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ABSTRACT

The process of stall inception in axial compressors has been studied by
using time and space resolved measurements. As predicted by an existing model,
rotating stall is found to evolve from a pre-existing small amplitude travelling
wave, which grows exponentially into a stall cell pattern. The stability of the
compressor is equivalent to the stability of these pre-stall waves.

One three stage and one single stage low speed compressors were
investigated during the study. On both, stall transients were performed at
different throttle rates, with and without inlet distortion. Each time, a period of
small amplitude wave propagation is observed, with a travelling speed of
approximately 30% of rotor speed. This wave evolves into a stall cell without
discontinuity in amplitude or angular position, showing that pre-stall travelling
waves and stall cells are two stages of the same phenomenon. The wave was
present through the whole single stage compressor, but was clearest immediately
upstrcam of the inlet guide vanes. The damping of the small amplitude wave was
studied as a function of flow coefficient, by fitting a first order linear model to the
data. The damping was seen to decrease regularly towards the stall point, and was
found to be stronger in the case of inlet distortion.

A sct of data from a high-speed three stage compressor was also studied. The
same pre-stall travelling wave phenomenon was clearly observed in the uniform
inlct case. Travelling disturbances were also present in the distorted inlet case.

Thesis supervisor: Professor Alan H. Epstein
Title: Associate Professor of Aeronautics and Astronautics
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CHAPTER ONE

INTRODUCTION

1-1 Introduction and background

Axial and centrifugal flow compression systems are subject to fluid
mechanic instabilities, which inherently limit their flow operating range. Since
these instabilities occur in a region where pressure rise and efficiency are
maximum, there is great interest in trying to prevent their appearance.

The first of these instabilities (and the one encountered most often in
modcrn jet engines) is called surge. It is a global instability in the sense that it
involves the whole compression system: the compressor, but also the plenum, duct
and throttle. On a compressor map, surge is characterized by a limit cycle (Fig(1-
1)): the mass flow undergoes large amplitude oscillations, while the plenum
(which represents the combustor in a jet engine) pressurizes and depressurizes.
In decp surge, flow reversal can be observed. If kept in that mode, a jet engine
will usually self-destruct quite rapidly, due to the high structural stresses present
during the limit cycle described above.

The sccond kind of instability encountered is called rotating stall. By
comparison with surge, which is a one dimensional instability along the
compressor axis, rotating stall is a two dimensional phenomenon: fluid velocity
varics both in the axial and in the circumferential direction. Furthermore,
rotating stall is a local instability, since it is confined to the compressor blade
rows; it is characterized by the presence of a stall cell, i.e. a region of the annulus
where little or no through flow exists, which rotates in the direction of the rotor
at 25% to 50% of rotor speed. From the point of view of the compression system,
rotating stall is a steady phenomenon: the annulus averaged mass flow and

pressurc rise are constant in time, though both much lower than in normal pre-
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stall opcration. For these reasons, a jet engine cannot function with a large
number of its compressor stages stalled; apart from an obvious loss of thrust, the
combustor commonly goes out, or the reduced mass flow causes high turbine inlet
tempcratures. Stresses and heating of the compressor blades are also likely to
cause tecrminal damage. A further complication is that stall can be a very stable
operating condition: a large hysteresis makes it difficult to recover from.(Fig(l-
2))

Many modern compressors have characteristics such that they enter surge
dircctly, or after a few cycles of rotating stall. Still, rotating stall alone can be
encountered in many flight conditions, such as cruise.

The point on a compressor map at which the fluid flow through the
associated compression system becomes unstable is very near the maximum
prcssure risc and efficiency of the machine (this limit is often referred to as the
"surge" or "stall" line). Operating a compressor is thus a compromise between
cfficicncy and safety. Designers usually define a surge or stall "margin", ie. a
rcgion ncar the stall line which is not entered in order to prevent any instability
form devcloping. This margin needs to be wide enough to ensure safe operation in
the presence of flow perturbations of finite amplitude (inlet distortion due to
cross winds, the ingestion of shocks, wakes, hot gases from weapons firing, or a
masked inlet during high angle of attack maneuvers). Obviously, designers would
like to makc the stall margin a small as possible to gain access to higher pressure
risc rcgions, while retaining a sufficient degree of safety. A recent development
in this domain has been to try to identify a precursor to the instability, a fluid
mcchanic phenomenon which would announce the coming of stall. Using this,
onc could safely operate closer to the stall line, and with sufficient warning, back
off the compressor operating point to avoid the instability. This information could
also bc also be used as an input to an active control device, meant to artificially
stabilize the compression system (due to the catastrophic nature of the
instabilitics, one definitely wants to avoid waiting for them to develop before
attcmpting  stabilization). Fig(1-3) illustrates the possible performance

improvements that a stall precursor could provide. Stall control schemes have in
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fact been implemented in a laboratory environment [10], but with limited success
up to now.

This recent work looks more closely at the period during which the flow
through the compressor transitions from stable to unstable, since a good
description and a good understanding of the mechanism of stall inception is

esscntial if we want to identify a phenomenon forewarning of stall.

1-2 Previous work on stall inception

The phenomenon of rotating stall was first identified by Emmons et al [1] in
the carly 1950's. They suggested a mechanism for the angular propagation of stall
cells: once a group of airfoils has stalled and thus caused a sufficient flow
blockage, the streamlines upstream of the compressor face are deflected by this
obstacle. This raises the angle of attack of the blades at the "leading edge" of the
ccll, thus promoting stall there, and lowers it at the trailing edge, unstalling the
blades in this region. This explanation is still widely held as accurate, although it
is rccognized that the boundary layers in trouble might be more those of the
endwalls than of the blades. They also noted that stall can be characterized by an
abrupt pressure rise drop (full-span stall), or a more progressive one (part-span
stall).

Having presented this first general work on stall description, we now
concentratc on a brief review of the subject of stall inception in the literature.
Wc can broadly separate this summary into two sections: one describing

thcorctical work, the other describing experimental work.

1-2-1 Theoretical studies

Most studies on stall inception are based on simple two-dimensional
potential flow models, describing the evolution of velocity perturbations
upstrcam of a blade row modelled as an actuator disk. The usual assumptions used

in the modeclling are:
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- Upstream flow field: two-dimensional inviscid flow, usually
irritatingly (no reverse flow); boundary condition: disturbances vanish at

upstrcam infinity.

- Downstream flowfield: again, two-dimensional inviscid flow, just
convecting the vorticity generated by the blade row; boundary conditions are
usually of two kinds:

- constant static pressure at blade row exit

- constant pressure at downstream infinity.

- Boundary conditions used across the blade row are usually:
i) mass conversation
ii) flow deflection relation
iili) a blade row loss factor expressed as:
- total pressure loss coefficient ([7])
- static pressure rise coefficient ([2],[3])
- vorticity equation with friction losses ([6])

, all functions of the inlet flow angle.

Note that for those two last relations describing the loss factor, the
unstcady bchavior of the blade row has to be accounted for. For the early work in
the arca, quasi-steady performance was assumed: the leaving angle and the

instantancous pressure rise are functions of the instantaneous inlet flow angle

(B7) only. Later, lag parameters were included to take the fluid inertia (non-zero

length of the blade passage), and thus the finite response time of the blade row

into account. The general expression for the instantancous pressure rise is:

— = Cps -Cp (1-1)

where T s the lag parameter, Cp(Bo,t) and Cpgs(Bp) respectively the

instantancous and steady-state pressure rise across the blade row.
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Having established the equations for the fluid mechanic problem, one can
investigate analytically a linearized version of these equations, assuming small
perturbations around a mean quantity, or one can compute a numerical solution
of the full non-linear problem. Let us first concentrate our attention on the
lincarized analysis. A study of this kind was performed by Stenning [2], without
lag paramcters in the blade row relations, also by Nenni and Ludwig [5] (with a
lag paramcter), and others. As was pointed out earlier, this analysis mainly aims
at dcscribing the evolution of an upstream disturbance, the amplitude of which is
assumed to stay small with respect to the mean flow quantities. Since the upstream

flow is potential according to the assumptions made, the disturbance has the form:

~ ike
o(x,0,1) = Ik% axt) e’ (1-2)

(gencral form for the solution of Laplace's equation on a periodic domain).
Substituting this expression in the equations, one¢ obtains a first order differential

equation for ag(t), which yields the following result:
icat
agxt)= A e (1-3)

The solution of the linearized set of equations is thus a wave, travelling
around thc compressor annulus. Pressing on further, one can find conditions for
thosc travelling waves to be neutrally stable (neither growing nor decaying),
which for this model represents the limit of stable operation, and therefore the
point of transition into stall (stall inception). In addition, one can obtain the

disturbance travelling speed. Stenning [2], using a Cp(Bz) function for his blade

row characteristic, finds that a criterion for neutral stability is:

dC, ) (1-Cp) coszﬁ2

dtanf, B tanf,

(1-4)

This can be shown to be equivalent to the other well known condition:
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d(Ps,-Py) 0 s
do (1-5)

where ¢ is the flow coefficient, which means that the instability develops

when the total to static pressure rise reaches its peak on the compressor map. The
phasc specd for the instability is then:
v o Wy(1-Cy

P~ (1-6)

.2
sin B,

where Wy is the mean velocity in the circumferential direction (Wy =
Wsinf32). Nenni and Ludwig find relations of the same type, but in terms of the
upstrcam and downstream relative swirl.

This class of linearized models are limited by their hypotheses; in
particular, no predictions are possible concerning the behavior of the stall cells
(propagation spced, number and amplitude) since the non-linear nature of their
propagation is completely lost. But although somewhat simplistic, these models
give good physical insight into the mechanism of stall inception: instability starts
with the growth of a small amplitude wave traveling around the annulus. The
stability of the compressor with respect to stall is reduced to the stability of a very
simple first order differential equation.

The other approach to this problem is to solve the full non-linear set of
cquations numecrically. This kind of studies were performed by Takata and Nagano
[7], Pandolfi and Colusardo [8], Orner [9] among others. They emphasize the
influence of the equation non-linearities on the development of the small
amplitude disturbances (seen in the linearized version) into full-size stall cells, in

particular concerning their shape and propagation speed.

1-2-2 Experimental work

A good summary of the subject of experimental studies on stall inception,

and the related topic of empirical predictions, is given by MCDougall [12]. As he
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points out, most of this work was motivated by casing treatment evaluation;
although it describes phenomena (tip leakage flows) that appear crucial in
rotating stall inception, none of it describes the whole compressor upstream flow
ficld just prior to stall. In his thesis, M®Dougall gives the only work directly
concerned with the understanding of stall inception. In particular, due to the
short timc extent of the phenomenon, most of his measurements were time-
rcsolved.

Up to MC€Dougall's work, the most widely believed model for stall inception
was the onc suggested by Emmons [1]. This model describes stall inception as the
random stall of a small group of blade passages; because of the coupling between
the compressor and the upstream flow field, this stalled region first spreads
circumfcrentially (and also radially), then starts falling behind the rotor to end
up travclling at a fraction of rotor speed. To prove this experimentally, Jackson
[11] mcasurcd the travelling speed of what he thought was an expanding stall cell,
and indeced his results showed the wave first travelled close to rotor speed, then
slowed down to roughly 40% of rotor speed.

In his thesis, M¢Dougall showed that Jackson's interpretation of the data
was wrong. The problem comes from trying to determine the speed of an
arbitrary shaped and expanding region from the speed of only a part of its
boundarics (the cell leading edge in this case); this is a mathematically ill-
specificd problem, and practically, simple models for the stall cell's shape and
cxpansion rates can yield vastly different estimates of the cell's rotation speed. A
good dcfinition of the cell's speed can be the speed of its geometrical center, but
the dctermination of the center's position requires spatial information, which
Jackson didn't have. MCDougall didn't have it either, so he disproved Jackson's
interpretation by wusing hot wire velocimetry signals obtained in the rotor blade
passages, ncar stall. On these signals, he noticed the presence of travelling
disturbances (even with respect to the rotor), prior to stall. As they passed a blade
passage, these disturbances modified the flowfield inside the passage (slight
thickening of the endwall boundary layer), but the passage was certainly not
stalled. Furthermore, from the point the disturbance could first be identified, its

spced was within 20% of its final speed as a stall cell, and was in no case near rotor
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spced. This experiment seemed to show that the small change in blockage due to
the presence of a small amplitude disturbance was enough to cause a
redistribution of the upstream flowfield, and cause the disturbance to rotate, even
though it is an order of magnitude smaller than an actual stall cell. M¢Dougall also
proposed an explanation for Jackson's misinterpretation of the travelling
disturbance's speed and re-plotted it, showing good agreement with his own
mecasurements. To further disprove the mechanism of stall inception as a random
bladc passage stall, he examined the performance of a compressor with one blade
passage strongly obstructed, or one blade rerhovcd. If Emmon's model was right,
stall should always start within the artificially disturbed passage, and occur at a
higher flow coefficient than normal. MC€Dougall observed none of the above. In
another experiment, using velocity measurements obtained from six probes
cqually spaced around the compressor annulus, MCDougall was able to track the
small amplitude perturbation he had observed earlier as it travelled around the
annulus. When the compressor stalled, the perturbation's amplitude grew

cxponentially, then stabilized into a stall cell.

1-2-3  Summary

Until recently, the mechanism for stall inception has been poorly
understood. Very simple actuator disk models describe the transition from stable
operation into stall as the growth of an already travelling small amplitude
perturbation into a full-size stall cell. Other theories see stall starting randomly as
a group of stalled passages travelling with the rotor, which first expands then
slows down as it starts interacting with the upstream flowfield. Measurements
which seemed to validate this latter theory were shown to be misinterpreted, and
cxperimental evidence now appears to support the small amplitude travelling

wave viewpoint [13].

1-3 Scope of the present work

As was pointed out in the introduction, there is considerable interest in

safely opcrating an axial compressor in a flow region where stall would
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ordinarily be likely to occur, in order to benefit from higher pressure rise and
higher efficiency. To achieve this goal, a stall "precursor” or "warning"
(whatever its form) would be a great help. Given sufficient warning, it might
make it possible to back off the compressor operating point in time to prevent the
instability from developing, or it could be used as an input to some fluid mechanic
device to actively control the flow. The present effort is an attempt to find such a
"precursor”, and if one exists, describe its characteristics. Looking for a precursor
implies undecrstanding the stalling process, and both classes of models described
above and thcir supporting experimental evidence suggest that this process could
bec well described (at least in its early stages) by a first order differential
cquation. This equation links the stability of the compressor to the stability of a
small amplitude disturbance travelling around the compressor annulus prior to
stall, which grows into a stall cell as the machine turns unstable. Orienting our
scarch for a ‘"precursor" towards this promising phenomenon, we ask the
following questions:

- Do these predicted pre-stall small-amplitude travelling waves exist, as
MCDougall's mecasurcments seem to show ?

- Arc those waves always present prior to stall, does stall always evolve
from them, or can it happen without their presence? In other words, are these
waves a nccessary condition for stall to occur ?

- If this phenomenon is to be used as a stall precursor, how well does it
rcact to typical situations like inlet distortions, or rapid mass flow variations?

- If these waves exist, can the growth or decay rate of their amplitude, and
their propagation spced be measured ? If so, what can those parameters tell us
about the stability of the compressor, and can they be used for stall prediction ?

- Last but not least, and since the present models cannot predict the
compressiblec case, are high speed machines (such as typically found in modern

jet engines) subject to the same phenomenon ?
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CHAPTER TWO

LINEARIZATION OF THE MOORE-GREITZER MODEL

2-1 Introduction

The Moore-Greitzer model for the description of rotating stall transients is
given in great detail in two companion papers, [4] and [5]. In this chapter, we first
summarize the derivation of the full set of equations. The equation which models
the evolution of the non-axisymmetric component of the velocity potential will
then be linearized for the case of small amplitude disturbances. Finally,

predictions are given for the behavior of this small amplitude mode.

2-2 Summary of the Moore-Greitzer model

This section summarizes the major assumptions and results found in the
Moore-Greitzer model for rotating stall transients. A description of the
compression system is first given, with definitions of the variables used. The
momentum balance is then built section by section, to finally obtain the equations
for the system.

The compression system is represented on Fig(2-1). It is composed of an
inlet duct of length 1j, followed by the compressor blade rows, then by an exit duct
of length le, a plenum and finally a throttle. The quantities used to non-
dimensionalize all variables are the mean blade speed U, and the mean radius R.
The non-dimensionalized variables are the following:

circumferential coordinate: 0

axial coordinate: M = y/R
time: & = UYR
compressor inertial time lag: T = 2UNT/R, Q = I/T, T = cr/Ucosy
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where ¢ is the blade chord, 7y the stagger angle, N the number of
compressor stages, and r a parameter included to take the blade row spacing and
the viscous ecffects into account.

We now evaluate the total-to static pressure rise across the whole system by
adding the total-to-static pressure difference at the inlet, the static-to-static
pressure rise across the compressor blade rows, and the static-to-static pressure

diffcrence between the exit plane and far downstream.

Upstream flow region
The flow coefficient in the upstream flow region will be denoted ¢.It can be

dccomposed into a circumferential average ¢ and a non-axisymmetric part ¢, as

dcfined by:

0(5,8,m) = 0) + 0(5.8,1) (2-1)

Besides, the flow in this region is potential, and according to the distinction
made above, we can also separate the velocity potential into a circumferential

average and a non-axisymmetric part:

(5,6.m) = 9(%,0) + 0(£,0,0) (2-2)

o=— (2-3)
on

0=22 (2-4)
an

so that, in particular (taking @(—1;)=0):

0(5,0) = [n+1]6(®) (2-5)
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Now, ¢ has to satisfy the Laplace equation with periodic boundary
conditions; therefore, we have:

—~

= 2 ayé) elkheike (2-6)

[kpo

mpressor

The total-to-static pressure difference in the upstream flow region is:

PowPso 1] 2 2] |o
! 23 = E[U +V ] + [—(—P-] (2-7)
pU ag m=0

where u and v are the axial and circumferential non-dimensional

vclocities at the compressor face; we have:

u = ¢, = ¢(n=0) (2-8)
-
v=|2 (2-9)
89 n=0
so that:
PioPso A P d¢ L (2-10)
ur 2 98 Jn=0

Across the compressor
We have (including IGV and EGYV inertial lag, and IGV loss):
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. (2-11)
(L % Kiloe
2Q 00 2 |06

where W is the compressor axisymmetric total-to-static pressure rise

characteristic, and Ky the IGV loss coefficient.

Downstream flow region
The flow in this region is assumed to obey an approximation of the kind
V2pP=0, and wc assume constant pressure far downstream, at le. Using continuity
across the compressor, we link the downstream exit static pressure to the
upstream velocity potential:
PooPse do o L0

=-lg— - (M-1)|— 2-12
pU2 ed& 85 nm=0 ( )

where m=2 corresponds to a long exit duct, m=1 to a sudden expansion to the

plenum.

Total-to-static pressure rise across the compression system

Summing all the components computed above, we obtain the total-to-static
pressure rise across the compression system. We note this quantity the following

way:
PSee' PtO _

2

pU \P(&) (2-13)

If we take into account that:
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of  df  |onadg jn=0
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we obtain:

Y(E) = ¥{0, - (li""e"'é"'“_—)_ - (—+—)|—=

2~ ~ ~12
e lee] L Lkl
2Q 19196 fn-0 0 =0 2 90 Jn=0

Let us make the following definitions:

1 1
le=li+1lg+ — + —
Q ng
1 1 1
—_—— = — 4 —
Qeq Q ng
We now decompose the pressure into an axisymmetric

axisymmetric part:

W) = Wdb) + PEO)

and similarly:
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(2-15)

(2-17)

(2-18)

and a non-

(2-19)

(2-20)



we finally obtain:

- — d 1 —
¥E) = ¥ - ol 5 K DT (2-21)
2~ 2~
0T . L|2e| _1low
T Qg |MdEfr=o 226 fr—0
~ (2-22)
-m|% 4 Lk-1)Eee
af; ‘n=0

The behavior of the system is completely determined by including the

throttle equation:

1 |- 2¥
— = —16) - K@ (2-23)
T

d& 4B’

where KT is the throttle resistance, and B the stability parameter, defined

by Greitzer [14] .
Equations (2-21) and (2-23) concern the circumferential average mode.

Equation (2-22) describes the behavior of non-axisymmetric modes; this is the

cquation we wish to study in more detail, for it is the one which small amplitude

pcrturbations will obey.
2-3 Linearization

The assumption of small amplitude perturbations allows us to:

- neglect thc pressure loss due to the circumferential velocity
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~2 9~
d 0
A << e (2-24)
ae Tl=0 aeaﬂ T|=0

- linearize circumferential variations of the compressor pressure rise

around the mean flow coefficient:

~ d¥, | ae
YYE.0) = — [—(p] (€.,8) (2-25)
dé n=0

Remembcering the expression for :

~ k ko

(P=zak(§)el ne! (2-26)
Ikpo

we  have: o

a(P Z' ke

2l =Y Iklawe _

_anLo Ikko (227
2~

201 - Y agge*

EaT (2-28)

E(B] = Zék@e"" 2-29

98 Jn=0  Ikko (2-29)

r
2~

901~ Yiklklage e*

|900E |n—0 kb0 (2-30)

Plugging these values into equation (2-22), and decomposing along Fourier

modes, we get:
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Let us make the following definitions:

dy. |k (2-32)

6k= —
d¢ m +—M—
Qeq

o, = koK (2-33)
20 o, k[
Qq

Equation (2-31) is a first order differential equation. Its solution is:

af) = Xke(ck_imk)é (2-34)

We note that for ¢ to be real, we must have

ay€) = a_y&) (2-35)

The exponential in equation (2-34) is already such that this is true;

therefore:
)"-k = A (2-36)
Finally:
-~ (k|n+oc&) _iké-w &)
o= ,% Ae e (2-37)
k

We see that each Fourier mode is the product of a damping term and a

. (kIn+o.8) . : N : :
travelling wave term. € is the damping term, which is a function of axial
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. i(ké—w &) | . .
position (M), and time (ﬁ). e is the travelling wave term, function of

circumfercntial position (0), and time.

2-4 Predictions and discussion

We can make the following predictions concerning the characteristics of a
small amplitude disturbance in the travelling upstream flowfield of the
COmpressor:

- exponential decay with distance from the compressor face. Furthermore,
thc decay rate is proportional to the Fourier mode number, so that higher number
modes will be attenuated more strongly.

- Exponential decay or growth with time, at a rate proportional to the local
slopec of the total-to-static pressure rise characteristic. In particular, the neutral
stability point, which corresponds to stall inception, is predicted to occur when
the slope of the characteristic becomes zero. This is a well-known criteria
(alrcady scen in chapter one), which has had mixed success: many compressors
arc known to stall with a strongly negative slope. Thus, the zero slope criteria
should be taken as a lower limit beyond which the compressor must stall. We
rctain the qualitative idea that the damping of the small amplitude travelling
wave, Ok, should tend to zero at stall (whether it is linked to the slope of the
charactcristic or not).

We note that, in this model, the mechanism by which the small amplitude
wave travels is only due to the compressor time lag, and not to a redistribution of
the upstrcam flowfield, as MCDougall's or Emmons' models predict. In the present
model, the wave can propagate with circumferentially uniform boundary layers
in the blade passages (any boundary layer modification would be a second order

cffect, ncglected in the linearization).
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CHAPTER THREE

EXPERIMENTAL APPARATUS AND TECHNIQUE

3-1 Introduction

As we have seen from the two previous chapters, our goal is to investigate
the flowfield of the compressor immediately prior to and during the machine's
transition from stable operation to rotating stall. We hope to identify small
amplitude perturbations travelling around the annulus prior to stall, which grow
into full-sizc stall cells as the compressor goes unstable. This chapter gives a
description of the facilities used for this study. Also described are the pressure
and veclocity measurement instrumentation with comments on calibration
procedures and error analyses. The chapter is closed by a section on data

acquisition and data processing techniques.

3-2 Description of the facilities

3-2-1  Introduction

The Gas Turbine Laboratory at MIT has two low speed compressor facilities,
onc is a three stage machine, the other a single stage machine. Both were used
during this study. This section gives a short description of these facilities, only
cmphasizing the aspects important to the problem at hand, and references more

complete sources of information.

3-2-2 Three stage compressor
This facility was built by Pratt & Whitney as a research facility for the JT9D
program. Its installation and subsequent modifications are extensively described

in Gamachc [15] and Lavrich [16]. A schematic of the rig is given in Fig (3-1). The
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work done to date on this machine includes the mapping of the characteristic of
three diffcrent builds, including the reverse flow region ([15], [16]). It was also
uscd to perform detailed time-resolved measurements of the flow field in the
compressor during operation in rotating stall [16].

The build used during all the runs performed on this rig is referenced as
build #2, or low reaction build, in [16]. Table 3-1 gives the design specifications
and blading parameters for this build. A speedline taken at 2225 RPM is given in
Fig (3-2). Some minor precisions about the conditions in which the experiments
were performed: the 15 inch orifice plate [16] was used for mass flow
mcasurcments; the industrial roof blower was never turned on, and its impeller
was held fixed to avoid disturbances, making it a purely resistive part of the
circuit. A crucial element for our experiments was the variable speed throttle, the

position of which could be recorded via an LVDT.

3-2-3 Single stage compressor

This rig was built as a research compressor in the 1950's, and has only one
stage: inlct guide vanes, rotor and stator. Its arrangement is extensively described
in Johnson [17], and Lee [18]. Past research on this compressor includes a study of
hub casing treatment for stall margin improvement ([18]). A schematic of the
facility is shown in Fig (3-3). The rotor and stator blade stagger angles used for all
cxperiments were set by Schulmeyer [19] to obtain a high rotor loading, and thus
promotc stall there (a D factor of 0.6 was chosen). All precisions can be found in
[19]. Table (3-2) gives the blading parameters used. A speedline taken at 2700 RPM
is given in Fig(3-4). The existing throttle didn't permit fine control of the
compressor mass flow: the drive motor didn't have variable speed, and asymmetric
thrust made the throttle wobble as it closed. A new variable speed drive system
(motor and transmission) was therefore installed, to ensure a smoother motion
and allow precise positioning of the throttle. The system consists of two ball
bearing screws (for the linear motion), driven by a variable speed electric motor,
via a chain. The motor speed can vary continuously from 0 to 60 RPM. At

maximum speced, the throttle translation speed is 0.5 cm/s. This corresponds to a
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mass flow dcrivative of 2.5 m/sZ, or 8. 104 flow coefficient points per rotor

rcvolution at 2700 RPM. Here again, throttle position is monitored using an LVDT.
3-3 Pressure measurements

It soon became necessary to perform the study of the compressor stalling
process in rclation to steady-state compressor parameters such as mass flow and
pressurc rise (the total-to-static pressure rise characteristic of the compressor
plays a key role in the theory exposed in chapter two). Steady state pressure
mcasurcments are also needed to study the characteristics of inlet distortions. This
scction describes or references the layout of pressure instrumentation in both
COmpressors.

For the three-stage compressor, this layout is described by Lavrich [16],
and a schematic is given in Fig (3-5). Note that all mass flow measurements were
obtained from the 15 inch orifice plate, in particular to overcome the problem of
cstimating mass flow with an inlet distortion. All pressure measurements were
made using a very high accuracy MKS baratron unit. The differential pressure
hcad has a total range of 14000 Pa, and can be read with a precision of 1 Pa.
Mcasurement range was roughly 1500 Pa. Typical error was due to unsteadiness,
and was less than 1%.

The single stage pressure instrumentation was set in place by Schulmeyer,
and is dcscribed in detail in [19]. A schematic of this instrumentation is given in
Fig (3-6). It consists of 30 static pressure taps (20 upstream of the blade rows, 10
downstrcam), and 30 total pressure probes (20 upstream, 10 downstream). For
rcasons of speed of acquisition, and also to avoid the wakes of the inlet struts, only
20 total and static pressure probes were used upstream (cf Fig (3-6)). The mass
flow was obtained from a circumferential average of the velocities given by the
total-to-static pressure difference at each station. All pressure measurements
were obtained through a 48 port Scanivalve, regularly calibrated against the
Baratron. Total range was about 8000 Pa, and precision is limited by the Analog-
digital converter count to about 15 Pa. Measurement range was around 1300 Pa,

and typical error was about 40 Pa, ie. 3.1%.
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3-4 Velocity measurements

-4-1 Intr i

The goal of the experiment is to investigate the flowfield upstream of the
compressor face, in order to test the hypothesis that small amplitude waves travel
around the annulus just prior to stall. This section presents the choice of
instrumentation for these measurements, then describes the requirements that
the expected characteristics of the phenomenon place on the number and
location of the measurement probes. Finally, calibration procedures and error

analyses are presented.

-4-2 Choi f loci instrumentation
The only things clear from the start about the phenomenon we wish to
study are the following:
- It is unsteady (since the disturbance is supposed to travel at 30% of
rotor speed, and if we want to resolve two harmonics of the wave, an
upper limit for the bandwidth is not more than twice the rotor
frequency, about 100 Hz).
- It is of small amplitude (we expect an amplitude of 1% of the mean
axial velocity).
Only high frequency response pressure sensors and hot-wire anemometry
have the nccessary frequency response. But pressure transducers do not have a
sufficicnt scnsitivity over the flow range we are interested in, contrary to the hot
wirc instrumentation. Despite its fragility and strong tendency to drift, the latter
system was therefore chosen. Eight DANTEC 56C17 anemometers were usually used,

sometimes in conjunction with TSI model 1250 anemometers.

-4-3 Number and | ion of pr
From previous experimental efforts on the subject, we expect a pre-stall
travelling disturbance to vary in time and space in rather complicated ways: its

shape might vary, its travelling speed might depend on time and/or space. We
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therefore need to have good spatial information on the disturbance, at all instants
in time. This kind of resolution is quite stringent, but is necessary to obtain a
faithful picture of the phenomenon, and avoid misinterpretations due to lack of
information. More precisely, since the perturbation is periodic in the
circumferential direction, it can be decomposed as a Fourier series, i.e. as a linear
combination of sine and cosine waves of increasing wave numbers. A good
mcasure of the accuracy which N spatial measurements provide in describing a
wave shape is the number of Fourier series coefficient one can compute with
them; a well-known rule of Fourier analysisA states that in order to compute N
Fourier coefficients in a series, at least 2N+1 measurements are needed.
"Complicated" shapes or shapes with sharp edges, which have a high number of
cocfficients in their series decomposition, will require a large number of
measurements to be accurately described. Another aspect of the problem is that
any Fourier component of the signal higher than the ones which can be resolved
will not only be lost, but will contaminate the lower Fourier coefficients; this
phcnomenon is called aliasing. Therefore, one should make sure that the
unrcsolved Fourier coefficients are small enough (ideally zero) with respect to
thc computable ones, so that no information on the wave shape is lost, and that
the available information is not distorted.

In the experiments we are to perform, we expect the disturbance amplitude
to decay exponentially with distance from the compressor face; we also expect the
Fourier components of the disturbance to decay at a rate proportional to their
wave number. In other words, the upstream flowfield is supposed to act as a fluid
mcchanic filter, rounding off the disturbance's sharp edges as we go further
upstream. It becomes apparent that there exists a trade-off between (i) the
numbcr of probes to use in order to get an accurate picture of the disturbance's
shape, and (ii) the distance from the compressor face at which they are placed.
Closc to the blade row, the disturbance will have a larger amplitude (easier to
detect), but with a more complicated shape (greater spatial sampling needed to
dcscribe it).  Further upstream, the disturbance amplitude will be smaller, but it
can be resolved spatially with fewer probes. In the experiments performed,

diffcrent combination of number of probes and distance from the compressor
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face were used, often after trial and error. It turns out that spatial aliasing is
rarcly a problem, and that a good starting point is to place 8 probes half a

compressor radius upstream of the first blade row.

3-4-4 Calibration

As many as 12 hot wire probes were used simultaneously, which ruled out
the possibility of calibrating each wire independently, since that would be much
too time consuming. The hot wire probes were therefore calibrated in place, by
running the compressor at different mass flows. The calibration relation used was

the classic generalized King's law [21]:

E’R,,
Rw‘l' R2

Ao+ AoV T, Ty (3-1)

where Ry is the hot wire resistance, R2 the resistance of the anemometer
in scries with the hot wire, E the voltage across the anemometer bridge, Tw and Tf
respectively the wire and fluid temperatures, V the fluid velocity, and p the fluid
density. AQ, A1 , and n are the calibration coefficients. The exponent, n, is usually
close to 0.5.

This rclation provides an adequate curve fit for a wide velocity range.
Nevertheless, since the velocity range of interest was roughly =+ 2 m/s around a
known mean value, calibration points were taken in this region only. A
rcference voltage was taken at zero flow, in order for the calibration curve to
kcep an acceptable shape outside of the region of interest. No corrections were
madc for fluid temperature difference between calibration and experiment, since
both were performed in the same conditions; see also the error analysis on this

subject. Fig(3-7) gives a typical calibration curve.

3-4-5 Error_analysis

The sources of error are so numerous in hot wire anemometry that it is

difficult not to forget one. The main ones are:
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- Drift, an all-time headache. The flow environment in a compressor is
extremely tough for a fragile sensor like a hot-wire. A substantial amount of dust
and fibers gets ingested carried by the air flow, and ends up burned on or
cntangled around the wire. This slowly or abruptly modifies the heat transfer
properties of the sensor, and changes the relation between flow velocity and
voltage output from the anemometer bridge. In the two hours a typical run would
last, the slope of this voltage-velocity relation could change by as much as 5%. To
kcep this error down, a calibration was performed immediately before and after
each run.

- Flow temperature change. The flow temperature was constantly
monitored during runs. In all the experiments, the compressor was run for some
timc before calibrations or measurements were actually made, so that thermal
cquilibrium could be reached in the room. The maximum temperature change
rccorded was 3 °F. For a mean temperature difference from wire to fluid of 400 °F
(typical), this gives a relative temperature error of 0.8%. From the form of King's
law, we sec that that relative error in temperature gives twice as much relative
crror in velocity, so that our error due to temperature change is 1.5%.

- Directional sensitivity of the probe. A typical error in angular position of
the probe was 10 degrees. Since the probe was calibrated in place, this had
supposcdly no effect in the case (most common) where the measurements were
pcrformed at the same station as the calibration. In other cases though, the
velocity error goes like the cosine of the angle error, so that a 3% error in
velocity is expected from angular positioning inaccuracies.

- Inlet flow non-uniformities. Since the probes were calibrated in place

using an annulus avecraged velocity obtained from total and static pressure

” "

mcasurcments, the calibration doesn't "see" any inlet non-uniformities. A study of
thc non-uniformity level revealed that the maximum error in assuming uniform
flow was 2%.

Assuming they are uncorrelated, these errors can be combined (RMS

addcd), and this yields the overall figure of 3.2% error in velocity measurements.
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3-5 Data Acquisition and Processing

3-5-1 Introduction

Once a measurement was taken, it had to be recorded in the computer
memory; high speed acquisition of velocity data, in particular, had to be
performed that way. This section presents the measurement's journey through
the digital world. We first describe its conversion from analog to digital, and all
thc precautions this implies. Digital processing of the high-speed data is then
dcscribed. A schematic of the data acquisition and data processing chain is given

on Fig(3-8).

3-5-2 Analog to_ digital conversion

Anti-aliasing filters were used in all experiments to low-pass filter the
analog signal before digitizing it. Those filters are 4 pole Bessel filters. The
travelling waves we are to study are supposed to travel at 30 to 50% of rotor speed,
and we want to rcsolve the first two spatial harmonics of that wave (for example).
The frequency range of interest for the study is thus from 0 Hz to rotor frequency
plus 20 % (say), typically not more than 55 Hz. The lowest cut-off frequency the
anti-aliasing filters could be set at was 100 Hz, so this was chosen. Taking the
filters' cut-off rate and Shannon's sampling theorem into account, we set the
sampling frcquency of the analog-digital converter to 625 Hz per channel, ie. 10
kHz for the total of the 16 A/D channels. The A/D input range was 0-10 volts,
coded on 12 bits, which means a voltage of 2.44 mV per count. A typical noise level
at the A/D input was about 5 mV, ie. two A/D counts, which indicates that the A/D
rcsolution was sufficient (still, it can be noted that 2.5 mV represent a speed
variation of 0.25 m/s at a mean value of 40 m/s, see Fig(3-7)). The analog-digital
converter was calibrated, and it was found that the calibration constants depended
rathcr heavily on the data acquisition rate. In consequence, the same sampling

ratc was used in the calibration routines and the data logging routines.

-5-3_Digital pr in
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After the signal has been converted back to engineering units by passing
through the A/D and the hot wire calibrations, one can try to enhance some of its
properties by filtering it with digital techniques. For our experiments, it was
rapidly discovered that the actual mean level of velocity indicated by a probe was
ncither important nor really precise (drift etc.). More important was the
variations of the velocity around this mean level, since this would really be what
indicated the presence of a disturbance. All signals were thus high-pass filtered
at 4 Hz to get rid of their DC component. Also, no relevant information was found
to cxist above rotor frequency plus 20%, so the signal was low-pass filtered at that
frcquency. Obtaining this rule of thumb for the cut-off frequency certainly took
trial and crror: although one wishes to enhance the signal to noise ratio by
rcmoving as much noise as possible, too narrow a filter can "invent" some very
mislcading information. The digital filter used belonged to the finite impulse
response category, for their desirable property of introducing only linear phase
shift in the frequency domain, i.e. a pure time lag in the time domain. In our case,
the filter was implemented acausaly, which means it used information from
before and after a point to filter it; this eliminated the time lag mentioned above.

The last operation performed on the velocity data was to discrete Fourier
transform the measurements in space. At each point in time, one has (say) 8
vclocity measurements taken around the compressor annulus; from these, 8§

complex valued Fourier coefficients can be obtained using the following formula:

1< -2iKIT
Cy=—2, Vyexp|—— (3-2)

where Vp is the velocity at angular position n; k varies from -3 to +4 in our
casc, and the Ck's are periodic with period 8. Furthermore, since Vp is real, Cx and
C.kx are complex conjugates. Fourier analysis says that C.x has the phase and half
thc amplitude of the wave, so that by studying these C.x's we have all the required
information about the wave position and amplitude as a function of time.

Notc that since the A/D scans all channels consecutively, the 8 velocity

mcasurements are not taken precisely at the same time, but with a maximum of
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half a sampling period between them. This was dealt with by linearly
intcrpolating the values of the channels between two clock cycles, but no

difference was noticed when no interpolation was performed.

42



CHAPTER FOUR

LOW SPEED EXPERIMENTS

4-1 Introduction

This chapter describes the experiments performed on MIT/GTL's low speed
compressors to test the hypothesis that small amplitude waves travel around the
compressor annulus before stall. A typical experiment for the identification of
these pre-stall waves is first described and discussed, some questions are raised,
and a framework for the study of this phenomenon is defined. Next, we discuss the
statistical aspect of the stalling process from the point of view of small amplitude
travelling waves. The reaction of the stalling process to typical engine operating
conditions like mass flow transients and inlet distortion is then studied. Finally, a
section covers the influence of the axial position of sensors for best pre-stall
wave detection. The chapter is closed by a summary of the experimental evidence

exposcd.

4-2 Identification and description of small amplitude travelling

waves: one typical experiment

4-2-1 Introduction

The experiment presented in this section is typical of almost all others
rcferred to later in the chapter. Our purpose is to explain with this example some
gencral characteristics of the experiment and its results, and how these
characteristics influenced our investigation method: what information is found to

be important and how this information is plotted.

4-2-2 Presentation of the experiment
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The experiment presented here was conducted on the three stage
compressor described in chapter three. The spatial arrangement of the hot-wire
probes was the following: eight probes were placed around the compressor
annulus, equally spaced, 13.5 cm (or 0.47 radii) upstream of the inlet guide vanes.
The compressor RPM was 2225. The experiment was performed in the following
way: the compressor was first brought "very close" to stall. In practice, this means
the closest one could get while being reasonably sure not to stall from some larger
than usual disturbance being swallowed by the machine. Typically, it was within
0.005 flow coefficient points from the stall point on the compressor map, see Fig
(3-2). Using the fine control variable speed throttle, the mass flow was then
reduced as slowly as possible, while hot wire data was recorded for a fixed period
of 25 seconds. With a bit of practice, the closeness to stall and the slowness of the
throttle motion could be balanced in such a way that the whole sequence fit
within the time data was taken. This was mainly a trial and error business: no
automatic logging routine was available which could continuously rewrite a
memory section and keep only (say) the last 10 seconds before stall. Globally, one
out of two trials led to a "good" result, i.e. in which stall occurred in the last 15

scconds of the data logging interval. The compressor was then quickly unstalled.

4-2-3 Resul

Fig (4-1) gives the time traces of the eight filtered velocity signals
obtained. As described in the last chapter, these signals were first discrete Fourier
transformed in space to obtain the coefficient C.x of each spatial harmonic. The
C.x's (Cp to C.3) give the amplitude and phase of each harmonic, and are thus
complex valued functions of time. A question of plotting method comes up, since
such functions can be represented in many different ways:

- on a three-dimensional graph, representing amplitude and
circumferential position vs time,

- on two ordinary graphs, plotting amplitude vs time and circumferential
position (phase angle) vs time,

- on two graphs showing real and imaginary part vs time.
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This third method has less physical significance than the first two, since
the real and imaginary part of the Fourier coefficient represent the projection of
the wave onto two axes which are perfectly equivalent. This plotting method will
therefore not be used.

Fig(4-2) gives the amplitude of the first Fourier harmonic during the 140
rotor revolutions preceding the stall point, which is referenced as t=0 on the plot.
We can see clearly a stretch of finite amplitude (always > 0.1m/s) starting at t=-90
revs, finally growing exponentially into a stall cell. During the same time
interval, the phase angle of C.j, plotted on Fig(4-3), shows a very regular
propagation. For a better estimation of the phase speed, the phase can be
"unwrapped”, and this method is used on Fig(4-4) to display the angular
propagation of the first and second Fourier harmonics. The phase of C_i is seen to
travel at around 13 Hz during the small amplitude stage of the wave, and this tumns
to 14 Hz for the stall cell. The phase of C.p shows no clear propagation, which
indicates that the small amplitude wave does not have a C.p component; any C_o
present in the data is really due to noise. This is confirmed by Fig(4-5), which
shows that the amplitude of C.p is always nearly zero, in any case much smaller
than that of C_y. From this poiﬁt on, we will consider that all relevant information
concerning the small amplitude wave position and amplitude is contained in its
first Fourier harmonic (this proved to be true for the single stage compressor as
well). The amount of noise reduction that this simplification provides is illustrated
by Fig(4-6), which gives three-dimensional representations of the velocity data
and of the first Fourier harmonic during the last 20 rotor revolutions before stall.
The wave propagation is much more obvious in the Fourier harmonic than in the
raw velocity data. We also note that quantitative analysis is difficult using three
dimensional plots, and therefore only two dimensional plots will be used in the

rest of this study.
4-2-4 Discussion

The results exposed above indicate very clearly the presence of a small

amplitude travelling wave prior to stall. We note the following characteristics:
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- There is no phase or amplitude discontinuity as the wave finally grows
into a full-size stall cell; this seems to show that small amplitude travelling waves
and stall cclls are two stages of the same physical phenomenon. From the time it is
first identified, the wave is travelling at a phase speed of 13 Hz, which tums to 14
Hz for the stall cell; at no time is it near rotor speed. Also, the wave amplitude can
remain "small" (typically less than 5% of the stall cell amplitude) for a
considerable time (90 rotor revolutions). These observations are not in
accordance with Emmon's view of stall inception as groups of blades stalling
randomly, then slowing down to stall cell speed. On the other hand, the Moore-
Greitzer theory predicts this behavior very well.

During this last period of uninterrupted propagation, the wave amplitude
seems to vary almost randomly around a mean value. An explanation would be
that disturbances are convected in and tend to reinforce or diminish the already
existing wave according to their relative angular positions (in phase or out of
phase). This observation raises the question of the nature of the disturbances

which excite the system, and this is addressed in the next section.
4-3 Statistical aspect of the stall inception process

4-3-1 _Intr i
The experimental results presented in the previous section qualitatively

conform to the following ordinary differential equation

Cut) = (0,-i ©,) Ct) (4-1)

which was established by the Moore-Greitzer linearized theory in chapter
two. According to this model, any disturbance swallowed, or generated inside the
compressor (structural, fluid mechanical) ought to act as an excitation for the
compressor-flowfield system, or another way of seeing it, as an initial condition
for the ordinary differential equation. It would seem therefore that the
compressor environment (disturbances convected to the blade row, or structural

modes) is an important factor in determining the amplitude and time extent of
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pre-stall travelling waves. In particular, the intermittency and amplitude of these
excitations are crucial parameters. If perturbations appear too rarely or too
weakly to excite even a barely stable system, no travelling disturbance will exist
for any appreciable length of time before the compressors turns unstable (in
which case the smallest disturbance will grow exponentially).

A problem encountered if one tries to answer the question of the nature of
the driving disturbances is that one cannot really separate inputs or excitations
from the system's reaction to them. We can try to distinguish between the two by
the fact that a disturbance convected in will not be travelling circumferentially,
before it actually reaches the weakly stable blade row and excites the system.
Unfortunately, the time during which a disturbance is being convected is too
short to permit a good estimation of its angular travelling speed. In practice then,

inputs and outputs of the system are indistinguishable.

4-3-2 Experiments

A question one wishes to answer, though, is wether the statistical
characteristics of the disturbances exciting the system are such (amplitude,
intermittency, randomness) that a small amplitude travelling wave will be
present for any length of time every time we try an experiment such as described
above. More basically, we wish to know if the stalling process always starts as a
small amplitude travelling wave, or if its nature is sometimes different.

The experiment described above was repeated a number of times over a
large period of time (6 months). The inlet conditions (and thus probably the level
of disturbances) were similar except for changes in the sound absorbing material
placed on the muffler. Two experiments were performed at 1075 RPM, seven
others at 2225 RPM. The length of time of the last uninterrupted propagation of
small amplitude wave before stall is plotted for each experiment on Fig(4-7). We
see that:

- Even in terms of rotor revolutions (which is the natural time scale for the
phenomenon, according to theory), the waves may subsist longer at 1075 RPM
than at 2225 RPM. More statistical evidence is certainly necessary before drawing

a definite conclusion.
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- In all cases, a small amplitude wave exists prior to stall, travelling at 35%
of rotor speed for more than 30 rotor revolutions before turning into a stall cell.
This seems to establish that in the three stage compressor, used in these operating
conditions, the stalling process always starts as an already travelling small

amplitude phenomenon.

4-4 Effects of mass flow transients and inlet distortion 'n the

stalling process

4-4-1 Intr ion
In this section, we wish to find out if typical engine operating conditions
like inlet distortion or quick throttle transients modify the nature of the stall

d

. . . . ¢
inception process we observed before, in cases of quasi zero [—GTsu

. As discussed in
the last section, the characteristics of pre-stall travelling waves could depend
somewhat on the nature and rate of excitation from external disturbances; does
this mean that in non-optimal situations, these waves do not exist? If they still

exist, are their characteristics modified?

4-4-2 Presentation of the experiments

Experiments with a non-zero throttle rate at stall were performed on both
the three stage and the single stage machines, both with a clean inlet and with
distortion. This section describes the experimental set-ups used, and the way data

was obtained and processed.

4-4-2-1 Three stage experiments

Three different ranges of throttle closing rates were used on the three
stage compressor, the lowest being quasi-zero (as described in the previous
section), the highest corresponding roughly to a flow coefficient rate of change
of 0.1 flow coefficient points per 100 rotor revolutions. Data was simply recorded
during the transient, up to and after stall; the hot wire probes were placed at the
same position as before: 0.47 radii upstream of the IGVs. The compressor rotation

speed was 2225 RPM.
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In all experiments, a time resolved mass flow through the compressor was
estimated by an average of the eight velocity measurements taken around the
compressor circumference. Due to sensor drift, those measurements were only
precise to within 5%; low frequency oscillations further compromised the value
of the flow coefficient estimate, despite heavy low-pass filtering. The time
derivative of the flow coefficient at stall was obtained by least-squares fitting a
line to the last second of data before stall, with a typical standard deviation of 5%.

The inlet distortion was obtained by placing a plastic sheet on the FOD

screen, covering 180 deg of the bellmouth. The characteristic of the distortion at a
flow coefficient near stall (¢=0.488) is given on Fig(4-8).

4-4-2-2 Single stage experiments

Five different throttle transient rates were used on the single stage
compressor, the highest corresponding to 0.08 flow coefficient points per 100
rotor revolutions, the smallest being 10 times slower. 2700 RPM was the rotation
speed for all experiments. Again, data was recorded during the transients by eight
hot wires placed 0.43 radii upstream of the rotor, i.e. immediately upstream of the
IGVs.

The time resolved mass flow and mass flow derivatives at stall were
estimated by the same procedure as for the three stage experiments. In this case
however, the hot wires were re-calibrated before each run, giving an accuracy of
0.005 flow coefficient points (see the compressor map on Fig (3-4)). Another
estimate of the mass flow was obtained by monitoring the throttle position, and
calibrating this position vs flow coefficient before and after each run. Both
estimates were within 0.005 points of one another, over the calibration range of
the throttle (i.e. up to the stall point).

Inlet distortion was obtained with a three sector screen giving a gradual
blockage over 180 deg of the compressor circumference. The screen was placed

immediately downstream of the inlet bellmouth contraction. Fig(4-9) illustrates

the distortion obtained at ¢$=0.350, just before stall.

4-4-3 Definition of th 1 int an f travelling w xisten
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On all plots in this chapter, the stall point is chosen as time reference. This
implies to have a precise time-resolved definition of a stall point. After having
tried many different definitions, the following was adopted: the stall point is the
time at which the amplitude of the pre-stall wave reaches half of the stall cell's
amplitude. This definition does not bear more physical relevance than any other;
in particular, it does not correspond to the neutral stability point, which would be
somewhat earlier, even before the start of the wave exponential growth. The
actual start of the instability proved very difficult to identify with precision,
especially on the single stage compressor, and this is why the definition given
above was adopted.

To determine the length of the last unbroken stretch of small amplitude
travelling wave, it was tracked backwards from the stall point until either its
amplitude went below a certain level, or the phase speed exceeded a certain range
(a sign the wave is not travelling uniformly any more). The limit levels for the
amplitude and phase speed were determined by mean values obtained far away
from stall, where no wave exists. Both criteria yielded the same values most of the
time. When they didn't, the more "pessimistic” (i.e. the smaller) estimation was
kept. Besides, the values obtained proved very insensitive to the limit levels
chosen. Table 4-1 gives the limit levels used for the experiments.

Fig(4-10) illustrates the use of the definitions given above on one typical

experiment.

4-4-4 Resul n i ion
This paragraph describes the results of the experiments presented above,
and discusses the effect of throttle transients and inlet distortion on the stalling

process.

4-4-4-1 General characteristics

The phase plots of the first Fourier harmonic for all experiments are given
in Fig(4-11), (4-12), (4-13) and (4-14), regrouped by machine and without or with
inlet distortion. We see that, in all cases, the stall point is preceded by a stretch of

straight phase, indicating the propagation of a small amplitude disturbance, at
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10Hz for the single stage compressor, 13 Hz for the three stage. This is the main
point to come out of this series of experiments: in both machines studied,
regardless of the mass flow transient rate or the inlet conditions, the stalling
process always starts as a small amplitude travelling wave, which eventually
grows into a stall cell. This shows that whatever the conditions, stall does not
occur without the prior presence of a small amplitude wave from which it can
develop. In essence, the stability of the compressor with respect to stall is
equivalent to the stability of this small amplitude travelling phenomenon, the
evolution of which is set by a first order linear differential equation. This is an

important simplification for the study of the compressor stability.

4-4-4.2 Effects of mass flow transients

For the rate of change of mass flow we have been using, the compressor
behavior is quasi steady. From the linearized Moore-Greitzer model, we expect the
damping of small amplitude waves to decrease as we get closer to the stall point,
turning to zero there. Very crudely then, and for explanatory purposes, we can
consider that there exists a flow coefficient region over which compressor
damping is weak enough that small travelling waves can "survive" there, given
sufficient excitation. Pre-stall wave existence time should therefore be roughly

d
inversely proportional to [FT‘LG This can be shown by plotting the time extent of

the last uninterrupted stretch of wave proragation leading to stall (a rough

d
measure of the overall wave existence), vs Fﬂsﬂ Fig(4-15) gives this for the

threc stage compressor, Fig(4-16) for the single stage compressor. As expected, we
sce a 1/¢0 dependence in both plots, with an offset: whatever the throttle closing
rate, wave existence seems to be longer than a certain limit. This is due to our
definition of the stall point as the time when mid stall cell amplitude is reached;
the duration of the exponential growth to mid amplitude is approximately

d
constant, whatever [dt]su' In fact, for the fastest transient cases, the small

amplitude wave rises exponentially almost as soon as it is identified. Still, the

expected dependence is observed.
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4-4-4-3 Effects of inlet distortion

The effect of inlet distortion on the stalling process can be seen most
clearly by comparing the first harmonic phase plots of the clean and distorted
inlet runs (Fig(4-11) and (4-12)) on the three stage compressor. On the plots
corresponding to the clean inlet, we see that before the last stretch of unbroken
travelling wave leading to stall, some other, smaller stretches exist which die out
because of stronger compressor damping at that point than immediately before
stall. The presence of smaller stretches of travelling waves manifests itself by a
global (though less regular) angular propagation of the phase. This propagation
however, is much less present in the case of inlet distortion, which indicates that
small amplitude waves have more difficulties travelling through a distorted
upstream flowfield.

This observation is confirmed by the fact that the time of the last unbroken
propagation of the wave leading to stall is generally smaller with inlet distortion
than without, as seen on Fig(4-15) and especially on Fig(4-16). In fact, let us
consider more closely the first experiment performed with inlet distortion on the
three stage compressor, at quasi-zero throttle closing rate. It shows an unusually
short propagation time of the small amplitude wave before stall develops, in what
should be an "easier" case than faster transients. This illustrates the fact that
even with slow mass flow transients, the nature of the system excitation is such
that we cannot be 100% sure of having a period of pre-stall travelling wave
longer than a certain limit before it grows into stall. Stall always starts as a small
amplitude travelling wave, but the small amplitude stage can be short, especially
in the case of inlet distortion.

The greater abruptness of the stalling process in case of inlet distortion is
further illustrated by Fig(4-17). This shows a comparison between the first
Fourier harmonic amplitudes of two transients on the single stage compressor,
one with a uniform inlet, the other with inlet distortion. We see that the growth of
the instability is very gradua’ in the clean inlet case, but much more rapid in the
distorted case. Fig(4-18) shows the flow coefficients at which the final stretch of
small amplitude wave leading to stall is first identified, for the uniform inlet and

the distorted inlet transients. We see that for the clean inlet case, the last period of
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wave propagation always starts at a higher flow coefficient than the steady-state
stall point. The contrary is true for the distorted runs. We note that our estimation
of the mass flow in the case of inlet distortion may be wrong, since we obtain a
lower flow coefficient at stall with distortion than without. Nevertheless, the mass

flow measurements are consistent within a group (distorted or undistorted).

4-4-4-4 Discussion of the effects of inlet distortion

The fact that wave propagation is more difficult in an upstream flowfield
can be explained by the following arguments. In McDougall's model, a disturbance
is caused to rotate by the slight blockage increase and the redistribution of the
upstream flowfield it induces; we see that the mechanism will work better in the
obstructed region (low flow, blades more loaded), but not as well in the clean
rcgion (higher flow than average). In the Moore-Greitzer model, the propagation
mechanism is a just a function of the compressor lag in responding to local fluid
acceleration caused by the passage of a disturbance. On the other hand, the wave
damping depends on the local slope of the total-to-static pressure rise
characteristic. If we regard a compressor with inlet distortion as two parallel
compressors each operating at a different flow coefficient, it is clear that the
distorted one is nearer to stall than, and might even be artificially stabilized by,
the clean inlet compressor; small amplitude perturbations travel easily through
the distorted (unstable) region, but are dampened out as soon as they reach the
clean (stable) region. The extension of the Moore-Greitzer model to the inlet
distorted case is discussed in detail in [20].

Another aspect of the problem is that a distortion is a continuous source of
disturbances (unstcadiness, turbulence) to excite the system; but since this
excitation is biased spatially (much more present in one region than the other), it
may actually be a hindrance to a travelling wave.

The transition to stall is more sudden in the case of inlet distortion, and we
propose two explanations for this. The first is that on the time scale of a stall
event, the excitation responsible for the wave start may be random, but not white
i.e. not equiprobable in time or in space, especially for the inlet distortion case.

This argument is particularly true for mass flow transients: a few, if not one,
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convected perturbations would determine the immediate behavior of the system.
For this reason, it is felt that the same abrupt stall would occur much less often
with a uniform inlet flow. A second explanation, is that (as was mentioned
before) the wave may be so hindered by its interaction with the distorted region
that it does not grow immediately, even though the compressor is potentially
unstable. When it finally grows, it does so more suddenly.

Besides, we note that the greater abruptness of the stalling process in the
case of inlet distortion may be an artifact of the way we look at the phenomenon.
In particular, the higher Fourier harmonics (which we have decided to neglect)
arc more present in the case of inlet distortion, and may play an important role.
This is illustrated by Fig (4-19), which shows that, in one inlet distortion

cxperiment at least, the second Fourier harmonic went unstable before the first.

4-5 Influence of the axial position of sensors on wave detection

4-5-1 Introduction

Our hypothesis to explain the existence of pre-stall small amplitude
travelling waves is the following: disturbances are swallowed by the compressor
and convected until they encounter a weakly stable blade row. There, they are
"caught” and start to rotate, while decaying or growing slowly. From equation (2-
37), we expect the magnitude of the travelling disturbance to decrease
exponentially upstream of the compressor face, but nothing is known about the
flowfield inside the compressor. It is therefore not clear where along the
compressor axis is the best location for wave identification, and this is the

question that this section addresses.

4-5-2 Experiments and results

The experiments were performed on the single stage compressor, for
reasons of ease of implementation. Fig(4-20) shows the different stations used
along the compressor axis, and table 4-2 gives the axial location of the blades and
of the hot wire stations. The rotor being the reference point, we have: station 1

0.94 compressor radii upstream, station 2 0.43 radii upstream (just upstream of the
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IGVs), station 3 0.12 radii upstream (between IGVs and rotor), station 4 0.17 radii
downstream (between rotor and stator), station 5 0.43 radii downstream
(immediately downstream of the stator), and station 6 0.75 radii downstream. The
compressor mean radius is 26 cm.

In the first series of experiments, eight hot-wire probes were placed in
turn at station 2 to station 6 (station 1 had four hot-wire probes to monitor mass

do
flow). Each time, the compressor was throttled to obtain the slowest [3} « POssible.

As we have seen before, the small amplitude travelling wave phenomenon seems
to have a statistical dimension, which really means that it is not exactly
repeatable. Therefore, these experiments cannot be quantitatively compared, in
particular in terms of wave amplitude and time extent; only qualitative
comparisons can be made. Fig(4-21) shows the phases of ten such experiments,
performed at stations 2 to 6. Again, in all cases, a small amplitude travelling wave
is present before stall occurs. Actually, some of these waves are there
uninterrupted since before data was started to be recorded. On the whole, no major
differences can be seen between the different stations. Wave propagation seems
to be more difficult a station 4, and also (to a lesser extent) at station 5, than
elsewhere. The other stations appear more or less equivalent. This is all the
information that can be inferred from this series of experiments.

In another series of experiments, four hot-wire probes were left at station
1, while two other groups of four wires were placed at different stations along the
compressor axis. This way the amplitude of the rotating wave at each station could
be referenced to the amplitude at station 1, so that different experiments could be
quantitatively compared to each other. Again, the compressor was throttled as
slowly as possible. The amplitude of first Fourier harmonic during the last 220
rotor revolutions before stall is given in Fig(4-24), (4-25), (4-26), (4-25) for five
differcnt experiments, which allows comparison of the amplitude at different
stations. For stations 2 to 6, the ratio of the amplitude at that station to the
amplitude at station 1 was computed at each instant, then averaged over 6 seconds
to yield just one number. These ratios are plotted on Fig (4-26), along with the

theoretical prediction (again with reference to station 1) for the upstream
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flowfield, which is given by the following equation (which follows from equation

(2-37)):

x(n)-x(1)
—2% =e R (4-2)

where A(n) is the amplitude at station n, and R is the compressor radius. We
see that amplitude at station 2 is actually larger than expected; amplitude at station
3 is lower than it should be, but the theory may not extend to this station placed
between IGVs and rotor. The large oscillations (17 Hz) seen in the wave amplitude
at this station (Fig(4-22)) may bias the averaging process by which the final ratio
was obtained. For reasons as yet unclear, the amplitudes at stations 4, 5, and 6 rise
according to the distance along the compressor. We note that for these stations,
the hot-wires were oriented so as to monitor the velocity at the expected leaving
angle from the blades, which may not be the best direction to choose. An
approximation of the axial amplitude of the wave can be obtained by multiplying
the wave amplitude by the cosine of the angle of the hot-wires with the
compressor  axis.

What is probably more important for control purposes is how "clean" the
signal is (i.e. free from noise not relevant to the travelling phenomenon), and
how well it reflects the actual wave characteristics: position and amplitude. In
other words, we would like to reason in terms of signal to noise ratio. The sources
of noise are the following:

- Turbulence: constant upstream, grows as we go through the compressor.

- blade row interaction, wakes: none upstream, increasing as we go
through the compressor.

The magnitude of the signal of interest grows exponentially as we get
closer to the unstable blade row, steps down as we go through the IGVs, then rises
again (Fig(4-26)). On the other hand, we see from Fig(4-22) - Fig(4-25) that the
noise increases dramatically as we enter the compressor blade rows, and decreases
only far downstream of the stator. A rough measure of the signal to noise ratio at

a given station can be to compute the standard deviation of the amplitude at that
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station relative to the amplitude at station 1, and divide this number by the mean
of this relative amplitude (as computed in the last paragraph). This is plotted on
Fig(4-27), and we see that the signal to noise ratio indeed drops sharply as we go
through the compressor blade rows, to rise only far downstream of the stator. We
conclude that for best signal to noise ratio in the active control implementation,
the probes will want to be installed around station 2, immediately upstream of the

IGVs.

4-6 Conclusions

In this chapter, we addressed the question of the nature of the stall
inception mechanism. Two low speed axial compressors were experimentally
investigated for the experiments. First, a typical experiment was presented. Its
results clearly showed the existence of a small amplitude wave, travelling at 35%
of rotor speed for 90 rotor revolutions before stall occurred. Furthermore, the
stall cell evolved directly from the exponential growth of this wave, without any
discontinuity in amplitude or angular position. Qualitatively, this phenomenon is
well described by the linearized Moore-Greitzer model. The results also established
a framework for the future study of the phenomenon, in particular the choice of
data representation. A section then described the possible statistical nature of the
travelling wave process, and gave supporting experimental evidence: 9 out of 9
experiments, showed that stall evolved from small amplitude travelling waves. In
all 9 cases, the time extent of the last uninterrupted stretch of travelling wave was
longer than 30 rotor revolutions. Next, we studied the reaction of the compressor-
upstream flowfield system to typical causes of compressor stall in jet engines:
throttle transients and inlet distortion. All cases showed the same behavior for
stall inception as observed before, and this established the universality of this
stalling process. Side consequences of throttle transients are a reduced existence
time of the small amplitude stage of wave propagation, inversely proportionally to
the mass flow derivative at stall. Inlet distortion seems to make the travelling
wave propagation more difficult, and the stalling process more abrupt. Finally,

thc question of the best axial station for wave detection was addressed; a station
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just upstream of the IGVs was found to have the best characteristics, mainly the

large amplitude and the cleanness of the signal obtained there.
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CHAPTER FIVE

STUDY OF THE COMPRESSOR-FLOWFIELD SYSTEM STABILITY
USING SMALL AMPLITUDE TRAVELLING WAVES

5-1 Introduction

The linearized Moore-Greitzer theory derived in chapter two predicts that
any small amplitude perturbations in the compressor upstream flowfield should

travel according to the following wave equation:

~ k i(ko—
¢ = 2 Xked |n+0k &) e'( o &)
[kpo

(5-1)

From the first term of the right hand side, we expect exponential
attenuation with distance from the compressor face, and exponential growth or
damping in time according to the local slope of the total-to-static pressure rise
characteristic of the compressor. The attenuation with distance has been partially
dcalt with in the previous chapter, showing reasonable agreement with the
theory. In this chapter, we address the question of the damping or growth in time.
First, we introduce different analytical tools for time series analysis, which will
allow us to retricve the dynamics of our system from the noise and other
unmodclled dynamics present in the data. Using these techniques, we obtain a
mcasure of the system's time damping as a function of the compressor flow
cocfficicnt, and discuss the consequences. The chapter is closed by a section on
thc possible cngincering use of the small amplitude travelling wave phenomenon

as a stall announcer.

5-2 Presentation of the tools and techniques
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-2-1__Intro
In this section, we present some tools for the analysis of time series. These
tcchniques fall into two strongly interrelated categories: power spectral density,

and system identification techniques.

5-2-2 Powcr spectral density analysis

Spectral analysis consists in determining the distribution of the power of a
signal over its different frequency components. In our case for example, we wish
to identify the frequencies present before stall in the first spatial harmonic of
the vclocity data. The travelling wave we are interested in should manifest itself
by a peak at around 10 Hz for the single stage compressor, since this is the
approximatc travelling speed of the phenomenon in this machine. The height of
the spectral peak represents roughly the power of the wave, concentrated around
the frequency of the peak. We see that PSD analysis (as it is often called) is a quick
and efficient way of knowing if travelling waves actually exist, just by looking
for a peak in a narrow frequency range. It is also a more systematic way of
investigating the wave presence than just studying the phase of the first Fourier
harmonic. The phase, in fact, is driven by the strongest frequency component
present in the data; if the travelling wave 1is not the strongest spectral
component, it will not appear in the phase propagation, but it will still appear as a
pecak in the PSD. As an example of the PSD's capacity to distinguish hidden spectral
fcatures, Ict us consider Fig(5-1). We see that the rotor frequency (in this case) is
perfectly apparent in the PSD, even though the phase doesn't show it. Another
important fcature of PSD analysis is that even if the wave is present only
intermittently because of strong system damping, a peak will still exist in the
spectrum.

As was discussed in chapter four, the intermittency of the system excitation
is responsible for the intermittency of the wave appearance. In addition, the
amplitude of the excitation (the initial condition of the ODE) conditions the length
of time during which the wave exists, for a given system damping. With these two
characteristics (intermittency and amplitude), the excitation will act directly on

the power of the wave, and influence the PSD peak. On the other hand, the wave
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power is also a function of the system damping; thus, if the intermittency and the
amplitude of the driving disturbances are independent of the compressor
operating point, the height of the spectral peak corresponding to the travelling
wave will be a function of the system's damping alone. But we know that
environments like inlet distortion may modify the characteristics of the
excitation, and thus change considerably the height of the spectral peak, even for
a constant system damping. We therefore predict a problem in trying to use the
PSD as a universal tool for system stability prediction.

PSD analysis is usually based on a procedure employing the Fast Fourier
Transform (FFT). This approach is popular because it is computationaly efficient,
and produces acceptable results for a wide range of signals. However, it suffers
from two important limitations: first, its frequency resolution is roughly
inversely proportional to the time interval available for analysis. Secondly, the
absence of information for the data outside the time interval causes energy
lcakage from peaks into “sidelobes", distorting the spectral response. These
limitations are of course particularly troublesome in the case of short data
rccords, or for data with time varying spectral content. Alternative methods have
rccently been developed to alleviate this problem, and those are the ones which
will bc used in this study. A wide body of theory exists on these methods, and we
will not attempt to describe them here; a very good summary is given in Kay and
Marple [22]. The basic principle is to fit a linear model to the data, using the same
procedure as system identification (which we will describe later), but without any
consideration for the physical relevance of the model chosen. The main
advantage of these methods is their ability to resolve sharp spectral features,
cven with short data records. For short data records though, the heights of the
spectral peaks obtained have little physical meaning, and suffer from high

variance.

5-2-3 System Identification

A discrete time series y, can always be modelled as the solution of a

difference equation:
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Yn=21¥p1 ¥ - + 8pYpp + Vp (5-2)

where vp is a noise term with unknown characteristics, which acts as the
cxcitation of the system (turbulence, or any convected disturbances in our
model). Choosing the ‘"right" number of parameters and estimating the
parameters aj themselves is the subject of system identification.

Equation (5-2) has an equivalent state representation as a first order linear

difference system of dimension p:

Yo=FYn, + Vi (5-3)
Yo 01.0

Y, = , F =

f 0.01
| Yo ap. . a

Both the pth order difference equation (5-2) and the linear difference
system (5-3) have continuous time equivalents, respectively as a pth order linear
differential equation, and as a linear differential system of dimension p. If A is

the matrix of this latter system, we have:
F=e (5-4)

where At is the sampling frequency of the time series.
The characteristic polynomial of equation (5-2) is also the determinant of
2z1d-F, where Iq is the identity matrix. The zeros zj of this polynomial are the

cigenvalues of matrix F, and correspond to the eigenvalues Aj of matrix A.

Furthecrmore, we have:

z;=e (5-5)
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We see that estimating the p coefficients aj of equation (5-2) really
consists in fitting a pth order linear model to the data. This linear fitting makes
good sense in practice providing a model already exists, which spares us the much
more dclicate task of choosing the model order; only the parameters themselves
are lcft to be estimated. The results that this technique can yield are also
cnhanced if unmodelled dynamics and correlated noise present in the data are
taken out by adequate filtering. Unmodelled dynamics can be identified by
looking at a PSD of the data. If filtering cannot eliminate them, they should at
lcast bc accounted for by using a higher order model. Correlated noise can also be
modelled: if only white excitation noise is present, we have a pure AR
(AutoRegressive) model; correlated noises or additive measurement noises can be
dealt with by ARMA (AutoRegressive-Moving Average) models. Reference [23]
can be consulted for more details.

The fitting of the model to the data can be performed in two different ways:

- in the time domain

- in the frequency domain, fitting the transfer function of the model

to the PSD of the data.

The time domain fitting is the only one we will use, since it is well suited to
rcal time implementation. The fitting is done by least squares techniques, either
rccursively (on-linc), by updating the estimates of the model parameter for each
new data point taken [24] [25], or by processing the whole data sequence as a
batch (off-line) [26]. Recursive methods are particularly interesting because they
do not use the assumption that the signal is wide sense stationary (w.s.s).
Conscquently, they do not restrict the eigenvalues of the model to the left half-
plane, and this allows to track unstable poles (which off-line methods cannot do,
sincc thcy assume a wide sense stationary signal, and set forward and backward
prediction errors equal [23]). In addition, recursive methods can be made to follow
time varying parameters, by using a "forgetting" factor to gradually discard old
data. This forgetting factor is denoted q, and 0<q<! ({23]-[25]). Each past data point

is weighted by qk, (where kAt is the time between the past data point in question

and the most recent data point taken), so that points further in the past are

weighted by a lower weight factor. q=1 corresponds to no forgetting at all, and the
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faster the time variations in the parameters to be identified, the lower g should be
sct. A common choice is to take q=0.99.

The amount of computations required by the Recursive Least Squares
algorithm is proportional to p2, (where p is the model order), but faster
algorithms are now available with only linear dependence in p [27]. Off-line least
squares algorithm such as Marple's [26] also have a computational time
proportional to p.

In conclusion, we see that the parameter identification approach is
potentially very interesting, considering the amount of information it can yield.
Necvertheless, many side aspects of the method such as noise dynamics, and the
rclatcd problem of choosing the "right" number of coefficients (i.e. the model
order) make the parameter identification problem heavier and more delicate in
practicc than the power spectral density methods described in the previous
scction. Therefore, both methods will be used, PSD analysis for a first study of the
problem, and system identification techniques when more precise information is

requirced.
5-3 Experiments and results

5-3-1 Introduction

Let us first summarize what we know or suspect about the stalling process,
and its relation to the small amplitude travelling wave phenomenon. Up to very
rccently, the notion of the stability of a compressor with respect to stall was
purcly cmpirical: if a normally operating compressor went into stall after a finite
time, it was called unstable, stable otherwise. Equation (5-1) gives an a priori
diffcrent meaning to the notion of "compressor-upstream flowfield stability", that
of a linear system: if the damping term (Ok) in this equation is negative,
hypothctical small amplitude travelling waves will decay, and the system is called
“stable”. Otherwisc, the waves amplitude will grow exponentially, and the system
is "unstable” (thc non-linear extension of equation (5-1) reconciles the theory

with the empirical definition given above by predicting the exponentially
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growing waves to level off into a stall cell). Now, in the previous chapter, we have
verified experimentally that:

- small amplitude travelling waves do exist,

- the stability of those small amplitude waves is equivalent to the global
stability of the compressor with respect to stall. In fact, both notions describe the
same physical phenomenon although at different stages, and stall will always
occur from, but only from, the exponential growth of small amplitude travelling
disturbances.

The small amplitude wave aspect is just a more time resolved look at the
global phenomenon of stall. Also, this approach brings a new dimension to
qualify the system stability. The traditional view of stall was very much a binary,
stable/unstable viewpoint, in occasions linked (with little success) to a zero slope
of the total-to-static compressor characteristic. Now, we have observed an
cxperimentally phcnomenon which seems to reflect a degree of stability of the
system. More precisely, we know that travelling disturbances are dependent not
only upon the system damping but also upon the excitation (which was not studied
here), and until now we haven't been able to tell them apart. This section is an
attempt to distinguish one from the other, to average out the apparently random
contribution of the excitation to the travelling wave, and study directly the
compressor damping (Ok), which is the quantity of interest since it really
dctermines the system behavior. It could indicate how stable the compressor is,
how close it is to stall, and thus be used as a stall anticipator. The goal of this
scction is thus to use the small amplitude travelling wave phenomenon as a
indicator of stability, by applying the data analysis techniques presented in
scction 5-2. We want to know in what flow coefficient range can stretches of
travelling waves be identified, and if the system's damping can be obtained from
this analysis. We will then study the variation of the system damping with flow

cocfficient, and it dependence upon the compressor environment.

5-3-2 Experiments and result
The experiments performed were simple: the single stage compressor was

just run at a steady operating point, while 12.3 seconds of velocity data was
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rccorded. By varying the flow coefficient at which these points were taken, a
complete map of the compressor's behavior was obtained. For all the experiments,
the compressor rotation speed was 2700 RPM.

As we pointed out in section 5-2, we have two basic tools at our disposition to
study the dynamics of the system: PSD analysis and system identification
tcchniques. A PSD may yield less quantitative information, but it is more
straightforward to use. Before attempting system identification and its subtleties,
we would like to establish that travelling waves are actually identifiable over a

rcasonable range of flow coefficient away from stall.

5-3-2-1 PSD analysis

Let us study the variation of the height of the spectral peak corresponding
to the small amplitude travelling phenomenon with respect to the flow
coefficient. This is plotted on Fig(5-2), for both the uniform and the distorted inlet
flow cases. For both cases, the curves show a nice sensitive growth of the PSD
pcak as we decrcase the flow coefficient towards stall. Note that at the highest
flow coefficient represented on the plot for the distorted case (¢=0.405), th.
spectrum is almost flat (Fig (5-3)): nothing but a slight hump can be seen around
10 Hz, which indicates that any wave travelling in the compressor has a power
density barely grcater than that of the background noise; the signal to noise ratio
is effectively down to 0 dB at that point. As was noted in chapter four, the flow
coefficient at stall is lower in the distorted case than in the uniform case (see the
speedlines of on Fig(5-4)). Whether this is actually an error or not, we can still
qualitatively compare the two cases. In particular, we see that the PSD peak curve
is much flatter with distortion than without, and the level near stall is much
lower. This reflccts the increased difficulty the wave encounters when it travels
in a distorted environment, which is a conclusion we had already drawn from the
cxperiments described in chapter four. But since PSD analysis cannot separate the
respective contributions of the damping and of the excitation on the wave power,
we cannot conclude if inlet distortion affects the system damping or not.

PSD analysis has enabled us to identify a range of flow coefficient over

which travelling waves can exist. Nevertheless, it doesn't allow us to study the
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system damping, for it is also sensitive to the level of disturbances driving the
system. We will now resort to system identification techniques for more

information.

5-3-2-2 System identification

Our model for the small amplitude phenomenon is the following ODE

C.alh) = (6471 0) Ci) + V() (5-6)

with a corresponding discrete time model:
C.n) = a;C_(n-1) + V(n) (5-7)

o (Ociw,) At

al = (5-8)

where C-1 is the first harmonic data, and V the driving noise; G and W, are

respectively the damping and the frequency of the travelling wave, and are the
parameters to be estimated.

As described in section 5-2, we want to remove from the data all the
dynamics not relcvant to this equation. Let us consider for example a PSD taken at
¢=0.377 with uniform inlet, which is given in Fig(5-5). It shows a peak at 30 Hz
which is unmodelled (and unexplained), and a peak at 0 Hz which corresponds to
the DC shift of the sensors; this latter peak can be smoothed out, but the 30 Hz peak
is more difficult to deal with elegantly: we will simply low-pass filter the data
from -25 Hz to 25 Hz (brute force). This also enables us to bring the sampling
period down to 12 times the one we used to take take the data. This tends to
"whiten" the driving noise present in the data, which is a good feature for our
parameter identification.

Having adequately processed the data, we can perform the parameter
identification itsclf. This can be done off-line (batch processing), or on-line

(recursively). Fig(5-6) illustrates the quadratic convergence of the recursive

algorithm on a high signal-to-noise ratio case: uniform inlet flow at ¢$=0.361. In
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this case, 150 rotor revolutions are sufficient for convergence. Fig(5-7) however,
shows that the convergence can be much slower for low signal-to-noise ratio
situations (inlet distortion, ¢=0.398); more than 300 rotor revolutions are
nccessary in this case. The data intervals we took are 12.3s long, which represents
540 rotor revolutions, so we can be sure that convergence is obtained in each
case.

Fig(5-8) shows a comparison between the PSD of uniform inlet data at

0=0.361 and the fitted first order model. Fig(5-9) shows a similar plot for the inlet

distortion case, at $=0.356. We see very good agreement between the data and the

fitted model, which justifies both the method and the model used, for both clean
and distorted cases. Further away from stall, damping is stronger and the signal is
weaker, so that measurement noise can be a problem. To alleviate this, two
estimates of the damping were computed, one with an AR(1) model (first order
system driven by white noise), the second a (1,1) ARMA model [23] (first order
system driven by white noise, with additive measurement noise). Both estimates
were usually closc, except in cases of very low signal to noise ratio, as Fig (5-10)
illustrates at ¢=0.382 with inlet distortion: the pure AR model can be "fooled" by
the spectral floor of noise, and tend to overestimate the damping; the ARMA
model, on the other hand, takes this noise into account.

A complication occurred in the inlet distorted case, near stall: a peak
appeared at -11 Hz, i.e. the frequency opposite that of the travelling wave; of
course, this peak cannot be filtered out without filtering the wave itself, so it had
to be accounted for by taking a model of order two. The procedure is illustrated on
Fig(5-11), at a flow coefficient of 0.353.

Fig(5-12) shows the damping ratios computed by the AR(1) and the
ARMA(1,1) methods vs the flow coefficient, for both the uniform inlet and the
distorted inlet casc. The two curves rise nicely to near zero damping close to stall,
but our main obscrvation is that the rise to instability is much sharper in the case
of inlet distortion. Away from stall, the system with inlet distortion is more
strongly damped than the uniform inlet case: for a given excitation, travelling
waves die out more quickly in the distorted environment. As we mentioned in

chapter four, the distorted system can be thought of as two parallel systems with
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different degrees of stability, causing a propagating wave to travel in turn
through a stable and an unstable region. This might partly explain our
observation, but rcality is certainly more complex. Besides, the model developed in
chapter two may not be strictly valid here , especially at the interface between
both regions (no vorticity hypothesis); a discussion is given in [20].

We should link the above observation with the one we made earlier (Fig(5-
11): near stall, a peak appears in the PSD at -11HZ, which is the frequency
opposite to the travelling wave frequency. It seems that when the wave reaches a
certain amplitude, it starts to interact very strongly with the distortion, and this
creates a standing wave in the annulus. The PSD interprets this phenomenon as
the interaction bctween the wave travelling at 11 Hz, and another smaller wave
travelling at thc same speed, but in the other direction (at -11 Hz). This
interaction translates as a "leakage" of power from the travelling wave peak to
the negative frequency peak. This leakage probably accounts for the slight drop-
off of the PSD and damping curves very near stall, which would indicate a sort of
artificial stabilization near stall. It may also explain the abrupt transitions to stall
observed in chapter four. But the main point we draw from this observation is
that an additional phenomenon occurs near stall in the inlet distorted case, which
is not contained in the linear model developed in chapter two. It is therefore not
properly analyzed by our system identification technique, even though an

additional pole was introduced to take it into account.

5-4 Engineering use of pre-stall travelling waves as stall

precursors

5-4-1 _introduction

This section tries to address the difficult subject of an evaluation of pre-
stall travelling waves as a stall precursor. We can broadly separate possible
applications into two groups: the applications in which time for analysis is

unlimited, and the others.

-4-2Stead licati
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As we have seen in the previous section, the compressor damping can be
very well estimated if a sufficient time (say more than 300 rotor revolutions) of
Fourier harmonic data is available. The compressor damping is the most
consistent precursor, in the sense that it gives a direct measure of the system's
stability. What it doesn't give, on the other hand, is how far an operating point is
from the stall point, in terms of flow coefficient, since the rise to instability is
different for each compressor. In the single stage compressor, for example, this
rise takes place over 0.06 flow coefficient points, whereas on the three stage
compressor the same region is 0.02 points. In addition, we have seen that for a
given compressor, inlet distortion can modify the damping at a constant flow

coefficient. Thercfore, a priori knowledge of the damping vs ¢ curve doesn't help

if the inlet flow conditions are not known.

-4-3 Real tim n lication

This section concems stall warning schemes suitable for use on engines
undergoing transicnts. This is of course a much more challenging application
than the steady applications described in the last paragraph, since these
transients typically take between 40 and 400 revolutions from the operating line
to the stall line. Furthermore, only part of the region from the operating line to
the stall line may be favorable to the propagation of travelling waves. As the
operating point crosses this region, the wave damping will vary from strong (say
-40) to zero, which is an additional complication. Consequently, one shouldn't
cxpect to obtain a very consistent estimate of the compressor damping during stall
transients.

To follow time varying parameters, the identification algorithm wused in
section 5-3-2-2 can be run with a forgetting factor, to gradually discard old data;
this factor can bc set very close to one (slow response and lag, but small variance
in the estimate), or closer to 0.9 which will make the estimate less consistent but
quicker to react. Fig(5-13) shows the on-line estimation of the compressor
damping for the five throttle transients on the single stage compressor, with a
clean inlet (section 4-4-4-1). For all five cases, the forgetting factor was set at

0.99. Also reproduced on this graph are the steady-state points of Fig(5-12). By
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comparing the throttle transient curves with the steady-state one, we see that the
first two transicnts are slow enough as to be quasi steady for the algorithm:
instability is wecll predicted, and even anticipated. On the other hand, the
algorithm is too slow for the last three transients: the forgetting factor is too
high in these cases to ensure a fast enough response, and follow the system
parameters. The response can be ameliorated somewhat by turning down the
forgetting factor, but at the expense of consistency. This is illustrated by Fig(5-
14), which shows on-line estimations during the fastest throttle transient, using
three different forgetting factors: 0.99, 0.94, and 0.89. We see that the consistency
of the estimate is degraded, but that instability is approached sooner.

In a gencral sense, changing the forgetting factor from 1 to 0.9
corresponds to shifting our aim from trying to estimate the compressor stability
(which requires a lot of information and therefore takes time), to merely spotting
the start of the small amplitude wave which will turn into stall (which is much
less ambitious, but is ultimately all the useable warning we are likely to get). In
other words, as the throttle transients get faster, we expect to obtain a
proportionally reduced amount of information before stall, and our algorithm
should be paramcterized to take that into account. For example, the forgetting
factor can be lowered if transients are expected.

Inlet distortion also promises to be a challenge: we know it dampens
rotating waves morc strongly, thereby reducing the amount of information
available. Furthcrmore, in this case, the linear model doesn't describe the wave
behavior correctly near stall, which makes system identification more delicate.
For this reason, no on-line estimation was performed during transients with inlet

distortion.

5-5 Conclusions

This chapter has been concerned with the use of the pre-stall travelling
wave as a reflection of the system's stability, to estimate the damping of the
compressor. The first order ODE predicted by the Moore-Greitzer theory was fitted

to thc data with excellent agreement for both clean and inlet distorted cases. The
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damping ratios estimated were found to be dependent upon the flow coefficient,
but also wupon the compressor environment (inlet distortion). Finally,
recommendations concerning the use of pre-stall travelling waves as a stall

precursor were given.
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CHAPTER SIX

HIGH SPEED EXPERIMENTS

6-1 Introduction

The Moore-Greitzer theory and its linearized version use the assumption of
incompressible flow through the compressor, and in the wupstream and
downstream flow regions. This is a key element in the derivation of the equations,
and the extension of the model to the compressible case (the only relevant one for
high speed machines) is still to be performed. Nevertheless, it is felt that the
mechanism for stall inception in high and low speed machines should be
qualitatively quite similar. Since it has been found that in low speed compressors
the stall inception mechanism is the growth of small amplitude waves, it is worth
looking for the same phenomenon in high speed machines, since only high-

spced machines are of practical interest.

6-2 Three stage high-speed experiments

-2-1 Description of the rig, instrumentation an hni

The experiments described in this section were performed by Pratt &
Whitney Government Engines Business, West Palm Beach, Florida, on a three stage
high-speed machine. Three groups of eight Kulite high response pressure
transducers formed the instrumentation. These transducers measured static
pressure at the compressor casing, and each group was placed at the leading edge
of one of the three stators. Station 4 designates the first stator, station 5 the
second, and station 6 the third. Within these groups, the taps were distributed
around the compressor circumference as uniformly as possible, but the angular

spacing between two neighboring taps could not be made constant because of
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already existing instrumentation conflicting with the desired placement. Table 6-
1 gives the circumferential location of the pressure transducers for the three
axial stations used. This unequal spacing is not a problem from a theoretical point
of view: the spatial Fourier transform can be performed just as well. Its derivation
is given in appendix A. The only practical consequence is that the error on the
measurements is amplified when calculating the Fourier coefficient. This
amplification is small in our case, since the probes are nearly evenly spaced.

The signals processed were in volts, i.e. not converted to engineering units.
Nevertheless, the output voltage of a pressure transducer is roughly proportional
to the pressure level. As for the low speed experiments, the signals were band-
pass filtered to remove the DC level and high frequency noise from the data.
According to our rule of thumb from chapter three, we first band-pass filtered
from 5% to 120% of rotor frequency. All interesting information was found never
to exceed 75% of rotor frequency, so the data was subsequently low-pass filtered at
that frequency. Before the processing, the DC level and the RMS level of some of
the signals were very different from the others at the same axial position. Even
with a distorted inlet, this can only be attributed to sensitivity variation from
sensor to sensor (remember that we are processing voltages not actual pressure).
The RMS level of the "bad" sensor was therefore adjusted to the level of the
neighboring sensor, and generally yielded good information.

All the experiments presented in this section were performed in much the
same manner as the low-speed experiments described in chapter four: the flow
coefficient was reduced by closing the throttle valve while data was being
rccorded. As soon as surge was sensed, bleed valves were opened to stop the

instability.

6-2-2 Very slow throttle transients, uniform inlet case

This section presents results from two experiments performed with a
uniform inlct, each with a different vane stagger (IGV and stators). The transient
was as slow as the throttle would allow. Both sets of data were similar in many

respects, and we present some characteristics common to both.
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- Fig(6-1) shows eight pressure traces taken at station 4. We note that the
RMS level of the signals are quite different. On this graph, the RMS level of
channel 4 (which was obviously low), has been adjusted to that of channel 5.

- The data from station 4 (Fig(6-2) and Fig(6-3)) clearly indicates the
propagation of small amplitude disturbances before the occurrence of stall/surge.
Furthermore, we note that both the first and the second Fourier harmonics are
rich in information (which is a situation that had not been observed in the low-
speed experiments of chapter four). Actually, the second harmonic has a higher
amplitude than the first most of the time, as is illustrated by Fig(6-2), and both
amplitudes seem to vary independently. The phases of the first and second
harmonic are shown on Fig(6-3), and we see that the propagation of the second
harmonic is more regular than that of the first. The last unbroken stretch of
second harmonic existence lasts for more than 100 rotor revolutions, which is an
enormous time scale. Within the same time period, the first harmonic "disappears"
a couple of times; nonetheless, it is present for stretches of up to 60 rotor
revolutions. The third harmonic, however, is virtually non-existent.

- The leading edge of the first stator is the location where the signal is the
strongest. This is seen by compéring the amplitude (Fig(6-4)) and phase (Fig(6-5))
of the second harmonic at different stations. The difference between stations is
more pronounced here than in the case of the single stage compressor studied in
chapter four.

- The PSD of C.1 and of C.2 for the whole data sequence up to stall/surge is
given in Fig(6-6), and shows clearly the peaks corresponding to the first and
second harmonics respectively at 18.5% of rotor frequency for the first and 37%
for the second. This seems to indicate that both modes are actually travelling
together, which is confirmed on Fig(6-7), showing the wrapped phases of both
harmonics. The ratio of the travelling speed of the first harmonic to rotor speed is
an important parameter for wave identification as performed in chapter five. In
this case, it is only 0.18, compared to 0.28 and 0.22 respectively for the three stage
and the single stage compressors investigated in chapter four: there are fewer

wave revolutions for a constant number of rotor revolutions.
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As we mentioned at the beginning of the section, two experiments were
performed, each with a different vane setting. All the plots given above
correspond to a "nominal" setting. The experiment conducted with the other
setting also showed clear pre-stall wave propagation, for period of up to 50 rotor
revolutions. This is less than for the experiment we analyzed above, which may
indicate that the vane stagger angles are important parameters for the
propagation of small amplitude waves. In any case, 50 revolutions is more than
enough for stall warning.

In conclusion, these experiments are very encouraging: they prove the
existence of pre-stall small amplitude rotating waves in high-speed machines, for
a considerable length of time (50 rotor revolutions) before the occurrence of

stall.

2.3 V low throttle transien i inl

One stall transient was performed with a 180 deg inlet distortion, again by
closing the throttle as slowly as possible. The phases of the first, second, and third
Fourier coefficients are plotted on Fig(6-8). The second harmonic has what can be
considered as a noisy slope, which may or may not indicate some overall
disturbance propagation. On the other hand, a small stretch of well defined slope
exists between -120 and -100 rotor revolutions, which suggest that a disturbance
does in fact travel during that time. This is evident if one looks at Fig(6-9) which
displays the eight pressure traces taken at station 4. Channel 0 shows some
sizeable disturbances, which appear at a well defined frequency: 6% of rotor
frequency (shedding from the inlet distortion?). These disturbances, for example
the one starting at t=-135 revs, are strongly attenuated by the time they reach
probc 1; probe 2 barely sees them at all. But the disturbance starting at t=-120 revs
travels for 15 rotor revolutions, at 13% of rotor speed. This is not the same
frequency as observed in the uniform inlet case (18.5%). We also note that when
the compressor finally turns unstable, large disturbances start travelling at yet
another frequency: 8% of rotor speed.

The PSD of the second harmonic for the whole sequence up to surge/stall is

given on Fig(6-10), and shows a complicated picture. The two peaks at -6% and 6%
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are due to the disturbances seen on channel 0. The small peak at 13% shows the
propagation of the disturbance between -120 and -100 revs. The other peaks, at
26% and 50%, are unexplained.

It would appear from Fig(6-9) that disturbances are being created inside a
well defined region (around probes 7 and 0) and get strongly attenuated once they
travel out of the region. As we mentioned in chapters four and five, we may think
of the system as two parallel compressors operating at two different flow
cocfficients, and therefore with different degrees of stability. Travelling waves
propagate easily through the unstable region,A only to be damped as they travel
out of it. This phenomenon may be troublesome if we want to use the small
amplitude travelling wave as a stall precursor. A solution can be to look for
travelling disturbances on a more local scale, i.e. in part of the annulus only. To
do so, we can for example cross-correlate the outputs from two neighboring

transducers, according to the following formula:

N
Ry®N) = == 3, x(@) y(n-p) (6-1)
n=N-39

Rxy(p,N) is the cross-correlation of signals x and y, with a lag p, and taken
at time N. The number 40 is arbitrary; here, for example, it was chosen such that
40At equals one period of a wave travelling at 13% of rotor frequency (as the
disturbance observed above seemed to). The lag can be expressed as a period of
rotation, by dividing it by the angle (in deg) between the two transducers in
question, and multiplying by 360 deg. As an example, let us consider Fig(6-11),
which shows the cross-correlation between channels 0 and 1, at t=-110 revs. The
cross-corrclation has a maximum at a lag of 8.1 rotor revolutions, which indicates
that , at t=-110 rcvs, a wave is travelling between channels 0 and 1 at 1/8.2=13% of
rotor speed. This can be verified by looking at Fig(6-9). Now, we can calculate
what that maximum cross-correlation is at each instant in time, and keep only the
maxima that have a lag between 7% and 70% of rotor speed (see Fig(6-11)). This is
plotted on Fig(6-12) (again for the cross-correlation between channels 0 and 1).

This figure can be compared to Fig(6-9) to show that indeed, the peaks of the max
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cross-correlation correspond to the disturbances travelling from channel 0 to
channel 1, for example at times t=-170 revs, t=-150 revs, but also just before stall, at
t=-30 revs, and t=-15 revs. Let us now calculate the max cross-correlation for each
pair of neighboring sensors, and compare them. This is done on Fig(6-13). The
cross-correlation of channels 0 and 1 shows some travelling disturbances in this
region as soon as t=-180 revs, 60 rotor revolutions before any disturbance
manages to travel around the annulus. On the other hand, nothing travels
between channels 4 and 5 before t=-115 revs. This simple analysis shows that
looking for travelling disturbances on a more local scale can be an answer to the

problem posed by inlet distortion.

6-2-4 Fast throttle transient case

The throttle transient studied took 450 rotor revolutions from the operating
line to thc stall line. The phase of the first harmonic at station 4, 5, and 6 are
given on Fig(6-14), while the second harmonic phase is plotted on Fig(6-15). We
note the following points:

- The phase of the first harmonic travels in the direction of the rotor at
station 4, but in the opposite direction at station 5 and 6.

- The same observation holds for the second harmonic, except that in this
case it is the phase at station 5 which travels in the direction of the rotor, while
the phase at station 4 travels in the opposite direction.

We thus have the following situation: at a given station (4 or 5), the first
and the second harmonic travel in opposite directions; in parallel, a given
harmonic travels in opposite directions at station 4 and station 5. This
characteristic is difficult to reconcile with the idea of a fluid mechanic
disturbance travelling around the annulus, since all phases would then be
travelling in the same direction (preferably in the rotor direction). Another
intriguing feature of the phase traces is that they travel right from the
beginning of the data, and they continue to propagate after the stall event, when
the compressor has been brought back to stability (Fig(6-14)). Again, this is not
in accordance with the idea that the small amplitude travelling wave is only

present when the compressor is weakly stable, immediately before stall. Let us
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now consider the amplitude of the first and second harmonic at station 4, which is
given on Fig(6-16). We see no time during which these amplitudes are measurably
above zero, as would be the case if a travelling wave such as we have observed
until now were present in the data.

All these points lead us to believe that the phase propagation observed here
may not be due to the presence of a travelling wave, at least not a phenomenon of

the kind we have seen until now.

6-3 Conclusion

The small amplitude travelling wave phenomenon has been observed in a
high-speed three stage machine, during two very slow throttle transients with
uniform inlet flow. Its characteristics were very similar to those of the waves
observed in low-speed machines in chapter four and five: small but finite
amplitude, along with regular phase propagation were observed before the
instability developed, for periods of up to 100 rotor revolutions.

A distorted inlet flow case was also studied, and travelling disturbances
were clearly observed, but for a reduced period of time (15 rotor revolutions). The
compressor seemed divided into two zones: one generating strong disturbances,
the other damping them, which is a problem for stall precursor applications.
Looking for travelling disturbances on a more local scale (a part of the annulus
only) can be a solution.

Finally, a throttle transient was analyzed. Travelling information was
strongly present in this case, but its characteristics were not in accordance with
the small amplitude travelling wave behavior observed until to then: propagation
in the direction opposite to the rotor, different propagation directions at two

different stations.
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CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

7-1 Introduction

This chapter presents the main conclusions of the present work, divided
along the following sections: existence and method of study of pre-stall small
amplitude travelling waves; reaction of the stalling process to mass flow
transients and inlet distortion; use of the pre-stall waves for compressor stability
cstimation and as a stall announcer; study of some high-speed data. The chapter is
closed by some recommendations for future work on the pre-stall small amplitude
travelling wave phenomenon, both for the insight it brings into the stalling

process and for stall warning applications.
7-2 Existence and method of study of pre-stall travelling waves

In a typical experiment, during which the stall inception process was
studied in the upstream flowfield of the three stage compressor, we have observed
that:

- Small amplitude waves exist prior to stall, travelling for more than 90
rotor revolutions, with an amplitude less than 5% of the stall cell amplitude, and a
constant phase spced of 35% of rotor speed as soon as it is identified.

- The small amplitude wave grows exponentially into a stall cell, without
any discontinuity in phase or amplitude. During this transition, the phase speed
changes from the wave's speed of 13 Hz to the stall cell speed of 14 Hz.

- This bchavior is in agreement with the linearized Moore-Greitzer model

for stall transients.
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- For thc three-stage compressor, all interesting information on the wave
angular position and amplitude is found to be contained in the first Fourier
harmonic. Thereafter, only this quantity is studied for quantitative analysis, and

is represented by its amplitude and phase angle.

The expcriment performed was repeated nine times, at two different
rotation speeds of the machine. Each time, the same stall inception process was
observed: a finite stretch of small amplitude wave travelled for more than 30
revolutions before growing into stall cell. In view of the very irregular amplitude
of the wave, thc excitation which provides its initial conditions may be thought to
be random; but the experiments described above proved that the nature of the
stalling process is not affected by this possible stochastic characteristics of the

cxcitation.

7-3 Reaction of the stalling process to throttle transients and

inlet distortion

Stall transients were performed with both uniform and distorted inlet flow
on the three stage and the single stage compressor. The following points were
noted:

- The compressor environment (inlet distortion) or operating conditions
(mass flow transients) do not change the nature of the stalling process: in all
cxperiments performed, stall evolved from an already travelling small amplitude
perturbation, with no observed phase speed variations during the small amplitude
stage.

These experiments establish that:

- small amplitude travelling waves and stall cells are two stages of the same
physical phenomenon

- small amplitude waves are a prerequisite for stall to occur; a stall cell can
only develop from an exponentially growing travelling wave, and will always

result from it.
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In addition, we note the following side effects of mass flow transients and
inlet distortion:

- The throttle closing rates used were slow enough for the compressor
operation to be quasi steady, and the only effect expected was observed: the last
stretch of uninterrupted wave propagation leading to stall was found to be
roughly inversely proportional to d(phi)/dt at stall. This simply indicates that the
compressor spends less time in the flow coefficient region favorable to the
propagation of small amplitude waves.

- Inlet distortion effects were more subtle to analyze, for they seemingly
influence both the compressor stability and the wave excitation. Roughly, inlet
distortion hinders wave propagation, and can cause abrupt stall inception even

during very slow throttle transients.

7-4 Use of the pre-stall travelling wave phenomenon for

compressor stability estimation and stall warning

A map of the single stage compressor was obtained by taking long periods
(600 rotor revolutions) of data at different flow coefficients, up to stall. After
proper conditioning, a first model linear model was fitted to the first Fourier
harmonic of the data. The following results were obtained:

- The fit of the model to the data was excellent at all flow coefficients, and
for uniform or distorted inlet flow (except maybe very near stall for the distorted
case). This proves that the first order model describes adequately the compressor-
upstream flowficld interaction and the travelling wave behavior, and that the
system parametcrs (damping and frequency) can be accurately estimated, given
cnough data for analysis to average out the contribution of the excitation.

- The estimated damping of the first order system was plotted vs the flow
coefficient, and was seen to decrease towards zero as the compressor neared stall.
The damping was found to be stronger in case of inlet distortion, explaining the
greater difficulty encountered by travelling waves in a distorted environment.

- Very necar stall, in the case of inlet distortion, strong wave interaction

with the distorted region causes the wave power to decrease. This effect is non-
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linear, and is not included in our model. It may produce an artificial stabilization
by delaying thc wave development into a stall cell, and thus be responsible for the

abruptness of the stalling process in some cases of inlet distortion.

The use of the small amplitude travelling wave as a stall precursor was
discussed, and the following points outlined:

- For stecady applications (test rigs), the compressor damping can be very
well estimated, but this does not indicate how close the stall point is without a
priori knowledge of the compressor, since the damping curve can vary
arbitrarily from compressor to compressor.

- For real-time applications, such as stall transients on engines, the
parameter identification algorithm used for damping estimation can be set to
track time varying parameters, but at the expense of the estimate accuracy.

- In the case of inlet distortion, looking at more local information (cross-
correlation between two neighboring measurements) can indicate wave

propagation in a reduced region only.

7-5 High-speed experiments

Sets of data from stall transients on a three stage high-speed machine were
cxamined, and the following conclusions reached:

- The stall inception process appears qualitatively similar in compressible
and incompressible machines. Very clear wave propagation could be seen during
two stall transicnt with a uniform inlet. Travelling disturbances were also present
during a distorted inlet experiment, but strongly damped in the "clean" region,
and continuously excited in the other.

- For this compressor, the second Fourier harmonic contained at least as
much information as the first one, which is an important information for future

cxperiments.

7-6 Recommendations for future work
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This work has provided a more time and space resolved view of the stalling
process as seen by the upstream flowfield, but has not brought more insight into
the fluid mechanic phenomenon which causes the compressor-upstream
flowficld system to turn unstable. In particular, the cases of compressors stalling
with a negative slope of the characteristic are still unexplained, and suggest that
an 1important factor as been omitted in the analysis. The transition mechanism
remains the only unknown of the stalling process, and a detailed study of the
flowfield immediately close to or inside the rotor passages can bring an answer to
this question.

Further investigation is needed to identify clearly the nature of the initial
condition, or the excitation, of the small amplitude wave phenomenon. Are they
convected in or generated within the machine (or both), and should they be
considered as a noise (white or colored), or as a deterministic quantity.

The mechanism of the interaction between small amplitude travelling
waves and the inlet distortion is not well understood at the end of this work. A
more detailed study may yield useful information on the specificity of the stalling
process in the case of inlet distortion, an important source of compressor stalls in
aeronautic applications.

The Moore-Greitzer theory has to be extended to the compressible case, in
order to obtain predictions of the wave characteristics in high-speed machines.

The linearized Moore-Greitzer theory can give quantitative predictions for
the wave damping and travelling speed, although empirical factors have been
kept to account for viscous effects. Using data from different compressors, a
parametric study can be performed to investigate the effect of the Reynolds
number (and perhaps other non-dimensional parameters) on the wave
characteristics.

Finally, but not least, a large amount of analysis and tests remains to be
performed to validate a range of applications for the small amplitude wave

phenomenon as a stall precursor.
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hr m

Number of Stages

Tip Diameter (mm)

r

Hub-to-Tip Radius Ratio

Design  Average Reaction

Design Flow Coefficient

Total Pressure Rise Coefficient (measured)

Efficiency at Design Conditions (measured)

Inlet Guide Vanes
Rotor 1
Stator 1
Rotor 2
Stator 2
Rotor 3

Stator 3

No. of
Blades
124

54
85
55
88
49
90

Design

Chord

(mm)

20.1
45.2
314
44.8
31.3
50.7
31.4

Table (3-1)

88

ifi

610
0.88
0.75
0.59
2.05
83.5

11.0
17.0
27.0
18.0
25.0
20.0
53.0

Camber

(Deg)

Stagger Angle
(Deg)
8.1
42.8
11.0
43.5
12.0
44.6
55



ingl ign ification Blading Design

Number of Stages 1
Tip Diameter (mm) 597
Hub-to-Tip Radius Ratio 0.75
Total Pressure Rise Coefficient (measured) 0.41
No. of Chord Camber Stagger Angle
Blades (mm) (Deg) (Deg)
Inlet Guide Vanes 46 40.0 10.0 15.0
Rotor 44 38.0 25.1 37.9
Stator 45 39.0 25.5 45.0
Table (3-2)
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Limit Level

Lower Limit

for Amplitude

(m/s)
Three Stage Comp.
Uniform inlct 0.04
Three Stage Comp.
Distorted Inlet 0.1
Single Stage Comp.
Uniform Inlet 0.04
Single Stage Comp.
Distorted Inlet 0.05

for Dectermin

ion of Small Ampli

Lower Limit
Phase Derivative

(rad/s)

-40

-70

-70

Table (4-1)

90

Wayv

Higher Limit
Phase Derivative

(rad/s)

200

200

230

230



Axial Position of Blades and Hot Wire Stations in the Single Stage Compressor

Axial positions are given with respect to the rotor plane, and the axis is in
the direction of the flow (upstream stations have negative coordinates,

downstream stations positive ones).

Axial Position Axial Position
(mm) (in Comp. Radii)
Inlet Guide Vanes -80 -0.307
Rotor 0 0
Stator 73 0.280
Station 1 -245 -0.941
Station 2 -113 -0.434
Station 3 -32 -0.123
Station 4 44 0.169
Station 5 112 0.430
Station 6 194 0.745
Table (4-2)
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Pressure Transducer Location in High-Speed Compressor

Compressor Axial

Location

Stator 1 Leading Edge

Stator 2 Leading Edge

Stator 3 Leading Edge

Channel No.

~N N v bW N = O N AN bW N - O

N N AN = O

Table (6-1)
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Circumferential Position

(Same Direction as Rotor)

31.9

73.4
115.0
163.4
205.0
246.5
281.2
329.6

31.8

71.8
106.8
161.8
206.8
241.8
281.8
326.8

10.0

50.9
104.1
140.9
193.1
230.9
280.0
320.9



Pressure rise (y)

Reverse flow

Surge limit cycle

SURGE

Unstalled flow

Compressor ch'ic
unstalied flow

Flow coefficient (¢)

Figure (1-1) Surge Limit Cycle
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Pressure rise (y)

ROTATING STALL

Stall transient

Rotating stall

Compressor ch'ic
unstalled flow

Compressor ch'ic
in rotating stall

Flow coefficient (¢)

Figure (1-2) Rotating Stall
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Pressure rise (y)

Operating point
with control

Operating point with
stall warning

Surge line
with /
control /
/ Normal
/ operating point
/
/

Surge line
without
control

Flow coefficient (¢)

Figure (1-3) Performance Improvements Expected From a Stall Precursor:

Active Control, and Stall Warning
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COMPRESSION SYSTEM

0 = x/R
A
>
n=y/R

r— Plenum

P I; D{ ]c —>

l /ﬁ \
0 e
Throttle

Inlet duct — Compressor Exit duct

Figure (2-1) Schematic of a Compression System
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Figure (3-5) Three Stage Compressor Steady State Instrumentation Layout
(from [16))
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DATA ACQUISITION
CHAIN

Compressor

Anemometer ] Analog
Filters
Hot wire
probes Analog
Analog -
—————————————— Digital
Converter
Digital
Spatial Digital Hot Wire
DFT ‘ 1 Fitters |™ Calibration

Figure (3-8) Data Acquisistion and Data Processing Chain
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Figure (4-6a) Three Dimensional Representation of Velocity Data
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Figure (4-6b) Three Dimensional Representation of First Harmonic
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APPENDIX A

DERIVATION OF THE FOURIER TRANSFORM IN THE CASE
OF UNEQUALLY SPACED MEASUREMENTS

Let us consider a discrete signal of period N, for example N measurements

XQ,.., XN-1, obtained at angular positions 0g,..., ON.1. In this analysis we assume

that N is even, because it corresponds to the case used in chapter six; the odd case

if straightforward to derive. We can decompose the discrete periodic function X,

on the base of N complex exponentials:

z

2 .
ik0
vie {0,.,N-1}, x,=x(@8,) = 2 Cye™ (A-1)
: R |

2

Let us define the base vectors:

¢ X9
-N N
= =—+1, — -
W, ., k=Tm+12 (A-2)
eikeu-l
L. -
Equation (A-1) can then be put in the following matrix form:
X =AC (A-3)
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Xo C'_2§+1
X = , C =
XN-1 CN
L - Bl
A = W'N+1 W§
2 2

X and C are vectors of dimension N. A is an N by N matrix. Solving system
(A-3) gives the N complex Fourier coefficients (C) from the N measurements (X).

Let us now emphasize the differences between the equally spaced and the
non-equally spaced case.

- In the case of equal spacing, 6, = -2%\111‘- and the Wy's are orthogonal to one
another. Consequently, AA*= N, and A-l= 1/N A*: system (A-3) is easily solved!
(This is also the basis for the computational efficiency of the Fast Fourier
Transform). Another indirect consequence of this orthogonality is that the Wj's
are periodic: Wy = Wy N, and base {W _{,.., W } is the same as base {W,..., Wn_1}.
In practice, in fact, this latter base is often chosen, for ease of formulation.

In the case of unequal spacing, the Wy's are not orthogonal, and are not
periodic any more. {W _;,.., W } is not the same base as {W,...,.Wy_1}, and we have
to be careful which one we use to decompose our signal on, because they are not
equivalent. In this calculation, we chose {W ,;,..W ]} because it is (almost)

symmetric with respect to zero, and can be directly transferred to a base of sines

and cosines, according to the relations:

Ckeike + C_ke*'ke = a,cos(kB) + by sin(k6) (A-4)

1 )
Ci= —(ag—1iby)
2 (A-5)

1
C-k = — (ak+ i bk)
2
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ap = Ck+ C-k (A-6)
bk = i(Ck - C-k)

From these relations, we see that C_p has the phase and half the amplitude
of the sinusoid of mode k present in the measurements.

A side aspect of A not being orthogonal is that its conditioning number is
greater than unity. In other words, any error in the measurements is amplified
when solving the system (A-3) to obtain the Cy's. The more unequally spaced the
measurements are, the greater the error amplification. It is easily understood that
measurements concentrated in 1/4 of the circumference (for example) will yield
less accurate Fourier cocfficients than if they were equally spaced.

Another consequence of unequal spacing is the following: since the base
vectors on which we decompose our signal are not orthogonal, aliasing will affect
all coefficients, and in asymmetric ways: Cyp and C_p will not be complex
conjugates any more, and the difference between the two is a measure of the
aliasing present. For practical purposes, (C_k+Ck*)/2 can be taken instead of

simply C_.
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