VMCStore: A TPM-based Trusted Storage Framework
by
Jonathan M. Rhodes
S.B.,, C.S. M.I.T., 2006
Submitted to the Department of Electrical Engineering anth@uter Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Corep&cience
at the Massachusetts Institute of Technology
May 2007

Copyright 2007 Jonathan M. Rhodes. All rights reserved.

The author hereby grants to M.1.T. permission to reprodunck a
to distribute publicly paper and electronic copies of thissis document in whole and in part in any
medium now known or hereafter created.

Aut hor

Departnent of Electrical Engineering and Conputer Science
May 25, 2007

Certified by
Srinivas Devadas
Prof essor of Electrical Engineering and Conputer Science
Thesi s Co- Supervi sor

Certified by

Lui s Sarnenta
Research Sci enti st
Thesi s Co- Super vi sor

Accept ed by

Arthur C. Smith
Prof essor of Electrical Engineering
Chai rman, Departnment Conmittee on G aduate Theses

This page left intentionally blank

VMCStore: A TPM-based Trusted Storage Framework

by
Jonathan M. Rhodes

Submitted to the
Department of Electrical Engineering and Computer Science

May 25, 2007

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Corep&cience

ABSTRACT

This thesis introduces VMCStore, a framework for develgpinisted storage applications on an untrusted
server using a trusted platform module (TPM). The framevadidws the server to provide trusted storage
to a large number of clients, where each client may own andeseral devices that may be offline at
different times, and may not be able to communicate with edlohr, except through the untrusted server
(over an untrusted network). The clients only trust the esvi PM; the server's BIOS, CPU, and OS are
not assumed to be trusted. VMCStore draws on the ideaistofl monotonic counterandvalidity proofs

to provide tamper-evident storage, allowing the user teaehodifications to his data, as well as replay
attacks. In particular, VMCStore uses TPM/J, a Java-bagtidadk low-level access to the TPM, to create
virtual monotonic counters using the monotonic countetsteansport sessions of the TPM 1.2.
VMCStore also provides a set of thrieg-basedvalidation algorithms, which have been tested over
PlanetLab and analyzed in this thesis. The VMCStore framleWwas been developed in a modular fashion,
allowing the user to develop and test new applications atidatgn algorithms.

Thesis Co-Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computdefoe

Thesis Co-Supervisor: Luis Sarmenta
Title: Research Scientist

Acknowledgments

I would like to take a moment to thank the myriad of people wheehmade this thesis possible.

First of all, | would like to express my gratitude to my grolgrof. Srinivas Devadas, for three years of
encouragement, support and guidance, and without whomyliddave never ended up with this wonderful
group; Luis Sarmenta and Marten van Dijk, for countless fi@pent together, pouring over ideas and
teaching me the ways of the researcher; Sally Lee, for beingfaite source of administrative wisdom,
and a friend in times of trouble; and Charlie O’Donnell, foways being willing to give me a helping hand
whenever | was getting confused by Linux or life.

| would also like to thank all my friends here at MIT, who hawepged so much to keep me grounded
when | thought the stress would be too much. Thanks to all mepdis from Next House- Shaun, Min,
Minji, and Marj — who have faithfully reached out to me when | seemed to all sdppear from this
world. Many thanks to all of the Cross Products, for yourrfdehip, prayers, words of encouragement, and
reminders that God gives us hope, even in the bleakest o$tifgeecial thanks to Jon Wetzel, my brother-
in-arms in the exploration of life, love, and faith, and @r&ilcox, for helping me to relax, and reminding
me that God always provides a silver lining behind every gtayd.

And how can | express enough gratitude to the ones who haee gie immeasurable support and love
for the past 23 years? The guidance, patience, encourageanenwisdom of my parents has been central
to my development- to my understanding of the world, my faith, and who | am. Antheut their sacrifice
and support, | would have never had these opportunities.yNeamnks also to my brother, for always being
there when | needed someone to talk to, and my grandparerftstfdully reaching out to me, even when |
have been too busy to reach back.

And finally, above all, I would like to thank God, for the stgth and hope He has given me for the past
five years, His faithfulness when | have been unfaithful, digdlpromise that He has a plan for me and will
sustain me to the end.

Commit to the LORD whatever you do, and your plans will sutced’roverbs 16:3

Contents

Introduction 8
Related Work 10
Abstract System Model and Protocols 13
3.1 Virtual Counter Manager e e 13
3.2 Global Clock Operations Using TPM 1.2. i u i it 14
3.3 Log-Based Scheme Protocols Overview wmw 15
3.4 ProtocolDetails 16
3.5 Improvements L e e e 21
Implementation 23
4.1 System OVEIVIEW e e e 23
4.2 CounterHOSE e e 24
421 Interfaces 24
4.2.2 Log-based Implementation e e 26
4.3 CounterGateway e e e 26
4.3.1 Interfaces e 26
4.3.2 Log-based Implementation 27
4.4 Communication e e e e 28
441 Interfaces 28
4.4.2 Sending Data Structures Over the Network: ByteAiblya 28
4.4.3 Implementations e 29
45 Client e e e 30
451 Interfaces e 30
4.5.2 Log-based Implementation 32
4.6 Simulation L e e 32
4.6.1 Operational Overview e 33
4.6.2 Interfaces e 33
4.6.3 DataCollection Structures e 35
Theoretical Data Structures in VMCStore 37
5.1 Counters and the Virtual Counter Manager i v v v it oo 37
5.2 Validation Proofs and Confirmation Certificates 37
5.3 Operations and Operation Certificates 0w o o ... 38
5.4 Algorithms, Nonces, and Schedules 0. 38
Results 41
6.1 The Experiment e e 41
6.2 Experimental Parameters e e 41
6.3 Experimental Results e 42
6.3.1 Operational Efficiency 43
6.3.2 Simple. . . . 43
6.3.3 Shared e 49
6.3.4 Multiplexed e 55
6.4 Conclusion e 60

7 Future Work and Conclusions

62

List of Figures

O©CoO~NOOOUITDAWNPRE

e
WN RO

e el e
© oo~ UAN

20

21
22

Diagram of the increment-without-validation and readheut-validation protocols. 17
Diagram of the validation process. 19
Modular diagram of the VMCStore system. 25
Detailed diagram of the Simulation module. 34
Operational efficiency of th8implealgorithm. 44
Total operations performed by tismplealgorithm. 45
Average increment certificate size for tBenplealgorithm. 45
Average read certificate size for tBemplealgorithm. 46
Average server increment time for tBemplealgorithm. 47
Average server read time for tBémplealgorithm. L. 48
Operational efficiency of th8haredalgorithrm. 50
Total operations performed by tBdaredalgorithm. 50
Average increment certificate size for ®learedalgorithm. 51
Average read certificate size for t8haredalgorithm. 52
Average server increment time for tBharedalgorithm. 53
Average server read time for tB@aredalgorithm. 0oL 54
Comparison of the operational efficiency of MaltiplexedandSharedalgorithms. 56
Comparison of the total operations performed byMhatiplexedandSharedalgorithms. . . 57
Comparison of the average increment certificate sizeligert ¢or theMultiplex andShared
algorithms. e e e 57
Comparison of the average read certificate size per dierthe Multiplexed and Shared
algorithms. e 58
Comparison of the average server increment time foMikiplexedandSharedalgorithms. 59
Comparison of the average server read time foMh#iplexedandSharedalgorithms. . . . 59

1 Introduction

This thesis presents VMCStore, a framework for developrogtéd storage applications on an untrusted
server using a trusted platform module (TPM). In particNavICStore provides the user with a framework
for using an untrusted server with a trusted platform module (W} to provide trusted storage for a large
number of clients, where each client may own and use seveiiffecent devices that may be offline at
different times and may not be able to communicate with eathey except through the untrusted server
(over an untrusted networ#5]t. This idea was first presented in [35], and expanded upon5 fdis
thesis presents an implementation of these ideas, andzasatlye limitations of this approach in real-life
scenarios.

The research presented in this thesis is driven by two pyimrmativations:

a Promoting the TPM

The TPM is still a relatively new technology. Recently, a tenof applications have been devel-
oped, providing a range of TPM-based services, from file afdef encryption [15], to file system
tamper-detection [33], to full-volume encryption [30]. Wever, the TPM still requires a more solid
application base to gain greater recognition and evolve éntritical component of modern com-
puter systems. Therefore, one goal of VMCStore is to dematestrusted storage as another possible

application of the current version of the TPM (1.2).

b Developing New Trusted Storage Applications

Since the TPM is not as susceptible to external softwarelattas traditional software-based cryp-
tographic service providers [44], it is possible that a TBa&ed trusted storage system would make
certain applications more feasible. Another goal of VMQC8tdhen, is to encourage the pursuit of
new trusted storage applications, which could help the Tl & pervasive role in society. By ma-
nipulating the roles of the client and the server, many neliegtions can be imagined, ranging from

peer-to-peer systems, to count-limited certificates antiip4s, 35].

With these two motivations in mind, the VMCStore system heerbdeveloped as a modular framework,
allowing the user to manipulate and extend the system tdajeemnd test new algorithms and applications.

Four log-based validation algorithms are included as exesngf how to use the VMCStore framework.

1For more a more detailed discussion of the problem statemlesatse refer to the Problem Statement section of [45].

8

The rest of this thesis is organized as follows. Section gissents an overview of work and systems
related to VMCStore. The abstract system model and pratdesthind VMCStore, adapted from [45], are
then presented in Section 3. Section 4 provides an overvigirned/MCStore system. This is followed by
a description of how the theoretical data structures aréemented in VMCStore, in Section 5, followed
by an analysis of the four log-based validation algorithmSection 6. Future directions of VMCStore are

considered along with the conclusion of the thesis in Sectio

2 Related Work

Protecting and validating the integrity of data storage lbeen a well studied topic due mainly to its high
importance to a wide range of applications. For this, crgmphic one-way hash functions [11] are often
used by a client to create a small local checksum of large teenfeta. Merkle proposed hash trees (authen-
tication trees) as a means to update and validate data heficently by maintaining a tree of hash values
over the objects [28]. Recent systems [10, 13, 9, 22, 26] makere distinct separation between untrusted
storage and a trusted compute base (TCB), which can be adrosichine or a trusted coprocessor. These
systems run a trusted program on the TCB (usually a trustetiimaor machine with a trusted coprocessor)
that uses hash trees to maintain the integrity of data stumexh untrusted storage. The untrusted storage is
typically some arbitrarily large, easily accessible, bstibre in which the program regularly stores and loads
data which does not fit in a cache in the TCB.

The work on certificate authentication trees in [17] has tethe introduction of authenticated dictio-
naries [32] and authenticated search trees [4, 3]. In theehmadchuthenticated dictionaries, a trusted source
maintains all the data which is replicated over multiplerusited directories. Whenever the trusted source
performs an update, it transmits the update to the untrubtedtories. The data is maintained in an authen-
ticated tree structure whose root is signed together witmastamp by the trusted source. If a user/client
gueries an untrusted directory, then it uses the tree ateieind the signed root to verify the result. A per-
sistent authenticated dictionary [1, 14, 23, 24] maintamstiple versions of its contents as it is modified.
Timeline entanglement [25] creates a tamper-evident figstecord of different persistent authenticated
dictionaries maintained by mutually distrusting sources.

Byzantine-fault-tolerant file systems [7, 8] consist ofratge state machines that are replicated across
different nodes in a distributed system. The system previdmper-evidence and recovery from tampering,
but both properties rely on the assumption that at least two-thifdbe replicas will be honest. The ex-
pectation is that replicas are weakly protected, and plyskistile, so the difficulty of an adversary taking
over k hosts increases significantly with Byzantine-fault-tolerant file systems distribute trugt &ssume
a threshold fraction of honest servers.

SUNDR [27, 20] is another general-purpose, multi-user pétfile system that uses untrusted storage
servers. SUNDR protects agairistking attacks which is a form of attack where a server uses a replay

attack to give different users a different view of the cutrstate of the system. SUNDR does not prevent

10

forking attacks, but guarantedsrk consistency which essentially ensures that the system server either
behaves correctly, or that its failure or malicious behawdl be detected latewhen users are able to
communicate with each otherThis is achieved by basing the authority to write a file onphblic keys

of each user. Plutus [16] is another efficient storage sy$terantrusted servers that cannot handle these
forking attacks.

In our system, we place a small TCB in the form of a TPM at anustéd third party. This TCB is
used to maintain virtual counters for timestamping, whilbbves client devices tanmediately(without the
need to communicate with any of the other client’'s devicetgd server misbehavior whenever a critical
operation needs to be performed. In our system, server tmasie also includes replay attacks. Since
replay attacks and other server misbehavior can be detecteddiately, forking attacks are prevented, and
data freshness, integrity, and consistency is guaranteed.

We reduce the trusted computing base to only a single TPM4B,23[1], which is a standard component
on machines today. This differs from many other systemsrdwatire complex secure processors [38, 2, 21,
46, 40, 41, 39].

We use the TPM as a secure counter which can be used to tingestants according to their causal
relations. An order in logical time can be extracted if weWwnahich events logically cause other events.
Lamport clocks [18, 19] are conceptual devices for reagpainout event ordering. Our scenario with a
centralized untrusted third party which implements a @irtounter manager with access to the TPM does
not need Lamport clocks to reason about logical time. Ouicdify is how to reason about malicious
behavior.

For completeness we mention that in accountable time-stegystems [5, 6] all forgeries can be
explicitly proven and all false accusations explicitlymhgven; it is intractable for anybody to create a pair
of contradictory attestations. Buldas et al. [4] introdiliegprimitive calledundeniable attesterinformally,
the attester is such that it is intractable to generate bqtbs#tive and a negative attestation based on an
elementr and a setS such that the attester concludes S for the positive attestation and¢ S for the
negative attestation. Their intention is to prove the exisé or non-existence of objects in a database. An
authenticated search trefl7, 32, 4, 3] can be used for the construction of an undemiatiester.

One technique also worth noting is that described by Schiagie Kelsey for securing audit logs on

untrusted machines [36, 37]. Each log entry contains aneziein a linear hash chain that serves to check

11

the integrity of the values of all previous log entries. Ithiis element that is actually kept in trusted storage,
which makes it possible to verify all previous log entriesthysting a single hash value. The technique is
suitable for securing append-only data that is read seigligrity a verifying trusted computer.

Another concept worth noting is that of a certificate revimratist (CRL), which is a list signed by a
certification authority (CA) together with a timestamp. Bytaining the most recent CRL, one can easily
verify whether a certificate is still valid. Based on CRLsde&ommunication intensive solutions are pro-
posed in [29, 17, 32]. In [29] the idea is proposed to sign asaugs for every certificate stating whether it
is revoked or not, and to use an off-line/on-line sighatwleeme [12] to improve the efficiency. The idea to
use a log of certificates in which each of the certificatesegt® a positive or a negative action is a general
principle which we also use in our approach (we use a log aement certificates in which each of the

increment certificates attests to whether a certain virn@iotonic counter has been incremented or not).

12

3 Abstract System Model and Protocols

The VMCStore system is a proof-of-concept implementatiasdol on ideas proposed by Luis Sarmenta and
Marten van Dijk in the Computation Structures Group of CSAtIMIT. The following section is adapted
from [45], and provides an overview of the theory behiridual monotonic counterandvalidity proofs
and how they can be used to build a trusted storage systenrelBtienship between the abstract structures
and protocols and implemented classes are explained imB8éxt Implementation details of the system
model are explained in Section 4.

To provide some context for the following section, note thatvirtual monotonic counterwill be built
on top of the monotonic counters included in the TPM 1.2. Adtg to the TPM 1.2 specification, while
the TPM may contain multiple monotonic counters, only oneg/ in@ used during a particular boot-cycle
[43]. Because of this, we will need a module to act as a mantag@rtualize this resource. This module is

called thevirtual counter manager

3.1 Virtual Counter Manager

In order to implement a virtual counter manager based on TRM/& use one of the TPM’s built-in physical
monotonic counters as gfobal clockK. Essentially, we use the TPM with its global clock as a titaegping
device to timestamp each virtual counter. Whenever we wishdrement a virtual counter, we increment
the global clock and timestamp the virtual counter’s ID wifib incremented value of the global clock. We
then define the value of a specific virtual counter as the vaflits most recent timestamp. In other words,
the value of a particular virtual counter is defined as the wad of the global clock at the last time that the
virtual counter’s increment protocol was invoked

Note that this results inon-deterministicmonotonic virtual counters [35]. The unpredictability bét
virtual counter’s increments relative to the global clockans that a client needs to check every increment
that is performed on the global cloékThat is, in order to verify whether a retrieved virtual camealue
is fresh and valid, the client’s device needs to examifegaof timestamps that resulted from increments
on the global clock. Checking each timestamp determineshghéhe client’s particular virtual counter has
been incremented (i.e., timestamped by the global clockemexently. This is because these applications

only need to be able to tell if the value of a monotonic couhtes changed from its previous value or not.

2Except when using time-multiplexing, which is describeection 3.5.

13

It does not matter what the new value is, as long as it is @iffefrom any other value in the past [35].

In the following section, we explain the details of dog-based schembased on this idea. We first
explain how to use a TPM 1.2 chip to implement two global clpdiknitives: IncAndSignClock- which
increments and signs the resulting global clock value twgewith an input nonce, arldeadAndSignClock
— which reads and signs the current value of the global clogktteer with an input nonce. We then show

how these primitives can be used to implement read and ireareprotocols for individual virtual counters.

3.2 Global Clock Operations Using TPM 1.2

A TPM 1.2 chip has three features which are useful for our geep. First, the TPM has the ability to hold
an attestation identity key (AIK)which is a unique signing keypair whose private key is neegealed
outside the TPM, and whose public key is certified by a trugiéd party (and can be verified through
this certificate without contacting the trusted third part$econd, the TPM has at least one built-in (or
“physical”) monotonic countemwhose value is non-volatile (i.e., it persists through mb)) and monotonic
(i.e., it can be increased by 1, but it can never be revertad tder value, even if one has complete physical
access to the entire machine hosting and invoking the TPMjd Tthe TPM supportexclusive and logged
transport sessionsvhich allow the TPM to prove to an external party that it hesogited certain operations
(atomically) by signing (with the AIK) a log of the operat®mperformed on the TPM together with their
inputs and outputs and an anti-replay nonce. These fealiogsus to implement our schemes by using the
TPM'’s built-in monotonic counter as the global clock, anthgghe AIK and transport sessions to produce
trusted signatures, or timestamps, using this global clock

Specifically, we implement the@cAndSignCloclk:once) primitive by using the TPM’s built-iTPM_In-
crement_Counter command (which increments the TPM’s built-in monotonic @w) inside an exclusive
and logged transport session using the AIK as the signingTdeig produces a signature over a data structure
that includes the anti-replay nonce and a hash of the transpesion log, which consists of the inputs,
commands, and outputs encountered during the entire tetnspssion. This sighature can then be used
together with the input nonceonce and the transport session log, to construciramement certificate
Note that by making this transport session exclusive, warerthat the TPM will not allow other exclusive
transport sessions to successfully execute at the same fiilme ensures thatomicity of the increment

operation.

14

The verification algorithm for such an increment certifioatas follows: First, it checks that the nonce
in the certificate is the same as the input nonce. If they aasdéime, the input noneeonce together with
the transport log, the signed output, and the certified plidy of the TPM’s AIK is used to verify the
certificate. Finally, if the certificate verifies as validetalgorithm retrieves the global clock’s value, which
is included in the transport session log of inputs and ostpatpart of the certificate.

The ReadAndSignClogkonce) primitive is implemented like théncAndSignClockonce) primitive
where theTPM_Increment_Counter command in the transport session is replaced by the TPMisibui
TPM_Read_Counter command. In this case, instead of an increment certificatepmduce aurrent
global clock certificatecertifying the current value of the global clock (i.e., TRMjuilt-in monotonic

counter).

3.3 Log-Based Scheme Protocols Overview

We begin by assuming that each client has her own unique@phliate key pair stored in each of her
devices. A client’s devices use the client’s private keyigm sncrement requests and creatmfirmation
certificates Confirmation certificates are produced and given to theialirtounter manager whenever a
client’s device successfully performs a read or incremétit validation, as defined below.

On the manager-side, we assume thatiheal counter managethas a certified trusted TPM 1.2 chip,
and some software, memory, and persistent (e.qg., dislggagowhich can all be untrusted. The software on

the virtual counter manager keeps track of:
1 an array of thenost recentonfirmation certificates for each virtual counter, and

2 an array of each of the increment certificates which weremgéed since the generation of thiedest

most recent confirmation certificate.

Using these, together with the TPM and the global clock dfmra described earlier, the virtual counter

manager implements four protocols for operating on indigld/irtual counters:

1 Increment-without-validation (aka Fast-Incrementjn which a client’s device requests to increment

one of the client’s virtual counters, and which results inramement certificate,

2 Read-without-validation (aka Fast-Read)n which the virtual counter manager returns the current

value of a virtual counter,

15

3 Read-with-validation (aka Full-Read)in which not only the current value of a virtual counter is

returned, but also a proof of the validity of this virtual coer, and

4 Increment-with-validation (aka Full-Increment) which combines the increment-without-validation

and read-with-validation protocols into a single protocol

The read and increment protocols with validation produeel@lity proof, which is composed of:

1 the most recent confirmation certificate of the correspandirtual counter, together with

2 alist (or log) of each of the increment certificates whichiengenerated since the creation of this most

recent confirmation certificate, and

3 acurrent global clock certificate or a new increment cedié.

Given these, a client can reconstruct the global clock wadtigvhich the virtual counter was incremented
since the creation of the most recent confirmation certdicakhis reconstruction detects any malicious
behavior in the past. Specifically, the reconstruction it pacrements is used to determine whether the
virtual counter values on which these increments were basedalid. That is, as described in (5) below,
for each of the past increments by any of the client’s deyittesclient checks whether the increment was
based on a retrieved counter value (received from the Vicmanter manager during one of its protocols)
that is equal to the current counter value just prior to tlreement. This check is made possible by having
an increment certificate also certify the value on which tbeesponding increment is based (hence, the
consistency of the reconstructed list of increments carebiéed).

We note that in order to verify the freshness of data it is cieffit to verify the validity of the counter
values on which past increments were based, since only riegviymented values are used for timestamping

data in our virtual storage application.

3.4 Protocol Details

We proceed with the details of the different protocols:

Increment-without-Validation protocol: Figure 1.a shows the interaction between a client deviae, th

virtual counter manager, and its TPM during an incremeritovit-validation protocol. If a client’s device

16

Client ©) Virtual Counter TPM Client Virtual Counter PM

Device Manager Device 1 Manager
nonce =

3. form, store, and return

|
|
|
I
|
|
| (..globClk, Signf...) (.+.8l0bCIk, Signyf...))
increment certificate |
|
|
|
|
|
|
|
|

3 validity proof =

: ((antiReplay | ctrID | ctrVal) | Signgg,(...)) : 2 : nonce = (antiReplay | ctrID) ! 2

: > : do IncAndSignClock(nonce) : > do ReadAndSignClock(nonce)
_—> _—>

: EstablishTransportSession : EstablishTransportSession

: IncrementCounter() : ReadCounter()

1 SignTransportLog(H(nonce)) 1 SignTransportLog(H(nonce))

I <« I «—

| |

| |

| |

| |

| |

| |

—— - latest confirmation certificate
increment certificate = - current global clock certificate
4 | (nonce, ..., globClk, Signy(...)) 4 | - log of increment certificates
verify increment certificate verify Ivalidity proof
and use globClk for timestamp [| 6
! | "> confirmation certificate = store confirmation certificate

((ctrID,ctrVal,globClk), Signgg(...))

Increment-without-Validation Protocol Read-with-Validation Protocol

(a) (b)

Figure 1. Protocols. (a) Increment-without-Validatiom) Read-with-Validation. (Note: Increment-with-
Validation is similar to Read-with-Validation, except ttem increment operation is performed and the in-
crement certificate is used in place of the current globallctertificate.)

wants to increment one of the client’s virtual countersntiteelects a random anti-replay nonoee Replay
and concatenates the anti-replay nonce, the countertigenti D of the virtual counter which needs to be
incremented, and the current valtteV al of this counter according to the knowledge of the clientgicke

Let SK be the client’s secret key. The device computes

nonce = (conc||Signsk (conc)) whereconc = (antiReplay||ctrID||ctrVal). 1)

The nonce is forwarded to the virtual counter manager wighrélguest to use nonce as the inputce
of thelncAndSignCloclprimitive (step 1 in Figure 1.a). Besides verifying the n@acsignature, the virtual
counter manager checks whether the current value of thet@mowith identity ctr1 D is equal toctrVal.
If not, then the virtual counter manager notifies the clemtévice about its out-of-date knowledge. If
ctrVal does match the current counter value, then the virtual esounainager uses the TPM to execute
IncAndSignClodikonce) (step 2 in Figure 1.a) and the resulting increment certdi¢a sent back to the
client’s (step 3 in Figure 1.a) device, which verifies thetifieate. In this scheme we do not protect against
denial of service; if the increment certificate does notvarviithin a certain time interval, then the client’s
device should retransmit its request with the same noncesods as an increment certificate is accepted
(that is, its verification passed in step 4 in Figure 1.a),dient’'s device may use the new counter value to
timestamp data. If the client’s device accepts the increémentificate, then we call the incremesuccessful

Since the anti-replay nonce is chosen at random, replaskattd previously generated increment certifi-

17

cates (by, for example, a malicious virtual counter managerman-in-the-middle) will be detected by the
client’s device. We will show that the validity of a clientgrtual counter can be verified in the read-with-
validation protocol (even in the presence of a malicioutusircounter manager, but with a trusted TPM)
because the client’s device’s knowledge of the current msuraluectrV al is included in the input nonce
of the IncAndSignCloclkprimitive. The role of the counter ID in the input nonce is tistehguish which
increment certificates correspond to which virtual cowsitérhe nonce’s signature proves the authenticity
of the request to the virtual counter manager. The signéduaiso used in the read-with-validation protocol

to prove that each increment certificate originated fromwthentic request and not a fake increment.

Read-without-Validation protocol: In the read-without-validation protocol, a client’s deviasks for the
most recent value of a specific virtual counter. The virtualrder manager simply signs and returns the

most recent counter value without making use of the TPM.

Read-with-Validation protocol: Figure 1.b shows the interaction between a client device,viltual
counter manager, and its TPM during a read-with-validapootocol. If a client's device wants to read
and obtain a validity proof of the value of one of the clientdual counters, it first selects a random anti-
replay noncewntiReplay. LetctrID be the counter ID of the virtual counter which current valeedats to

be returned by the protocol. The concatenation,

nonce = (antiReplay||ctrID),

is forwarded to the virtual counter manager (step 1 in Figub with the request to use it as the input
nonce of theReadAndSignClodarimitive. The virtual counter manager uses the TPM to eteeReadAnd-
SignClocknonce) (step 2 in Figure 1.b). The resulting current global cloekiificate is transmitted to the
client’s device together with the most recent confirmatiertiticate of the virtual counteefr1 D, and a log
of each of the increment certificates generated since tla¢ianeof this most recent confirmation certificate
(step 3 in Figure 1.b). The sequence of certificates in thisstnission form a validity proof as depicted in
Figure 2.

The most recent confirmation certificate is a certificate gged by one the client’s devices during a
previous read-with-validation or increment-with-valida protocol. It is a certificate of the concatenation

of ctrID, the valueglobClk' of the global clock at the time when either protocol was etetuand the

18

6\

Validity Proof

log of increment certificates for globCIk in {T1=T+1,T2=T+2, ..., Tnow} a0
confirmation 5 5 5 y | current global

D
globClk’ =T ctrVal =T1| | ctrVal = T2| | ctrVal = T3| | ctrVal = T4 ctrVal = Tnow clock certificate
crlD=A ctriD=B_| |ctriD = A ctriD=C | |ctriD=A _|--- |CtrID = B globClk = Tnow

ctrVal’ = TO a a a d
A W Signg(...) Sign,(..) Signgl...) Sign,f..) Sign i (...) Sign (...) A \/
—/
Sub-list of increment certificates with CtrID = A Generate
Confirmation
is ctrVal in is ctrVal in "

increment nonce equal increment nonce equal increment confirmation
is ctrVal in ctrVal = T2, to ctrValin | ctrVal = T4 to ctrValin | ctrVal = T7 globClk = Tnow
nonce equal previous cert? 10nce = (..., previous cert? 0nce = (..., ctrlD = A

ctrVal = T7

Signg,(...) Al W

to ctrVal in
previous cert?

\ trID,, = A, ctriDy, = A, ctriD,, = A,
ctrVal, = T0, ctrValy, = T2 ctrVal,, = T4,
Sighggu(-..))

Sign i l...) Al W Sign, i (...) fl W Sign, i (...) 4l W

Figure 2: The Validation Process. After receiving the vigfighroof, the client checks the AIK signatures
on all the increment certificates, extracts the certificatdis increments for its counter ID, and verifies that
each increment was done with the correct knowledge of theiqure value of the virtual counter. If this
validation succeeds, the client produces a new confirmatatificate.

valuectrVal’ of the counter with identitytr I D at the time when either protocol was executed. That is, the

confirmation certificate is a pair

(confirm, Signgk (confirm)) wherecon firm = (ctrID||ctrVal'|| globClE") (2)

andS K is the client's secret key.

Let globClk be the global clock value as certified by the current globadkckertificate. Since the anti-
replay nonce is chosen at random, replay attacks of prdyi@enerated current global clock certificates
will be detected by the client’s device. Therefore, we mauate thaylobClk represents the current global

clock value.
The client’s device also verifies each of the signaturesendal of increment certificates (which were
generated since the creation of this most recent confirmagdificate), and uses the client’s public key to

verify the confirmation certificate. Then, for each vaiue the range

globClK' < t < globClk, 3)

there should exist an increment certificate for which itsfication algorithm retrieves the valugsee

19

the log of increment certificates in Figure 2). See (1), let

concy = (antiReplayy||ctrI Dy||ctrValy) 4

be part of the input nonce of the increment certificatetfom he list of these input nonces contains a
sublist of input nonces withtrI D, = ctrID (see the sublist of increment certificates in Figure 2). The
sublist of these input nonces corresponds to all the inanésnaf the counter with identitytr D during
the period where the global clock value ranged frglwbClk’ to the current global clock valugobClk.
According to (1), each of the input nonces within the suldmttains within itself a signature that can be
verified by using the client’s public key. This allows theetli to confirm that the corresponding increment
certificates originated from an authentic request and naka inhcrement.

The sublist can also be used by the client’s device to detbethver the increments are based on valid
counter values. Using (4), letrVal, be one of the values in the input nonce within the sublist. nThe
counter value resulted from an increment protocol which was initiated hg of the client’'s devices who
thought that, just before the start of the increment prdidbe value of the counter is equal torV al;.
Hence, if the counter with identitytr 1 D has behaved like a valid counter, then, for each pair of cuise

input nonces witletrVal; andctrValp, t < T, within the sublist,

t should be equal tetrValr.)

If this check passes, then the last valiteV al within the sublist is the current value of the virtual
counter,ctr1 D, and the client’s device transmits to the virtual countenagger (step 5 in Figure 1) a new

confirmation certificate, described in (2), in which

confirm = (ctrID||ctrVal||globClk).

Increment-with-Validation protocol: The increment-with-validation protocol first executesitierement-
without validation protocol. The resulting increment darate contains the current global clock value as
the incremented virtual counter value. In this sense, tbeeinent certificate can also function as a current

global clock certificate. The increment certificate can therused in the read-with-validation protocol, in

20

place of theReadAndSignClochrimitive, to provide the validity proof for increment-wiitvalidation.

3.5 Improvements

In this subsection we explain two techniques that can be tesegdprove the performance of the log-based

scheme. The details of both techniques are presented innélppA of [45].

Sharing. One problem with the log-based scheme as described so faatiseach read and increment
primitive on a virtual counter requires the TPM to produceigmature using its AIK. As we will show
in Section 6, read and increment signature operationsdlpitakes around 1.3s using existing TPM 1.2
chips today. Moreover, TPM 1.2 chips alsoottle increment operations on the TPM'’s built-in monotonic
counter to prevent wear-down of the TPM’s nonvolatile mgmadiis means that increment operations are
only possible once every 2 to 5 seconds (depending on thefawuarer). As we will show in Sect. 6, if
we only allow one virtual counter to be incremented for eaxineément of the global counter, then a single
TPM can only handle a few virtual counters before the overaiformance becomes unacceptably slow.

A solution to this problem is to allow multiple increment fwools of independent virtual counters to
be executed at the same time, sharing a single global clacktpe. The general idea here is to collect the
individual nonces of each increment protocol and to coosaisingle shared nonce which can then be used

as an input to a single shar&ttAndSignCloclprimitive.

Time-Multiplexing. The log-based scheme has another significant drawback:iifumlcounterv is not
incremented while other counters are incremented manystithen the validity proof for would need to
include the log of all increments of all counters (not jussince the last increment of The length of this
log can quickly grow very large.

A solution to this problem is to time-multiplex the globabck. That is, instead of allowing increments
at each possible global clock value for each client, ea@nthssociates with each of his virtual counters
a fixed scheduleof global clock values that are allowed to be virtual counaues. The main advantage
of time multiplexing is that the log of increment certificate a validity proof of a virtual counter can
be reduced to those for which the corresponding verificagigorithm retrieves a value which is allowed,
according to the schedule of the virtual counter.

The disadvantage of time-multiplexing is a possible inseen the latency between the request and

21

finish of an increment. In order to reduce the effects of thbjem we may use aadaptive schedule
Under this scheme, a virtual counter’s schedule is alloweadhainge. For example, the client’s devices may
agree to a back-off strategy. Immediately after a successftement, the legal increment slots for a virtual
counter would be close together. As the client’s virtualrteu remains idle, the legal increment slots are
spaced farther and farther apart according to a known detistio formula.

Finally, note that while there is an advantage to multipigxincrements, the same advantage does not
apply to counter reads. Reads do not increase the lengtle tidity proof, so multiplexing them will not
reduce the size of the read certificate. In fact, delayindsd®y multiplexing may increase the size of the
validity proof by allowing more clients to perform increnterbefore the validity proof is generated. For

these reasons, reads in the time-multiplexed scheme arsuitylexed, but handled on-demand.

22

4 Implementation

From an implementation point-of-view, the main goal of VMGI® is to develop and analyze various TPM-
based trusted storage algorithms specified in [45], andus®nl in Section 3. However, the system itself
has been developed with a very modular design in mind, wighhtipe that this framework can be used to
experiment with and test future algorithms as well. Thidisaavill give an overview of the various modules

of VMCStore, and how they interact with each other. Moreinfation on data structures referenced in this

section can be found in Section 5.

4.1 System Overview

VMCStore is written using Java 1.5 and TPM/J. TPM/J is an abjpeiented API using Java for low-level
access to the TPM [34]. While VMCStore is portable to any apieg system capable of running a JVM,
TPM-compatibility is the responsibility of TPM/J. At prege TPM/J has been shown to work under Win-
dows XP, Linux, Mac OS X, and Windows Vista.

The VMCStore framework is divided into four primary modul€ounterHost, CounterGateway, Com-
munication, and Client. The fifth module, Simulation, is dmgher-level user or application that wishes to
interact with the trusted storage system. The sixth moditlerage, is not specified by VMCStore, since it

is heavily application-dependent. The interaction amdmege six modules can be seen in (Figure 3).

CounterHost Manages the actual incrementing and reading of the cau¢eg., thevirtual mono-

tonic countersmplemented on the TPM 1.2).

e CounterGatewayManages access to the CounterHost, directing client stgheeads to the appro-

priate timeslot.

e Communication Manages the marshaling and unmarshaling of requests apdnses between the
Client and the CounterGateway. Two implementations haee beluded, providing communication

over sockets or RMI.

e Client Provides an interface between the user and the Counteriasiaging counter information,
marshaling requests, and verifying proofs of freshnesa.Sforage server is present, the Client will

usually manage sending and retrieving files and timestanops the storage server.

23

e Simulation The user or application that interacts with the VMCStosafework. The package in-
cluded in VMCStore imitates the user, providing a way to gerrf distributed experiments for col-

lecting data and statistics about system performance.

e Storage Stores the user data with the appropriate timestamp frarCibunterHost. The Storage

server is application-dependent.

As mentioned previously, VMCStore has been implementel thi¢ goal of allowing the user to exper-
iment and test his own algorithms. The algorithms discugs&ection 5.4 have been included as examples,
and are referenced below by their collective package némgbased Sample communication protocols
(e.g., RMI, sockets) have also been included. However, &ttyese modules can be swapped-out with user

defined modules and algorithms.

4.2 CounterHost

The CounterHost manages the lowest-level interaction thithcounters (e.g., reading and incrementing),

as well as the creation of validity proofs for the client.

4.2.1 Interfaces

The key interface for this module is CounterHost. Three ghare defined by the interface, closely

following the protocol defined in Section 3.4.

e ReadCertificate readCounter(ByteArrayable nonce, Bytable counteriD)
Returns a ReadCertificate for the specified virtual counsing the given nonce. ReadCertificate is a
wrapper interface which extends CountStamp, and shoullddache signed counter information from
a TPM read operation. The ReadCertificate may contain additinformation, such as a validity

proof.

¢ IncCertificate incrementCounter(ByteArrayable noncagByrayable counteriD)
Returns an IncCertificate for the specified virtual countising the given nonce. IncCertificate is
a wrapper interface which extends CountStamp, and shoaldde the signed counter information
from a TPM increment operation. For increment-with-vaiidia operations, the IncCertificate should

also contain a validity proof.

24

Simulation ‘ SimulalonCormmander ‘ _ Simulation Server

SimulationNode

‘' Client Machine
SimulationClient e :

II

.’f/Storage Server -
e - put(), get()

Client LogClientManager LogCounterMarshaller

Wi s generateNonce(),
! | generateConfirmationCert(), getVerifier()

Storage = » LogVerifier

verifyRead(), verifylncrement()

TPMCountStampVerifier

read(), increment()

i‘Communication RMIClientGateway

RMIServerGateway

read(), increment()

{xCounterGateway ‘

LogCounterGateway £ Counter Server)

read(), increment()

CounterHost LogCounterHost
TPMCountStampHost

Figure 3. Modular diagram of the VMCStore system. The cladiséed inside the modules are examples
of those included for the logbased algorithms. Other ptessibmbinations (e.g. using sockets in place of
RMI) are included with VMCStore.

25

¢ void sendConfirmationCertificate(ConfCertificate cert)
Provides a way for clients to send confirmation certificatethé virtual counter manager (Counter-
Host). ConfCertificates, defined in Section 5.2, includeitiemtity of the virtual counter, the time
of the last successful increment, and a CountStamp defihagurrent time of the confirmation cer-
tificate. The ConfCertificate is also signed by the clieng provides averifyCertificatemethod to

confirm its validity.

4.2.2 Log-based Implementation

Thelogbasedpackage provideslaogCounterHostFactorywhich should be used to credtegCounterHost
instances that follow the increment, read, and validatimiqeols defined by the algorithms in Sections 3.4
and 3.5. Available algorithms are defined by tlugAlgorithmenum.

The LogCounterHostFactory provides one method for crgatogCounterHost instancegetLogCoun-
terHostInstance() This method requires a LogAlgorithm enum, as well as a TPiMedrthe global counter
ID, and a signing key.

TPMCountStampHogirovides a thin layer between the LogCounterHost and the /TIRMuntStamp
functions. Both the read and increment operations of the TBluhtStampHost return a TPMCountStamp.
Since the TPMCountStamp is operation-independent, anteimgnts neither ReadCertificate nor IncCer-
tificate, the TPMCountStampHost is not a true CounterHogiwéVer, this class is simply intended as a

wrapper and is never exposed to the LogCounterGateway.

4.3 CounterGateway

The CounterGateway sits between the clients and the Cdiwder It manages client requests, and is re-
sponsible for ensuring that clients only perform incrersehiring legal increment timeslots.

4.3.1 Interfaces

The CounterGatewaynterface provides three methods, which closely mirror @wunterHost interface
methods. The CounterGateway methods prepackage the daiiarfor network communication (see Section

4.4.2):

26

e ByteArrayableWrapperinterfaceReadCertificate readCounterRemote(ByteArrayableWrapperinterfage

extends ByteArrayablecounterID, ByteArrayableWrapperinterfac@ extends ByteArrayahienonce)

¢ ByteArrayableWrapperinterfaedncCertificate> incrementCounter(ByteArrayableWrapperinterfa&e

extends ByteArrayablecounterID, ByteArrayableWrapperinterfac@ extends ByteArrayahienonce)

¢ void sendConfirmationCertificate(ByteArrayableWrappexiface<? extends ConfCertificate

CounterGateway extenddmmunicationGatewayemoving the throws IOException clauses included

by its super-interface (see Section 4.4).

4.3.2 Log-based Implementation

Thelogbasedpackage provides a LogCounterGatewayFactory, which dhmilised to create LogCounter-
Host instances that follow the algorithms defined in Seciigh The LogCounterGatewayFactory provides
one method for creating LogCounterGateway instanagetl ogCounterGatewaylnstance(LogAlgorithm,
LogCounterHost)

The LogCounterGateway implementations are all multigbesl, treating each thread as a separate
client. Operations are broken down into timeslots, andratdds scheduled for a given timeslot are al-
lowed to proceed together. This allows the LogCounterGayeio collect together individual nonces to
form a shared nonce, and parallelize the usage of TPM ressurc

The Multiplexedand Adaptivealgorithms require a further extension to this threadimgcstire. Since
clients must wait for a legal timeslot before their incretngan complete, dummy threads included which
increments the TPM when no other clients are available. diésires that clients will never wait indefinitely
for their timeslot to arrive.

The implementations of LogCounterGateway includetbgbasedalso perform simple resource maxi-
mization by alternating increments and reads wheneveilges#s discussed in section 6, TPM’s typically
require a cool-down period between increments to extendifthef the TPM’s non-volatile RAM. Reads,
however, can still be performed during this cool-down pebridVe found that alternating reads and incre-
ments provides good TPM utilization for the TPM’s we have keat with.

LogCounterGateway also implements the CounterHost andl&fionGateway interfaces. Because they

are intended to be used for simulation, the increment ardi mezthods of LogCounterGateway also return

27

instances of StatPackagedCertificates, instead of ByawAbleWrappers. More information on the Simu-

lationGateway interface and StatPackagedCertificatebedound in section 4.6.

4.4 Communication

Communication is responsible for marshaling and unmairghaéquests and responses between the Client

and the CounterGateway.

4.4.1 Interfaces

The primary communication interface is Communication@ate This is the super-interface for Coun-
terGateway, exposing the same methods, but also requiripementations to include throws clauses for

IOExceptions caused by network communication.

e ByteArrayableWrapperinterfageReadCertificate readCounterRemote(ByteArrayableWrapperinterfage
extends ByteArrayablecounterID, ByteArrayableWrapperinterfac@ extends ByteArrayahienonce)

throws IOException

e ByteArrayableWrapperinterfaedncCertificate> incrementCounter(ByteArrayableWrapperinterfa&e
extends ByteArrayablecounterID, ByteArrayableWrapperinterfac® extends ByteArrayahienonce)

throws IOException

¢ void sendConfirmationCertificate(ByteArrayableWrapptiface<? extends ConfCertificate throws

IOException

There is also a SimulationCommunicationGateway whichgoer$ a function for SimulationGateway
analogous to the relationship between CommunicationGatemd CounterGateway. See Section 4.3 for

more information.

4.4.2 Sending Data Structures Over the Network: ByteArraydle

Most of the data structures defined by VMCStore implemenBlyteArrayablenterface defined by TPM/J
(REF). ByteArrayable objects provideBytes()andfromBytes()methods, which can be used to reduce an

28

object to a byte array, or reconstruct the object from a bgi@ya The ByteArrayable does not exte8dri-
alizable so if a ByteArrayable object needs to be sent over the n&pvitomust be reduced to a byte array,
implement Serializable, or be wrapped within an object enmnting theByteArrayableWrapperinterface
Two classes have been included in VMCStore for wrapping Syteyable objectsByteArrayableWrap-
per and StatPackagedCertificateByteArrayableWrapper is simply a generic wrapper for Bytayables;
StatPackagedCertificates are used by the Simulation mothr@assing around simulation measurements

along with increment and read certificates (see Section 4.6)

4.4.3 Implementations

VMCStore contains two built-in implementations of ComnuationGateway. Both of these packages also
implementSimulationCommunicationGatew#gee Section 4.6). Available implementations are defined by
the CommunicationTypenum.

The Utils class contains a methogenerateCommunicationGateway@hich can be used to instantiate
a CommunicationGateway from a Class object. The Commuoigaateway must expose a constructor

that takes a hostname as a String and a port & dor this method to work.

RMI. The firstimplementation takes advantage of the built-imJaMI system (REF). The counter gateway-
side class iRMIServerGatewayJava’srmiregistry program must be running on the counter gateway ma-
chine before RMIServerGateway can be started.

The client-side class is calldRIMIClientGateway It will try to find an instance of th&MIServerGate-
waylnterfaceon the specified host.

All experiments in Section 6 were performed using the RMI oamication protocols.

Sockets. A second implementation is included which communicatesatly over JavaSocketobjects.
Marshalling is handled by sending message objects, whitdnebAbstractMessagewith the necessary
parameters.

The counter gateway-side classSecketServerGatewayThis class runs as a separate thread on the
counter gateway server, accepting incoming connectiodatingServerSocketThreadsuture commu-
nication between the Client and the CounterGateway is ttiirbetween theSocketClientGatewagnd its

ServerSocketThread.

29

The client-side class is called SocketClientGateway. Itsimas requests as messages, and unmarshals
responses for the client. If the socket connection is lostk8tClientGateway will attempt to reestablish a
connection.

While this implementation may be lighter-weight than the Riviplementation, our current implemen-
tation tends to be more fragile. Thus, we chose to use the Rilementation for the experiments of

Section 6.

45 Client

The Client module provides an interface for the user or hidggneel application to use the VMCStore system.
This module also marshals data so that it will be understyatid CounterHost, and verifies validity proofs
received from the CounterHost. If the system includes aag&vlanager, it will also be the Client which is

responsible for communicating with the StorageManager.

45.1 Interfaces

The Client module defines three key interfac€tientManagerinterfaceCounterMarshallerinterfaceand
CounterVerifier
The ClientManagerinterface provides the methods thatygesed to the user or higher-level applica-

tion. These methods are intentionally very generic to aflawa variety of different applications:
e Object put(File)
¢ Object get(File)
e boolean contains(File)

The CounterMarshallerinterface defines methods that a t€ddarshaller should provide to help the
Client package data properly for sending to the CounterHuost verify validity proofs from the Counter-

Host:

e CounterVerifier getCounterVerifier()

Returns &CounterVerifiey which can be used to verify validity proofs received frora @ounterHost.

30

e ByteArrayableWrapperinterfage? extends ByteArrayahiegeneratelncNonce(ByteArrayable coun-
terlD, PublicKey pk)

e ByteArrayableWrapperinterfage? extends ByteArrayahiegeneratelncNonce(ByteArrayable coun-
terlD, long counterValue, PrivateKey sk)
Returns a nonce that can be used in an increment counterstedue first of these methods is used
for counter registration; the second method is used fortepsithat have already been registered. See

Section 5.4 for information on counter registration.

e ByteArrayableWrapperinterfage? extends ByteArrayahiegenerateReadNonce(ByteArrayable coun-
terID):

Returns a nonce that can be used in a read counter request.

e ByteArrayableWrapperinterfage? extends ConfCertificategenerateConfCertificate(ByteArrayable
counterlD, ScheduledCertificate opCert, PrivateKey sk)

Generates and signs a confirmation certificate for senditiget@ounterHost.

e boolean confirmincrements()
Informs the Client whether or not confirmation certificates @equired to be sent after a successful
increment. Some algorithms, such as Adaptivealgorithm discussed in Sections 3.5 and 5.4, do

require confirmation certificates for each increment.

The CounterVerifier is responsible for verifying the vajdproof sent by the CounterHost. It is al-
gorithm and implementation-dependent, and is usually agett with the CounterMarshaller and should

typically be accessed by CounterMarshagjetCounterVerifier()

¢ int verifyRead(CountStamp readCert, ByteArrayable cedbt, ByteArrayable nonce, Verification-
Key verifyKey, PublicKey pk)

e int verifylncrement(CountStamp incCert, ByteArrayabbeiderlD, ByteArrayable nonce, Verifica-
tionKey verifyKey, PublicKey pk)
Verifies the read or increment certificate (CountStamp)pmtog to the information provided. The

VerificationKey is provided by the CounterHost for verifgithe signature on the CountStamp. PK is

31

the public key of the client, which may be needed for verifyaertain structures in the validity proof

(e.g., confirmation certificates).

4.5.2 Log-based Implementation

Thelogbasedackage contains a number of Client class modules designeark with the CounterGateway
and CounterHodbgbasedclasses, as well as the included Simulation module.

The primary class that the Simulation module interacts vsittihe LogClientManagerclass. The pur-
pose of the LogClientManager is to provide an entry pointderforming statistical analysis of counter
operations and communication. Since storage is highlyiegmn-dependent, the LogClientManager does
not communicate with an external StorageManager, but gistptes file data internally. The assumption is
that the cost of communication with the CounterGateway @dnd in addition to the cost communication
with the storage manager. The feasibility of VMCStore thepehds on the ratio of these two costs, which
is a function of the application.

With this goal in mind— to perform statistical analysis of counter operatiend.ogClientManager
implementsStatRecordClientManaggian extension of the ClientManagerinterface. Th() and get()
methods of LogClientManager retur@tatRecordobjects. See section 4.6 for more information on Sta-
tRecord.

Thelogbasedpackage also includeslaogCounterMarshallerFactory The static methodetLogCoun-
terMarshallerinstance(LogAlgorithngan be used to obtain an algorithm-specific instance of tig€ban-
terMarhaller. Thd.ogAlgorithmenum describes which algorithms are available.

Finally, thelogbasedpackage contains a LogVerifier class, which is used to véwiyReadCertificate,
SharedincCertificate, and VerifiedIncCertificate objedtegVerifier contains a copy of TPMCountStam-
pVerifier (actually part otounterhost.tpi which checks the validity of the TPM transport log conéain

within the CountStamp.

4.6 Simulation

The Simulation module is not one of the core modules of the \@WTe framework, but is included as
a demonstration of how an application can be built on top ofG8fore. The purpose of the Simulation

module is to perform wide-area multi-client performancalgses of the VMCStore system.

32

4.6.1 Operational Overview

Figure 4 provides an overview of the hierarchical structfrthe Simulation module. A central simulation
server, running th&imulationCommandeis responsible for conducting, controlling, and collegtidata
from the experiments. At the beginning of an experiment,SimulationCommander contacts an arbitrary
number ofSimulationNodesany or all of which may be running on separate machines. Timel&tion-
Commander tells each SimulationNode how m&myulationClientso generate, and any other important
parameters for the experiment (e.g., algorithm type, motime).

As suggested, each SimulationNode can run an arbitrary eugilzlients. Each SimulationClient runs
in a separate thread, owns a separate instance of LogCheridr, and establishes its own connection with
the counter server.

While the experiment runs, each SimulationClient tracksumlmer of statistics relating to its opera-
tion and communication with the counter server. When theengent finishes, the SimulationCommander
asks each SimulationNode to send a report of the simulatiteg dn turn, each SimulationNode asks each
of its SimulationClients to send a report of its own simuwatdata. The SimulationNode aggregates the
SimulationClient data into a single report and sends it &SimulationCommander. Finally, the Simula-
tionCommander aggregates the reports from each Simulhaide and returns the result to the user.

LogCounterGateway also tracks certain statistics durimgperation. At the end of an experiment,
the SimulationCommander collects these statistics frarLttgCounterGateway and includes them in the
report to the user (see Interfaces).

SimulationNodes can be left running indefinitely on host hiraes, so multiple experiments can be run
back-to-back. MultiSimulationtakes advantage of this construction, providing an interfor running a

series of experiments, by adding an extra layer on top of BitlenCommander.

4.6.2 Interfaces

The Simulation module has a humber of communication remérgs above and beyond the methods pro-

vided by the CounterGateway interface. These are captyr&inbulationGateway:

e String getStats()

Returns the simulation statistics as a comma-separatad (@5V) file represented by a String.

33

Simulation ‘ SimulationCommander ‘

Simulation Server

\
\ RMISimulationNodeClient \

Client Machine

RMISimulationNode
SimulationNode |

runClients(), getStats()

SimulationScheduler SimulationScheduler SimulationScheduler SimulationScheduler

put(), get() i put(), get() put(), get() i put(), get()
. A P A : P A B A :
X _ Client _ Client . Client

- -

v v v

RMIClientGateway RMIClientGateway RMIClientGateway RMIClientGateway

RMIServerGateway

/

-Communication

Figure 4: Detailed diagram of how the Simulation performdevscale performance tests of the VMCStore
system. While there is only one simulation server and onateoiserver, there can be an arbitrary number
of simulation nodes, each with an arbitrary number of ctiert socket-based implementation, included in
VMCStore, can be used in place of the RMI classes.

34

¢ void resetStatisticsy()
Clears any outstanding statistics remaining on the CoGiattervay. This should usually be called

beforeprepareNewSimulation()

e void prepareNewSimulation(String simID)
Prepares the CounterGateway for a new Simulation, whidbeiteferred to by the given simulation

ID.

A second interface is provided, SimulationCommunicatiate®ay, the super-interface of Simulation-
Gateway. The relationship between these two interfacesalogous to the relationship between Counter-

Gateway and CommunicationGateway (see Section 4.3).

4.6.3 Data Collection Structures

The Simulation module uses a number of different structtoellect and aggregate data. In-simulation,
the LogCounterGateway and SimulationClients manage sioul data using th8tatPackagedCertificate
StatRecordand StatRecorderlasses. The SimulationCommander uses the Machine®®isid Group-
Statistics classes to perform the final aggregation.

The StatRecord class simply provides a mapping of Stringltiles, where the String is a key that
represents the statistic that was recorded, and the dositthee irecorded value. The StatRecorder class
accepts StatRecord objects, and writes out the data tormiGISV format, grouping records with the same
key. The StatRecorder writes the data to disk immediatelgitomize data loss in case the client crashes.

LogCounterGateway uses StatPackagedCertificates to seathson data (e.g., TPM operation time)
to the SimulationClient. The StatPackagedCertificatesciagplements ByteArrayableWrapperinterface,
and holds a StatRecord and a CountStamp.

When the SimulationNode asks a SimulationClient for itsistias, the StatRecorder CSV file is read
verbatim from disk and sent to the SimulationNode as a Striffte SimulationNode collects all of these
Strings from its SimulationClients and sends them as a¢aimay to the SimulationCommander. Before
aggregating the statistics, the SimulationCommandeewthese individual CSV files to disk for backup.

While the StatRecord class only accepts a single instanasestattistic— reporting a second value under

the same key throws an errerthe MachineStatistics aggregates data over all instarf@estatistic during

35

the run of an experiment. For each key, the MachineStaistiject maintains ®oubleStat(a TPM/J
object), which calculates the mean, standard deviatian,oétthe statistic.

The GroupStatistics class takes aggregation one stepefudhcepting MachineStatistics and Group-
Statistics objects, and calculating statistics acrosgiwin data. The aggregated data is then retrieved using
thetoCSVMultiSim(method, which returns a CSV file ass&ingBuilder This CSV file contains not only
the final aggregated statistics, but also calS8SVMultiSim(yecursively on the child GroupStatistics objects

to generate all of the intermediate aggregation statistics

36

5 Theoretical Data Structures in VMCStore

This section provides a bridge between theory and impleatient explaining which data structures corre-
spond to which classes in VMCStore. For more details on th@eémentation of these classes, please see

Section 4.

5.1 Counters and the Virtual Counter Manager

In VMCStore, the virtual counter manager is implementedhinitheTPMCountStampHostass. This class
uses TPM/J, a Java-based API for the TPM, to communicatethatTPM, as well as generate timestamps
for the client [34].

Timestamps are derived from a TPM/J data structure call€duntStamp CountStamps are generic
containers, capable of holding a counter ID, a nonce, andiatepvalue, as well as other information. A
subclass of CountStamp, call@®MCountStampcan also hold the transport log of the counter operation
performed at the TPM. The TPMCountStampHost returns a TRIMEiamp as the result of both increment

and read operations.

5.2 Validation Proofs and Confirmation Certificates

The counter manager requires an additional layer to compesealidity proofs required to convince clients
that counter operations were completed correctly. Thisrléy implemented as theogCounterManager
The LogCounterManager is responsible for generating thalkdity proofs, as well as for verifying client
signatures on incoming counter requests.

Validity proofs are packaged within a data structure caltexl_ogVerificationCertificate The LogVeri-
ficationCertificate contains the most recent confirmatiatifazte for the requested counter ID, as well as
a log of all increment operations that have been performethanTPM since that confirmation certificate
was generated. If no confirmation certificate has yet beezivett (e.g., because the virtual counter has just
been created), the first increment certificate and the inenéiog dating back to that certificate is returned.
Note that the actual format of the log may vary from algorittovalgorithm; a multiplexed scheme only
requires a subset of the log to prove counter validity. Sexti@e3.5 for more information.

Confirmation certificates are implemented by ttmgConfCertificateclass. The LogConfCertificate

contains an instance dbgConfCertDataas well as a client signature over this data. The LogConfizea

37

contains the counter ID of the virtual counter which is bewogfirmed, as well as the time the validation

was completed, the last increment time of this counter, asthadule of legal increment times.

5.3 Operations and Operation Certificates

VMCStore provides three of the four operations presentatierProtocol Overview section (Section 3.3).
Since read-without-validation is not required by any of éifgorithms presented, and not useful for proving
validity, it is not provided by VMCStore.

The other three operations, however, are provided. Eachrainms a different data structure, as de-

scribed below:

¢ Increment-without-validationReturns aSharedincCertificatewhich contains the increment nonce,
TPMCountStamp, and a schedule of legal future incremergginAssuming the schedule is client-
independent, the same increment certificate can be selhtt@ats updating in a single timeslot (e.g.,

using theSharedalgorithm).

e Increment-with-validation Returns avalidatedIncCertificatewhich contains a SharedincCertificate

and a LogVerificationCertificate (see Section 5.2).

e Read-with-validationReturns d ogReadCertificatewhich contains &haredReadCertificata Shared-
IncCertificate (from the last increment of the requestetusalrcounter), and a LogVerificationCer-
tificate (see Section 5.2). The SharedReadCertificate iosntiae read nonce, as well as the TPM-
CountStamp for this read operation. (The SharedReadCatéfcould be returned by itself to provide

a read-without-validation operation.)

While two increment operations are provided, only one im@et operation is allowed for each algo-
rithm. An algorithm can decide whether increments shoulddielated by setting thealidatelncrement

option of the LogCounterHost class.

5.4 Algorithms, Nonces, and Schedules

Four log-based algorithms, derived from the Improvemeatdien (Section 3.5), are provided by VMC-
Store. These algorithms are described below and, excetttdddaptivealgorithm, are tested and analyzed

in Section 6:

38

Simple The original single-client protocol defined in section.3.4

Shared The multi-client increment/read protocol described by3aring improvement.

Multiplexed The fixed-schedule, multi-client protocol defined by fime-multiplexing improve-

ment.

Adaptive The adaptive-schedule, multi-client protocol defined oy Time-multiplexing improve-

ment.

All schemes, except thédaptivescheme, use the increment-without-validation protocetusity con-
cerns are introduced when the schedule is not fixed. The at#iroonclusion is that the virtual counter
manager may only perform increments-with-validation wheimg theAdaptivescheme. A detailed analy-
sis of the security risks of the adaptive multiplexed prot@an be found in Appendix B of [45].

In VMCStore, all protocols use the same nonce data struétunmaking increment and read requests
to the virtual counter manager. For reads, this structutedsSharedReadNonceomposed of a list of
NonceWithCounterIBtructures. Each NonceWithCounterID contains the coubtef the virtual counter
to be read, as well as an anti-replay nonce.

For increments, th&haredincNoncelass is used. A SharedincNonce is composed of a listoofce-
WithSignatureobjects, each containing a copy lotrementNonceDatas well as either a public key, or a
signature over the data. If this increment represents #ation of a virtual counter (i.e., the first time the
virtual counter is being incremented), this is indicatedplagsing a public key with the IncrementNonce-
Data. Otherwise, a signature over the IncrementNonceBatarnt to authenticate this increment request to
the virtual counter manager.

The IncrementNonceData contains three pieces of infoomatihe counter ID of the virtual counter
to be incremented, an anti-replay nonce, and the time ofrdqus increment of the virtual counter. The
previous increment time is included to prevent collisioreve two devices of a single client try to increment
a counter at the same time, and one may overwrite the chafhds other. If the virtual counter manager
detects an erroneous previous increment time, it will electecline the increment and warn the client that
there is a more recent update.

Note that although th8implealgorithm uses shared nonce structures, its protocol diokygone client

to perform a read or increment at a time. For this algorithm,ghared nonces only contain the individual

39

nonce for the virtual counter involved in the operation.

Finally, as mentioned above, the SharedincCertificate yawantains a schedule of legal increment
times. In VMCStore, these schedules are generated by th@algounter manager and are generated for
every algorithm. All schedule classes implement$iohedulanterface, which provides basic functionality
for iterating through and seeking legal increment times.

The Simple Shared and Multiplexed algorithms all use an implementation of Schedule calldti-
plexedScheduleA MultiplexedSchedule allows an increment on evefy slot, wheren is the multiplex
factor. For theSimpleand Sharedalgorithms,n is always 1; for theMultiplexedschemeyn may take any
number, but for the experiments described in Sectionig,always 5 or 10.

By default, theAdaptivealgorithm uses &inearBackoffSchedulevhich works as its name implies, but

the Adaptivealgorithm can be customized to use any schedule which imgi&the Schedule interface.

40

6 Results

In this section we will analyze VMCStore and the practigatit its application to real-world scenarios. This
section will first discuss the experiment and its parameterd then continue with the expected results and

the experimental results that were obtained.

6.1 The Experiment

The goal of the following experiment was to develop an imuiffor the practical limits of a trusted storage
application built around a TPM.

The experiment involves two entities: the server, and tientd. The server is a TPM-carrying ma-
chine, which acts as the virtual counter manager for theddustorage system. The clients each own a
virtual counter, and submits requests to the virtual caum@nager for these virtual counters to be read or
incremented, at probabilistically determined intervals.

To determine the limitations of VMCStore, the system measwperational parameters during the run
of the experiment, such as operation time, bandwidth, ete. Rlypothesis is that by increasing the number
of clients and analyzing the change in measurements, anxapyate upper bound for the number of clients
VMCStore can maintain may be found. Furthermore, perfogntire experiment under different algorithms
(see Sections 3.5 and 5.4), provides an intuition for p@ktradeoffs that can be negotiated to make the

system more practical for global-scale usage.

6.2 Experimental Parameters

This section describes the framework used to perform thergrent described above. This framework was
used to generate all of the results discussed in the follpwéction.

The server (virtual counter manager) was run on the in thia &anter, on the MIT network (10MB/s),
using a Gateway M-465 laptop. This laptop was running Lirand contained a 1.83 GHz Core Duo CPU,
2GB RAM, and an ST Micro TPM 1.2 chip.

The clients were run on the PlanetLab network [42]. Usingrtioelel presented in Figure 4, 150 ma-
chines from this network were selected to act as Simulatiai®y for the experiments. The Simulation-
Clients were evenly distributed across these Simulatial@s§o All communication was managed using

VMCStore’s RMI communication classes (see Section 4.4).

41

All digital signatures were produced using 2048-bit RSA%kend hashing was done using SHA-1. We
used TPM/J [34] as a Java interface to the TPM. Measurembatges! that with the ST Micro TPM chip,
anIncSignoperation required about 1.3 secondsR@adSigroperation was found to take roughly the same
amount of time. We further found that the ST Micro chip tHestincSignoperations such that we could
only execute one at most every 2.15 seconds.

The SimulationClients were run using tReissonSchedularlass. At runtime, this class creates a sched-
ule of read and increment operations for the duration of ¥peement. Operations times were determined
over a Poisson distribution with a frequency of one openagieery 30 seconds. Read and increment opera-
tions were selected with equal probability so that, on ay&rave would expect one increment and one read
per client per minute. The schedule of client requests iegged at the beginning of the experiment. If a
client misses a request deadline, because a previous teqgak$oo long, the next request is made as soon
as the previous request returns.

The counter server was run as a multi-threaded applicafibent requests were handled as independent
threads, which were managed through the use of synchrobipedis, lists and queues. Server operations
were handled on a separate thread from network communicatiothat the TPM could perform operations
in parallel with client requests and the sending of read adement certificate responses. Each client
also had a personal TCP socket connection with the servéinasoequests and responses could be sent in
parallel, maximizing the usage of the server network.

All experiments were run for a duration of 35 minutes. The fikee minutes was used as a warm-up
time to allow virtual counters to be initialized. The stats represented below were derived from the final
30 minutes of the experiment. Experiments were conducted) tise Simplealgorithm, Sharedalgorithm,
andMultiplexedalgorithm (for multiplex values of 5 and 10). Thalaptivealgorithm was not tested, as it

is dependent on client request patterns, which are apiplrcdependent.

6.3 Experimental Results

We begin with an analysis of the original algorithm presdriteSection 3.4, and then continue by analyzing

the extensions listed in Sections 3.5 and 5.4.

42

6.3.1 Operational Efficiency

To determine when the system saturates, we will use the ilepavational efficiency We define opera-
tional efficiency to behe ratio of the number of operations actually completed teetexpected number of

operation requests, in an experiment

__operationScompleted
requestSexpected

If each client makes one operation request on average elesgcdnds, and all experiments run for 30
minutes, we should expect each client to request approglyn@0 operations during the experiment. If an
experiment saturates, the client should fall behind itsiestischedule and fail to complete all 60 operations.
Therefore, according to this metrig, ~ 1 should indicate that the system is practical and unsatlirate
(i.e., the server is able to complete all requested operatiwhile v < 1 should indicate that the system is
impractical and overloaded (i.e., unable to complete ahefclient requests).

From the client’s perspective, an overloaded server mée®perations are consistently taking longer
that 30 seconds to complete. Since the client makes requestgerage every 30 seconds, and the request
schedule is generated ahead of time, this means that at smintergquests will bdate. As mentioned in
the Experimental Parameters section, a client will onlydsiena late request when it receives the result
from the previous request. However, since the server idaa@ed, future requests will also take more than
30 seconds to complete. This leads to a snowballing effethiaathe lateness of later requests will grow

without bound.

6.3.2 Simple

TheSimplealgorithm allows only a single user to increment or read Irtnal counter at any given timeslot.
Intuitively, if the time that a client has to wait to perform aperation is greater than the average operation
frequency defined by its Poisson process, the client shaddasbacklog of operations, and the system
should saturate. By this intuition, we should expect the Ti@Me the bottleneck for th8implealgorithm
since, as mentioned above, the ST Micro TPM requires apmabely 1.3 seconds to perform any given
increment or read operation. Since clients perform, onaggrone operation every 30 seconds, we expect
the upper bound of th8implealgorithm system to be approximatelgs/1.3s ~ 23 clients.

Figure 5 shows the operational efficiency of the VMCStordesysusing theSimplealgorithm, for a

43

T T T T T T
12 .
> 08 .
C
Q0
O
=
[0}
g 06} .
©
[0]
Q.
o)
04} 4
02} .
0 | | | | | |
0 5 10 15 20 25 30 35

Number of clients

Figure 5: Operational efficiency of tigimplealgorithm, for various clients. The decrease in efficiency
suggests that the system’s saturation point has been teache

range of 4 to 30 clients. We can see from the graph that theesitg of theSimplealgorithm hovers around

1 until the number of clients reaches the low-to-mid 20'se Teviation in the smaller number of clients is
probably within expectation; later results with many moliergs tend to be much tighter. We also notice
that the efficiency of the algorithm starts to drop below luah22-24 clients, suggesting the system is
becoming overloaded. This agrees with our expected samrabint of about 23 clients.

Looking at the data from another perspective, Figure 6 shbesotal number of operations performed
for each of these experiments. Since we expect the TPM toebbdtileneck, there should be an absolute
limit to the number of operations it can perform, abo&0s/1.3s ~ 1384 operations. While the number of
operations grows linearly in the graph until we reach 20 tolhts, the TPM definitely appears to saturate
at this point. As the number of clients continues to incregse TPM approaches the maximum number of
operations it can possibly support in 30 minutes; the marimumber measured was 1368 operations.

Figure 7 and Figure 8 show the average size of the incremehtema certificates, per client, for each
of the experiments. Th8implealgorithm uses the increment without validation proto@bperform its

increments. Since the size of the certificate produced tsypitotocol grows linearly with the number of

44

1800

1600 .

1400 1

1200

1000

800 -

600 -

Total number of operations (reads + increments)

400

200 —+— Simple B
£ 60 operations/client

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

Number of clients

Figure 6: Total operations performed by tBenplealgorithm, for various clients. As the number of clients
increases, we see the TPM reach the limit for the number aftipes it can perform in the timeframe of
the experiment.

4

251 *

Increment certificate size (kB)
N
T
1

0.5r 4

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

Number of clients

Figure 7: Average certificate size per increment of$iraplealgorithm, for various clients.

45

concurrently incrementing clients, and we only allow onrerdl to increment its counter during any given
timeslot, the certificate should have approximately caoriteze, as confirmed in Figure 7.

On the other hand, th8implealgorithm uses the read with validation protocol for alldegperations.
We recall that the read certificate will contain a validitpef, as well as the read nonce. The validity proof
contains a log of increment certificates since the last aoation certificate was sent to the server. Since
the Simplealgorithm sends a confirmation certificate after each readexpect the validity proof to grow
with the number of expected increments between the timeatgderforms two reads. Since only one client
can read or increment at a time, we should expect the valptibpf to grow linearly with the number of
clients. The read nonce has a constant size, since only imm¢ chn increment at a time, so the entire read
certificate size should be an affine function that grows withriumber of clients.

Indeed, the graph in Figure 8 confirms this relationship. rétee some anomalies as the number of
clients reaches saturation. These anomalies may be exglaiy the way theSimplealgorithm queues
increments and reads; while increment requests are gtpoticessed in FIFO order, reads are performed
on-demand in a pseudo-random order (e.g., at the whim ofafe thread manager). Unlike ti@hared

andMultiplexedalgorithms, it is possible for multiple consecutive reaunlbé processed, even if there is an

P [} (224 |
o o (=} o
T T T T

Read certificate size (kB)

w
o
T

20

10 4

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

Number of clients

Figure 8: Average certificate size per read of 8mmplealgorithm, for various clients.

46

increment request in the queue.

T T T T T T

60 - b

50 b

N
<)
T
|

w
o
T
|

Server inc time (seconds)

20 .

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

Number of clients

Figure 9: Average time spent by a client at the server durimgnarement of theSimplealgorithm, for
various clients.

Finally, for completeness, we present Figures 9 and 10, isigothie average time that a client thread
spends on the server during an increment of read operatioat i3, these graphs represent the time that a
client thread waits at the server for its operation to prdcgdus the TPM operation time. Network transit
time is not included in these graphs. (The network bandwatithe clients was not standardized, and proved
a difficult parameter to use as a performance metric.)

To understand these graphs, consider three regions. Sithplealgorithm is well under-saturated (i.e.,
the server can easily handle all the requests), then wedleaplect few conflicting requests on the server,
and a client should be able to perform its operation with maliwaiting time (i.e., close to the 1.3s required
for the TPM time). This is the 4 to 12 client region, where bathd and increment operations take under 2
seconds.

As the number of clients approaches saturation, we shoplelotxnany more conflicting client requests.
Clients have a higher probability of having to wait for otletients to finish their operations, and the server

time increases. This second region would be representethéitbe range of 16 to 20 clients.

47

Finally, as the server hits saturation, we expect the TPMetprbcessing operations all the time. While
each client still schedules to make one request every 30sayage, the increase in clients means that over
a 30s period, the total number of request would tally to mbest30s of work. This implies that a wait
gueue will build up on the server. As soon as a client finisteegperation, if it has missed the deadline for
the next operation, it will immediately send the requeshtoderver, adding itself to the wait queue.

In this third region, then, the size of the wait queue growsdrly with the number of clients. Since only
one client is processed at a time, this leads to a linear gt on the server, and the (approximately) linear
behavior we see in the region with 22+ clients. (We are unttbxplain the anomaly in the read time for
32 clients, at this time.)

It may seem surprising at first that the average server inemétime is significantly higher than the
average server read time. Once again, this is probably # césncrements and reads being handled asym-
metrically, and how it is possible for multiple reads to beqassed between two consecutive increments.
Considering the increment time alone, however, if all dbemwere performing increments, with 30 clients

we would expect to have to walb « 1.3s = 37.7s on the server, before we can process our increment. If

18 T T T T T T

161 1

14 .

- -
o N
T T
| |

[e)
T
|

Server read time (seconds)

| |
0 5 10 15 20 25 30 35
Number of clients

Figure 10: Average time spent by a client at the server dusingad of theSimplealgorithm, for various
clients.

48

reads take higher priority than writes, it is possible thé wait time will increase even further. While this is
difficult to quantify theoretically, since the Java threadmager is non-deterministic, given this explanation,
the 62.6s wait time for increments in the 30-client experinteay make more sense.

To summarize our analysis of ti&mplealgorithm, we remind the reader of the results of Figuresc an
6, which suggests that the TPM reaches a limit for the humbeperations it can perform. Figures 9 and
10 provided further evidence that ti&mplealgorithm reaches a point where it cannot process all of the
client requests in a timely matter, resulting in the buifdaf wait queues at the server. Both of these results
suggest that th&€implealgorithm can only manage about 20 to 22 clients, close tadgmal estimate of
23 clients.

The next section will demonstrate how TPM sharing can be tsedove the system bottleneck from

the TPM to the network, significantly increasing the numtferlients we can manage.

6.3.3 Shared

As shown in the previous section, the TPM serves as the hettlefor theSimplealgorithm limiting the
number of clients it can manage to about 20. We will show tlyatllowing multiple clients to be processed
for each TPM increment or read, tBdaredalgorithm increases the number of clients that can be mahage
and moves the bottleneck to the network.

Figure 11 shows the operational efficiency of 8teredalgorithm for various numbers of clients. As can
be seen from this graph, tt&haredalgorithm maintains an efficiency of near 1 until the numbeclients
reaches between 300 and 400, at which point the system esuaad the efficiency sharply decreases.

Figure 12 provides another view of this data, showing thal teimber of operations performed by the
Sharedalgorithm for each experiment. While this graph is a littlesleading, because the data points are

spread far apart, we can make three observations:

a Until the system saturates, the number of operations peefib grows linearly with the number of

clients,
b The system saturates somewhere between 300 and 500,iedts

¢ Adding more clients to a saturated system actually deesg&d® number of operations the system can

perform.

49

121 4

o
©
T

|

Operational efficiency
o
o
T
L

o
~
T

1

0.2 B

0 | | | | | | | 1
0 100 200 300 400 500 600 00 800 00

Number of clients

Figure 11: Operational efficiency of tt&haredalgorithm, for various clients. Notice that tiharedalgo-

rithm can support many more clients than 8implealgorithm before the system becomes saturated and the
efficiency decreases.

N
o
T

1

10F b

Total number of operations (reads + increments) * 103

0 | | | | | | | |
0 100 200 300 400 500 600) 800 00

Number of clients

Figure 12: Total operations performed by tBkaredalgorithm, for various clients. Once again, we see a
peek in the number of operations the system can perform sherevbetween 300 to 500 clients.

50

This third point will be expanded upon in the analysis of thiéofving graphs.

10 T T T T T T T T

Increment certificate size (kB)
2
T

O 1 1 1 1 | 1 1 1
0 100 200 300 400 500 600 00 800 00

Number of clients

Figure 13: Average certificate size per client, per increnoéthe Sharedalgorithm, for various clients.

Figures 13 and 14 show the average increment and read eeifizes per client, per operation of the
Sharedalgorithm. Starting with the increment certificates, wetfirste that theSharedalgorithm uses the
increment without validation protocol. Since the VMCStsteared nonce grows linearly with respect to
the number of concurrently incrementing clients, we shaxpect the graph of the size of the increment
certificate to be affine. Indeed, until the system hits séitmawe can see from Figure 13 that the graph
does grow as expected.

Once the system hits saturation, requests take more thaio 8dsnplete. Recall that clients will only
send a request with a missed deadline once the result of éwiops request is returned from the server.
The frequency at which a client can make requests is thendaouhy the time it takes for operations to
complete in an overloaded system. This implies that requegtiency of saturated clients decreases, and
that a saturated client’s operations are spread over aflqag®d.

The expected number of concurrently operating clientS\Aergby%. When not in satu-
ration, the expected operation period is 30s, and the nuoflmancurrently operating clients grows linearly

with the total number of clients. In saturation, the ope@ragperiod is no longer a constant, but dependent

51

on the time it takes for operations to return, which is a fiomcof the number of clients, and the network
bandwidth, among other things. While it is difficult to pretdihe expected operation period when the sys-
tem is overloaded, it will be greater than 30s, so the numbeomcurrently operating clients grows slower
than in the unsaturated region as seen in Figure 13.

In Figure 14, we once again see a linear relation between uher of clients and the size of the
read certificate. While this is a read with validation ceztife, until we hit saturation we expect a constant
number of increments between two consecutive reads of iet.clThe linear behavior is a result of the
shared read nonce, which grows linearly with the number otaoently reading clients. Comparing this
graph with Figure 8, we notice that although both these grapbw linearly with the number of clients, the
read certificate size grows much more slowly int 8teredalgorithm than in th&implealgorithm. This is
because the nonces included in the shared nonce (whiclageche theSharedalgorithm) are much smaller
than the increment certificates added to the validity préefsch increase in th&implealgorithm).

While the validity proof size is constant when the systemadsgaturated, once theharedalgorithm
hits saturation, a client’s read frequency decreases,@ngdriod between consecutive reads of that client

increases. Now, the validity proof size is not constant,ifitieases as a function of the time it takes for an

400

350

300

250

200

150

Read certificate size (kB)

50 1

0 | | | | | | | |
0 100 200 300 400 500 600 (00 800 (00

Number of clients

Figure 14: Average certificate size per client, per read @Btharedalgorithm, for various clients.

52

operation to return. Even though the shared nonce size @dlighse because fewer clients read concurrently
(see above), this is overshadowed by the increase in thé gimmy leading to the exploding read certificate
sizes seen in the saturated regions of Figure 14.

Finally, note that if the network is saturated, then inciggthe size of the read certificates should
decrease the total number of read operations we can perfasoking at Figure 12 once again, we notice
that the number of operations does decrease in the satuegjioh, providing us with evidence that the
network is the bottleneck in 8haredsystem.

3.5 T T T T T T T T

e

- N
(6] N (3,
T T T
| | 1

Server increment time (seconds)

-
T
1

0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 00 800 00
Number of clients

Figure 15: Average time spent by a client at the server dusimgncrement of thé&haredalgorithm, for
various clients.

Figures 15 and 16 present the average time that a clientttisgaesent on the server during an incre-
ment or read operation. Once again, we remind the readethibainly includes waiting and operation time
on the server, not network transfer time. Since, inSharedalgorithm, all requested reads or increments are
processed concurrently, we should expect the averagergeneeto be nearly constant, even in saturation.
This time will include the operation time (1.3s for both iagrents and reads), as well as some wait time.

Both Figure 15 and 16 match these expected results. Theggvezad and increment time on the server

for all experiments- even those in saturation was in the range 2.68s to 3.03s, reflecting some wait time

53

and processing time on top of the TPM operation time.

Comparing these graphs with tBémpleresults (Figures 9 and 10), we see a striking differencehén t
Simplealgorithm, we know the TPM was the bottleneck, and that thees®peration time was proportional
to the number of clients. However, for tiharedalgorithm, it is clear from these graphs that the TPM is
no longer the bottleneck. Indeed, it is unlikely the CPU s liottleneck either, because we would expect
the increased processing time to be reflected in Figuresd8&n

Our conclusion is that the network becomes the bottlenecth&Sharedalgorithm. Saturation implies
that a client is no longer able to perform operations at ipeeted rate of once every 30s. However, Figures
15 and 16 show that the client spends only a few seconds waitid operating on the server. This implies
that the bottleneck is either the client itself, or somewhagtween the server and the client. It is improb-
able that the client is the bottleneck, since the major [siog operation on the client is probably proof
verification, and the proof size remains constant untilrsditon is reached.

However, as shown in Figures 13 and 14, certificate size gramaily with the number of clients. Also,

we see from Figure 12 that the number of operations perforgneds linearly with the number of clients.

3.5 T T T T T T T T
Il w i
25F B
m
°
c
<}
o
§ o |
®
£
o
©
151 .
5]
2
o}
(2]
1+ B
0.5f B
0 | | | | | | | |
0 100 200 300 400 500 600 00 800 00

Number of clients

Figure 16: Average time spent by a client at the server dwaingad of theSharedalgorithm, for various
clients.

54

This implies that the network bandwidth usage grows quamddit with the number of clients. Experiments
showed that the server would typically send around 3.0GB3GB data over 30-minute experiments near
saturation. It seems likely that the network bandwidth veghing saturation, and serves as the bottleneck
for the Sharedalgorithm.

In summary, we have shown that by processing client readsremements concurrently, thghared
algorithm removes the TPM bottleneck and improves the numibaients it can manage to around 400. We
have also shown that it is likely that the network bandwidthaw the bottleneck of the system. Under this
assumption, we will now demonstrate how we can use mulliipieto reduce the network load, increasing

the number of clients we can handle at the expense of longezrssait times.

6.3.4 Multiplexed

The previous section demonstrated how $earedalgorithm uses concurrent processing of clients to shift
the bottleneck of the system from the TPM to the network badthyincreasing the number of clients that
can be managed. As discussed in Section 3.5, client inctereguests can be multiplexed to reduce the
size of the validity proof, at the expense of increased semait times. This section will demonstrate the
results of these modifications, applied by Maltiplexedalgorithm.

Two versions of theMultiplexed algorithm were run for the experiments in this section: orith &
multiplex factor of 5 Multiplexed-5, and one with a multiplex factor of 1Multiplexed-10. In all of
the following graphs, the results for these two experimemes graphed against the result of Bbared
algorithm, which is equivalent to tHdultiplexedalgorithm with a factor of 1.

Intuitively, an increased multiplex factor will result imsiler validity proofs, which should allow us to
transmit proofs to more clients. However, as the nonce sizeeases linearly with the number of clients,
and since the shared nonce is sent to each client, the bathdirddn nonces will increase quadratically
as the number of clients increase. So while the decreased gime will allow us to handle more clients,
the increased nonce size, for both reads and incrementdjmil this improvement. Furthermore, if the
multiplex factor causes the operation time to be longer tih@noperation frequency, this will cause the
system to saturate.

This suggests that there is an optimal multiplex factor fgivan set of client and bandwidth parameters.

We do not present a method for computing that here, but lé@agedn open research topic. Indeed, even for

55

the experiments below, we do not know the optimal multipkotdr.

T T T T T T
121 b
1 Vg =l]

0.8 b
o)
C
2
Qo
£
°
T
[}
o
@)

041 b

0.2 —+— Shared |

—— Multipleled(5
—+&— Multiple(ed10
0 | | | | | |
0 200 400 600 800 1000 1200 1400

Number of clients

Figure 17: Comparison of the operational efficiency of Mhdtiplexedand Sharedalgorithms, for various
clients.

Figures 17 and 18 compare the operational efficiency andl eperations performed by th8hared
and Multiplexed algorithms. As seen in Figure 17, the efficiency of ¥altiplexed-5algorithm breaks
around 700 to 800 clients, while tiMultiplexed-10algorithm breaks around 900 to 1000 clients. Looking
at the total operation results in Figure 18, we see rougldysime behavior. As expected, tealtiplexed
algorithms can handle more clients than 8tearedalgorithm, but the relation is not linear with respect to
the multiplex factor.

Figures 19 and 20 display the average increment and reafibedet sizes for th@élultiplexedalgorithms.
We note first that all increments are increments withoutdaion, and all reads are reads with validation.
Looking first at the increment certificate sizes in Figure\8,notice that, in unsaturated regions, there is
a tight linear relationship between the number of clienid #ue increment certificate size. We remind the
reader that this is because the increment certificate eentashared nonce, the size of which is directly
proportional to the number of concurrently incrementingrdis, which itself is proportional to the total

number of clients. Regarding the behavior in the saturatgibn, we remind the reader that, while the

56

60 T

—+— Shared
—6— Multiple[ed5
—+&— Multiple[ed[10

(o))
o
T

N
o
T

30

Total number of operations (reads + increments) * 103

-
o
T

0 | | | | | |
0 200 400 600 800 1000 1200 1400

Number of clients

Figure 18: Comparison of the total operations performedhgMultiplexed and Sharedalgorithms, for
various clients.

14 T
12 E
10 E
o
3
[0}
B
o 8 N
®
ke
=
[0}
o
t 6 E
o
€
[}
G
£
4 |
2 —+— Shared |
—&— Multipleled(5
—F&— Multiplered(10
0 | | | | | |
0 200 400 600 800 1000 1200 1400

Number of clients

Figure 19: Comparison of the average certificate size pemlper increment of thglultiplexedandShared
algorithms, for various clients.

57

number of clients increases, the client increment freguelecreases. See the discussion of Figure 13 for
more details.

Regarding the read certificate sizes in Figure 20, we firit@dthat in the unsaturated region for all three
curves, read certificate sizes for all three algorithms glioearly, and theMultiplexed algorithms grow
significantly more slowly than th8haredalgorithm. The read certificate size is not inversely prépoal
to the multiplex factor, but this is expected, since the readificate contains a shared nonce, which grows
linearly with the number of clients and is roughly the sanrealbthree algorithms.

Indeed, this growing shared nonce also means that the btawtdit of the multiplexing decreases as the
number of clients increases: with 100 clients, 8faredread certificate is 5.65x larger than tMeltiplexed-
10certificate; at 400 clients, this factor has been reducedtx3 This is one of the reasons why the number
of clients theMultiplexedalgorithm can handle does not scale linearly with the migtifactor.

Finally, we present Figures 21 and 22, representing theageeclient increment and read times, mea-
sured at the server. We remind the reader that this includégime at the server and TPM operation time,

but no network transfer time. We expect the server increrieret to scale approximately linearly with the

400 T T T T T T

—+— Shared
—6— Multipleled5
—8— Multiplered10

350

300 B

250 1

200 1

150 1

Read certificate size (kB)

100 b

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Number of clients

Figure 20: Comparison of the average certificate size pentliper read of thdultiplexed and Shared
algorithms, for various clients.

58

25

201 -

-
(S}
T
|

=y
o
T
|

O_74_44_4_€%4*_4*_44{}..,..4-4}/’/43\“ﬂ9\\\\9.ﬂ-o

Server increment time (seconds)

T T

| | | | |
0 200 400 600 800 1000 1200 1400
Number of clients

Figure 21: Comparison of the average time spent by a cliethieagerver during an increment of tieuilti-
plexedandSharedalgorithms, for various clients.

N
T
!

w
T
|

Server read time (seconds)

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Number of clients

Figure 22: Comparison of the average time spent by a cliethieaserver during a read of tihdultiplexed
andSharedalgorithms, for various clients.

59

multiplex factor. However, because reads are not consgidirty multiplexing, the server read time should
be the same for thBlultiplexedalgorithm as for th&sharedalgorithm.

Looking first at Figure 21, we first see that increments inNhédtiplexedalgorithms take significantly
more time on the server than increments for $maredalgorithm. While this does not appear to be a linear
relationship at first, we point out that the relationshipud@ctually be affine: the wait time should increase
linearly with the multiplex factor, but the 1.3s TPM incremi&me is constant. Ignoring the increment time,
theSharedalgorithm then takes: 1.4s, whileMultiplexed-5takes~ 7.3s, andMultiplexed-10takes~ 16.7s.

Furthermore, we notice that the server increment timestdrensstly independent of the number of
clients. We recall that this is because the TPM is no longeibtittieneck of the system, but all requested
reads or increments can be processed concurrently.

Multiplexed-10does demonstrate abnormal behavior above 1000 clients. dféethat this is in its
saturated region, but do not fully understand the causeigbthavior.

Finally, we look at the average server read times in FigureA2expected, the server read times for
all three algorithms are roughly the same. TWeltiplexed-10algorithm again showed abnormal behavior
above 1000 clients, but we are not able to explain this atithis.

In summary, we have demonstrated how kheltiplexed algorithm can multiplex client increments to
increase the number of clients that VMCStore can manage n@&gasing the multiplex factor, thdulti-
plexedalgorithm can decrease the size of validity proofs, refiguietwork bandwidth pressures, but at the
cost of increasing the time that client increments have tib atdhe server. For a given system, the optimal
multiplex factor would need to be analyzed by considering lamber of clients, the available network

bandwidth, the application, and client access patterns.

6.4 Conclusion

The Sharedand Multiplexed algorithms provide a significant improvement over Sienplealgorithm, in
terms of the upper bound for number of clients that can be atggh, by moving the bottleneck of the
system from the TPM to the network.

Still, the question remains, how practical would a VMCStlike trusted storage system be in the real
world? From the server perspective, we argue that thisliadgpends on the available network bandwidth.

From the client perspective, there are two main issues:dh#icate size, and the server operation time.

60

These experiments were run under the observation that mr@ydr bandwidth incurred during communi-
cation with the virtual counter manager would be on top ofabsts of communicating with the storage
server. The practicality of the system is then dependenhemarameters of the counter server, as well as
the details of the storage system.

For example, if client is using the storage system for margalgirge files (e.g. 10MB+), the overhead of
spending a few seconds at the virtual counter manager aiglieg) an 80kB certificate may be acceptable.
However, if the client is using the storage system to storeynsanall files, maintaining a virtual counter for
each file may be prohibitive.

In conclusion, we have shown that it is possible to build ated storage system on an untrusted server,
around a TPM. Furthermore, we believe that the results oéXiperiments we have performed on the VM-
CStore system suggest that a TPM-based trusted storagensysdy be practical for certain applications,

even for a relatively large number of clients.

61

7 Future Work and Conclusions

While the VMCStore framework provides preliminary evidenhat the TPM could be used as the basis for
a trusted storage system, many research areas are stilttdemould make such a system more practical.

As noted in Section 6, the network bandwidth tends to be thsybottleneck as the number of clients
increases. Currently, the network output grows quaddgtiedth the number of concurrent clients. One
improvement for the shared nonces would be to use an authtgdihash tree [28] as opposed to the flat log
of individual nonces which is currently used. While this Wwbnot reduce proof size significantly, the nonce
sizes would only grov® (log n) with the number of clients, as opposed to their current limekation.

The required network bandwidth could also be reduced byropitig the read and increment certificates,
reducing them to a minimal set of required information. Imtigalar, the current TPM/J CountStamp data
structure contains unnecessary redundant data (e.gntdine both the encrypted and unencrypted forms
of the increment command and its result). It may be possibtgptimize certain VMCStore data structures
as well: the LogReadCertificate probably does not need torré¢the SharedincCertificate of the most recent
increment if the most recent confirmation certificate ismetd. Finally, we suspect there may be more
efficient ways, instead of relying on Java serializationirémsfer the VMCStore data structures over the
network.

Finally, while VMCStore providegamper-evidentirusted storage, it provides little-to-no protection
against failures andenial-of-serviceattacks. A TPM-based trusted storage system would requagea
of replication to become commercially feasible. One sugilication scheme, which would transform
VMCStore from a tamper-evident totemper-tolerantsystem, can be found in Appendix C of [45].

In conclusion, this thesis has presented VMCStore, a frasriefor a trusted storage system based solely
on trusting a TPM 1.2. Preliminary experimental resultsfgrened on PlanetLab, have demonstrated that
such a system could be used to implement and maviggal monotonic countergproviding trusted storage
for a significant number of clients. VMCStore uses the conoéppg-based validation proofo prove the
validity of its counters. A variety of algorithms based oegh log-based validation proofs were developed

and tested, demonstrating flexibility in the system, bo#tks and potential areas of improvement.

62

References

[1]

[2]

[3]

A. Anagnostopoulos, M. Goodrich, and R. Tamassia. Btast Authenticated Dictionaries and Their

Applications. In4th International Conference on Information Security (JSZDO01.

T. Arnold and L. van Doorn. The IBM PCIXCC: A new cryptodpia co-processor for the IBM eServer.
IBM Journal of Research and Developmet3:475—-487, 2004.

A. Buldas, P. Laud, and H. Lipmaa. Accountable Certicktanagement using Undeniable Attesta-
tions. InProceedings of the 7th ACM Conference on Computer and Corinatioms Securitypages

9-17, 2002.

[4] A. Buldas, P. Laud, and H. Lipmaa. Eliminating Countedewice with Applications to Accountable

Certificate Managemenflournal of Computer Security0:273—-296, 2002.

[5] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Timenspang with binary linking schemes. In

Advances in Cryptology - CRYPTO '‘98ages 486501, 1998.

[6] A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimallycédfit accountable time-stamping. In

[7]

[8]

[9]

[10]

[11]

Public Key Cryptography '20Q(ages 293—-305, 2000.

M. Castro and B. Liskov. Practical byzantine fault talece. InThird Symposium on Operating

Systems Design and Implementatibebruary 1999.

M. Castro and B. Liskov. Proactive recovery in a byzaatfault-tolerant system. [Rourth Symposium

on Operating Systems Design and Implementai@ctober 2000.

D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. . $ncremental Multiset Hash Functions
and their Application to Memory Integrity Checking. Advances in Cryptology - Asiacrypt 2003
Proceedingsvolume 2894 oL NCS Springer-Verlag, 2003.

P. T. Devanbu and S. G. Stubblebine. Stack and queugrityt®n hostile platforms.Software Engi-
neering 28(1):100-108, 2002.

D. Eastlake and P. Jones. RFC 3174: US secure hashiogthig 1 (SHA1), Sept. 2001.

63

[12] S. Even, O. Goldreich, and S. Micali. On-line/off-lirthgital signatures. Journal of Cryptology
9(1):35-67, 1996.

[13] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. DagacCaches and Merkle Trees for Efficient
Memory Integrity Verification. IfProceedings of Ninth International Symposium on High Rernce

Computer ArchitectureNew-York, February 2003. IEEE.

[14] M. Goodrich, R. Tamassia, and A. Schwerin. Implemeoiebf an Authenticated Dictionary with Skip
Lists and Commutative Hashing. Rroceedings of DARPA Information Survivability Conferaad

Exposition pages 68-82, 2001.

[15] Hewlett Packard. Embedded Security for HP ProtectS.ool
http://h18004.www1.hp.com/products/security/embeldskecurity.html, 2007.

[16] M. Kallahala, E. Riedel, R. Swaminathan, Q. Wang, andri. Plutus: Scalable Secure File Sharing
on Untrusted Storage. IRroceedings of the Second Conference on File and Storadendlegies

(FAST 2003)2003.

[17] P. Kocher. On certificate revocation and validation.Phaceedings of Financial Cryptography 1998
pages 172-177, 1998.

[18] L. Lamport. Time, Clocks, and the Ordering of Events iBiatributed SystemCommunications of

the ACM 21(7):558-565, 1978.

[19] L. Lamport. How to make a multiprocessor computer thatectly executes multiprocess programs.

IEEE Transactions on Computei23(9):241-248, 1979.

[20] J. Li, M. Krohn, D. Maziéres, and D. Shasha. Secureustéd data repository (SUNDR). Rroceed-

ings of the 6th Symposium on Operating Systems Design arenaptation 2004.

[21] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, Mitchell, and M. Horowitz. Architectural
Support for Copy and Tamper Resistant Software. Ptaceedings of th@! Int'| Conference on
Architectural Support for Programming Languages and OfiatpSystems (ASPLOS-[fages 168—
177, November 2000.

64

[22] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Bl Trusted Database System on Untrusted
Storage. IrProceedings of OSDI 200@000.

[23] P. Maniatis.Historic Integrity in Distributed System®&hD thesis, Stanford University, Aug. 2003.

[24] P. Maniatis and M. Baker. Enabling the Archival Stora§&igned Documents. IRroceedings of the
USENIX Conference on File and Storage Technologies (FABZ)20ages 31-45, 2002.

[25] P. Maniatis and M. Baker. Secure History Preservatimaugh Timeline Entanglement. Rroceedings

of the 11th USENIX SEcurity Symposju2002.

[26] D. Mazieres and D. Shasha. Don't trust your file ser¥erProceedings of the 8th Workshop on Hot

Topics in Operating Systernglay 2001.

[27] D. Mazieres and D. Shasha. Building Secure File Systeuat of Byzantine Storage. Proceedings
of the Twenty-First Annual ACM Symposium on Principles stiiiuted Computingpages 108-117,
2002.

[28] R. C. Merkle. Protocols for public key cryptography. IEEE Symposium on Security and Privacy
pages 122-134, 1980.

[29] S. Micali. Efficient certificate revocation. Techniddeport MIT/LCS/TM-542b, 1996.

[30] Microsoft Corporation. BitLocker Drive Encryption . ttp://technet.microsoft.com/en-

us/windowsvista/aa905065.aspx, 2007.
[31] C. Mitchell, editor. Trusted ComputingThe Institution of Electrical Engineers, 2005.

[32] M. Naor and K. Nissim. Certificate revocation and certife update. IfProceedings 7th USENIX

Security Symposium (San Antonio, Texa9p8.
[33] Omen Wild. Enforcer Homepage. http://enforcer.setoge.net/, 2004.

[34] L. F. G. Sarmenta and contributors. TPM/J: Java-badetfér the Trusted Platform Module (TPM).

http://projects.csail.mit.edu/tc/tpmj/, Dec. 2006.

[35] L. F. G. Sarmenta, M. van Dijk, C. W. O’'Donnell, J. Rhodesid S. Devadas. Virtual monotonic

counters and count-limited objects using a tpm without até os. InProceedings of the first ACM

65

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

workshop on Scalable trusted computi#gplications and compliance, pages 27-42, New York, NY,

USA, 2006. ACM Press.

B. Schneier and J. Kelsey. Cryptographic support fause logs on untrusted machines. The

Seventh USENIX Security Symposium Proceedings, USEN$X Pages 53-62, January 1998.

B. Schneier and J. Kelsey. Secure Audit Logs to SupporhQuter ForensicsACM Transactions on
Information and System Security (TISSEZ{R):159-176, 1998.

S. W. Smith and S. H. Weingart. Building a High-Perfomoa, Programmable Secure Coprocessor.

Computer Networks (Special Issue on Computer Network Bgcud1(8):831-860, April 1999.

G. E. SUhAEGIS: A Single-Chip Secure ProcessBhD thesis, Massachusetts Institute of Technology,
Aug. 2005.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. DagadAEGIS: Architecture for Tamper-
Evident and Tamper-Resistant ProcessingProceedings of thé7*" Int'| Conference on Supercom-

puting (MIT-CSAIL-CSG-Memo-474 is an updated versidlew-York, June 2003. ACM.

G. E. Suh, C. W. O’'Donnell, I. Sachdev, and S. Devadassidgeand Implementation of theeGis
Single-Chip Secure Processor Using Physical Random FunsctinProceedings of tha2™¢ Annual

International Symposium on Computer Architectidew-York, June 2005. ACM.

The Trustees of Princeton University. PlanetLab — Aemplatform for developing, deploying, and

accessing planetary-scale services. https://www.platedrg/, 2007.

Trusted Computing Group. TCG TPM Specification versiah, Revisions 62-94 (Design Principles,
Structures of the TPM, and Commands). https://www.trugiegutinggroup.org/specs/TPM/, 2003-
2006.

Trusted Computing Group. Trusted Computing Group: TPMFAQ.
https://www.trustedcomputinggroup.org/fag/TPMFAQ?BOZ.

M. van Dijk, L. F. G. Sarmenta, J. Rhodes, and S. Devad&ecuring Shared Untrusted Storage by
using TPM 1.2 Without Requiring a Trusted OS. Technical repdlT CSAIL CSG Technical Memo
498, May 2007.

66

[46] B. S. Yee.Using Secure CoprocessorBhD thesis, Carnegie Mellon University, 1994.

67

