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Abstract

This paper deals with the problem of controlling the interactions of
flexible manipulators with their environment. For executing a force
control task, a manipulator with intrinsic (mechanical) compliance has
some advantages over the rigid manipulators commonly employed in
position control tasks. In particular, stability margins of the force
control loop are increased, and robustness to uncertainties in the model
of the environment is improved for compliant arms. On the other hand,
the deformations of the arm under the applied load give rise to errors,
that ultimately reflect in force control errors. This paper addresses
the problem of evaluating these errors, and of compensating for them
with suitable joint angle corrections. A solution to this problem is
proposed in the simplifying assumptions that an accurate model of
the arm flexibility is known, and that quasi-static corrections are of
interest.
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1 Introduction

When a manipulator interacts with the environment, there is a force exchange between the
links of the robot and the object(s) being contacted. In many robotics applications, the
assigned task consists in precisely applying a specified force and/or moment to the environ-
ment (force control problem); in addition, the control of motions of the robot end-effector
along some directions can be specified (hybrid control problem). In order to accomplish such
tasks, it is necessary to achieve a precise positioning of the part(s) of the manipulator in
contact with the environment. On the other hand, force control of manipulators poses diffi-
cult problems, as abundantly illustrated in literature (a classical review is given by Whitney
[1987]). Probably, the most important of these problems is the tendency of force control
loops to become unstable in presence of small perturbations of the model parameters used
to design the controller. One of the reasons of this difficulty can be described very loosely by
noting that the control of the contact forces between two objects within a given accuracy is
equivalent to controlling their relative position within an accuracy k times higher, where k
here is the combined stiffness of the bodies, and is typically a very large number. Reducing
the stiffness of the robot-environment system is therefore a viable way of alleviating force
control problems: a more precise formulation of this concept can be found e.g. in [Roberts,
Paul, and Hillberry, 1985], [Eppinger and Seering, 1987], and [Chiou and Shahinpoor, 1990].
This observation suggests an interesting application of flexible robots, that might encour-
age to design future robots with a built-in compliance. Besides this advantage, the design
of lightweight, slender link robot arms meets other important requirements in applications
such as space or underwater, and could reduce the cost of robot arms.

However, if the manipulator is composed of flexible links, and/or its joints are compliant,
the positioning accuracy of the robot may be greatly reduced. Neglecting its flexibility, i.e.
considering the manipulator as a chain of rigid bodies connected by perfect joints, the arm
position in the world frame can be evaluated on the basis of the joint positions and the
forward kinematic equations. This estimate of the arm posture is usually very inaccurate
for flexible manipulators in contact with the environment, due to the deformation of its
structure caused by contact forces.

In order to reduce these positioning errors, the force information provided by the force
sensors used to close the force control loop can be exploited. However, these sensors are
usually located as close as possible to the end-effector, so that the measured force is expressed
in a reference frame whose position and orientation in the world frame depend in turn on the
elastic deformations. A consequence is that the force information provided by the sensors
cannot be directly used in the control loop. However, if a model of the arm compliance is
available, it is possible, by means of a recursive algorithm, to compute that position and
orientation. We will describe and use such an algorithm in section 4 to evaluate the real
position and orientation of a flexible robot given the forces acting on it. A substantially
equivalent method for predicting the deflection of serial manipulators with flexible links and



joints has been presented by Fresonke, Hernandez, and Tesar [1988].
Once the deflections of the arm under the given load are known, appropriate corrections

of the robot inputs can be applied to minimize the force/position errors due to flexibility.
Since the overall deflection of the robot is comprised of both joint and link flexibilities, the
determination of this correction is not trivial.

In this paper, we will be mostly concerned with the problem of finding the optimal joint
position in order to minimize the error in a force-control task. This problem is basically
regarded as a planning phase preceding real-time implementation, so that a quasi-static
assumption is made, and dynamic effects of flexibility are disregarded. In general, the
modification that may be applied to the joint inputs will be able to compensate only in
part for the deformation of the manipulator. On the other hand, the case when there are
more joints than strictly necessary in the kinematic chain (redundant manipulators) is also
considered. In order to homogeneously treat both such defective and redundant cases, the
correction problem is cast in a nonlinear optimization framework, as described in section 3.

The paper is organized as follows. In section 2, the model considered for the links of the
flexible manipulator is described, and the main assumptions used in this paper are given.
In section 3 the problem of the force error compensation is formulated as a minimization
problem, and an algorithm for its solution is presented. Section 4 describes some specific
details of the algorithm in the context under consideration, while section 5 reports some
examples. The final section 6 concludes with comments about the suggested technique and
plans for future activity.

2 Model of the Flexible Arm

In this section, both a general description of the problem, considering a flexible robot arm in
interaction with an environment that reacts to its movements, and the simplifying assump-
tions used in the rest of the paper are presented.

The general structure of a flexible arm dynamics can be described by a set of partial
differential equations, of degree two for the torsional and axial modes, and four for the
bending modes of the links. Consider for instance the simple manipulator link depicted in
Figure 1, with constant cross-section and lying in a horizontal plane. In this case, only the
axial and bending deflections of the link in the plane are of interest. The axial dynamics can
be written as

02 02x
EA d - d- = O (1)

where C is the coordinate along the undeformed beam axis, x = x((, t) is the displacement
at time t of the section initially in (, E is the elastic modulus of the link, and p its mass per
unit length.
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Figure 1: A simple manipulator link and its elastic model

The bending dynamics of the flexible link can be written as

a4y 2y
EJ- + p•- = 0 (2)

where J is the cross-sectional moment of inertia of the beam, and y is defined as (see e.g.
[Korolov and Chen, 1988])

y(C, t) = w(C, t) + (q.

Here, w is the elastic displacement measured from the undeformed axis (see Figure 1),
and q is the nominal (hub) position of the joint. Note that lumped joint elasticity is not
considered in this example.

The overall manipulator dynamic relationship can be built (for serial link arms) by con-
catenating differential equations of this type by their boundary conditions, that express the
equilibrium of control torques, inertial moments, and constraints at the ends of the links. In
the example of Figure 1, boundary conditions for eq. (1) can be written as

EA,] C=L f, (3)

x(0,t) = 0, (4)

where A is the cross-section area, L is the total length of the link, and f, is the axial
component of the force exerted on the link's end by the hub of the next link (or by the
environment if the distal link of the arm is considered). The four boundary conditions for
eq. (2) are:



EJ i9j=oJ+ T - = 0; (5)

y(0,t) = 0; (6)

EJ m; (7)a(2 C=L

EJ fy, (8)0(3 C=L

where r is the control torque on the joint preceding the link under consideration, Jh the
lumped moment of inertia at the hub, f, and m the bending component of the force and the
torque applied at the link's extremity.

The force f and torque m at the link end balance nex t link's forces and control torque,
except for the distal link, for which they represent the environment reaction on the robot
end-effector. These interaction forces, in general both time and space-varying, act as a
forcing input on the dynamic chain.

When only quasi-static conditions are considered, dynamic terms in the relationships
above can be neglected. Therefore, eq. (1) and eq. (2) reduce to the following ordinary
differential equations of elastic beams:

82xS- 0, 
(9)a( 2

4y
- 0. (10)

Deflections of links under the loads applied at their extremities can be determined by
integrating such relationships. For instance, integrating eq. (9) with the boundary conditions
( 3), ( 4), we obtain:

LfA

EA'

while integration of eq. (10) with the boundary conditions ( 6)-( 8) leads to:

L3f, L 2m
Ay = +

3EJ 2EJ'
T 2 f Tm

2EJ LEJ
= E E "I



where Ax, Ay are the displacements of the extremity of the link along the link axis and
normal to it, respectively, and AO is the rotation of the link's end.

In the three-dimensional case, similar relationships hold, and a general linear equation
relating the six elastic displacements of the link's end with the applied load can be written
in matrix form as:

0 L3 0 0 0 L2
3EJ 2EJ

EJ 0 2EJ 0

0 0 0 0 0 0
S 0 0 0 0 -00 0 0 0 L

L2 2EJ Ej L

I]m (11)

where Ad and AO are the displacements and rotation vectors of the link's extremity in 3D
space, G is the shear modulus of the link's material, and Jo is the polar momentum of the
beam cross section.

The forces and torques on the distal ends of the links can be evaluated by means of
static equilibrium considerations, using the recursive algorithm presented in section 4. The
recursive calculation is started at the last link, where the load coincides with the robot -
environment interaction forces, which are assumed to be known (by means e.g. of a wrist
mounted force/torque sensor). However, this knowledge is relative to a reference frame E
fixed to the end-effector. By solving the elastic displacements of every link, the geometric re-
lationship of the end-effector frame E with the fixed (base) frame B can be found. Therefore,
also the relationship between the interaction forces in E and in B is established as

mf BRE 0 Ef

Bf P[ RE BRE Em (12)

where Bpe is a skew-symmetric matrix equivalent to the cross product (Bp x), being Bp
the vector of the linear displacements of the end-effector caused by both the flexibility and
the kinematics of the mechanism, and BRE is the corresponding rotation matrix.

Introducing the symbol BKE for the force tranformation matrix, and the vector w =
[fT mT]T (wrench), we rewrite for convenience eq. (12) as

BW = BKE EW (13)

AO



3 Compensation of Force Errors

In general, the wrench computed in eq. (13) is not equal to the desired one. It is therefore
required to take some corrective actions, i.e. to apply proper set-points to the position/force
controllers of the manipulator joints in order to compensate for the error.

The correction of interaction force errors may be cast in a nonlinear optimization problem
form. The kernel of the adopted algorithm may be related to the steepest descent method
[Press et al., 1986], and it has been utilized in other fields of robotics, in particular in the
solution of the inverse kinematic problem for redundant and non-redundant manipulators,
see for instance [Balestrino, DeMaria and Sciavicco, 1984], [Wolovich and Elliott, 1984],
[Sciavicco and Siciliano, 1986, 1988], [Das, Slotine and Sheridan, 1988].

The basic idea is the following. Define a wrench error as

Bed ] r:-- B B Bw
e = B= -Bw

and a quadratic positive definite function as

eTPe
V(e) 2 (14)

where P is a symmetric positive definite matrix. Because of equations (12)-(13), the wrench
Bw is a function of q, so that V(e) depends on the joint position vector. The optimal joint
positions q are those minimizing V(q), and therefore we seek a control law for the arm joint
positions such that the robot is driven towards the optimal configuration. Since V(q) may
be regarded as a Lyapunov function, the convergence to its minimum is guaranteed if the
position control law is such that the value of V is kept decreasing along the trajectories of
the system.

In the continuous time domain, the convergence to the minimum is achieved if the fol-
lowing Lyapunov condition is satisfied:

S= eTPe < 0. (15)

Since

e = Bwd - B BWd - BKE EW

it follows that

S d  O(BKE Ew)
at
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Figure 2: Block diagram of the proposed algorithm.

or

e = B - G4 (16)

being G = 8(BK" 1w) the Jacobian matrix of Bw. If the update law f or the joint position
is chosen as

4 = A + [ ]GPe, A > 0, (17)
(e PGGTPe)

it can be easily shown that the condition (15) is verified.
Sciavicco and Siciliano [1988], using the same algorithm for solving the inverse kinematic

problem, pointed out how eq. (17) may be, for computational convenience, simplified to

1 = "AGT Pe,

allowing in this case the function V to be negative-definite only outside a region of the error
space containing the stability point e = 0. In this way, the maximum tracking error is
directly related to xd and inversely to A, while in steady state, since id = 0, the tracking
error will be in any case zero. In this situation, an increase in the gain A results into a
reduction of the tracking error, which may therefore be arbitrarily reduced. The resulting
algorithm is shown in the form of a block diagram in Figure 2.

In discrete time, the stability proof of the algorithm is more complex. A detailed discus-
sion of such proof has been presented in [Das, Slotine, and Sheridan, 1988] for the inverse
kinematic solution of redundant manipulators. One of the major modifications in the dis-
crete time version of the algorithm is that, in order both to obtain the maximum convergence
rate for the scheme and to avoid instability problems, the gain A has to be updated at each

S e II , I IV1 I A



sampling period T. In fact, given the discrete time version of the Lyapunov function, eq.
(14), at t = nT

e Pen
V, 2

the goal is now to make negative the difference V,+1 - Vn. If the joint velocities are computed
at the instant t = nT as

4n = AnGPen,

the convergence of the algorithm is guaranteed with the choice

1 e(PTGSG T Pen

T e(PTGnSnG7PGnSGPen

where Sn is a diagonal matrix whose elements are properly computed to limit the maximum
values of G T P en, [Das, Slotine, and Sheridan, 1988].

A final observation relative to this scheme concerns the possibility of getting "stuck",
i.e. to generate a null joint velocity vector, 4 = 0, also if e : 0. This happens when
Pe E Null(GT). However, this does not represent a serious limitation to the applica-
bility of the algorithm. As a matter of fact, besides being an easily detectable condition
(4 = 0; e : 0), it can be argued that the term Pe can be easily modified in such a way that
Pe 0 Null(GT). This is performed by adding suitable constraints on the joint space (as
done by Das, Slotine and Sheridan [1988]), or in the task space (as suggested by Sciavicco
and Siciliano [1986]). Obviously, in this latter case if the trajectory has some components
which are constantly in Null(GT), no algorithm will be able to compensate for tracking
errors.

4 Computation of the Matrices BKE and G

In order to apply the algorithm, it is necessary to compute the matrices BKE and G -
8(BKE EW)

8q , eq. (13), eq. (16). In this section, these two matrices are calculated for a
manipulator with a generic kinematic structure with n degree-of-freedom.

4.1 Computation of the force/torque transform matrix BKE

In the previous sections, the wrench error has been defined as

e = BW d - BKE EW



where the wrench transformation matrix, see eq. (12), is defined as

[ BRE 0 (18)
BKE = B RE B (18)

The sub-matrices BRE and Bp® are in general complex functions of the compliance of the
joints, of the link flexibility and of the kinematics of the manipulator. Since these quantities
depend on the interaction forces and the joint position, in general it is not trivial to compute
the matrix BKE. A possible and efficient way to determine this matrix is to use a recursive
method, consisting in computing the effects of the force/torque applied to the i-th link on the
(i-1)-th link, starting with the distal link. These effects are expressed by a transformation
matrix Ki, with the same structure of the transformation matrix in eq. (18), and such that

wi-1 = Kiwi (19)

Therefore, the matrix EKE can be expressed as the product of the Ki as

BKE = K 1K 2 ... K.= 'iKi (20)
i=1

where the generic term Ki, according to the hypothesis of small deformations, can be com-
puted as

Ki = Ki,ki.(qi)Kioint(ri)Ki,f•le (wi) (21)

where Ki,kin depends on the geometry of the link, Kiiot on the joint compliance, and Ki,ft•e,,
on the link flexibility. In the following, the expressions of these three transformation matri-
ces are given. For the sake of simplicity, in the following discussion only rotational joints
are taken into account in the kinematic structure of the manipulator: however, equivalent
considerations may be done also for the case of prismatic joints.

The elements of the matrices Ri,kin and P®,i,kin are only functions of the geometric and
kinematic parameters of the i-th link. Using. the Denavit-Hartenberger notation, qi- 1 is the
nominal joint angle, ai and di are the twist and the offset of the i-th link, and ai represents
the length of the link. The expressions of the matrices Ri,kin and P®,i,kin are

Ri,kn = Sqi-_lo, Cq,_l Cj -- S8 , (22)
-qi-2 Si cqi-1- 9i C-i



and

0 -cadi aisq,_1 - Cq,_iS8,di

Pikin - Cidi 0 -aicqi_1 - Sqgi_l•idi (23)
-- ais_ + cqi.S, d; aicq,i_ + Sqi_ Saidi 0

where 8, = sin(x) and c, = cos(x), as usual in transform matrices.

The matrix Kijoit is composed by the sub-matrices Ri,oint and P®,ijoint

cC -s' 0
Riioint = Rot(zi, kcini) = s ' c' 0

001

and

0 0 ai sin(k,,iri)

Pe,ijoit = 0 0 ai[1 - cos(kc,iri)]
-ai sin(kc,ir) -ai[1 - cos(kc,ii)] 0

where ke,i and ri are the joint compliance and the torque acting on the joint, respectively.

Finally, the i-th matrix Ki,flex is composed by the submatrices Ri,-lez and P®,i,fle,,
whose elements are functions of the elastic displacements of the link. The evaluation of
such displacements is not an easy task in general. Some sophisticated techniques, such as
finite elements methods, can be applied profitably to this problem; in other cases, a direcxt
calibration of displacements under known loads can be a viable solution to obtain a flexibility
model for the arm. For our purposes here, however, a rather simple flexibility model for the
links, considered as slender beams with constant section, can suffice. In the hypothesis of
small elastic deformations, the linear and rotational displacements of the link, expressed as
a 6-dimensional vector, are as shown in section 2, eq. (11):

[ di,zfle•
AOfidlex

0 0 0 0 0 0

0 0 0 00 0 -" 0 -_- 03EJ 2EJ

0 0 0 a 0 0
a2.

2EJ EJ

0 ~- 0 0 0 ai
2EJ EJ

The matrix Ri,fl, is computed as a rotation matrix about an axis parallel to 60i,fp,e of
an angle given by the module of 6 Oi,fle,. As pointed out in [Fresonke, Hernandez and Tesar,
1988], this approximation is valid as long as small deformations are assumed.

Mfi



The recursive computation of eq. (19), starting from the distal joint for which the
force/torque sensor provides Ew, yields the deformations generated by the flexibility and
the joint compliance, and therefore all the matrices in eq. (20), allowing the transformation
of the force vector from the frame E located in the end-effector to the base frame B .

4.2 Computation of the Jacobian Matrix G = B--

The application of the algorithm presented in section 3 requires the computation of the
matrix G = = -- K•q;w), in which, in general, both BKE and Ew are functions of the
joint position vector q. Since the wrench transformation matrix EKE is a function of the
joint positions, see equations (12), (13), the Jacobian matrix G may be computed as

8(BKE EW) O(ln=1 K, EW)G-
aq 8q

O(fI=1K,) Ew n aEw

O(rfl 1 K,) Ew + n .Ow=-w + (it K,)Oq i=1 x O

In general, the computation of this matrix requires the knowledge of the manipulator-
environment interaction, eq. (11), for the calculation of . In following, only the case in
which Ew may be considered constant in the range of motion caused by elastic displacements
is taken into account. The matrix G may be computed as

G • (l 1 Ki) EW T EW
aq

where T is a three-dimensional matrix composed by n Ti (6x6) matrices given by

Ti = (ITI Kj,kinKj~jo•.Kj,f•) d OKj,kin
=(Ti J7 K3 ,kinKjitiK 1 ,f.,) -K-,kqi ( Ki,jointKj,flezKj+l,kin)

j=1 dl j=i

where conventionally we assume Kn+l,kin = 16. Therefore, the generic i-th column of the
matrix G is calculated as

Gi = Ti E



5 Case Studies

In this section, two examples of the application of the algorithm to the force control of flexible
manipulators in interaction with the environment are illustrated. One of the characteristics
of the presented technique is that the algorithm allows consideration of robots with arbitrary
number of degrees of freedom (both redundant and defective), as well as with arbitrary link
shape. Note that in eq. (22), (23) the complete set of Denavit-Hartenberg parameters are
taken into account.

The case studies address the simulation of two planar manipulators with rotational joints.
The manipulators are a planar 3 degree-of-freedom and a redundant 5 degree-of-freedom
planar arm. All the links of both manipulators are assumed to have the same geometrical
and mechanical structure, with a circular cross-section with radius 10 mm, and a length of
1000 mm. The material elastic constants are those of common steel, while for the joints
a compliance of kd = 10' (Nm/rad) has been assumed. The matri x P is, in both the
examples, an identity matrix with proper dimensional units. Finally, in both the cases, the
presented algorithm is iterated until a value V(e) < 10'- for the error function is reached.

5.1 A 3 Degree-of-Freedom Planar Manipulator

The manipulator considered in the first example consists of three links and three rotational

joints with parallel axes. A wrench Ew = 0 10 0 0 0 0 0] (N)-(Nm) is supposed
to be applied at the tip of the arm. The initial - undeformed - pose of the manipulator
is shown in Figure 3.a. The effects of the applied wrench on the compliant structure are
reported in Figure 3.b, where the deformed configuration of the manipulator is shown. It
has to be pointed out that, since the joint encoiders are placed before the elastic elements,
the arm appears to the control system to be in the undeformed configuration reported in

Figure 3.a. In this situation, if the force set-point Bwd = [ 0 10 0 0 0 30 ]T (N)-(Nm)

is specified, a force error Be = 11.1561 0.067 0 0 0 0.02506 T (N)-(Nm) results. In
Figure 3.c the computed corrective actions on the joint positions are shown, i.e. the nominal
configuration to which the arm joints have to be positioned to minimize the force error e.
In Figure 3.d the final (compensated) configuration of the arm is shown. In Table 1.a,b nu-
merical results relative to this case are presented. In particular, Table 1.a reports the initial
position/orientation, the measurements of the joint encoders, the initial applied wrench ex-
pressed in the base frame, the wrench error and the initial - virtual - joint rotation equivalent
to the rotation/flexion of the structure. In Table 1.b the relative data after the correction
are reported. The final value of the error function is V(e) < 10- 6 , and this result is achieved
in 335 steps.
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tip position

joint encoders (deg)

wrench

wrench error

equivalent joint rot. (deg)

Initial data

0.9933 -0.1156 0.0000 2.9885
0.1156 0.9933 0.0000 0.2513

init -
0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

Oset-point = [ 0.0000 0.0000 0.0000]

Bwin, = -1.1561 9.9330 0.0000 0.0000 0.0000 29.9749

Beinit = 1.1561 0.0670 0.0000 0.0000 0.0000 0.0251

Oinit = [3.4962 2.2134 0.9288]

Table 1.a: The initial configuration data for example 1.



tip position

joint encoders (deg)

wrench

wrench error

equivalent joint rot. (deg)

Final data

1.0000 0.0000 0.0000 3.0000
0.0000 1.0000 0.0000 0.0259

Tfinal = 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

O.e.toi. = [-1.9043 -2.4893 -2.2469]

Bwfinal = [5.3 10- ' 10.0000 0.0000 0.0000 0.0000 30 ]T

Befinl = -5.3 10-7 1.4 10 - 14 0.0000 0.0000 0.0000 5.3 10 - 7

Ofin.l= [3.4962 2.2134 0.9288 ]

Table 1.b: The final configuration data for example 1.

5.2 A 5 Degree-of-Freedom Planar Redundant Manipulator

The second manipulator taken into consideration is a redundant planar arm. The robot,
shown in Figure 4.a, is a 5 degree-of-freedom robot. A wrench Ew = [ 0 10 0 0 0 0 ]T
(N)-(Nm) is supposed applied to the tip of the arm, as in the previuos case. In this

case, the force error, with a set point Bwd = [ 0 10 0 0 0 50 ]' (N)-(Nm), is Be =

S2.29975 0.4598 0 0 0 0.3656 AT (N)-(Nm). In Figure 4.a-d the initial undeformed and
deformed configurations, as well as t e corrective actions and the final position of the manip-
ulator are shown. The numerical results relative to this example are reported in Table 2.a,b.
In this case, because of the larger number of joints and the greater value of the initial error,
a value of the error function V(e) = 9.110-6 is reached after 1427 iterations of the algorithm.
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tip position

joint encoders (deg)

wrench

wrench error

equivalent. joint rot. (deg)

Initial data

0.9540 -0.2998 0.0000 4.8719
0.2998 0.9540 0.0000 1.0526
0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

0 .,et-oint = [ 0.0000 0.0000 0.0000 ]

Bin = [ -2.9975 9.5402 0.0000 0.0000 0.0000 49.6342 ]

Beinit= 2.9975 0.4598 0.0000 0.0000 0.0000 0.3657

Oinit= [ 6.0317 4.7724 3.4963 2.2134 0.9288 ]

Table 2.a: The initial configuration data for example 2.

-----



tip position

joint encoders (deg)

wrench

wrench error

equivalent joint rot. (deg)

Final data

1.0000 0.0000 0.0000 5.0000
0.0000 1.0000 0.0000 0.0720

Tinl = 0.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000

Oe-oit = [ -2.7892 -5.4324 -4.5501 -2.9964 -1.7230

Bwfina = [-8.8 10- 7 10.0000 0.0000 0.0000 0.0000 50 ]

efinl = [ 8.8 10- 7 4.1 10-1 4 0.0000 0.0000 0.0000 -2.0 10- ]T

Ofi,•• = [6.0674 4.7829 3.4983 2.2136 0.9288 ]

Table 2.a: The final configuration data for example 2.

6 Conclusions

In this paper, an algorithm for the compensation of interaction force errors for flexible
manipulators has been presented. Because of joint compliance and link flexibility, the prob-
lem is non-linear; the proposed solution employs the framework of non-linear optimization
techniques. In fact, the presented algorithm is related to the steepest descent method, a
well-known technique in this area. The method is also similar to algorithms proposed for the
kinematic solution of redundant manipulators. The basic idea is to control joint positions
so as to minimize a quadratic function force errors. A Lyapunov stability analysis demon-
strates the stability and convergence of the method. Examples of the proposed algorithm
are reported, showing the effectiveness of the technique also for the case of redundant arms.
The proposed solution is used in this paper as an off-line reference generator.

Further developments of this research will investigate extensions of the method to more
general problems. In particular, activity is currently in progress in the following areas:



* Modification of the method to take into account interaction forces that vary (in the
end-effector reference frame) during the execution of the task, such as e.g. gravity and
inertial loading;

* Modification of the iterative algorithm in order to achieve better convergence speed
and trajectory smoothness, so as to allow the application of the method as an on-line

(real-time) high-level force controller for flexible manipulators.
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