a structural and behavioral description of the camera over time. This observation
describes the physical objects and quantities which make up the camera and how they change.

QuantityOfl(FStopl, ApertureRingl)
QuantityOf2(Intensityl, Subjectl)
QuantityOf3(Lengthl, Lens1)
QuantityO f4(Speedl, Filml)
QuantityO f5(Exposurel, Filml)
QuantityO f6(Distancel, FocusRingl)
QuantityO f7(Positionl, Releasel)
QuantityOf8(Intensity2, Flashl)
QuantityO f(Locationl, Subjectl)

PhysicalConnectionl(ApertureRingl, Lensl)
PhysicalConnection2(FocusRingl, Lensl)
PhysicalConnection3(Lensl, Cameral)
PhysicalConnection4(Flashl, Cameral)
Insidel(Filml, Cameral)
PhysicalConnection5(Releasel, Cameral)

ValueOfl(FStopl, tl, 5.6)
ValueO f2(Intensityl, tl, Dim)
ValueO f3(Lengthl, tl, Long)
ValueO f4(Speedl, tl, 400)
ValueO f 5(Exposurel, tl, Blank)
ValueO f6(Distancel, tl, 3)
ValueO f7(Positionl, tl, Up)
ValueO f8(Intensity2, tl, Dark)
ValueOf9(Locationl, tl, (0, 20, 3))

ValueO f3(Lengthl, t2, Short)
ValueO f6(Distancel, t2, 20)
ValueOf2(Intensityl, t3, Bright)
ValueO f7(Positionl, t3, Down)
ValueO f8(Intensity2, t3, Bright)

ValueO f7(Positionl, t4, Up)
ValueO f5(Ezposurel, t5, OverExposed)



2. Generate primitive causal hypotheses relevant to the specified causal reasoning task.

The causes and effects specified in the causal reasoning task form the initial focus for causal
modelling. FStopl and Speedl are specified as causes; Exposurel is specified as an effect.

3. Remove those hypotheses which do not satisfy causal direction constraints.

FStopl and Speedl can be only causes. Exposurel can be only an effect. Distancel and
Position1 represent external controls of the camera; these can be only causes. Finally, effects
cannot precede causes in time.

The generated primitive causal hypotheses are:

FunctionalDependence(FStopl, Intensityl)
FunctionalDependence(FStopl, Lengthl)
FunctionalDependence(FStopl, Exposurel)
FunctionalDependence(FStopl, Intensity2)
FunctionalDependence(Speedl, Intensityl)
FunctionalDependence(Speedl, Lengthl)
FunctionalDependence(Speedl, Exposurel)
FunctionalDependence(Speedl, Intensity2)
FunctionalDependence(Intensityl, Exposurel)
FunctionalDependence(Lengthl, Exposurel)
FunctionalDependence (Distance 1, Exposure 1)
FunctionalDependence(Position 1, Exposurel)
FunctionalDependence(Intensity2, Exposurel)

4. Justify hypotheses by instantiating causal mechanism schemata.

None of these hypotheses can be justified as yet; some because they are incorrect, others because
they require observations of objects and quantities not available at the current level of perceptual
resolution.

5. Generate compositions of causal hypotheses.

Only empirical compositions at the level of combined functional dependencies can be generated
because no causal mechanism schemata have been instantiated. Among those generated are:

FunctionalDependence(FStopi + Speedl, Intensityl)
FunctionalDependence(FStopl x Intensityl x Speedl, Exposurel)
FunctionalDependence(FStopl x Intensityl, Exposurel)
FunctionalDependence((Speedl + Intensity2) x Lengthl, Exposurel)



At this point, the causal modelling system is suffering from its inability to instantiate any causal
mechanism schemata and focus search on the resulting justified hypotheses. Without this focussing,
the empirically generated hypothesis space is exponentially large.

6. Learn new compositions of causal mechanisms.

No causal mechanism schemata have been instantiated.

7. Is the causal model adequate?

There are many competing hypotheses, so ...

8. Open up the system or design experiments.

The causal modelling system now can design experiments to distinguish the primitive and com-
posed causal hypotheses or it can procure an observation at a finer level of perceptual granularity
and once again try to instantiate causal mechanism schemata. "Knob-tweaking" experiments would
be able to gather empirical evidence that, for example, the film exposure depends on the f-stop, but
not on the setting of the focus ring. However, given that there are currently an exponential number
of hypotheses, another attempt to instantiate some causal mechanism schemata, justify some causal
hypotheses, and focus search, is indicated.

Upon opening up the camera, the causal modelling system does indeed procure perceptions of
physical objects and quantities which were unavailable before. Among these new perceptions are:

QuantityOf 10(Intensity3, Filml)
QuantityO f ll(Areal, Irisl)
QuantityOf l2(Position2, Shutterl)
QuantityOfl3(Location2, Filml)
QuantityOfl4(Location3, Irisl)
QuantityOfl5(Location4, Shutterl)

Inside2(Irisl, Lensl)
Inside3(Shutterl, Cameral)
PhysicalConnection6(ApertureRing l, Iris 1)
PhysicalConnection7(Releasel, Shutterl)

ValueOf lO(Intensity3, tl, Dark)
ValueOf ll(Areal, tl, 4)
ValueOf l2(Position2, tl, In)
ValueOf 13(Location2, tl, (0, 0, 3))
ValueOf 14(Location3, tl, (0, 0.5, 3))
ValueOf 15(Location4, tl, (0, 0.1, 3))
ValueOf 10(Intensity3, t3, Bright)
ValueOf 12(Position2, t3, Out)
ValueOf 15(Location4, t3, (0.2, 0.1, 3))

'Exponential in the number of quantities appearing in observations.



ValueOf l2(Position2, t4, In)
ValueOf15(Location4, t4, (0,0.1, 3))

2. Generate primitive causal hypotheses relevant to the specified causal reasoning task.

3. Remove those hypotheses which do not satisfy causal direction constraints.

Among the new primitive causal hypotheses are:

FunctionalDependence(Intensityl, Intensity3)
FunctionalDependence(Areal, Intensity3)
FunctionalDependence(Position2, Intensity3)
FunctionalDependence(FStopl, Areal)
FunctionalDependence(Position , Position2)
FunctionalDependence (Intensity3, Exposure 1)

4. Justify hypotheses by instantiating causal mechanism schemata.

This time around, several causal mechanism schemata can be retrieved and instantiated:

The proposed functional dependence between the intensity and the exposure of the film can be
explained by a photochemical transformation on the film.

Intensity(Intensity3) A Appearance(Exposurel)A = (Filml, Filml)
= FunctionalDependence(Intensity3, Exposurel)

The light transmission schema can be retrieved by the proposed functional dependence between
the intensity of the subject and the intensity of the film, or by the proposed functional dependence
between the area of the iris and the intensity of the film, or by the proposed functional dependence
between the position of the shutter and the intensity of the film.

Intensity(Intensityl) A Intensity(Intensity3)A
StraightLinePath(Pathl) A Between(Pathl, Subjectl, Filml)A
Opaque(Irisl) A Along(Irisl, Pathl)A
Opaque(Shutterl) A Along(Shutterl, Pathl)

- FunctionalDependence(Intensityl x Areal x Position2, Intensity3)



Knowledge of geometry is needed to support some of the inferences which contribute to the
instantiation of this schema. Pathl and the Along assertions can be computed from the location
quantities of the subject, iris, shutter, and film. There is a straight line through all of these points.
The cross-sectional areas of the light path passed by the iris and the shutter can be computed from
their location quantities using projection methods.

I have not decided if my domain theory will include this "strong" knowledge of geometry. Without
it, these assertions would be uninstantiable. For the purposes of this example, I assume the causal
modelling system does have access to this knowledge.

The proposed functional dependence between the f-stop and the area of the iris can be explained
by a mechanical coupling:

Position(FStopl) A Position(Areal)A
PhysicalConnection(PhysicalConnection6)A
Between(PhysicalConnection6, ApertureRingl, Irisl)

== FunctionalDependence(FStopl, Areal)

Finally, the proposed functional dependence between the positions of the release and shutter also
can be explained by a mechanical coupling.

Position(Positionl) A Position(Position2)A
PhysicalConnection(PhysicalConnection7) A
Between(PhysicalConnection7, Releasel, Shutterl)

= FunctionalDependence(Positionl, Position2)

The domain theory contains no schema or composition of schemata which can explain how the
speed of the film might affect the exposure of the film. 2

5. Generate compositions of causal hypotheses.

Several justified compositions of causal hypotheses have been generated for free. The instantiated
light transmission schema contains a composition of three functional dependencies, all sharing the
intensity of the film as dependent quantity. In addition, the light transmission schema intersects
with the photochemical transformation schema at the intensity of the film; with one mechanical
coupling at the area of the iris; with the other mechanical coupling at the position of the shutter.

Because there are no known causal mechanisms in which the film speed might be participating,
the causal modelling system can generate compositions involving the film speed only empirically.
However, any proposed contribution of the film speed should now be constrained to intersect with
the justified causal model of the camera already constructed. Among the possible composition
hypotheses involving the film speed are: 3

2 The correct explanation is: The speed or ASA rating of a roll of film reflects the density of its emulsion layer.
The denser this layer, the slower the photochemical reaction. This is an integration argument.

3 Compositions containing causal cycles are not generated.



Figure 7.3: A Transformation Across Two Objects

Functional Dependence
(Speedl + (Intensityl x Areal x Position2), Intensity3)

FunctionalDependence
(Speedl x (Intensityl x Areal x Position2), Intensity3)

FunctionalDependence(Speedl + Intensity3, Exposurel)
FunctionalDependence(Speedl x Intensity3, Exposure l)

6. Learn new compositions of causal mechanisms.

The intersecting causal mechanism schema instantiations in the causal model of the camera
can be lifted out, generalized, and added to the domain theory under appropriate indexes. For
example, the intersection of the light transmission and photochemical transformation schemata can
be generalized to a transformation across two objects, involving a propagation across two objects
and a transformation at the second object. The constraint which must hold is that a single quantity
of the second object must serve as both dependent quantity of the propagation and independent
quantity of the transformation.

Both of the intersections between a mechanical coupling and the light transmission call be gen-
eralized to a composed valve mechanism where one object serves as both the dependent half of a
mechanical coupling and as barrier to a flow. (See Figure 3.8).

7. Is the causal model adequate?



There are still competing hypotheses concerning the contribution of the film speed on the film
exposure.

8. Open up the system or design experiments.

The film is a primitive physical object which cannot be taken apart; thus opening up the system
is not an option. The final task of the causal modelling system is to design experiments to distinguish
the hypotheses concerning the film speed. Recall.these hypotheses:

FunctionalDependence
(Speedl + (Intensityl x Areal x Position2), Intensity3)

FunctionalDependence
(Speedl x (Intensityl x Areal x Position2), Intensity3)

FunctionalDependence(Speedl + Intensity3, Exposurel)
FunctionalDependence (Speed1 x Intensity3, Exposurel)

Using knowledge that the results of addition and multiplication are different when exactly one
operand is zero, the causal modelling system designs the following experiment:

The hypotheses where the film speed makes an additive contribution are assigned the prediction
-. The hypotheses where the film speed makes a multiplicative contribution are assigned the
prediction 0. Constraint back-propagation determines the situations which predict the assigned
outcomes for all hypotheses: Either the intensity of the subject must be zero, or the iris must be
closed completely, or the shutter must not be moved from in front of the film. The causal modelling
system does not know how to control the intensity of the subject, nor can the iris be closed completely;
these experiment designs are not operational. However, the shutter can be kept in front of the film by
not pushing the release button. If the film speed makes an additive contribution, then the exposure
should not come out blank (zero), even though no light falls on the film.

Of course, the film does come out blank. Now there remain only these hypotheses:

FunctionalDependence
(Speedl x (Intensityl x Areal x Position2), Intensity3)

FunctionalDependence(Speedl x Intensity3, Exposurel)

The intensity of the film is affected by the film speed in only one of these hypotheses. Thus
a simple experiment is to change the film speed and determine if the film intensity also changes.
Under an assigned transition of ADD+ for the film speed, the first hypothesis predicts an ADD+
transition for the film intensity while the second hypothesis predicts STAY+.

The result of the experiment is STAY+ and the first hypothesis is eliminated.

7. Is the causal model adequate?

There is now a single justified causal model of the camera. All of the causes and effects in
the motivating causal reasoning task (the f-stop, the film speed, and the film exposure) have been
incorporated into this model. The causal model is adequate.
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Figure 7.4: The Causal Model of the Camera



7.4 Using and Refining a Causal Model

Causal modelling takes place in the context of a causal reasoning task. The criterion of success for
the causal modelling system is: The causal model delivered by the learning system must be able to
support the motivating causal reasoning task.

This is easy to demonstrate for the case of the camera. The motivating causal reasoning task is
a planning problem: How to control film exposure by controlling the f-stop and/or the film speed.
In particular, suppose the film comes out overexposed. The planning problem now becomes: How
to decrease the film exposure by controlling the f-stop and/or the film speed.

The same constraint back-propagation method used in experiment design can double as a simple
planner. The film exposure is assigned a transition of SUBTRACT+, and this constraint is back-
propagated through the network of causal relations in the causal model. The result is a set of
transition assignments to quantities which are causally "upstream" from the film exposure. Those
assignments which specify changes in the f-stop and/or the film speed are the desired plans.

The causal models generated by the causal modelling system may prove to be inconsistent because
of incomplete instantiations or because of approximations in the domain theory. In some cases, it
is possible to refine an inconsistent causal model by making another attempt at instantiation at a
more detailed level of explanation.

For example, suppose that a lens cap is inadvertently placed on the camera while a photograph is
taken. The expected outcome that the film has some positive exposure is not corroborated. However,
the means of repairing the model of the camera already exists in the light transmission schema. The
lens cap can be instantiated as yet another opaque physical object along the path from the subject
to the film acting as a barrier to light. Now the model generates the correct prediction that no light
reaches the film and the film comes out blank.

In the summary chapter of this report, I make further arguments that my causal models can
support causal reasoning tasks. In particular, I argue that they can support qualitative reasoning

(e.g. envisioning, limit analysis) and fault diagnosis. It is not my purpose to build state-of-the-art
versions of these types of causal reasoning systems, but I must argue that my causal modelling system
can interface with them in the intended manner - as a front end producing the representations on
which they operate.



Chapter 8

Summary

In this work, I have shown how the causal modelling competence can arise from a combination of
inductive and deductive inference, employing knowledge of the general form of causal relations and
of the kinds of causal mechanisms that exist in a domain. The hypotheses generated by such a
learning system range from purely empirical to more and more strongly justified.

In this final chapter, I discuss how my work relates to other research efforts and I recount the
proposed solutions to the set of issues which my research addresses.

8.1 Relation to Other Work

In this section, I discuss how my research relates to the research of others who have worked in the
following areas: qualitative representations for and qualitative reasoning about physical systems,
including fault diagnosis; empirical and analytical learning; levels of abstraction; learning from
experiments.

8.1.1 Qualitative Reasoning about Physical Systems

My work on causal modelling is intended to interface in a direct way with work on qualitative
reasoning about physical systems. Qualitative reasoning systems are given process descriptions
[Forbus 841 or component and device models Ide Kleer & Brown 84]. Using these descriptions,
they perform certain reasoning tasks such as envisioning, i.e., predicting the possible next state(s)
of physical systems. My causal modelling system is intended to acquire the descriptions on which
these qualitative reasoning systems operate. In the next few paragraphs, I argue that my causal
models are the right kind of descriptions which can support qualitative reasoning tasks.

There is a strong resemblance between Forbus' process descriptions and my causal mechanism
descriptions, from which my causal models are derived. This is certainly the case at the level
of quantities and functional dependencies because I have adopted Forbus' representations directly.
At the level of physical structure, I believe my representation is more perspicuous. I distinguish
between media and barriers while Forbus subsumes these terms into a generic category of physical



precondition. The identification of media and barriers is directly relevant to the task to determining
which processes (or causal mechanisms) are, repsectively, active or inactive.

Forbus' representations support limit analysis - determining what process changes occur because
of changes in the qualitative values of quantities. Determining the next value of a quantity is
supported by a simple notion of time integrability which states that the next value of a quantity is
the adjacent value in the space of values for the quantity in the direction indicated by the rate of
the quantity.

Before time integration and limit analysis can be applied to my causal models, the interesting
limit points, or thresholds (given a priori in Forbus' process descriptions) have to be identified.
Some of these thresholds may come for free (e.g., zero points); I claim that others can be identified
by recognizing media and barriers. Processes change exactly when value changes of quantities
correspond to the establishment of media or barriers.

For example, one of the limit points for the height quantity of water in a sink is the value
corresponding to the height of the safety drain. This value is a threshold because it is at this
height that a medium is established through which a new flow process affects the rate of the water's
height. Once threshold values are established in this way, they can be recorded in the value spaces
of quantities to support future limit analysis.

For de Kleer and Brown's qualitative reasoning system, the laws describing the behavior of com-
ponents and the behavior along conduits which connect components are represented as confluences,
or qualitative differential equations. All of the causal mechanism descriptions in the causal mod-
elling system's domain theory are (as argued earlier) easily interpreted as conservation laws. These
conservation laws are easily expressed as confluences:

aiq + adq = 0

The causal mechanisms called transformations correspond to laws about primitive component
models in de Kleer and Brown's domain theory. The causal mechanisms called propagations, which
describe media, correspond to laws about conduits.

de Kleer and Brown's envisioning system uses confluences to determine the possible behaviors of
device components and the possible transitional behaviors along conduits. The possible behaviors
of the overall device then are inferred in a bottom-up fashion. The causal models produced by my
learning system, appropriately recast in terms of confluences, could support envisioning.

In general, as de Kleer points out, envisioning may generate several possible behaviors for a
device. This ambiguity may be due to the loss of information associated with qualitative values, or
may reflect inherent indeterminism in the device.

Another kind of reasoning which causal models could be targeted for is fault diagnosis. Knowledge
about causal mechanisms can support fault diagnosis. As Davis points out [Davis 84), part of
any diagnostic capability lies in knowledge of the causal pathways which exist in a domain. In
particular, it is knowledge of how spurious or inhibited causal pathways might arise which can be
used to troubleshoot a misbehaving device. My representation for causal mechanism has the right
vocabulary for diagnosis: misbehavior due to a spurious causal pathway is explainable in terms of
an unexpected medium; misbehavior due to an inhibited causal pathway is explainable in terms of
an unexpected barrier.



The domain theory of Davis' hardware troubleshooting system contains knowledge of causal
mechanisms which can underlie faults in digital circuits (e.g., shorts, bridges). This domain theory
- like the domain theory of my causal modelling system - comes in layers, allowing assumptions
about "normal" behavior to be successively relaxed. Each level in the domain theory corresponds to
an hypothesis about the increasingly unlikely presence or absence of a causal mechanism. Diagnosis
can be seen as the refinement or elaboration of a causal model to explain exceptional behavior.

When a causal model produced by my learning system generates a prediction which is not
corroborated by observations, diagnosis can proceed as follows: Employing a single-fault assumption,
Davis' constraint suspension technique can be used on the network of functional dependencies in the
causal model to isolate possible locations of unexpectedly active or inactive causal mechanisms. '

Then the more detailed levels of the domain theory can be used to generate hypotheses about what
exceptional media or barriers might be in place that can explain the misbehavior.

8.1.2 Empirical and Analytical Learning

The inductive component of my causal modelling system is similar to other learning systems which
learn functional dependencies empirically, of which BACON is best known example [Langley et al
83]. All of these purely inductive systems suffer from two shortcomings: they have no way of
determining the relevant features (for my system, the possible causes) and they have no way to
justify their hypotheses.

Providing a learning system with a domain theory addresses both of these shortcomings. A
domain theory is an implicit statement of what is relevant, and hypotheses derived from a domain
theory are justified owing to the independent justification of the theory itself.

The analytical component of my learning system, which makes use of a domain theory, is an
example of an explanation-based learning system [Mitchell 83, DeJong 83, Mahadevan 85], capable
of making relevant, justified generalizations. My system, which also employs schemata, mostly
closely resembles that of DeJong.

With the advent of knowledge-intensive, analytical approaches to learning, a research direction
which suggests itself is the exploration of ways to combine empirical and analytical learning methods.
In my causal modelling system, empirical conjectures can be justified by instantiating a causal
mechanism description which explains the empirically noted dependence. Put another way, empirical
conjectures can drive an analytical method, providing it with something to explain.

8.1.3 Levels Of Abstraction

Even analytically generated causal explanations may prove to be inconsistent, but they can be
refined by instantiating a causal mechansism description at a lower level of detail. The more detailed
explanation may cover a case which is excluded from the approximate explanation at the higher level.

Reid Smith et al [Smith et al 851 show how the empirically motivated expansion of an explanation
(possibly generated by an analytical method) can be focussed by tagging assertions in explanations
as definitional, statistical, default, or approximate. Definitional assertions are irrefutable axioms;

'The technique cannot be expected to work as well with qualitative values as with quantitative values (as in Davis'
system), i.e., fewer candidates are eliminated.



the other types of assertions are various kinds of abstractions, any of which can be a source of
inconsistency. In my domain theory, all abstractions are of the approzimation type.

Patil IPatil 81] has addressed the issue of how to shift the level of causal description - either
elaborating or abstracting - while maintaining consistency across levels.

8.1.4 Learning from Experiments

My learning system has the ability to design experiments both to distinguish competing hypotheses,
even partially justified hypotheses, and to further justify a particular hypothesis. Rajamoney et al

[Rajamoney et al 85] also discuss the use of experimenting in learning. They outline an experiment
designer which determines situations which predict different outcomes for competing hypotheses.
As in my learning system, situations are determined by consulting a domain theory which describes
relevant dependencies.

8.2 The Issues Revisited

Several issues related to the causal modelling competence are addressed in this research. In this
section, I summarize proposed solutions and ideas toward solutions for these issues.

* Levels of Abstraction

Perceptions and causal explanations come at different levels of resolution. The best explana-

tions are those that are consistent with observations, and have some degree of justification.

Given a domain theory containing layered approximations, an inconsistent explanation often

can be repaired by expanding to a less approximate, and more detailed explanation. The more

detailed explanation is more justified because it can handle more exceptional cases. In order

to instantiate any particular explanation, it may be necessary to procure perceptions at a finer

level of granularity.

* Learning from Experiments

The ability to design experiments changes a learning system from passive to active. Given

that the hypotheses generated by a learning system using an imperfect domain theory always

have some empirical basis, the ability to deliberately choose the next example to gather more

justification for fewer hypotheses is important. The best experiments are those which are

fully instantiable and whose results have unambiguous interpretations. I have shown how

experiments can be designed using a constraint back-propagation technique.

* The Domain Theory

The performance of the causal modelling system depends in part on the correctness of the do-

main theory. This is a knowledge engineering issue. Three broad classes of causal mechanisms

appear in the domain theory, all of which reflect well-known conservation laws from the field of

physics. In propagations, stuff is transferred along some medium from one location to another.

In transformations, stuff changes form within an object. In field interactions, the motion of

an object is relative to its position within a field. The domain theory is neither consistent

(because of approximations which abstract away from unusual cases), nor complete.



* Learning Compositions of Causal Mechanisms

Compositions of causal mechanisms in the domain theory are learned by a standard explanation-
based learning technique. Intersections between mechanisms are noted as causal models are
constructed and these composed mechanisms are generalized by generalizing their consituent
mechanisms while preserving the constraints at the intersections.

* Combining Empirical and Analytical Learning Methods

The empirical and analytical components of my learning system interact in these interesting
ways: Conjectures with a purely or highly empirical basis can be made more justified by
employing the analytical method of instantiating causal mechanism descriptions at a more
detailed level of explanation. Competing hypotheses, even justified hypotheses, can be distin-
guished empirically by designing an experiment for which the hypotheses generate incompatible
predictions.

* Representing Causality

Two representations of causality are used by my learning system. One representation is associ-
ationist, and casts causal relations as functional dependencies between quantities; it is adequate
for an inductive approach to causal modelling. The other representation is mechanistic, using
terms such as medium and barrier; it supports the generation of justified causal explanations
which get at why the effect should necessarily follow from the cause. The design of both of
these representations was inspired by models of causality from the field of philosophy.
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Appendix A

The Qualitative Calculi

This appendix contains the qualitative calculi which show how the signs and transitions of quantities
combine under negation, multiplication, and addition.

A.1 Calculi for the Signs of Quantities

This section contains the qualitative calculi for the signs of quantities. The three possible signs are
0, +, and -.

A.1.1 Signs under Negation

sign -sign
0 0
+A.1.2 Signs under Multiplication
- +

A.1.2 Signs under Multiplication

sign1 sign2 sign1 x sign2

0 0 0
+ 0 0

0 0
0 + 0
+ + +

- +
0 0
+

-- +



A.1.3 Signs under Addition

Note the indeterminism.

signl sign2 signl + sign2
0 0 0
+ 0 +

- 0 -

0 + +

+ + +
- + 0+-
0 -- -

+ - 0+-

A.2 Calculi for the Transitions of Quantities

This section contains the qualitative calculi for the transitions of quantities. The thirteen possible
transitions are defined below.

Transition Old
sign

New Direction of
sign

Abbreviation
change

STAY0

STAY +

STAY-

ADD+

ADD-

SUBTRACT+

SUBTRACT-

ENABLE+

ENABLE-

DISABLE +

DISABLE-

REVERSE +

REVERSE-

0
+

+

+

0
0
+

+

0
+

+

+

+

0
0

- +

STO
ST+
ST-

AD+

AD-

SB+

SB-

EN+

EN-

DB+

DB-

RV+

+ RV-



A.2.1 Transitions under Negation

Transition -Transition
STO STO
ST+ ST-
ST- ST+
AD+ AD-

AD- AD+

SB+ SB-
SB- SB+

EN+ EN-
EN- EN+
DB+ DB-

DB- DB+

RV+ RV-
RV- RV+

A.2.2 Transitions under Multiplication

Redundant combinations due to the commutativity of multiplication are not listed.

Transition1 Transition2 Transitionl x Transition2
STO STO STO

STO ST+ STO

STO ST- STO

STO AD+ STO

STO AD- STO

STO SB+ STO

STO SB- STO

STO EN+ STO

STO EN- STO

STO DB+ STO
STO DB- STO

STO RV+ STO
STO RV- STO



Transitionl Transition2 Transitionl x Transition2

ST+ ST+ ST+

ST+ ST- ST-

ST+ AD+ AD+

ST+ AD- AD-

ST+ SB+ SB+

ST+ SB- SB-

ST+ EN+ EN+

ST+ EN- EN-

ST+ DB+ DB+

ST+ DB- DB-

ST+ RV+ RV+

ST+ RV- RV-

ST- ST- ST+

ST- AD+ AD-

ST- AD- AD+

ST- SB+ SB-

ST- SB- SB+

ST- EN+ EN-

ST- EN- EN+

ST- DB+ DB-

ST- DB- DB+

ST- RV+ RV-

ST- RV- RV+

AD+ AD+ AD+

AD+ AD- AD-

AD+ SB+ ST+ AD+ SB+

AD+ SB- ST- AD- SB-

AD+ EN+ EN+

AD+ EN- EN-

AD+ DB+ DB+

AD+ DB- DB-

AD+ RV+ RV+

AD+ RV- RV-

AD- AD- AD+

AD- SB+ ST- AD- SB-

AD- SB- ST+ AD+ SB+

AD- EN+ EN-

AD- EN- EN+

AD- DB+ DB-

AD- DB- DB+

AD- RV+ RV-

AD- RV- RV+



Transition1 Transition2 Transition1 x Transition2
SB+ SB+ SB+

SB+ SB- SB-

SB+ EN+ EN+

SB+ EN- EN-

SB+ DB+ DB+

SB+ DB- DB-

SB+ RV + RV+

SB+ RV- RV-

SB- SB- SB+

SB- EN+ EN-

SB- EN- EN+

SB- DB+ DB-

SB- DB- DB+

SB- RV+ RV-

SB- RV- RV+

EN+ EN+ EN+

EN+ EN- EN-

EN+ DB+ STO

EN+ DB- STO

EN+ RV+ EN-

EN+ RV- EN+

EN- EN- EN+

EN- DB+ STO

EN- DB- STO

EN- RV+ EN+

EN- RV- EN-

DB+ DB+ DB+

DB+ DB- DB-

DB+ RV+ DB+

DB+ RV- DB-

DB- DB- DB+

DB- RV+ DB-

DB- RV- DB+

RV+ RV+ ST+ AD+ SB+

RV+ RV- ST- AD- SB-

RV- RV- ST+ AD+ SB+



A.2.3 Transitions under Addition

Redundant combinations due to commutativity are not listed. Note again that additive combinations
are much more indeterminite than mutliplicative combinations.

Transitionl Transition2 Transition1 + Transition2
STO STO STO
STO ST+ ST+
STO ST- ST-

STO AD+ AD+
STO AD- AD-

STO SB+ SB+
STO SB- SB-

STO EN+ EN+
STO EN- EN-

STO DB+ DB+
STO DB- DB-

STO RV+ RV+
STO RV- RV-

ST+ ST+ ST+
ST+ ST- STO ST+ ST-
ST+ AD+ AD+
ST+ AD- AD- SB+ EN- DB+ RV+
ST+ SB+ SB+
ST+ SB- AD+ SB- EN+ DB- RV-
ST+ EN+ AD+
ST+ EN- SB+ DB+ RV+

ST+ DB+ SB+
ST+ DB- AD+ EN+ RV-
ST+ RV+ SB+ DB+ RV+
ST+ RV- AD+ EN+ RV-
ST- ST- ST-
ST- AD+ AD+ SB- EN+ DB- RV-
ST- AD- AD-
ST- SB+ AD- SB+ EN- DB+ RV+
ST- SB- SB-

ST- EN+ SB- DB- RV-
ST- EN- AD-
ST- DB+ AD- EN- RV+
ST- DB- SB-

ST- RV+ SB- DB- RV-
ST- RV- AD- EN- RV+



Transition1 Transition2 Transition1 + Transition2
AD+ AD+ AD+

AD+ AD- STO ST+ ST- AD+ AD- SB+ SB- EN+ EN- DB+ DB- RV+ RV-
AD+ SB+ ST+ AD+ SB+

AD+ SB- AD+ SB- EN+ DB- RV-

AD+ EN+ AD+

AD+ EN- SB+ DB+ RV+

ADt DB+ ST+ AD+ SB+

AD+ DB- AD+ EN+ RV-

AD+ RV+ ST+ AD+ SB+ DB+ RV+

AD+ RV- AD+ EN+ RV-

AD- AD- AD-

AD- SB+ AD- SB+ EN- DB+ RV+

AD- SB- ST- AD- SB-

AD- EN+ SB- DB- RV-

AD- EN- AD-

AD- DB+ AD- SB+ EN- DB+ RV+

AD- DB- ST- AD- SB-

AD- RV+ AD- EN- RV+

AD- RV- ST- AD- SB- DB- RV-

SB+ SB+ SB+

SB+ SB- STO ST+ ST- AD+ AD- SB+ SB- EN+ EN- DB+ DB- RV+ RV-

SB+ EN+ ST+ AD+ SB+

SB+ EN- SB+ DB+ RV+

SB+ DB+ SB+

SB+ DB- ST+ AD+ SB+ EN+ RV-

SB+ RV+ SB+ DB+ RV+

SB+ RV- ST+ AD+ SB+ EN+ RV-

SB- SB- SB-

SB- EN+ SB- DB- RV-

SB- EN- ST- AD- SB-

SB- DB+ ST- AD- SB- EN- RV+

SB- DB- SB-

SB- RV+ ST- AD- SB- EN- RV+

SB- RV- SB- DB- RV-

EN+ EN+ EN+

EN+ EN- STO EN+ EN-

EN+ DB+ ST+ AD+ SB+

EN+ DB- RV-

EN+ RV+ ST+ AD+ SB+ DB+ RV+

EN+ RV- RV-



Transition1 Transition2 Transitionl + Transition2
EN- EN- EN-

EN- DB+ RV+

EN- DB- ST- AD- SB-

EN- RV+ RV+

EN- RV- ST- AD- SB- DB- RV-

DB+ DB+ DB+

DB+ DB- STO DB+ DB-

DB+ RV+ RV+

DB+ RV- ST+ AD+ SB+ EN+ RV-

DB- DB- DB-

DB- RV+ ST- AD- SB- EN- RV+

DB- RV- RV-

RV+ RV+ RV+

RV+ RV- STO ST+ ST- AD+ AD- SB+ SB- EN+ EN- DB+ DB- RV+ RV-
RV- RV- RV-


