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ABSTRACT

This thesis introduces VMCStore, a framework for developing trusted storage applications on an untrusted
server using a trusted platform module (TPM). The frameworkallows the server to provide trusted storage
to a large number of clients, where each client may own and useseveral devices that may be offline at
different times, and may not be able to communicate with eachother, except through the untrusted server
(over an untrusted network). The clients only trust the server’s TPM; the server’s BIOS, CPU, and OS are
not assumed to be trusted. VMCStore draws on the ideas ofvirtual monotonic countersandvalidity proofs
to provide tamper-evident storage, allowing the user to detect modifications to his data, as well as replay
attacks. In particular, VMCStore uses TPM/J, a Java-based API for low-level access to the TPM, to create
virtual monotonic counters using the monotonic counters and transport sessions of the TPM 1.2.
VMCStore also provides a set of threelog-basedvalidation algorithms, which have been tested over
PlanetLab and analyzed in this thesis. The VMCStore framework has been developed in a modular fashion,
allowing the user to develop and test new applications and validation algorithms.
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1 Introduction

This thesis presents VMCStore, a framework for developing trusted storage applications on an untrusted

server using a trusted platform module (TPM). In particular, VMCStore provides the user with a framework

for using an untrusted server with a trusted platform module (TPM) to provide trusted storage for a large

number of clients, where each client may own and use several different devices that may be offline at

different times and may not be able to communicate with each other except through the untrusted server

(over an untrusted network)[45]1. This idea was first presented in [35], and expanded upon in [45]; this

thesis presents an implementation of these ideas, and analyzes the limitations of this approach in real-life

scenarios.

The research presented in this thesis is driven by two primary motivations:

a Promoting the TPM

The TPM is still a relatively new technology. Recently, a number of applications have been devel-

oped, providing a range of TPM-based services, from file and folder encryption [15], to file system

tamper-detection [33], to full-volume encryption [30]. However, the TPM still requires a more solid

application base to gain greater recognition and evolve into a critical component of modern com-

puter systems. Therefore, one goal of VMCStore is to demonstrate trusted storage as another possible

application of the current version of the TPM (1.2).

b Developing New Trusted Storage Applications

Since the TPM is not as susceptible to external software attacks as traditional software-based cryp-

tographic service providers [44], it is possible that a TPM-based trusted storage system would make

certain applications more feasible. Another goal of VMCStore, then, is to encourage the pursuit of

new trusted storage applications, which could help the TPM find a pervasive role in society. By ma-

nipulating the roles of the client and the server, many new applications can be imagined, ranging from

peer-to-peer systems, to count-limited certificates and DRM [45, 35].

With these two motivations in mind, the VMCStore system has been developed as a modular framework,

allowing the user to manipulate and extend the system to develop and test new algorithms and applications.

Four log-based validation algorithms are included as examples of how to use the VMCStore framework.
1For more a more detailed discussion of the problem statement, please refer to the Problem Statement section of [45].
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The rest of this thesis is organized as follows. Section 2 first presents an overview of work and systems

related to VMCStore. The abstract system model and protocols behind VMCStore, adapted from [45], are

then presented in Section 3. Section 4 provides an overview of the VMCStore system. This is followed by

a description of how the theoretical data structures are implemented in VMCStore, in Section 5, followed

by an analysis of the four log-based validation algorithms in Section 6. Future directions of VMCStore are

considered along with the conclusion of the thesis in Section 7.
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2 Related Work

Protecting and validating the integrity of data storage hasbeen a well studied topic due mainly to its high

importance to a wide range of applications. For this, cryptographic one-way hash functions [11] are often

used by a client to create a small local checksum of large remote data. Merkle proposed hash trees (authen-

tication trees) as a means to update and validate data hashesefficiently by maintaining a tree of hash values

over the objects [28]. Recent systems [10, 13, 9, 22, 26] makea more distinct separation between untrusted

storage and a trusted compute base (TCB), which can be a trusted machine or a trusted coprocessor. These

systems run a trusted program on the TCB (usually a trusted machine or machine with a trusted coprocessor)

that uses hash trees to maintain the integrity of data storedon an untrusted storage. The untrusted storage is

typically some arbitrarily large, easily accessible, bulkstore in which the program regularly stores and loads

data which does not fit in a cache in the TCB.

The work on certificate authentication trees in [17] has led to the introduction of authenticated dictio-

naries [32] and authenticated search trees [4, 3]. In the model of authenticated dictionaries, a trusted source

maintains all the data which is replicated over multiple untrusted directories. Whenever the trusted source

performs an update, it transmits the update to the untrusteddirectories. The data is maintained in an authen-

ticated tree structure whose root is signed together with a timestamp by the trusted source. If a user/client

queries an untrusted directory, then it uses the tree structure and the signed root to verify the result. A per-

sistent authenticated dictionary [1, 14, 23, 24] maintainsmultiple versions of its contents as it is modified.

Timeline entanglement [25] creates a tamper-evident historic record of different persistent authenticated

dictionaries maintained by mutually distrusting sources.

Byzantine-fault-tolerant file systems [7, 8] consist of storage state machines that are replicated across

different nodes in a distributed system. The system provides tamper-evidence and recovery from tampering,

but both properties rely on the assumption that at least two-thirds of the replicas will be honest. The ex-

pectation is that replicas are weakly protected, and possibly hostile, so the difficulty of an adversary taking

overk hosts increases significantly withk. Byzantine-fault-tolerant file systems distribute trust but assume

a threshold fraction of honest servers.

SUNDR [27, 20] is another general-purpose, multi-user network file system that uses untrusted storage

servers. SUNDR protects againstforking attacks, which is a form of attack where a server uses a replay

attack to give different users a different view of the current state of the system. SUNDR does not prevent
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forking attacks, but guaranteesfork consistency, which essentially ensures that the system server either

behaves correctly, or that its failure or malicious behavior will be detected laterwhen users are able to

communicate with each other. This is achieved by basing the authority to write a file on thepublic keys

of each user. Plutus [16] is another efficient storage systemfor untrusted servers that cannot handle these

forking attacks.

In our system, we place a small TCB in the form of a TPM at an untrusted third party. This TCB is

used to maintain virtual counters for timestamping, which allows client devices toimmediately(without the

need to communicate with any of the other client’s devices) detect server misbehavior whenever a critical

operation needs to be performed. In our system, server misbehavior also includes replay attacks. Since

replay attacks and other server misbehavior can be detectedimmediately, forking attacks are prevented, and

data freshness, integrity, and consistency is guaranteed.

We reduce the trusted computing base to only a single TPM 1.2 [43, 31], which is a standard component

on machines today. This differs from many other systems thatrequire complex secure processors [38, 2, 21,

46, 40, 41, 39].

We use the TPM as a secure counter which can be used to timestamp events according to their causal

relations. An order in logical time can be extracted if we know which events logically cause other events.

Lamport clocks [18, 19] are conceptual devices for reasoning about event ordering. Our scenario with a

centralized untrusted third party which implements a virtual counter manager with access to the TPM does

not need Lamport clocks to reason about logical time. Our difficulty is how to reason about malicious

behavior.

For completeness we mention that in accountable time-stamping systems [5, 6] all forgeries can be

explicitly proven and all false accusations explicitly disproven; it is intractable for anybody to create a pair

of contradictory attestations. Buldas et al. [4] introduced a primitive calledundeniable attester. Informally,

the attester is such that it is intractable to generate both apositive and a negative attestation based on an

elementx and a setS such that the attester concludesx ∈ S for the positive attestation andx 6∈ S for the

negative attestation. Their intention is to prove the existence or non-existence of objects in a database. An

authenticated search tree[17, 32, 4, 3] can be used for the construction of an undeniable attester.

One technique also worth noting is that described by Schneier and Kelsey for securing audit logs on

untrusted machines [36, 37]. Each log entry contains an element in a linear hash chain that serves to check
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the integrity of the values of all previous log entries. It isthis element that is actually kept in trusted storage,

which makes it possible to verify all previous log entries bytrusting a single hash value. The technique is

suitable for securing append-only data that is read sequentially by a verifying trusted computer.

Another concept worth noting is that of a certificate revocation list (CRL), which is a list signed by a

certification authority (CA) together with a timestamp. By obtaining the most recent CRL, one can easily

verify whether a certificate is still valid. Based on CRLs, less communication intensive solutions are pro-

posed in [29, 17, 32]. In [29] the idea is proposed to sign a message for every certificate stating whether it

is revoked or not, and to use an off-line/on-line signature scheme [12] to improve the efficiency. The idea to

use a log of certificates in which each of the certificates attests to a positive or a negative action is a general

principle which we also use in our approach (we use a log of increment certificates in which each of the

increment certificates attests to whether a certain virtualmonotonic counter has been incremented or not).
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3 Abstract System Model and Protocols

The VMCStore system is a proof-of-concept implementation based on ideas proposed by Luis Sarmenta and

Marten van Dijk in the Computation Structures Group of CSAILat MIT. The following section is adapted

from [45], and provides an overview of the theory behindvirtual monotonic countersandvalidity proofs,

and how they can be used to build a trusted storage system. Therelationship between the abstract structures

and protocols and implemented classes are explained in Section 5. Implementation details of the system

model are explained in Section 4.

To provide some context for the following section, note thatthevirtual monotonic counterswill be built

on top of the monotonic counters included in the TPM 1.2. According to the TPM 1.2 specification, while

the TPM may contain multiple monotonic counters, only one may be used during a particular boot-cycle

[43]. Because of this, we will need a module to act as a managerto virtualize this resource. This module is

called thevirtual counter manager.

3.1 Virtual Counter Manager

In order to implement a virtual counter manager based on TPM 1.2 we use one of the TPM’s built-in physical

monotonic counters as a “global clock”. Essentially, we use the TPM with its global clock as a timestamping

device to timestamp each virtual counter. Whenever we wish to increment a virtual counter, we increment

the global clock and timestamp the virtual counter’s ID withthe incremented value of the global clock. We

then define the value of a specific virtual counter as the valueof its most recent timestamp. In other words,

the value of a particular virtual counter is defined as the value of the global clock at the last time that the

virtual counter’s increment protocol was invoked.

Note that this results innon-deterministicmonotonic virtual counters [35]. The unpredictability of the

virtual counter’s increments relative to the global clock means that a client needs to check every increment

that is performed on the global clock.2 That is, in order to verify whether a retrieved virtual counter value

is fresh and valid, the client’s device needs to examine alog of timestamps that resulted from increments

on the global clock. Checking each timestamp determines whether the client’s particular virtual counter has

been incremented (i.e., timestamped by the global clock) more recently. This is because these applications

only need to be able to tell if the value of a monotonic counterhas changed from its previous value or not.

2Except when using time-multiplexing, which is described inSection 3.5.
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It does not matter what the new value is, as long as it is different from any other value in the past [35].

In the following section, we explain the details of ourlog-based schemebased on this idea. We first

explain how to use a TPM 1.2 chip to implement two global clockprimitives: IncAndSignClock− which

increments and signs the resulting global clock value together with an input nonce, andReadAndSignClock

− which reads and signs the current value of the global clock together with an input nonce. We then show

how these primitives can be used to implement read and increment protocols for individual virtual counters.

3.2 Global Clock Operations Using TPM 1.2

A TPM 1.2 chip has three features which are useful for our purposes. First, the TPM has the ability to hold

an attestation identity key (AIK), which is a unique signing keypair whose private key is neverrevealed

outside the TPM, and whose public key is certified by a trustedthird party (and can be verified through

this certificate without contacting the trusted third party). Second, the TPM has at least one built-in (or

“physical”) monotonic counterwhose value is non-volatile (i.e., it persists through reboots), and monotonic

(i.e., it can be increased by 1, but it can never be reverted toan older value, even if one has complete physical

access to the entire machine hosting and invoking the TPM). Third, the TPM supportsexclusive and logged

transport sessions, which allow the TPM to prove to an external party that it has executed certain operations

(atomically) by signing (with the AIK) a log of the operations performed on the TPM together with their

inputs and outputs and an anti-replay nonce. These featuresallow us to implement our schemes by using the

TPM’s built-in monotonic counter as the global clock, and using the AIK and transport sessions to produce

trusted signatures, or timestamps, using this global clock.

Specifically, we implement theIncAndSignClock(nonce) primitive by using the TPM’s built-inTPM In-

crement Counter command (which increments the TPM’s built-in monotonic counter) inside an exclusive

and logged transport session using the AIK as the signing key. This produces a signature over a data structure

that includes the anti-replay nonce and a hash of the transport session log, which consists of the inputs,

commands, and outputs encountered during the entire transport session. This signature can then be used

together with the input noncenonce and the transport session log, to construct anincrement certificate.

Note that by making this transport session exclusive, we ensure that the TPM will not allow other exclusive

transport sessions to successfully execute at the same time. This ensures theatomicity of the increment

operation.
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The verification algorithm for such an increment certificateis as follows: First, it checks that the nonce

in the certificate is the same as the input nonce. If they are the same, the input noncenonce together with

the transport log, the signed output, and the certified public key of the TPM’s AIK is used to verify the

certificate. Finally, if the certificate verifies as valid, the algorithm retrieves the global clock’s value, which

is included in the transport session log of inputs and outputs as part of the certificate.

The ReadAndSignClock(nonce) primitive is implemented like theIncAndSignClock(nonce) primitive

where theTPM Increment Counter command in the transport session is replaced by the TPM’s built-in

TPM Read Counter command. In this case, instead of an increment certificate, we produce acurrent

global clock certificatecertifying the current value of the global clock (i.e., TPM’s built-in monotonic

counter).

3.3 Log-Based Scheme Protocols Overview

We begin by assuming that each client has her own unique public-private key pair stored in each of her

devices. A client’s devices use the client’s private key to sign increment requests and createconfirmation

certificates. Confirmation certificates are produced and given to the virtual counter manager whenever a

client’s device successfully performs a read or increment with validation, as defined below.

On the manager-side, we assume that thevirtual counter managerhas a certified trusted TPM 1.2 chip,

and some software, memory, and persistent (e.g., disk) storage, which can all be untrusted. The software on

the virtual counter manager keeps track of:

1 an array of themost recentconfirmation certificates for each virtual counter, and

2 an array of each of the increment certificates which were generated since the generation of theoldest

most recent confirmation certificate.

Using these, together with the TPM and the global clock operations described earlier, the virtual counter

manager implements four protocols for operating on individual virtual counters:

1 Increment-without-validation (aka Fast-Increment), in which a client’s device requests to increment

one of the client’s virtual counters, and which results in anincrement certificate,

2 Read-without-validation (aka Fast-Read), in which the virtual counter manager returns the current

value of a virtual counter,
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3 Read-with-validation (aka Full-Read), in which not only the current value of a virtual counter is

returned, but also a proof of the validity of this virtual counter, and

4 Increment-with-validation (aka Full-Increment), which combines the increment-without-validation

and read-with-validation protocols into a single protocol.

The read and increment protocols with validation produce avalidity proof, which is composed of:

1 the most recent confirmation certificate of the corresponding virtual counter, together with

2 a list (or log) of each of the increment certificates which were generated since the creation of this most

recent confirmation certificate, and

3 a current global clock certificate or a new increment certificate.

Given these, a client can reconstruct the global clock values at which the virtual counter was incremented

since the creation of the most recent confirmation certificate. This reconstruction detects any malicious

behavior in the past. Specifically, the reconstruction of past increments is used to determine whether the

virtual counter values on which these increments were basedare valid. That is, as described in (5) below,

for each of the past increments by any of the client’s devices, the client checks whether the increment was

based on a retrieved counter value (received from the virtual counter manager during one of its protocols)

that is equal to the current counter value just prior to the increment. This check is made possible by having

an increment certificate also certify the value on which the corresponding increment is based (hence, the

consistency of the reconstructed list of increments can be verified).

We note that in order to verify the freshness of data it is sufficient to verify the validity of the counter

values on which past increments were based, since only newlyincremented values are used for timestamping

data in our virtual storage application.

3.4 Protocol Details

We proceed with the details of the different protocols:

Increment-without-Validation protocol: Figure 1.a shows the interaction between a client device, the

virtual counter manager, and its TPM during an increment-without-validation protocol. If a client’s device
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Figure 1: Protocols. (a) Increment-without-Validation. (b) Read-with-Validation. (Note: Increment-with-
Validation is similar to Read-with-Validation, except that an increment operation is performed and the in-
crement certificate is used in place of the current global clock certificate.)

wants to increment one of the client’s virtual counters, then it selects a random anti-replay nonceantiReplay

and concatenates the anti-replay nonce, the counter identity ctrID of the virtual counter which needs to be

incremented, and the current valuectrV al of this counter according to the knowledge of the client’s device.

Let SK be the client’s secret key. The device computes

nonce = (conc‖SignSK(conc)) whereconc = (antiReplay‖ctrID‖ctrV al). (1)

The nonce is forwarded to the virtual counter manager with the request to use nonce as the inputnonce

of theIncAndSignClockprimitive (step 1 in Figure 1.a). Besides verifying the nonce’s signature, the virtual

counter manager checks whether the current value of the counter with identityctrID is equal toctrV al.

If not, then the virtual counter manager notifies the client’s device about its out-of-date knowledge. If

ctrV al does match the current counter value, then the virtual counter manager uses the TPM to execute

IncAndSignClock(nonce) (step 2 in Figure 1.a) and the resulting increment certificate is sent back to the

client’s (step 3 in Figure 1.a) device, which verifies the certificate. In this scheme we do not protect against

denial of service; if the increment certificate does not arrive within a certain time interval, then the client’s

device should retransmit its request with the same nonce. Assoon as an increment certificate is accepted

(that is, its verification passed in step 4 in Figure 1.a), theclient’s device may use the new counter value to

timestamp data. If the client’s device accepts the increment certificate, then we call the incrementsuccessful.

Since the anti-replay nonce is chosen at random, replay attacks of previously generated increment certifi-
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cates (by, for example, a malicious virtual counter manageror a man-in-the-middle) will be detected by the

client’s device. We will show that the validity of a client’svirtual counter can be verified in the read-with-

validation protocol (even in the presence of a malicious virtual counter manager, but with a trusted TPM)

because the client’s device’s knowledge of the current counter valuectrV al is included in the input nonce

of the IncAndSignClockprimitive. The role of the counter ID in the input nonce is to distinguish which

increment certificates correspond to which virtual counters. The nonce’s signature proves the authenticity

of the request to the virtual counter manager. The signatureis also used in the read-with-validation protocol

to prove that each increment certificate originated from an authentic request and not a fake increment.

Read-without-Validation protocol: In the read-without-validation protocol, a client’s device asks for the

most recent value of a specific virtual counter. The virtual counter manager simply signs and returns the

most recent counter value without making use of the TPM.

Read-with-Validation protocol: Figure 1.b shows the interaction between a client device, the virtual

counter manager, and its TPM during a read-with-validationprotocol. If a client’s device wants to read

and obtain a validity proof of the value of one of the client’svirtual counters, it first selects a random anti-

replay nonceantiReplay. Let ctrID be the counter ID of the virtual counter which current value needs to

be returned by the protocol. The concatenation,

nonce = (antiReplay‖ctrID),

is forwarded to the virtual counter manager (step 1 in Figure1.b) with the request to use it as the input

nonce of theReadAndSignClockprimitive. The virtual counter manager uses the TPM to executeReadAnd-

SignClock(nonce) (step 2 in Figure 1.b). The resulting current global clock certificate is transmitted to the

client’s device together with the most recent confirmation certificate of the virtual counter,ctrID, and a log

of each of the increment certificates generated since the creation of this most recent confirmation certificate

(step 3 in Figure 1.b). The sequence of certificates in this transmission form a validity proof as depicted in

Figure 2.

The most recent confirmation certificate is a certificate generated by one the client’s devices during a

previous read-with-validation or increment-with-validation protocol. It is a certificate of the concatenation

of ctrID, the valueglobClk′ of the global clock at the time when either protocol was executed, and the
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Figure 2: The Validation Process. After receiving the validity proof, the client checks the AIK signatures
on all the increment certificates, extracts the certificateswith increments for its counter ID, and verifies that
each increment was done with the correct knowledge of the previous value of the virtual counter. If this
validation succeeds, the client produces a new confirmationcertificate.

valuectrV al′ of the counter with identityctrID at the time when either protocol was executed. That is, the

confirmation certificate is a pair

(confirm,SignSK(confirm)) whereconfirm = (ctrID‖ctrV al′‖globClk′) (2)

andSK is the client’s secret key.

Let globClk be the global clock value as certified by the current global clock certificate. Since the anti-

replay nonce is chosen at random, replay attacks of previously generated current global clock certificates

will be detected by the client’s device. Therefore, we may assume thatglobClk represents the current global

clock value.

The client’s device also verifies each of the signatures in the log of increment certificates (which were

generated since the creation of this most recent confirmation certificate), and uses the client’s public key to

verify the confirmation certificate. Then, for each valuet in the range

globClk′ < t < globClk, (3)

there should exist an increment certificate for which its verification algorithm retrieves the valuet (see
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the log of increment certificates in Figure 2). See (1), let

conct = (antiReplayt‖ctrIDt‖ctrV alt) (4)

be part of the input nonce of the increment certificate fort. The list of these input nonces contains a

sublist of input nonces withctrIDt = ctrID (see the sublist of increment certificates in Figure 2). The

sublist of these input nonces corresponds to all the increments of the counter with identityctrID during

the period where the global clock value ranged fromglobClk′ to the current global clock valueglobClk.

According to (1), each of the input nonces within the sublistcontains within itself a signature that can be

verified by using the client’s public key. This allows the client to confirm that the corresponding increment

certificates originated from an authentic request and not a fake increment.

The sublist can also be used by the client’s device to detect whether the increments are based on valid

counter values. Using (4), letctrV alt be one of the values in the input nonce within the sublist. Then,

counter valuet resulted from an increment protocol which was initiated by one of the client’s devices who

thought that, just before the start of the increment protocol, the value of the counter is equal toctrV alt.

Hence, if the counter with identityctrID has behaved like a valid counter, then, for each pair of consecutive

input nonces withctrV alt andctrV alT , t < T , within the sublist,

t should be equal toctrV alT . (5)

If this check passes, then the last valuectrV al within the sublist is the current value of the virtual

counter,ctrID, and the client’s device transmits to the virtual counter manager (step 5 in Figure 1) a new

confirmation certificate, described in (2), in which

confirm = (ctrID‖ctrV al‖globClk).

Increment-with-Validation protocol: The increment-with-validation protocol first executes theincrement-

without validation protocol. The resulting increment certificate contains the current global clock value as

the incremented virtual counter value. In this sense, the increment certificate can also function as a current

global clock certificate. The increment certificate can thenbe used in the read-with-validation protocol, in
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place of theReadAndSignClockprimitive, to provide the validity proof for increment-with-validation.

3.5 Improvements

In this subsection we explain two techniques that can be usedto improve the performance of the log-based

scheme. The details of both techniques are presented in Appendix A of [45].

Sharing. One problem with the log-based scheme as described so far is that each read and increment

primitive on a virtual counter requires the TPM to produce a signature using its AIK. As we will show

in Section 6, read and increment signature operations typically takes around 1.3s using existing TPM 1.2

chips today. Moreover, TPM 1.2 chips alsothrottle increment operations on the TPM’s built-in monotonic

counter to prevent wear-down of the TPM’s nonvolatile memory. This means that increment operations are

only possible once every 2 to 5 seconds (depending on the manufacturer). As we will show in Sect. 6, if

we only allow one virtual counter to be incremented for each increment of the global counter, then a single

TPM can only handle a few virtual counters before the overallperformance becomes unacceptably slow.

A solution to this problem is to allow multiple increment protocols of independent virtual counters to

be executed at the same time, sharing a single global clock primitive. The general idea here is to collect the

individual nonces of each increment protocol and to construct a single shared nonce which can then be used

as an input to a single sharedIncAndSignClockprimitive.

Time-Multiplexing. The log-based scheme has another significant drawback: if a virtual counterv is not

incremented while other counters are incremented many times, then the validity proof forv would need to

include the log of all increments of all counters (not justv) since the last increment ofv. The length of this

log can quickly grow very large.

A solution to this problem is to time-multiplex the global clock. That is, instead of allowing increments

at each possible global clock value for each client, each client associates with each of his virtual counters

a fixed scheduleof global clock values that are allowed to be virtual countervalues. The main advantage

of time multiplexing is that the log of increment certificates in a validity proof of a virtual counter can

be reduced to those for which the corresponding verificationalgorithm retrieves a value which is allowed,

according to the schedule of the virtual counter.

The disadvantage of time-multiplexing is a possible increase in the latency between the request and
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finish of an increment. In order to reduce the effects of this problem we may use anadaptive schedule.

Under this scheme, a virtual counter’s schedule is allowed to change. For example, the client’s devices may

agree to a back-off strategy. Immediately after a successful increment, the legal increment slots for a virtual

counter would be close together. As the client’s virtual counter remains idle, the legal increment slots are

spaced farther and farther apart according to a known deterministic formula.

Finally, note that while there is an advantage to multiplexing increments, the same advantage does not

apply to counter reads. Reads do not increase the length of the validity proof, so multiplexing them will not

reduce the size of the read certificate. In fact, delaying reads by multiplexing may increase the size of the

validity proof by allowing more clients to perform increments before the validity proof is generated. For

these reasons, reads in the time-multiplexed scheme are notmultiplexed, but handled on-demand.
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4 Implementation

From an implementation point-of-view, the main goal of VMCStore is to develop and analyze various TPM-

based trusted storage algorithms specified in [45], and discussed in Section 3. However, the system itself

has been developed with a very modular design in mind, with the hope that this framework can be used to

experiment with and test future algorithms as well. This section will give an overview of the various modules

of VMCStore, and how they interact with each other. More information on data structures referenced in this

section can be found in Section 5.

4.1 System Overview

VMCStore is written using Java 1.5 and TPM/J. TPM/J is an object-oriented API using Java for low-level

access to the TPM [34]. While VMCStore is portable to any operating system capable of running a JVM,

TPM-compatibility is the responsibility of TPM/J. At present, TPM/J has been shown to work under Win-

dows XP, Linux, Mac OS X, and Windows Vista.

The VMCStore framework is divided into four primary modules: CounterHost, CounterGateway, Com-

munication, and Client. The fifth module, Simulation, is anyhigher-level user or application that wishes to

interact with the trusted storage system. The sixth module,Storage, is not specified by VMCStore, since it

is heavily application-dependent. The interaction among these six modules can be seen in (Figure 3).

• CounterHost: Manages the actual incrementing and reading of the counters (e.g., thevirtual mono-

tonic countersimplemented on the TPM 1.2).

• CounterGateway: Manages access to the CounterHost, directing client request threads to the appro-

priate timeslot.

• Communication: Manages the marshaling and unmarshaling of requests and responses between the

Client and the CounterGateway. Two implementations have been included, providing communication

over sockets or RMI.

• Client: Provides an interface between the user and the CounterHost, managing counter information,

marshaling requests, and verifying proofs of freshness. Ifa Storage server is present, the Client will

usually manage sending and retrieving files and timestamps from the storage server.
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• Simulation: The user or application that interacts with the VMCStore framework. The package in-

cluded in VMCStore imitates the user, providing a way to perform distributed experiments for col-

lecting data and statistics about system performance.

• Storage: Stores the user data with the appropriate timestamp from the CounterHost. The Storage

server is application-dependent.

As mentioned previously, VMCStore has been implemented with the goal of allowing the user to exper-

iment and test his own algorithms. The algorithms discussedin Section 5.4 have been included as examples,

and are referenced below by their collective package name,logbased. Sample communication protocols

(e.g., RMI, sockets) have also been included. However, any of these modules can be swapped-out with user

defined modules and algorithms.

4.2 CounterHost

The CounterHost manages the lowest-level interaction withthe counters (e.g., reading and incrementing),

as well as the creation of validity proofs for the client.

4.2.1 Interfaces

The key interface for this module is CounterHost. Three methods are defined by the interface, closely

following the protocol defined in Section 3.4.

• ReadCertificate readCounter(ByteArrayable nonce, ByteArrayable counterID):

Returns a ReadCertificate for the specified virtual counter,using the given nonce. ReadCertificate is a

wrapper interface which extends CountStamp, and should include the signed counter information from

a TPM read operation. The ReadCertificate may contain additional information, such as a validity

proof.

• IncCertificate incrementCounter(ByteArrayable nonce, ByteArrayable counterID):

Returns an IncCertificate for the specified virtual counter,using the given nonce. IncCertificate is

a wrapper interface which extends CountStamp, and should include the signed counter information

from a TPM increment operation. For increment-with-validation operations, the IncCertificate should

also contain a validity proof.
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Figure 3: Modular diagram of the VMCStore system. The classes listed inside the modules are examples
of those included for the logbased algorithms. Other possible combinations (e.g. using sockets in place of
RMI) are included with VMCStore.
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• void sendConfirmationCertificate(ConfCertificate cert):

Provides a way for clients to send confirmation certificates to the virtual counter manager (Counter-

Host). ConfCertificates, defined in Section 5.2, include theidentity of the virtual counter, the time

of the last successful increment, and a CountStamp defining the current time of the confirmation cer-

tificate. The ConfCertificate is also signed by the client, and provides averifyCertificatemethod to

confirm its validity.

4.2.2 Log-based Implementation

Thelogbasedpackage provides aLogCounterHostFactory, which should be used to createLogCounterHost

instances that follow the increment, read, and validation protocols defined by the algorithms in Sections 3.4

and 3.5. Available algorithms are defined by theLogAlgorithmenum.

The LogCounterHostFactory provides one method for creating LogCounterHost instances:getLogCoun-

terHostInstance(). This method requires a LogAlgorithm enum, as well as a TPM driver, the global counter

ID, and a signing key.

TPMCountStampHostprovides a thin layer between the LogCounterHost and the TPM/J CountStamp

functions. Both the read and increment operations of the TPMCountStampHost return a TPMCountStamp.

Since the TPMCountStamp is operation-independent, and implements neither ReadCertificate nor IncCer-

tificate, the TPMCountStampHost is not a true CounterHost. However, this class is simply intended as a

wrapper and is never exposed to the LogCounterGateway.

4.3 CounterGateway

The CounterGateway sits between the clients and the CounterHost. It manages client requests, and is re-

sponsible for ensuring that clients only perform increments during legal increment timeslots.

4.3.1 Interfaces

The CounterGatewayinterface provides three methods, which closely mirror theCounterHost interface

methods. The CounterGateway methods prepackage the returndata for network communication (see Section

4.4.2):
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• ByteArrayableWrapperInterface<ReadCertificate> readCounterRemote(ByteArrayableWrapperInterface<?

extends ByteArrayable> counterID, ByteArrayableWrapperInterface<? extends ByteArrayable> nonce)

• ByteArrayableWrapperInterface<IncCertificate> incrementCounter(ByteArrayableWrapperInterface<?

extends ByteArrayable> counterID, ByteArrayableWrapperInterface<? extends ByteArrayable> nonce)

• void sendConfirmationCertificate(ByteArrayableWrapperInterface<? extends ConfCertificate>)

CounterGateway extendsCommunicationGateway, removing the throws IOException clauses included

by its super-interface (see Section 4.4).

4.3.2 Log-based Implementation

Thelogbasedpackage provides a LogCounterGatewayFactory, which should be used to create LogCounter-

Host instances that follow the algorithms defined in Section5.4. The LogCounterGatewayFactory provides

one method for creating LogCounterGateway instances:getLogCounterGatewayInstance(LogAlgorithm,

LogCounterHost).

The LogCounterGateway implementations are all multi-threaded, treating each thread as a separate

client. Operations are broken down into timeslots, and all threads scheduled for a given timeslot are al-

lowed to proceed together. This allows the LogCounterGateway to collect together individual nonces to

form a shared nonce, and parallelize the usage of TPM resources.

TheMultiplexedandAdaptivealgorithms require a further extension to this threading structure. Since

clients must wait for a legal timeslot before their increment can complete, adummy threadis included which

increments the TPM when no other clients are available. Thisensures that clients will never wait indefinitely

for their timeslot to arrive.

The implementations of LogCounterGateway included inlogbasedalso perform simple resource maxi-

mization by alternating increments and reads whenever possible. As discussed in section 6, TPM’s typically

require a cool-down period between increments to extend thelife of the TPM’s non-volatile RAM. Reads,

however, can still be performed during this cool-down period. We found that alternating reads and incre-

ments provides good TPM utilization for the TPM’s we have worked with.

LogCounterGateway also implements the CounterHost and SimulationGateway interfaces. Because they

are intended to be used for simulation, the increment and read methods of LogCounterGateway also return
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instances of StatPackagedCertificates, instead of ByteArrayableWrappers. More information on the Simu-

lationGateway interface and StatPackagedCertificates canbe found in section 4.6.

4.4 Communication

Communication is responsible for marshaling and unmarshaling requests and responses between the Client

and the CounterGateway.

4.4.1 Interfaces

The primary communication interface is CommunicationGateway. This is the super-interface for Coun-

terGateway, exposing the same methods, but also requiring implementations to include throws clauses for

IOExceptions caused by network communication.

• ByteArrayableWrapperInterface<ReadCertificate> readCounterRemote(ByteArrayableWrapperInterface<?

extends ByteArrayable> counterID, ByteArrayableWrapperInterface<? extends ByteArrayable> nonce)

throws IOException

• ByteArrayableWrapperInterface<IncCertificate> incrementCounter(ByteArrayableWrapperInterface<?

extends ByteArrayable> counterID, ByteArrayableWrapperInterface<? extends ByteArrayable> nonce)

throws IOException

• void sendConfirmationCertificate(ByteArrayableWrapperInterface<? extends ConfCertificate>) throws

IOException

There is also a SimulationCommunicationGateway which performs a function for SimulationGateway

analogous to the relationship between CommunicationGateway and CounterGateway. See Section 4.3 for

more information.

4.4.2 Sending Data Structures Over the Network: ByteArrayable

Most of the data structures defined by VMCStore implement theByteArrayableinterface defined by TPM/J

(REF). ByteArrayable objects providetoBytes()andfromBytes()methods, which can be used to reduce an
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object to a byte array, or reconstruct the object from a byte array. The ByteArrayable does not extendSeri-

alizable, so if a ByteArrayable object needs to be sent over the network, it must be reduced to a byte array,

implement Serializable, or be wrapped within an object implementing theByteArrayableWrapperInterface.

Two classes have been included in VMCStore for wrapping ByteArrayable objects:ByteArrayableWrap-

per andStatPackagedCertificate. ByteArrayableWrapper is simply a generic wrapper for ByteArrayables;

StatPackagedCertificates are used by the Simulation modules for passing around simulation measurements

along with increment and read certificates (see Section 4.6).

4.4.3 Implementations

VMCStore contains two built-in implementations of CommunicationGateway. Both of these packages also

implementSimulationCommunicationGateway(see Section 4.6). Available implementations are defined by

theCommunicationTypeenum.

TheUtils class contains a method,generateCommunicationGateway(), which can be used to instantiate

a CommunicationGateway from a Class object. The CommunicationGateway must expose a constructor

that takes a hostname as a String and a port as anint for this method to work.

RMI. The first implementation takes advantage of the built-in Java RMI system (REF). The counter gateway-

side class isRMIServerGateway. Java’srmiregistry program must be running on the counter gateway ma-

chine before RMIServerGateway can be started.

The client-side class is calledRMIClientGateway. It will try to find an instance of theRMIServerGate-

wayInterfaceon the specified host.

All experiments in Section 6 were performed using the RMI communication protocols.

Sockets. A second implementation is included which communicates directly over JavaSocketobjects.

Marshalling is handled by sending message objects, which extend AbstractMessage, with the necessary

parameters.

The counter gateway-side class isSocketServerGateway. This class runs as a separate thread on the

counter gateway server, accepting incoming connections and creatingServerSocketThreads. Future commu-

nication between the Client and the CounterGateway is directly between theSocketClientGatewayand its

ServerSocketThread.
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The client-side class is called SocketClientGateway. It marshals requests as messages, and unmarshals

responses for the client. If the socket connection is lost, SocketClientGateway will attempt to reestablish a

connection.

While this implementation may be lighter-weight than the RMI implementation, our current implemen-

tation tends to be more fragile. Thus, we chose to use the RMI implementation for the experiments of

Section 6.

4.5 Client

The Client module provides an interface for the user or higher-level application to use the VMCStore system.

This module also marshals data so that it will be understood by the CounterHost, and verifies validity proofs

received from the CounterHost. If the system includes a StorageManager, it will also be the Client which is

responsible for communicating with the StorageManager.

4.5.1 Interfaces

The Client module defines three key interfaces:ClientManagerInterface, CounterMarshallerInterface, and

CounterVerifier.

The ClientManagerInterface provides the methods that are exposed to the user or higher-level applica-

tion. These methods are intentionally very generic to allowfor a variety of different applications:

• Object put(File)

• Object get(File)

• boolean contains(File)

The CounterMarshallerInterface defines methods that a CounterMarshaller should provide to help the

Client package data properly for sending to the CounterHost, and verify validity proofs from the Counter-

Host:

• CounterVerifier getCounterVerifier():

Returns aCounterVerifier, which can be used to verify validity proofs received from the CounterHost.
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• ByteArrayableWrapperInterface<? extends ByteArrayable> generateIncNonce(ByteArrayable coun-

terID, PublicKey pk)

• ByteArrayableWrapperInterface<? extends ByteArrayable> generateIncNonce(ByteArrayable coun-

terID, long counterValue, PrivateKey sk):

Returns a nonce that can be used in an increment counter request. The first of these methods is used

for counter registration; the second method is used for counters that have already been registered. See

Section 5.4 for information on counter registration.

• ByteArrayableWrapperInterface<? extends ByteArrayable> generateReadNonce(ByteArrayable coun-

terID):

Returns a nonce that can be used in a read counter request.

• ByteArrayableWrapperInterface<? extends ConfCertificate> generateConfCertificate(ByteArrayable

counterID, ScheduledCertificate opCert, PrivateKey sk):

Generates and signs a confirmation certificate for sending tothe CounterHost.

• boolean confirmIncrements():

Informs the Client whether or not confirmation certificates are required to be sent after a successful

increment. Some algorithms, such as theAdaptivealgorithm discussed in Sections 3.5 and 5.4, do

require confirmation certificates for each increment.

The CounterVerifier is responsible for verifying the validity proof sent by the CounterHost. It is al-

gorithm and implementation-dependent, and is usually packaged with the CounterMarshaller and should

typically be accessed by CounterMarshaller.getCounterVerifier().

• int verifyRead(CountStamp readCert, ByteArrayable counterID, ByteArrayable nonce, Verification-

Key verifyKey, PublicKey pk)

• int verifyIncrement(CountStamp incCert, ByteArrayable counterID, ByteArrayable nonce, Verifica-

tionKey verifyKey, PublicKey pk):

Verifies the read or increment certificate (CountStamp), according to the information provided. The

VerificationKey is provided by the CounterHost for verifying the signature on the CountStamp. PK is
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the public key of the client, which may be needed for verifying certain structures in the validity proof

(e.g., confirmation certificates).

4.5.2 Log-based Implementation

Thelogbasedpackage contains a number of Client class modules designed to work with the CounterGateway

and CounterHostlogbasedclasses, as well as the included Simulation module.

The primary class that the Simulation module interacts withis theLogClientManagerclass. The pur-

pose of the LogClientManager is to provide an entry point forperforming statistical analysis of counter

operations and communication. Since storage is highly application-dependent, the LogClientManager does

not communicate with an external StorageManager, but simply stores file data internally. The assumption is

that the cost of communication with the CounterGateway would be in addition to the cost communication

with the storage manager. The feasibility of VMCStore then depends on the ratio of these two costs, which

is a function of the application.

With this goal in mind− to perform statistical analysis of counter operations− LogClientManager

implementsStatRecordClientManager, an extension of the ClientManagerInterface. Theput() and get()

methods of LogClientManager returnsStatRecordobjects. See section 4.6 for more information on Sta-

tRecord.

The logbasedpackage also includes aLogCounterMarshallerFactory. The static methodgetLogCoun-

terMarshallerInstance(LogAlgorithm)can be used to obtain an algorithm-specific instance of the LogCoun-

terMarhaller. TheLogAlgorithmenum describes which algorithms are available.

Finally, thelogbasedpackage contains a LogVerifier class, which is used to verifyLogReadCertificate,

SharedIncCertificate, and VerifiedIncCertificate objects.LogVerifier contains a copy of TPMCountStam-

pVerifier (actually part ofcounterhost.tpm), which checks the validity of the TPM transport log contained

within the CountStamp.

4.6 Simulation

The Simulation module is not one of the core modules of the VMCStore framework, but is included as

a demonstration of how an application can be built on top of VMCStore. The purpose of the Simulation

module is to perform wide-area multi-client performance analyses of the VMCStore system.
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4.6.1 Operational Overview

Figure 4 provides an overview of the hierarchical structureof the Simulation module. A central simulation

server, running theSimulationCommander, is responsible for conducting, controlling, and collecting data

from the experiments. At the beginning of an experiment, theSimulationCommander contacts an arbitrary

number ofSimulationNodes, any or all of which may be running on separate machines. The Simulation-

Commander tells each SimulationNode how manySimulationClientsto generate, and any other important

parameters for the experiment (e.g., algorithm type, running time).

As suggested, each SimulationNode can run an arbitrary number of clients. Each SimulationClient runs

in a separate thread, owns a separate instance of LogClientManager, and establishes its own connection with

the counter server.

While the experiment runs, each SimulationClient tracks a number of statistics relating to its opera-

tion and communication with the counter server. When the experiment finishes, the SimulationCommander

asks each SimulationNode to send a report of the simulation data. In turn, each SimulationNode asks each

of its SimulationClients to send a report of its own simulation data. The SimulationNode aggregates the

SimulationClient data into a single report and sends it to the SimulationCommander. Finally, the Simula-

tionCommander aggregates the reports from each SimulationNode and returns the result to the user.

LogCounterGateway also tracks certain statistics during its operation. At the end of an experiment,

the SimulationCommander collects these statistics from the LogCounterGateway and includes them in the

report to the user (see Interfaces).

SimulationNodes can be left running indefinitely on host machines, so multiple experiments can be run

back-to-back.MultiSimulation takes advantage of this construction, providing an interface for running a

series of experiments, by adding an extra layer on top of SimulationCommander.

4.6.2 Interfaces

The Simulation module has a number of communication requirements above and beyond the methods pro-

vided by the CounterGateway interface. These are captured by SimulationGateway:

• String getStats():

Returns the simulation statistics as a comma-separated value (CSV) file represented by a String.
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Figure 4: Detailed diagram of how the Simulation performs wide-scale performance tests of the VMCStore
system. While there is only one simulation server and one counter server, there can be an arbitrary number
of simulation nodes, each with an arbitrary number of clients. A socket-based implementation, included in
VMCStore, can be used in place of the RMI classes.
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• void resetStatistics():

Clears any outstanding statistics remaining on the CounterGateway. This should usually be called

beforeprepareNewSimulation().

• void prepareNewSimulation(String simID):

Prepares the CounterGateway for a new Simulation, which will be referred to by the given simulation

ID.

A second interface is provided, SimulationCommunicationGateway, the super-interface of Simulation-

Gateway. The relationship between these two interfaces is analogous to the relationship between Counter-

Gateway and CommunicationGateway (see Section 4.3).

4.6.3 Data Collection Structures

The Simulation module uses a number of different structuresto collect and aggregate data. In-simulation,

the LogCounterGateway and SimulationClients manage simulation data using theStatPackagedCertificate,

StatRecordandStatRecorderclasses. The SimulationCommander uses the MachineStatistics and Group-

Statistics classes to perform the final aggregation.

The StatRecord class simply provides a mapping of Strings todoubles, where the String is a key that

represents the statistic that was recorded, and the double is the recorded value. The StatRecorder class

accepts StatRecord objects, and writes out the data to disk in CSV format, grouping records with the same

key. The StatRecorder writes the data to disk immediately tominimize data loss in case the client crashes.

LogCounterGateway uses StatPackagedCertificates to send simulation data (e.g., TPM operation time)

to the SimulationClient. The StatPackagedCertificate class implements ByteArrayableWrapperInterface,

and holds a StatRecord and a CountStamp.

When the SimulationNode asks a SimulationClient for its statistics, the StatRecorder CSV file is read

verbatim from disk and sent to the SimulationNode as a String. The SimulationNode collects all of these

Strings from its SimulationClients and sends them as a String array to the SimulationCommander. Before

aggregating the statistics, the SimulationCommander writes these individual CSV files to disk for backup.

While the StatRecord class only accepts a single instance ofa statistic− reporting a second value under

the same key throws an error− the MachineStatistics aggregates data over all instances of a statistic during
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the run of an experiment. For each key, the MachineStatistics object maintains aDoubleStat(a TPM/J

object), which calculates the mean, standard deviation, etc. of the statistic.

The GroupStatistics class takes aggregation one step further, accepting MachineStatistics and Group-

Statistics objects, and calculating statistics across allgiven data. The aggregated data is then retrieved using

the toCSVMultiSim()method, which returns a CSV file as aStringBuilder. This CSV file contains not only

the final aggregated statistics, but also callstoCSVMultiSim()recursively on the child GroupStatistics objects

to generate all of the intermediate aggregation statistics.
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5 Theoretical Data Structures in VMCStore

This section provides a bridge between theory and implementation, explaining which data structures corre-

spond to which classes in VMCStore. For more details on the implementation of these classes, please see

Section 4.

5.1 Counters and the Virtual Counter Manager

In VMCStore, the virtual counter manager is implemented within theTPMCountStampHostclass. This class

uses TPM/J, a Java-based API for the TPM, to communicate withthe TPM, as well as generate timestamps

for the client [34].

Timestamps are derived from a TPM/J data structure called aCountStamp. CountStamps are generic

containers, capable of holding a counter ID, a nonce, and a counter value, as well as other information. A

subclass of CountStamp, calledTPMCountStamp, can also hold the transport log of the counter operation

performed at the TPM. The TPMCountStampHost returns a TPMCountStamp as the result of both increment

and read operations.

5.2 Validation Proofs and Confirmation Certificates

The counter manager requires an additional layer to composethe validity proofs required to convince clients

that counter operations were completed correctly. This layer is implemented as theLogCounterManager.

The LogCounterManager is responsible for generating thesevalidity proofs, as well as for verifying client

signatures on incoming counter requests.

Validity proofs are packaged within a data structure calledtheLogVerificationCertificate. The LogVeri-

ficationCertificate contains the most recent confirmation certificate for the requested counter ID, as well as

a log of all increment operations that have been performed onthat TPM since that confirmation certificate

was generated. If no confirmation certificate has yet been received (e.g., because the virtual counter has just

been created), the first increment certificate and the increment log dating back to that certificate is returned.

Note that the actual format of the log may vary from algorithm-to-algorithm; a multiplexed scheme only

requires a subset of the log to prove counter validity. See Section 3.5 for more information.

Confirmation certificates are implemented by theLogConfCertificateclass. The LogConfCertificate

contains an instance ofLogConfCertData, as well as a client signature over this data. The LogConfCertData
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contains the counter ID of the virtual counter which is beingconfirmed, as well as the time the validation

was completed, the last increment time of this counter, and aschedule of legal increment times.

5.3 Operations and Operation Certificates

VMCStore provides three of the four operations presented inthe Protocol Overview section (Section 3.3).

Since read-without-validation is not required by any of thealgorithms presented, and not useful for proving

validity, it is not provided by VMCStore.

The other three operations, however, are provided. Each onereturns a different data structure, as de-

scribed below:

• Increment-without-validation: Returns aSharedIncCertificate, which contains the increment nonce,

TPMCountStamp, and a schedule of legal future increment times. Assuming the schedule is client-

independent, the same increment certificate can be sent to all clients updating in a single timeslot (e.g.,

using theSharedalgorithm).

• Increment-with-validation: Returns aValidatedIncCertificate, which contains a SharedIncCertificate

and a LogVerificationCertificate (see Section 5.2).

• Read-with-validation: Returns aLogReadCertificate, which contains aSharedReadCertificate, a Shared-

IncCertificate (from the last increment of the requested virtual counter), and a LogVerificationCer-

tificate (see Section 5.2). The SharedReadCertificate contains the read nonce, as well as the TPM-

CountStamp for this read operation. (The SharedReadCertificate could be returned by itself to provide

a read-without-validation operation.)

While two increment operations are provided, only one increment operation is allowed for each algo-

rithm. An algorithm can decide whether increments should bevalidated by setting thevalidateIncrement

option of the LogCounterHost class.

5.4 Algorithms, Nonces, and Schedules

Four log-based algorithms, derived from the Improvements section (Section 3.5), are provided by VMC-

Store. These algorithms are described below and, except fortheAdaptivealgorithm, are tested and analyzed

in Section 6:
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• Simple: The original single-client protocol defined in section 3.4.

• Shared: The multi-client increment/read protocol described by the Sharing improvement.

• Multiplexed: The fixed-schedule, multi-client protocol defined by theTime-multiplexing improve-

ment.

• Adaptive: The adaptive-schedule, multi-client protocol defined by theTime-multiplexing improve-

ment.

All schemes, except theAdaptivescheme, use the increment-without-validation protocol. Security con-

cerns are introduced when the schedule is not fixed. The ultimate conclusion is that the virtual counter

manager may only perform increments-with-validation whenusing theAdaptivescheme. A detailed analy-

sis of the security risks of the adaptive multiplexed protocol can be found in Appendix B of [45].

In VMCStore, all protocols use the same nonce data structurefor making increment and read requests

to the virtual counter manager. For reads, this structure isthe SharedReadNonce, composed of a list of

NonceWithCounterIDstructures. Each NonceWithCounterID contains the counterID of the virtual counter

to be read, as well as an anti-replay nonce.

For increments, theSharedIncNonceclass is used. A SharedIncNonce is composed of a list ofNonce-

WithSignatureobjects, each containing a copy ofIncrementNonceDataas well as either a public key, or a

signature over the data. If this increment represents the creation of a virtual counter (i.e., the first time the

virtual counter is being incremented), this is indicated bypassing a public key with the IncrementNonce-

Data. Otherwise, a signature over the IncrementNonceData is sent to authenticate this increment request to

the virtual counter manager.

The IncrementNonceData contains three pieces of information: the counter ID of the virtual counter

to be incremented, an anti-replay nonce, and the time of the previous increment of the virtual counter. The

previous increment time is included to prevent collisions where two devices of a single client try to increment

a counter at the same time, and one may overwrite the changes of the other. If the virtual counter manager

detects an erroneous previous increment time, it will electto decline the increment and warn the client that

there is a more recent update.

Note that although theSimplealgorithm uses shared nonce structures, its protocol only allows one client

to perform a read or increment at a time. For this algorithm, the shared nonces only contain the individual
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nonce for the virtual counter involved in the operation.

Finally, as mentioned above, the SharedIncCertificate always contains a schedule of legal increment

times. In VMCStore, these schedules are generated by the virtual counter manager and are generated for

every algorithm. All schedule classes implement theScheduleinterface, which provides basic functionality

for iterating through and seeking legal increment times.

The Simple, Shared, andMultiplexedalgorithms all use an implementation of Schedule calledMulti-

plexedSchedule. A MultiplexedSchedule allows an increment on everynth slot, wheren is the multiplex

factor. For theSimpleandSharedalgorithms,n is always 1; for theMultiplexedscheme,n may take any

number, but for the experiments described in Section 6,n is always 5 or 10.

By default, theAdaptivealgorithm uses aLinearBackoffSchedule, which works as its name implies, but

theAdaptivealgorithm can be customized to use any schedule which implements the Schedule interface.
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6 Results

In this section we will analyze VMCStore and the practicality of its application to real-world scenarios. This

section will first discuss the experiment and its parameters, and then continue with the expected results and

the experimental results that were obtained.

6.1 The Experiment

The goal of the following experiment was to develop an intuition for the practical limits of a trusted storage

application built around a TPM.

The experiment involves two entities: the server, and the clients. The server is a TPM-carrying ma-

chine, which acts as the virtual counter manager for the trusted storage system. The clients each own a

virtual counter, and submits requests to the virtual counter manager for these virtual counters to be read or

incremented, at probabilistically determined intervals.

To determine the limitations of VMCStore, the system measures operational parameters during the run

of the experiment, such as operation time, bandwidth, etc. The hypothesis is that by increasing the number

of clients and analyzing the change in measurements, an approximate upper bound for the number of clients

VMCStore can maintain may be found. Furthermore, performing the experiment under different algorithms

(see Sections 3.5 and 5.4), provides an intuition for potential tradeoffs that can be negotiated to make the

system more practical for global-scale usage.

6.2 Experimental Parameters

This section describes the framework used to perform the experiment described above. This framework was

used to generate all of the results discussed in the following section.

The server (virtual counter manager) was run on the in the Stata Center, on the MIT network (10MB/s),

using a Gateway M-465 laptop. This laptop was running Linux,and contained a 1.83 GHz Core Duo CPU,

2GB RAM, and an ST Micro TPM 1.2 chip.

The clients were run on the PlanetLab network [42]. Using themodel presented in Figure 4, 150 ma-

chines from this network were selected to act as SimulationNodes for the experiments. The Simulation-

Clients were evenly distributed across these SimulationNodes. All communication was managed using

VMCStore’s RMI communication classes (see Section 4.4).
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All digital signatures were produced using 2048-bit RSA keys, and hashing was done using SHA-1. We

used TPM/J [34] as a Java interface to the TPM. Measurements showed that with the ST Micro TPM chip,

anIncSignoperation required about 1.3 seconds. AReadSignoperation was found to take roughly the same

amount of time. We further found that the ST Micro chip throttles IncSignoperations such that we could

only execute one at most every 2.15 seconds.

The SimulationClients were run using thePoissonSchedulerclass. At runtime, this class creates a sched-

ule of read and increment operations for the duration of the experiment. Operations times were determined

over a Poisson distribution with a frequency of one operation every 30 seconds. Read and increment opera-

tions were selected with equal probability so that, on average, we would expect one increment and one read

per client per minute. The schedule of client requests is generated at the beginning of the experiment. If a

client misses a request deadline, because a previous request took too long, the next request is made as soon

as the previous request returns.

The counter server was run as a multi-threaded application.Client requests were handled as independent

threads, which were managed through the use of synchronizedblocks, lists and queues. Server operations

were handled on a separate thread from network communication, so that the TPM could perform operations

in parallel with client requests and the sending of read and increment certificate responses. Each client

also had a personal TCP socket connection with the server, sothat requests and responses could be sent in

parallel, maximizing the usage of the server network.

All experiments were run for a duration of 35 minutes. The first five minutes was used as a warm-up

time to allow virtual counters to be initialized. The statistics represented below were derived from the final

30 minutes of the experiment. Experiments were conducted using theSimplealgorithm,Sharedalgorithm,

andMultiplexedalgorithm (for multiplex values of 5 and 10). TheAdaptivealgorithm was not tested, as it

is dependent on client request patterns, which are application-dependent.

6.3 Experimental Results

We begin with an analysis of the original algorithm presented in Section 3.4, and then continue by analyzing

the extensions listed in Sections 3.5 and 5.4.
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6.3.1 Operational Efficiency

To determine when the system saturates, we will use the idea of operational efficiency. We define opera-

tional efficiency to bethe ratio of the number of operations actually completed to the expected number of

operation requests, in an experiment:

γ =
operationscompleted

requestsexpected

If each client makes one operation request on average every 30 seconds, and all experiments run for 30

minutes, we should expect each client to request approximately 60 operations during the experiment. If an

experiment saturates, the client should fall behind its request schedule and fail to complete all 60 operations.

Therefore, according to this metric,γ ≈ 1 should indicate that the system is practical and unsaturated

(i.e., the server is able to complete all requested operation), whileγ < 1 should indicate that the system is

impractical and overloaded (i.e., unable to complete all ofthe client requests).

From the client’s perspective, an overloaded server means that operations are consistently taking longer

that 30 seconds to complete. Since the client makes requestson average every 30 seconds, and the request

schedule is generated ahead of time, this means that at some point requests will belate. As mentioned in

the Experimental Parameters section, a client will only send in a late request when it receives the result

from the previous request. However, since the server is overloaded, future requests will also take more than

30 seconds to complete. This leads to a snowballing effect sothat the lateness of later requests will grow

without bound.

6.3.2 Simple

TheSimplealgorithm allows only a single user to increment or read her virtual counter at any given timeslot.

Intuitively, if the time that a client has to wait to perform an operation is greater than the average operation

frequency defined by its Poisson process, the client should see a backlog of operations, and the system

should saturate. By this intuition, we should expect the TPMto be the bottleneck for theSimplealgorithm

since, as mentioned above, the ST Micro TPM requires approximately 1.3 seconds to perform any given

increment or read operation. Since clients perform, on average, one operation every 30 seconds, we expect

the upper bound of theSimplealgorithm system to be approximately30s/1.3s ≈ 23 clients.

Figure 5 shows the operational efficiency of the VMCStore system using theSimplealgorithm, for a
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Figure 5: Operational efficiency of theSimplealgorithm, for various clients. The decrease in efficiency
suggests that the system’s saturation point has been reached.

range of 4 to 30 clients. We can see from the graph that the efficiency of theSimplealgorithm hovers around

1 until the number of clients reaches the low-to-mid 20’s. The deviation in the smaller number of clients is

probably within expectation; later results with many more clients tend to be much tighter. We also notice

that the efficiency of the algorithm starts to drop below 1 around 22-24 clients, suggesting the system is

becoming overloaded. This agrees with our expected saturation point of about 23 clients.

Looking at the data from another perspective, Figure 6 showsthe total number of operations performed

for each of these experiments. Since we expect the TPM to be the bottleneck, there should be an absolute

limit to the number of operations it can perform, about1800s/1.3s ≈ 1384 operations. While the number of

operations grows linearly in the graph until we reach 20 to 22clients, the TPM definitely appears to saturate

at this point. As the number of clients continues to increase, the TPM approaches the maximum number of

operations it can possibly support in 30 minutes; the maximum number measured was 1368 operations.

Figure 7 and Figure 8 show the average size of the increment and read certificates, per client, for each

of the experiments. TheSimplealgorithm uses the increment without validation protocol to perform its

increments. Since the size of the certificate produced by this protocol grows linearly with the number of
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Figure 6: Total operations performed by theSimplealgorithm, for various clients. As the number of clients
increases, we see the TPM reach the limit for the number of operations it can perform in the timeframe of
the experiment.
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Figure 7: Average certificate size per increment of theSimplealgorithm, for various clients.
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concurrently incrementing clients, and we only allow one client to increment its counter during any given

timeslot, the certificate should have approximately constant size, as confirmed in Figure 7.

On the other hand, theSimplealgorithm uses the read with validation protocol for all read operations.

We recall that the read certificate will contain a validity proof, as well as the read nonce. The validity proof

contains a log of increment certificates since the last confirmation certificate was sent to the server. Since

theSimplealgorithm sends a confirmation certificate after each read, we expect the validity proof to grow

with the number of expected increments between the time a client performs two reads. Since only one client

can read or increment at a time, we should expect the validityproof to grow linearly with the number of

clients. The read nonce has a constant size, since only one client can increment at a time, so the entire read

certificate size should be an affine function that grows with the number of clients.

Indeed, the graph in Figure 8 confirms this relationship. There are some anomalies as the number of

clients reaches saturation. These anomalies may be explained by the way theSimplealgorithm queues

increments and reads; while increment requests are strictly processed in FIFO order, reads are performed

on-demand in a pseudo-random order (e.g., at the whim of the Java thread manager). Unlike theShared

andMultiplexedalgorithms, it is possible for multiple consecutive reads to be processed, even if there is an
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Figure 8: Average certificate size per read of theSimplealgorithm, for various clients.
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increment request in the queue.
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Figure 9: Average time spent by a client at the server during an increment of theSimplealgorithm, for
various clients.

Finally, for completeness, we present Figures 9 and 10, showing the average time that a client thread

spends on the server during an increment of read operation. That is, these graphs represent the time that a

client thread waits at the server for its operation to proceed, plus the TPM operation time. Network transit

time is not included in these graphs. (The network bandwidthof the clients was not standardized, and proved

a difficult parameter to use as a performance metric.)

To understand these graphs, consider three regions. If theSimplealgorithm is well under-saturated (i.e.,

the server can easily handle all the requests), then we should expect few conflicting requests on the server,

and a client should be able to perform its operation with minimal waiting time (i.e., close to the 1.3s required

for the TPM time). This is the 4 to 12 client region, where bothread and increment operations take under 2

seconds.

As the number of clients approaches saturation, we should expect many more conflicting client requests.

Clients have a higher probability of having to wait for otherclients to finish their operations, and the server

time increases. This second region would be represented around the range of 16 to 20 clients.
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Finally, as the server hits saturation, we expect the TPM to be processing operations all the time. While

each client still schedules to make one request every 30s on average, the increase in clients means that over

a 30s period, the total number of request would tally to more than 30s of work. This implies that a wait

queue will build up on the server. As soon as a client finishes its operation, if it has missed the deadline for

the next operation, it will immediately send the request to the server, adding itself to the wait queue.

In this third region, then, the size of the wait queue grows linearly with the number of clients. Since only

one client is processed at a time, this leads to a linear wait time on the server, and the (approximately) linear

behavior we see in the region with 22+ clients. (We are unableto explain the anomaly in the read time for

32 clients, at this time.)

It may seem surprising at first that the average server increment time is significantly higher than the

average server read time. Once again, this is probably a result of increments and reads being handled asym-

metrically, and how it is possible for multiple reads to be processed between two consecutive increments.

Considering the increment time alone, however, if all clients were performing increments, with 30 clients

we would expect to have to wait29 ∗ 1.3s = 37.7s on the server, before we can process our increment. If
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Figure 10: Average time spent by a client at the server duringa read of theSimplealgorithm, for various
clients.
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reads take higher priority than writes, it is possible that this wait time will increase even further. While this is

difficult to quantify theoretically, since the Java thread manager is non-deterministic, given this explanation,

the 62.6s wait time for increments in the 30-client experiment may make more sense.

To summarize our analysis of theSimplealgorithm, we remind the reader of the results of Figures 5 and

6, which suggests that the TPM reaches a limit for the number of operations it can perform. Figures 9 and

10 provided further evidence that theSimplealgorithm reaches a point where it cannot process all of the

client requests in a timely matter, resulting in the build-up of wait queues at the server. Both of these results

suggest that theSimplealgorithm can only manage about 20 to 22 clients, close to ouroriginal estimate of

23 clients.

The next section will demonstrate how TPM sharing can be usedto move the system bottleneck from

the TPM to the network, significantly increasing the number of clients we can manage.

6.3.3 Shared

As shown in the previous section, the TPM serves as the bottleneck for theSimplealgorithm limiting the

number of clients it can manage to about 20. We will show that by allowing multiple clients to be processed

for each TPM increment or read, theSharedalgorithm increases the number of clients that can be managed,

and moves the bottleneck to the network.

Figure 11 shows the operational efficiency of theSharedalgorithm for various numbers of clients. As can

be seen from this graph, theSharedalgorithm maintains an efficiency of near 1 until the number of clients

reaches between 300 and 400, at which point the system saturates, and the efficiency sharply decreases.

Figure 12 provides another view of this data, showing the total number of operations performed by the

Sharedalgorithm for each experiment. While this graph is a little misleading, because the data points are

spread far apart, we can make three observations:

a Until the system saturates, the number of operations performed grows linearly with the number of

clients,

b The system saturates somewhere between 300 and 500 clients, and

c Adding more clients to a saturated system actually decreases the number of operations the system can

perform.
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Figure 11: Operational efficiency of theSharedalgorithm, for various clients. Notice that theSharedalgo-
rithm can support many more clients than theSimplealgorithm before the system becomes saturated and the
efficiency decreases.
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Figure 12: Total operations performed by theSharedalgorithm, for various clients. Once again, we see a
peek in the number of operations the system can perform somewhere between 300 to 500 clients.
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This third point will be expanded upon in the analysis of the following graphs.
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Figure 13: Average certificate size per client, per increment of theSharedalgorithm, for various clients.

Figures 13 and 14 show the average increment and read certificate sizes per client, per operation of the

Sharedalgorithm. Starting with the increment certificates, we first note that theSharedalgorithm uses the

increment without validation protocol. Since the VMCStoreshared nonce grows linearly with respect to

the number of concurrently incrementing clients, we shouldexpect the graph of the size of the increment

certificate to be affine. Indeed, until the system hits saturation, we can see from Figure 13 that the graph

does grow as expected.

Once the system hits saturation, requests take more than 30sto complete. Recall that clients will only

send a request with a missed deadline once the result of the previous request is returned from the server.

The frequency at which a client can make requests is then bounded by the time it takes for operations to

complete in an overloaded system. This implies that requestfrequency of saturated clients decreases, and

that a saturated client’s operations are spread over a longer period.

The expected number of concurrently operating clients is given by number of clients
operation period

. When not in satu-

ration, the expected operation period is 30s, and the numberof concurrently operating clients grows linearly

with the total number of clients. In saturation, the operation period is no longer a constant, but dependent
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on the time it takes for operations to return, which is a function of the number of clients, and the network

bandwidth, among other things. While it is difficult to predict the expected operation period when the sys-

tem is overloaded, it will be greater than 30s, so the number of concurrently operating clients grows slower

than in the unsaturated region as seen in Figure 13.

In Figure 14, we once again see a linear relation between the number of clients and the size of the

read certificate. While this is a read with validation certificate, until we hit saturation we expect a constant

number of increments between two consecutive reads of the client. The linear behavior is a result of the

shared read nonce, which grows linearly with the number of concurrently reading clients. Comparing this

graph with Figure 8, we notice that although both these graphs grow linearly with the number of clients, the

read certificate size grows much more slowly int theSharedalgorithm than in theSimplealgorithm. This is

because the nonces included in the shared nonce (which increase in theSharedalgorithm) are much smaller

than the increment certificates added to the validity proofs(which increase in theSimplealgorithm).

While the validity proof size is constant when the system is not saturated, once theSharedalgorithm

hits saturation, a client’s read frequency decreases, and the period between consecutive reads of that client

increases. Now, the validity proof size is not constant, butincreases as a function of the time it takes for an
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Figure 14: Average certificate size per client, per read of the Sharedalgorithm, for various clients.
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operation to return. Even though the shared nonce size will decrease because fewer clients read concurrently

(see above), this is overshadowed by the increase in the proof size, leading to the exploding read certificate

sizes seen in the saturated regions of Figure 14.

Finally, note that if the network is saturated, then increasing the size of the read certificates should

decrease the total number of read operations we can perform.Looking at Figure 12 once again, we notice

that the number of operations does decrease in the saturatedregion, providing us with evidence that the

network is the bottleneck in aSharedsystem.
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Figure 15: Average time spent by a client at the server duringan increment of theSharedalgorithm, for
various clients.

Figures 15 and 16 present the average time that a client thread is present on the server during an incre-

ment or read operation. Once again, we remind the reader thatthis only includes waiting and operation time

on the server, not network transfer time. Since, in theSharedalgorithm, all requested reads or increments are

processed concurrently, we should expect the average server time to be nearly constant, even in saturation.

This time will include the operation time (1.3s for both increments and reads), as well as some wait time.

Both Figure 15 and 16 match these expected results. The average read and increment time on the server

for all experiments− even those in saturation− was in the range 2.68s to 3.03s, reflecting some wait time
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and processing time on top of the TPM operation time.

Comparing these graphs with theSimpleresults (Figures 9 and 10), we see a striking difference. In the

Simplealgorithm, we know the TPM was the bottleneck, and that the server operation time was proportional

to the number of clients. However, for theSharedalgorithm, it is clear from these graphs that the TPM is

no longer the bottleneck. Indeed, it is unlikely the CPU is the bottleneck either, because we would expect

the increased processing time to be reflected in Figures 15 and 16.

Our conclusion is that the network becomes the bottleneck for theSharedalgorithm. Saturation implies

that a client is no longer able to perform operations at its expected rate of once every 30s. However, Figures

15 and 16 show that the client spends only a few seconds waiting and operating on the server. This implies

that the bottleneck is either the client itself, or somewhere between the server and the client. It is improb-

able that the client is the bottleneck, since the major processing operation on the client is probably proof

verification, and the proof size remains constant until saturation is reached.

However, as shown in Figures 13 and 14, certificate size grow linearly with the number of clients. Also,

we see from Figure 12 that the number of operations performedgrows linearly with the number of clients.
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Figure 16: Average time spent by a client at the server duringa read of theSharedalgorithm, for various
clients.
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This implies that the network bandwidth usage grows quadratically with the number of clients. Experiments

showed that the server would typically send around 3.0GB to 3.5GB data over 30-minute experiments near

saturation. It seems likely that the network bandwidth was reaching saturation, and serves as the bottleneck

for theSharedalgorithm.

In summary, we have shown that by processing client reads andincrements concurrently, theShared

algorithm removes the TPM bottleneck and improves the number of clients it can manage to around 400. We

have also shown that it is likely that the network bandwidth is now the bottleneck of the system. Under this

assumption, we will now demonstrate how we can use multiplexing to reduce the network load, increasing

the number of clients we can handle at the expense of longer server wait times.

6.3.4 Multiplexed

The previous section demonstrated how theSharedalgorithm uses concurrent processing of clients to shift

the bottleneck of the system from the TPM to the network bandwidth, increasing the number of clients that

can be managed. As discussed in Section 3.5, client increment requests can be multiplexed to reduce the

size of the validity proof, at the expense of increased server wait times. This section will demonstrate the

results of these modifications, applied by theMultiplexedalgorithm.

Two versions of theMultiplexed algorithm were run for the experiments in this section: one with a

multiplex factor of 5 (Multiplexed-5), and one with a multiplex factor of 10 (Multiplexed-10). In all of

the following graphs, the results for these two experimentsare graphed against the result of theShared

algorithm, which is equivalent to theMultiplexedalgorithm with a factor of 1.

Intuitively, an increased multiplex factor will result in smaller validity proofs, which should allow us to

transmit proofs to more clients. However, as the nonce size increases linearly with the number of clients,

and since the shared nonce is sent to each client, the bandwidth from nonces will increase quadratically

as the number of clients increase. So while the decreased proof size will allow us to handle more clients,

the increased nonce size, for both reads and increments, will limit this improvement. Furthermore, if the

multiplex factor causes the operation time to be longer thanthe operation frequency, this will cause the

system to saturate.

This suggests that there is an optimal multiplex factor for agiven set of client and bandwidth parameters.

We do not present a method for computing that here, but leave it as an open research topic. Indeed, even for
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the experiments below, we do not know the optimal multiplex factor.
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Figure 17: Comparison of the operational efficiency of theMultiplexedandSharedalgorithms, for various
clients.

Figures 17 and 18 compare the operational efficiency and total operations performed by theShared

and Multiplexed algorithms. As seen in Figure 17, the efficiency of theMultiplexed-5algorithm breaks

around 700 to 800 clients, while theMultiplexed-10algorithm breaks around 900 to 1000 clients. Looking

at the total operation results in Figure 18, we see roughly the same behavior. As expected, theMultiplexed

algorithms can handle more clients than theSharedalgorithm, but the relation is not linear with respect to

the multiplex factor.

Figures 19 and 20 display the average increment and read certificate sizes for theMultiplexedalgorithms.

We note first that all increments are increments without validation, and all reads are reads with validation.

Looking first at the increment certificate sizes in Figure 19,we notice that, in unsaturated regions, there is

a tight linear relationship between the number of clients and the increment certificate size. We remind the

reader that this is because the increment certificate contains a shared nonce, the size of which is directly

proportional to the number of concurrently incrementing clients, which itself is proportional to the total

number of clients. Regarding the behavior in the saturated region, we remind the reader that, while the
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Figure 18: Comparison of the total operations performed by the MultiplexedandSharedalgorithms, for
various clients.
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Figure 19: Comparison of the average certificate size per client, per increment of theMultiplexedandShared
algorithms, for various clients.
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number of clients increases, the client increment frequency decreases. See the discussion of Figure 13 for

more details.

Regarding the read certificate sizes in Figure 20, we first notice that in the unsaturated region for all three

curves, read certificate sizes for all three algorithms growlinearly, and theMultiplexedalgorithms grow

significantly more slowly than theSharedalgorithm. The read certificate size is not inversely proportional

to the multiplex factor, but this is expected, since the readcertificate contains a shared nonce, which grows

linearly with the number of clients and is roughly the same for all three algorithms.

Indeed, this growing shared nonce also means that the benefitfactor of the multiplexing decreases as the

number of clients increases: with 100 clients, theSharedread certificate is 5.65x larger than theMultiplexed-

10certificate; at 400 clients, this factor has been reduced to 3.66x. This is one of the reasons why the number

of clients theMultiplexedalgorithm can handle does not scale linearly with the multiplex factor.

Finally, we present Figures 21 and 22, representing the average client increment and read times, mea-

sured at the server. We remind the reader that this includes wait time at the server and TPM operation time,

but no network transfer time. We expect the server incrementtime to scale approximately linearly with the
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Figure 20: Comparison of the average certificate size per client, per read of theMultiplexedandShared
algorithms, for various clients.
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Figure 21: Comparison of the average time spent by a client atthe server during an increment of theMulti-
plexedandSharedalgorithms, for various clients.
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Figure 22: Comparison of the average time spent by a client atthe server during a read of theMultiplexed
andSharedalgorithms, for various clients.
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multiplex factor. However, because reads are not constrained by multiplexing, the server read time should

be the same for theMultiplexedalgorithm as for theSharedalgorithm.

Looking first at Figure 21, we first see that increments in theMultiplexedalgorithms take significantly

more time on the server than increments for theSharedalgorithm. While this does not appear to be a linear

relationship at first, we point out that the relationship should actually be affine: the wait time should increase

linearly with the multiplex factor, but the 1.3s TPM increment time is constant. Ignoring the increment time,

theSharedalgorithm then takes≈ 1.4s, whileMultiplexed-5takes≈ 7.3s, andMultiplexed-10takes≈ 16.7s.

Furthermore, we notice that the server increment times are still mostly independent of the number of

clients. We recall that this is because the TPM is no longer the bottleneck of the system, but all requested

reads or increments can be processed concurrently.

Multiplexed-10does demonstrate abnormal behavior above 1000 clients. We note that this is in its

saturated region, but do not fully understand the cause of this behavior.

Finally, we look at the average server read times in Figure 22. As expected, the server read times for

all three algorithms are roughly the same. TheMultiplexed-10algorithm again showed abnormal behavior

above 1000 clients, but we are not able to explain this at thistime.

In summary, we have demonstrated how theMultiplexedalgorithm can multiplex client increments to

increase the number of clients that VMCStore can manage. By increasing the multiplex factor, theMulti-

plexedalgorithm can decrease the size of validity proofs, relieving network bandwidth pressures, but at the

cost of increasing the time that client increments have to wait at the server. For a given system, the optimal

multiplex factor would need to be analyzed by considering the number of clients, the available network

bandwidth, the application, and client access patterns.

6.4 Conclusion

The SharedandMultiplexedalgorithms provide a significant improvement over theSimplealgorithm, in

terms of the upper bound for number of clients that can be supported, by moving the bottleneck of the

system from the TPM to the network.

Still, the question remains, how practical would a VMCStore-like trusted storage system be in the real

world? From the server perspective, we argue that this largely depends on the available network bandwidth.

From the client perspective, there are two main issues: the certificate size, and the server operation time.
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These experiments were run under the observation that any time or bandwidth incurred during communi-

cation with the virtual counter manager would be on top of thecosts of communicating with the storage

server. The practicality of the system is then dependent on the parameters of the counter server, as well as

the details of the storage system.

For example, if client is using the storage system for managing large files (e.g. 10MB+), the overhead of

spending a few seconds at the virtual counter manager and retrieving an 80kB certificate may be acceptable.

However, if the client is using the storage system to store many small files, maintaining a virtual counter for

each file may be prohibitive.

In conclusion, we have shown that it is possible to build a trusted storage system on an untrusted server,

around a TPM. Furthermore, we believe that the results of theexperiments we have performed on the VM-

CStore system suggest that a TPM-based trusted storage system may be practical for certain applications,

even for a relatively large number of clients.
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7 Future Work and Conclusions

While the VMCStore framework provides preliminary evidence that the TPM could be used as the basis for

a trusted storage system, many research areas are still openthat would make such a system more practical.

As noted in Section 6, the network bandwidth tends to be the system bottleneck as the number of clients

increases. Currently, the network output grows quadratically with the number of concurrent clients. One

improvement for the shared nonces would be to use an authenticated hash tree [28] as opposed to the flat log

of individual nonces which is currently used. While this would not reduce proof size significantly, the nonce

sizes would only growO(log n) with the number of clients, as opposed to their current linear relation.

The required network bandwidth could also be reduced by optimizing the read and increment certificates,

reducing them to a minimal set of required information. In particular, the current TPM/J CountStamp data

structure contains unnecessary redundant data (e.g., it contains both the encrypted and unencrypted forms

of the increment command and its result). It may be possible to optimize certain VMCStore data structures

as well: the LogReadCertificate probably does not need to return the SharedIncCertificate of the most recent

increment if the most recent confirmation certificate is returned. Finally, we suspect there may be more

efficient ways, instead of relying on Java serialization, totransfer the VMCStore data structures over the

network.

Finally, while VMCStore providestamper-evidenttrusted storage, it provides little-to-no protection

against failures anddenial-of-serviceattacks. A TPM-based trusted storage system would require alayer

of replication to become commercially feasible. One such replication scheme, which would transform

VMCStore from a tamper-evident to atemper-tolerantsystem, can be found in Appendix C of [45].

In conclusion, this thesis has presented VMCStore, a framework for a trusted storage system based solely

on trusting a TPM 1.2. Preliminary experimental results, performed on PlanetLab, have demonstrated that

such a system could be used to implement and managevirtual monotonic counters, providing trusted storage

for a significant number of clients. VMCStore uses the concept of log-based validation proofsto prove the

validity of its counters. A variety of algorithms based on these log-based validation proofs were developed

and tested, demonstrating flexibility in the system, bottlenecks and potential areas of improvement.
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