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ABSTRACT

The process of stall inception in axial compressors has been studied by

using time and space resolved measurements. As predicted by an existing model,

rotating stall is found to evolve from a pre-existing small amplitude travelling

wave, which grows exponentially into a stall cell pattern. The stability of the

compressor is equivalent to the stability of these pre-stall waves.

One three stage and one single stage low speed compressors were

investigated during the study. On both, stall transients were performed at

different throttle rates, with and without inlet distortion. Each time, a period of

small amplitude wave propagation is observed, with a travelling speed of

approximately 30% of rotor speed. This wave evolves into a stall cell without

discontinuity in amplitude or angular position, showing that pre-stall travelling

waves and stall cells are two stages of the same phenomenon. The wave was

present through the whole single stage compressor, but was clearest immediately

upstream of the inlet guide vanes. The damping of the small amplitude wave was

studied as a function of flow coefficient, by fitting a first order linear model to the

data. The damping was seen to decrease regularly towards the stall point, and was

found to be stronger in the case of inlet distortion.

A set of data from a high-speed three stage compressor was also studied. The

same pre-stall travelling wave phenomenon was clearly observed in the uniform

inlet case. Travelling disturbances were also present in the distorted inlet case.

Thesis supervisor: Professor Alan H. Epstein
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NOMENCLATURE

Symbols

ak -- Fourier coefficient of cosine decomposition

ap - - coefficent of time series model

A0, A1-- hot wire calibration coefficients

bk -- Fourier coefficent of sine decomposition

B -- stability parameter

c -- blade chord

Ck -- Fourier coefficent of complex exponentials decomposition

i --

k -- Fourier mode number

KT - throttle resistance

Ic -- total equivalent compressor length

le -- lenght of compressor exit duct

li -- length of compressor inlet duct

m -- parameter for duct expansion to plenum

n -- hot wire calibration coefficient (exponent)

N -- number of compressor stages

number of spatial measurements

p -- order of linear model

R -- compressor radius

Rw -- hot wire resistance

R2 -- anemometer bridge resistance

t -- time

T -- compressor time lag

Tf -- fluid temperature

Tw -- hot wire temperature

U -- mean wheel speed

x -- coordinate along compressor circumference (dimensional)



y - coordinate along compressor axis (dimensional)

n - element of time series

zi - eigenvalue of discrete time matrix

At - sampling interval

Y - - blade stagger angle

--- eigenvalue of continuous time matrix

-- coordinate along compressor axis (non-dimensional)

- - time (non-dimensional)

p - fluid density

S - - compressor time lag (non-dimensional)

- - flow coefficient

( - velocity potential

-- instantaneous total-to-static pressure rise

Vc - - compressor total-to-static pressure rise characteristic

G - damping of first order model

to - frequency of first order model

Operators

dO()
dt -- derivative

at -- partial derivative

(-) - - circumferential average

(-) -- non-axisymmetric part



CHAPTER ONE

INTRODUCTION

1-1 Introduction and background

Axial and centrifugal flow compression systems are subject to fluid

mechanic instabilities, which inherently limit their flow operating range. Since

these instabilities occur in a region where pressure rise and efficiency are

maximum, there is great interest in trying to prevent their appearance.

The first of these instabilities (and the one encountered most often in

modern jet engines) is called surge. It is a global instability in the sense that it

involves the whole compression system: the compressor, but also the plenum, duct

and throttle. On a compressor map, surge is characterized by a limit cycle (Fig(l-

1)): the mass flow undergoes large amplitude oscillations, while the plenum

(which represents the combustor in a jet engine) pressurizes and depressurizes.

In deep surge, flow reversal can be observed. If kept in that mode, a jet engine

will usually self-destruct quite rapidly, due to the high structural stresses present

during the limit cycle described above.

The second kind of instability encountered is called rotating stall. By

comparison with surge, which is a one dimensional instability along the

compressor axis, rotating stall is a two dimensional phenomenon: fluid velocity

varies both in the axial and in the circumferential direction. Furthermore,

rotating stall is a local instability, since it is confined to the compressor blade

rows; it is characterized by the presence of a stall cell, i.e. a region of the annulus

where little or no through flow exists, which rotates in the direction of the rotor

at 25% to 50% of rotor speed. From the point of view of the compression system,

rotating stall is a steady phenomenon: the annulus averaged mass flow and

pressure rise are constant in time, though both much lower than in normal pre-



stall operation. For these reasons, a jet engine cannot function with a large

number of its compressor stages stalled; apart from an obvious loss of thrust, the

combustor commonly goes out, or the reduced mass flow causes high turbine inlet

temperatures. Stresses and heating of the compressor blades are also likely to

cause terminal damage. A further complication is that stall can be a very stable

operating condition: a large hysteresis makes it difficult to recover from.(Fig(1-

2))

Many modern compressors have characteristics such that they enter surge

directly, or after a few cycles of rotating stall. Still, rotating stall alone can be

encountered in many flight conditions, such as cruise.

The point on a compressor map at which the fluid flow through the

associated compression system becomes unstable is very near the maximum

pressure rise and efficiency of the machine (this limit is often referred to as the

"surge" or "stall" line). Operating a compressor is thus a compromise between

efficiency and safety. Designers usually define a surge or stall "margin", i.e. a

region near the stall line which is not entered in order to prevent any instability

form developing. This margin needs to be wide enough to ensure safe operation in

the presence of flow perturbations of finite amplitude (inlet distortion due to

cross winds, the ingestion of shocks, wakes, hot gases from weapons firing, or a

masked inlet during high angle of attack maneuvers). Obviously, designers would

like to make the stall margin a small as possible to gain access to higher pressure

rise regions, while retaining a sufficient degree of safety. A recent development

in this domain has been to try to identify a precursor to the instability, a fluid

mechanic phenomenon which would announce the coming of stall. Using this,

one could safely operate closer to the stall line, and with sufficient warning, back

off the compressor operating point to avoid the instability. This information could

also be also be used as an input to an active control device, meant to artificially

stabilize the compression system (due to the catastrophic nature of the

instabilities, one definitely wants to avoid waiting for them to develop before

attempting stabilization). Fig(1-3) illustrates the possible performance

improvements that a stall precursor could provide. Stall control schemes have in



fact been implemented in a laboratory environment [10], but with limited success

up to now.

This recent work looks more closely at the period during which the flow

through the compressor transitions from stable to unstable, since a good

description and a good understanding of the mechanism of stall inception is

essential if we want to identify a phenomenon forewarning of stall.

1-2 Previous work on stall inception

The phenomenon of rotating stall was first identified by Emmons et al [1] in

the early 1950's. They suggested a mechanism for the angular propagation of stall

cells: once a group of airfoils has stalled and thus caused a sufficient flow

blockage, the streamlines upstream of the compressor face are deflected by this

obstacle. This raises the angle of attack of the blades at the "leading edge" of the

cell, thus promoting stall there, and lowers it at the trailing edge, unstalling the

blades in this region. This explanation is still widely held as accurate, although it

is recognized that the boundary layers in trouble might be more those of the

endwalls than of the blades. They also noted that stall can be characterized by an

abrupt pressure rise drop (full-span stall), or a more progressive one (part-span

stall).

Having presented this first general work on stall description, we now

concentrate on a brief review of the subject of stall inception in the literature.

We can broadly separate this summary into two sections: one describing

theoretical work, the other describing experimental work.

1-2-1 Theoretical studies

Most studies on stall inception are based on simple two-dimensional

potential flow models, describing the evolution of velocity perturbations

upstream of a blade row modelled as an actuator disk. The usual assumptions used

in the modelling are:



- Upstream flow field: two-dimensional inviscid flow, usually

irritatingly (no reverse flow); boundary condition: disturbances vanish at

upstream infinity.

- Downstream flowfield: again, two-dimensional inviscid flow, just

convecting the vorticity generated by the blade row; boundary conditions are

usually of two kinds:

- constant static pressure at blade row exit

- constant pressure at downstream infinity.

- Boundary conditions used across the blade row are usually:

i) mass conversation

ii) flow deflection relation

iii) a blade row loss factor expressed as:

- total pressure loss coefficient ([7])

- static pressure rise coefficient ([2],[3])

- vorticity equation with friction losses ([6])

all functions of the inlet flow angle.

Note that for those two last relations describing the loss factor, the

unsteady behavior of the blade row has to be accounted for. For the early work in

the area, quasi-steady performance was assumed: the leaving angle and the

instantaneous pressure rise are functions of the instantaneous inlet flow angle

(02) only. Later, lag parameters were included to take the fluid inertia (non-zero

length of the blade passage), and thus the finite response time of the blade row

into account. The general expression for the instantaneous pressure rise is:

actace = Cpss -Cp (1-)

where T is the lag parameter, Cp(f2,t) and Cpss(f 2 ) respectively the

instantaneous and steady-state pressure rise across the blade row.



Having established the equations for the fluid mechanic problem, one can

investigate analytically a linearized version of these equations, assuming small

perturbations around a mean quantity, or one can compute a numerical solution

of the full non-linear problem. Let us first concentrate our attention on the

linearized analysis. A study of this kind was performed by Stenning [2], without

lag parameters in the blade row relations, also by Nenni and Ludwig [5] (with a

lag parameter), and others. As was pointed out earlier, this analysis mainly aims

at describing the evolution of an upstream disturbance, the amplitude of which is

assumed to stay small with respect to the mean flow quantities. Since the upstream

flow is potential according to the assumptions made, the disturbance has the form:

" ike
(p(x,O,t) = ak(x,t) e (1-2)

(general form for the solution of Laplace's equation on a periodic domain).

Substituting this expression in the equations, one obtains a first order differential

equation for ak(t), which yields the following result:

a k(x,t) = Xkt)e' (1-3)

The solution of the linearized set of equations is thus a wave, travelling

around the compressor annulus. Pressing on further, one can find conditions for

those travelling waves to be neutrally stable (neither growing nor decaying),

which for this model represents the limit of stable operation, and therefore the

point of transition into stall (stall inception). In addition, one can obtain the

disturbance travelling speed. Stenning [2], using a Cp(P2) function for his blade

row characteristic, finds that a criterion for neutral stability is:

dCp (1-C,) cos2P2= - (1-4)
dtanp 2  tanP 2

This can be shown to be equivalent to the other well known condition:



d(Ps2" PH)
= 0 (1-5)

where • is the flow coefficient, which means that the instability develops

when the total to static pressure rise reaches its peak on the compressor map. The

phase speed for the instability is then:

V W Y (1- C
P (1-6)

sin 2

where Wy is the mean velocity in the circumferential direction (Wy =
WsinI2). Nenni and Ludwig find relations of the same type, but in terms of the

upstream and downstream relative swirl.

This class of linearized models are limited by their hypotheses; in

particular, no predictions are possible concerning the behavior of the stall cells

(propagation speed, number and amplitude) since the non-linear nature of their

propagation is completely lost. But although somewhat simplistic, these models

give good physical insight into the mechanism of stall inception: instability starts

with the growth of a small amplitude wave traveling around the annulus. The

stability of the compressor with respect to stall is reduced to the stability of a very

simple first order differential equation.

The other approach to this problem is to solve the full non-linear set of

equations numerically. This kind of studies were performed by Takata and Nagano

[7], Pandolfi and Colusardo [8], Orner [9] among others. They emphasize the

influence of the equation non-linearities on the development of the small

amplitude disturbances (seen in the linearized version) into full-size stall cells, in

particular concerning their shape and propagation speed.

1-2-2 Experimental work

A good summary of the subject of experimental studies on stall inception,

and the related topic of empirical predictions, is given by MCDougall [12]. As he



points out, most of this work was motivated by casing treatment evaluation;

although it describes phenomena (tip leakage flows) that appear crucial in

rotating stall inception, none of it describes the whole compressor upstream flow

field just prior to stall. In his thesis, McDougall gives the only work directly

concerned with the understanding of stall inception. In particular, due to the

short time extent of the phenomenon, most of his measurements were time-

resolved.

Up to McDougall's work, the most widely believed model for stall inception

was the one suggested by Emmons [1]. This model describes stall inception as the

random stall of a small group of blade passages; because of the coupling between

the compressor and the upstream flow field, this stalled region first spreads

circumferentially (and also radially), then starts falling behind the rotor to end

up travelling at a fraction of rotor speed. To prove this experimentally, Jackson

[111 measured the travelling speed of what he thought was an expanding stall cell,

and indeed his results showed the wave first travelled close to rotor speed, then

slowed down to roughly 40% of rotor speed.

In his thesis, McDougall showed that Jackson's interpretation of the data

was wrong. The problem comes from trying to determine the speed of an

arbitrary shaped and expanding region from the speed of only a part of its

boundaries (the cell leading edge in this case); this is a mathematically ill-

specified problem, and practically, simple models for the stall cell's shape and

expansion rates can yield vastly different estimates of the cell's rotation speed. A

good definition of the cell's speed can be the speed of its geometrical center, but

the determination of the center's position requires spatial information, which

Jackson didn't have. McDougall didn't have it either, so he disproved Jackson's

interpretation by using hot wire velocimetry signals obtained in the rotor blade

passages, near stall. On these signals, he noticed the presence of travelling

disturbances (even with respect to the rotor), prior to stall. As they passed a blade

passage, these disturbances modified the flowfield inside the passage (slight

thickening of the endwall boundary layer), but the passage was certainly not

stalled. Furthermore, from the point the disturbance could first be identified, its

speed was within 20% of its final speed as a stall cell, and was in no case near rotor



speed. This experiment seemed to show that the small change in blockage due to

the presence of a small amplitude disturbance was enough to cause a

redistribution of the upstream flowfield, and cause the disturbance to rotate, even

though it is an order of magnitude smaller than an actual stall cell. McDougall also

proposed an explanation for Jackson's misinterpretation of the travelling

disturbance's speed and re-plotted it, showing good agreement with his own

measurements. To further disprove the mechanism of stall inception as a random

blade passage stall, he examined the performance of a compressor with one blade

passage strongly obstructed, or one blade removed. If Emmon's model was right,

stall should always start within the artificially disturbed passage, and occur at a

higher flow coefficient than normal. McDougall observed none of the above. In

another experiment, using velocity measurements obtained from six probes

equally spaced around the compressor annulus, McDougall was able to track the

small amplitude perturbation he had observed earlier as it travelled around the

annulus. When the compressor stalled, the perturbation's amplitude grew

exponentially, then stabilized into a stall cell.

1-2-3 Summary

Until recently, the mechanism for stall inception has been poorly

understood. Very simple actuator disk models describe the transition from stable

operation into stall as the growth of an already travelling small amplitude

perturbation into a full-size stall cell. Other theories see stall starting randomly as

a group of stalled passages travelling with the rotor, which first expands then

slows down as it starts interacting with the upstream flowfield. Measurements

which seemed to validate this latter theory were shown to be misinterpreted, and

experimental evidence now appears to support the small amplitude travelling

wave viewpoint [13].

1-3 Scope of the present work

As was pointed out in the introduction, there is considerable interest in

safely operating an axial compressor in a flow region where stall would



ordinarily be likely to occur, in order to benefit from higher pressure rise and

higher efficiency. To achieve this goal, a stall "precursor" or "warning"

(whatever its form) would be a great help. Given sufficient warning, it might

make it possible to back off the compressor operating point in time to prevent the

instability from developing, or it could be used as an input to some fluid mechanic

device to actively control the flow. The present effort is an attempt to find such a

"precursor", and if one exists, describe its characteristics. Looking for a precursor

implies understanding the stalling process, and both classes of models described

above and their supporting experimental evidence suggest that this process could

be well described (at least in its early stages) by a first order differential

equation. This equation links the stability of the compressor to the stability of a

small amplitude disturbance travelling around the compressor annulus prior to

stall, which grows into a stall cell as the machine turns unstable. Orienting our

search for a "precursor" towards this promising phenomenon, we ask the

following questions:

- Do these predicted pre-stall small-amplitude travelling waves exist, as

M cDougall's measurements seem to show ?

- Are those waves always present prior to stall, does stall always evolve

from them, or can it happen without their presence? In other words, are these

waves a necessary condition for stall to occur ?

- If this phenomenon is to be used as a stall precursor, how well does it

react to typical situations like inlet distortions, or rapid mass flow variations?

- If these waves exist, can the growth or decay rate of their amplitude, and

their propagation speed be measured ? If so, what can those parameters tell us

about the stability of the compressor, and can they be used for stall prediction ?

- Last but not least, and since the present models cannot predict the

compressible case, are high speed machines (such as typically found in modern

jet engines) subject to the same phenomenon ?



CHAPTER TWO

LINEARIZATION OF THE MOORE-GREITZER MODEL

2-1 Introduction

The Moore-Greitzer model for the description of rotating stall transients is

given in great detail in two companion papers, [4] and [5]. In this chapter, we first

summarize the derivation of the full set of equations. The equation which models

the evolution of the non-axisymmetric component of the velocity potential will

then be linearized for the case of small amplitude disturbances. Finally,

predictions are given for the behavior of this small amplitude mode.

2-2 Summary of the Moore-Greitzer model

This section summarizes the major assumptions and results found in the

Moore-Greitzer model for rotating stall transients. A description of the

compression system is first given, with definitions of the variables used. The

momentum balance is then built section by section, to finally obtain the equations

for the system.

The compression system is represented on Fig(2-1). It is composed of an

inlet duct of length li, followed by the compressor blade rows, then by an exit duct

of length le, a plenum and finally a throttle. The quantities used to non-

dimensionalize all variables are the mean blade speed U, and the mean radius R.

The non-dimensionalized variables are the following:

circumferential coordinate: 0

axial coordinate: T1 = y/R

time: 4 = Ut/R

compressor inertial time lag: T = 2UNt/R, 1 = 1/T, t = cr/Ucosy



where c is the blade chord, y the stagger angle, N the number of

compressor stages, and r a parameter included to take the blade row spacing and

the viscous effects into account.

We now evaluate the total-to static pressure rise across the whole system by

adding the total-to-static pressure difference at the inlet, the static-to-static

pressure rise across the compressor blade rows, and the static-to-static pressure

difference between the exit plane and far downstream.

Upstream flow region

The flow coefficient in the upstream flow region will be denoted 0. It can be

decomposed into a circumferential average 0 and a non-axisymmetric part ), as

defined by:

(,0, = •() + O(6,0,r) (2-1)

Besides, the flow in this region is potential, and according to the distinction

made above, we can also separate the velocity potential into a circumferential

average and a non-axisymmetric part:

(,,rl)= p(5,) + p(S,0,p) (2-2)

- a(2-3)

ayP
(2-4)

so that, in particular (taking €p(-li)=O):

p( ,e) = [ + li ]() (2-5)



Now, cp has to satisfy the Laplace equation with periodic boundary

conditions; therefore, we have:

(2-6)
ekh ikO

9 = , ak() eek h

IkdO

Compressor face

The total-to-static pressure difference in the upstream flow region is:

PtPsO 2 u + vI] + y=o

pU2 2 a4 n=o
(2-7)

where u and v are the axial

velocities at the compressor face; we have:

u = (o = (11=0)

V =

so that:=o
so that:

Pto'Pso 21 ra
pU2  - I=o

pU2 2 L. Dn=om

and circumferential non-dimensional

(2-8)

(2-9)

I-
+ dli +

dý _ n=o
(2-10)

We have (including IGV and EGV inertial lag, and IGV loss):

Across the comoressor



Ps-Pso 1 2 1 1 0u2  - o + -0 (-% -(-+
PU2  2 Uv aý

- - 2 (2-11)

1 ~o0 K, p]-- +m

20 aO 2 .ei

where Y c is the compressor axisymmetric total-to-static pressure rise

characteristic, and KI the IGV loss coefficient.

Downstream flow region

The flow in this region is assumed to obey an approximation of the kind

V2 P=0, and we assume constant pressure far downstream, at le. Using continuity

across the compressor, we link the downstream exit static pressure to the

upstream velocity potential:

Ps-- Ps d1¢ a
= le - (M-1 (2-12)

pU 2  d)[ 1a =o

where m=2 corresponds to a long exit duct, m=1 to a sudden expansion to the

plenum.

Total-to-static pressure rise across the compression system

Summing all the components computed above, we obtain the total-to-static

pressure rise across the compression system. We note this quantity the following

way:

Ps- Pto
P = (2-13)
pUn

If we take into account that:
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we obtain:

1 1
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Let us make the following definitions:

1
Ic = i + le + - +

1 1 1
e -+ -

eq gv

We now decompose the pressure into an axisymmetric

axisymmetric part:

Y ~) = Y'J) + ,)

and similarly:

- 2
= G(4) + G(0,4)

and a non-

(2-19)

(2-20)

a La a 2 ]

DO a4[ a J1 o

(2-14)

(2-15)

j In=o
(2-16)

1
(2-17)

(2-18)



we finally obtain:

do 1
(4) = 'P(J) - I + (K - 1) G() (2-21)

2- 222

f=eq G- jn= o 20 o1- a- _n=o
(2-22)

- m I + (K- 1)G(ý,6)
La4J_=o 2

The behavior of the system is completely determined by including the

throttle equation:

d_ 1 2T(4)
S ()-4) K ] (2-23)

dý 4B21e KT

where KT is the throttle resistance, and B the stability parameter, defined

by Greitzer [14] .

Equations (2-21) and (2-23) concern the circumferential average mode.

Equation (2-22) describes the behavior of non-axisymmetric modes; this is the

equation we wish to study in more detail, for it is the one which small amplitude

perturbations will obey.

2-3 Linearization

The assumption of small amplitude perturbations allows us to:

- neglect the pressure loss due to the circumferential velocity



[ -P «=0 <<  (2-24)
7 ,=0 aaL1 J=o

linearize circumferential variations of the compressor pressure rise

around the mean flow coefficient:

dO)P=- c-] (4,0) (2-25)

Remembering the expression for :

kfkr iko(P ak(4) e  e (2-26)
IkpO

we have:

a(P = IkIa()e (2-27)
' l=O 1 k0,kkO

= _Iklak() eike (2-28)

a( Lak(=) eIk (2-29)

ai ] = Jik klak~) eik (2-30)
a868Jj=o IkkO

Plugging these values into equation (2-22), and decomposing along Fourier

modes, we get:



M + ak( - ak)
Qeq do 20J

Let us make the following definitions:

dNfVc ikl
k = d m +kl

Qeq

o = k Ik (
k  2 m+ k

Qeq

Equation (2-31) is a first order differential equation. Its solution is:

ak() = ke (a k ik (:

We note that for (p to be real, we must have

ak) = a_ k() (

The exponential

therefore:

in equation (2-34) is already such that this is true;

_-k = Xk

Finally:

e (Ike (lklr l +ak;) i(kOe-k(k)

IkkO

We see that each Fourier mode is the product of a damping term and a

travelling wave term. e is the damping term, which is a function of axial

2-31)

2-32)

2-33)

2-34)

2-35)

(2-36)

(2-37)



i(k0-Ok 5)
position (l1), and time (a). e is the travelling wave term, function of

circumferential position (0), and time.

2-4 Predictions and discussion

We can make the following predictions concerning the characteristics of a

small amplitude disturbance in the travelling upstream flowfield of the

compressor:

- exponential decay with distance from the compressor face. Furthermore,

the decay rate is proportional to the Fourier mode number, so that higher number

modes will be attenuated more strongly.

- Exponential decay or growth with time, at a rate proportional to the local

slope of the total-to-static pressure rise characteristic. In particular, the neutral

stability point, which corresponds to stall inception, is predicted to occur when

the slope of the characteristic becomes zero. This is a well-known criteria

(already seen in chapter one), which has had mixed success: many compressors

are known to stall with a strongly negative slope. Thus, the zero slope criteria

should be taken as a lower limit beyond which the compressor must stall. We

retain the qualitative idea that the damping of the small amplitude travelling

wave, Gk, should tend to zero at stall (whether it is linked to the slope of the

characteristic or not).

We note that, in this model, the mechanism by which the small amplitude

wave travels is only due to the compressor time lag, and not to a redistribution of

the upstream flowfield, as McDougall's or Emmons' models predict. In the present

model, the wave can propagate with circumferentially uniform boundary layers

in the blade passages (any boundary layer modification would be a second order

effect, neglected in the linearization).



CHAPTER THREE

EXPERIMENTAL APPARATUS AND TECHNIQUE

3-1 Introduction

As we have seen from the two previous chapters, our goal is to investigate

the flowfield of the compressor immediately prior to and during the machine's

transition from stable operation to rotating stall. We hope to identify small

amplitude perturbations travelling around the annulus prior to stall, which grow

into full-size stall cells as the compressor goes unstable. This chapter gives a

description of the facilities used for this study. Also described are the pressure

and velocity measurement instrumentation with comments on calibration

procedures and error analyses. The chapter is closed by a section on data

acquisition and data processing techniques.

3-2 Description of the facilities

3-2-1 Introduction

The Gas Turbine Laboratory at MIT has two low speed compressor facilities,

one is a three stage machine, the other a single stage machine. Both were used

during this study. This section gives a short description of these facilities, only

emphasizing the aspects important to the problem at hand, and references more

complete sources of information.

3-2-2 Three stage compressor

This facility was built by Pratt & Whitney as a research facility for the JT9D

program. Its installation and subsequent modifications are extensively described

in Gamache [15] and Lavrich [16]. A schematic of the rig is given in Fig (3-1). The



work done to date on this machine includes the mapping of the characteristic of

three different builds, including the reverse flow region ([15], [16]). It was also

used to perform detailed time-resolved measurements of the flow field in the

compressor during operation in rotating stall [16].

The build used during all the runs performed on this rig is referenced as

build #2, or low reaction build, in [161. Table 3-1 gives the design specifications

and blading parameters for this build. A speedline taken at 2225 RPM is given in

Fig (3-2). Some minor precisions about the conditions in which the experiments

were performed: the 15 inch orifice plate [16] was used for mass flow

measurements; the industrial roof blower was never turned on, and its impeller

was held fixed to avoid disturbances, making it a purely resistive part of the

circuit. A crucial element for our experiments was the variable speed throttle, the

position of which could be recorded via an LVDT.

3-2-3 Single stage compressor

This rig was built as a research compressor in the 1950's, and has only one

stage: inlet guide vanes, rotor and stator. Its arrangement is extensively described

in Johnson [17], and Lee [18]. Past research on this compressor includes a study of

hub casing treatment for stall margin improvement ([18]). A schematic of the

facility is shown in Fig (3-3). The rotor and stator blade stagger angles used for all

experiments were set by Schulmeyer [19] to obtain a high rotor loading, and thus

promote stall there (a D factor of 0.6 was chosen). All precisions can be found in

[19]. Table (3-2) gives the blading parameters used. A speedline taken at 2700 RPM

is given in Fig(3-4). The existing throttle didn't permit fine control of the

compressor mass flow: the drive motor didn't have variable speed, and asymmetric

thrust made the throttle wobble as it closed. A new variable speed drive system

(motor and transmission) was therefore installed, to ensure a smoother motion

and allow precise positioning of the throttle. The system consists of two ball

bearing screws (for the linear motion), driven by a variable speed electric motor,

via a chain. The motor speed can vary continuously from 0 to 60 RPM. At

maximum speed, the throttle translation speed is 0.5 cm/s. This corresponds to a



mass flow derivative of 2.5 m/s 2 , or 8. 10- 4  flow coefficient points per rotor

revolution at 2700 RPM. Here again, throttle position is monitored using an LVDT.

3-3 Pressure measurements

It soon became necessary to perform the study of the compressor stalling

process in relation to steady-state compressor parameters such as mass flow and

pressure rise (the total-to-static pressure rise characteristic of the compressor

plays a key role in the theory exposed in chapter two). Steady state pressure

measurements are also needed to study the characteristics of inlet distortions. This

section describes or references the layout of pressure instrumentation in both

compressors.

For the three-stage compressor, this layout is described by Lavrich [16],

and a schematic is given in Fig (3-5). Note that all mass flow measurements were

obtained from the 15 inch orifice plate, in particular to overcome the problem of

estimating mass flow with an inlet distortion. All pressure measurements were

made using a very high accuracy MKS baratron unit. The differential pressure

head has a total range of 14000 Pa, and can be read with a precision of 1 Pa.

Measurement range was roughly 1500 Pa. Typical error was due to unsteadiness,

and was less than 1%.

The single stage pressure instrumentation was set in place by Schulmeyer,

and is described in detail in [19]. A schematic of this instrumentation is given in

Fig (3-6). It consists of 30 static pressure taps (20 upstream of the blade rows, 10

downstream), and 30 total pressure probes (20 upstream, 10 downstream). For

reasons of speed of acquisition, and also to avoid the wakes of the inlet struts, only

20 total and static pressure probes were used upstream (cf Fig (3-6)). The mass

flow was obtained from a circumferential average of the velocities given by the

total-to-static pressure difference at each station. All pressure measurements

were obtained through a 48 port Scanivalve, regularly calibrated against the

Baratron. Total range was about 8000 Pa, and precision is limited by the Analog-

digital converter count to about 15 Pa. Measurement range was around 1300 Pa,

and typical error was about 40 Pa, i.e. 3.1%.



3-4 Velocity measurements

3-4-1 Introduction

The goal of the experiment is to investigate the flowfield upstream of the

compressor face, in order to test the hypothesis that small amplitude waves travel

around the annulus just prior to stall. This section presents the choice of

instrumentation for these measurements, then describes the requirements that

the expected characteristics of the phenomenon place on the number and

location of the measurement probes. Finally, calibration procedures and error

analyses are presented.

3-4-2 Choice of velocity instrumentation

The only things clear from the start about the phenomenon we wish to

study are the following:

- It is unsteady (since the disturbance is supposed to travel at 30% of

rotor speed, and if we want to resolve two harmonics of the wave, an

upper limit for the bandwidth is not more than twice the rotor

frequency, about 100 Hz).

- It is of small amplitude (we expect an amplitude of 1% of the mean

axial velocity).

Only high frequency response pressure sensors and hot-wire anemometry

have the necessary frequency response. But pressure transducers do not have a

sufficient sensitivity over the flow range we are interested in, contrary to the hot

wire instrumentation. Despite its fragility and strong tendency to drift, the latter

system was therefore chosen. Eight DANTEC 56C17 anemometers were usually used,

sometimes in conjunction with TSI model 1250 anemometers.

3-4-3 Number and location of probes

From previous experimental efforts on the subject, we expect a pre-stall

travelling disturbance to vary in time and space in rather complicated ways: its

shape might vary, its travelling speed might depend on time and/or space. We



therefore need to have good spatial information on the disturbance, at all instants

in time. This kind of resolution is quite stringent, but is necessary to obtain a

faithful picture of the phenomenon, and avoid misinterpretations due to lack of

information. More precisely, since the perturbation is periodic in the

circumferential direction, it can be decomposed as a Fourier series, i.e. as a linear

combination of sine and cosine waves of increasing wave numbers. A good

measure of the accuracy which N spatial measurements provide in describing a

wave shape is the number of Fourier series coefficient one can compute with

them; a well-known rule of Fourier analysis states that in order to compute N

Fourier coefficients in a series, at least 2N+1 measurements are needed.

"Complicated" shapes or shapes with sharp edges, which have a high number of

coefficients in their series decomposition, will require a large number of

measurements to be accurately described. Another aspect of the problem is that

any Fourier component of the signal higher than the ones which can be resolved

will not only be lost, but will contaminate the lower Fourier coefficients; this

phenomenon is called aliasing. Therefore, one should make sure that the

unresolved Fourier coefficients are small enough (ideally zero) with respect to

the computable ones, so that no information on the wave shape is lost, and that

the available information is not distorted.

In the experiments we are to perform, we expect the disturbance amplitude

to decay exponentially with distance from the compressor face; we also expect the

Fourier components of the disturbance to decay at a rate proportional to their

wave number. In other words, the upstream flowfield is supposed to act as a fluid

mechanic filter, rounding off the disturbance's sharp edges as we go further

upstream. It becomes apparent that there exists a trade-off between (i) the

number of probes to use in order to get an accurate picture of the disturbance's

shape, and (ii) the distance from the compressor face at which they are placed.

Close to the blade row, the disturbance will have a larger amplitude (easier to

detect), but with a more complicated shape (greater spatial sampling needed to

describe it). Further upstream, the disturbance amplitude will be smaller, but it

can be resolved spatially with fewer probes. In the experiments performed,

different combination of number of probes and distance from the compressor



face were used, often after trial and error. It turns out that spatial aliasing is

rarely a problem, and that a good starting point is to place 8 probes half a

compressor radius upstream of the first blade row.

3-4-4 Calibration

As many as 12 hot wire probes were used simultaneously, which ruled out

the possibility of calibrating each wire independently, since that would be much

too time consuming. The hot wire probes were therefore calibrated in place, by

running the compressor at different mass flows. The calibration relation used was

the classic generalized King's law [21]:

2
E = [AO+A 1 pVn](TW-Tt) (3-1)

R,+ R2

where Rw is the hot wire resistance, R2 the resistance of the anemometer

in series with the hot wire, E the voltage across the anemometer bridge, Tw and Tf

respectively the wire and fluid temperatures, V the fluid velocity, and p the fluid

density. A0, Al , and n are the calibration coefficients. The exponent, n, is usually

close to 0.5.

This relation provides an adequate curve fit for a wide velocity range.

Nevertheless, since the velocity range of interest was roughly + 2 m/s around a

known mean value, calibration points were taken in this region only. A

reference voltage was taken at zero flow, in order for the calibration curve to

keep an acceptable shape outside of the region of interest. No corrections were

made for fluid temperature difference between calibration and experiment, since

both were performed in the same conditions; see also the error analysis on this

subject. Fig(3-7) gives a typical calibration curve.

3-4-5 Error analysis

The sources of error are so numerous in hot wire anemometry that it is

difficult not to forget one. The main ones are:



- Drift, an all-time headache. The flow environment in a compressor is

extremely tough for a fragile sensor like a hot-wire. A substantial amount of dust

and fibers gets ingested carried by the air flow, and ends up burned on or

entangled around the wire. This slowly or abruptly modifies the heat transfer

properties of the sensor, and changes the relation between flow velocity and

voltage output from the anemometer bridge. In the two hours a typical run would

last, the slope of this voltage-velocity relation could change by as much as 5%. To

keep this error down, a calibration was performed immediately before and after

each run.

- Flow temperature change. The flow temperature was constantly

monitored during runs. In all the experiments, the compressor was run for some

time before calibrations or measurements were actually made, so that thermal

equilibrium could be reached in the room. The maximum temperature change

recorded was 3 OF. For a mean temperature difference from wire to fluid of 400 OF

(typical), this gives a relative temperature error of 0.8%. From the form of King's

law, we see that that relative error in temperature gives twice as much relative

error in velocity, so that our error due to temperature change is 1.5%.

- Directional sensitivity of the probe. A typical error in angular position of

the probe was 10 degrees. Since the probe was calibrated in place, this had

supposedly no effect in the case (most common) where the measurements were

performed at the same station as the calibration. In other cases though, the

velocity error goes like the cosine of the angle error, so that a 3% error in

velocity is expected from angular positioning inaccuracies.

- Inlet flow non-uniformities. Since the probes were calibrated in place

using an annulus averaged velocity obtained from total and static pressure

measurements, the calibration doesn't "see" any inlet non-uniformities. A study of

the non-uniformity level revealed that the maximum error in assuming uniform

flow was 2%.

Assuming they are uncorrelated, these errors can be combined (RMS

added), and this yields the overall figure of 3.2% error in velocity measurements.



3-5 Data Acquisition and Processing

3-5-1 Introduction

Once a measurement was taken, it had to be recorded in the computer

memory; high speed acquisition of velocity data, in particular, had to be

performed that way. This section presents the measurement's journey through

the digital world. We first describe its conversion from analog to digital, and all

the precautions this implies. Digital processing of the high-speed data is then

described. A schematic of the data acquisition and data processing chain is given

on Fig(3-8).

3-5-2 Analog to digital conversion

Anti-aliasing filters were used in all experiments to low-pass filter the

analog signal before digitizing it. Those filters are 4 pole Bessel filters. The

travelling waves we are to study are supposed to travel at 30 to 50% of rotor speed,

and we want to resolve the first two spatial harmonics of that wave (for example).

The frequency range of interest for the study is thus from 0 Hz to rotor frequency

plus 20 % (say), typically not more than 55 Hz. The lowest cut-off frequency the

anti-aliasing filters could be set at was 100 Hz, so this was chosen. Taking the

filters' cut-off rate and Shannon's sampling theorem into account, we set the

sampling frequency of the analog-digital converter to 625 Hz per channel, i.e. 10

kHz for the total of the 16 A/D channels. The A/D input range was 0-10 volts,

coded on 12 bits, which means a voltage of 2.44 mV per count. A typical noise level

at the A/D input was about 5 mV, i.e. two A/D counts, which indicates that the A/D

resolution was sufficient (still, it can be noted that 2.5 mV represent a speed

variation of 0.25 m/s at a mean value of 40 m/s, see Fig(3-7)). The analog-digital

converter was calibrated, and it was found that the calibration constants depended

rather heavily on the data acquisition rate. In consequence, the same sampling

rate was used in the calibration routines and the data logging routines.

3-5-3 Digital nrocessing



After the signal has been converted back to engineering units by passing

through the A/D and the hot wire calibrations, one can try to enhance some of its

properties by filtering it with digital techniques. For our experiments, it was

rapidly discovered that the actual mean level of velocity indicated by a probe was

neither important nor really precise (drift etc.). More important was the

variations of the velocity around this mean level, since this would really be what

indicated the presence of a disturbance. All signals were thus high-pass filtered

at 4 Hz to get rid of their DC component. Also, no relevant information was found

to exist above rotor frequency plus 20%, so the signal was low-pass filtered at that

frequency. Obtaining this rule of thumb for the cut-off frequency certainly took

trial and error: although one wishes to enhance the signal to noise ratio by

removing as much noise as possible, too narrow a filter can "invent" some very

misleading information. The digital filter used belonged to the finite impulse

response category, for their desirable property of introducing only linear phase

shift in the frequency domain, i.e. a pure time lag in the time domain. In our case,

the filter was implemented acausaly, which means it used information from

before and after a point to filter it; this eliminated the time lag mentioned above.

The last operation performed on the velocity data was to discrete Fourier

transform the measurements in space. At each point in time, one has (say) 8

velocity measurements taken around the compressor annulus; from these, 8

complex valued Fourier coefficients can be obtained using the following formula:

1 7 -2ikl
Ck = [ Vnexp (3-2)

8 n=O8

where Vn is the velocity at angular position n; k varies from -3 to +4 in our

case, and the Ck's are periodic with period 8. Furthermore, since Vn is real, Ck and

C-k are complex conjugates. Fourier analysis says that C-k has the phase and half

the amplitude of the wave, so that by studying these C-k's we have all the required

information about the wave position and amplitude as a function of time.

Note that since the A/D scans all channels consecutively, the 8 velocity

measurements are not taken precisely at the same time, but with a maximum of



half a sampling period between them. This was dealt with by linearly

interpolating the values of the channels between two clock cycles, but no

difference was noticed when no interpolation was performed.



CHAPTER FOUR

LOW SPEED EXPERIMENTS

4-1 Introduction

This chapter describes the experiments performed on MIT/GTL's low speed

compressors to test the hypothesis that small amplitude waves travel around the

compressor annulus before stall. A typical experiment for the identification of

these pre-stall waves is first described and discussed, some questions are raised,

and a framework for the study of this phenomenon is defined. Next, we discuss the

statistical aspect of the stalling process from the point of view of small amplitude

travelling waves. The reaction of the stalling process to typical engine operating

conditions like mass flow transients and inlet distortion is then studied. Finally, a

section covers the influence of the axial position of sensors for best pre-stall

wave detection. The chapter is closed by a summary of the experimental evidence

exposed.

4-2 Identification and description of small amplitude travelling

waves: one typical experiment

4-2-1 Introduction

The experiment presented in this section is typical of almost all others

referred to later in the chapter. Our purpose is to explain with this example some

general characteristics of the experiment and its results, and how these

characteristics influenced our investigation method: what information is found to

be important and how this information is plotted.

4-2-2 Presentation of the experiment



The experiment presented here was conducted on the three stage

compressor described in chapter three. The spatial arrangement of the hot-wire

probes was the following: eight probes were placed around the compressor

annulus, equally spaced, 13.5 cm (or 0.47 radii) upstream of the inlet guide vanes.

The compressor RPM was 2225. The experiment was performed in the following

way: the compressor was first brought "very close" to stall. In practice, this means

the closest one could get while being reasonably sure not to stall from some larger

than usual disturbance being swallowed by the machine. Typically, it was within

0.005 flow coefficient points from the stall point on the compressor map, see Fig

(3-2). Using the fine control variable speed throttle, the mass flow was then

reduced as slowly as possible, while hot wire data was recorded for a fixed period

of 25 seconds. With a bit of practice, the closeness to stall and the slowness of the

throttle motion could be balanced in such a way that the whole sequence fit

within the time data was taken. This was mainly a trial and error business: no

automatic logging routine was available which could continuously rewrite a

memory section and keep only (say) the last 10 seconds before stall. Globally, one

out of two trials led to a "good" result, i.e. in which stall occurred in the last 15

seconds of the data logging interval. The compressor was then quickly unstalled.

4-2-3 Results

Fig (4-1) gives the time traces of the eight filtered velocity signals

obtained. As described in the last chapter, these signals were first discrete Fourier

transformed in space to obtain the coefficient C-k of each spatial harmonic. The

C-k's (CO to C-3) give the amplitude and phase of each harmonic, and are thus

complex valued functions of time. A question of plotting method comes up, since

such functions can be represented in many different ways:

- on a three-dimensional graph, representing amplitude and

circumferential position vs time,

- on two ordinary graphs, plotting amplitude vs time and circumferential

position (phase angle) vs time,

- on two graphs showing real and imaginary part vs time.



This third method has less physical significance than the first two, since

the real and imaginary part of the Fourier coefficient represent the projection of

the wave onto two axes which are perfectly equivalent. This plotting method will

therefore not be used.

Fig(4-2) gives the amplitude of the first Fourier harmonic during the 140

rotor revolutions preceding the stall point, which is referenced as t=O on the plot.

We can see clearly a stretch of finite amplitude (always > 0.1m/s) starting at t=-90

revs, finally growing exponentially into a stall cell. During the same time

interval, the phase angle of C-l, plotted on Fig(4-3), shows a very regular

propagation. For a better estimation of the phase speed, the phase can be

"unwrapped", and this method is used on Fig(4-4) to display the angular

propagation of the first and second Fourier harmonics. The phase of C_1 is seen to

travel at around 13 Hz during the small amplitude stage of the wave, and this turns

to 14 Hz for the stall cell. The phase of C_2 shows no clear propagation, which

indicates that the small amplitude wave does not have a C_2 component; any C_ 2

present in the data is really due to noise. This is confirmed by Fig(4-5), which

shows that the amplitude of C_2 is always nearly zero, in any case much smaller

than that of C_ 1 . From this point on, we will consider that all relevant information

concerning the small amplitude wave position and amplitude is contained in its

first Fourier harmonic (this proved to be true for the single stage compressor as

well). The amount of noise reduction that this simplification provides is illustrated

by Fig(4-6), which gives three-dimensional representations of the velocity data

and of the first Fourier harmonic during the last 20 rotor revolutions before stall.

The wave propagation is much more obvious in the Fourier harmonic than in the

raw velocity data. We also note that quantitative analysis is difficult using three

dimensional plots, and therefore only two dimensional plots will be used in the

rest of this study.

4-2-4 Discussion

The results exposed above indicate very clearly the presence of a small

amplitude travelling wave prior to stall. We note the following characteristics:



- There is no phase or amplitude discontinuity as the wave finally grows

into a full-size stall cell; this seems to show that small amplitude travelling waves

and stall cells are two stages of the same physical phenomenon. From the time it is

first identified, the wave is travelling at a phase speed of 13 Hz, which turns to 14

Hz for the stall cell; at no time is it near rotor speed. Also, the wave amplitude can

remain "small" (typically less than 5% of the stall cell amplitude) for a

considerable time (90 rotor revolutions). These observations are not in

accordance with Emmon's view of stall inception as groups of blades stalling

randomly, then slowing down to stall cell speed. On the other hand, the Moore-

Greitzer theory predicts this behavior very well.

During this last period of uninterrupted propagation, the wave amplitude

seems to vary almost randomly around a mean value. An explanation would be

that disturbances are convected in and tend to reinforce or diminish the already

existing wave according to their relative angular positions (in phase or out of

phase). This observation raises the question of the nature of the disturbances

which excite the system, and this is addressed in the next section.

4-3 Statistical aspect of the stall inception process

4-3-1 Introduction

The experimental results presented in the previous section qualitatively

conform to the following ordinary differential equation

Ck(t) = (Ok-i (k) Ck(t) (4-1)

which was established by the Moore-Greitzer linearized theory in chapter

two. According to this model, any disturbance swallowed, or generated inside the

compressor (structural, fluid mechanical) ought to act as an excitation for the

compressor-flowfield system, or another way of seeing it, as an initial condition

for the ordinary differential equation. It would seem therefore that the

compressor environment (disturbances convected to the blade row, or structural

modes) is an important factor in determining the amplitude and time extent of



pre-stall travelling waves. In particular, the intermittency and amplitude of these

excitations are crucial parameters. If perturbations appear too rarely or too

weakly to excite even a barely stable system, no travelling disturbance will exist

for any appreciable length of time before the compressors turns unstable (in

which case the smallest disturbance will grow exponentially).

A problem encountered if one tries to answer the question of the nature of

the driving disturbances is that one cannot really separate inputs or excitations

from the system's reaction to them. We can try to distinguish between the two by

the fact that a disturbance convected in will not be travelling circumferentially,

before it actually reaches the weakly stable blade row and excites the system.

Unfortunately, the time during which a disturbance is being convected is too

short to permit a good estimation of its angular travelling speed. In practice then,

inputs and outputs of the system are indistinguishable.

4-3-2 Experiments

A question one wishes to answer, though, is wether the statistical

characteristics of the disturbances exciting the system are such (amplitude,

intermittency, randomness) that a small amplitude travelling wave will be

present for any length of time every time we try an experiment such as described

above. More basically, we wish to know if the stalling process always starts as a

small amplitude travelling wave, or if its nature is sometimes different.

The experiment described above was repeated a number of times over a

large period of time (6 months). The inlet conditions (and thus probably the level

of disturbances) were similar except for changes in the sound absorbing material

placed on the muffler. Two experiments were performed at 1075 RPM, seven

others at 2225 RPM. The length of time of the last uninterrupted propagation of

small amplitude wave before stall is plotted for each experiment on Fig(4-7). We

see that:

- Even in terms of rotor revolutions (which is the natural time scale for the

phenomenon, according to theory), the waves may subsist longer at 1075 RPM

than at 2225 RPM. More statistical evidence is certainly necessary before drawing

a definite conclusion.



- In all cases, a small amplitude wave exists prior to stall, travelling at 35%

of rotor speed for more than 30 rotor revolutions before turning into a stall cell.

This seems to establish that in the three stage compressor, used in these operating

conditions, the stalling process always starts as an already travelling small

amplitude phenomenon.

4-4 Effects of mass flow transients and inlet distortion In the

stalling process

4-4-1 Introduction

In this section, we wish to find out if typical engine operating conditions

like inlet distortion or quick throttle transients modify the nature of the stall

inception process we observed before, in cases of quasi zero . As discussed in

the last section, the characteristics of pre-stall travelling waves could depend

somewhat on the nature and rate of excitation from external disturbances; does

this mean that in non-optimal situations, these waves do not exist? If they still

exist, are their characteristics modified?

4-4-2 Presentation of the experiments

Experiments with a non-zero throttle rate at stall were performed on both

the three stage and the single stage machines, both with a clean inlet and with

distortion. This section describes the experimental set-ups used, and the way data

was obtained and processed.

4-4-2-1 Three stage experiments

Three different ranges of throttle closing rates were used on the three

stage compressor, the lowest being quasi-zero (as described in the previous

section), the highest corresponding roughly to a flow coefficient rate of change

of 0.1 flow coefficient points per 100 rotor revolutions. Data was simply recorded

during the transient, up to and after stall; the hot wire probes were placed at the

same position as before: 0.47 radii upstream of the IGVs. The compressor rotation

speed was 2225 RPM.



In all experiments, a time resolved mass flow through the compressor was

estimated by an average of the eight velocity measurements taken around the

compressor circumference. Due to sensor drift, those measurements were only

precise to within 5%; low frequency oscillations further compromised the value

of the flow coefficient estimate, despite heavy low-pass filtering. The time

derivative of the flow coefficient at stall was obtained by least-squares fitting a

line to the last second of data before stall, with a typical standard deviation of 5%.

The inlet distortion was obtained by placing a plastic sheet on the FOD

screen, covering 180 deg of the bellmouth. The characteristic of the distortion at a

flow coefficient near stall (0=0.488) is given on Fig(4-8).

4-4-2-2 Single stage experiments

Five different throttle transient rates were used on the single stage

compressor, the highest corresponding to 0.08 flow coefficient points per 100

rotor revolutions, the smallest being 10 times slower. 2700 RPM was the rotation

speed for all experiments. Again, data was recorded during the transients by eight

hot wires placed 0.43 radii upstream of the rotor, i.e. immediately upstream of the

IGVs.

The time resolved mass flow and mass flow derivatives at stall were

estimated by the same procedure as for the three stage experiments. In this case

however, the hot wires were re-calibrated before each run, giving an accuracy of

0.005 flow coefficient points (see the compressor map on Fig (3-4)). Another

estimate of the mass flow was obtained by monitoring the throttle position, and

calibrating this position vs flow coefficient before and after each run. Both

estimates were within 0.005 points of one another, over the calibration range of

the throttle (i.e. up to the stall point).

Inlet distortion was obtained with a three sector screen giving a gradual

blockage over 180 deg of the compressor circumference. The screen was placed

immediately downstream of the inlet bellmouth contraction. Fig(4-9) illustrates

the distortion obtained at 0=0.350, just before stall.

4-4-3 Definition of the stall point and of travelling wave existence



On all plots in this chapter, the stall point is chosen as time reference. This

implies to have a precise time-resolved definition of a stall point. After having

tried many different definitions, the following was adopted: the stall point is the

time at which the amplitude of the pre-stall wave reaches half of the stall cell's

amplitude. This definition does not bear more physical relevance than any other;

in particular, it does not correspond to the neutral stability point, which would be

somewhat earlier, even before the start of the wave exponential growth. The

actual start of the instability proved very difficult to identify with precision,

especially on the single stage compressor, and this is why the definition given

above was adopted.

To determine the length of the last unbroken stretch of small amplitude

travelling wave, it was tracked backwards from the stall point until either its

amplitude went below a certain level, or the phase speed exceeded a certain range

(a sign the wave is not travelling uniformly any more). The limit levels for the

amplitude and phase speed were determined by mean values obtained far away

from stall, where no wave exists. Both criteria yielded the same values most of the

time. When they didn't, the more "pessimistic" (i.e. the smaller) estimation was

kept. Besides, the values obtained proved very insensitive to the limit levels

chosen. Table 4-1 gives the limit levels used for the experiments.

Fig(4-10) illustrates the use of the definitions given above on one typical

experiment.

4-4-4 Results and discussion

This paragraph describes the results of the experiments presented above,

and discusses the effect of throttle transients and inlet distortion on the stalling

process.

4-4-4-1 General characteristics

The phase plots of the first Fourier harmonic for all experiments are given

in Fig(4-11), (4-12), (4-13) and (4-14), regrouped by machine and without or with

inlet distortion. We see that, in all cases, the stall point is preceded by a stretch of

straight phase, indicating the propagation of a small amplitude disturbance, at



10Hz for the single stage compressor, 13 Hz for the three stage. This is the main

point to come out of this series of experiments: in both machines studied,

regardless of the mass flow transient rate or the inlet conditions, the stalling

process always starts as a small amplitude travelling wave, which eventually

grows into a stall cell. This shows that whatever the conditions, stall does not

occur without the prior presence of a small amplitude wave from which it can

develop. In essence, the stability of the compressor with respect to stall is

equivalent to the stability of this small amplitude travelling phenomenon, the

evolution of which is set by a first order linear differential equation. This is an

important simplification for the study of the compressor stability.

4-4-4-2 Effects of mass flow transients

For the rate of change of mass flow we have been using, the compressor

behavior is quasi steady. From the linearized Moore-Greitzer model, we expect the

damping of small amplitude waves to decrease as we get closer to the stall point,

turning to zero there. Very crudely then, and for explanatory purposes, we can

consider that there exists a flow coefficient region over which compressor

damping is weak enough that small travelling waves can "survive" there, given

sufficient excitation. Pre-stall wave existence time should therefore be roughly

inversely proportional to ". This can be shown by plotting the time extent of

the last uninterrupted stretch of wave propagation leading to stall (a rough
Id~]

measure of the overall wave existence), vs Id . Fig(4-15) gives this for the

three stage compressor, Fig(4-16) for the single stage compressor. As expected, we

see a 1/0 dependence in both plots, with an offset: whatever the throttle closing

rate, wave existence seems to be longer than a certain limit. This is due to our

definition of the stall point as the time when mid stall cell amplitude is reached;

the duration of the exponential growth to mid amplitude is approximately

constant, whatever [t In fact, for the fastest transient cases, the small

amplitude wave rises exponentially almost as soon as it is identified. Still, the

expected dependence is observed.



4-4-4-3 Effects of inlet distortion

The effect of inlet distortion on the stalling process can be seen most

clearly by comparing the first harmonic phase plots of the clean and distorted

inlet runs (Fig(4-11) and (4-12)) on the three stage compressor. On the plots

corresponding to the clean inlet, we see that before the last stretch of unbroken

travelling wave leading to stall, some other, smaller stretches exist which die out

because of stronger compressor damping at that point than immediately before

stall. The presence of smaller stretches of travelling waves manifests itself by a

global (though less regular) angular propagation of the phase. This propagation

however, is much less present in the case of inlet distortion, which indicates that

small amplitude waves have more difficulties travelling through a distorted

upstream flowfield.

This observation is confirmed by the fact that the time of the last unbroken

propagation of the wave leading to stall is generally smaller with inlet distortion

than without, as seen on Fig(4-15) and especially on Fig(4-16). In fact, let us

consider more closely the first experiment performed with inlet distortion on the

three stage compressor, at quasi-zero throttle closing rate. It shows an unusually

short propagation time of the small amplitude wave before stall develops, in what

should be an "easier" case than faster transients. This illustrates the fact that

even with slow mass flow transients, the nature of the system excitation is such

that we cannot be 100% sure of having a period of pre-stall travelling wave

longer than a certain limit before it grows into stall. Stall always starts as a small

amplitude travelling wave, but the small amplitude stage can be short, especially

in the case of inlet distortion.

The greater abruptness of the stalling process in case of inlet distortion is

further illustrated by Fig(4-17). This shows a comparison between the first

Fourier harmonic amplitudes of two transients on the single stage compressor,

one with a uniform inlet, the other with inlet distortion. We see that the growth of

the instability is very gradua' in the clean inlet case, but much more rapid in the

distorted case. Fig(4-18) shows the flow coefficients at which the final stretch of

small amplitude wave leading to stall is first identified, for the uniform inlet and

the distorted inlet transients. We see that for the clean inlet case, the last period of



wave propagation always starts at a higher flow coefficient than the steady-state

stall point. The contrary is true for the distorted runs. We note that our estimation

of the mass flow in the case of inlet distortion may be wrong, since we obtain a

lower flow coefficient at stall with distortion than without. Nevertheless, the mass

flow measurements are consistent within a group (distorted or undistorted).

4-4-4-4 Discussion of the effects of inlet distortion

The fact that wave propagation is more difficult in an upstream flowfield

can be explained by the following arguments. In McDougall's model, a disturbance

is caused to rotate by the slight blockage increase and the redistribution of the

upstream flowfield it induces; we see that the mechanism will work better in the

obstructed region (low flow, blades more loaded), but not as well in the clean

region (higher flow than average). In the Moore-Greitzer model, the propagation

mechanism is a just a function of the compressor lag in responding to local fluid

acceleration caused by the passage of a disturbance. On the other hand, the wave

damping depends on the local slope of the total-to-static pressure rise

characteristic. If we regard a compressor with inlet distortion as two parallel

compressors each operating at a different flow coefficient, it is clear that the

distorted one is nearer to stall than, and might even be artificially stabilized by,

the clean inlet compressor; small amplitude perturbations travel easily through

the distorted (unstable) region, but are dampened out as soon as they reach the

clean (stable) region. The extension of the Moore-Greitzer model to the inlet

distorted case is discussed in detail in [20].

Another aspect of the problem is that a distortion is a continuous source of

disturbances (unsteadiness, turbulence) to excite the system; but since this

excitation is biased spatially (much more present in one region than the other), it

may actually be a hindrance to a travelling wave.

The transition to stall is more sudden in the case of inlet distortion, and we

propose two explanations for this. The first is that on the time scale of a stall

event, the excitation responsible for the wave start may be random, but not white

i.e. not equiprobable in time or in space, especially for the inlet distortion case.

This argument is particularly true for mass flow transients: a few, if not one,



convected perturbations would determine the immediate behavior of the system.

For this reason, it is felt that the same abrupt stall would occur much less often

with a uniform inlet flow. A second explanation, is that (as was mentioned

before) the wave may be so hindered by its interaction with the distorted region

that it does not grow immediately, even though the compressor is potentially

unstable. When it finally grows, it does so more suddenly.

Besides, we note that the greater abruptness of the stalling process in the

case of inlet distortion may be an artifact of the way we look at the phenomenon.

In particular, the higher Fourier harmonics (which we have decided to neglect)

are more present in the case of inlet distortion, and may play an important role.

This is illustrated by Fig (4-19), which shows that, in one inlet distortion

experiment at least, the second Fourier harmonic went unstable before the first.

4-5 Influence of the axial position of sensors on wave detection

4-5-1 Introduction

Our hypothesis to explain the existence of pre-stall small amplitude

travelling waves is the following: disturbances are swallowed by the compressor

and convected until they encounter a weakly stable blade row. There, they are

"caught" and start to rotate, while decaying or growing slowly. From equation (2-

37), we expect the magnitude of the travelling disturbance to decrease

exponentially upstream of the compressor face, but nothing is known about the

flowfield inside the compressor. It is therefore not clear where along the

compressor axis is the best location for wave identification, and this is the

question that this section addresses.

4-5-2 Experiments and results

The experiments were performed on the single stage compressor, for

reasons of ease of implementation. Fig(4-20) shows the different stations used

along the compressor axis, and table 4-2 gives the axial location of the blades and

of the hot wire stations. The rotor being the reference point, we have: station 1

0.94 compressor radii upstream, station 2 0.43 radii upstream (just upstream of the



IGVs), station 3 0.12 radii upstream (between IGVs and rotor), station 4 0.17 radii

downstream (between rotor and stator), station 5 0.43 radii downstream

(immediately downstream of the stator), and station 6 0.75 radii downstream. The

compressor mean radius is 26 cm.

In the first series of experiments, eight hot-wire probes were placed in

turn at station 2 to station 6 (station 1 had four hot-wire probes to monitor mass

flow). Each time, the compressor was throttled to obtain the slowest , possible.

As we have seen before, the small amplitude travelling wave phenomenon seems

to have a statistical dimension, which really means that it is not exactly

repeatable. Therefore, these experiments cannot be quantitatively compared, in

particular in terms of wave amplitude and time extent; only qualitative

comparisons can be made. Fig(4-21) shows the phases of ten such experiments,

performed at stations 2 to 6. Again, in all cases, a small amplitude travelling wave

is present before stall occurs. Actually, some of these waves are there

uninterrupted since before data was started to be recorded. On the whole, no major

differences can be seen between the different stations. Wave propagation seems

to be more difficult a station 4, and also (to a lesser extent) at station 5, than

elsewhere. The other stations appear more or less equivalent. This is all the

information that can be inferred from this series of experiments.

In another series of experiments, four hot-wire probes were left at station

1, while two other groups of four wires were placed at different stations along the

compressor axis. This way the amplitude of the rotating wave at each station could

be referenced to the amplitude at station 1, so that different experiments could be

quantitatively compared to each other. Again, the compressor was throttled as

slowly as possible. The amplitude of first Fourier harmonic during the last 220

rotor revolutions before stall is given in Fig(4-24), (4-25), (4-26), (4-25) for five

different experiments, which allows comparison of the amplitude at different

stations. For stations 2 to 6, the ratio of the amplitude at that station to the

amplitude at station I was computed at each instant, then averaged over 6 seconds

to yield just one number. These ratios are plotted on Fig (4-26), along with the

theoretical prediction (again with reference to station 1) for the upstream



flowfield, which is given by the following equation (which follows from equation

(2-37)):

A(n) x(n)-x(1)
= e R (4-2)

A(1)

where A(n) is the amplitude at station n, and R is the compressor radius. We

see that amplitude at station 2 is actually larger than expected; amplitude at station

3 is lower than it should be, but the theory may not extend to this station placed

between IGVs and rotor. The large oscillations (17 Hz) seen in the wave amplitude

at this station (Fig(4-22)) may bias the averaging process by which the final ratio

was obtained. For reasons as yet unclear, the amplitudes at stations 4, 5, and 6 rise

according to the distance along the compressor. We note that for these stations,

the hot-wires were oriented so as to monitor the velocity at the expected leaving

angle from the blades, which may not be the best direction to choose. An

approximation of the axial amplitude of the wave can be obtained by multiplying

the wave amplitude by the cosine of the angle of the hot-wires with the

compressor axis.

What is probably more important for control purposes is how "clean" the

signal is (i.e. free from noise not relevant to the travelling phenomenon), and

how well it reflects the actual wave characteristics: position and amplitude. In

other words, we would like to reason in terms of signal to noise ratio. The sources

of noise are the following:

- Turbulence: constant upstream, grows as we go through the compressor.

- blade row interaction, wakes: none upstream, increasing as we go

through the compressor.

The magnitude of the signal of interest grows exponentially as we get

closer to the unstable blade row, steps down as we go through the IGVs, then rises

again (Fig(4-26)). On the other hand, we see from Fig(4-22) - Fig(4-25) that the

noise increases dramatically as we enter the compressor blade rows, and decreases

only far downstream of the stator. A rough measure of the signal to noise ratio at

a given station can be to compute the standard deviation of the amplitude at that



station relative to the amplitude at station 1, and divide this number by the mean

of this relative amplitude (as computed in the last paragraph). This is plotted on

Fig(4-27), and we see that the signal to noise ratio indeed drops sharply as we go

through the compressor blade rows, to rise only far downstream of the stator. We

conclude that for best signal to noise ratio in the active control implementation,

the probes will want to be installed around station 2, immediately upstream of the

IGVs.

4-6 Conclusions

In this chapter, we addressed the question of the nature of the stall

inception mechanism. Two low speed axial compressors were experimentally

investigated for the experiments. First, a typical experiment was presented. Its

results clearly showed the existence of a small amplitude wave, travelling at 35%

of rotor speed for 90 rotor revolutions before stall occurred. Furthermore, the

stall cell evolved directly from the exponential growth of this wave, without any

discontinuity in amplitude or angular position. Qualitatively, this phenomenon is

well described by the linearized Moore-Greitzer model. The results also established

a framework for the future study of the phenomenon, in particular the choice of

data representation. A section then described the possible statistical nature of the

travelling wave process, and gave supporting experimental evidence: 9 out of 9

experiments, showed that stall evolved from small amplitude travelling waves. In

all 9 cases, the time extent of the last uninterrupted stretch of travelling wave was

longer than 30 rotor revolutions. Next, we studied the reaction of the compressor-

upstream flowfield system to typical causes of compressor stall in jet engines:

throttle transients and inlet distortion. All cases showed the same behavior for

stall inception as observed before, and this established the universality of this

stalling process. Side consequences of throttle transients are a reduced existence

time of the small amplitude stage of wave propagation, inversely proportionally to

the mass flow derivative at stall. Inlet distortion seems to make the travelling

wave propagation more difficult, and the stalling process more abrupt. Finally,

the question of the best axial station for wave detection was addressed; a station



just upstream of the IGVs was found to have the best characteristics, mainly the

large amplitude and the cleanness of the signal obtained there.



CHAPTER FIVE

STUDY OF THE COMPRESSOR-FLOWFIELD SYSTEM STABILITY

USING SMALL AMPLITUDE TRAVELLING WAVES

5-1 Introduction

The linearized Moore-Greitzer theory derived in chapter two predicts that

any small amplitude perturbations in the compressor upstream flowfield should

travel according to the following wave equation:

~ -q|+Ok i(kO-(Ok )
( ke  e (5-1)

IkO

From the first term of the right hand side, we expect exponential

attenuation with distance from the compressor face, and exponential growth or

damping in time according to the local slope of the total-to-static pressure rise

characteristic of the compressor. The attenuation with distance has been partially

dealt with in the previous chapter, showing reasonable agreement with the

theory. In this chapter, we address the question of the damping or growth in time.

First, we introduce different analytical tools for time series analysis, which will

allow us to retrieve the dynamics of our system from the noise and other

unmodelled dynamics present in the data. Using these techniques, we obtain a

measure of the system's time damping as a function of the compressor flow

coefficient, and discuss the consequences. The chapter is closed by a section on

the possible engineering use of the small amplitude travelling wave phenomenon

as a stall announcer.

5-2 Presentation of the tools and techniques



5-2-1 Introduction

In this section, we present some tools for the analysis of time series. These

techniques fall into two strongly interrelated categories: power spectral density,

and system identification techniques.

5-2-2 Power spectral density analysis

Spectral analysis consists in determining the distribution of the power of a

signal over its different frequency components. In our case for example, we wish

to identify the frequencies present before stall in the first spatial harmonic of

the velocity data. The travelling wave we are interested in should manifest itself

by a peak at around 10 Hz for the single stage compressor, since this is the

approximate travelling speed of the phenomenon in this machine. The height of

the spectral peak represents roughly the power of the wave, concentrated around

the frequency of the peak. We see that PSD analysis (as it is often called) is a quick

and efficient way of knowing if travelling waves actually exist, just by looking

for a peak in a narrow frequency range. It is also a more systematic way of

investigating the wave presence than just studying the phase of the first Fourier

harmonic. The phase, in fact, is driven by the strongest frequency component

present in the data; if the travelling wave is not the strongest spectral

component, it will not appear in the phase propagation, but it will still appear as a

peak in the PSD. As an example of the PSD's capacity to distinguish hidden spectral

features, let us consider Fig(5-1). We see that the rotor frequency (in this case) is

perfectly apparent in the PSD, even though the phase doesn't show it. Another

important feature of PSD analysis is that even if the wave is present only

intermittently because of strong system damping, a peak will still exist in the

spectrum.

As was discussed in chapter four, the intermittency of the system excitation

is responsible for the intermittency of the wave appearance. In addition, the

amplitude of the excitation (the initial condition of the ODE) conditions the length

of time during which the wave exists, for a given system damping. With these two

characteristics (intermittency and amplitude), the excitation will act directly on

the power of the wave, and influence the PSD peak. On the other hand, the wave



power is also a function of the system damping; thus, if the intermittency and the

amplitude of the driving disturbances are independent of the compressor

operating point, the height of the spectral peak corresponding to the travelling

wave will be a function of the system's damping alone. But we know that

environments like inlet distortion may modify the characteristics of the

excitation, and thus change considerably the height of the spectral peak, even for

a constant system damping. We therefore predict a problem in trying to use the

PSD as a universal tool for system stability prediction.

PSD analysis is usually based on a procedure employing the Fast Fourier

Transform (FFT). This approach is popular because it is computationaly efficient,

and produces acceptable results for a wide range of signals. However, it suffers

from two important limitations: first, its frequency resolution is roughly

inversely proportional to the time interval available for analysis. Secondly, the

absence of information for the data outside the time interval causes energy

leakage from peaks into "sidelobes", distorting the spectral response. These

limitations are of course particularly troublesome in the case of short data

records, or for data with time varying spectral content. Alternative methods have

recently been developed to alleviate this problem, and those are the ones which

will be used in this study. A wide body of theory exists on these methods, and we

will not attempt to describe them here; a very good summary is given in Kay and

Marple [22]. The basic principle is to fit a linear model to the data, using the same

procedure as system identification (which we will describe later), but without any

consideration for the physical relevance of the model chosen. The main

advantage of these methods is their ability to resolve sharp spectral features,

even with short data records. For short data records though, the heights of the

spectral peaks obtained have little physical meaning, and suffer from high

variance.

5-2-3 System Identification

A discrete time series Yn can always be modelled as the solution of a

difference equation:



Yn = a1 Yn-1 + ... + apyn-p + Vn (5-2)

where vn is a noise term with unknown characteristics, which acts as the

excitation of the system (turbulence, or any convected disturbances in our

model). Choosing the "right" number of parameters and estimating the

parameters ai themselves is the subject of system identification.

Equation (5-2) has an equivalent state representation as a first order linear

difference system of dimension p:

Yn = FYn-1 + Vn (5-3)

Y n-P+1 F

Yn= , F=

Yn

01.0

0.01

ap a1

Both the pth order difference equation (5-2) and the linear difference

system (5-3) have continuous time equivalents, respectively as a pth order linear

differential equation, and as a linear differential system of dimension p. If A is

the matrix of this latter system, we have:

At
F = e (5-4)

where At is the sampling frequency of the time series.

The characteristic polynomial of equation (5-2) is also the determinant of

zId-F, where Id is the identity matrix. The zeros zi of this polynomial are the

cigenvalues of matrix F, and correspond to the eigenvalues Xi of matrix A.

Furthermore, we have:

Zi = e (5-5)



We see that estimating the p coefficients ai of equation (5-2) really

consists in fitting a pth order linear model to the data. This linear fitting makes

good sense in practice providing a model already exists, which spares us the much

more delicate task of choosing the model order; only the parameters themselves

are left to be estimated. The results that this technique can yield are also

enhanced if unmodelled dynamics and correlated noise present in the data are

taken out by adequate filtering. Unmodelled dynamics can be identified by

looking at a PSD of the data. If filtering cannot eliminate them, they should at

least be accounted for by using a higher order model. Correlated noise can also be

modelled: if only white excitation noise is present, we have a pure AR

(AutoRegressive) model; correlated noises or additive measurement noises can be

dealt with by ARMA (AutoRegressive-Moving Average) models. Reference [23]

can be consulted for more details.

The fitting of the model to the data can be performed in two different ways:

- in the time domain

- in the frequency domain, fitting the transfer function of the model

to the PSD of the data.

The time domain fitting is the only one we will use, since it is well suited to

real time implementation. The fitting is done by least squares techniques, either

recursively (on-line), by updating the estimates of the model parameter for each

new data point taken [24] [25], or by processing the whole data sequence as a

batch (off-line) [26]. Recursive methods are particularly interesting because they

do not use the assumption that the signal is wide sense stationary (w.s.s).

Consequently, they do not restrict the eigenvalues of the model to the left half-

plane, and this allows to track unstable poles (which off-line methods cannot do,

since they assume a wide sense stationary signal, and set forward and backward

prediction errors equal [23]). In addition, recursive methods can be made to follow

time varying parameters, by using a "forgetting" factor to gradually discard old

data. This forgetting factor is denoted q, and O<q<l1 ([23]-[25]). Each past data point

is weighted by qk, (where kAt is the time between the past data point in question

and the most recent data point taken), so that points further in the past are

weighted by a lower weight factor. q=1 corresponds to no forgetting at all, and the



faster the time variations in the parameters to be identified, the lower q should be

set. A common choice is to take q=0.99.

The amount of computations required by the Recursive Least Squares

algorithm is proportional to p2 , (where p is the model order), but faster

algorithms are now available with only linear dependence in p [27]. Off-line least

squares algorithm such as Marple's [26] also have a computational time

proportional to p.

In conclusion, we see that the parameter identification approach is

potentially very interesting, considering the amount of information it can yield.

Nevertheless, many side aspects of the method such as noise dynamics, and the

related problem of choosing the "right" number of coefficients (i.e. the model

order) make the parameter identification problem heavier and more delicate in

practice than the power spectral density methods described in the previous

section. Therefore, both methods will be used, PSD analysis for a first study of the

problem, and system identification techniques when more precise information is

required.

5-3 Experiments and results

5-3-1 Introduction

Let us first summarize what we know or suspect about the stalling process,

and its relation to the small amplitude travelling wave phenomenon. Up to very

recently, the notion of the stability of a compressor with respect to stall was

purely empirical: if a normally operating compressor went into stall after a finite

time, it was called unstable, stable otherwise. Equation (5-1) gives an a priori

different meaning to the notion of "compressor-upstream flowfield stability", that

of a linear system: if the damping term (aTk) in this equation is negative,

hypothetical small amplitude travelling waves will decay, and the system is called

"stable". Otherwise, the waves amplitude will grow exponentially, and the system

is "unstable" (the non-linear extension of equation (5-1) reconciles the theory

with the empirical definition given above by predicting the exponentially



growing waves to level off into a stall cell). Now, in the previous chapter, we have

verified experimentally that:

- small amplitude travelling waves do exist,

- the stability of those small amplitude waves is equivalent to the global

stability of the compressor with respect to stall. In fact, both notions describe the

same physical phenomenon although at different stages, and stall will always

occur from, but only from, the exponential growth of small amplitude travelling

disturbances.

The small amplitude wave aspect is just a more time resolved look at the

global phenomenon of stall. Also, this approach brings a new dimension to

qualify the system stability. The traditional view of stall was very much a binary,

stable/unstable viewpoint, in occasions linked (with little success) to a zero slope

of the total-to-static compressor characteristic. Now, we have observed an

experimentally phenomenon which seems to reflect a degree of stability of the

system. More precisely, we know that travelling disturbances are dependent not

only upon the system damping but also upon the excitation (which was not studied

here), and until now we haven't been able to tell them apart. This section is an

attempt to distinguish one from the other, to average out the apparently random

contribution of the excitation to the travelling wave, and study directly the

compressor damping (ok), which is the quantity of interest since it really

determines the system behavior. It could indicate how stable the compressor is,

how close it is to stall, and thus be used as a stall anticipator. The goal of this

section is thus to use the small amplitude travelling wave phenomenon as a

indicator of stability, by applying the data analysis techniques presented in

section 5-2. We want to know in what flow coefficient range can stretches of

travelling waves be identified, and if the system's damping can be obtained from

this analysis. We will then study the variation of the system damping with flow

coefficient, and it dependence upon the compressor environment.

5-3-2 Experiments and result

The experiments performed were simple: the single stage compressor was

just run at a steady operating point, while 12.3 seconds of velocity data was



recorded. By varying the flow coefficient at which these points were taken, a

complete map of the compressor's behavior was obtained. For all the experiments,

the compressor rotation speed was 2700 RPM.

As we pointed out in section 5-2, we have two basic tools at our disposition to

study the dynamics of the system: PSD analysis and system identification

techniques. A PSD may yield less quantitative information, but it is more

straightforward to use. Before attempting system identification and its subtleties,

we would like to establish that travelling waves are actually identifiable over a

reasonable range of flow coefficient away from stall.

5-3-2-1 PSD analysis

Let us study the variation of the height of the spectral peak corresponding

to the small amplitude travelling phenomenon with respect to the flow

coefficient. This is plotted on Fig(5-2), for both the uniform and the distorted inlet

flow cases. For both cases, the curves show a nice sensitive growth of the PSD

peak as we decrease the flow coefficient towards stall. Note that at the highest

flow coefficient represented on the plot for the distorted case (0=0.405), th

spectrum is almost flat (Fig (5-3)): nothing but a slight hump can be seen around

10 Hz, which indicates that any wave travelling in the compressor has a power

density barely greater than that of the background noise; the signal to noise ratio

is effectively down to 0 dB at that point. As was noted in chapter four, the flow

coefficient at stall is lower in the distorted case than in the uniform case (see the

speedlines of on Fig(5-4)). Whether this is actually an error or not, we can still

qualitatively compare the two cases. In particular, we see that the PSD peak curve

is much flatter with distortion than without, and the level near stall is much

lower. This reflects the increased difficulty the wave encounters when it travels

in a distorted environment, which is a conclusion we had already drawn from the

experiments described in chapter four. But since PSD analysis cannot separate the

respective contributions of the damping and of the excitation on the wave power,

we cannot conclude if inlet distortion affects the system damping or not.

PSD analysis has enabled us to identify a range of flow coefficient over

which travelling waves can exist. Nevertheless, it doesn't allow us to study the



system damping, for it is also sensitive to the level of disturbances driving the

system. We will now resort to system identification techniques for more

information.

5-3-2-2 System identification

Our model for the small amplitude phenomenon is the following ODE

C-I(t) = (c - i od) C 1(t) + V(t) (5-6)

with a corresponding discrete time model:

C-1(n) = al C-l(n-1) + V(n) (5-7)

a 1 = e ( t (5-8)

where C-1 is the first harmonic data, and V the driving noise; Tc and Oc are

respectively the damping and the frequency of the travelling wave, and are the

parameters to be estimated.

As described in section 5-2, we want to remove from the data all the

dynamics not relevant to this equation. Let us consider for example a PSD taken at

0=0.377 with uniform inlet, which is given in Fig(5-5). It shows a peak at 30 Hz

which is unmodelled (and unexplained), and a peak at 0 Hz which corresponds to

the DC shift of the sensors; this latter peak can be smoothed out, but the 30 Hz peak

is more difficult to deal with elegantly: we will simply low-pass filter the data

from -25 Hz to 25 Hz (brute force). This also enables us to bring the sampling

period down to 12 times the one we used to take take the data. This tends to

"whiten" the driving noise present in the data, which is a good feature for our

parameter identification.

Having adequately processed the data, we can perform the parameter

identification itself. This can be done off-line (batch processing), or on-line

(recursively). Fig(5-6) illustrates the quadratic convergence of the recursive

algorithm on a high signal-to-noise ratio case: uniform inlet flow at 0=0.361. In



this case, 150 rotor revolutions are sufficient for convergence. Fig(5-7) however,

shows that the convergence can be much slower for low signal-to-noise ratio

situations (inlet distortion, 0=0.398); more than 300 rotor revolutions are

necessary in this case. The data intervals we took are 12.3s long, which represents

540 rotor revolutions, so we can be sure that convergence is obtained in each

case.

Fig(5-8) shows a comparison between the PSD of uniform inlet data at

0=0.361 and the fitted first order model. Fig(5-9) shows a similar plot for the inlet

distortion case, at 0=0.356. We see very good agreement between the data and the

fitted model, which justifies both the method and the model used, for both clean

and distorted cases. Further away from stall, damping is stronger and the signal is

weaker, so that measurement noise can be a problem. To alleviate this, two

estimates of the damping were computed, one with an AR(1) model (first order

system driven by white noise), the second a (1,1) ARMA model [23] (first order

system driven by white noise, with additive measurement noise). Both estimates

were usually close, except in cases of very low signal to noise ratio, as Fig (5-10)

illustrates at 0=0.382 with inlet distortion: the pure AR model can be "fooled" by

the spectral floor of noise, and tend to overestimate the damping; the ARMA

model, on the other hand, takes this noise into account.

A complication occurred in the inlet distorted case, near stall: a peak

appeared at -11 Hz, i.e. the frequency opposite that of the travelling wave; of

course, this peak cannot be filtered out without filtering the wave itself, so it had

to be accounted for by taking a model of order two. The procedure is illustrated on

Fig(5-11), at a flow coefficient of 0.353.

Fig(5-12) shows the damping ratios computed by the AR(1) and the

ARMA(1,1) methods vs the flow coefficient, for both the uniform inlet and the

distorted inlet case. The two curves rise nicely to near zero damping close to stall,

but our main observation is that the rise to instability is much sharper in the case

of inlet distortion. Away from stall, the system with inlet distortion is more

strongly damped than the uniform inlet case: for a given excitation, travelling

waves die out more quickly in the distorted environment. As we mentioned in

chapter four, the distorted system can be thought of as two parallel systems with



different degrees of stability, causing a propagating wave to travel in turn

through a stable and an unstable region. This might partly explain our

observation, but reality is certainly more complex. Besides, the model developed in

chapter two may not be strictly valid here , especially at the interface between

both regions (no vorticity hypothesis); a discussion is given in [20].

We should link the above observation with the one we made earlier (Fig(5-

11): near stall, a peak appears in the PSD at -11HZ, which is the frequency

opposite to the travelling wave frequency. It seems that when the wave reaches a

certain amplitude, it starts to interact very strongly with the distortion, and this

creates a standing wave in the annulus. The PSD interprets this phenomenon as

the interaction between the wave travelling at 11 Hz, and another smaller wave

travelling at the same speed, but in the other direction (at -11 Hz). This

interaction translates as a "leakage" of power from the travelling wave peak to

the negative frequency peak. This leakage probably accounts for the slight drop-

off of the PSD and damping curves very near stall, which would indicate a sort of

artificial stabilization near stall. It may also explain the abrupt transitions to stall

observed in chapter four. But the main point we draw from this observation is

that an additional phenomenon occurs near stall in the inlet distorted case, which

is not contained in the linear model developed in chapter two. It is therefore not

properly analyzed by our system identification technique, even though an

additional pole was introduced to take it into account.

5-4 Engineering use of pre-stall travelling waves as stall

precursors

5-4-1 introduction

This section tries to address the difficult subject of an evaluation of pre-

stall travelling waves as a stall precursor. We can broadly separate possible

applications into two groups: the applications in which time for analysis is

unlimited, and the others.

5-4-2Steady applications



As we have seen in the previous section, the compressor damping can be

very well estimated if a sufficient time (say more than 300 rotor revolutions) of

Fourier harmonic data is available. The compressor damping is the most

consistent precursor, in the sense that it gives a direct measure of the system's

stability. What it doesn't give, on the other hand, is how far an operating point is

from the stall point, in terms of flow coefficient, since the rise to instability is

different for each compressor. In the single stage compressor, for example, this

rise takes place over 0.06 flow coefficient points, whereas on the three stage

compressor the same region is 0.02 points. In addition, we have seen that for a

given compressor, inlet distortion can modify the damping at a constant flow

coefficient. Therefore, a priori knowledge of the damping vs 0 curve doesn't help

if the inlet flow conditions are not known.

5-4-3 Real time (unsteady) applications

This section concerns stall warning schemes suitable for use on engines

undergoing transients. This is of course a much more challenging application

than the steady applications described in the last paragraph, since these

transients typically take between 40 and 400 revolutions from the operating line

to the stall line. Furthermore, only part of the region from the operating line to

the stall line may be favorable to the propagation of travelling waves. As the

operating point crosses this region, the wave damping will vary from strong (say

-40) to zero, which is an additional complication. Consequently, one shouldn't

expect to obtain a very consistent estimate of the compressor damping during stall

transients.

To follow time varying parameters, the identification algorithm used in

section 5-3-2-2 can be run with a forgetting factor, to gradually discard old data;

this factor can be set very close to one (slow response and lag, but small variance

in the estimate), or closer to 0.9 which will make the estimate less consistent but

quicker to react. Fig(5-13) shows the on-line estimation of the compressor

damping for the five throttle transients on the single stage compressor, with a

clean inlet (section 4-4-4-1). For all five cases, the forgetting factor was set at

0.99. Also reproduced on this graph are the steady-state points of Fig(5-12). By



comparing the throttle transient curves with the steady-state one, we see that the

first two transients are slow enough as to be quasi steady for the algorithm:

instability is well predicted, and even anticipated. On the other hand, the

algorithm is too slow for the last three transients: the forgetting factor is too

high in these cases to ensure a fast enough response, and follow the system

parameters. The response can be ameliorated somewhat by turning down the

forgetting factor, but at the expense of consistency. This is illustrated by Fig(5-

14), which shows on-line estimations during the fastest throttle transient, using

three different forgetting factors: 0.99, 0.94, and 0.89. We see that the consistency

of the estimate is degraded, but that instability is approached sooner.

In a general sense, changing the forgetting factor from 1 to 0.9

corresponds to shifting our aim from trying to estimate the compressor stability

(which requires a lot of information and therefore takes time), to merely spotting

the start of the small amplitude wave which will turn into stall (which is much

less ambitious, but is ultimately all the useable warning we are likely to get). In

other words, as the throttle transients get faster, we expect to obtain a

proportionally reduced amount of information before stall, and our algorithm

should be parameterized to take that into account. For example, the forgetting

factor can be lowered if transients are expected.

Inlet distortion also promises to be a challenge: we know it dampens

rotating waves more strongly, thereby reducing the amount of information

available. Furthermore, in this case, the linear model doesn't describe the wave

behavior correctly near stall, which makes system identification more delicate.

For this reason, no on-line estimation was performed during transients with inlet

distortion.

5-5 Conclusions

This chapter has been concerned with the use of the pre-stall travelling

wave as a reflection of the system's stability, to estimate the damping of the

compressor. The first order ODE predicted by the Moore-Greitzer theory was fitted

to the data with excellent agreement for both clean and inlet distorted cases. The



damping ratios estimated were found to be dependent upon the flow coefficient,

but also upon the compressor environment (inlet distortion). Finally,

recommendations concerning the use of pre-stall travelling waves as a stall

precursor were given.



CHAPTER SIX

HIGH SPEED EXPERIMENTS

6-1 Introduction

The Moore-Greitzer theory and its linearized version use the assumption of

incompressible flow through the compressor, and in the upstream and

downstream flow regions. This is a key element in the derivation of the equations,

and the extension of the model to the compressible case (the only relevant one for

high speed machines) is still to be performed. Nevertheless, it is felt that the

mechanism for stall inception in high and low speed machines should be

qualitatively quite similar. Since it has been found that in low speed compressors

the stall inception mechanism is the growth of small amplitude waves, it is worth

looking for the same phenomenon in high speed machines, since only high-

speed machines are of practical interest.

6-2 Three stage high-speed experiments

6-2-1 Description of the rig, instrumentation and technique

The experiments described in this section were performed by Pratt &

Whitney Government Engines Business, West Palm Beach, Florida, on a three stage

high-speed machine. Three groups of eight Kulite high response pressure

transducers formed the instrumentation. These transducers measured static

pressure at the compressor casing, and each group was placed at the leading edge

of one of the three stators. Station 4 designates the first stator, station 5 the

second, and station 6 the third. Within these groups, the taps were distributed

around the compressor circumference as uniformly as possible, but the angular

spacing between two neighboring taps could not be made constant because of



already existing instrumentation conflicting with the desired placement. Table 6-

1 gives the circumferential location of the pressure transducers for the three

axial stations used. This unequal spacing is not a problem from a theoretical point

of view: the spatial Fourier transform can be performed just as well. Its derivation

is given in appendix A. The only practical consequence is that the error on the

measurements is amplified when calculating the Fourier coefficient. This

amplification is small in our case, since the probes are nearly evenly spaced.

The signals processed were in volts, i.e. not converted to engineering units.

Nevertheless, the output voltage of a pressure transducer is roughly proportional

to the pressure level. As for the low speed experiments, the signals were band-

pass filtered to remove the DC level and high frequency noise from the data.

According to our rule of thumb from chapter three, we first band-pass filtered

from 5% to 120% of rotor frequency. All interesting information was found never

to exceed 75% of rotor frequency, so the data was subsequently low-pass filtered at

that frequency. Before the processing, the DC level and the RMS level of some of

the signals were very different from the others at the same axial position. Even

with a distorted inlet, this can only be attributed to sensitivity variation from

sensor to sensor (remember that we are processing voltages not actual pressure).

The RMS level of the "bad" sensor was therefore adjusted to the level of the

neighboring sensor, and generally yielded good information.

All the experiments presented in this section were performed in much the

same manner as the low-speed experiments described in chapter four: the flow

coefficient was reduced by closing the throttle valve while data was being

recorded. As soon as surge was sensed, bleed valves were opened to stop the

instability.

6-2-2 Very slow throttle transients, uniform inlet case

This section presents results from two experiments performed with a

uniform inlet, each with a different vane stagger (IGV and stators). The transient

was as slow as the throttle would allow. Both sets of data were similar in many

respects, and we present some characteristics common to both.



- Fig(6-1) shows eight pressure traces taken at station 4. We note that the

RMS level of the signals are quite different. On this graph, the RMS level of

channel 4 (which was obviously low), has been adjusted to that of channel 5.

- The data from station 4 (Fig(6-2) and Fig(6-3)) clearly indicates the

propagation of small amplitude disturbances before the occurrence of stall/surge.

Furthermore, we note that both the first and the second Fourier harmonics are

rich in information (which is a situation that had not been observed in the low-

speed experiments of chapter four). Actually, the second harmonic has a higher

amplitude than the first most of the time, as is illustrated by Fig(6-2), and both

amplitudes seem to vary independently. The phases of the first and second

harmonic are shown on Fig(6-3), and we see that the propagation of the second

harmonic is more regular than that of the first. The last unbroken stretch of

second harmonic existence lasts for more than 100 rotor revolutions, which is an

enormous time scale. Within the same time period, the first harmonic "disappears"

a couple of times; nonetheless, it is present for stretches of up to 60 rotor

revolutions. The third harmonic, however, is virtually non-existent.

- The leading edge of the first stator is the location where the signal is the

strongest. This is seen by comparing the amplitude (Fig(6-4)) and phase (Fig(6-5))

of the second harmonic at different stations. The difference between stations is

more pronounced here than in the case of the single stage compressor studied in

chapter four.

- The PSD of C-1 and of C-2 for the whole data sequence up to stall/surge is

given in Fig(6-6), and shows clearly the peaks corresponding to the first and

second harmonics respectively at 18.5% of rotor frequency for the first and 37%

for the second. This seems to indicate that both modes are actually travelling

together, which is confirmed on Fig(6-7), showing the wrapped phases of both

harmonics. The ratio of the travelling speed of the first harmonic to rotor speed is

an important parameter for wave identification as performed in chapter five. In

this case, it is only 0.18, compared to 0.28 and 0.22 respectively for the three stage

and the single stage compressors investigated in chapter four: there are fewer

wave revolutions for a constant number of rotor revolutions.



As we mentioned at the beginning of the section, two experiments were

performed, each with a different vane setting. All the plots given above

correspond to a "nominal" setting. The experiment conducted with the other

setting also showed clear pre-stall wave propagation, for period of up to 50 rotor

revolutions. This is less than for the experiment we analyzed above, which may

indicate that the vane stagger angles are important parameters for the

propagation of small amplitude waves. In any case, 50 revolutions is more than

enough for stall warning.

In conclusion, these experiments are very encouraging: they prove the

existence of pre-stall small amplitude rotating waves in high-speed machines, for

a considerable length of time (50 rotor revolutions) before the occurrence of

stall.

6-2-3 Very slow throttle transient, distorted inlet case

One stall transient was performed with a 180 deg inlet distortion, again by

closing the throttle as slowly as possible. The phases of the first, second, and third

Fourier coefficients are plotted on Fig(6-8). The second harmonic has what can be

considered as a noisy slope, which may or may not indicate some overall

disturbance propagation. On the other hand, a small stretch of well defined slope

exists between -120 and -100 rotor revolutions, which suggest that a disturbance

does in fact travel during that time. This is evident if one looks at Fig(6-9) which

displays the eight pressure traces taken at station 4. Channel 0 shows some

sizeable disturbances, which appear at a well defined frequency: 6% of rotor

frequency (shedding from the inlet distortion?). These disturbances, for example

the one starting at t=-135 revs, are strongly attenuated by the time they reach

probe 1; probe 2 barely sees them at all. But the disturbance starting at t=-120 revs

travels for 15 rotor revolutions, at 13% of rotor speed. This is not the same

frequency as observed in the uniform inlet case (18.5%). We also note that when

the compressor finally turns unstable, large disturbances start travelling at yet

another frequency: 8% of rotor speed.

The PSD of the second harmonic for the whole sequence up to surge/stall is

given on Fig(6-10), and shows a complicated picture. The two peaks at -6% and 6%



are due to the disturbances seen on channel 0. The small peak at 13% shows the

propagation of the disturbance between -120 and -100 revs. The other peaks, at

26% and 50%, are unexplained.

It would appear from Fig(6-9) that disturbances are being created inside a

well defined region (around probes 7 and 0) and get strongly attenuated once they

travel out of the region. As we mentioned in chapters four and five, we may think

of the system as two parallel compressors operating at two different flow

coefficients, and therefore with different degrees of stability. Travelling waves

propagate easily through the unstable region, only to be damped as they travel

out of it. This phenomenon may be troublesome if we want to use the small

amplitude travelling wave as a stall precursor. A solution can be to look for

travelling disturbances on a more local scale, i.e. in part of the annulus only. To

do so, we can for example cross-correlate the outputs from two neighboring

transducers, according to the following formula:

N

R1p,N) = 40 x(n) y(n-p) (6-1)
n=N-39

Rxy(p,N) is the cross-correlation of signals x and y, with a lag p, and taken

at time N. The number 40 is arbitrary; here, for example, it was chosen such that

40At equals one period of a wave travelling at 13% of rotor frequency (as the

disturbance observed above seemed to). The lag can be expressed as a period of

rotation, by dividing it by the angle (in deg) between the two transducers in

question, and multiplying by 360 deg. As an example, let us consider Fig(6-11),

which shows the cross-correlation between channels 0 and 1, at t=-110 revs. The

cross-correlation has a maximum at a lag of 8.1 rotor revolutions, which indicates

that , at t=-110 revs, a wave is travelling between channels 0 and 1 at 1/8.2=-13% of

rotor speed. This can be verified by looking at Fig(6-9). Now, we can calculate

what that maximum cross-correlation is at each instant in time, and keep only the

maxima that have a lag between 7% and 70% of rotor speed (see Fig(6-11)). This is

plotted on Fig(6-12) (again for the cross-correlation between channels 0 and 1).

This figure can be compared to Fig(6-9) to show that indeed, the peaks of the max



cross-correlation correspond to the disturbances travelling from channel 0 to

channel 1, for example at times t=-170 revs, t=-150 revs, but also just before stall, at

t=-30 revs, and t=-15 revs. Let us now calculate the max cross-correlation for each

pair of neighboring sensors, and compare them. This is done on Fig(6-13). The

cross-correlation of channels 0 and 1 shows some travelling disturbances in this

region as soon as t=-180 revs, 60 rotor revolutions before any disturbance

manages to travel around the annulus. On the other hand, nothing travels

between channels 4 and 5 before t=-115 revs. This simple analysis shows that

looking for travelling disturbances on a more local scale can be an answer to the

problem posed by inlet distortion.

6-2-4 Fast throttle transient case

The throttle transient studied took 450 rotor revolutions from the operating

line to the stall line. The phase of the first harmonic at station 4, 5, and 6 are

given on Fig(6-14), while the second harmonic phase is plotted on Fig(6-15). We

note the following points:

- The phase of the first harmonic travels in the direction of the rotor at

station 4, but in the opposite direction at station 5 and 6.

- The same observation holds for the second harmonic, except that in this

case it is the phase at station 5 which travels in the direction of the rotor, while

the phase at station 4 travels in the opposite direction.

We thus have the following situation: at a given station (4 or 5), the first

and the second harmonic travel in opposite directions; in parallel, a given

harmonic travels in opposite directions at station 4 and station 5. This

characteristic is difficult to reconcile with the idea of a fluid mechanic

disturbance travelling around the annulus, since all phases would then be

travelling in the same direction (preferably in the rotor direction). Another

intriguing feature of the phase traces is that they travel right from the

beginning of the data, and they continue to propagate after the stall event, when

the compressor has been brought back to stability (Fig(6-14)). Again, this is not

in accordance with the idea that the small amplitude travelling wave is only

present when the compressor is weakly stable, immediately before stall. Let us



now consider the amplitude of the first and second harmonic at station 4, which is

given on Fig(6-16). We see no time during which these amplitudes are measurably

above zero, as would be the case if a travelling wave such as we have observed

until now were present in the data.

All these points lead us to believe that the phase propagation observed here

may not be due to the presence of a travelling wave, at least not a phenomenon of

the kind we have seen until now.

6-3 Conclusion

The small amplitude travelling wave phenomenon has been observed in a

high-speed three stage machine, during two very slow throttle transients with

uniform inlet flow. Its characteristics were very similar to those of the waves

observed in low-speed machines in chapter four and five: small but finite

amplitude, along with regular phase propagation were observed before the

instability developed, for periods of up to 100 rotor revolutions.

A distorted inlet flow case was also studied, and travelling disturbances

were clearly observed, but for a reduced period of time (15 rotor revolutions). The

compressor seemed divided into two zones: one generating strong disturbances,

the other damping them, which is a problem for stall precursor applications.

Looking for travelling disturbances on a more local scale (a part of the annulus

only) can be a solution.

Finally, a throttle transient was analyzed. Travelling information was

strongly present in this case, but its characteristics were not in accordance with

the small amplitude travelling wave behavior observed until to then: propagation

in the direction opposite to the rotor, different propagation directions at two

different stations.



CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

7-1 Introduction

This chapter presents the main conclusions of the present work, divided

along the following sections: existence and method of study of pre-stall small

amplitude travelling waves; reaction of the stalling process to mass flow

transients and inlet distortion; use of the pre-stall waves for compressor stability

estimation and as a stall announcer; study of some high-speed data. The chapter is

closed by some recommendations for future work on the pre-stall small amplitude

travelling wave phenomenon, both for the insight it brings into the stalling

process and for stall warning applications.

7-2 Existence and method of study of pre-stall travelling waves

In a typical experiment, during which the stall inception process was

studied in the upstream flowfield of the three stage compressor, we have observed

that:

- Small amplitude waves exist prior to stall, travelling for more than 90

rotor revolutions, with an amplitude less than 5% of the stall cell amplitude, and a

constant phase speed of 35% of rotor speed as soon as it is identified.

- The small amplitude wave grows exponentially into a stall cell, without

any discontinuity in phase or amplitude. During this transition, the phase speed

changes from the wave's speed of 13 Hz to the stall cell speed of 14 Hz.

- This behavior is in agreement with the linearized Moore-Greitzer model

for stall transients.



- For the three-stage compressor, all interesting information on the wave

angular position and amplitude is found to be contained in the first Fourier

harmonic. Thereafter, only this quantity is studied for quantitative analysis, and

is represented by its amplitude and phase angle.

The experiment performed was repeated nine times, at two different

rotation speeds of the machine. Each time, the same stall inception process was

observed: a finite stretch of small amplitude wave travelled for more than 30

revolutions before growing into stall cell. In view of the very irregular amplitude

of the wave, the excitation which provides its initial conditions may be thought to

be random; but the experiments described above proved that the nature of the

stalling process is not affected by this possible stochastic characteristics of the

excitation.

7-3 Reaction of the stalling process to throttle transients and

inlet distortion

Stall transients were performed with both uniform and distorted inlet flow

on the three stage and the single stage compressor. The following points were

noted:

- The compressor environment (inlet distortion) or operating conditions

(mass flow transients) do not change the nature of the stalling process: in all

experiments performed, stall evolved from an already travelling small amplitude

perturbation, with no observed phase speed variations during the small amplitude

stage.

These experiments establish that:

- small amplitude travelling waves and stall cells are two stages of the same

physical phenomenon

- small amplitude waves are a prerequisite for stall to occur; a stall cell can

only develop from an exponentially growing travelling wave, and will always

result from it.



In addition, we note the following side effects of mass flow transients and

inlet distortion:

- The throttle closing rates used were slow enough for the compressor

operation to be quasi steady, and the only effect expected was observed: the last

stretch of uninterrupted wave propagation leading to stall was found to be

roughly inversely proportional to d(phi)/dt at stall. This simply indicates that the

compressor spends less time in the flow coefficient region favorable to the

propagation of small amplitude waves.

- Inlet distortion effects were more subtle to analyze, for they seemingly

influence both the compressor stability and the wave excitation. Roughly, inlet

distortion hinders wave propagation, and can cause abrupt stall inception even

during very slow throttle transients.

7-4 Use of the pre-stall travelling wave phenomenon for

compressor stability estimation and stall warning

A map of the single stage compressor was obtained by taking long periods

(600 rotor revolutions) of data at different flow coefficients, up to stall. After

proper conditioning, a first model linear model was fitted to the first Fourier

harmonic of the data. The following results were obtained:

- The fit of the model to the data was excellent at all flow coefficients, and

for uniform or distorted inlet flow (except maybe very near stall for the distorted

case). This proves that the first order model describes adequately the compressor-

upstream flowfield interaction and the travelling wave behavior, and that the

system parameters (damping and frequency) can be accurately estimated, given

enough data for analysis to average out the contribution of the excitation.

- The estimated damping of the first order system was plotted vs the flow

coefficient, and was seen to decrease towards zero as the compressor neared stall.

The damping was found to be stronger in case of inlet distortion, explaining the

greater difficulty encountered by travelling waves in a distorted environment.

- Very near stall, in the case of inlet distortion, strong wave interaction

with the distorted region causes the wave power to decrease. This effect is non-



linear, and is not included in our model. It may produce an artificial stabilization

by delaying the wave development into a stall cell, and thus be responsible for the

abruptness of the stalling process in some cases of inlet distortion.

The use of the small amplitude travelling wave as a stall precursor was

discussed, and the following points outlined:

- For steady applications (test rigs), the compressor damping can be very

well estimated, but this does not indicate how close the stall point is without a

priori knowledge of the compressor, since the damping curve can vary

arbitrarily from compressor to compressor.

- For real-time applications, such as stall transients on engines, the

parameter identification algorithm used for damping estimation can be set to

track time varying parameters, but at the expense of the estimate accuracy.

- In the case of inlet distortion, looking at more local information (cross-

correlation between two neighboring measurements) can indicate wave

propagation in a reduced region only.

7-5 High-speed experiments

Sets of data from stall transients on a three stage high-speed machine were

examined, and the following conclusions reached:

- The stall inception process appears qualitatively similar in compressible

and incompressible machines. Very clear wave propagation could be seen during

two stall transient with a uniform inlet. Travelling disturbances were also present

during a distorted inlet experiment, but strongly damped in the "clean" region,

and continuously excited in the other.

- For this compressor, the second Fourier harmonic contained at least as

much information as the first one, which is an important information for future

experiments.

7-6 Recommendations for future work



This work has provided a more time and space resolved view of the stalling

process as seen by the upstream flowfield, but has not brought more insight into

the fluid mechanic phenomenon which causes the compressor-upstream

flowfield system to turn unstable. In particular, the cases of compressors stalling

with a negative slope of the characteristic are still unexplained, and suggest that

an important factor as been omitted in the analysis. The transition mechanism

remains the only unknown of the stalling process, and a detailed study of the

flowfield immediately close to or inside the rotor passages can bring an answer to

this question.

Further investigation is needed to identify clearly the nature of the initial

condition, or the excitation, of the small amplitude wave phenomenon. Are they

convected in or generated within the machine (or both), and should they be

considered as a noise (white or colored), or as a deterministic quantity.

The mechanism of the interaction between small amplitude travelling

waves and the inlet distortion is not well understood at the end of this work. A

more detailed study may yield useful information on the specificity of the stalling

process in the case of inlet distortion, an important source of compressor stalls in

aeronautic applications.

The Moore-Greitzer theory has to be extended to the compressible case, in

order to obtain predictions of the wave characteristics in high-speed machines.

The linearized Moore-Greitzer theory can give quantitative predictions for

the wave damping and travelling speed, although empirical factors have been

kept to account for viscous effects. Using data from different compressors, a

parametric study can be performed to investigate the effect of the Reynolds

number (and perhaps other non-dimensional parameters) on the wave

characteristics.

Finally, but not least, a large amount of analysis and tests remains to be

performed to validate a range of applications for the small amplitude wave

phenomenon as a stall precursor.
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Three Stage Compressor Design Specifications and Blading Design

Number of Stages

Tip Diameter (mm)

Hub-to-Tip Radius Ratio

Design Average Reaction

Design Flow Coefficient

Total Pressure Rise Coefficient

Efficiency at Design Conditions

(measured)

(measured)

Guide Vanes

1

1

2

2

3

3

No. of

Blades

124

54

85

55

88

49

90

Chord

(mm)

20.1

45.2

31.4

44.8

31.3

50.7

31.4

Camber

(Deg)

11.0

17.0

27.0

18.0

25.0

20.0

53.0

Stagger Angle

(Deg)

8.1

42.8

11.0

43.5

12.0

44.6

5.5

Table (3-1)

3

610

0.88

0.75

0.59

2.05

83.5

Inlet

Rotor

Stator

Rotor

Stator

Rotor

Stator



Single Stage Compressor Design Specifications and Blading Design

Number of Stages

Tip Diameter (mm)

Hub-to-Tip Radius Ratio

Total Pressure Rise Coefficient

Inlet Guide Vanes

Rotor

Stator

No. of

Blades

46

44

45

Chord

(mm)

40.0

38.0

39.0

Camber

(Deg)

10.0

25.1

25.5

Stagger Angle

(Deg)

15.0

37.9

45.0

Table (3-2)

597

0.75

0.41(measured)



Limit Levels for Determination of Small Amplitude Wave Start

Lower Limit

for Amplitude

(m/s)

Lower Limit

Phase Derivative

(rad/s)

Higher Limit

Phase Derivative

(rad/s)

Three Stage Comp.

Uniform inlet

Three Stage Comp.

Distorted Inlet

Single Stage Comp.

Uniform Inlet

Single Stage Comp.

Distorted Inlet

Table (4-1)

0.04 -40 200

0.1 -40 200

0.04 -70 230

0.05 -70 230



Axial Position of Blades and Hot Wire Stations in the Single Stage Compressor

Axial positions are given with respect to the rotor plane, and the axis is in

the direction of the flow (upstream stations have negative coordinates,

downstream stations positive ones).

Axial Position

(mm)

Axial Position

(in Comp. Radii)

Inlet Guide Vanes

Rotor

Stator

Station

Station

Station

Station

Station

Station

Table (4-2)

-80

0

73

-0.307

0

0.280

-0.941

-0.434

-0.123

0.169

0.430

0.745

-245

-113

-32

44

112

194



Pressure Transducer Locaion_ in HihSe Cooeso

Compressor Axial

Location

Channel No. Circumferential Position

(Same Direction as Rotor)

Stator 1 Leading Edge

Stator 2 Leading Edge

Stator 3 Leading Edge

Table (6-1)

31.9

73.4

115.0

163.4

205.0

246.5

281.2

329.6

31.8

71.8

106.8

161.8

206.8

241.8

281.8

326.8

10.0

50.9

104.1

140.9

193.1

230.9

280.0

320.9

Pressure Transducer Location in Hizh-Soeed Comoressor
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COMPRESSION SYSTEM
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<] Total Pressure Rake Ke

0 Static Pressure Tap (O.D.)

c) Static Pressure Tap (I.D.)

O Thermocouple

0 100 Arc Instrumentation Slot

1800
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Figure (3-5) Three Stage Compressor Steady State Instrumentation Layout

(from [16])
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Figure (3-6) Single Stage Compressor Steady State Instrumentation Layout
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Figure (3-8) Data Acquisistion and Data Processing Chain
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APPENDIX A

DERIVATION OF THE FOURIER TRANSFORM IN THE CASE

OF UNEQUALLY SPACED MEASUREMENTS

Let us consider a discrete signal of period N, for example N measurements

x0,-... XN-1, obtained at angular positions 00,..., 0 N-1. In this analysis we assume

that N is even, because it corresponds to the case used in chapter six; the odd case

if straightforward to derive. We can decompose the discrete periodic function x1

on the base of N complex exponentials:

N

Vie (O,..,N-1), xI= x( 1) = C Cik ~' (A-l)
-N
-+1

2

Let us define the base vectors:

Wk =
eik8o- -N N

k=-N + 1 N
2 2

Equation (A-i) can then be put in the following matrix form:

X=AC

(A-2)

(A-3)
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xo

XN-1

C-N+1
2

CN
2

A= W-N,+1  WN
2 2

X and C are vectors of dimension N. A is an N by N matrix. Solving system

(A-3) gives the N complex Fourier coefficients (C) from the N measurements (X).

Let us now emphasize the differences between the equally spaced and the

non-equally spaced case.

2ils
- In the case of equal spacing, 1 N , and the Wk's are orthogonal to one

another. Consequently, AA*= N, and A-1= 1/N A*: system (A-3) is easily solved!

(This is also the basis for the computational efficiency of the Fast Fourier

Transform). Another indirect consequence of this orthogonality is that the Wk's

are periodic: Wk = Wk+N, and base {W +1,..., W I is the same as base (WO,..., WN-_I.

In practice, in fact, this latter base is often chosen, for ease of formulation.

In the case of unequal spacing, the Wk's are not orthogonal, and are not

periodic any more. {W +1,..., W } is not the same base as {WO,...,WN-1}, and we have

to be careful which one we use to decompose our signal on, because they are not

equivalent. In this calculation, we chose {W +1,...,W I because it is (almost)

symmetric with respect to zero, and can be directly transferred to a base of sines

and cosines, according to the relations:

Cke k+ Cke = akcos(kO) + bksin(kO) (A-4)

1
Ck= -(ak- ibk)

2 (A-5)
1

C_= - (ak+ i bk)
2
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ak = Ck + C-k (A-6)

bk= i(C k - Ck)

From these relations, we see that Ck has the phase and half the amplitude

of the sinusoid of mode k present in the measurements.

A side aspect of A not being orthogonal is that its conditioning number is

greater than unity. In other words, any error in the measurements is amplified

when solving the system (A-3) to obtain the Ck's. The more unequally spaced the

measurements are, the greater the error amplification. It is easily understood that

measurements concentrated in 1/4 of the circumference (for example) will yield

less accurate Fourier coefficients than if they were equally spaced.

Another consequence of unequal spacing is the following: since the base

vectors on which we decompose our signal are not orthogonal, aliasing will affect

all coefficients, and in asymmetric ways: Ck and Ck will not be complex

conjugates any more, and the difference between the two is a measure of the

aliasing present. For practical purposes, (C-k+Ck*)/2 can be taken instead of

simply C.k.
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