
Crystallization Studies of 5'-deoxyadenosyl Radical Enzymes

By
Laura Phillips

B.A. Chemistry
Carleton College

Submitted to the Department of Chemistry in September 2007 in Partial
Fulfillment of the Requirements for the Degree of

Master of Science
in Biological Chemistry

At the

Massachusetts Institute of Technology
September 2007

C 2007 Massachusetts Institute of Technology
All rights reserved

I.

Signature of Author / -.

Certified by

Accepted by

MASSACHUSETTrS INSTITUL
OF TECHNOLOGY

SEP 1 7 2007

LIBRARIES

Department of Chemistry
August 2007

Catherine L. Drennan
Associate Professor

Thesis supervisor

Robert W. Field
Chairman, Departmental Committee on Graduate Students

MS

V

--
r

".,- , -



Crystallization Studies of 5'-deoxyadenosyl Radical Enzymes

By

Laura Phillips

Submitted to the Department of Chemistry in September 2007 in Partial Fulfillment of
the Requirements for the Degree of Master of Science in Biological Chemistry

ABSTRACT

Both adenosylcobalamin- and S-adenosylmethionine-dependent radical enzymes
use a 5'-deoxyadenosyl radical intermediate to abstract a hydrogen atom from their
substrates. In the case of adenosylcobalamin-dependent enzymes, the 5'-deoxyadenosyl
radical is generated by homolytic cleavage of the carbon-cobalt bond of
adenosylcobalamin. In the case of S-adenosylmethionine-dependent radical enzymes, the
5'-deoxyadenosyl radical is generated by reductive cleavage of the S-adenosylmethionine
following injection of an electron into the sulfur atom by a reduced [4Fe-4S] cluster.
Most known structures of adenosylcobalamin- and S-adenosylmethionine-dependent
radical enzymes show that the enzyme active site is in a full or partial TIM barrel. In
order to further understanding of the catalytic requirements of enzymes in these classes,
crystallization studies were undertaken on four enzymes. The structure of the resting
form of lysine 5,6-aminomutase, an adenosylcobalamin-dependent enzyme, is known
from previous work in our laboratory; however, the structure of a catalytic state has not
been solved. Here, crystallization experiments were performed to try to trap the catalytic
enzyme form. Human adenosyltransferase catalyzes the formation of adenosylcobalamin
from cob(II)alamin and adenosine triphosphate. Crystallization experiments were set up
with and without cobalamin to try to solve its structure. Lipoate synthase is another S-
adenosylmethionine-dependent radical enzyme, performing two sulfur insertion reactions
on a protein-bound octanoyl group to form a lipoyl group. Crystallization experiments
were performed on this enzyme, with and without the substrate, in an attempt to solve its
structure and better understand the mechanism of sulfur insertion. Class III
ribonucleotide reductase activase is an S-adenosylmethionine-dependent radical enzyme
that activates class III ribonucleotide reductase by abstracting a hydrogen atom from a
glycine residue. Crystallization experiments were performed with both enzymes present
in order to try to determine the structure of the complex; the activase is unstable alone.
Thus far, none of the crystallization experiments described here resulted in crystals of
high enough quality to solve the structures of these enzymes.

Thesis supervisor: Catherine Drennan
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1. Introduction

1.1. Radical enzymology

Radical enzymes are critical for cell function, often catalyzing the most challenging of

enzymatic reactions. In the last 15 years, knowledge of enzymatic reactions that employ

radical intermediates to catalyze difficult chemistry has increased dramatically (reviewed

in 1). Organic radical mechanisms are used in areas as diverse as isomerization, DNA

synthesis and repair, vitamin synthesis, and antibiotic synthesis. Radical reactions

employ coenzymes to generate or stabilize the radical. Some of the same coenzymes

commonly used in two-electron enzymatic reactions, such as pyridoxal 5'-phosphate

(PLP), thiamine pyrophosphate (TPP), and adenosylmethionine (AdoMet), can also

facilitate radical reactions. Metallocofactors can facilitate radical generation by taking

advantage of the redox characteristics of metals. Two mechanisms that are commonly

used to abstract a hydrogen atom from a substrate without the use of molecular oxygen

are discussed here. The first involves homolytic cleavage of AdoCbl to generate the 5'-

deoxyadenosyl radical (Ado.); the second uses a 4Fe-4S cluster and AdoMet to generate

Ado*.

1.2. Adenosylcobalamin-dependent enzymes

AdoCbl-dependent enzymes are found in organisms ranging from bacterial species to

humans. AdoCbl is used by enzymes to catalyze several types of reactions including 1,2

rearrangements in which a group attached to a carbon atom is interchanged with a

hydrogen atom on the adjacent carbon (2). The cofactor contains an organometallic bond

between carbon 5 on the ribose portion of the adenosyl group and the cobalt, which is



coordinated by the nitrogen atoms in the corrin ring and the dimethylbenzimidazole

(DMB) (Figure 1.1). The cofactor can bind either "base-on," with the DMB coordinating

the cobalt as the lower ligand, or "base-off" with the DMB displaced by a histidine

residue from the enzyme as the lower ligand.

1.2.1. General mechanism

Catalysis is initiated by homolytic cleavage of the weak (~30 kcal/mol (3)) C-Co bond,

creating cob(II)alamin and Ado*. Since AdoCbl is a highly reactive cofactor, organisms

must prevent it from generating uncontrolled radicals; homolysis is usually triggered by

substrate binding. Ado' is highly reactive, and quickly abstracts a hydrogen atom from

the substrate. In B12-dependent isomerases, this substrate radical can undergo a

rearrangement to form a product radical and then back-abstract a hydrogen atom from the

deoxyadenosine to re-create Ado*, which can then re-combine with cob(II)alamin to re-

form the cofactor (Figure 1.2).

1.2.2. Reactions catalyzed by adenosylcobalamin-dependent enzymes

AdoCbl enzymes catalyze a variety of reactions. All of the isomerases catalyze a 1,2

rearrangement between a hydrogen atom and a substituent that can be oxygen, nitrogen,

or carbon. In diol dehydratase and glycerol dehydratase, the migrating group is an -OH,

which moves to a carbon that already has an -OH substituent, and water is eliminated

(Figure 1.3). In Lysine 5,6-aminomutase (5,6-LAM), ornithine aminomutase, and

ethanolamine ammonia lyase, an -NH 2 group migrates (Figure 1.3); in ethanolamine

ammonia lyase, ammonia is eliminated in a mechanism similar to that of diol



dehydratase. In glutatmate mutase and methylmalonyl-CoA mutase (MCM), a carbon

skeleton rearrangement occurs via migration of a carbon substituent (Figure 1.3). In

class II ribonucleotide reductase (class II RNR), another AdoCbl-dependent enzyme,

AdoCbl is used in a reduction reaction mediated by a thiyl radical formed by hydrogen

abstraction from a cysteine thiol, which then catalyzes the reduction of ribonucleotides

(Figure 1.3). While the overall mechanism of this reaction varies greatly from that of the

isomerases, in every case, the reaction involves abstraction of a hydrogen atom by Ado*.

1.2.3. Adenosylcobalamin transport and activation

For AdoCbl-dependent isomerases in the absence of substrate, the cobalamin homolysis

products are not observable in solution; however, upon substrate binding, the homolytic

cleavage rate is increased a trillionfold (4). An important question in the study of

AdoCbl enzymes is how the enzyme avoids generating potentially harmful radicals in the

absence of substrate, and how the substrate binding increases the cleavage rate so

dramatically. In addition, the organism must avoid generating radicals from AdoCbl

before it is loaded on the enzyme. This is important both in protecting the cell from

radical damage and protecting the cofactor from destruction, since cobalamin

biosynthesis requires a lot of energy. The cobalamin transport system in humans has

been studied extensively, and it appears as though cobalamin is essentially always

protein-bound in the body (5).

While many different AdoCbl isomerases are found in bacteria, humans use AdoCbl in

only one enzyme, MCM, which performs a carbon skeleton rearrangement to convert



methylmalonyl-CoA into succinyl-CoA. If this enzyme is inactive, methylmalonic

aciduria, a potentially fatal condition, can result. It has been suggested that human

adenosyltransferase (hATR) both catalyzes the reaction that forms AdoCbl from

cobalamin and adenosine 5'-triphosphate (ATP) and acts as a chaperone, handing off

AdoCbl to MCM (6). This delivery service would prevent side reactions that could occur

if the AdoCbl was floating around in the cell. Once the AdoCbl is in place on the

enzyme, it is also necessary to control reactivity to prevent radical damage to the enzyme.

In the case of MCM, this is achieved in part through the coupling of substrate binding to

C-Co bond homolysis (7), and in part through protection of the enzyme by MeaB, a

chaperone that binds to MCM and prevents inactivation (8).

1.3. Adenosylmethionine radical enzymes

AdoMet has long been known as a methylating agent used in many pathways in the cell

(reviewed in 9). More recently, enzymes that use AdoMet as a free radical initiator have

been characterized (reviewed in 1). AdoMet radical enzymes participate in biosynthetic

and catabolic pathways and are present in all three kingdoms of life. All AdoMet radical

enzymes contain a CxxxCxxC motif, with the three cysteines coordinating three of the

irons in the [4Fe-4S] cluster (10). The fourth iron of the [4Fe-4S] cluster is coordinated

by AdoMet itselt by its amino group and carboxylate oxygen (11).

1.3.1. General mechanism

The cluster must be reduced from its resting state of [4Fe-4S] 2+ to [4Fe-4S]'+ for activity;

in E. coli, this reduction is catalyzed by flavodoxin (12). The reduced cluster transfers an



electron to AdoMet, reductively cleaving the carbon-sulfur bond to produce methionine

and Ado*, while simultaneously regenerating the [4Fe-4S]2+ cluster (Figure 1.4). The

carbon-sulfur bond cannot be cleaved homolytically as in AdoCbl-dependent enzymes

because the bond is too strong (greater than 60 kcal/mol) (13). After cleavage, the 5'-

deoxyadenoxyl radical abstracts a hydrogen atom from the substrate. After the reaction

occurs, in some cases (lysine 2,3-aminomutase (2,3-LAM), spore photoproduct lyase),

the AdoMet is re-formed (1); in other cases (lipoate synthase (LipA), class III RNR,

Biotin Synthase (BioB)), methionine and 5 '-deoxyadenosine are products of the reaction

(1).

1.3.2. Reactions catalyzed by AdoMet radical enzymes

AdoMet radical enzymes catalyze reactions on a huge variety of substrates, ranging from

as small as the single amino acid lysine to large proteins (Figure 1.5). These reactions

include amino group migration, carbon-carbon bond cleavage, carbon-sulfur bond

formation, alcohol oxidation, and glycyl radical formation. While the substrates vary

greatly in size and the reactions vary greatly in outcome, all are initiated by the

abstraction of a hydrogen atom. In the class III RNR activating enzyme and pyruvate

formate lyase activating enzyme, as well as other enzymes, the AdoMet radical enzyme

abstracts a hydrogen atom from a glycine residue in another protein; this glycyl radical

then goes on to catalyze another reaction. In the case of class III RNR, this glycyl radical

abstracts a hydrogen atom from a cysteine, forming the thiyl radical necessary for

ribonucleotide reduction with a similar mechanism to the other classes of RNR.



1.4. Adenosyl radical chemistry and enzymology

AdoMet radical enzymes use a [4Fe-4S] cluster and AdoMet to create Ado*, while

adenosylcobalamin (AdoCbl)-dependent isomerases also generate Ado* using coenzyme

B12. Both AdoMet radical enzymes and AdoCbl isomerases can have TIM barrel folds or

partial TIM barrel folds where the radical chemistry occurs (14). TIM barrels were first

discovered in the enzyme triose phosphate isomerase and are ubiquitous in nature. They

are most often involved in energy metabolism, but are present in at least 28 different

enzyme classes. A full TIM barrel consists of an (oW)8 motif. The #-sheets line the

interior of the barrel, which can protect reactive intermediates from solvent. While in the

solved structures of AdoCbl enzymes, the TIM barrel is the full (4o)8 barrel (15, 16, 17,

18, 19, 20), three out of the four structures of AdoMet radical enzymes have a three-

quarters (01)6 barrel (21, 22, 23, 24). Superposition of the TIM barrel of AdoCbl-

dependent diol dehydratase with that of the AdoMet radical enzyme BioB shows that the

ring of diol dehydratase's AdoCbl occupies the same position as the [4Fe-4S] cluster in

BioB (14).

The AdoMet and AdoCbl cofactors are related solely by the 5'-deoxyadenosyl moiety

present in both compounds (Figure 1.1). Since both AdoMet radical enzymes and

AdoCbl isomerases use the same putative radical intermediate, they can catalyze very

similar reactions. 2,3-LAM and 5,6-LAM perform essentially the same chemistry in the

same pathway, yet 2,3-LAM is a AdoMet radical protein and 5,6-LAM is AdoCbl-

dependent. After the generation of Ado*, the proposed mechanisms are the same. Both



enzymes use PLP to bind the lysine and potentially to stabilize the radical intermediates

(13, 25). Why would nature choose to catalyze 1,2 amino migrations with different

sources of Ado*? Similarly, class II RNR uses AdoCbl to form the thiyl radical, whereas

class III RNR activase is an AdoMet radical enzyme that creates the thiyl radical via a

glycyl radical intermediate. The structures of these enzymes would be very interesting to

compare in order to see the requirements for AdoCbl catalysis vs. AdoMet catalysis.

1.5. Summary

AdoMet and AdoCbl radical enzymes catalyze important reactions via an Ado*

intermediate. AdoMet-dependent enzymes use a [4Fe-4S] cluster and a reducing system

to reductively cleave the AdoMet, creating the radical. In AdoCbl-dependent enzymes,

the carbon-cobalt bond of the AdoCbl is homolytically cleaved to create the same radical

species. Both the AdoMet radical enzymes and the AdoCbl isomerases use a TIM barrel

fold or partial TIM barrel fold to sequester radical intermediates. Given these

similarities, it is not surprising that these classes of enzymes can catalyze very similar

reactions.

I have worked on four projects in the AdoMet and AdoCbl enzyme families. I have

performed crystallization trials of 5,6-LAM, an AdoCbl isomerase (Chapter 2), and

hATR, an adenosyltransferase that transfers the adenosyl group onto cobalamin in

humans (Chapter 2). I have also worked on NrdG, the class III RNR activase (Chapter

3), and LipA, a sulfur insertion enzyme (Chapter 3); both are AdoMet radical enzymes.



1.6. Figures
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2. Lysine 5,6-aminomutase and human adenosyltransferase crystallization studies

2.1. Introduction to crystallography with adenosylcobalamin

To date, the structures of several adenosylcobalamin (AdoCbl)-dependent enzymes have

been solved (1,2,3,4,5,6,7). Aside from class II ribonucleotide reductase (RNR), which

has a structure more like that of the RNR family than that of other AdoCbl-dependent

enzymes (1), all of these enzymes employ a TIM barrel as their catalytic subunit. The

structure of the AdoCbl-binding domain differs according to cobalamin binding mode.

The structures where AdoCbl is bound base-off contain a Rossmann-like fold, with

AdoCbl bound near the C-terminus of this domain (2,3,4). In contrast, in the structures

and predicted structures where AdoCbl is bound base-on, the cofactor is bound on the

edge of a beta sheet near the C-terminus of the protein (5,6, 7). Given the weakness of the

carbon-cobalt bond, it is unsurprising that the X-ray beam often cleaves the cofactor, and

in some cases the upper ligand is not seen at all in the structure (4). Interestingly, a very

long lower ligand nitrogen-cobalt bond has been seen in many of the structures (3,4);

however, this could be due to X-ray beam reduction of the cobalt instead of bond

lengthening upon cobalamin-enzyme interaction.

2.2. Lysine 5,6-aminomutase

2.2.1. Introduction to lysine 5,6-aminomutase

AdoCbl-dependent isomerases catalyze 1,2 rearrangements of a function group (or

carbon) and a hydrogen atom. These enzymes are often found in catabolic pathways,

rearranging the functional group or carbon skeleton to allow further degradation of the

product. Lysine 5,6-aminomutase (5,6-LAM), an AdoCbl and pyridoxal 5'-phosphate



(PLP)-dependent enzyme, catalyzes the radical-based 1,2 amino migration of the E amino

group from carbon 6 to carbon 5 of DL-lysine and L-fl-lysine (Figure 2.1). Lysine 2,3-

aminomutase (2,3-LAM), also part of the lysine fermentation pathway, catalyzes the

interconversion of lysine and L-/0-lysine (Figure 2.1), but uses an AdoMet radical

mechanism. In 5,6-LAM, turnover is initiated upon substrate binding through homolysis

of the C-Co bond of AdoCbl to form Ado* (Figure 2.2). As with the other isomerases,

there is a large acceleration of C-Co bond homolysis upon substrate binding.

The role of PLP in the isomerization is not clear. It has been postulated that the role of

PLP is to stabilize radical intermediates with its conjugated pi system, a hypothesis that

has been supported by computational studies (8). However, a simple model for the 5,6-

LAM reaction, the rearrangement of the aziridylcarbinyl radical, occurs without an

aromatic substituent at cryogenic temperatures (9). The latter suggests that the

rearrangement catalyzed by 5,6-LAM could occur without PLP. Interestingly, 2,3-LAM

also has PLP as a cofactor (10), suggesting that PLP has mechanistic relevance.

2.2.2. Previous work in the Frey laboratory

While 5,6-LAM had been previously identified, the development of an E. coli expression

and purification system in the Frey lab at the University of Wisconsin facilitated further

studies (11). The recombinant protein is six times as active as protein isolated from C.

sticklandii (11). The base-offbinding of AdoCbl was confirmed by EPR (11). Through

EPR and UV/Vis spectroscopy, the abstraction of a hydrogen atom from C5 of lysine was

found to be the rate-limiting step of the reaction (12).



The Frey lab also studied the inactivation of the enzyme. 5,6-LAM is inactivated rapidly

in the absence of the E2 activating enzyme and ATP. E2 uses ATP to re-activate 5,6-

LAM, but the mechanism of the reactivation is unknown (13). The inactivation occurs at

the same rate as production of 5'-deoxyadenosine and cob(III)alamin (14). Tang, Chang,

and Frey proposed that this inactivation is likely caused by an electron transfer from

cob(II)alamin to the substrate or product radical followed by a proton transfer to the

newly formed carbanion, creating either substrate or product, 5'-deoxyadenosine, and

cob(III)alamin (14). This inactivation happens more rapidly when beta lysine is the

substrate (14).

2.2.3. Structure of lysine 5,6-aminomutase in the "resting" conformation

The crystal structure of the substrate-free form of 5,6-LAM was solved to 2.8 A

resolution in our laboratory by Fred Berkovitch (1). The structural analysis reveals that

5,6-LAM uses the same structural motifs as several other AdoCbl-dependent enzymes: a

Rossmann-like domain for binding the AdoCbl with a histidine coordinating the cobalt

instead of the DMB, and an (o)8s TIM domain for housing the active site (Figure 2.2).

PLP, not a cofactor in the other AdoCbl-dependent enzymes with known structures, sits

at the top of the TIM barrel, in the putative active site (Figure 2.3). The orientation of the

Rossmann and TIM barrel domains with respect to each other is not the same as in other

AdoCbl-dependent enzymes. In MCM and glutamate mutase, the structures also contain a

Rossmann domain and a TIM barrel, but the AdoCbl is positioned over the TIM barrel,

already in the active site. The TIM barrel shields the active site, keeping radical



intermediates safely inside. In 5,6-LAM, a novel linkage between PLP and Lys' 44 of the

Rossmann domain enforces an alternate conformation that positions the AdoCbl cofactor

25 A away from the active site (Figure 2.4A). The covalent linkage between the

Rossmann domain and PLP effectively locks 5,6-LAM into a non-catalytic configuration

until substrate binds and releases Lys144 via a transaldimination reaction. The Rossmann

domain, now untethered to the PLP, could rotate, moving the AdoCbl into the active site,

positioning it at the top of the TIM barrel. Hydrogen abstraction from carbon 5 of the

substrate lysine, the first step in the rearrangement, could then occur (Figure 2.2). This

mechanism would represent a novel means of coupling substrate binding to

conformational change through the use of PLP in an AdoCbl dependent enzyme,

preventing radical damage to the enzyme.

2.2.4. Crystallization experiments

In order to confirm the above mechanism and explore the molecular details of the

signaling mechanism and conformational change, crystallization experiments were

performed on a K144/3A mutant of 5,6-LAM, obtained from the Frey laboratory (Table

2.1). This mutant turns over very slowly (Elham Beshad, Personal Communication).

Without the lysine to lock the AdoCbl-Rossmann domain in the resting state, AdoCbl-

Rossmann domain should assume the catalytic position over the TIM barrel (similar to

Figure 2.3B).

Using the hanging-drop vapor diffusion method, preliminary microcrystals were obtained

with a hit from the Hampton Index screen at room temperature (15 mg/mL protein in 5.8



mM triethanolamine, pH 7.8, 1 ýiL:l gL drops over 500 gL well solution with 0.2 M

ammonium acetate, 0.1 M Tris pH 8.5, 25% w/v PEG 3350) (Figure 2.4C). These

crystallization conditions were screened around, varying salt, buffer, and precipitant, and

slightly larger crystals (-30 gm) were obtained with an optimized condition (0.2 M

ammonium acetate, 0.1 M HEPES pH 8.2, 25% w/v PEG 2000 monomethylether). These

crystals took approximately 4 weeks to grow. To improve these crystals, microseeding

was performed by crushing up crystals and pipetting serial dilutions of these crushed

crystals into drops that had been equilibrating for one day. Through this technique,

slightly larger (40 gm) crystals (Figure 2.5 C) were grown, but there was no diffraction in

the X-ray beam at room temperature or in the cryostream. Detergent and additive screens

were performed; however, the crystals grown in the additive and detergent screens did

not show any improvement over the original crystals.

In addition to the mutant form of LAM, crystallization screens were performed with the

wild type enzyme with either lysine or ornithine bound, with the hope of trapping the

protein in the catalytic "on" form (Table 2.2). Omithine binds well to 5,6-LAM, and can

be used as an inhibitor. It does not appear to turn over, but, like lysine, it can initiate C-

Co bond cleavage and form an inactivated complex where an electron is likely transferred

from cob(II)alamin to the organic radical on the substrate or product, forming

cob(III)alamin and a carbanion, which would be quickly protonated to form 5'-

deoxyadenosine (Elham Beshad, Personal Communication).



Preliminary crystals were grown in one of the Hampton Index screen conditions at room

temperature (wild-type protein at 12 mg/mL, 0.5 mM 2-mercaptoethanol, 10 mM

triethanolamine, pH 7.2, 5mM ornithine, 1 jiL:1 jiL drops over a 500 gtL well solution

with 22% polyacrylic acid, 0.1 M HEPES pH 7.5, 0.02 M MgCl2) using the Hanging-

drop diffusion method (Figure 2.5A). These crystals were very small, and optimization

yielded little improvement with the first protein sample used. The second protein

preparation obtained from the Frey laboratory (14 mg/mL in 10 mM triethanolamine pH

8, 0.5 mM BME, 2.5% glycerol) produced much larger (50 #m) crystals of the wild-type

enzyme with 5 mM ornithine in the same condition as before (Figure 2.5B).

Crystals were cryoprotected with 20% ethylene glycol and 20% glycerol solutions that

included the mother liquour solution components at original concentrations. These

crystals did not show any diffraction on our home X-ray equipment. However, crystals

were sent to the synchrotron at Stanford to determine if any diffraction could be seen

using a more intense X-ray beam. At the home beam, no ice rings were seen when

crystals were cryoprotected, but there were significant ice rings at the synchrotron,

perhaps due to problems with crystal storage. At the synchrotron, the ethylene glycol

cryoprotected crystal diffracted well to 8 A, weakly to 4.3 A (Figure 2.6, 2.7). Indexing

the crystal gave a preliminary space group of P3. To improve diffraction, detergent and

additive screens were tried. Although crystals grew in these conditions, they still showed

no diffraction at home, and it was difficult to reproduce the crystals. It is likely the

protein is not amenable to crystallization after a few months of storage.



The poor diffraction could be a result of the Rossmann domain being significantly

disordered without AdoCbl bound. Because the presence of both AdoCbl and ornithine

can lead to inactivation (Elham Beshad, Personal Communication), crystallization

conditions were screened around in the presence of ornithine and cyanocobalaman or

hydroxocobalamin. Crystals that appeared to be cyanocobalamin-containing were grown

in the same condition as without a cobalamin analog at room temperature (wild-type

protein 14 mg/mL in 10 mM triethanolamine pH 8.0, 0.5 mM BME, 2.5% glycerol;

1 bL:1 ýiL drops over 500 pL well solution with 22% polyacrylic acid, 0.1 M HEPES pH

7.5, 0.02 M MgCl2) with 4.5 mM cyanocobalamin using the Hanging-drop vapor

diffusion method. Unfortunately, the resulting crystals are significantly smaller than the

crystals without cyanocobalamin (-20 jim), and therefore too small to screen. This

condition was optimized somewhat with detergent and additive screens. Upon screening

of these optimized crystals, the disperse nature of the reflections in the diffraction pattern

showed that these were cyanocobalamin crystals. All crystallization experiments that

include cobalamin have been performed in a dark room under red light, and viewed using

a microscope with a red filter, in order to avoid cleaving the C-Co bond.

2.2.5. Conclusions and future work

While no 5,6-LAM crystals have diffracted to suitable resolution for structure

determination as of yet, there is still a good chance of getting crystals that diffract well.

The protein seems to have a short crystallization life; doing frequent protein preparations

could potentially make a big difference in crystal reproducibility and quality. In addition,

5,6-LAM from a different organism could be potentially easier to crystallize in the active



conformation. Since other AdoCbl-dependent enzymes have been crystallized in similar

conformations (3,4), it should be possible to obtain this structure. If difffraction-quality

crystals are obtained, molecular replacement using the TIM barrel of the existing

structure should be effective in obtaining phase information. The TIM barrel structure

should not change according to our proposed mechanism, making it is a good candidate

for molecular replacement.



2.3. Human adenosyltransferase

2.3.1. Introduction to human adenosyltransferase

While the delivery of metal cofactors to their target proteins by chaperones is a recent hot

topic (15), relatively little is known about the delivery of highly reactive organic

cofactors such as PLP, thiamine pyrophosphate (TPP), and cobalamin. These cofactors

are both reactive and present in low concentrations in the cell, making it difficult to get

the intact cofactor into the enzyme, both because of cofactor-damaging side reactions and

the low probability of the cofactor colliding with its target enzyme in the correct

conformation to bind. Chaperone proteins could solve both of these problems, protecting

the cofactor from radical damage and delivering the cofactor directly to the target protein

in the correct conformation and orientation to bind. From studies performed with [57Co]-

cobalamin, it appears that AdoCbl is predominantly protein-bound inside the cell (16).

In humans, cobalamin is a cofactor in only two enzymes: methionine synthase, which

uses methylcobalamin, and methylmalonyl-CoA mutase (MCM), which uses AdoCbl.

As discussed previously, lack of MCM activity in humans causes a condition known as

methylmalonic aciduria, a potentially fatal inborn error of metabolism. Eight

complementation groups, cblA-cblH, have been identified that correspond to gene defects

associated with intracellular vitamin B12 metabolism in humans (17). Three groups, cblA,

cblB, and cblH, linked to methylmalonic aciduria, affect steps occurring in the

mitochondria, where MCM works. Human adenosyltransferase (hATR), is the locus of

mutations in the cblB complementation family (18); several pathogenic mutations in the

gene have been identified (19).



In bacteria, there are the PduO, CobA, and EutT families of adenosyltransferases (20).

The PduO-type adenosyltransferases are associated with genes that encode AdoCbl-

dependent diol dehydratase, glycerol dehydratase, or MCM (20). The CobA family

enzymes have been predicted to be important in the assimilation of exogenous

cobalamins and the de novo biosynthesis of AdoCbl (21). EutT adenosyltransferases are

associated with gene clusters that contain AdoCbl-dependent ethanolamine ammonia

lyase (22). It has been suggested that each adenosyltransferase might be specific for an

AdoCbl-dependent enzyme, supporting the idea of a direct transfer between the

adenosyltransferase and the target enzyme (20). It follows that specific protein-protein

interactions between the adenosyltransferase and the target protein might be important,

making the large number of different adenosyltransferases necessary.

In solution, AdoCbl exists in base-on and base-off conformations; the equilibrium

between these two states is governed by the protonation state of the

dimethylbenzimidazole (DMB) ligand, with a pKa of 3.7 (23). When DMB is protonated,

it can no longer coordinate the cobalt, and dissociates. Several AdoCbl-dependent

isomerases bind the cofactor with the DMB not coordinating the metal, but in these cases

DMB is replaced by a histidine ligand from the signature DxHxxG sequence on the

cobalamin-dependent enzyme (24). A crystal structure of CobA from Salmonella

typhimurium has been solved and shows the AdoCbl bound in a base-on conformation

(25). The adenosyltransferase with highest sequence homology (32%) to hATR which

has been solved is that of a PduO-type enzyme from Thermoplasma acidophilum;



unfortunately, the crystal structure does not contain cobalamin, so it is not known how

the cofactor is bound (26).

2.3.2. Previous work on human adenosyltransferase in the Banerjee laboratory

AdoCbl is synthesized from cob(II)alamin by an adenosyltransferase and a reductase

(27). In humans, the reductase is found in the mitochondria and reduces cob(II)alamin

bound to hATR to cob(I)alamin, a supernucleophile, which is then adenosylated by ATP

to form AdoCbl (Figure 2.8). The model proposed by Yamanishi, Vlasie, and Banerjee

(27), states that the AdoCbl is then transferred by a direct hand-off to MCM. The

reduction potential for the cob(II)alamin/cob(I)alamin couple is -610mV in reference to a

standard hydrogen electrode, far below that of any in vivo reducing agents (28). Since

the cobalamin is bound to hATR during this reduction, hATR must somehow activate

cob(II)alamin for this reduction. The UV spectrum of AdoCbl bound to hATR is

characteristic of the base-off conformer, with an absorption maximum of 454 nm (29).

EPR spectra of cob(II)alamin bound to hATR is also typical of base-off binding (29).

Magnetic circular dichroism (MCD) spectra performed by Brunold and co-workers show

that cob(II)alamin bound to hATR in the presence of ATP appears to be base-off, with no

ligand or a weakly bound water ligand in place of the DMB ligand (30). This

coordination could raise the reduction potential by 120mV, allowing the reduction to take

place (30). Without ATP bound, the cobalamin appears to be 60% base-on, 40% base-off

by MCD (30). Once the cobalamin has been reduced, it is a supernucleophile which

attacks C-5 of the ribose portion of ATP, kicking out the triphosphate to form AdoCbl

(Figure 2.8).



It is possible that the existence of no lower ligand or a weakly bound water could be

important in allowing a direct transfer of AdoCbl from hATR to MCM. The histidine

ligand from MCM could perhaps coordinate the Co of AdoCbl, allowing the AdoCbl to

then bind MCM in a base-off fashion without the MCM histidine having to directly

compete for Co binding with the DMB (Figure 2.9) (27). The binding of AdoCbl is ~40

times tighter in MCM (Kd 0.4 iM) than hATR (Kd 1.7 jM) (29), supporting the idea that

a direct hand-off could work efficiently. This hand-off scenario mirrors that seen in

metal chaperones and their target proteins (31). A crystal structure of hATR with

AdoCbl bound would confirm that this site is open for coordination with the histidine

from MCM.

2.3.3. Crystallization experiments

For hATR crystallization, sparse matrix screens have been performed on the apo-protein,

the protein with just ATP, with AdoCbl, and with both AdoCbl and ATP (Table 2.3).

Small (20 gm) crystals of the apo-protein grew at room temperature (protein 3 mg/mL in

50 mM Tris pH 8.0, 200 mM KC1, 1 gL:1 gL drops over 500 iL well solution with 25%

PEG 3350, 0.1 M HEPES pH 7.5, 0.2 M MgC12) (Figure 2.10A) but no crystals large

enough to mount on the X-ray equipment have grown. Precipitant, salt, temperature, and

buffer were varied in order to optimize the crystals, but did not have much effect.

Slightly larger (-30 jm) crystals were grown by using PEG 2000 monomethyl ether in

place of PEG 3350 (Figure 2.10B); unfortunately, these crystals required four weeks to

grow, making it time-consuming to further optimize these crystals. No crystals formed in



the conditions with ATP or AdoCbl. All screens set up with AdoCbl (4.5 mM) have been

set up in the darkroom under red light, and viewed using a microscope with a red filter.

2.3.4. Crystal structure of hATR solved by Schubert and Hill

While pursuing crystallization of hATR, a paper describing the structure of hATR with

ATP bound came out (32). The structure showed a trimeric helical ferritin-like structure,

very similar to that of PduO-type cobalamin adenosyltransferases from other species that

had been previously solved (Figure 2.11) (32). Since the structure published did not have

cobalamin bound, the exact mode of cobalamin binding has not been confirmed, but they

modeled in AdoCbl in a base-off conformation with the metal not coordinated by a lower

ligand (32).

2.3.5. Conclusions and future work

While this project is not currently being pursued by our laboratory because of the

published structure and the lack of crystals with cobalamin bound, it would be ideal to get

a structure of hATR with cobalamin bound to confirm the unusual coordination reported

by Brunold (30). Schubert and Hill used a mutant with the mitochondrial targeting

sequence cut off; screening this mutant with cobalamin bound would be good to try, but

has probably already been tried by Schubert and Hill. In addition, a crystal structure was

solved of an adenosyltransferase from Lactobacillus reuteri, also with only ATP bound

(33); this would also potentially be a good target for crystallization with cobalamin

bound.



2.4. Figures
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Figure 2.1. A comparison of the reactions catalyzed by 5,6-LAM and 2,3-LAM.
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Rossmann-like domain

Figure 2.3. Structure of Lysine 5,6 aminomutase, colored by chain. Cbl is represented
in red, AdoH in blue, and PLP in magenta (1).



Figure 2.4. A. The structure of 5,6-LAM in its resting form, with AdoCbl 25 angstroms
away from the active site (1). B. A substrate-bound structure of Methylmalonyl
coenzyme A mutase (Protein Data Bank ID code 1REQ), another enzyme that catalyzes
radical chemistry with AdoCbl, with the AdoCbl positioned over the active site, in place
for catalysis.



Figure 2.5. A. Original wt 5,6 LAM + 5mM lysine crystals (-15pm). B. Wild type 5,6
LAM + 5mM ornithine crystals (-50Om). C. 5,6-LAM K144#A mutant crystals
(-50pm).



Figure 2.6. Ditfraction Pattern from crystals of 5,6-LAM with 5mM ornithine from
SSRL.
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Figure 2.8. The reaction catalyzed by Adenosyltransferase (27). The identity of the
reductase is still unknown.



hATR MCM hATR MCM
Figure 2.9. Representation of the proposed hand-off from hATR to MCM (27).

B

Figure 2.10. A. Preliminary crystals of hATR. B. Optimized crystals of hATR (30
Am).



Figure 2.11. Crystal structure of hATR with ATP bound. hATR crystallized as a trimer
with chloride bound in the middle (32).



Hits Screened Around

Index

Crystal Screen
(20 mg/mL and
10 mg/mL
protein)
Crystal Screen #2
(20 mg/mL and
10 mg/mL
protein)
Crystal Screen
Lite (10 mg/mL
protein)
Peg/Ion (15
mg/mL)
MembFac (15
mg/mL)
Natrix (15
mg/mL)

#81: 0.2 M
Ammonium Acetate
0.1M Tris pH=8.5,
25% w/v PEG 3350

None

None

None

None

None

None

Optimized condition:
0.1M Hepes pH=8.2,

0.2M NH40Ac,
25% w/v PEG
2000MME with
streak seeds

No diffraction

Table 2.1. Crystallization trials of 5,6-LAM K144PA.

2.5. Tables

Screen Result

Salt
Salt Concentration
Buffer/pH
PEG Molecular

Weight
PEG Percentage
Drop Size
Protein

Concentration
Protein Buffer
PLP Concentration
Detergent Screens
Additive Screens
Detergent

Concentration
Additive

Concentration
Seeding



Hits Screened Around
Index with 5mM
ornithine and
5mM lysine

Crystal Screen
with 5mM 6-
aminohexanoate,
ornithine and
lysine
Crystal Screen #2
with 5mM 6-
aminohexanoate,
ornithine and
lysine
Crystal Screen
Lite with 5mM
ornithine and
lysine
Peg/Ion

#59 in drops with
both ornithine and
lysine: 22%
Polyacrylic Acid,
0.1M Hepes
pH=7.5, 0.02M
MgCl2

None

None

None

None

Buffer/pH
Salt
Salt Concentration
Precipitant
Precipitant

Concentration
Detergent Screens
Additive Screens
Protein Buffer
Omithine or Lysine

Concentration
Bl 2 Analog

Crystals grew, no
diffraction

Table 2.2. Crystallization trials of wild type 5,6-LAM with inhibitors added.

~-----

Screen Result



Screen Hits Screened Around Result

Index

Crystal Screen

Crystal Screen #2

Crystal Screen Lite

Peg/Ion

Wizard I

Wizard II

MembFac

Natrix

#77: 0.2 M LiSO4, 0.1
M Tris 8.5, 25% PEG
3350

#84: 0.2 MgC12, 0.1 M
Hepes pH=7.5, 25%
PEG 3350

#85: 0.2 MgCl 2, 0.1 M
Tris pH=8.5, 25% PEG
3350

None

#5 crystals (w/ ATP,
no B1 2).
2.0M (NH4)2SO 4, 5%
isopropanol
None

None

#19 interesting
(w/ATP, no B12): 1.6
M NaH2PO4/ 0.4M
K2HPO 4, 0.1 M
Phosphate-Citrate
buffer pH=4.2

None

None

PEG Percentage
PEG Molecular

Weight

PEG Molecular Weight
PEG Percentage
Buffer/pH
Salt
Salt Concentration
Detergent Screens
Additive Screens
PEG Molecular Weight
PEG Percentage
Buffer/pH
Salt
Salt Concentration
Detergent screens
Additive screens

Salt
Salt Concentration
PEG Concentration
PEG Molecular Weight
Buffer/pH

Salt Concentration

No
reproduction

Nice, small
crystals with
PEG 2000
MME

Nice, small
crystals with
PEG 2000
MME

Reproduced

small crystals

Reproduced
small crystals

Table 2.3. Crystallization trials of hATR (screens performed on all samples; hits only for
without cobalamin).

I
Screen Hits Screened Around Result
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3. Lipoate synthase and class III ribonucleotide reductase activating enzyme

crystallization studies

3.1. Introduction to crystallography of S-adenosylmethionine radical enzymes

The structures of four S-adenosylmethionine (AdoMet) radical enzymes have been solved

to date (1,2,3,4). All of them show the active site in a full (1) or three-quarter (2,3,4)

TIM barrel. It has been proposed that this difference in barrel completeness could be due

to different enzymes needing to accommodate substrates varying greatly in size (5). All

crystallized enzymes have the catalytically essential [4Fe-4S] cluster in the structure, and

biotin synthase (BioB) also has an additional [2Fe-2S] cluster, positioned to be the sulfur

donor in the sulfur-insertion reaction (1). Crystallization of this family of enzymes has

been very difficult, possibly due to protein preparations not having full occupancy of the

[4Fe-4S] site and the need for strict anaerobosis.

3.2. Lipoate synthase

3.2.1. Introduction

Lipoate synthase (LipA) is an AdoMet radical enzyme that catalyzes 2 sulfur insertions to

make the lipoyl cofactor from an octanoyl group (Figure 3.1). The lipoyl cofactor is used

in several enzyme complexes, most notably the pyruvate dehydrogenase complex, which

is essential for aerobic metabolism. It functions as both a redox cofactor and as a

"swinging arm," allowing the attached substrate to go from one subunit to another

tethered to the lipoyl cofactor, which is covalently bound to a lysine residue on enzyme

E2.



LipA follows the general AdoMet radical enzyme mechanism of 5'-deoxyadenosyl

radical (Ado*) generation. This proposed mechanism consists of the reduction of the

catalytically essential [4Fe-4S] cluster to [4Fe-4S]'+ from [4Fe-4S]2+, followed by the

injection of this electron into the sulfur of AdoMet. AdoMet is then reductively cleaved

to form methionine and Ado. . In the case of LipA, the Ado* is then proposed to abstract

a hydrogen atom from either C-6 or C-8 of the octanoyl group, allowing for subsequent

sulfur insertion (6). This radical-based mechanism is supported by experiments

performed in Squire Booker's laboratory in which a deuterium atom on the octanoyl

group is transferred to 5'-deoxyadenosine during catalysis (6). In addition, two molar

equivalents of AdoMet are used to form one mole of lipoic acid, consistent with the idea

of one Ado* abstracting a hydrogen atom from C-6, and one Ado* abstracting a hydrogen

atom from C-8 (6). This reaction is analogous to that performed by BioB, another

AdoMet radical enzyme, which catalyzes the insertion of one sulfur into two unactivated

carbon-hydrogen bonds (Figure 3.1).

In addition to the [4Fe-4S] cluster present in all AdoMet radical enzymes, LipA also

contains a second [4Fe-4S] cluster (7). Similarly, the other sulfur-insertion AdoMet

radical enzyme, biotin synthase (BioB) contains a second cluster, but in that case it is a

[2Fe-2S] cluster. While debated for some time, it is now widely accepted that the sulfur

that is inserted into dethiobiotin comes from this [2Fe-2S] cluster. This proposal is

supported by the structure (1), which shows this cluster in close proximity to

dethiobiotin, as well as by 34S labeling studies (8) and experiments which show the



destruction of the [2Fe-2S] cluster that accompanies biotin formation (9,10). BioB has

only ever shown one turnover in vitro (11,12,13), which is consistent with the cluster

being the sulfur source; however, multiple turnovers were seen in vivo (14), suggesting

the rebuilding of the cluster or a different sulfur source in vivo. So far, no proteins have

been identified that rebuild the [2Fe-2S] cluster of BioB in vitro or in vivo and no other

sulfur sources have been identified. In the case of LipA, there is no clear evidence for

destruction of the second [4Fe-4S] cluster (7).

An X-ray structure of LipA could provide important information about the source of

sulfur and mechanism of sulfur insertion. Until recently, no one had seen LipA turnover

at all in vitro. Work from the laboratories of Marletta and Cronan have established the

substrate for LipA as octanoic acid bound to the E2 subunit of the pyruvate

dehydrogenase, as opposed to free octanoic acid or octanoyl-ACP (15), and work from

Squire Booker's laboratory has shown that the octanoylated H-protein of the glycine

cleavage system, another lipoyl-bearing enzyme subunit, can also be a LipA substrate (6).

This work allowed lipoic acid to be produced in vitro; however, multiple turnovers have

not been seen.

Since the reactions catalyzed by BioB and LipA are so similar (Figure 3.1), a structural

comparison of these enzymes would provide significant insight into sulfur insertion

chemistry by AdoMet radical enzymes. One aspect of the structure that would be

particularly informative is the placement of the second iron-sulfur cluster with respect to

the substrate. If the cluster is far away from the substrate, its role as a sulfur source



would be unlikely. If it is close to the substrate, it could potentially be the sulfur source,

or be involved in sulfur insertion without being the final sulfur source.

3.2.2. Previous work in the Booker laboratory

Recent work in the laboratory of Prof. Squire Booker at Pennsylvania State University

has focused on obtaining pure, homogeneous, and active LipA with improved stability (S.

Booker, personal communication). Stable protein can now be obtained in high enough

yields for crystallization experiments (S. Booker, personal communication). The

identification of the true substrate has made it possible to assay the protein during

purification (15). In addition, the discovery that LipA should have a complement of

eight, not four, Fe's per monomer has led to more stable and homogeneous protein

samples (7).

3.2.3. Crystallization experiments

Sparse matrix screens (Table 3.1) with degassed solutions in a Coy anaerobic chamber at

room temperature have been used to screen fully reconstituted LipA (8 Fe's per

monomer), LipA with AdoMet, LipA with octanoylated H-protein, and LipA with

AdoMet and octanoylated H-protein, all obtained from the Booker laboratory. The

protein was at 8 mg/mL in 50 mM Epps buffer, pH 8.0, 100 mM KCI, 10 mM DTT, and

20% glycerol. AdoMet was added in a 2:1 ratio to LipA, and octanoylated H-protein in

the same buffer as LipA was added in a 1:1 ratio. There were several potentially

promising conditions that were screened around (Table 3.1). However, none of these

conditions have been reproducible, and no amount of screening around these conditions



has resulted in anything crystalline. Multiple protein preparations obtained from the

Booker laboratory have been screened, all with similar results. It is possible that the

protein is highly sensitive to slight changes in humidity and temperature, and this is

causing the lack of reproducibility; it is also possible that the small amount of oxygen

that still exists in the anaerobic chamber is affecting crystallization.

3.2.4. Conclusions and future work

The Booker laboratory is working on expressing and purifying protein from a

thermophilic organism. Due to the high temperatures in which these organisms grow,

their proteins can be more stable, and can crystallize more easily. If crystals of LipA are

obtained, the structure will be solved by native Fe-MAD techniques, which have been

successful in our laboratory (1). Subsequent structures of different forms of LipA will be

determined by molecular replacement. This structural information should greatly

enhance our understanding of how nature makes biotin and lipoic acid.



3.3. Class III ribonucleotide reductase activating enzyme

3.3.1. Introduction

Radical chemistry is believed to be ancient, with ribonucleotide reductases (RNRs)

potentially providing the link between the RNA and DNA world. The common

chemistry and active site structure of the three classes of RNRs suggest they evolved by

divergent evolution, with class III RNR as the likely progenitor (16). Since class I RNR

requires oxygen for catalysis, it must have arisen after photosynthesis led to an 02

atmosphere. Class II RNR uses AdoCbl, and does not need oxygen, but can work in an

oxygen atmosphere. Class III RNR, with an AdoMet radical enzyme activase, requires

anaerobic conditions for catalysis. Class III RNR's use of formate as a reductant instead

of a several-protein electron transport chain is a strong argument in favor of the Class III

enzyme being the first RNR; also, it is thought that AdoMet could be the evolutionary

forerunner of AdoCbl, since it is easier to synthesize and can perform a similar function.

The class III RNR activating enzyme (NrdG, also known as the beta protein) abstracts a

hydrogen atom from the catalytic subunit of class III RNR (the alpha protein), forming a

stable glycyl radical. This glycyl radical can then abstract a hydrogen atom from a

cysteine to form a transient thiyl radical which initiates catalysis, resulting in a nucleotide

being reduced to a deoxynucleotide and formate being oxidized to carbon dioxide (Figure

3.2) (Reviewed in 17).

NrdG is the simplest AdoMet radical enzyme by sequence alignment (6). NrdGs only

have about 160 amino acids, which is too short for a full (o•)s 8or a three-quarters (ai) 6

TIM barrel. Sequence similarities between NrdG and other AdoMet radical proteins ends



at helix a4, suggesting that it might contain a half (o3)4 TIM barrel. While it's possible

from the alignment that it could have strand 5, it is missing a GxIxGxxE-like sequence

usually at the end of strand 5 to that binds AdoMet in other AdoMet radical enzymes (5).

In the structures of AdoMet radical enzymes that have been solved, AdoMet binds to

residues on strands 5 and 6 of the barrel; therefore, if NrdG has a half-barrel structure, the

manner of AdoMet binding must differ significantly from that of the currently available

structures of AdoMet enzymes.

According to sequence alignment, NrdG does not have the helix a4A usually present in

TIM barrels (5). Thus, helix a4 may be on the inner side of the B-sheet, close to the

substrate, instead of on the other side of the sheet (5). If this is the case, the helix could

help bind AdoMet, potentially compensating for the absence of sheets 5 and 6 (5). It has

been suggested that (oa)4 half-barrels would have a tendency to aggregate, and would

have had to evolve an extra half-barrel or another strand and helices to cover up the

exposed beta sheet (18). Purified alone, NrdG is prone to aggregation, supporting the

half-barrel hypothesis (19). Since NrdG has a protein as its substrate, perhaps removing

the tendency to aggregate by evolving a full barrel would not allow for substrate access to

the active site, explaining why NrdG kept the half barrel. The reason NrdG does not

aggregate in vivo is probably related to increased stability due to dimerization or

association with its substrate, the class III RNR catalytic subunit (5). In fact, it is

impossible to separate the E. coli catalytic subunit and activase by chromatography (19),

and it is known to dimerize in vivo (19).



A structure of NrdG would shed light on the evolution of TIM barrels in AdoMet radical

enzymes. TIM barrels used for AdoMet radical chemistry are believed to have evolved

either by gene duplication from half barrels followed by subsequent evolution of the C-

terminal sequence to accommodate a wide range of substrates and reactivities, while

conserving the radical generation function with the (013)6 subdomain, or from adding (01)2

units to the (03)4 core unit (5). The structure of NrdG would be important to distinguish

between these theories. The NrdG complex structure would show how AdoMet radical

enzymes have evolved to accommodate huge differences in substrate size, as well as

reveal the simplest model for AdoMet radical catalysis.

3.3.2. Previous work in the Fontecave laboratory

The Fontecave laboratory has been able to produce large amounts of pure protein of the

alpha/beta complex. They have identified both flavodoxin (20) and thioredoxin (21) as

potential sources of the electron that reduces the cluster from [4Fe-4S] 2+ to [4Fe-4S]'+ in

E. coli and confirmed that this reduced cluster is necessary for the reaction to proceed.

3.3.3. Crystallization experiments

Sparse matrix screens with degassed solutions in a Coy anaerobic chamber at room

temperature have been used to screen the protein samples (Table 3.2). The first sample

was of the alpha/beta complex prepared by adding the alpha protein to the just-

reconstituted beta protein in a 1:1 molar ratio at a final concentration of 40 mg/mL and

then adding 2.5 mM enantiomerically pure AdoMet. The second sample was of the

complex alpha/beta prepared by adding the alpha protein to the newly reconstituted beta



protein in a 1:1 molar ratio, also giving a final concentration of 40 mg/mL, and then

adding 2.5 mM AdoMet. The third sample of the complex alpha/beta was prepared by

adding an equimolar amount of the alpha protein to the newly reconstituted beta protein

to give a final protein concentration of 40 mg/mL in the presence of 2.5 mM purified

AdoMet and 5mM ATP. All of the samples were in 10 mM Tris-HCl, pH 7.5, and 2 mM

DTT. The sparse-matrix crystallization screens were performed at both 3 mg/mL and 6

mg/mL. One condition was interesting enough to screen around, but no crystals formed

(Table 3.2). Most of the drops contained heavy precipitate, even at 3 mg/mL.

3.3.4. Conclusions and future work

At this point, solving the crystal structure of the alpha/beta complex does not seem

promising. Given the heavy precipitation of the protein at low concentrations, it appears

as though the protein is denaturing in most every drop; perhaps ongoing work in the

Fontecave laboratory identifying mutants of both proteins that are more stable will yield

crystals of the complex. If crystals are grown, the structure could be solved either with

molecular replacement using the known structure of the alpha protein homolog, or with

Fe MAD techniques.



3.4. Figures
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Figure 3.1: BioB and LipA use radical-based chemistry to catalyze sulfur insertion
reactions.
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3.5. Tables
Screen Hits Screened Around

Index #62: 0.2 M Buffer/pH No
trimethylamine N- PEG Concentration reproduction
oxide, 0.1 M Tris Salt Concentration
pH=8.5, 20% PEG
2000 MME
#69: 0.2 M Buffer/pH No
Ammonium Sulfate, PEG Concentration reproduction
0.1 M Tris pH=8.5, Salt Concentration
25% PEG 3350 MME

Crystal Screen None

Crystal Screen #2 None

Crystal Screen Lite None

Peg/Ion #1: 0.2 M NaF, 20% Salt No
w/v PEG 3350 Salt Concentration reproduction

PEG Concentration
PEG Molecular
Weight

#10: 0.2 M NaI, 20% Salt No
w/v PEG 3350 Salt Concentration reproduction

PEG Concentration
PEG Molecular
Weight

#11: 0.2 M KI, 20% Salt No
w/v PEG 3350 Salt Concentration reproduction

PEG Concentration
PEG Molecular
Weight

#27: 0.2 M Sodium Salt No
Acetate, 20% w/v PEG Salt Concentration reproduction
3350 PEG Concentration

PEG Molecular
Weight

Wizard I None

Wizard II None

Pro-Complex None

Table 3.1. Crystallization screening of LipA (all samples).

Result



Hits Screened Around

Index None

Crystal Screen None

Crystal Screen #2 None

Crystal Screen Lite None

Peg/Ion #12: 0.2M Ammonium Salt No
Iodide, 20% PEG 3350 Salt Concentration reproduction

PEG Concentration
PEG Molecular Weight
Buffer/pH

Wizard I None

Wizard II None

Pro-Complex None

Table 3.2. Screening of class III RNR complex (all samples).

ResultScreenScreen
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Appendix 1
Protein expression, purification, and crystallization trials of O-GlcNAC transferase

O-GlcNAC Transferase catalyzes the transfer ofN-acetylglucosamine from UDP-
GlcNAC to serine and threonine residues of proteins important in eukaryotic signaling.
The glycosylation state of these target proteins is key to signaling cascades involved in
glycose homeostasis and stress response (1). My collaborator in the Walker lab has
developed a protein prep method that allows isolation of large amounts of pure sOGT of
truncation mutants and splice variants (2). He used this protein to test for inhibitors in
vitro (2) and to try crystallizing the protein with a crystallization robot, but no crystals
were formed (Ben Gross, personal communication).

Protein Prep with Ben (sOGT)-
1. Lysed cells with 50 uL Lyonase in 400mL Bug Buster
2. Centrifuged 25 minutes at max rpm
3. Prepped Ni-ITA column, put protein on column at 2 mL/min flow rate
4. Used 50mM Imidazole, 250 mM NaC1, pH=7.6 to wash until Bradford reagent light
colored
5. Eluted with 200mM imidazole 250 mM NaCl pH=7.6 until Bradford reagent light
colored.
6. Combined fractions eluted at 200mM imidazole, concentrated
7. Injected half of protein through through FPLC, using Superdex 200 Column and
10mM imidazole, 250mM NaCl, 1mM EDTA pH=6. There were only 2 peaks, a void
peak and a protein peak. The protein peak eluted from 70-90 minutes.
8. Cut off his-tag with HRV3C overnight with other half of protein
9. Injected other half through FPLC.
10. Concentrated both portions of protein, did buffer exchange into 10mM imidazole
pH=7.6, 1mM EDTA.
11. Found concentration of 1 mL of OGT + His-tag to be 5.63 mg/mL
12. Found concentration of 1 mL ofOGT - His-tag to be 16.68 mg/mL.
13. Gel of both looked relatively clean.



Crystallization Trials:

Screen Hits Screened Around

Index None
(Straight)

Index #22 diluted 2x: 0.8 M pH Very tiny crystals
(diluted 2x) Succinic Acid pH 7.0. Succinic Acid reproduced, didn't grow

Concentration
Index None
(diluted 2x) (with 4
inhibitors, each 1
9M)

Crystal Screen None
(diluted 2x)
Crystal Screen #2 #1 interesting, diluted Salt Concentration Nothing Interesting
(diluted 2x) 2x: Precipitant

0.5 M CoC12, 0.05 M Concentration
NaOAc pH=4.6, 0.5M
Hexanediol

Crystal Screen Lite None
Peg/Ion None
(diluted 2x)
Wizard I #33 diluted 2x: 1.OM Salt Concentrations No reproduction
(diluted 2x) (NH4)2SO 4, 0.05M

CAPS pH= 10.5, 0.1M
Li2SO 4.

Wizard II
(diluted 2x)
Wizard III (diluted
2x)
Pro-Complex
(diluted 2x)
Salt Rx #46 diluted 2x: 2.0M Buffer/pH No reproduction
(diluted 2x) NaNitrate, 0.05M Salt Concentration

NaOAc pH=4.6.

Salt Rx #10 diluted 2x: 1.1 M NaCl Concentration No reproduction
(diluted 2x) (with 4 NaCl, 0.05M Bis-Tris
inhibitors, each 1 propane 7.0
9M)
NaCl Grid Screen None
(diluted 2x) (with 1
inhibitor, 1 pM)
MembFac None
(diluted 2x)
Natrix None
(diluted 2x)
Ammonium Sulfate #15 with 1 inhibitor: 2.4 Salt Concentration No optimization-very
Grid Screen (with 4 M Ammonium Sulfate, Detergent Screens small crystals
inhibitors, each 1 0. 1M MES pH 6.0. Additive Screens
9M) Seeding

Result



Tried performing protein expression and preparation of stock cells from all four cell lines
sent from Ben-no expression for any of them.

Transformed cells with sOGT and ncOGT. No expression was seen for either construct.

1. Zachara NE, Hart GW. (2004) Biochim. Biophys. Acta 1673, 13-28.
2. Gross BJ, Kraybill BC, and Walker S. (2005) J Am. Chem. Soc. 127, 14588 -14589.
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