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Abstract

While large data sets have enabled machine learning algorithms to act intelligently in
complex domains, standard machine learning algorithms perform poorly in situations
in which little data exists for the desired target task. Transfer learning attempts
to extract trends from the data of similar source tasks to enhance learning in the
target task. We apply transfer learning to probabilistic rule learning to learn the
dynamics of a target world. We utilize a hierarchical Bayesian framework and specify
a generative model which dictates the probabilities of task data, task rulesets and a
common global ruleset. Through a greedy coordinated-ascent algorithm, the source
tasks contribute towards building the global ruleset which can then be used as a prior
to supplement the data from the target ruleset. Simulated experimental results in a
variety of blocks-world domains suggest that employing transfer learning can provide
significant accuracy gains over traditional single task rule learning algorithms.
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Chapter 1

Introduction

In the past twenty years, a trend towards accumulating large amounts of information
has pushed artificial intelligence to rely more and more on data driven techniques.
Standard machine-learning techniques using large data sets have proved very success-
ful in a variety of domains from natural language processing to planning.

However, traditional machine learning techniques adapt poorly to new distorted
tasks even if the model of the original tasks are well known. Transfer learning attempts
to boost performance in new target tasks with little task-specific data by incorporating
knowledge gained from similar source tasks.

This thesis describes the methods of applying transfer learning to probabilistic
rule learning. Probabilistic rule learning is the process of learning a ruleset that
describes the probabilistic effects of performing actions in a world. For example,
consider a robot trying to learn the dynamics in the domain of driving a car. For
a particular task, for example, a particular car, the robotic can learn that if the
accelerator is pushed, the car will go faster; if the brake is pushed, the car will most
likely decelerate, but due to the possibility of unforeseen circumstances like ice, with
some probability, braking may not affect the speed of the car. Under single-task
probabilistic rule learning, each of these actions, accelerating and braking, requires
a large body of examples to learn the structure and parameters of the associated
ruleset from scratch. If the task is changed, for example, a new car is introduced, the

dynamics must be completely relearned.
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Transfer learning reduces the need for a large training set in the target task by
using structural and parametric data gathered in related source tasks as a prior for
the target task’s ruleset. Going back to the driving example, if the robot has previ-
ously seen how several models of cars operate, if a new car with a different weight
is introduced, the robot can transfer knowledge about the structure and parameters
of its driving model from the previous cars to the model of the new car to quickly
approximate its behavior. Similarly, even if the dynamics of the new car are struc-
turally different than previously seen examples, for example, the robot is presented
with a manual transmission car when it has only been previously exposed to au-
tomatic transmission cars, the robot can adapt common notions of car dynamics,
whether manual or automatic, to learning the dynamics of the new car with less data
than it would require to learn the dynamics from scratch. Overall, transfer learning
can greatly reduce the need for target specific data when general domain specific data
will suffice to fill in the information gaps.

Our model uses a hierarchical Bayesian structure to transfer knowledge from the
source tasks to the target task. All data is assumed to have been created from a
local ruleset which in turn is created from a common global ruleset via a specified
generative model. Using this framework, the data in the source tasks can help build
a model of the associated local rulesets and ultimately a common global ruleset. The
global ruleset is then used as a prior on the target task and combined with support
from examples in the target task to create the target task ruleset.

Section 2 describes some related work in both hierarchical Bayesian models and
probabilistic rule learning. Next, section 3 states the world representation and the
generative model which ties together the global ruleset, local rulesets, and examples.
Section 4 describes the optimization strategy used to approximate the global ruleset
and local rulesets. Section 5 displays the results of the hierarchical rule learning
algorithm. Finally, section 6 describes possible future work in extending the algorithm

and concludes the thesis.
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Chapter 2

Related Work

Transferring knowledge between different tasks has been addressed in the past by
hierarchial Bayesian models [5]. In these methods, local models, describing task-
specific examples, are assumed to be sampled from a global model. By learning both
the local and global models simultaneously, one can boost commonalities among the
local models and increase the overall accuracy of local models with little data. This
approach has been successfully used in a variety of statistical domains[1, 3, 6, 9, 11].
However, there is no previous work which uses a hierarchical Bayesian model to the
structure of relational rules between tasks.

The notion of probabilistic planning rules was introduced by Kushmerick[4] and
successfully used in probabilistic planning using STRIPS rules by Blum and Langford|2].
Zettlemoyer et. al developed an algorithm to learn the probabilistic planning rules
for a single task[8, 10]. In that framework, a heuristic function, rather than a gen-
erative model, is used to score the complexity of a ruleset. Incremental changes to
the ruleset are proposed and chosen if the combined complexity and error is lowered.
This method was shown to be successful on a variety of both hand-crafted and simu-
lated domains. This thesis borrows many concepts from these works and extends the

framework of the learning algorithms to allow for knowledge transfer between tasks.
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Chapter 3

Representation and Generative

Model

3.1 Representation

This section describes the representation of states, actions, and rules in the world.
Many of the concepts defined below are borrowed from Pasula et. al[8].

An example in a particular task is a triplet (S;41, A:, St) where S describes a world
state consisting of a number of objects and their properties and A describes an action.
Thus, an example shows the effects of performing action A; in the world described by
S; and the resulting state S;.;. The ultimate goal of the problem is to learn a ruleset
that effectively describes the probabilistic effects of A in a given task.

We start by defining a language F' of a set of functions. Each function f maps an
ordered list of f,,4s arguments to a discrete value in the finite set fyames. We define a
literal ! to be a triplet (£, [args], value) where f is a function, [args] is an ordered list
of objects, variables, and constants, and value is a element from fy,nes. In addition,
we define a formula to be a set of non-duplicate and non-contradictory literals.

We assume that the world is completely observable and all observations can be
trusted. Given these assumptions, we define a world state S to be a complete formula
that describes the world. Thus, for every function f € F' and every set of objects

[objs] of size furqs, there exists a single literal of the form (f,[objs], value) where
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value € fyames. In effect, the difference between any two world states is always in the
values of functions rather than in the structure of the literals themselves.

An action A effects a change in the world and thus has the potential to change
the values of literals within the world state S. The action itself contains an ordered
list of arguments which is filled with different objects from the world®. In the case of
multiple actions, each action is learned independently of all other actions. Thus, for
the scope of this thesis, we examine only one action per domain.

A local rule is defined as a triplet (A, C, O) where A is an action, C describes the
context, or precondition, of the rule and O describes the various outcomes associated
with the rule. C is defined by a formula. O is a set of outcomes [oy, ..., 0%] each
represented by a formula representing possible changes in the world and a parameter
0i prob Which describes the probability of outcome o; being chosen. In our model, we
require that no two outcomes in O overlap, that is, for any world state S;, the resulting
world states S;111 and S;4q 2 created by applying two local outcomes o0;,0; € O must
differ.? O also contains a special outcome 0,45 Which indicates the probability that
the resulting world state is unpredictable or too complicated for the rule to learn
specific outcomes.

A ruleset consists of a set of non-overlapping local rules.® Thus, in this model, for
any world state S and action A, at most one rule from the local ruleset can apply.
In addition, every ruleset contains a special rule called the default rule which applies
when no other local rules apply. The default rule contains only two outcomes: the
noise outcome and a no change outcome. The inclusion of the default rule greatly

simplifies the complexity of rulesets which describe tasks in which actions frequently

1The requirement for non-repeating objects in the action arguments is not strictly necessary.
However, in order to transfer knowledge between rules in various domains, maintaining a one-to-
one mapping of world objects to variables allows rules to be directly compared. If one-to-one
mapping was not required, then comparing two rules would an exponential time to search over all
semantically equivalent variations of each literal. For example, if argl and arg2 refer to the same
object, then a literal (f,[argl,arg2],val) will also need to be represented as (f, [argl,argl], val),
(f, [arg2, arg2], val), and (f, [arg2, argl], val) for comparison.

2This is a requirement of the optimization strategy used rather than of the model. This require-
ment can be removed by introducing variational inference techniques into the optimization strategy.

3This requirement, like that of non-overlapping outcomes, is a requirement of our optimization
strategy rather than the framework itself. However, due to computational requirements, we enforced
a strict non-overlapping policy for local rulesets.
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do not change the world state.

Finally, the last items to be described are global rules and the global ruleset. The
global ruleset and global rules serve as priors for the various local rulesets and local
rules. The global model concepts are very similar to those of local rules and local
rulesets, but with a few important differences explained below.

Global rulesets do not require non-overlapping rules. As global rules serve as the
prior for local rules, by our generative model, syntactically similar local and global
rules are more likely to correspond and ultimately transfer information. While this
choice led to greater optimization requirements, in the end, we felt the extra transfer
gained by allowing overlapping global rules was more important. Note that identical
global rules are still not permitted.

In addition, global rules do not require non-overlapping outcomes. We made the
choice to allow outcomes to overlap in global rules as the global rule serves as a prior
for local rules. Thus, constraining the global rule’s outcomes to not overlap may
produce a new global rule that is semantically equal but transfers knowledge poorly
to local rules. As before, identical global outcomes are not permitted.

Global rules also have one additional outcome over local rules: the new outcome.
The new outcome allows local rules to create new outcomes completely different than
anything existing in the global rule. The generative model section will describe the
use of the new outcome.

Finally, global outcomes do not have outcome probabilities like local outcomes.
Instead, a global outcome o; has an associated Polya hyperparameter o; pgram. The

next sections will describe how this hyperparameter is used in the generative model.

3.2 Generative Model

This section describes the hierarchical model used to transfer information between

tasks.
The rule learning framework is set up as a three-tier hierarchy as shown in Fig.

3-1. In this model, there are n source tasks ti,...,t, and a single target task t,.;.

17



G Global Ruleset

R R R R Local Rulesets

1 2 n n+l

‘ D ' ' D l ‘ D l D Local Data Sets
1 2 n n+l

\ J\ y,
Source Tasks Target Task

Figure 3-1: A hierarchical Bayesian model with n source tasks and 1 target task.

Each task t¢; has its own data set D;. Each task data set D; is derived from a local

ruleset R;. Finally, all local rulesets Ry, ..., R,41 are derived from a global ruleset G.

We describe a generative model that can give the probability of deriving a local
ruleset R; from the global ruleset G and the probability of deriving a data set D; from
a local ruleset G. Although we never actually use the generative model to generate
local rulesets and data sets, we use the probabilities derived from the model to shape

the local and global rulesets.

In the generative model, it is assumed that all examples derived from a local
ruleset are independent of all other examples given the local ruleset. Furthermore,
we assume that all local rulesets are independent of each other given the global ruleset.
Thus, for clarity, we only describe how a particular data set D is derived from a local
ruleset R, and how R is derived from the global ruleset G. Finally, we end the section

by describing the generative model for the global ruleset G.
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3.2.1 Generating Data Sets from Local Rulesets

In this section, we describe how a data set D is generated from a local ruleset R.
Each example E in D is generated independently given R. Thus, the probability of
creating an data set D from a local ruleset R is p(D) = [[gcp p(E|R). Therefore, in
essence, this section will describe how E is generated from R and how to compute

p(E|R).

The first step involves creating an initial world state S; and an action A;. Each
initial world state is created independently of all other world states; therefore, the
initial world states do not follow a trajectory. S; is generated by populating a world
with various objects. The world state is then specified as a complete formula as
described previously. As the ruleset R defines a conditional probability distribution,
the initial state of the world is not of critical importance. However, in order to sample
over the example space thoroughly, a roughly uniform distribution on initial world
states is preferred. Following the creation of S; the action A; is specified by picking
various world objects to satisfy the action arguments. Thus, the initial world state

S; and action A; can be specified.

The next step involves applying the ruleset R to the initial world state S; and
action A; to generate the resulting world state S;;;. Rulesets are used to generate
future world states as described below. Fig. 3-2 demonstrates the steps described
below for a sample world and ruleset. For each rule U € R, the applicability of the rule
must be assessed. If no standard rules apply, then the default rule applies. Assume
that a particular rule U is tested for applicability. First, a one-to-one mapping Q of
world objects and constants in S to action arguments in the context of U is calculated.
If no such (2 exists, i.e. no mapping of world objects to action arguments will satisfy all
literals in the context of U, then the rule U cannot be used to predict the subsequent
state. If a mapping does exist, then the outcomes of U describe the predicted future
world state. Each outcome o; is chosen with probability 0;,m05. Assume outcome
o* is ultimately chosen. The inverse map of € is calculated and applied to formula

associated with o* to create a formula of changes Finally, the resulting world

*
changes*
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Si : On(Blocka, Blockg) = true, Clear(Block,) = true,
Clear(Blockg) = false, Size(Blocks) = Size2, Size( Blockg) = Sizel

A . Pickup(Block a, Blockg)

U: Pickup(arg,,args)

On{argl, arg2) = true — { 18 : Size(argl) = Sizel

82 : Size(argl) = Size2, On(argl,arg2) = false
Q: Blocksy — argl, Blockg — arg2

*

o*: Size(argl) = Size2, On(argl,arg2) = false

Q! argl — Blocks,arg2 — Blockg
ehanges - S12€(Blocka) = Size2, On(Blocka, Blockg) = false
St+1: On(Blocky, Blockg) = false, Clear(Blocka) = true,
Clear(Blockg) = false, Size(Block,) = Size2, Size( Blockg) = Sizel

Figure 3-2: This figure describes how a local ruleset can be applied to a world state
and action to produce the subsequent world state.

state ;41 is as a copy of S; U f,ges 10 Which all duplicate or contradictory literals
are resolved in favor of f ..., The triplet (S, A¢, St41) forms the final example.
To compute the p(E|R), or the probability of generating a example given the local
ruleset, one need only retrace the generative process. As all steps of the generative
model are deterministic until an outcome o* is chosen, the probability of an example

utilizing utilizing outcome o* is simply op, .

3.2.2 Generating Local Rulesets from Global Rulesets

In this section, we describe how a local ruleset R is generated from a global ruleset
G.

The first step in creating a local ruleset is to choose the number of rules to use.
As the default rules are always present in both the local and global ruleset, we do not
count their presence in the number of rules in a ruleset. Let mp be the size of the
local ruleset and mg be the size of the global ruleset. We bias the local ruleset to have

a similar number of rules as the global ruleset. Therefore, we define p(mg|mg) to be
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large when mp is close to mg and small when the number of rules differs radically.

To achieve a smooth distribution, we use the following probability function:

p(mr|mg) = (3.1)

Geom|a](mpg — mg) if mg > mg
(1 — a)Binom[mg, B](mg) otherwise

With this distribution, if mg > m¢, we use a geometric distribution parameterized
by a constant a. Thus, the probability mass of p(mg > m¢g) = @. The remaining
probability mass, 1 — a, is assigned if mg < mg. This distribution is a binomial
distribution parameterized by a different constant 5. For any 0 < «,8 < 1, this
distribution provides a bias for local rulesets to have a similar number of rules as the
global ruleset.

Once the number of rules is chosen, each local rule is created almost independently.
The only constraint between the rules is that the final local ruleset must not have
overlapping rules. This constraint is enforced by discarding any created ruleset with
overlapping rules. Although this strategy places a bias towards creating local rules
with complex contexts (as rules with long contexts are less likely to overlap), it does
provide a near uniform bias. Finally, as the rules in the ruleset can be permuted in any
order and still yield the same overall ruleset, a factor of mpg! is added. Thus, letting
p(Ui|G) be the probability of creating rule 4, the final probability for generating a

ruleset of size mp is:

P(RIG) = mal * plmalme) « 3 p(UIIC) (32)

i=1

It is helpful to now discuss how a formula is created given a formula in global
ruleset as a prior, as this process is used in the creation of both the context and
outcomes of a local rule. Let the formula of the local rule be f; and the formula of
the global rule be fe. Creating fi, requires two phases. In the first phase, all literals
from f¢ are copied into fr. For each literal in f1, with some probability tremope, that

literal is removed from f7. Let M emove be the size of fi after this phase. The second
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phase involves adding literals to fr. First, the number of literals to add mye, is
chosen from a geometric distribution parameterized by a constant a,gg. Given, mypeqy,
each literal is chosen independently. For each literal /,., to be added, a function is
uniformly chosen from the language F. Let the number of arguments accepted by
[ be lorg. Next, each argument is randomly chosen without repeats from the set of
action arguments and constants T,,,. If the created formula contains any repeated
or contradictory functions, it is resampled. While in theory, we must integrate over
the possibility of removing and readding a particular literal, as this probability is
negligible, we only observe the probability of the most likely generation pathway
from fg to fr. This yields the overall probability of creating f; from fg as:

. L 1
p(lefG) = Blnom[mG’ aremorue] (mremwe) * Geom[””new» aadd] * m'ne’w! * H ( . ) 17
l€lnew T‘"’g lF '

(3.3)

We will now describe how a local rule U is derived from the global ruleset G.
This process requires four steps: first, a corresponding global rule must be chosen;
then, the local rule context must be determined; next, the local outcomes are chosen;

finally, the local outcome distribution is fixed.

The first step of creating U is to choose a corresponding global rule E from G.
With a constant probability gne, no existing global rule is chosen, and the global new
rule set to be the parent. With the remaining probability mass, 1 — gy, a E is chosen
uniformly from all rules in G. Note that the global default rule is never allowed to
be the corresponding rule for any local rule except the local default rule. Once the
corresponding rule is chosen, the context for U can be easily created by the formula
modification procedure given above.

The next step is to choose outcomes for U. This procedure is very similar to
choosing local rules given the global ruleset. First, the number of outcomes mgy:
is chosen from a probability distribution specified in equation 3.1. Each outcome
o; is mapped to a corresponding global outcome y; from E. With some constant

probability g, new, a local outcome is mapped to the global new outcome. Otherwise,
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the remaining probability mass is equally distributed among the global outcomes. As
before, only the local noise outcome maps to the global noise outcome. Once the
outcome correspondences have been determined, the local outcomes are generated
by perturbing the global outcome by the formula modification procedure. All local
outcomes mapping to the global new outcome are created from an empty global
formula using the same method. Thus, the overall probability of the outcomes O

given FE is:

p(O|E) = mou! * || p(wi E)p(oilys) (3.4)

0:€0

The last step is to choose the outcome distribution for the local outcomes O given
the global outcome distribution. This involves sampling from a Dirichlet distribﬁtion
to determine the probability of each local outcome. However, the hyperparame-
ters specified in the global outcome distribution may be unsuitable to sample from,
as many local outcomes might correspond to a single global outcome and no local
outcomes might correspond to some global outcomes. Thus, another set of pseudo-
hyperparameters must be created with a pseudo-hyperparameter for each local out-
come. Let W be the original set of global outcome hyperparameters and o be the
new set of pseudo-hyperparameters.

The first case to consider is if no local outcome maps to a particular global outcome
i. In this case, we define the generative model to not include the hyperparameter for
i, effectively shrinking down the dimensionality of the problem. Note that the value
of the removed hyperparameter is inconsequential as it is no longer a part of the
probability distribution.

The second, and more interesting, case to consider is when one or more local
outcomes oy, ...,0, map to a single global outcome with hyperparameter W,;. We
made the decision to set the sum of the expected probabilities of 01, ..., 0, to the same

expected probability of a single hypothetical outcome 0*.# The expected probability

4We also entertained the possibility of letting each outcome in oy, ...,0, receive the full prior
support of W;. However, this would imply that other outcomes would effectively lose support from
their global hyperparameter priors. We decided to use our current method as it provides more
probability transitions when splitting across functions (mapping multiple local outcomes to a single
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for 0* when all outcome probabilities are sampled from the Dirichlet distribution is:

__ W
ZWiGW W;

Thus, to set the expected probability of each outcome o, ...,0, to be 1/a of the

E[o%] (3.5)

quantity specified above requires that:

Voi € {01, 00}, 0 = 2 (3.6)

a

Once all the local hyperparameters are chosen, the local outcome probabilities
are sampled from a Dirichlet with hyperparameter vector a. Let B be the vector
of sampled local probabilities. Then, the probability of creating an local outcome

distribution is simply:

p(B|W) = Dir[e|(B) (3.7)

Here Dir[a](b) is simply the probability of generating B from the Dirichlet hyper-
parameters . Note that the process of generating o from W is deterministic, and
thus has probability 1.

By following the steps listed above, a local ruleset can be derived from a global
ruleset. While no local rulesets are ever created using the generative model, the op-
timization strategy does use the generative model’s ability to provide the probability

of creating a local ruleset from a global ruleset.

3.2.3 Generating Global Rulesets

The last section of the generative model is the generative model to create a global
ruleset G. As the complexity of each local ruleset generated by G is most completely
determined by the complexity of G, the generative model for G serves to bias the
entire hierarchical model away from complexity and over-fitting.

The generative model for creating a global ruleset G is very similar to that of

global outcome).
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creating a local ruleset. First, the number of rules m,., is chosen from a geomet-
ric distribution with parameter oy ye. Given my s, €ach rule U is independently
created. If two rules have exactly the same context, then the ruleset is resampled.
Overlapping rules are permitted. Thus, the probability for creating a global ruleset
G is:

p(G) = mrues * [[ pU) (3.8)

veG

To select a context for a sample global rule U, three steps are required: first the
context of the rule is determined, then the outcomes are determined, and last the
outcome distribution is picked.

The generative process is far simpler for creating a global rule than a local rule
as the corresponding rule prior is assumed to be empty. For each rule U, the context
Ucontezt uses the formula modification procedure starting with an empty formula.
Next, the number of outcomes My, is sampled using equation 3.1 using 0 outcomes
as the prior. Each outcome o; in the global outcome set O is created from scratch using
the formula modification procedure. If two outcomes are ezactly the same, the the rule
must be resampled (overlapping outcomes are permitted in global outcome sets). In
our current generative model, we do not have any prior on outcome hyperparameters.
Thus, the outcome hyperparameters are chosen as positive real numbers. Overall, the

probability of creating a rule U is:

p(U) = p(Ucontea:t'nil) * Mouts! * H P(Oi|m'l) (39)
0;€0

By using the methods above, one can find the probability of an entire hierarchial
model given the global ruleset, local rulesets, and data sets. The following section
will describe the optimization strategy used to maximize the overall probability of

the entire model.

25



26



Chapter 4

Optimization Strategy

4.1 Overview

This section describes how the hierarchical framework and generative model are used
as a basis to create local rulesets for the various local tasks and a global ruleset which
ties them all together.

By the problem formulation, the input to the algorithm is a set of examples from
both the sources tasks and the target task. Let tasks ¢,y represent the sources tasks
and task ¢y represent the target task. Let D; represent the data from the 7th task.
The quantity of interest is the probability of the target data Dy given the source
data D; N. However, by the generative model, the probability of a set of data D;
can be calculated given a local ruleset R;, and the probability of a local ruleset R;
can be calculated given the global ruleset G. Furthermore, by the generative model,
all data sets are independent given their corresponding local rulesets, and all local

rulesets are independent given the global ruleset. Thus, working in log space:

N+1
logp(Dys1|D.x) o /G  logp(G)+ 3 logp(DR)Nogp(RIG)  (4.)
M N1 i=1

Since a single target ruleset is the output of the optimization, the most proba-

ble local ruleset Ry.; can be selected from the above equation leading to the new
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optimization equation:

N+1
Ry =argmax | logp(G)+ > logp(DilR;) + logp(Ri|G)  (4.2)
YJG,Ry. .~ i=1

However, the above optimization quantity is extremely complex as each local
ruleset R; to Ry and the global ruleset G consist of multiple rules, each with a
context, outcomes, and an outcome distribution. A great deal of this complexity
can be removed if the integration over all local rulesets and global rulesets is replaced

with choosing the most likely estimate of each ruleset leading to the new optimization

quantity:
N+1
Ry = argmax max logp(G) + > " logp(Di|R;) + logp(Ri|G) (4.3)
N+1 G, RN o1

However, this quantity is still too complex to optimize directly. To approximately
optimize this, we use a coordinated ascent algorithm. Using this method, the global
ruleset is held constant while each local ruleset from source tasks is optimized. Thus,

for a task ¢, the optimization using a constant global ruleset G is:

R; = argmax logp(Di| Ry) + logp(Ri{G) (4.4)

The second step of the coordinated ascent algorithm estimates the global ruleset.
To do this, all local rulesets R;_n from source tasks are held constant. The ruleset
from the target task is not used in the optimization of the global ruleset because, as
specified by the problem formulation itself, the target task has little data and cannot
contribute much to the global ruleset. Thus, for constant local source rulesets Rli, N,

the optimization for the global ruleset is:

N
G = arg max logp(G) + Z logp(Ri|G) (4.5)

=1
The global ruleset is calculated by alternately performing the first optimization
over the local rulesets from source tasks and the second optimization over the global

ruleset. When all rulesets stabilize, the first optimization is used one last time on the
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target task to create the target task ruleset.
The global ruleset is initialized to be empty except for the default rule which is
initialized with small Polya hyperparameters to allow local rulesets to easily create

task specific rules. Each local ruleset is initialized to be empty of all rules except the

default rule.

4.2 Learning a Local Ruleset given a Global Rule-

set

This section describes how a local ruleset is created from task data and a fixed global
ruleset. At the highest level, a greedy search is run which suggests the addition,
deletion, or modification of rules in the local ruleset. Given each potential suggestion,
the optimal outcomes and outcome distribution is acquired through another greedy
search process. High level ruleset changes are proposed and applied greedily until no

further modifications to the ruleset lead to a higher ruleset probability.

4.2.1 Ruleset Modification

The highest-level greedy search in optimizing a local ruleset proposes the addition,
deletion, and modification of rules in the local ruleset. In the case of additions or
modifications to rules, only the rule(s) context needs to be specified as the outcomes
and outcome distribution are determined by a secondary greedy search. There are

five search operators which propose changes:

e Add Rule - This operator proposes that a new rule be added to the local
ruleset. This rule context can be derived either by copying a rule context
verbatim from the global ruleset or by extracting all functions from a local
example which deal with an object that is modified through the rule’s action. In
order to maintain overlapping rules, all rules which do not have a contradictory

function in the context are removed from the ruleset.
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e Remove Rule - This operator simply removes a rule from the local ruleset.
All local examples explained by the removed rule must then be explained by

the default rule.

e Add Function - This operator adds a function to the context of an existing
rule (provided the function is not already present in the context and no existing

function in the context contradicts the new function).

¢ Remove Function - This operator removes a function from the context of an
existing rule. If the modified rule overlaps with any other rules in the ruleset,

these rules are removed.

e Split Function - This operator breaks apart a single existing rule into multiple
rules. Each new rule has the same context as the old rule with the addition
of an additional function that has identical arguments across all new rules but
differing values. Note that the set of new rules covers the same example space

as the single existing rule.

In each case, if examples become explained or unexplained through the modifi-
cation of the ruleset, the default rule must be updated. As the default rule does
not learn new outcomes, it learns a new outcome distribution through parameter

estimation which is described later.

With each search operator, the parent rule of each affected local rule must be
recalculated through the generative model. As an approximation to allowing any
local rule to be derived from any global rule, we define the parent rule of each local
rule to be the global rule which has the most similar context according the to global
rule. In addition to this parent rule, we also calculate the probability of the local rule
being generated from scratch. In order to find the probability of the outcome set and
outcome distribution of each local rule, a second greedy search is needed in order to

create a set of outcomes.
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4.2.2 Outcome Set Modification

When a rule enters the outcome set modification greedy search, it has a single out-
come: the noise outcome. Thus, all examples which are described by the rule are
considered noise, leading to a terrible rule score. Thus, the rule has a great incentive
to learn new outcomes and reduce the dependence on the noise outcome.

As before, there are multiple search operators that are used when building an
outcome set. In this search, a set of candidate outcomes are constructed before
the greedy search is started. Candidate outcomes include all outcomes from the
corresponding global rule and all outcomes which can explain a local example. The

operators include:

¢ Remove Outcome - This operator removes a outcome from the outcome distri-
bution. All local examples explained by the removed outcome are then delegated

to the noise outcome.

e Add Function - This operator adds a function to an existing outcome (as

before, no duplicate or contradictory outcomes are allowed).

e Merge Outcomes - This operator merges the context of an existing outcome
and a candidate outcome by taking the union of their outcome changes and
removing duplicate functions. This operator is only valid when the existing

outcome and candidate outcome do not contradict one another.

e Split Function - This operator breaks apart a single outcome into multiple
outcomes as in the ruleset ”"Split Function” operator. In addition to the con-
text of the old outcome, each newly proposed outcome contains an additional

common function with different values.

e Add Outcome* - This operator proposes that a new outcome be added to the

outcome set. The proposed outcome is chosen from the candidate outcomes.

¢ Remove Function* - This operator removes a function from an existing out-

come.
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As before, any new unexplained examples are delegated to the noise outcome. The
starred operators above can potentially create overlapping outcomes. Thus, whenever
either of those operators are proposed, a secondary greedy search is run to ensure that
the outcomes remain non-overlapping.

In the secondary search, all overlapping outcomes are noted in a pairwise manner.
Next, for each pair of outcomes, a set of functions which contradict one of the pair
is proposed to be appended to the second of the pair, which results in the pair not
overlapping. Finally, the function proposal which leads to the greatest number of non-
overlapping outcomes is chosen. In certain cases, the secondary search modifies two
outcomes to be identical. If such a deadlock is found, one of the offending outcomes
is removed. The secondary search is repeated until all outcomes do not overlap.

After the search operators listed above are proposed, the probability of the entire
rule and outcome set can be calculated by the generative model. The only missing
probability is the probability of the outcome distribution given the global outcome

distribution which is described next.

4.2.3 Learning the Outcome Distribution

After a set of local outcomes has been chosen, the corresponding global rule acts as
a prior for the outcome distribution. The process of sampling from a rule probability
distribution from the Dirichlet parameters of a global rule and sampling examples
from the subsequent probability distribution specified in the generative model can be
modeled by the Polya distribution{7].

This framework requires that each local outcome be mapped to the most likely
global outcome as an approximation to calculating all pathways of deriving the local
outcome set from the global outcome set. This mapping can be calculated by finding
the closest global outcome to each local outcome specified by the generative ruleset.
In some cases, the "new” outcome in the global ruleset may be closer to a local
outcome than an existing global outcome. By using this method, many local outcomes

may map to the same global outcome, and some global outcomes may not have any

mappings.
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Given a one-to-one mapping of local outcomes to global outcomes, the outcome
probabilities can be calculated via the Polya distribution. Let by be the probability
of the kth local outcome, K be the total number of local outcomes, n; be the number
of examples supporting outcome k, and a;, be the Polya hyperparameter for outcome

k. Then, the Polya distribution is:

D8, @) 7T yowbent
p(ny..nklay...ak) oc/ = | T (4.6)
b..bx H‘iI{=1 F(ai I!:II *

Taking the expected value of the probability parameters b; yields the expected

probabilities:

_ n; + Q;
- K
Zk=1 ng + ag

When there is not a one-to-one mapping of local outcomes to global outcomes, a

b (4.7)

set of pseudo hyperparameters must be created to create a one-to-one mapping. In
order for a global outcome to give an equal prior weight to all derived outcomes, the
hyperparameter value for the single global outcome is divided equally among each
pseudo hyperparameter of derived local outcomes. This distribution of weight evenly
divides the prior among the derived local outcomes and does not affect the estimation
of other local outcomes. Using this method, one can derive the the expected values
of the outcome probabilities for arbitrary local and global outcomes.

A second factor which must be calculated is the probability of the data given
the pseudo hyperparameters. In this case, the probabilities of local outcomes can be

factored out of the overall probability yielding:

K K K
logp(cy...ck|ay...ak) logI‘(Z ox) —logI‘(Z nk+ak)+z logT'(nx+ayx) —logT (ax)
k=1 k=1 k=1 (48)
Using these methods, one can find a point estimate for an outcome probability
distribution and the probability of deriving an example distribution from a global

rule’s Polya hyperparameters. This procedure can be used repeatedly within the
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outcome set search and ultimately the ruleset search to calculate the probability of

modifying the outcome set or ruleset to eventually arrive at a locally optimum ruleset.

4.3 Learning a Global Ruleset given a Set of Local

Rulesets

The counterpart of learning a local ruleset from a set of examples and constant global
ruleset is learning a global ruleset from a set of constant local rulesets. The search
framework is very similar to that of the local ruleset search. In the outer loop, there
is a greedy global ruleset search which adds, removes, and modifies global rules. For
each proposed change, all rules relearn outcome sets through another greedy search.
Finally, the Polya hyperparameters are calculated within each step taken within the

greedy outcome set search.

4.3.1 Global Ruleset Modification

The highest-level greedy search in optimizing the global ruleset proposes the addition,
deletion, and modification of global rules as in the local ruleset modification search.
As before, in the case of additions or modifications to global rules, only the global
rule(s) context needs to be specified as the outcomes and outcome distribution are
determined by a secondary greedy search. In the global ruleset search, there are five

search operators to modify the global ruleset:

e Add Global Rule - This operator proposes that a new global rule be added to
the global ruleset. The global rule’s context is formed by copying the context
of a local rule. As rules are allowed to overlap in the global ruleset, no rules are

removed when using this operator.

e Remove Global Rule - This operator removes a global rule from the global
ruleset. All local rules explained by the removed global rule are then required

to find new parent rules.
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e Add Function - This operator adds a function to the context of an existing

global rule (barring duplicate and contradictory functions).

¢ Remove Function - This operator removes a function from the context of an

existing global rule.

e Split Function - This operator breaks apart a single existing global rule into
multiple global rules. As in the case for local rulesets, each new global rule
copies the context of the original global rule and appends a common function
to each new rule’s context. Each new rule assumes a different value of the

appended function.

As described in the previous chapter, each local rule is paired with the most
probable parent global rule to approximate the generative model which states that
any local rules can be derived from any global rule. In order to calculate the mappings
between local and global rules, the contexts of all local and global rules are compared
and the probability that a local rule is derived from a global rule is partially estimated
by the generative model. Each local rule is initially assigned to the closest global rule.

However, the generative model also specifies that any local rule can be created
from scratch without a global rule parent. In order to accommodate this possibility,
after the outcome distribution for a global rule has been calculated, any local rule
mapped to that global rule has the option of declaring itself to be created from
scratch. Local rules which have a higher probability of being created from scratch
than of being derived from the global rule are disowned from the global rule. Following
the disownment of any local rules, the global outcome set is recalculated once again
and the process repeated until all owned local rules have a higher probability of being
derived from the global rule than being created from scratch.

Whenever the global ruleset is modified, it is possible that local rules will switch
parent global rules. As it is impossible to predict what effects a single search operator
may have on the remapping of local rules to global rule parents, the outcome set and

distribution of each rule must be recalculated at every step.
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The only global rule which need not be recalculated at every step is the global
default rule. The global default rule is automatically the parent of all local default
rules. As the local rulesets are held constant, and no other local rules can be mapped
to the global default rule, the outcome distribution of the global default rule need
only be calculated at the beginning of the search. Note that by the generative model,
like the local default rules, the global default rule cannot learn any new outcomes, so
an outcome search is unnecessary. '

As in the local ruleset optimization, once the context for a global rule is set, the
next step involves creating a outcome set and outcome distribution. The following

two sections will describe those components of the global ruleset search.

4.3.2 Global Rule Outcome Set Modification

The global rule outcome set search is very similar to the local rule outcome set search
with one important difference: the outcome set for a global rule is allowed to have
overlapping outcomes.

As with the local outcome set search, a list of candidate outcomes is constructed
before the greedy search is started. Each outcome of each owned local rule is consid-
ered as a candidate outcome. Following this initialization, as in the local outcome set

optimization search, the main greedy search is driven by several search operators:

¢ Remove Outcome - This operator removes an outcome from the outcome

distribution.

e Add Function - This operator adds a function to an existing outcome (the

duplicates or contradictory outcomes rule applies here as well).

e Merge Outcomes - This operator merges the context of an existing outcome
and a candidate outcome by taking the union of their outcome changes and
removing duplicate functions. This operator is only valid when the existing

outcome and candidate outcome do not contradict one another.
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e Split Function - This operator breaks apart a single outcome into multiple
outcomes as in the ruleset ”Split Function” operator. In addition to the con-
text of the old outcome, each newly proposed outcome contains an additional

common function with different values.

e Add Outcome* - This operator proposes that a new outcome be added to the

outcome set. The proposed outcome is chosen from the candidate outcomes.

e Remove Function* - This operator removes a function from an existing out-

come.

After the global rule’s outcome set is modified, a new mapping from the outcome
sets of associated local rules must be calculated. To do this, the same mapping
algorithm described in the previous section on local outcome set learning is used.
Each local outcome in each associated local rule is assigned to the global outcome
which is closest via the generative model. Note again, that the closest global outcome
may be the "new” outcome which specifies that the local outcome is created from
scratch.

With mapping from local outcomes to global outcomes, the probability of deriv-
ing each associated local rule from the global rule can be calculated except for the
probability related to the outcome distributions. The following part will describe how
to caiculate the global rule outcome distribution and calculate the probability of all

associated local rule outcome distribution probabilities.

4.3.3 Learning the Global Rule Outcome Distribution

This section describes how to calculate the global rule outcome distribution given a
mapping from associated local rule outcome sets to the global rule set. Once the
global rule outcome distribution has been calculated, one can use the generative
model to calculate the probability of deriving the associated local ruleset outcome

distributions.
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Deriving the Probability of the Global Outcome Set Distribution

As discussed earlier in section 4.2.3, it is possible that several local outcomes from
within a particular rule will map to a common global outcome. As the immediate
objective is to find the global rule outcome distribution, the differences between lo-
cal outcomes which map to the same global outcome can be disregarded and those
outcomes can be replaced by a generic local outcome with an example count equal to
the sum of the example counts of the replaced local outcomes.

This procedure results in a matrix of example counts n where n refers to the
total number of example counts associated with global outcome k from local rule :.
Let a refer to a vector of global outcome distribution hyperparameters, K refer to
the total number of global outcomes and I refer to the total number of associated
local rules. As the outcome distribution of each local rule is independent of any other
local rule’s outcome distribution given the global outcome set, the log probability of
the count matrix is simply the sum of the log probabilities of the count vectors of
each local rule. As specified by the generative model, there is a uniform prior on all
hyperparameters of the global rule outcome distribution, and so the prior on these

hyperparameters does not factor into the overall probability. Thus:

I
logp(n|a) o< ) _ logp(ni|a) (4.9)

i=1
Plugging in the Polya probability distribution into the probability of the example

count vector for each task yields:

I K K
logp(nla) o< Y logT(> o) — logT'(D _ mak + o)+
k=1 k=1

i=1

K
ZlogI‘(nuc + ax) — logT' (o) (4.10)
k=1

However, this is still not the true quantity that describes the probability of the
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example count matrix. The generative model implies that if a global outcome is
not selected, then its hyperparameters should not be factored into the probability.
To accommodate this, the first two sums over outcomes must be selective in which
hyperparameters are allowed to be added. Note that by the generative model, the
hyperparameters new outcome and the noise outcome are not discounted, even if
there are 0 example counts for either outcome. This fact can be neatly factored into
the math equations by initializing the example counts for the two outcomes with a

small number like .01. Discounting hyperparameters with 0 example counts yields:

1 K K
logp(n|a) o ZlogI‘( Z ay) — logl( Z Nik + o) +

i=1 k=1n;>0 k=1mn;>0

K
Z logl'(nu + o) — logT(ak) (4.11)
k=1

Finally, through experimentation, we discovered that using the above equation to
calculate a new global rule outcome distribution led to very large hyperparameters
which often dwarfed pertinent data from local tasks. In fact, if there is only a single
associated rule for a global rule, the probability-maximizing hyperparameters are
infinity, and thus no amount of local data can outweigh the prior. To combat that
trend, we add an additional term to the probability which penalizes the global rule

outcome distribution for having very large hyperparameters. We assign a weight W

to dictate the strength of the this bias. Thus, the final probability distribution is:

K 1 K K
logp(n|a) o< —W * log(z o) + Z logI'( Z o) — logI'( Z Nk + o)+
k=1

i=1 k=1n;>0 k=1,n;>0

K
> logl'(ny + ax) — logT'(a) (4.12)
k=1
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Setting the Global Hyperparameters

The next step involves setting the global rule outcome distribution hyperparameters in
order to maximize the above probability. As the quantity is complex and highly non-
linear, an intensive convex optimization search is needed. We used the the Newton
iteration method to converge to the appropriate hyperparameters.

The main criterion for being able to use a convex optimization scheme is the con-
vexity of the underlying distribution. To determine the convexity of our probability
function, we tested if the hessian of the probability function was negative semidefinite.

Let f be the log probability function and H(f|a) be the hessian of f. Then:

oy o4 _&f

Oaj Oaibay 0 Bolak
82f 92f 82§
H(fla) — Oa10as 5(112. "t daglay
92 52 82
aaléfﬂ BazB{xK %’é
Pt Y Wla)-v 5 5>
X —% + U (ag)— P (nip+ag)+2'( Tim+0tm ) —P'( am)
aa% (Zm=1 am)2 i,nik>0 m=1,niy,>0 m=1,n;p,>0
(4.13)
&f 14 L po
X —F + Z v'( Nim + Q) — ¥'( Z Q)
doyda; (D ome=1 Om)? inik>0,mi5>0 m=§m>o m=1,nim>0
(4.14)
where
Ologl'(z)
U(z) = 4.15
(@)= = (4.15)
0Y(z)
! 4.16
¥(s) = 25 (4.16)

A convex probability function should have non-positive determinants over all
square sub-matrices of the hessian including the top-left element. Unfortunately,
it is immediately clear that even the top left element of the hessian may be positive

in some circumstances. To combat non-convexity, we used a standard technique of
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subtracting constant from the main diagonal to force the probability distribution to
behave convexly|7].

To start the convex optimization, an initial point must be specified. We adapted a
common initialization point for the standard Polya distribution to suit our probability
distribution. We first calculate P, the proportion of each outcome occurrence for each
task:

Nik

Pk=—ak (4.17)
Z}K:l Nij

Next, we calculate the average A and squared average S of each outcome using

all non-zero proportions. Thus:

K
A = 2k=1,}-",—k>0 Py

i = 4.18
Counti":l(P,-k > 0) ( )

K
—1.p>0 P
2k=1,Py>0 ik (4.19)

T CountX_ (P, > 0)

The intensity s of the initial probability distribution is calculated as follows:

s = medianf ( (4.20)

A — Sk
Se — Az

Finally, the initial guess a is chosen as the product of the intensity and the mean

of the outcomes:

o = 8% Ay (4.21)

Once an initial point is chosen, the Newton iteration method is repeated until
convergence. Thus, for initial guess a,q, an update consists of updating the guess
t0 ey by the stated formula. Note that as mentioned earlier, in order to ensure
convexity and an invertible hessian, a negative constant is subtracted from the main

diagonal if needed:

Onewy = Qold — H™ (flaold) * V(f'aold) (422)
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Using this procedure, one is able to estimate a likely value of the global hyperpa-

rameters.

Using the Global Hyperparameters

The third step of global outcome distribution step is estimating the probabilities of
the local outcome distributions given the global outcome distribution. Unfortunately,
the probability function shown earlier cannot be used to calculate the probability of
all local outcome distributions at once as steps were initially taken to merge similarly
mapped local outcomes together. Thus, the probabilities of each local rule outcome
distribution must be calculated given the global outcome hyperparameters by the
method described in section 4.2.3. The probability of the global outcome distribution
can then be reported as the sum of all local outcome distributions.

Using the methods outlined here, the global ruleset search can test ruleset changes,
build outcome sets for each proposed change, and calculate outcome distribution
probabilities for each step of the outcome set step. By greedily searching through
many levels, the global ruleset eventually stops searching when no further ruleset
operators increase the probability of the global ruleset.

By iterating between optimizing source task rulesets and the global ruleset, the
algorithm arrives at a likely global ruleset. This is then used as a prior for the target

task. The following section will show the results of the optimization strategy.
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Chapter 5

Results

This section will describe the results of the hierarchical rule transfer model.

The following blocks-world domains each have a generative model different than
the one specified in chapter 3. Thus, it is informative to note that our generic gener-
ative model is widely applicable to a large class of domains. We call the generative
models that create test tasks domain generators. In the first four domains, task
rulesets are generated by copying all rules from the global ruleset. In domains with
structural variation between tasks, specific functions constituting parts of the context
or outcome set of rules are chosen when each task ruleset is initialized. Finally, the
probability distribution assigned to each local rule is sampled from a Dirichlet with
the hyperparameters of the corresponding global rule. In the fifth random domain,
the generative model is explained in the section for the random domain.

Once each task ruleset has been created, a set of examples is sampled by creating
random worlds and applying rules from the task rulesets. The task of the learner is
to reconstruct the target task ruleset from these examples.

Both the learning techniques, using transfer and not using transfer, eventually
converge to the optimal ruleset given enough examples. Thus, the measure of success
in transfer learning is how well the transfer learners can perform with a small number
of examples. To quantify accuracy, we use a measure called sampled variational
distance.

When using sampled variational distance, we attempt to determine the ”distance”
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between the actual target ruleset R,., and the learned target ruleset Rjeqrned- To do
this, an initial world state S; and action A; are created. Then, the actual target task
ruleset R,y is used to generate the subsequent state S;,;. The probability of arriving
at state S;y; is measured using both rulesets. The variational distance V Dgmpie for

that sample is then defined as:

VDsample = |P(StaAta St+1|Rreal) - P(StaAta St+1|Rlearned)|

The overall variational distance is simply the average variational distance of many
samples. Let there be b total samples. Then, the total variational distance V D;ota1

is:

b
1
VDtatal = '5 Z VDz

i=1

The computational requirements of the transfer learning algorithm are demanding
in both time and space. The running time of the multi-tiered coordinate ascent
algorithm was never formally analyzed; however, it is most likely that the run time is
polynomial in the size of the language, the number of source tasks, and the number
of examples in each of the provided tasks. Despite the polynomial run time, the
polynomial degree behind the run time is quite large leading to lethargic behavior
when the example sets, number of source tasks, or domain complexity is too big.

The optimization strategy detailed in chapter 4 was used to gather the results. For
all domains, a no-transfer learner was added to determine the benefit of using transfer
learning. We were able to use the same generative model for the no-transfer learner
by simply setting the global ruleset to be empty. The generative model was used
nearly exactly for the model probability function. However, we found it necessary to
modify the penalty of adding new literals in the formula modification process. Under
the generative model, it is very easy to remove literals from a formula, but extremely
difficult to add literals to the formula. To counteract this, we raised the penalty of
adding a literal to a formula to the power .5 to reduce the overall impact. We found

this necessary to allow meaningful global rules to be created.
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Domain No Transfer | 1x5000 | 2x2500
Gripper Size 3.96 30.42 | 147.49
Slippery Gripper 13.85 33.09 | 140.15
Slippery Gripper Size 4.64 30.46 | 104.20

Domain | No Transfer | 1x1000 | 4x250 | 10x100
Random 8.10 11.02 | 314.28 | 626.07

Figure 5-1: Computation time(seconds) per search iteration with 2000 target task
examples.

Each point on the following graphs represents the average of 20 iterations. Vari-
ational distance was averaged over 1000 samples. The notation ”1x5000” indicates
that there was 1 source task with 5000 examples. The average running times for a
given number of source tasks and examples are given in figure 5-1. In each case, there
was 2000 target task examples. The random domain was run with fewer examples
due to the longer computation time.

The next sections will describe the dynamics of the test domains and the obtained

results.

5.1 Gripper Size Domain

The gripper size domain is a relatively simple domain with only a single rule per task
ruleset. There are 3 functions in the domain: size, location, and weight. In each task,
only heavy blocks of a certain task-specific size can be picked up successfully. Since
the task-specific size varies between tasks, the rules for different tasks have different
structures. The location function is simply a distracter. Figure 5-2 shows the domain
generator for the gripper size domain.

As the gripper size domain has only one rule, the global ruleset almost always
learns the correct global rule. Figure 5-3 shows a sample learned global ruleset. This
rule efficiently serves as a prior for local rulesets as it can be easily specialized with

a task-specific size literal to model a specific task. As can be seen in figure 5-4,
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Pickup(X) : OnTable(X) = true,
Size(X) = random(Sizel, Size2, Size3, Sized, Size5, Size6, SizeT)
. { 500.0 : OnTable(X) = true
300.0 : OnTable(Y) = false

Figure 5-2: Domain generator for the gripper size domain

Pickup(X): OnTable(X) = true

.09 : noise
— ¢ 50.21: OnTable(X) = true
224.87: OnTable(X) = false

Figure 5-3: Sample learned global rule for the gripper size domain

Gripper Size Domain
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Figure 5-4: Accuracy results for the gripper size domain comparing transfer learners
vs a non-transfer learner. ‘
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Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = true, BaseType(Y) = block
6.6: On(X,Y) =true
— ¢ 6.6: On(X,Y) = false, GripperFree() = true
6.6 : On(X,Y) = false, GripperFree() = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = false, BaseType(Y) = block
2.0: On(X,Y) =true
— ¢ 4.0: On(X,Y) = false, GripperFree() = true
14.0: On(X,Y) = false, GripperFree() = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = true, BaseType(Y') = table
10.0: On(X,Y) = true
10.0: On(X,Y) = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = false, BaseType(Y') = table
4.0: On(X,Y) = true
16.0: On(X,Y) = false

Figure 5-5: Domain generator for the slippery gripper domain

the transfer learners consistently perform significantly better than the non-transfer
learner. The global ruleset is quickly able to learn that the OnTable predicate is
relevant. Furthermore, the global rule learns the correct outcome distribution which
biases the target ruleset to learn the correct proportions of the outcomes with rela-

tively little data.

5.2 Slippery Gripper Domain

The slippery gripper domain is a complex domain adapted from a single task variant
of the ruleset used in probabilistic planning[4]. Unlike the gripper size domain, the
slippery gripper domain contains a significant amount of parametric variation rather
than structural variation. There are four rules in the domain. The language consists
of 4 functions: location, wetness, status of the gripper, and base type. In each
task, a combination of the wetness and base type of the targeted block affects the
probability of successfully picking up the block, unsuccessfully dislodging the block,
or unsuccessfully not altering the system. The domain generator can thus be modeled

by figure 5-5.
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Pickup(X,Y): On(X,Y) = true, GripperFree() = true, BaseType(Y) = table

.09 : noise
— < 36.12: On(X,Y) =true
52.54: On(X,Y) = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Base Type(Y') = block
.07 : noise
8.97: On(X,Y) = true
10.54: On(X,Y) = false, GripperFree() = true
17.37: On(X,Y) = false, GripperFree() = false

Figure 5-6: Sample learned global rules for the slippery gripper domain

Slippery Gripper Domain
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Figure 5-7: Accuracy results for the slippery gripper domain comparing transfer
learners vs a non-transfer learner.
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The slippery gripper domain is significantly more challenging domain than the
gripper size domain due to the presence of four rules. Even with 2000 examples, the
no-transfer learner cannot learn the optimal ruleset. However, the transfer learners
can learn portions of the correct ruleset and allow for easier structural and parametric
modifications for local rulesets to match the true ruleset. Figure 5-6 shows a sample
global ruleset learned by the optimization algorithm. Although the global ruleset only
contains two rules rather than four, it allows local rulesets to both specialize each rule
into multiple rules (splitting along wetness for example) if required or simply use a
broad generalized rule in the local ruleset. As can be seen in figure 5-7, the transfer
learners are able to utilize the global ruleset effectively to rule a model of the task

quicker than the non-transfer learner.

5.3 Slippery Gripper with Size Domain

The third domain, the slippery gripper with size domain, is a cross of the slippery
gripper domain and gripper size domain. The domain sports 4 rules and structural
variance across tasks. As in the slippery gripper domain, the wetness and base type
of the secondary block play roles in modifying the outcome distributions. In addition,
as in the gripper size domain, only blocks of a certain task-specific size can activate
the rules. Thus, the slippery gripper size domain domains both significant structure
and parametric variation. The domain generator is given in figure 5-8.

The slippery gripper with size domain is the most challenging domain due to
presence of four rules with both parametric and structural variation between tasks.
The learned global ruleset for this domain, figure 5-9, is very similar to that of the
slippery gripper domain. In fact, it is sometimes difficult to tell the two apart based on
the global ruleset. The transfer learners still manage to perform significantly better
than the non-transfer learner in this domain as seen in figure 5-10. In addition
to aiding in parametric learning, the global ruleset helps the local rulesets easily
specialize the global rules into task-specific local rules by the addition of a single size

literal. Overall, the transfer learners perform better than the non-transfer learner in
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S =random (Sizel, Size2, Size3, Size4, Sized, Size6, SizeT)
Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = true, BaseType(Y) = block
Size(X) =S
6.6: On(X,Y) = true
— { 6.6 : On(X,Y) = false, GripperFree() = true
6.6: On(X,Y) = false, GripperFree() = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = false, BaseType(Y') = block
Size(X) =S5
2.0: On(X,Y) = true
— { 4.0: On(X,Y) = false, GripperFree() = true
14.0: On(X,Y) = false, GripperFree() = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = true, BaseType(Y') = table
Size(X) =S
10.0: On(X,Y) = true
{ 10.0: On(X,Y) = false, GripperFree() = true

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Wet() = false, BaseType(Y') = table
Size(X) =S
., { 4.0: On(X,Y) = true
16.0: On(X,Y) = false, GripperFree() = true

Figure 5-8: Domain generator for the slippery gripper with size domain

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, Base Type(Y') = table, Size(X) = Size2

.09 : noise
— ¢ 27.93: On(X,Y) = true
39.32: On(X,Y) = false

Pickup(X,Y): On(X,Y) = true, GripperFree() = true, BaseType(Y') = block
.07 : notse
4.82: On(X,Y) = true
6.62: On(X,Y) = false, GripperFree() = true
10.22: On(X,Y) = false, GripperFree() = false

Figure 5-9: Sample learned global rules for the slippery gripper with size domain
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Slippery Gripper with Size Domain
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Figure 5-10: Accuracy results for the slippery gripper with size domain comparing
transfer learners vs a non-transfer learner.

this domain.

5.4 Random Domain

The random domain presents an interesting challenge for the transfer learning algo-
rithm: will misinformation force the algorithm to learn a bad ruleset and lead to
worse performance than the non-transfer case?

The random domain has 4 functions {A,B,C,D} each with two possible boolean
values. The random domain generator randomly selects to generate 1-4 rules. Each
rule’s context is randomly selected to be 1-4 literals long. Each rule is given 1-
4 outcomes each with 1-4 literals. Finally, each outcome distribution is randomly
selected. Constraints, such as the fact that no two functions in the context can be
identical, require many samples before suitable random rulesets can be generated.

Interestingly, the transfer learners perform on par or slightly better compared to

the non-transfer learner as can be seen in figure 5-12. This advantage most probably
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Pickup(X): A() =true
(.13 : noise

45.38: A() =true, B() = true
84.28: A() = true, B() = false, C() = true
64.85: A() = true, B() = false, C() = false, D() = true

— 4

17.43: A() = false, C() = false, D() = true

24.93: A() = false, C() = frue, D() = false

3741 : A() = false, C() = true, D() = true

([ 11.01: A() = false, B() = true, C() = true, D() = false

Figure 5-11: Sample learned global rule for the random domain.

stems from the fact that the global ruleset learns rules in the transfer case but is empty
in the non-transfer case. Thus, regardless of the amount of information contained in
each of the global rules, the fact that the global ruleset contains one or more global
rules places a bias on the target task ruleset to learn rules. The rules learned by the
global ruleset are not very helpful as can be seen in figure 5-11; however, overall,
it appears that the transfer learners are not severely affected by unrelated source
rulesets.

In the three structured tested domains, the transfer learners are able to utilize
the target task data more efficiently than the non-transfer learner. Moreover, in the

random domain, the transfer learners perform no worse.
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Figure 5-12: Accuracy results for the random domain comparing transfer learners vs
a non-transfer learner.
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Chapter 6

Future Work and Conclusions

Overall, it can be seen that the overall model proposed is conducive to knowledge
transfer in the tested domains. However, there was one major problem with the
optimization strategy: it requires a significant amount of data for the source tasks
in order to learn an appropriate global ruleset. To counter this, we developed an
alternative direct optimization strategy rather than the coordinated-ascent strategy

described in the past few chapters.

6.1 Direct Optimization Strategy

In testing the optimization strategy previously presented, we noticed some unsatis-
fying trends in the optimization of the global ruleset. Namely, in domains like the
slippery gripper domain, the global ruleset would often learn only a subset of the
ideal global ruleset when the source tasks each contained small data sets. This be-
havior arose because the local source task rulesets were not able to learn the complete
dynamics of the domain themselves. As the probability of the model is strengthened
when the global and local rulesets are similar, both types of rulesets would learn
over-generalized rules to explain the domain. A local ruleset would be unwilling to
specialize its rule as that would decrease the probability of the local ruleset, and
the global ruleset would be unwilling to create additional specializing rules without

support from the local rulesets. This produced a catch-22 type behavior in the opti-
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mization algorithm, even though the generative model may give a higher probability
to a more complex model.

To combat this unwanted behavior, we proposed a direct optimization strategy
rather than a coordinate-ascent based optimization strategy. Under the new strategy,
only the global ruleset is optimized. However, for each proposed change in the global
ruleset, all local rulesets are recalculated using the newly proposed global ruleset. This
optimization technique requires considerably more time than the previous method due
to the frequency of local ruleset searches.

Our preliminary results suggest that the direct optimization strategy is much
better than the coordinate-ascent strategy at learning complete global rulesets with
small amounts of data in each source task. In fact, using 10 source tasks with 200
examples each, a setup which would usually cause the coordinate-ascent algorithm
to learn a single global rule, often produced the complete 4 rule slippery gripper
global ruleset. The downside to the method is its run-time. While the run-time
was not carefully measured, on the domains tested, it was 20-100 times slower than
the coordinate-ascent algorithm. As this method was not extensively explored, it is
uncertain if the learning benefits in the tested domains are broadly applicable, but

the method appears to hold promise.

6.2 Conclusion

Overall, it appears that transfer learning can be applied to relational rule transfer.
The generative model we presented in chapter 3 can apply to a wide range of domains.
Furthermore, the generative model presented is not absolute: it can easily be modified
if domain specific knowledge is known. The coordinate-ascent optimization strategy
described in chapter 4 proved to be robust in the various testing domains. This
thesis presented a framework with which to transfer relational rule structure between
multiple tasks which can be extended in the future to work in more complex domains,

languages, and data sets.
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