
Modeling the Deflector Mass Distribution in the
Gravitational Lens MG J0414+0534

by

Catherine Susanne Trotter Wilson

S.B. Physics, Massachusetts Institute of Technology (1989)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1998

@ Massachusetts Institute of Technology 1998. All rights reserved.

Author.
Department of Physics

19 Dec 1997

Certified by.
J

Accepted by .

Jacqueline N. Hewitt
Associate Professor of Physics

Thesis Supervisor

/ ,

George F. Koster
Professor of Physics

Chairman, Graduate Committee





Modeling the Deflector Mass Distribution in the

Gravitational Lens MG J0414+0534
by

Catherine Susanne Trotter Wilson

Submitted to the D~partment of Physics
on 19 Dec 1997, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract
Gravitational lenses MG J0414+0534, B0218+357, B0957+561, BI422+231, and PKS
B1830-211were observed at 5 GHz with the VLBA.

MG0414+0534 revealed substructure not seen at lower resolutions: four subcomponents
in each lensed image AI, A2, B, and C, with clear, consistent mapping between subcompo-
nents. This provides more flux and position constraints for deflector modeling than other
lenses provide.

Lens modeling requires both source and deflector models. By treating subcomponents
as pointlike, analytic expressions are given for model source flux and position parameters,
reducing the parameter search space dimensionality. Image centroid may not correspond to
source centroid for non-pointlike subcomponents; a correction for this was derived.

The deflector potential was multipole-expanded in angle; each multipole component's
radial dependence was Taylor-expanded in distance from the Einstein ring radius. Slightly
regrouping the expansion terms, their coefficientsgive the multipole moments of mass ex-
terior to, interior to, and at the ring radius. The dominant terms' coefficients parameterize
0414+0534's deflector model.

The best fit model has interior and exterior quadrupole moments, and exterior m =
3 and m = 4 multipoles. The radial profile was unconstrainable. The deflector cen-
troid matches the optical galaxy position. Both quadrupoles are aligned with the optical
isophotes. The exterior multipoles, not attributable to a single compact perturber, indicate
asymmetry and boxiness in the galaxy's outer regions.

The model-predicted dimensionless B-C time delay is 1.225 x 10-11 with +14%/-15%
systematic error from choice of model form, and 1.7% statistical error. Combined with the
yet-to-be-measured time delay and deflector redshift, this determines the Hubble parameter,
with slight dependence on cosmology,75km/sec/Mpcx (I-K) x34.34 days/ D..tBC with error
from lens modeling as above, assuming Einstein-de Sitter cosmology with deflector redshift
0.5. Measuring the (B-A)/(A-C) time delay ratio may reduce lens modeling systematic error
to +0%/-10% for B-C or +0%/-4% for B-A. The factor 1 - K arises from interaction of
a possibly incorrect model value for the angularly-averaged surface mass density at the
Einstein ring radius with the mass sheet degeneracy. K = 0 for an isothermal profile.
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Chapter 1

Introduction

1.1 Why study gravitational lenses?

The phenomenon of gravitational lensing is an intriguing subject. The light from a

background source is deflected by the gravitational potential of a foreground source

resulting in a "mirage", a distorted image or images of the background object. The

phenomenon is useful for a variety of astrophysical applications.

Magnification of source flux. The background object may be magnified. The ap-

parent angular size of the background object increases, while the sky brightness

remains unchanged. This increases the total flux arriving at the observer on

earth. The increased flux and increased angular size allow the study of faint

distant objects that otherwise would be very difficult to observe. For example,

a recent interesting application was the measurement of the spectrum of a dis-

tant galaxy, revealing the red shift to be z = 4.92, the highest known redshift

of any galaxy. The galaxy was magnified by a foreground cluster of galaxies

increasing the observed flux sufficiently that the spectrum could be determined

(Franx et at. 1997).

Dark matter. The deflection of light by the foreground object depends on all the

mass, dark as well as luminous, allowing the study of the dark matter in the

deflector. The amount and location of dark matter in the universe are currently
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topics of great debate. For example, lensing of background galaxies is being

used to map the dark matter in clusters of galaxies (Kaiser & Squires 1993).

Distance measurements and cosmological parameters. The light from the

background object may reach the observer via multiple paths. The geomet-

ric figure defined by these paths samples the shape of space-time out to the

redshift of the source, which can be large. If the difference between the light

travel times along two paths to the source can be measured, as by seeing a flux

increase or decrease in one image and days or months later the corresponding

flux change in another image of a variable quasar, this time delay can be used to

determine the size scale of the lens system. This determines the angular diame-

ter distances in the lens system. It does, however, require that the gravitational

potential of the deflector be adequately well known (adequately well modeled).

The relation between angular diameter distance and Doppler redshift, due to

recession velocity caused by the expansion of the universe, depends on the uni-

verse's cosmology. For small redshifts the constant of proportionality between

a source's distance D and its recession velocity v or consequent redshift z, due

to the expansion of the universe, is simply the inverse of the Hubble parameter

D = v / Ho = cz / Ho. For more distance objects with redshifts of order unity or

greater, the relationship deviates from a straight line but the normalization is

still given by H;;l, and the deviation from linearity is determined by the aver-

age mass density of the universe no and by the cosmological constant (vacuum

energy density) nAo.

The Hubble parameter Ho is particularly interesting because its inverse H;;l,

with dimension of time, sets the scale of the age of the universe, under the "big

bang" scenario. In particular, for a Friedmann-Robertson- Walker universe with

no = 1 and nAo = 0 (an Einstein-de Sitter universe), the age of the universe

is tuniverse = ~H;;l; for other mass densities no and cosmological constants nAo

the expansion history is somewhat different and the constant of proportionality

between tuniverse and H;;l differs from 2/3.
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Since time delay measurements may be used to measure the effective distance

to a gravitational lens, lens systems for which these time delays and red-

shifts are known can be used to determine the Hubble parameter. Such mea-

surements have already been made for gravitational lenses PG Bll15+080

(Ho = 51~~j km/sec/Mpc (Keeton & Kochanek 1997; Barkana 1997; Schechter

et at. 1997)) and B0957+561, (between 60 and 75 km/sec/Mpc; see Haarsma

(1997) for a good current discussion of the state of the B0957+561 determi-

nation of Ho). Measuring many such systems would reduce the problem that

erroneous Ho values might result from poor understanding of particular lens

systems.

The various other methods of measuring the Hubble parameter also leave room

for improvement. Recent measurements, helpfully reviewed by Haarsma (1997),

include Ho = 54 :I: 14 km/sec/Mpc using the Sunyaev-Zel'dovich effect (Myers

et at. 1997), Ho = 73:1:6(statistical):l:7(systematic) km/sec/Mpc using Type II

supernovae (Schmidt et al. 1994), Ho = 81:1:6 km/sec/Mpc using surface bright-

ness fluctuations of galaxies (Tonry et at. 1997), and Ho = 64:1: 6 km/sec/Mpc

using Type Ia supernovae as standard candles (Riess et at. 1996).

Using time delay measurements to measure the effective distance to a gravita-

tionallens, for use in determining the Hubble parameter, the proportionality

constant in the redshift-distance relation, is very appealing for several reasons:

(1) The physics of the time delay phenomenon is well understood: deflection of

light in a gravitational field and the slowing of time in a gravitational potential

well. (2) The large distances involved, with redshifts of f"V !to f"V 3, reduce the

effects of peculiar velocities or bulk flows on the deduced Hubble parameter.

(3) Uncertainties in the normalization of the cosmic distance scale do not af-

fect this method, since this is a one-step distance measurement that bypasses

the cosmic distance ladder. (4) Such lens-time-delay determinations of Ho are

completely independent of the other techniques for the determination of the

Hubble parameter, and should not be affected by the same systematic errors as
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the other methods.

Measurements of Ho from multiple lens systems will serve as checks against

errors due to peculiarities in individual lenses, in particular systematic error

in modeling the lens's deflector gravitational potential. Measuring multiple

systems also holds the possibility of constraining the average mass density of

the universe no and the cosmological constant nJ\o, due to their effect on the

redshift-distance relation at large redshifts.

The observations described in this thesis were initially motivated by the third

point, in particular the determination for a large number of lenses of time delays,

in quest of the Hubble parameter. In the course of observations of a number of

lenses, it was found that the lensed radio source MG J0414+0534 has a great deal of

detailed substructure on milliarcsecond scales (figure 1-1). This substructure makes

this lens interesting for well-constrained modeling of the deflector mass distribution.

Such modeling may be used to compare the dark with luminous matter in the galaxy

which acts as the deflector. It also provides a good model of the deflector to await

future time-delay and deflector redshift measurements of MG J0414+0534. This is

important since the major source of error in the Hubble parameter measurements

from gravitational lenses has been systematic error in the modeling of the deflector

potential due to lack of available information on the potential.

1.2 Previous studies of MG J0414+0534

MG J0414+0534 was identified as a gravitational lens in a program, intended to find

lens candidates, of Very Large Array (VLA) snapshot observations of sources from

the MIT-Greenbank (MG) survey. This four-component astronomical object (AI, A2,

B, C) was reported as a lens by Hewitt et al. (1992) who also noted that the optical

counterpart was unusually red. Further observations with the VLA clearly separated

components Al and A2 and gave a flux ratio of All A2 rv 1.1 at radio wavelengths

(Katz & Hewitt 1993).
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The lensing galaxy was detected optically (I-band) by Schechter & Moore (1993).

They also saw a faint object "X" to the west of component B. They noted that the

Al/ A2 optical flux ratio was> 2. This flux ratio was surprising since two merging

images near a critical line are expected to have similar fluxes. It was also surprising

because it was significantly different than the radio flux ratio. The Al/ A2 optical

flux ratio and galaxy detection were confirmed by the Hubble Space Telescope (HST)

R-band observations of Falco (1993) and in I-band by Angonin- Willaime et al. (1994).

Angonin- Willaime et al. (1994) enumerated a plethora of possible reasons for the

flux ratio discrepancy:

• extinction of A2 by the lensing galaxy

• source variability and time delay

• differential magnification or variability of A due to microlensing

• magnification gradients because the source is near a caustic of the lens, with

the radio and optical flux coming from different regions of the source

Lawrence et al. (1995b) determined the source redshift to be Zs = 2.639 :i: 0.002

from an Ha spectral line. The deflector redshift is still unknown - the absorption lines

seen in the spectrum are actually Fe II near the source redshift (Lawrence et al. 1995a).

Lawrence et al. (1995b) argue that the deflector is very dusty, because of the unusual

spectrum. The spectrum can be explained as a standard quasar spectrum with dust

absorption near the expected ZL rv 0.5 deflector redshift, but it cannot be explained

by dust near the source. A dusty deflector has the added merit of explaining the

extreme redness of the optical observations and the unexpected Al/ A2 optical flux

ratio - attributable to differing amounts of extinction along the two paths through

the deflector.

Witt, Mao, and Schechter (1995) examined the statistics of microlensing by in-

dividual stars in the deflector galaxy, and found that microlensing was sufficient to

explain the flux ratio radio-optical discrepancy. For a quasar, radio flux normally

comes from a region much larger than that of the optical flux. For small sources one
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expects significant flux variations due to microlensing by individual stars. A large size

emission region would wash out the effects of microlensing. They work out the prob-

ability distribution for the log of the flux ratio, log(~~), for various source sizes. The

optical flux ratio seen in MG J0414+0534 would be unusually but not outrageously

large in the zero-source-size limit. They note that if microlensing is the correct ex-

planation of the ratio discrepancy then it is expected that Al IA2 will revert closer

to lover time, and they crudely estimate the time scale for a single microlensing

event to be 12 years. If All A2 remains fixed at the value seen in the optical, then

microlensing ceases to be a good explanation.

In a further twist on the flux ratio issue, Vanderriest et al. (1996) report optical

(R-band) and infrared (K-band) All A2 flux ratios of 1.3 and 1.39, for observations

made in August 1994, which are closer to the radio value of the flux ratio. However,

in R-band, both Al and A2 appear extincted relative to B: (A1+A2)/B is less in

R-band than in K-band, whereas in K-band it is similar to (A1+A2)/B in the radio.

They put forward as plausible explanations 1) extinction coupled with a microlensing

event in Al that had ended by 1994 or 2) extinction only. However the November

1994 R-band HST image of Falco et at. (1997) indicates that A1/ A2 is 2.5 in R-band

and 2.1 in I-band, casting doubt on the observation of Vanderriest et at. (1996).

Observations with the refurbished HST (Falco et al. 1997) in November 1994

reveal an arc extending from Al to A2 to B, in both R- and I-bands. The arc is

0.9 magnitude bluer that the images of the core, and it is uniform in color (to 0.3

magnitude) along its length. This uniformity is an argument against patchy extinction

in the deflector galaxy as a source of the All A2 flux ratio discrepancy. They also

find that the galaxy's brightness distribution is characteristic of an elliptical galaxy

and is well represented by elliptical isophotes with a de Vaucouleurs profile. Their

All A2 flux ratios, 2.50 :l: 0.04 in R-band and 2.11 :l: 0.01 in I-band, are consistent

with both Schechter & Moore (1993) (I-band) and Angonin- Willaime et at. (1994)

(R- and I-bands).

Further radio observations by Katz, Moore, and Hewitt (Katz et at. 1997) placed

limits on the flux of any fifth image in the system at 1.4, 5, 8, 15, and 22 GHz. They
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Figure 1-1: High resolution maps of MG J0414+0534 images AI, A2, B, and C
from this thesis, observed at 5 GHz with the Very Long Baseline Array, are shown
superimposed on the 22 GHz Very Large Array map of Katz et al, (1997) (kindly
provided by C, Katz),
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identified the background source as a GHz-peaked-spectrum (GPS) source. They

found the spectral index from 5-22 GHz to be the same for all components AI, A2, B,

and C: a = 0.80 :i: 0.02, where a is defined as S = Sov-O:. The polarization fraction

was found to be low. The Al/ A2 flux ratio was measured at 5, 8, 15, and 22 GHz. At

8 GHz, the ratio was Al/ A2 = 1.114 :i: 0.002. The error bars were somewhat larger

at the other frequencies, with only slight disagreement, given the sizes of the error

bars, between the flux ratios at the various frequencies.

In an attempt to determine the time delay, flux monitoring was undertaken by

Moore (1996). In monitoring of MG J0414+0534 at 15 GHz with the VLA from

November 1992 to May 1993, any intrinsic variability was masked by calibration

errors of the order 3.4%. Moore concluded that any intrinsic variability was at most

1.7% on the time scales of interest, rv 20 days. He also monitored at 8 GHz with the

VLA from March 1994 to January 1995. The RMS in the light-curves, corrected for

deconvolution errors, was 1.4%, 1.5%, and 1.7% for Al+A2, B, and C respectively.

This also failed to detect variability clearly attributable to source variability.

Higher resolution radio maps have shown substructure in the components AI, A2,

B, and C. The Merlin 5 GHz map of Garrett et al. (1992) shows AI, A2, and B

clearly extended, as do the 5 GHz Very Long Baseline Interferometry (VLBI) maps

of Ellithorpe (1995). The European VLBI Network (EVN) 1.7 GHz map ofPatnaik &

Porcas (1996) shows AI, A2, and B resolved into primary and secondary components,

and C extended.

In summary, issues remaining to be explained for this lens are its extreme redness,

the uniform blueness of the arc relative to the redness of the core images, and the

difference between the radio and optical Al/ A2 flux ratios. This last can be accounted

for by microlensing, but other explanations have not yet been ruled out. It remains

to be determined whether object X is related either to the source or to the deflector.

Observations of the time delay and of the deflector redshift are still needed.
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1.3 Previous efforts to model the MG J0414+0534

deflector gravitational potential

There are two main reasons why effo"rt is made to model the deflector gravitational

potentials for gravitational lens candidates. Firstly, modeling is used as a plausibility

check that a purported lens may indeed be a gravitational lens - by showing that

there exists some potential that can approximately produce a particular image con-

figuration. Secondly, modeling is done to learn about the mass distribution of the

deflector either for the sake of learning about the dark matter or for the sake of cal-

culating the time delay. To study the mass distribution or to predict the time delay

one needs to know just how well the lensing constrains the deflector gravitational

potential.

Kochanek (1991) studied how well the lens potentials were constrained for five

different quad lens candidates including MG J0414+0534. He used a multipole ex-

pansion of the lens potential, including only the monopole and quadrupole terms. For

the monopole he tried both a point mass and a singular isothermal sphere - the two

extreme cases of physically reasonable radial dependencies. He considered quadrupole

components due to an external mass distribution, due to a mass distribution com-

pletely contained in the region between the lens images, and a mixed case. (The

external quadrupole also goes by the name of "external shear".) He found that all

the quad lens candidates were moderately well fit by any monopole and quadrupole

combination. The implication is that the radial dependence of the potential is very

ill constrained. He noted that this is not surprising. Six relative positions from four

images scarcely over-constrain the simplest non-circularly-symmetric model, which

has five parameters. He made the point that there is little purpose in going to models

with more complicated radial profiles if one cannot distinguish between simple mod-

els having such different radial profiles. Fluxes would provide more constraints, but

optical fluxes in particular are suspect due to possible contamination from microlens-

ing. Radio fluxes might be reasonable to include as constraints. Even so, all the

constraints still fall within a very small range of radial distances from the center of
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the deflector mass distribution. On the optimistic side, the lens critical radius, which

is proportional to the total mass within the region bounded by the lens images, is not

sensitive to the particular shape of the potential, and is very well constrained. The

orientation angle of the ellipticity, too, tends to be well constrained and insensitive

to the model used. The amplitude of the ellipticity depends crucially on the form of

the monopole term - the shear is almost exactly twice as large in point mass models

as in singular isothermal sphere models, an oddity explained by Kochanek.

Even in the initial MG J0414+0534 publication (Hewitt et al. 1992), a simple

model for the deflector mass distribution is given. It is an elliptical potential which

reduces to a singular isothermal sphere in the no-ellipticity case, very similar but not

identical to Kochanek's monopole plus quadrupole models. They find that this can

reasonably well reproduce the image positions and magnifications, but they did not

do a quantitative analysis of the goodness of fit.

The most precise optical positions for the components are those of Falco et al.

(1997), with 20 milliarcsecond errors on the image positions and 50 milliarcsecond

errors on the galaxy position. Four different models are fitted: 1) mass follows light,

2) the elliptical potential of Hewitt et at. (1992), 3) a point mass with an external

quadru pole (external shear), and 4) a singular isothermal sphere with an external

quadrupole (external shear). Formally none of the fits were satisfactory, the mass-

follows-light being definitely the worst. The other three models, with an adjustable

amount of quadrupole contribution, did better. The point mass with shear was best,

but was not much different in chi-squared per degree of freedom (X2 jDOF) from

the singular isothermal sphere with shear (X2 jDOF of 4.5 and 5.5 respectively for 3

degrees of freedom). These results serve to illustrate Kochanek's (1991) point: the ra-

dial profile of the deflector's potential is ill constrained by the four-image quad lenses,

even while the angle of the ellipticity and the Einstein radius are well constrained.

Also the amount of shear depends on the form of the monopole term.

The radio observations of Katz et al. (1997) have even more precise positions than

the HST optical data, with components' position errors of 10 milliarcseconds. The 15

GHz observation was modeled by Ellithorpe (Ellithorpe 1995; Ellithorpe et at. 1996);
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this modeling has the most stringent position constraints of any published MG J0414-

+0534 models. First Ellithorpe tried several different monopole terms, adding either

external or mixed quadrupole terms. He also tried an elliptical potential which was

not truncated at the quadrupole term. This modeling was done using the "visibility

lens clean" (VLC) algorithm which "cleans" or deconvolves the synthesized antenna

beam from the data at the same time as tracing the flux back through the lens.

Formally all of these models were quite poor fits with X2 /DOF ~ 1.89 for 64600+

degrees of freedom.

To explore a wider range of models, Ellithorpe (1995) returned to "point" mod-

eling, using just the image positions and fluxes and the HST galaxy position as con-

straints. He tried a variety of models. Each model had a singular isothermal sphere

monopole term and a quadrupole term. To these he added a second independent

quadrupole, a second singular isothermal sphere, an octupole term (angular depen-

dence cos 3(0 - 0{3)), or a term with angular dependence cos 4(0 - (0). He found that

to get a X2/DOF of under about 12 (for 3-6 degrees of freedom) he needed to break

the reflection symmetry about the origin of the potential. The models that broke the

reflection symmetry were those with, in addition to the monopole and quadrupole

terms, either a second singular isothermal sphere or an octupole term. For the two-

singular-isothermal-sphere models, this resulted in X2/DOF of 5.3 and 12.5 with 3

degrees of freedom, a better fit than any of the rest of the models except for the

octupole; the better of the two is only excluded to rv 99.9%. For the octupole the

X2/DOF was 1.8 with 4 degrees of freedom, which is only excluded to 88%, a fairly

good fit. This best model, with a potential

1
<I>(r,O) = br + _,r2 cos(2(0 - O"()) + {3r3 cos(2(0 - 0{3)),

2
(1.1)

was used with VLC which gave only an insignificant change in the fitted parameter

values, but gave a X2/DOF of 1.69 for 61700 degrees of freedom which is formally

very bad (Ellithorpe et at. 1996).

Ellithorpe's (1995) 5 GHz VLBI maps were also fit to his octupole model, using
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point position constraints, but the data were sufficiently poor not to shed more light

on what makes a good model.

In summary, the previous MG J0414+0534 modeling work has shown us the fol-

lowing. The critical radius and angle of orientation of the deflector mass distribution

have been well constrained. The modeling work has failed to constrain the radial

dependence of the mass distribution. The amount of modeled shear (quadrupole

moment) depends on the form assumed for the monopole component. To get an ad-

equate fit to the higher resolution data (10 milliarcsecond position errors) it appears

necessary to break the reflection symmetry about the origin. Visibility Lens Clean

can demonstrate that a model is formally a poor fit, even if the model adequately

satisfies the "point" modeling constraints. Unfortunately, VLC is computationally

expensive, which makes it difficult to use to explore wide ranges of models.

In this thesis, high resolution Very Long Baseline Array (VLBA) maps of MG J0414-

+0534 showing substructure to each of the four images will be used for modeling.

1.4 Overview of this thesis

Chapter 2 introduces some basic concepts of Very Long Baseline Interferometry

(VLBI) essential to the reduction of VLBI data to form maps of radio sources.

Chapter 3 describes Very Long Baseline Array (VLBA) 5 GHz observations of

seven gravitational lenses, B0218+357, MG J0414+0534, B0957+561, MG J1131-

+0456, BI422+231, PKS BI830-211, and B2016+112, and gives the details of the

data reduction procedure. It presents maps of the five lenses for which maps were

successfully made, B0218+357, MG J0414+0534, B0957+561, BI422+231, and PKS

BI830-211. These observations were made as part of a study to determine the feasibil-

ity of using the VLBA for monitoring the fluxes of these lenses in order to determine

their time delays. However, the unusually complex structure of MG J0414+0534

looked so promising that the decision was made to concentrate on modeling the

MG J0414+0534 deflector gravitational potential. (See figure 1-1 or 3-6.)

Chapter 4 is an introduction to the theory of gravitational lensing. This chapter
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introduces the basic lens equations and concepts in the thin lens approximation, in-

cluding the two-dimensional lens potential, the differential arrival time delay between

images of a background source, and lensing degeneracies - transformations of the

two-dimensional lens potential that do not affect the lens image sky brightness dis-

tribution. This chapter discusses what observables are available to use in modeling

the gravitational potential of the deflector, and mentions some theoretical limits on

what can be learned about the potential from lens modeling. It is also shown how the

potential, together with time-delay and redshift measurements, can give the distance

scale to the lens system - either the angular diameter distance to the lens DL or the

effective lens distance Deff = DDT,D~ depending on what assumptions are made and
LS

what observational information about the potential is used. An explanation is given

of how the measurement of D L or Deff for a single lens may be used to determine

the Hubble parameter Ho, and how the measurement of DL or Deff for many lenses

with differing source and deflector redshifts may potentially be used to determine the

average mass density of the universe no and the cosmological constant nAo'
Chapter 5 describes in practical detail how features in the lensed emission's surface

brightness distribution may be used to constrain models of the two-dimensional lens

potential. Formulas are given for "point" modeling, treating each lensed object of

a point source, including suitable approximations and analytic tricks to reduce the

computation involved in the minimization of the chi-squared. Correction terms are

given for use in the case that the lensed objects are slightly extended rather than

pointlike, again with attention given to computational efficiency. Using the extents

of extended images to provide additional constraints is briefly discussed.

Chapter 6 discusses the selection of a suitable model form with which to parame-

terize the lens potential. It commends as a suitable model for ring and quad lenses,

such as MG J0414+0534, a Taylor expansion in distance from the Einstein ring ra-

dius of terms in a multipole expansion in angle of the lens potential (suggested by

Kochanek (1991)). Formulas are given for each term in the expansion and for their

derivatives as needed in lens modeling. The coefficients of the terms are related to

the features of the surface mass density that drive each term, and their effects on
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image positions are discussed. This model is compared with other models that have

been used for lens modeling.

Chapter 7 presents the results of modeling the deflector potential of the MG J0414-

+0534 system. Particular attention is given to the degree to which the radial profile

of the deflector is constrained. Model predicted dimensionless time delays are com-

puted, for comparison with yet-to-be-measured MG J0414+0534 time delays, for the

determination of the Hubble parameter. Attention is drawn to the systematic errors

that could result from an improper choice of the form for the deflector potential.

Chapter 8 presents the conclusions of this thesis, summarizing important results

from all the chapters. The new 5 GHz VLBA observation of MG J0414+0534 is com-

pared with previous radio maps and with the optical HST maps of Falco et al. (1997).

The reader is reminded of the advances in modeling techniques and model functional

forms presented in this thesis. The best MG J0414+0534 model is presented again,

comparing the model lens potential with the optical observations of the lens galaxy.

The significance of the modeling result is discussed in reference to its promise for

precise determination of the Hubble parameter.
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Chapter 2

Very Long Baseline Interferometry

This chapter introduces basic concepts of interferometry, outlining how it is possi-

ble to make maps of astronomical sources using Very Long Baseline Interferometry

(VLBI). In particular it discusses the reasons for the various transformations and

data processing steps that are done to interferometric data in the course of turn-

ing electromagnetic waves received at the antenna into maps of the sky brightness

distribution.

The two-element interferometer is introduced first, as it is the simplest interfer-

ometer and illustrates difficulties that must be overcome to do VLBI. Delay tracking,

phase tracking, and correlation are discussed; these are done by the Very Long Base-

line Array (VLBA) correlator before the "observer" sees the data. The purpose and

effect of fringe fitting are described. Also shown is the manner in which source struc-

ture manifests itself in the residual fringe rates and delays. This has implications

for the extent to which the data can be averaged. The signals arising from each re-

gion of the source, each with its own amplitude, relative phase, residual fringe rate,

and residual delay, add together forming the visibility signal (determining amplitude

and phase) from which interferometric maps are made. This mapping process is dis-

cussed, including Fourier transformation to form "dirty" maps, deconvolution, and

hybrid mapping.

VLBI observations, using the VLBA, were made of the gravitational lenses B0218-

+357, MG J0414+0534, B0957+561, MG Jl131+0456, B1422+231, PKS B1830-211,
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Earth Equatorial plane

Figure 2-1: The two element interferometer. Electromagnetic radiation originating
from a direction n is detected by antennas located at fA and TB. See text for expla-
nation.

and B2016+112. The observations and the details of the data reduction are described

in chapter 3. This chapter provides the conceptual background for understanding the

data reduction procedure.

2.1 Simple connected-element interferometer

The discussion of interferometry is most easily begun by considering a simple two-

antenna connected-element interferometer. Two antennas, at locations fA and Tn,

each observe the same small patch of sky. (See figure 2-1.) Electromagnetic radiation

(noise) originates at a particular point source location, n, on the sky. The electric field

vector is then a plane wave propagating from the direction of the source. Within a

narrow frequency band, near frequency v, the electric field is a nearly monochromatic

plane wave whose complex amplitude changes only slowly with time. Using w = 21rV

and wave vector k = - ~n, and referring to the complex amplitude (also called the
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"envelope function") as Benv, the electric field is

( - )- - k.f .--E(f, t) = Eenv t - ~ ez(k.r-wt). (2.1)

Each antenna detects this electric field wave, plus a certain amount of other noise,

( - )k -- - _ - . r i(k.r-wt) _E(r, t) - Eenv t - ~ e + nnoise. (2.2)

The correlation of the signals from the two antennas is computed: the complex con-

jugate of one signal is multiplied by the other signal, and the result is averaged over

some time interval. This averaging time when taking the correlation must be greater

than the inverse of the bandwidth, so that unwanted noise cross terms average to

zero.

(B*(fA, t)B(fB, t)) (2.3)

(E:nv (t - k ;A)Eenv (t _ k ;8)eik.(firrA»)

/ - k . fA '(k- - ) )+ \ E:nv (t - ~ )e-Z 'rA-wt fiB

+ ( ii;' Eenv(t _ k ;8)ei(k.rB-wt»)

+ (fiA fiB) ,

If the distances from the two antennas to the source differ too much, then the envelope

functions fail to line up and the correlated signal is zero; to prevent this, the difference

in arrival times of a phase front at the two antennas must be less than the inverse of

the bandwidth. For a source near zenith, the phase fronts reach the two antennas at

approximately the same time, k . fA ~ k . fB. Therefore the arguments to B:nv and
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Eenv are the same, and the correlated signal is approximately

(2.5)

The signal is affected by the relative motion of the antennas as the earth rotates.

Both k . fA and k . rB change with time. The amplitude of the correlated signal is

just the flux of the source, but the phase changes with time. (The averaging time

when taking the correlation must be short compared to the time over which the phase

changes due to the earth's motion.) The phase of the correlated signal is

ljJ(t) = k . (rB - fA). (2.6)

(2.7)

The time dependence may be Taylor expanded, letting rBo and fAo be the antenna

locations at time to. The change in the antenna positions with time is given by the
..

earth's rotation; rB = We X rB and rA = We X rA where We is the earth's rotation rate.

Therefore

</>(t) ~ </>(to) - 27f(t - to)n . {we X (TRo ~ TAo) }

Near to time to the phase is thus described by a phase offset ljJ(to) and a rate of change

of phase with time, called the fringe rate:

A {- (rBo -rAo)} 1-' (£) (h)D j'lIfringe = -n. We X .A = We COS U COS EW /\ (2.8)

This fringe rate depends on the source declination 8, the source hour-angle h, the

east-west antenna separation DEW, and the earth's rotation rate We. These "fringes"

are the signature of a source in a two-antenna connected-element interferometer, and

can be used to determine the declination of the source. The fringe rate increases with

baseline length. For VLBI with, for example, an antenna separation of 6000 km, a

wavelength of 6 cm, and a zero declination source at transit, the fringe rate would be

7 kHz!

Several constraints have been noted for a connected element interferometer with
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no adjustable delay between antennas. The averaging time must be short compared

with the fringe rate tav < l/vfringe' The averaging time must be long compared to the

bandwidth in order for the noise cross terms to have no correlation: 1/ ~Vbandwidth <
tav• The difference in arrival times of the phase front at the two antennas must be

small compared with the inverse bandwidth so that the "envelope" functions of the

signals are aligned: In. (fA - rB)I/c < 1/ ~Vbandwidth. Thus for the example above,

attempting to do interferometry with a very long baseline, the 7 kHz fringe rate

would imply bandwidth of greater than 7 kHz was needed. This in turn would imply

that the distance between antennas, projected along the line of sight to the source,

would have to be less than 41 km, or that the source be less than 24 arcmin from

zenith. Since a source at zero declination travels 15 arcmin for every minute of time,

such a source would be visible only briefly to this hypothetical connected-element

very-Iong- baseline interferometer.

2.2 Delay tracking and phase tracking at each an-

tenna

In Very Long Baseline Interferometry, the path-length difference from the two an-

tennas to the source, (rB - fA) . n, changes rapidly in time. It is necessary to keep

the envelope functions aligned in time, so that the correlated amplitude will not be

washed out. Therefore one must keep track of the path-length difference and how it

changes with time. The path-length difference is also used to undo the fringe rate (the

phase-change-with-time) caused by the earth's motion. These processes are known

as delay tracking and phase tracking. The phase and delay tracking depend on the

source location. This tracking is done by the Very Long Baseline Array correlator

before the observer sees the data, using the source position specified by the observer.

The tracking may be done on an antenna-by-antenna basis. A time offset may be

introduced before correlation to align the envelope functions. The time is adjusted to

be the time of arrival of the wave-front at a fixed point, say the earth's center. The
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Earth Equatorial plane

Figure 2-2: Interferometer. See text for explanation.

phase may then be corrected to account for the phase rate caused by the change in

the antenna's position.

Consider the following scenario: An array of antennas observes a small region

of the sky in a narrow frequency band at frequency v = w/(27r). In that region

of sky there are two point sources, in directions nl and n2. (See figure 2-2.) The

electromagnetic waves which reach the earth from these sources can be described by

where the wave vectors of the radiation are k1 = -~nl and k2 = -~n2. The envelopec c

functions Benv 1 and Benv 2 change only slowly with time, since the bandwidth of the

detected signal is narrow.
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The signal is detected at an antenna A at time tA and location TA(tA)

(2.10)

The signal may then be mixed down to baseband. That is, it may be shifted

from a bandpass near frequency v = wj(27r) to a bandpass near zero frequency by

multi plying by eiwtA•

(2.11)

The phase may then be corrected for the extra phase due to the displacement of

the antenna from a fixed plane perpendicular to the direction to the first source nl'
For the plane containing the earth's center, the signal is multiplied by e-ikl.rA There

may be some error in the correction, e-i<l>~rrA. The phase-tracked signal is then:

E A (tA) = Eenv1(tA - ';1 . rA)e-i<P~"A(tA) + Eenv2(tA _ ';2' rA)ei(k2-k')'i'Ae-i<P~"A(tA).
PT w w

(2.12)

A corrected time may to used to correct for the arrival time at the earth's center

of a wave front from the source at nl' This arrival time is t = tA - (kl;A). There may

be some error terr A in this correction. The delay-tracked signal is simply the phase-

tracked signal at a shifted time, E A (t) = E A (tA) where tA = t + (kl.rA) - terrA'
PT,DT PT w

It is convenient to rename the phase-tracking error: 4>err A (t) = 4>~rr A (t A)' Then

E A (t)
PT,DT

(2.13)

This delay-tracked and phase-tracked signal may then be correlated with the sig-

nals from the other antennas.
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2.3 Correlation

The delay-tracked and phase-tracked signal may be split into narrow frequency chan-

nels (also called spectral points), each of bandwidth !:::..v centered at an observation

frequency v + Vchan, where v is the nominal observation frequency used in mixing to

baseband and Vchan is the offset corresponding to a particular channel. Note that Vchan

is the frequency after baseband conversion.

B A (t)
PT,DT

BA,VChan (t)
PT,DT

(E- (t t )e-i4>errA(t)env 1,Vchan - err A

(2.14)

The signal in each spectral channel is then cross-correlated with the signal in the

same spectral channel from the other antennas. The resulting cross-correlated signal

is called the "visibility" on a baseline between antennas A and B,

VAB(t, Vchan) = / B~,Vchan (t)BB,Vchan (t)) .
\ PT,DT PT,DT

(2.15)

The angle brackets denote time averaging over some appropriate interval. This expres-

sion (equation 2.15) contains cross terms / Benv 1 v h Benv2 v h ). These cross terms\ ' C an , C an

correlate to zero, since the flux from the two sources is uncorrelated.1 The averaging

time for the correlation Tav is taken to be long compared with the variation in the

envelope function Benv,vChan in this narrow frequency channel, Tav > 1/!:::"v. This is not

a problem for 1 MHz frequency channels, as 1/!:::..v = 1 MS. The averaging time must

be short with respect to any fringe rate caused by having errors in phase tracking or

by having flux from a second region n2 away from the tracking center. These require-

1If the radio sources are independent of each other then the noise they emit is presumed uncorre-
lated. If the radio sources are two gravitationally lensed images of a single object, then their fluxes
are correlated with a time delay of typically days or months. On the time scales relevant to VLBI
observations, their fluxes may be considered uncorrelated with each other.
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ments can be met, and they will be discussed in more detail below. The correlated

signal is

(2.16)

(E:nv 1,Vchan (t - terr A) Eenv 1,Vchan (t - terr B) ) e-i(c/>err B(t)-c/>err A (t))

/ --* (k2 - kd . fA -- (k2 - k1) • rB )+ \ Eenv2,Vchan (t - terr A - W )Eenv2,vchan (t - terr B - W )

x ei(k2-kd.(rB-rA) e-i(c/>err B(t)-c/>err A(t)) •

We must calculate the expectation value of the envelope function, multiplied by

itself, with a time offset Toff. This is simply the autocorrelation function of the

envelope function at a delay Toff. The autocorrelation function is the Fourier transform

of the power density spectrum. For continuum sources the power density spectrum is

flat across the pass band, which in this case extends from Vchan - 6.v/2 to Vchan + 6.v/2.

This power density spectrum may be thought of as a boxcar of width 6.v convolved

with a delta function at Vchan. So its Fourier transform, the autocorrelation function,

is a sinc function with first zeros at delay tzero = 1/6.v multiplied by a phase-wrap

ei27rvchanT. The delays Toff are assumed to be much smaller than the width of the sinc

function, Toff « tzero = 1/6.v - this can be assured by taking 6.v sufficiently small,

Le. by using enough spectral channels so that each spectral channel is sufficiently

narrow. The amplitude of the autocorrelation function at delay Toff is then the same

as that at zero delay. This is simply the power in the signal. Let S be the spectral

flux density of the source in energy per unit area per unit time per unit bandwidth.

Ignoring the antenna gain we get

/ E* (t')E (t' - To )) = 6.vS ei27rToffVchan.\ env 1,Vchan env 1,Vchan off 1
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This S is a tensor quantity because the electric field is polarized. Using equation 2.17

to simplify equation 2.16,

VAB(t, Vchan) =

(

"(k2-kI>.(rR-rA) "(- -) (- -»)/lVSl + /lvS2et27rvchan w et k2-kl " rB-r A

X e-i(cPerr B (t)-cPerr A (t)) e27riVchan (terr B-terr A) •

(2.18)

2.4 "Fringe fitting" to remove residual delay and

rate errors

Consider the source at the phase-tracking center nl' Its contribution to the visibility

signal (equation 2.18) is just the source flux 81 with a residual phase

This residual phase changes with spectral channel,

8<presid 2 ( )8 = 1r terr B - terr A
Vchan

The residual phase also changes with time. Since

then
8<presid 2 ( )8t = 7f Verr A - Verr B .

(2.19)

(2.20)

(2.21)

(2.22)

This residual fringe rate, Verr B - Verr A, and delay, terr B - terr A, can arise for a

variety of reasons. A poorly known or erroneous source position may be used for the

delay and rate tracking. Alternately, there may be poorly known antenna positions

or a poor earth-motion model. Yet another possibility is that there may be a clock
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offset at one of the sites.

It is normally desirable to average the data both in frequency and in time before

processing, so as to reduce the data volume and the subsequent computational re-

sources. In order to do this, one wants to correct for these residual delays, so that

the phases of the visibility data may be aligned across frequency channels, and for

these residual rates, so that the phases of the visibility data may be aligned in time.

Then the data may be averaged without loss of signal amplitude.

For a well-designed interferometer, using a well-known source position, these resid-

ual delays and rates change only slowly with time. The visibility data on a single

baseline for some time interval (many minutes) may be fit to find the residual delay

and rate. Actually the visibility data are Fourier transformed: time to fringe-rate

t {::=::> Verr, and frequency channel to delay, Vchan {::=::> terr, and the peak in fringe-rate

vs. delay found. This is done for each baseline, and the result is solved for one delay

and one rate per antenna. These delays and rates are then used to correct the antenna

phases. This process is known as "fringe fitting".

Typically, at least with the VLBA, the fringe rates are small, and the delays

change little over the course of a day. However, there may be a large, constant, delay

due to clock offsets. This "global delay solution" is found first, by looking at a bright

point-like calibrator source, and then applied to all sources. Then the smaller residual

delays and the fringe rates are found by fringe fitting separately to each scan of each

astronomical target, that is, to each uninterrupted interval of on-source time.

Consider a pair of point sources close to each other, both within the primary

antenna beam. The visibility signals from the two sources are additive. Each contri-

bution to the visibility amplitude has its own residual fringe rate and its own residual

delay. When searching in the fringe-rate - delay plane, there will be one peak for

each source in the field of view. The peak from the brightest source is normally the

one found in this fringe fitting process. One can fit for and remove the fringe rate of

only one of the sources, typically the dominant source. This corrects the fringe rate

of any other source to some extent. However, each secondary source will still have

some residual fringe rate and delay that depends on its distance from the first source.
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After fringe fitting is done to correct for the fringe rates and delays of a source at

nl, the phases will have been aligned in time and frequency for a point source at the

fringe-fitting center nl. The corrected visibility data are then

(2.23)

2.5 Residual fringe rates and delays due to source

structure

Even after fringe fitting there are residual phase changes with time and phase changes

with frequency in the portion of the signal due to flux coming from sources away from

the fringe-fitting center. This puts limits on the amount of time and spectral averaging

that can be done, but it also gives information on the positions of secondary sources.

2.5.1 Limits on time and spectral averaging

If a source is truly a single point, then the visibility amplitude is constant, independent

of antenna locations. Fringe fitting may be used to remove any residual rate-of-change

of phase with time or frequency channel due to tracking errors. The amount of time

averaging is limited only by the coherence time of the atmosphere. All the spectral

channels may be averaged together.

However, if there is an additional source location some distance away from the

tracking center, it will still have some residual phase change with spectral channel,

and some residual phase change with time. The dependence of the phase on time is

found by Taylor expansion,

where

(" ,,) ... (TBo - TAo)
Vfringe,resid = n2 - nl . We X A .

Vchan
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The further the source from the tracking center in any particular direction, the faster

the phase change with time. For a fixed averaging time, a larger fringe rate means

more amplitude loss in the signal from that source. Therefore if one is willing to

tolerate a specified amount of loss in the amplitude of a source's signal on a given

baseline, then the amount of time averaging that can be done decreases with increasing

distance of the source from the tracking center. The reduction in a visibility amplitude

due to time averaging is

This is approximately

R' ,....,sin( 7rTavVfringe,resid)
a""" ( ) •7rTavVfringe,resid

(2.26)

(2.27)R' ,....,sin (7rWeTavr DEW / ,X)
a""" (7rWeTavr DEW /,X)

(equation 6.67 of Thompson et al. (1994)), where DEW is east-west baseline distance,

,X is the wavelength, r is the distance from the tracking center, We is the earth rotation

angular velocity, and Tav is the averaging time.

Similar considerations apply to bandwidth averaging. The dependence of the

phase on frequency channel is

where

e -i211"Vchan tdelay ,resid (2.28)

(2.29)

The further the source from the tracking center in any particular direction, the faster

the phase change with channel. If one is willing to tolerate a certain specified amount

of amplitude loss for a source on a given baseline, then the amount of spectral av-

eraging that can be done decreases with increasing distance of the source from the

tracking center. Due to bandwidth averaging, the visibility amplitude of a continuum

signal is reduced by a factor

(2.30)
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(2.31)

This is approximately
R' rv sin( 7r !J.VavTD / c)

b rv (7r!J.VavT D/ c)

(equation 6.59 of Thompson et al. (1994)), where D is the baseline length, T is the

distance from the tracking center, and tl.vav is the bandwidth over which the averaging

is done.

For the flux reduction due to bandwidth smearing and that due to time-average

smearing to be roughly comparable in amplitude, the following relation must hold:

!J.Vav 1
Tav = ---.

Vo We
(2.32)

This relation between averaging time and averaging bandwidth is pointed out by

Bridle (1989) in his equation 24-A4.

The effect on maps will be discussed below in section 2.9

2.5.2 Information on source positions

The residual fringe rates provide information on the location of sources of flux away

from the tracking center. Let AVchan be the wavelength corresponding to the center

of the spectral channel, then AVchan = c/(v + Vchan). (Recall that Vchan is the spectral

channel's offset in frequency from the observation frequency v.) Then the visibility

may be written as

tl.VSl + !J.vS2ei(k2-kd.(fB-fA)~

-27ri(1i2-1iI)" (rB-r A)
tl.VSl + !J.VS2e >'lIchan •

(2.33)

The time dependence of the visibility may be shown by Taylor expanding the depen-

dence on time of the baseline rB - fA.

(2.34)
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where the fringe rate is

(2.35)

Any source at a location n2 displaced from the tracking center 111has a residual

fringe rate on each baseline. If one Fourier transforms from time to fringe rate,

t ~ Vfringe AB, there should be a spike for each source, and the strength of the spike

should give an idea of the strength of the source. Such "fringe-rate plots" are an

easy but useful diagnostic of the quality of the observation, to see if the signal to

noise ratio was high. Single components appear as single spikes. Multiple-component

lenses appear as multiple spikes, to some extent confused with each other.

Notice that the fringe rate for a source depends on the displacement of the source

from the fringe-fitting center, (n2 - nd = 'l/;xx + 'l/;yy, and on the baseline vector

b~ - (TB-TA) .
AB - A •

(2.36)

A constant value of VfringeAB constrains the source location, 'l/;xx + 'l/;yy, to lie on a line

on the sky. Different baselines constrain the source to different lines on the sky. The

intersection of these lines gives the source location. Plots of such lines are known as

"fringe-rate maps". (Fringe-rate mapping is discussed in section 12.5 of Thompson

et al. (1994).) For astronomical sources with multiple distinct sources, fringe rate

maps are useful for locating the approximate locations of the sources. Mapping,

which will be described below, can only be done in fairly small fields, due to limited

computational resources. It is good to know in advance where to put those fields

relative to the fringe-fitting center.2

2In general, one will know from lower resolution observations of the source, for example with
the Very Large Array (VLA), what components to expect. Occasionally, fringe fitting (see sec-
tion 2.4) will find and remove the fringe-rate effects of a different component than that expected to
be dominant. If the fringe-fitting center is actually at component "b" and one assumes that it is at
component "a" then map field locations chosen based on the knowledge of the relative component
locations will fall in the wrong places. Fringe-rate maps, which are computation ally very quick, let
one verify approximate component locations and avoid such possible problems.
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2.6 Mapping with an interferometer

Consider again the visibility signal,

(2.37)

Note that its only dependence on time, on frequency channel, and on antenna is

through the baseline vector:

(2.38)

Then we may write

(2.39)

This may be readily generalized to many sources. As before all the cross terms

between sources correlate to zero, so that

v(b) = /1v L Ske-21Ti(nk-ndob.
k

(2.40)

For a continuum of sky brightness, the individual source fluxes Sk may replaced by

the sky brightness I(n), and the sum turned into an integral:

L Skj(nk) -* / dnI(n)j(n).
k

Equation 2.40 may be re-written as

(2.41)

(2.42)

For clarity in understanding the approximations that will be made, it is convenient

to introduce a coordinate system, U, V, W, aligned with East, with North, and with

the direction to the tracking center. (See figure 2-3.) The basis vector w is chosen

to point towards the tracking center nl, so that w = nl. The basis vector it points

east, and lies in the equatorial plane of the earth. The third basis vector v is chosen
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..
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b~ ---------------------------<,:i,'iJ;

Earth Equatorial plane

Figure 2-3: The u, V, w coordinate system

to make a right-handed orthonormal coordinate system, v = w x u. Note that u and

v define a plane perpendicular to the direction to the source. They point eastward

and northward, respectively, in that plane.

All the quantities in equation 2.42 may be re-written in this u, v, w coordinate

system. The components of the baseline vector b are given the names u, v, and w:

u = u .b, v = v . b, and w = w . b, so that b = uu + vv +ww. Since the direction to the

tracking center, n}, was used to define the coordinate system, nl = w by construction.

The direction to an arbitrary location on the celestial sphere, n, is specified by the

direction cosines land m, where l = u . nand m = v . n. Only two numbers are

needed to specify n, since n is a unit vector, but note that each (l, m) corresponds to

two different unit vectors n, one on the same side of the earth at the tracking center

nl, and one on the opposite side: n = lu + mv :l: wv1 - [2 - m2. The angular area

element do', representing the surface area of a unit sphere at location n, must also be

written in terms of the direction cosines land m. The algebra is done in the footnote
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below, giving3 dO.= vl~l~:m2' Therefore equation 2.42 may be re-written as

V(u, v, w) = (2.43)

D..Vfoo foo dl dm I(lit + mv + wVl - [2 _ m2)e-27ri(ul+vm+w(-1+VI-L2-m2))
-00 -00 vI - [2 - m2

+ D..Vfoo foo dl dm I(lit + mv - wVl - [2 _ m2)e-27ri(ul+vm+w(-1-vI-L2-m2)).
-00 -00 VI - [2 - m2

The interferometer antennas are directional and do not detect flux from directions

more than 90° away from the tracking center. Therefore for these directions, I (l it +
mv - wVl - Z2- m2) = O. Then without risk of ambiguity we may write I(l, m) =
I(lit + mv + wVl - [2 - m2). Therefore equation 2.42 may be re-written as

V(u v w) = D..v J J dl dm I(l m)e-27ri(ul+vm+w(-1+vl-l2-m2))., , vI - Z2 - m2 '
(2.44)

(equation 2-21 of Thompson (1989)).

When the flux originates in only a limited region of the sky, the direction cosines 1

and m are approximately the distance, in radians, from the tracking center: 1 = it.f1, ::::::

1/Jx and m = v . f1, :::::: 1/Jy. The surface area element vl~l~:m2 may be approximated by

simply dl dm with less than 1% error for vl-l;-m2 < 1.01 or VI -l2 - m2 < 0.14

radians = 8 degrees. Since this is much larger than the primary beam of the VLBA

interferometer antennas, this approximation can be made.

The visibility V(u, v, w) depends on the coordinate w only through the phase term

3 Any integral over the surface of a sphere may be written as an integral over a three-dimensional
volume, using a delta function to force the contribution of the integrand to be zero except on the
surface of the sphere, I = J dnf(it) = J dV ~(Iiil- l)f(ii). Let the components of ii be represented
by (I, m, n), then I = J~oodlJ~oodmJ~oodn~(vL2 + m2 + n2 -1)f(l, m, n). For any function g(x) the
delta function ~(g(x)) may be written as a sum of terms, one term for each zero of g(x). Let Xi be

the zeros of g(x), then ~(g(x)) = Ei ~~~(:~;~.Therefore ~hl[2 + m2 + n2
- 1) = o(n~:~;-;~~~2) +

o(n_~";~i--2'-2_-2m-2).The delta function may be used to turn the triple integral I into a double integral.
v 1-1 -m

foo foo dl dm foo foo dl dmI = --~--------_-~-f(l, m, VI -12 - m2) + _I f(l, m, -vI -12 - m2
).

-00 -00 vI - [2 - m2 -00 -00 vI - [2 - m2

Comparing this with I = J dnf(it), one identifies dO. = ";1~'~~m2 and notes that each (I, m)

corresponds to two unit vectors, it = (I, m, vI - 12 - m2) and it = (I, m, -vI - 12 - m2).
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e-21Tiw(-I+v'I-L2-m2). Under certain conditions this phase term is close to unity and

may be ignored. An interferometer antenna with a narrow beam detects flux from

only a small patch of sky. Therefore I(l, m) is non-zero only for direction cosines l

and m which are small. Therefore it is useful to do the expansion

(2.45)

It can readily be seen that this phase is negligible for W(l2 + m2) « 1. Note that

w = ill . b = 11,1 • (fB - fA) / AVchan is the projection of the baseline vector along

the line of sight to the source, as measured in wavelengths. The phase contributed

by the w-term in equation 2.44 is negligible if the extent of the source's flux (in

radians) -)[2 + m2 as measured relative to the tracking center is less than 1/ VW. More

quantitatively, requiring that Re(e1Tiw(l2+m2)) > 0.99 requires that W(l2 +m2) < 0.045,

that is -)[2 + m2 < -)0.045 'A A(~('hl\n_ ),. For a 6000 km baseline and observations at 6
nl"rB-rA

cm wavelength, this requirement is -)[2 + m2 < -)0.045 60~cOr;:m = 2.1 x 10-5radians =
4.4 arcsec. It can be seen that this w-dependent phase term is negligible for sources

of size 4 arcsec and smaller.

Using these approximations, equation 2.44 may be re-written as

V(u, v) = t:,.v!dl dm I(l, m)e-21Ti(ul+vm) (2.46)

where V(u, v, w) has been re-written as V(u, v) since the right-hand side of the ex-

pression no longer has any dependence on w.
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For astronomical sources with flux originating in only a limited region of sky,

the direction cosines may be thought of as angles on the sky: l = u . it ~ Wx and

m = v . it ~ WY' For such small angles it is more intuitive to write equation 2.46 in

terms of these angles

(2.47)

(Clark 1989)4

This relation is the basis for all mapping done using interferometry. It is the

Fourier transform from (Wx, Wy) to (u, v). Inverting the Fourier transform and ignoring

the absolute normalization, one obtains an expression for the sky brightness,

(2.48)

Thus, conceptually, it is very simple to make a map of the source. Simply measure

V (u, v) for every possible baseline (u, v), then Fourier transform V (u, v). Various

practical difficulties are discussed below.

2.7 Limited UV coverage, dirty maps, deconvolu-

tion

There are many complications to making interferometer maps. One complication is

that the visibilities V( u, v) are measured only on a finite number of baselines, since

an interferometer has a finite number of antennas. Each baseline traces out an arc

in the u-v plane as the earth rotates, thus increasing the coverage of the u-v plane.

4Starting from equation 2.42 one may reach equation 2.47 in one step if one does not insist on
quantifying how small the flux-emitting region must be in order for the approximation to be valid.
Using interferometer antennas with a narrow beam, flux is detected from only a small patch of sky.
The displacement of n from the pointing center n} lies in a plane, n - n} = t/lxu + t/lyv. Therefore
the component of the baseline vector along the line of site to the source becomes irrelevant. Only
relevant is the projection of the baseline vector onto a plane perpendicular to the direction to the
pointing center nt. This plane is called the "u-v plane". Define u = u . b and v = v . b. Then
equation 2.47 follows immediately.
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Still, the visibility has only been measured on a very small portion of the u-v plane.

In practice one constructs the "Direct Fourier 'fransform", J D ( 'l/Jx, 'l/Jy). This treats

V (u, v) as zero where it is not measured. The sampling is denoted by a sampling

function S(u, v), a sum of (possibly weighted) delta functions at the sample points.

Then, (Clark 1989)

JD ('l/Jx, 'l/Jy) LV (Uk, vk)e21ri(t/JzUk+t/JyVk)
k

- / du dv S( u, v) V( u, v ) e21ri(t/Jzu+t/Jyv) .

(2.49)

This is recognizable as a convolution of the visibility function V (u, v) with another

function that is called the "beam pattern" or the "dirty beam" and denoted by

Then

/ du dv S( u, v)e21ri(t/Jzu+t/Jyv)

L e21ri(t/JzUk+t/JyVk).

k

(2.50)

(2.51)

This direct-Fourier-transformed brightness distribution JD('l/Jx, 'l/Jy) is known as

the "dirty" map. This dirty map is the true brightness distribution convolved with a

beam pattern. Note that the beam pattern is the response to a point source, since for

a point source Vv(u, v) = 1. Much effort is required to deconvolve the beam pattern

from the brightness distribution.

Since information on the visibilities is just plain missing from many regions of the

u-v plane, any deconvolution is not unique. Any flux distribution that would show

up only in the un-sampled regions of the u-v plane is not constrained by the data and

could be present in any quantity.

One has no information about the visibility amplitudes for u-v distances beyond

Dmax/ A. All very-high spatial frequency information is missing. This limits the

resolution of the final map. Likewise, there is some minimum antenna separation
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Dmin, so one has no information about the visibility amplitudes for u-v distances

below Dmin/ A. All very-low spatial frequency information is missing. Extended

regions of slowly changing flux would show up orily in the low spatial frequencies.

The interferometer cannot see them. These low-spatial-frequency modes are assumed

zero. This flux does not show up in the maps, and is said to be "resolved out".

However, one can make use of some a priori assumptions to constrain the decon-

volution process. In particular, all flux is assumed to come from a limited region of

the sky.

The deconvolution method used in this thesis is the Clark-Cotton-Schwab CLEAN

algorithm as implemented in the Astronomical Image Processing System (Hogbom

1974; Clark 1980; Schwab 1984). Search boxes, called "clean boxes", are set on

the dirty map to bound the regions in which it is thought that there is real flux.

The region of the dirty map within the clean boxes is searched to find the point

with the highest amplitude. Some small fraction of the beam pattern is subtracted

from that location, and the process is repeated. This results in a model of the source

brightness distribution that consists of point components at map pixel locations. After

cleaning has progressed for the desired number of iterations, these clean components

are convolved with a Gaussian of the same width as the central lobe of the beam

pattern. These residual Gaussians are added to any residual un-cleaned flux to make

the "cleaned" map of the source. A helpful introduction to deconvolution is given by

Cornwell & Braun (1989).

2.8 Phase calibration

Interferometric mapping is complicated by various effects that can produce phase er-

rors in the signals at the antennas. There may be phase offsets due to the atmosphere;

these remain constant only over short periods of time. (One cannot time average for

longer than the atmospheric coherence time, but fringe rates from extended source

structure were more of a constraint for the sources observed in this thesis.) There

may also be phase offsets introduced by the hardware. The visibility phases must be
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calibrated. The solution interval should be not longer than the atmospheric coherence

time.

One allows for one offset per antenna per solution interval, <Perri(t). For N anten-

nas there are N phase offsets in each solution interval. However, N antennas have

N(N -1)/2 baselines. So there are N(N -1)/2 observational phases in each solution

interval. The number of measured phases minus the number of unknown offsets is

N(N - 3)/2. As long as the interferometer has more than three antennas, not all the

phase information is lost.

To calibrate the phases, a model is made of the source. The phase offsets (one per

antenna per solution interval) which best fit the source model are then found. A map

is made from the data, and a better model constructed from the map. This new model

is again used to calibrate the data. A new map is made - and so on. The model

improves with each iteration, until it converges to some model consistent with the

data. The process of calibrating the data to a model made from the source is known as

self-calibration. The whole repeated self-calibration and mapping procedure is known

as hybrid-mapping. A good introduction is given by Pearson & Readhead (1984).

Hybrid-mapping is helpfully discussed with reference to the VLBA by Walker (1995).

2.9 Time and bandwidth averaging limits for maps

The signal reduction on a single baseline, for a source displaced from the tracking

center, due to time averaging and spectral averaging, was discussed above in sec-

tion 2.5.1. More important is the net effect of time averaging and spectral averaging

on a map, rather than on a single baseline at a single time. The analysis becomes

more complicated when one considers multiple baselines rather than single baselines.

The signal reduction effect depends on the orientation of each baseline relative to the

source displacement - and these orientations change over the course of an obser-

vation. At any point in time, some baselines to a given antenna are more affected

than other baselines to that antenna. The effect on a map made from interferometer

data has been analyzed in detail by Thompson et at. (1994). For a many-antenna
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interferometer, using reasonable assumptions, they calculated the peak response to a

point source a distance r from the origin as a fraction Rb of the response to the same

source at the origin,

(2.52)

(equation 6.64 of Thompson et al. (1994)). They point out that the result is not

very dependent on bandpass shape. The form is simpler for a Gaussian bandpass of

equivalent width D,.vav,

1
Rb = ----;::======

-/1 + (0.939T1~Vav)2V (}bVO

(2.53)

(equation 6.65 of Thompson et al. (1994)), where (h is the antenna beam (h ~ DC,
maxVO

Vo is the observation frequency, and D,.vavis the bandwidth.

2.10 The Very Long Baseline Array

The observations described in this thesis were made with the Very Long Baseline

Array (VLBA) of the National Radio Astronomy Observatory (NRAO). The VLBA

is an array of ten identical antennas devoted exclusively to VLBI. This makes ob-

servations much more straightforward for the observer than dealing with disparate

antennas controlled by more than one observatory.

The VLBA has ten antennas, each 25 m in diameter, located on U.S. territory.

The longest baseline length is 8600 km, from Mauna Kea, HI to St. Croix, VI. The

VLBA has nine frequency bands for observations, between 300 MHz and 45 GHz,

with system temperatures of around 30 K at 5 GHz (the frequency used in this

thesis). Correlation of the observations is done at the VLBA correlator in Socorro,

New Mexico.

This and more detailed information can be found in the VLBA Observational

Status Summary (Wrobel 1996) and the NRAO summer school proceedings edited by

Zensus et al. (1995).
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Chapter 3

VLBA Observations and Data

Reduction

Seven gravitational lenses were observed with the Very Long Baseline Array (VLBA)

at two frequencies at three epochs. The original purpose of the observation was to

check for the suitability of using the VLBA to monitor the fluxes of the sources -

with the goal of measuring the time delays of these lenses. While reducing the 5 GHz

data from the first epoch, it was found that the gravitational lens MG J0414+0534

displays substructure on milliarcsecond scales, which could be used for modeling the

gravitational potential of its deflector.

3.1 Summary of observations

The gravitational lenses B0218+357, MG J0414+0534, B0957+561, MG Jl131+0456,

B1422+231, PKS B1830-211, and B2016+112 were observed with the Very Long Base-

line Array. The observations, made 7-8 July, 15-16 September, and 25-26 November

1995, were at 6 cm and 3.6 cm wavelength. At each frequency, each source was

observed for 7 or 8 scans of approximately 6 minutes each, with the total recorded

time being limited by the tape allotment. To the extent possible, these scans were

spaced evenly over the time that the source was up during the 20 hour observation,

to cover as much of the u-v plane as possible. The calibrator sources J1310+3220 and
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J1407+2827 were observed for approximately 3 minutes at each frequency, for use as

fringe-finder and amplitude-check sources. 3C84 was observed 5 times at varying par-

allactic angle, 3 minutes at each frequency, to use for polarization calibration. The

total bandwidth was 32 MHz, 16 MHz each in right and left circular polarization.

Due to concern about loss of peak flux from bandwidth smearing, the observations

were correlated on multiple passes, with different correlation centers.

The 6 em data from the July observation, correlated at the location of the A or

Al image of each lens, has been reduced using the 15JUL95 and 15JAN96 versions

of the Astronomical Image Processing System (AlPS) of the National Radio Astron-

omy Observatory (NRAO). Maps were made of the lenses B0218+357, MG J0414-

+0534, B0957+561, BI422+231, and PKS BI830-211. The lenses MG J1131+0456

and B2016+112 did not have high enough signal-to-noise to fringe fit and map.

3.2 Data reduction procedure for all program

sources

After correlation, the resulting "visibility" data (see equation 2.18) requires further

processing to produce maps of the astronomical sources. The antenna amplitudes

must be calibrated. "Fringe fitting" (section 2.4) removes the residual phase rate and

delay errors in the visibility data. The data are averaged in time and over frequency

channels to reduce the data volume and speed further processing, but the extents

of the sources limit how much averaging can be done (sections 2.5.1 and 2.9). The

Fourier transformation of the visibility data produces a map of the sky brightness

(section 2.6) but the beam pattern due to limited u-v coverage must be deconvolved

from the map (section 2.7) and the antenna phases must be calibrated (section 2.8).

The hybrid mapping process (section 2.8) in which the clean component model of the

deconvolved map is used to calibrate the antenna phases, and the phase-calibrated

visibility data are used to produce a deconvolved map, requires a number of iterations

to converge. The clean component model from the map resulting from the hybrid
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mapping is used as a more accurate model for fringe fitting, and the mapping process

is repeated.

Amplitude calibration and the correction for delays due to clock offsets were done

for all calibrator and program sources together. Fringe fitting, time- and frequency-

averaging of the visibility data, and hybrid mapping were done for each program

source separately. No amplitude self-calibration was done to the visibility data. The

data reduction technique used for all the program sources is described in this section.

Special treatment required for the individual gravitational lenses is described, and

the resultant maps displayed, in section 3.3. An improved data reduction procedure

was used to redo the reduction of the MG J0414+0534 data, and this is described in

section 3.4.

Amplitude calibration

The antenna system temperatures were used for calibration. A discrepancy was noted:

the left-circularly-polarized flux amplitudes were approximately 85% of the right-

circularly-polarized flux amplitudes on all baselines for both amplitude-check sources

J1310+3220 and J1407+2827. Such an effect can be caused by errors in the voltage

thresholds in the digital samplers (National Radio Astronomy Observatory 1995), but

no correction was applied for this until the second pass of data reduction (section 3.4).

Global delay solution for each antenna

Correction must be made for clock offsets at each antenna (section 2.4). A bright

point-like calibrator source, a "fringe-finder source" is useful for finding this "global

delay solution". Plots of the amplitude versus u-v distance revealed J1310+3220 as

the most point-like of the calibrators. A single delay solution was found for each

antenna, each intermediate frequency (IF), each polarization using J1310+3220 as a

fringe finder source. These delay solutions were applied to all sources.
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Flagging of the data

Certain data can be recognized as bad, in particular anomalies that are tied to a

particular antenna over a particular time range, since signal variations due to the

source should depend on the baseline length and direction, not on the antenna or the

time. Such anomalies include low amplitudes at the start of scan or high amplitudes

simultaneously on all baselines to a single antenna, indicating antenna problems or

interference. Such data were "flagged" and thereby eliminated. It was found best

to look at how the visibility amplitudes varied with baseline and time, for a few

representative spectral channels. It was assumed that if one spectral channel was

bad, then all spectral channels were bad.

Examination of program sources using fringe-rate plots and fringe-rate

maps

Fringe-rate plots (section 2.5.2) were used to check whether the signal to noise ratio

was high. These plots gave indication of how easy fringe fitting the data would be,

and even whether fringe fitting should be attempted. Fringe-rate maps (section 2.5.2)

were made to verify the location of the lens images or at least the brightest of the

lens images.

Fringe fitting

Resid ual errors in the delays and rates used to track to sources must be removed (see

section 2.4) leaving only the phase rates and delays due to source structure. The

process of determining and removing these delay and rate errors is known as "fringe

fitting" .

For observations of multi-component astronomical objects, such as these multi-

image lenses, each lensed image (A, B, etc.) has its own residual phase rates and

delays. When searching in the delay-and-rate space for the source signal, a secondary

source may confuse the search if its amplitude is close to that of the primary source.

One technique is to divide out the expected effects of the source structure using
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a model of the source, as a preliminary to fringe fitting. This was tried for the first

two lenses mapped, B0218+357 and PKS B1830-211, using models consisting of one

point source for each lens image, constructed using the approximate positions and

fluxes for the images from published maps. With PKS B1830-211, it was found that

fringe fitting assuming a point source worked better than fringe fitting using a poor

multi-component model. Therefore point models were used for each of the remaining

lenses.

When fringe fitting a multi-component astronomical object, assuming a point-

source object, one must make sure that for each solution time-interval, the same

source (the primary, not the secondary or a noise spike) is found in the delay-rate

search. Since each source had seven or eight scans over the 20 hour observation, it

could be seen, for each individual source, how the delay and rate solutions varied

with time. It was clear from the brighter sources that the delay and rate tracking

errors generally changed only gradually over the multi-hour observation. Therefore

the criterion that the delay and rate solutions must change smoothly with time from

scan to scan could be used to ensure that solutions for the same component were

being found for each scan. Various controls are available to control the fringe search

process: the reference antenna, the required signal-to-noise ratio of the solutions, the

delay and rate search intervals, limits on the u-v range, and the time interval over

which to find a solution. When different adjustments to the fringe-search controls

found different delay and rate "solutions", the set of solutions that changed most

smoothly with time was assumed to correspond to a single component of the lens.

The fitted delays and fitted rates were generally quite small. Apart from PKS

B1830-211, the fitted rates were under 5 mHz and the fitted delays were under 15

nanoseconds. With such good a priori delay and rate calibration from the VLBA, one

can use quite narrow search windows when fringe fitting, thereby reducing the chance

of finding noise spikes or secondary components. The one lens which had higher

delays and rates was PKS B1830-211, which had been correlated at the location

of the northeast image, A. Fringe fitting with a point model found delay and rate

solutions for the southwest image B which had higher peak and integral flux.
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Averaging Bandwidth Averaging Time
Source Correlation Distance For rv1% Actual For rv1% Actual

center to furthest peak flux peak flux
component reduction reduction

(arcsec) (MHz) (MHz) (s) (s)
B0218+357 A 0.33 3.3 2.0 9.1 8.0
PKS B1830-211 A 0.97 1.1 1.0 3.1 2.0
B1422+231 A 1.3 0.8 0.5 2.3 2.0
MG J0414+0534 Al 2.0 0.54 0.5 1.5 2.0
B0957+561 A 6.2 0.18 0.5 0.5 2.0

Table 3.1: Time-averaging and spectral-averaging of the visibility data of the program
sources. The reductions in peak flux are given for the lens image furthest from the
correlation center

Time averaging and spectral averaging

Time averaging and spectral averaging are used to reduce the data volume and there-

fore the computing resources needed. However, there are limits relating the extent

of the sky brightness distribution to the amount of time and spectral averaging that

can be done without degrading the resulting maps. (These limits are discussed in

sections 2.5.1 and 2.9 of this thesis.)

The data were recorded with 2 s averaging, so the averaging time could be any

multiple of 2 s. Each frequency band of 8 MHz was recorded in 16 spectral channels

of 0.5 MHz each, therefore the bandwidth over which to average could be 0.5, 1, 2,

4, or 8 MHz. A formula for the reduction in peak flux for a source located some

distance away from the correlation and fringe-fitting center is given in equation 2.53.

The averaging time that gives a peak flux reduction similar to that caused by the

bandwidth averaging is given in equation 2.32. In table 3.1 are listed the averaging

intervals permitted by the requirement that neither time averaging nor spectral aver-

aging produce more than a 1% drop in the peak flux of the component most distant

from the correlation center. The actual averaging intervals used are also listed in

table 3.1. The two images of B0957+561 are so widely separated that even without

further averaging, B0957+561 image B suffers from bandwidth smearing.

If it were planned to map a lens using a single correlation pass, the effect of
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bandwidth-smearing and time-average smearing would be less if the lens were corre-

lated and fringe fitted at a location intermediate between the sources.

Hybrid mapping

The Fourier transformation of the visibility data to form a "dirty" map of the as-

tronomical object is described in section 2.6 of this thesis. The necessity, due to

limited u-v coverage, of deconvolving the interferometer beam pattern from the map

is explained in section 2.7, and the "CLEAN" deconvolution algorithm is described.

The necessity for calibration of the antenna phases is described in section 2.8, and

the iterative hybrid-mapping process is explained.

The antenna phases were calibrated to an initial model of the source structure, the

same model (point or multiple point) as was used in the fringe fitting. The visibility

data were then mapped, the antenna-beam being deconvolved from the data using

the CLEAN algorithm. The resulting "clean components" were used to construct a

new model of the source. The phases were calibrated using this new model, and the

cycle repeated until satisfactory convergence was reached. Once one has a reasonably

good model for the source, then further iterations of self-calibration and mapping

iteratively improve the model, gradually converging to some final model, which should

not depend too much on the sequence of mapping steps taken to reach it.

When phase-referencing, as at lower resolutions with the Very Large Array (VLA),

the antenna phases can initially be calibrated by observing a nearby point source. In

such a case, the initial maps of the program source show quite well the gross geometry

of the source. Hybrid mapping then merely increases the dynamic range to closer to

the thermal noise limit. A complication with Very Long Baseline Interferometry

is that nearby point-like sources for phase referencing are generally not available.

Therefore the initial model for self-calibration may be very dissimilar to the actual

source - the model may only be a point or a few points, even for sources with

complicated structure. The starting model may be so different from the source that,

unless care is taken, the hybrid mapping sequence may never begin to converge. It

was found necessary to require only a low signal-to-noise ratio (SNR = 1) on the
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early phase calibration iterations, so a poor match between the visibility data and

the as-yet-poor model would not cause data to be discarded.

The gravitational lenses, with multiple widely separated images, could not (except

for B0218+357) each be mapped in a single field; the maximum pixel size was limited

by the size of the beam, and due to computational resources the maximum practical

field size was 1024x 1024pixels. However, mapping all images of a lens simultaneously

was necessary when deconvolving the beam from the map field, so that the residual

noise near one image would not be increased by the sidelobes of the other images.

For all lenses except PKS B1830-211, the map pixel size used was 0.2 mas, the beam

minor axis was at least 1.5 mas, and the beam major axis was at least 2.2 mas, so

the beam was well sampled. For PKS B1830-211 the pixel size was 0.3 mas and

the beam minor axis was 1.4 mas, so there were not quite 5 pixels across the beam.

Fringe-rate mapping was used to verify the image locations and set the initial map

field locations. Dirty maps verified the locations of the images, so that the map

fields could be centered on them. The map extents in arcseconds were chosen large

enough to contain the known flux-emitting regions, and was increased in size as hybrid

mapping progressed if necessary to map flux that fell outside the originally chosen

regIon.

When cleaning (section 2.7) the phase-calibrated data to deconvolve the beam pat-

tern and construct a source model, the search region was restricted by setting "clean

boxes", to prevent the creation of spurious "sources". To construct a model from

the clean components for use in further phase-self-calibration, all clean components

were merged (not merely those with amplitudes greater than that of the first negative

clean component) and the negative merged clean components were discarded. (With

standard Astronomical Image Processing System (AlPS) routines, it is difficult to, in

an automated fashion, select clean components down to an intermediate amplitude

level, say to half the amplitude of the first negative clean component. For the second

pass of data reduction (section 3.4) an AlPS task was modified to do this.)

Several criteria are available to monitor the improvement from iteration to itera-

tion in the hybrid mapping process. (a) In the very early stages of hybrid mapping,
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Lens Image Expected thermal Actual rms
noise in map map noise

(mJy /Beam) (mJy /Beam)
B0218+357 A 0.15 0.26
B0218+357 B 0.15 0.27
PKS B1830-211 A 0.15 0.81
PKS B1830-211 B 0.15 0.70
B1422+231 A 0.14 0.32
B1422+231 B 0.14 0.28
B1422+231 C 0.14 0.23
B1422+231 D 0.14 0.20
MG J0414+0534 Al 0.15 0.15
MG J0414+0534 A2 0.15 0.14
MG J0414+0534 B 0.15 0.14
MG J0414+0534 C 0.15 0.19
B0957+561 A 0.16 0.19
B0957+561 B 0.16 0.21

Table 3.2: Actual rms map noise in the gravitational lens maps compared with ther-
mal noise expected in the maps.

the number of good phase solutions found during phase calibration is a useful cri-

terion. This is low if the model poorly matches the data. If this number does not

increase with subsequent hybrid mapping iterations, then the hybrid mapping process

is not beginning to converge, and one may need to change one's strategy greatly. (b)

The total flux of the clean components in the model that will be used for the phase

calibration generally increases as hybrid mapping progresses, plateauing once further

iterations cause little further change to the maps. (c) The dynamic range of the maps

is another useful criterion, as is the closely related criterion of the rms noise in the

regions of the map away from the sources. A higher dynamic range (lower map noise)

generally indicates a better map. There is a lower limit on the attainable rms noise

in an interferometer map, that due to the thermal noise in the visibility data.

Besides monitoring the criteria of number of phase solutions, total flux of clean

components, dynamic range, and map noise, the maps themselves were looked at every

iteration or every few iterations. This allowed observation of how, qualitatively, the

map quality had improved, and allowed additional clean component search boxes
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Figure 3-1: Gravitational Lens B0218+357, images Band A. VLBA, 5 GHz. The
beam size is shown in the lower right corner of each plot.

to be set for secondary source structure as the map noise decreased sufficiently to

uncover it. It was generally apparent when further iterations of hybrid mapping were

making little change to the maps. The stopping criterion was not automated.

Fringe fitting to a clean component model and subsequent hybrid mapping

Hybrid mapping produced a clean component model that fairly well represented the

source structure. With this source structure known, this model was used to redo the

fringe fitting. The hybrid mapping process was repeated to produce a final map.

3.3 The gravitational lenses: particular consider-

ations for each lens, and the completed maps.

3.3.1 Gravitational lens B0218+357

For the fringe fitting of B0218+357, a two-point model based on a VLBI map of
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Patnaik et al. (1993) was used, with the model location of A at the origin, and B

offset to the northeast. The data were fringe fitted to this two-point model, searching

only a narrow delay and rate range, and ignoring the longer baselines. For the initial

hybrid mapping of this source, all spectral channels were averaged together, and both

A and B were mapped in a single field, which was possible for this lens since the image

separation was small. After fringe fitting to a clean component model, subsequent

mapping was done with the spectral averaging indicated in table 3.1, using two small

fields, one around each lens image.

3.3.2 Gravitational lens PKS B1830-211

For PKS B1830-211, fringe fitting to a two-point model was tried, with model posi-

tions taken from a preprint of van Ommen et at. (1995), with the model flux used

for A (the northeast image) somewhat higher than the flux used for B (the southwest

image). However, fringe fitting to a point model, with limited u-v range (8 x 107 wave-

lengths) was more successful than fitting to the two-point model. In retrospect, the

two-point model was a poor model: the B (southwest) image was actually the brighter

image. Therefore a point model may be better for mapping a multi-component source

than a bad multi-point model.

For PKS B1830-211, fringe fitting to a point model shifted the observation's cen-

ter, since the fringe search found the brighter B image that was southwest of the

correlation center. Fringe-rate maps of the pre-fringe-fit data showed a central com-

ponent and a stronger second component to the southwest. Fringe-rate mapping after

fringe fitting located the components center and northeast.

A complication arose in mapping this source, in that the central beam structure

was very poorly represented by a Gaussian fit to the central regions. Such a Gaussian

"beam" contained much less integrated flux than did the actual beam pattern. As

a result, the clean-components restored using this Gaussian "beam" had too little

flux compared with the background noise. As a consequence, cleaning a secondary

feature made it appear to fade in significance relative to the background noise and

the remaining uncleaned flux. This problem was treated by resealing the residuals
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Figure 3-2: Gravitational Lens PKS B1830-211, images A and B. VLBA, 5 GHz. The
beam size is shown in the lower right corner of each plot.

by a factor equal to the ratio of the restoring beam area to the actual beam area.

In this case the scaling factor was 0.44. When residual resealing was used, the flux

of components no longer appeared to shrink relative to the background when they

were cleaned, allowing one to better identify the location of the flux. Once all the

source flux from an image is being cleaned, the choice of resealing or not resealing the

residuals has no affect on the apparent source structure, it merely affects the residual

noise level. The residuals were not resealed in the final PKS B1830-211 maps.

3.3.3 Gravitational lens B1422+231

B1422+231 had a high signal-to-noise ratio, and images A, B, and C were allvisible

in the fringe-rate maps. Mapping began using three fields for A, B, and C. A fourth

field was later added for D. The data reduction reduction process was straightforward

for this lens.
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Figure 3-3: Gravitational Lens B1422+231. Clockwise from upper left, images A, B,
C, D. VLBA, 5 GHz. The beam size is shown in the lower right corner of each plot.
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3.3.4 Gravitational lens MG J0414+0534

For the first few hybrid mapping iterations, only fields for the brightest images,

AI, A2, and B, were mapped. The side-lobes of Al clearly showed up in the resid-

uals of A2 and vice versa, illustrating the necessity of hybrid mapping all four fields

simultaneously. After a few hybrid mapping iterations, C was located and a field was

added for it. As the maps improved with more iterations of hybrid mapping, struc-

ture was revealed within the lens images. Clean boxes were added as new components

appeared out of the noise. After some iterations, a wide-field map was made of the

residuals, which indicated emission outside the fields originally mapped, so the fields

were increased in size. The residuals were examined in the region of the deflector

galaxy G, but no emission was seen.

3.3.5 Gravitational lens B0957+561

The signal-to-noise for B0957+56I was low enough that it could not be seen in the

fringe-rate plots in all baselines to a central antenna. It was fringe fitted to a point

model, and solutions were found for all antennas, except for St. Croix on one 6-minute

scan. Despite doing no further time or frequency averaging after correlation, loss in

peak flux is expected for image B, due to time average and bandwidth smearing -

as B is 6 arcsec from image A. For detailed study of B0957+56I image B, reduction

of data correlated at the location of B would be needed. Residual maps revealed no

sign of emission near G or near the lobes. There is no sign of the jets that have been

seen at other frequencies and higher sensitivities.
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Figure 3-4: Clockwise from lower left, gravitational lens MG J0414+0534 images
AI, A2, B, and C. Contour levels are at -2, -1, -0.5, 0.5, 1, 2, 4, 8, 16, 32, and 64
mJy /Beam. Peak fluxes in the fields are 109, 91, 34, and 21 mJy /Beam, respectively.
VLBA, 5 GHz. The beam size is shown in the lower right corner of each plot. A map
made with better amplitude calibration is in figure 3-6.
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3.4 Data reduction: a second pass with improved

amplitude calibration and revised mapping

technique

Only the simplest of amplitude calibration procedures was performed on the data

before the first pass of mapping - amplitude calibration using the system temper-

atures only. It was desired to correct for certain other known effects, and redo the

MG J0414+0534 map. It was also desired to see how sensitive the component loca-

tions, the component fluxes, and the lower level features of MG J0414+0534 were to

the details of the clean component selection criteria in the hybrid-mapping process.

Improved amplitude calibration

The 15% amplitude difference between right and left circular polarizations was an

obvious problem in the amplitude calibration. According to the AlPS Cookbook

(1995), such an amplitude offset is characteristic of errors in the threshold levels

of the digital samplers. The effect can be corrected from the autocorrelation data

(Kogan 1995). The Astronomical Image Processing System (AlPS) task ACCOR

was run with a short solution time interval to calculate gain solutions to correct

for this effect. The obviously bad gain solutions at the scan ends and between the

scans were edited out. Then these gain solutions were smoothed ,vith a box width

of 10 hours before being applied to the data. This removed the right-left amplitude

differences due to digital sampler bias.

After correcting for the digital sampler bias, the system temperatures and the

known gain curves were used for the standard amplitude calibration. This used more

recent gain curve information from the VLBA than had been available before, and

some of the nominal gain numbers had changed.

For an opacity correction, a simple secant of zenith-angle correction was done

assuming a zenith opacity of T = 0.01 nepers.

The relative antenna amplitudes were corrected using the amplitude-check sources,
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as follows. J1310+3220 and J1407+2827 were mapped to see the sources' structure.

J1407+2827 clearly consists of two components; J1310+3220 has a main component

with a hint of a weak secondary component. Simple models for the source structure

were fit directly in the u-v plane to the amplitudes of the visibility data, ignoring

the phases, and without allowing a variable factor for the antenna gains, in order to

determine the integral flux of the primary source in each field. For J1407+2827 a pair

of Gaussians were fit. For J1310+3220 the fitting was done twice: first with a single

Gaussian and second with a pair of Gaussians. The model fitting was then done a

second time in order to fit for a variable gain factor for each antenna. The position

and integral flux of the chief peak were held fixed during the second fitting process,

to prevent overall drift in the antenna gains. This gave three sets of antenna gain

correction factors: from the 2-Gaussian-fit to J1407+2827, from the I-Gaussian-fit to

J1310+3220, and from the 2-Gaussian-fit to J1310+3220. For all the fits, the ratios

were calculated of the fit RMS to the expected thermal noise in the visibilities; the

ratios were 1.3, 1.5, and 1.3 respectively. The gain correction factors found from these

fits were compared with each other. The standard deviations of the three estimates

of the gain correction factors were under half a percent (except Mauna Kea and

N. Liberty), even though the corrections were up to 1.8% (or 3.9% for Mauna Kea).

It was concluded that the correction factors were generally consistent, and any of

them was better than none. The gain corrections from the two-Gaussian fit to J1310-

+3220 were applied to the data. The actual correction factors used were all under

1.7%

In summary, the correction of the right-left asymmetry caused by digital sampler

bias was the largest amplitude correction, of roughly 15%. Next largest was, for

J1310+3220, the antenna gain solutions found from fitting to the amplitude-check

sources, with a 2.8% spread between the solutions for the different antennas. Finally,

the smallest correction to the gains, for J1310+3220, was the opacity correction, with

a 1.3% spread.

After the improved amplitude calibration had been done, the global delay solutions

using J1310+3220 as a fringe-finder source were redone before the fringe fitting of any
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program sources.

New techniques of cleaning and of choosing a clean component model for

phase calibration

A couple of observations were made concerning the use of clean boxes and concerning

the selection of clean components for the model to use in phase calibration: If the

clean boxes extend well beyond the region of source flux, then obviously false structure

appears, positive and negative holes in and at the edges of the box, which artificially

lowers the map rms noise. Cleaning using these large clean boxes, but only selecting

clean components from a smaller region to use as a model for the phase self-calibration,

does not solve this false-structure problem. Therefore the clean boxes must not extend

much beyond the extent of the source flux. More care was taken to keep the clean

boxes small in the second pass of data reduction, using many small clean boxes to

cover diagonal structures rather than few large clean boxes.

The method used in the first pass of data reduction, for creating a model for

the phase-self-calibration from the clean components, in which all the cleaned flux is

merged and the negative merged components are discarded, has a couple of problems

if the source is cleaned very deeply. The model flux can be much higher that the total

cleaned flux. As a consequence the cleaning process may not converge. The reason for

this is that positive and negative clean components are found that lie on different but

nearby pixels, and which fairly much cancel each other out in the map. Merging, then

throwing out negatives, artificially raises the flux in the model. Therefore one should

not clean too deeply in making a clean component model for self-calibration. This

could be done by using only a small number of iterations in the CLEAN algorithm.

Alternately, it can be done after the fact by cutting off the clean component list at

some point and discarding the remaining, smaller amplitude, clean components. The

selected portion of the clean component list may then be merged, and the negative

merged components discarded, to construct a clean component model for further

self-calibration.

One way of accomplishing this is to take all the clean components with flux of
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absolute value larger than some multiple f of the (absolute value of the) flux of the

first negative clean component. Standard AlPS routines allow one to do this easily

only for f ~ 1 or for f = O. Therefore the AlPS routine CCFND was modified

to be able to do this for 0 < f < 1. For subsequent mapping, clean components

down to an amplitude of half that of the first negative clean component (f = 0.5)

were used to construct the phase calibration model. This solved the problem of the

model flux being significantly larger than the total cleaned flux, and the resultant

non-convergence problem.

3.4.1 Gravitational lens MG J0414+0534: an improved map

With the improved amplitude calibration and the new clean-component selection

technique, the MG J0414+0534 data were again reduced. The data were fringe fitted

to the best clean-component model from the previous mapping. However, to avoid

locking any wrong structure into the self-calibration process, the hybrid mapping

iterations were begun using a four-point model for MG J0414+0534, consisting of a

single point at the center of each field, with all flux for that field.

The hybrid mapping process started with one tiny clean box per field. During

the hybrid mapping iterations, more clean boxes were added as the source structure

appeared. The boxes were kept small so as not to include much non-flux region in

the boxes. Therefore the long diagonal structures were, eventually, covered by many

small clean boxes.

Clean component models for self-calibration were made by taking clean compo-

nents down to half the level of the first negative, merging, and then discarding the

negatives. This differs from what was done in the first pass of data reduction in which

all clean components were merged and the negatives discarded.

It was found that the lowest level structures appeared to change depending on

where clean boxes were set. Therefore the hybrid mapping process was stopped with

a certain amount of structure left in the residuals of the A2 field.

The VLBA maps of MG J0414+0534 revealed structure that was not resolvable

on VLA scales. Each image, AI, A2, B, and C, has at least four distinct features -
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Lens Image Expected thermal Actual rms
noise in map map noise

(mJy/Beam) (mJy/Beam)
MG J0414+0534 Al 0.15 0.22
MG J0414+0534 A2 0.15 0.26
MG J0414+0534 B 0.15 0.21
MG J0414+0534 C 0.15 0.19

Table 3.3: Actual rms map noise in the MG J0414+0534 maps compared with thermal
noise expected in the maps.

corresponding to four distinct components in the actual source. Proceeding from the

central peak in the direction of decreasing RA (increasing RA for C), these compo-

nents are designated 'a', 'b', and 'c'. The extended component on the opposite side

of the central peak is designated 'd'. There is an indication of a fifth component 'e'

just east of 'a' in image B, which is not distinguishable from 'a' in the other images

since they have less linear magnification in that region of the source.

The locations, fluxes, and extents of the MG J0414+0534 components were found

by fitting an elliptical Gaussian to each component. The statistical errors on the

component positions due to the thermal noise in the map were calculated from the

map rms noise and the fitted Gaussian parameters. The formulas are given in ap-

pendix A of this thesis for such statistical errors on elliptical Gaussian fits to maps

in which the noise is correlated from pixel to pixel. The component positions and

position errors are listed in tables 3.4 and 3.5. The peak and integral fluxes are listed

in table 3.7. The fitted component major axes, minor axes, and orientation angles

and the deconvolved component sizes are listed in table 3.6.
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Figure 3-6: Clockwise from lower left, gravitational lens MG J0414+0534 images
AI, A2, B, and C. Proceeding from the central peak of each field in the direction of
decreasing RA (increasing RA for C) the subcomponents are designated 'a', 'b', and
'c', The extended component on the opposite side of each central peak is designated
'd'. Contour levels are at -3, -1.5, -0,75, 0,75, 1.5,3,6, 12,24,48, and 96 mJy/Beam.
Peak fluxes in the fields are 110, 91, 34, and 21 mJy /Beam, respectively. VLBA, 5
GHz. The beam size is shown in the lower right corner of each plot.
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Figure 3-7: Gravitational lens MG J0414+0534 image AI. Contour levels are at -3,
-1.5, -0.75, 0.75, 1.5, 3, 6, 12, 24, 48, and 96 mJy /Beam. Peak flux is 110 mJy /Beam.
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the same plot as in figure 3-6, enlarged to show detail.
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Figure 3-8: Gravitational lens MG J0414+0534 image A2. Contour levels are at -3,
-1.5, -0.75, 0.75, 1.5, 3, 6, 12, 24, 48, and 96 mJy /Beam. Peak flux is 91 mJy /Beam.
VLBA, 5 GHz. The beam size is shown in the lower right corner of the plot. This is
the same plot as in figure 3-6, enlarged to show detail.
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Figure 3-9: Gravitational lens MG J0414+0534 image B. Contour levels are at -3,
-1.5, -0.75, 0.75,1.5,3,6,12,24,48, and 96 mJy/Beam. Peak flux is 34 mJy/Beam.
VLBA, 5 GHz. The beam size is shown in the lower right corner of the plot. This is
the same plot as in figure 3-6, enlarged to show detail.
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Figure 3-10: Gravitational lens MG J0414+0534 image C. Contour levels are at -3,
-1.5, -0.75, 0.75, 1.5, 3, 6, 12, 24, 48, and 96 mJy /Beam. Peak flux is 21 mJy /Beam.
VLBA, 5 GHz. The beam size is shown in the lower right corner of the plot. This is
the same plot as in figure 3-6, enlarged to show detail.

84



Component Component location Centroid errors
x= -R.A. y = Dec. major axis minor axis angle

(mas) (mas) (mas) (mas) (degrees E of N)
Ala 0.0144 0.3818 0.0090 0.0040 11.8913629
A2a -134.0714 405.9972 0.0149 0.0051 11.7622096
Ba 588.6037 1938.3514 0.0211 0.0130 -9.5048033
Ca 1945.3597 300.4118 0.0368 0.0144 -1.6814546

A1b 1.9438 1.6872 0.0245 0.0102 6.3055983
A2b -130.5108 397.7602 0.0468 0.0152 11.8470413
Bb 598.4155 1943.2536 0.0653 0.0463 -26.6995069
Cb 1944.7253 296.2398 0.0956 0.0455 -10.2059743
A1c 6.7992 21.2226 0.1444 0.0405 24.4282210
A2c -104.5880 332.3330 0.1860 0.0398 13.0979305
Be 652.1233 1970.6440 0.1475 0.0835 -3.6386203
Cc 1939.5305 271.3034 0.2365 0.0859 -0.0131469

AId -16.1756 6.1174 0.3762 0.0424 31.7455935
A2d -149.3272 432.3058 0.3147 0.0526 3.2990544
Bd 536.6837 1912.7346 0.2444 0.1041 -68.3828628
Cd 1945.9419 319.7664 0.2676 0.0953 26.0362592

Table 3.4: Fitted locations of the components of MG J0414+0534: the centroid
positions for elliptical Gaussians fitted to the components of MG J0414+0534, and
the errors on the centroid positions. The positions are relative to the correlation
and fringe-fitting center at AI. The x-coordinate increases to the west and the y-
coordinate increases to the north. The errors on the centroid positions are given
.as the major axis, minor axis, and orientation angle of the x-y error distribution,
assumed to be Gaussian.
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Component Component location Centroid errors
x = -R.A. y = Dec. ax ay

.:laxy
(mas) (mas) (mas) (mas) (mas2)

Ala 0.0144 0.3818 0.0018 0.0037 -2.33e-6
A2a -134.0714 405.9972 0.0025 0.0062 -7.0ge-6
Ba 588.6037 1938.3514 0.0056 0.0089 8.0ge-6
Ca 1945.3597 300.4118 0.0061 0.0156 6.06e-6

A1b 1.9438 1.6872 0.0044 0.0103 -9.76e-6
A2b -130.5108 397.7602 0.0075 0.0195 -7.12e-5
Bb 598.4155 1943.2536 0.0215 0.0263 1.53e-4
Cb 1944.7253 296.2398 0.0203 0.0401 2.22e-4
A1c 6.7992 21.2226 0.0298 0.0563 -1.30e-3
A2c -104.5880 332.3330 0.0243 0.0770 -1.31e-3
Bc 652.1233 1970.6440 0.0356 0.0626 1.6ge-4
Cc 1939.5305 271.3034 0.0365 0.1004 2.01e-6

AId -16.1756 6.1174 0.0854 0.1362 -1. 13e-2
A2d -149.3272 432.3058 0.0236 0.1334 -9.98e-4
Bd 536.6837 1912.7346 0.0978 0.0561 3.02e-3
Cd 1945.9419 319.7664 0.0617 0.1036 -4.45e-3

Table 3.5: Fitted locations of the components of MG J0414+0534: the centroid
positions for elliptical Gaussians fitted to the components of MG J0414+0534, and
the errors on the centroid positions. The positions are relative to the correlation
and fringe-fitting center at AI. The x-coordinate increases to the west and the y-
coordinate increases to the north. The errors on the centroid positions are given as
standard deviations on the x- and y-positions, and the correlation between the x- and
y-position errors.
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Fitted size Deconvolved size
angle major axis minor axis angle major minor

axis aXIS
(0 E of N) (mas) (mas) (0 E of N) (mas) (mas)

Ala 7.6 :f:0.1 4.017:f: 0.007 1.810 :f:0.003 26.4 2.10 0.68
A2a 8.6 :f:0.1 4.456:f: 0.012 1.692:f: 0.004 18.8 2.83 0.42
Ba 176.1:f: 0.3 3.568:f: 0.015 1.931 :f:0.011 -63.6 1.37 0.19
Ca 179.3:f: 0.3 3.765 :f:0.028 1.539:f: 0.010 -8.2 1.38 0.27

A1b 4.1 :f:0.2 3.939:f: 0.019 1.666:f: 0.008 15.7 1.84 0.60
A2b 8.7 :f:0.3 4.456:f: 0.039 1.647:f: 0.011 18.7 2.83 0.14
Bb 169.0:f: 1.4 3.660:f: 0.048 2.347:f: 0.042 -65.2 2.07 0.27
Cb 175.7:f: 1.0 3.410:f: 0.066 1.572:f: 0.034 -90.0 0.52 0.00

A1c 20.8:f: 0.6 5.770:f: 0.132 2.005:f: 0.031 29.2 4.76 0.32
A2c 11.7:f:0.5 6.713:f: 0.173 1.768:f: 0.031 14.9 5.77 0.63
Bc 178.5 :f:1.8 3.753:!: 0.111 1.922 :!:0.070 -33.4 1.43 1.09
Cc 0.3:f: 1.7 3.470:!: 0.165 1.380:!: 0.055 0.0 0.00 0.00

AId 31.4:f: 0.2 18.825 :!:0.374 2.625:!: 0.034 32.1 18.57 1.40
A2d 3.2 :f:0.3 13.057:!: 0.310 2.393 :!:0.047 3.4 12.58 1.86
Bd 115.2 :f:1.9 6.271 :!:0.238 3.492:!: 0.079 -71.2 5.98 1.10
Cd 23.2:f: 1.3 6.826:!: 0.252 2.681 :!:0.083 29.4 6.01 1.75

Table 3.6: Fitted sizes and deconvolved sizes of elliptical Gaussians fitted to the
components of MG J0414+0534. The beam had major axis 3.51 mas, minor axis 1.50
mas, and orientation angle 0.7° E of N.
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Component Peak flux Integral flux
(mJy/Beam) (mJy)

Ala 108.1 :l: 0.2 149.1 :l: 0.4
A2a 88.0:l: 0.3 125.9 :l: 0.5
Ba 33.2:l: 0.2 43.4 :l: 0.4
Ca 20.5 :l: 0.2 22.5 :l: 0.3

A1b 39.2:l: 0.2 48.8:l: 0.4
A2b 28.1 :l: 0.3 39.2:l: 0.5
Bb 10.7:l: 0.2 17.5 :l: 0.4
Cb 6.5 :l: 0.2 6.6 :l: 0.3
A1c 9.2 :l: 0.2 20.2 :l: 0.6
A2c 10.1 :l: 0.2 22.7:l:0.7
Bc 5.2 :l: 0.2 7.1 :l: 0.4
Cc 2.7:l: 0.2 2.5 :l: 0.2

AId 6.6:l: 0.1 61.6:l: 1.2
A2d 8.4 :l: 0.2 49.7:l: 1.2
Bd 4.2 :l: 0.1 17.5:l: 0.7
Cd 4.4 :l: 0.2 15.2:l: 0.6

Table 3.7: Peak and integral fluxes of elliptical Gaussians fitted to the components
of MG J0414+0534.

3.5 Comparison of preliminary and revised data

reduction of MG J0414+0534

The two maps of MG J0414+0534 differ somewhat from each other, in qualitative

source shape, in component fluxes, and in component locations. In particular, the

detailed shape of the low level extended structure in each component is affected by

the details of the data reduction process. See figures 3-4 and 3-6.

It might be expected that absolute fluxes would be changed by the corrections to

the amplitude calibration while the ratios of the component fluxes would be unaffected

by the reduction process. However, the flux ratios changed by a few percent. For

the integral fluxes of the elliptical Gaussians fitted to the brightest subcomponent in

each field, the first pass at data reduction yielded a flux ratio of Alai A2a = 1.165,

whereas the second data reduction yielded a flux ratio of Alai A2a = 1.184. This

is a 1.6% difference in relative flux of the two brightest image components, just due
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to the reduction technique. To check whether this is attributable to the difficulty in

separating Ala and A2a from their close companions Alb and A2b, consider instead

the summed flux in a box containing both the 'a' and 'b' components. The first pass

at data reduction yielded a flux ratio of (Ala&b)/(A2a&b) = 1.1686, whereas the

second yielded a flux ratio of (Ala&b)/(A2a&b) = 1.2005. This is a 2.7% difference

in relative flux of the brightest image components, again due solely to the reduction

technique. This is significantly larger than the 0.3% and 0.4% nominal statistical

errors in the Ala and A2a integral fluxes.

The component locations are much less affected by the reduction process than are

the component fluxes. Gaussians were fit to each component 'a', 'b', 'c', and 'd', of

each lens image AI, A2, B, and C. The shifts in the image centroids (positions of the

other 15 components relative to Ala) between the two data reduction passes were

comparable to or less than the nominal statistical error on the first data reduction

pass, except for A2a, Alc, and Alc, for which the shift was approximately twice or

2~ times the nominal statistical errors. Note that the data, including the u-v cov-

erage and the noise, were identical in both cases. What changed was the amplitude

calibration, the clean component selection procedure, and the choice of clean boxes.

Therefore it appears that the deconvolution error is at least comparable to the statis-

tical error, and may be larger since the effects of changing u-v coverage and changing

thermal noise on the deconvolution has not been examined.

The relative fluxes are much more sensitive to the details of the data reduction

process than are the positions of sources. The cleaning and self-calibration may

to some extent shift flux between components, but it does not tend to shift the

component locations.
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3.6 Significance of MG J0414+0534 maps for flux

monitoring

The absolute gain calibration of the VLBA is difficult. However, it was anticipated

that the relative fluxes of different components of a gravitational lens could be mea-

sured accurately so that the relative fluxes rather than the absolute fluxes' could be

used to monitor for time delays in lenses that are only slightly variable.

In section 3.5, the ratios of fluxes of the components of MG J04I4+0534 were

shown to change by at least a few percent with a change in the data reduction

technique. This suggests that even using flux ratios rather than absolute fluxes,

it will be difficult to use the VLBA to measure variability at a level of a few percent.

3.7 Significance of MG J0414+0534 maps for lens

modeling.

The VLBA maps of MG J04I4+0534 revealed structure that was not resolvable on

VLA scales. Each image, AI, A2, B, and C, has at least four distinct components -

corresponding to four distinct components in the actual source. The presence of so

many components is good for modeling the potential of the deflector. If the magni-

fication matrix is constant over the region of each image, then the positions of three

non-collinear components are sufficient to constrain the magnification matrix (second

derivative of the potential) at each image location AI, A2, B, and C. In contrast,

the fluxes of single-component images constrain merely the total magnification (the

determinant of the magnification matrix).

However the MG J04I4+0534 images are not merely rotated, stretched, and

sheared images of each other. That there is not a simple linear mapping from one

image to another indicates that there is a non-zero gradient to the magnification over

the extent of the source.
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Chapter 4

An Introduction to Gravitational

Lensing: Deflector Masses and

Cosmological Applications

In this chapter the basic equations of gravitational lensing are introduced. It is

shown how gravitational lensing gives information about the surface mass density of

the deflector. It is also shown how cosmological parameters may be measured using

observations of gravitational lenses.

4.1 Basic lensing equations

When a particle with nonzero mass passes near a massive object, it is deflected by

the gravitational attraction. A photon, though massless, is also deflected; the path of

light is bent by gravity. If the deflector mass is large enough, and if the background

light source is well enough aligned with the deflector, the result is a distorted image

of the background source. In some cases there are multiple images of the background

source. This is the well-known phenomenon called "gravitational lensing" .
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Figure 4-1: Gravitational lensing in the thin lens approximation. Light travels from
the angular location s of the source to an angular location r in the plane of the
deflector, where its path is bent abruptly. v and ~v are the photon's initial velocity
and the change thereof. DL is the angular diameter distance to the deflector, located
in the image plane. Ds is the angular diameter distance to the source. The angular
diameter distance from the deflector to the source is DLS. sand rare angles subtended
at the earth. The origin 0 may be an arbitrary angular location near the deflector
and the images. See text for more explanation.

4.1.1 Deflections and image locations In the thin lens ap-

proximation

The gravitational lensing effect is readily calculable in the so-called "thin lens" ap-

proximation. The effect of the deflector on the photons is assumed to be significant

only when the photons are very close to the deflector. The photons are assumed to

travel in a straight line from the source to the plane of the deflector, at which point

their path is bent. The photons then continue in a straight path to the observer. (See

figure 4-1.)

The actual location of the source on the celestial sphere is at an angular position

s. Light travels from a location s on the source plane, to an location r on the image

plane - the plane containing the deflector. At the image plane the trajectory is bent

abruptly. The light proceeds thence in a straight line to the observer. Due to the
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bending of the light, the source is not seen at s; instead an image appears, displaced,

at an angular location r. The deflection angle of the light may be written in terms of

the change of the photon's velocity, ii = t{. The physical displacement in the source

plane, between the apparent location of the source and the actual location of the

source, is Lsrc = Ds(s - f), where Ds is the angular diameter distance to the source,

since rand s are the angular locations of the source and image. The displacement

may also be specified in terms of the bending angle at the deflector and the angular

diameter distance from the deflector to the source Lsrc = DLSt{, so that

(4.1)

The bending of the photon trajectory by the gravitational field of the deflector

is properly a general relativistic effect. However we assume that the gravitational

field of the deflector is not strong, ;2 <I>Newtonian « 1,1 where <I>Newtonian is the standard

Newtonian-mechanics gravitational potential. The deflection of a photon properly

calculated using general relativity, is twice the deflection calculated using Newtonian

mechanics, for a massive particle with the same speed and impact parameter as the

photon. Moreover, for a photon, the deflection is so small, and the path so nearly

straight, that in calculating the deflection the photon's trajectory can be approxi-

mated as a straight line through the gravitational potential. It seems perverse to

ignore the deflection in calculating the deflection, but it can be shown that this just

ignores terms of higher order in <I>Newtonian. Thus the deflection, or more specifically

the change in velocity, is the integral along a straight line trajectory from the source

Plane to the observer of twice the Newtonian force per unit mass, tlv = 2 fObs dtF.
src m

Since the force per unit mass is the negative gradient of the gravitational potential,

tlv = -2 Joo dt V x<I>Newtonian(X)I __ A' where the photon trajectory has been writ-
-00 x=B-vb

ten as x = B - vtz, in terms of its velocity v and its impact parameter B which is a

physical length. Changing variables from time, t, to physical distance along the tra-
2 00 ........

jectory, z = -vt, then tlv = -; J_oo dzV x<I>Newtonian (B, z), where it can be seen that

1Henceforth c will be set equal to 1 in all equations in this chapter.
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the partial derivative with respect to z integrates to zero. It is convenient to write

the impact parameter in terms of the angle r subtended at the earth, r = B/ DL:

(4.2)

Combining this with equation 4.1, recalling that the speed of light is v = c = 1,

gives the mapping from the image plane to the source plane:

(4.3)

Note the following concerning the mapping. Any image plane location r necessarily

maps back to a unique location s( T) in the source plane. However, depending on the

mass distribution of the deflector, and on the distances to the source and the deflector,

the mapping from s to r may not be unique. That is, there may be multiple images

of the same source. Note also that the cosmological model used for spacetime enters

the mapping only via the angular diameter distances.

4.1.2 The 2-D lens potential

For convenience, a 2-dimensional gravitational-lensing potential is introduced:

(4.4)

The divergent part of the integral may be ignored, since it is just an infinite constant

which has no dependence on the impact parameter r. The mapping from image-plane

to source-plane then takes the well-known form

(4.5)

The Newtonian gravitational potential satisfies a 3-dimensional Poisson equation,

\7~<I>Newtonian (fi) = 47rG p(x).
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By integrating along the line of sight, it may readily be shown that the lensing

potential satisfies a 2-dimensional Poisson equation. First the surface mass density is

defined.

(4.7)

Then integrating the 3-dimensional Poisson equation (4.6) along the line of sight,

This is more familiar in the form

V'~<I>(T) = 2a(r) ,
acrit

(4.8)

(4.9)

where acrit = 4;G D::J
LS

is the critical mass density necessary to guarantee the ability

to produce multiple images by gravitational lensing (Schneider et ai. 1992, sections

5.4.3 and equations 5.4 and 5.5) Note that r is a dimensionless angular position on

the sky (i.e. measured in radians).

4.1.3 The magnification matrix

It is often useful to know how a small displacement in the source plane affects the

image location. The magnification matrix is defined so that t,.f = M t,.s. This

is a 2 x 2 matrix which is a function of the image plane location, M ij (T) = ~.
J

The inverse of the magnification matrix is readily calculable from the lens potential,

M-1 (~_ 8Si(T) _ ~ 8 8,1;.(;;'\
ij T} - 8rj - Uij - 8ri 8rj'.l' T}.

4.1.4 Specific intensity

It can be shown that the specific intensity of radiation is unchanged by the presence of

a lens. The sky brightness (Jyjarcsec2) of an object in the presence of a gravitational

lens is the same as that in the absence of the lens; only its apparent size changes.

(Schneider et ai. 1992, sections 3.6 and 2.3) This does of course mean that the total
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unlensed light path

Figure 4-2: The geometrical path length increase, tl = tl1 + tl2, due to gravitational
lensing. Thin lens approximation.

spectral flux density (Jy) from a source reaching the observer is changed by the lensing

- it scales as the area of the image. For a nearly point-like source, the flux increases

by a factor of det M.

4.1.5 Time delays in the thin lens approximation

In a multiple-image gravitational lens, there are multiple light paths from the

source to the observer. In general the light travel time along one path is different

from the travel time along another path. If a lensed source varies in flux, the observer

will see the fluxes of the images change at different times. This lens "time delay" is

another observable feature of gravitational lenses.

The travel-time increase due to lensing has two parts. One is due to the increase

in the geometrical path length. The other is the retardation of the light in the

gravitational field of the deflector.

That the physical path length is increased due to deflection may be seen in figure 4-

1. The physical path length increase is illustrated in figure 4-2. The photon's actual

trajectory is displaced from what it would be without the deflector by a physical

distance Limg = DLlf - 81. The path length increase in the frame of the deflector,

due to the deflection, is the physical distance tl = tl1 + tl2 (see figure 4-2), where

tl1 = ~'"'IILimg and tl2 = ~'"'I2Lim9' The sum of the angles '"'II + '"'12 is simply the total

deflection angle a calculated above in section 4.1.1, '"'II + '"'12= a = I~~ = g~c;sIs - f1.
Therefore, combining these expressions, the geometrical path length increase tl, as
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measured in the frame of the deflector is

1DsDL _ 2
tdelay = ~ = 2 D Ir - S1 ,

geom LS
(4.10)

which is also the travel time increase due to the geometrical path length increase

along this trajectory.

There is also a travel time increase due to the passage of the light through the

potential of the deflector. The metric near the deflector may be approximated (Misner

et ai. 1973, equation 18.15c) as

(4.11)

A photon travels on a light-like path, a null-geodesic, with ds = 0, so that dt =

- (1 - 2<I>Newtonian)dz. Therefore the time taken for a photon to travel from the source

location Zsrc to the observer at location Zobs is

tobs - tsrc {tobs dt
ltsrc

lz

src

zsrc - Zobs - 2 <I>Newtonian (D L r, z) dz.
Zobs

(4.12)

(4.13)

Comparing this with the travel time in the absence of a deflector, tobs - tsrc = Zsrc -

Zobs, the delay in the arrival time of a photon due to passing through the deflector's

potential well is

lzsrc

tdelay = -2 <PNewtonian (DLr, z)dz.
gray Zobs

(4.14)

Only the integral in the region near the deflector contributes to travel time differences

between the various images of various objects in the source plane, and only the travel

time differences are of interest, so the limits of integration may be extended to :Coo.

Therefore the relative arrival time delay of a photon due to passing through the

deflector's potential well is

tdelay
gray
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(4.16)

where equation 4.4 has been used in the last step.

The geometrical and the gravitational time delays are added and transformed from

the frame of the deflector to the frame of the observer. The deflector-induced delay

t(fj in the arrival time of a photon at the observer is

t(fj - tdelay + tdelay (4.17)
geom gray

t(fj DLDS CI~ 2 () (4.18)(1+ ZL) D
LS

"2 r - S1 - eI> fj ,

t(fj DLDS C ~ 2 ) (4.19)- (1 + Z L ) DLS "21\7reI>( fj I - eI>( fj ,

(Schneider et at. 1992, equation 4.67) and the time delay between two images, at fa

and f[3, of the same source is

tlt{3Q = t(fa) - t(f[3) =
(1+ ZL) D~~s GIV r;, <J>(foW - ~IVrp<J>(fpW - <J>(fo) + <J>(fp)). (4.20)

4.1.6 Degeneracies: transformations of the lens potential that

do not affect the lens image sky brightness distribution

There are degeneracies in the lensing equation s= r- VreI>(fj such that the mapping

between the image plane and the source plane does not completely determine the

potential eI>(fj.

Suppose there are Nsrc sources, with Nimg,k images of the kth source. For each

source k, the lens potential must satisfy

for all a = 1 ... Nimg,k, (4.21)

If some potential eI>(fj satisfies this relation, can other potentials eI>'(fj be found that

also satisfy this relation? Obviously one could simply add a constant to the potential,
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and nothing would change - indeed the lens potential is ill defined up to an (infinite)

additive constant. Falco, Gorenstein, and Shapiro (Falco et al. 1985; Gorenstein

et al. 1988) showed that there are other transformations of the lens model parameters

that leave the lens image surface brightness unchanged; that is, the image locations

and fluxes are unchanged. Under this set of transformations, however, the time delays

between all pairs of images are all scaled by the same factor, which can be confused

with a rescaling of the Hubble parameter. The particular set of transformations that

leaves the sky brightness unchanged is:

<I>(f) ---+ <I>'(f) = (1 - K)<I>(f) + <I>o + ~1 . r + ~x:1f12
Sk ---+ s£ = (1 - X:)Sk - ~1

8k ---+ 8' k = (1 - x:)28k

(2-D lens potential)

(source locations)

(source fluxes2)

(4.22)

These transformations have four parameters: x: and <I>o are scalar constants; ~1

is a vector constant. Gorenstein et al. (1988) called ~1 the prismatic transformation

and x: the magnification transformation; the K degeneracy is also referred to as the

mass sheet degeneracy. These transformations change neither the image locations

nor the images' brightness distributions. Their effect on the magnification matrix

is M(f) ---+ M'(f) = (l~K)M(f), but this has no visible effects, since it merely

balances the shifts in the source positions and the rescaling of the source fluxes. The

effect of the transformations on the deflector surface mass density is

a( f) ---+ a' (f) = (1 - x:) a( f) + x:acrit. (4.23)

The mass of the principal deflector is reduced by a factor of (1 - x:). A uniform mass

sheet, of surface density x: times the critical density, has been added to the system.

This reduces the convergence attributable to the principal deflector, while adding to

the lens system a constant convergence x: associated with the mass sheet.

2The source surface brightness (Jyjarcsec2) is unchanged. But since the source area changes, the
total flux (Jy) for each source is transformed.
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For the ath image at location Tka of the kth source at location Sk, the arrival time

delay t(Tka) (equation 4.19) transforms as

The second term does not contribute to a time delay between two images of the

same source, though it does contribute to the time delays between images of differ-

ent sources. In particular, for events simultaneous in the source plane but at, for

example, source plane positions spaced along a line, the prismatic degeneracy cj;1

adds an arrival time delay which increases linearly with source position, and the mass

sheet degeneracy K adds a delay which goes quadratically with source position. For

two images, a and {3, of the same source, the change of the time delay under this

transformation is

(4.25)

The time delay (equation 4.20) is proportional to the inverse of the Hubble parameter

through its proportionality to a distance factor DDLDs• Therefore the presence of a
LS

mass sheet as part of the deflector can be confused with a rescaling of the Hubble

parameter. The presence of such a mass sheet cannot be detected by the image

geometry nor by the time delay. Actually, the deflector need not have a mass sheet

extending indefinitely in all directions for this degeneracy term to cause a rescaling

of the Hubble parameter estimated from a gravitational lens. It will be discussed in

chapter 6 how a mismatch between the actual deflector radial profile and that used

to model the deflector can cause an error in the deduced Hubble parameter.
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4.2 Deriving information on the deflector mass dis-

tribution and on the deflector and source dis-

tances from observations

From observations of the lens system it is possible to deduce information about the

deflector mass distribution, and about the angular diameter distances to the de-

flector and the source. Section 4.2.1 lists the available observables. Sections 4.2.2

and 4.2.3 explain how these put constraints on the deflector potential ~(f). Sec-

tion 4.2.4 explains how the deflector potential is used to find the surface mass density

and, combined with a time delay measurements, an angular diameter distance to the

lens system.

4.2.1 Observable quantities

For every gravitational lens system there are certain things that are potentially ob-

servable.

Lens image geometry

Firstly, one can observe the brightness and shape of the lens images. There may be

images of more than one background object. The correspondence between observed

components may be apparent; it may be obvious which observed components are

images of the same background source; see, for example, figure 3-6. One can determine

the images' angular locations, angular extents, and fluxes, and perhaps more detailed

geometry information as well.

Time delays

A series of observations may be made to monitor the lens images for variability. If the

source is variable, the time delay may be determined for one or more pairs of images

of the source.
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.Redshifts

Source and deflector redshifts may be measured from spectral lines.

The deflector

If the deflector itself is luminous, then it may be observed. The location, radial

profile of the light, ellipticity of the luminous matter, velocity dispersion, etc., may

be determined. Gravitational lensing is sensitive to all the mass of the deflector

- including any dark matter. Observations of the deflector itself just detect the

luminous mass; nevertheless these may be useful in modeling.

4.2.2 Lens potential - constraints from the lens images

The mapping from the image plane to the source plane is s = r - Vr<p(T) . The

lens potential may be modeled based on the geometry of the images. The general

concept is as follows. Some parameterized form is assumed for the lens deflector

potential <p(T). Suitable model forms are the subject of chapter 6 of this thesis. The

source brightness distribution is also parameterized, for example as a set of objects

with specified fluxes, shapes, and locations. The deflector parameters and source

parameters are then varied to find the potential <p(T) that best matches the observed

flux. The manner in which to do this is discussed in chapter 5 of this thesis. Note that

the only constraints on <p(T) from the image brightness distribution are on V<P(fimg)

and a~i a~j <p(fimg) at the locations fimg where there is image flux, since the deflector

gravitational potential is only sampled at the angular locations where there is image

flux. The only direct constraint on <p(T) in the regions without image flux is that

<p(T) must not produce images that would be seen but are not seen. In general, more

images of more background sources better constrain <P (T).
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4.2.3 Lens potential - constraints from direct observation

of the deflector

Constraints on the deflector mass distribution and its potential may also be found by

direct observation of the deflector itself.

In particular, the velocity dispersion of the deflector galaxy may be used as a

measure of the depth of the deflector's gravitational potential. This is particularly

useful for lenses such as B0957+561 where the principal lensing galaxy is in a cluster

of galaxies. The cluster, modeled using a uniform mass sheet, may add a significant

amount of convergence K to the lens. This, because of the mass sheet degeneracy,

causes trouble in making a model prediction of the time delay, unless it can be de-

termined how much of the lens's convergence is due to the mass sheet and how much

is due to the primary deflector. Measuring the strength of the galaxy potential it-

self, via measurement of the galaxy's I-dimensional velocity dispersion, (T~, allows
ill

the mass sheet degeneracy to be broken (Falco et at. 1985; Gorenstein et at. 1988;

Narayan 1991). In fact,

2 DLS(1 - K) = (Tv -D x Cmodel
ill S dependent

(4.26)

The constant depends on the parameters of the lens gravitational potential - as

fitted to the lens with the assumption of no mass sheet. It also depends on the shape

of the distribution of luminous matter. Though it depends on the models used for the

total matter distribution and the luminous matter distribution, it does not depend

on cosmological parameters.

This may be readily seen for the case of the singular isothermal sphere,

(4.27)

The apparent potential is determined by modeling the lens images as a singular
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isothermal sphere with no mass sheet present,

4> model (f') = bmodell f1 ,
noK.

(4.28)

where bmodel is determined by modeling the lens images. The true potential of the

galaxy is also assumed to be a self-gravitating singular isothermal sphere. Its depth

is determined by observations of the velocity dispersion of the galaxy

2 DLs 1;;1
4>galaxy = 47r0" v -D rl'

true W S
(4.29)

From equation 4.22 the true galaxy potential <Pgalaxy and the apparent potential <Pmodel
u~ ~K.

are related by

<Pgalaxy = (1 - "')<Pmodel,
true no K.

(4.30)

in the presence of a mass sheet "'O"crit which is not taken into account in modeling

<Pmodel' Therefore for this case, comparing equations 4.28 and 4.29 it can be seen that
no K.

2 DLS 47r
(l-"')=O"v-D -b-'

W S model
(4.31)

The constant of proportionality between (1- "')and O"~ V;'s can also be worked out
W 5

for other models for the gravitational potential. For example, if the lens is modeled by

a singular isothermal sphere with a lens Einstein radius of bmodeh and if the luminous

matter is assumed to be an isothermal tracer population sitting in the potential and

having a mass distribution Plum ex r~' then

(1 - "') = O"~ DLS 27rn .
W Ds bmodel

(4.32)

Therefore the breaking of the degeneracy by use of the velocity dispersion is model

dependent, and depends on assumptions of how the luminous and dark matter in the

galaxy are distributed.

The lensing galaxy's radial profile, ellipticity, and positions may also be used

to select a suitable potential model and constrain the model parameters. However,
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relating properties of the inner regions of the galaxy, as sampled by its light, to

properties of the regions sampled by lensing well beyond the bright central regions of

the galaxy, is model dependent.

4.2.4 Using the lens potential to find the surface mass density

a(r), the effective lens distance Deff, and the angular

diameter distance to the deflector DL

The surface mass density of the lens deflector may be found from the divergence of

the 2-D lens potential if it is well constrained. If observations of the luminous matter

in the deflector are also available, then the surface mass density deduced from the

lensing can be compared with them. A discrepancy would indicate the location of

dark matter. In particular, the surface mass density is (equation 4.9)

(4.33)

Even if the source or lens redshifts are unknown, or if the Hubble parameter is not

well known, or if there is some unknown uniform mass sheet in the lens system, the

angular dependence of a(f) is given by the divergence of the modeled <I>(f).

Measurements of a time delay and the deflector redshift, combined with the mod-

eled potential, give a measure of the distance scales in the system. The time delay

between two images Q and {3 of the same source is (from equation 4.20)

t(fa) - t(fiJ) =
(1+ zL) D~~s GI'{7To il>(r;,W - ~r~filil>(iPW - il>(r;,) + il>(ip)). (4.34)

If the model deflector mass distribution contains a sheet of constant mass density as

may be used for a galaxy cluster, asheet = Kacrit, then this is undetectable via the image

geometry. Let <I>model be the potential as modeled from the image geometry under the
no K.
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assumption that there is no such sheet. Then the time delay is (equation 4.25)

t(f'a) - t(i{J) =
DLDS

(1 - ~)(1 + ZL)-D-
LS

x (~IV~<I>model(f'a)12 - ~IVTf3<I>model(i{J)12 - <I>model(f'a) + <I>model(i{J)). (4.35)2 no If, 2 no If, no If, no If,

The deflector's luminous matter velocity dispersion and radial profile can be used to

break the degeneracy between the mass sheet and the primary deflector, so that the

time delay is

t(f'a) - t(i{J) =

(1 + ZL)Cmodel a~ DLdependent 1D

X (-2
1

IV ~ <I>model(f'a)12 - -2
1
IV Tf3<I>model(i{J)12 - <I>model(f'a) + <I>model(fp)) , (4.36)no If, no If, no If, no If,

where Cmodel is a model dependent constant that has no dependence on the cosmo-dependent
logical model used for the universe.

Consider a lens system for which a time delay and the deflector redshift are known

and for which <I> has been modeled based on the image brightness distribution. If the

lens system is thought to contain a component that approximates a mass sheet, such

as a galaxy cluster, then the degeneracy between the mass sheet and the primary

(galaxy) deflector may be broken by measurement of the primary deflector's velocity

dispersion and luminous matter radial profile, as discussed in section 4.2.3. Equa-

tion 4.36 then gives a measure of the angular diameter distance to the deflector DL, in

one step without the cosmic distance ladder, as pointed out by Narayan (1991). If no

mass sheet component to the deflector is observed, so that it is not appropriate to in-

clude a uniform mass sheet as part of the deflector model, then ~ = o. Equation 4.35

then gives a measure of DD1,Ds in one step, with no dependence on the cosmic distance
LS

ladder. This ratio DDT.Dc; is sometimes called the "effective lens distance" Deff = DDTJDC;,
LS LS

but this is a misnomer, since the ratio DDT.Dc; does not correspond to any particular
LS

distance in the lens system.

106



4.3 Applications to cosmology

4.3.1 The standard cosmology

The Robertson-Walker line element for a homogeneous and isotropic spacetime is

(Misner et ai. 1973, equation 27.22)

(4.37)

where the function S depends on the curvature ~curvof the universe:

d-- sin(XV~curv)
V Kcurv

S(x) = X

for K:curv> 0

for ~curv= 0 (4.38)

~ sinh(xv-~curv) for K:curv< 0

The change of the scale factor a( t) with time is described by the Friedmann equation

which, for a matter-dominated universe, is (Misner et al. 1973, equations 27.74 and

27.75)

(4.39)

This has three independent parameters and one dependent parameter:

• Hubble constant Ho

• Average mass density of the universe no = 8;~ga
a

• Curvature of the universe nKO = -HK~1I2v
aaa

• Cosmological constant nAo = 3~2 = 1 - no - nKO
o

The angular diameter distance from A to B, DAB, is the physical length of an object

located at B divided by the angle subtended at A. In a Friedmann-Robertson- Walker

matter-dominated universe, the angular diameter distance from co-moving source A

to co-moving source B, derived from the Friedmann equation and the Robertson-
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Walker metric, is

(4.40)

4.3.2 Dependence of Deff, DL, and O"crit on the standard cos-

mology

It was shown above that the quantities DL and Deff = DDDD~ may be accessible from
LS

measurements of individual gravitational lenses. Deff = DDI,D~ is a function of the
LS

source and deflector redshifts, as illustrated in figure 4-3. On the other hand, DL' as

shown in figure 4-4, is a function of the deflector, but not the source, redshift. In both

cases the functional form depends on the cosmological model. Both are proportional

to Ho -1, the inverse of the Hubble parameter. For low source and lens redshifts, both

Deff and DL have very little sensitivity to the other cosmological parameters no and

nAo'

The measurement of a single gravitational lens, yielding Deff or DL' is sufficient

to give a measure of the Hubble parameter. Of course there will be some contribution

to the uncertainty in Ho from the lack of knowledge of no and nAo' Note that Deff

has less sensitivity to no and nAo than does DL' so that Deff would introduce less

error into H0 from the other cosmological parameters than would DL. However, there

is always the possibility of the mass sheet degeneracy introducing systematic error

into the measurement of Ho from Deff. In comparison, DL requires the knowledge of

the velocity dispersion and radial profile of the luminous matter as well as the shape

of the potential well, so it too is subject to systematic problems. The possibility of

errors in the determination of Ho due to some peculiarity of a lens makes it desirable

to measure many lenses.

The goal of measuring no and nAo also makes it desirable to measure many lenses.

The dependence of DL and Deff = DDI,D~ on the cosmological parameters no and nAo
LS

becomes more pronounced for large redshifts. Indeed the shape of the curve DL vs.

ZL depends on no and nAo, whereas the normalization depends on Ho. Similarly,
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Figure 4-3: The dependence of the effective lens distance Deff = DDLD~ on redshift.
LS

The curves depend on the Hubble parameter and the other cosmological parameters.
The ordinate in the lower plot has been made dimensionless by multiplying DDIJD~ by

LS

lHo; therefore the lower plot illustrates only the dependence on no and n1\o'c
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Figure 4-4: The angular diameter distance to the deflector, DL is a function of the
lens redshift. The curves show how this function depends on the Hubble parameter
and on the other cosmological parameters.

110



the shape of the surface Deff vs. ZL and Zs depends on no and nAo, whereas the

normalization depends on Ho. If enough lenses at a variety of redshifts are measured,

then it is possible in principle to trace out the shape of the surface or curve, thus

determining no and nAo as well as the normalization Ho.

Deff = DD1,D~ has some dependence on the curvature nl\:o, becoming more pro-
LS

nounced with higher source and lens redshifts, but has very little sensitivity to the

balance between the mass density no and the cosmological constant nAo If the uni-

verse is assumed to be flat, n,w = 0, as is popular for theoretical reasons, then the

balance between no and nAo will have little effect on the estimates of the Hubble

parameter.

In contrast to the effective lens distance Deff, the distance DL is more sensitive to

all the cosmological parameters no, nAo, and nl\:o' In particular it is more sensitive to

the balance between the mass density no and the cosmological constant nAo' Were

the Hubble parameter well known, this would be more sensitive for constraining the

other cosmological parameters.

Another way of using lensing to constrain cosmological parameters is through

statistics on the probability of lensing, comparing the number of lenses seen with the

probability of lensing by some set of deflector objects. This probability of lensing

depends 011 the relation of the deflector masses to the critical surface mass density

O"crit = 4;G D~;LS' Since the dependence of O"crit on the deflector and source redshifts

ZL and Zs (figure 4-5) itself depends on the cosmological parameters Ho, no and nAo,
such probability-of-Iensing methods may be used to constrain these parameters.

There is another way of using lensing to constrain the cosmological parameters

no and nAo which in contrast to the methods above does not require knowledge of

the Hubble parameter (Paczynski & Gorski 1981; Breimer & Sanders 1992). Com-

paring the strength of the deflector potential as determined by lens modeling with

the strength of the deflector potential as measured by its velocity dispersion under

the assumption that there is no mass sheet component to the deflector, gives (from

equation 4.26)
Ds 2
-- = O"v X CmodelDLS 1D dependent

III

(4.41)
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Figure 4-6: This contour plot of DD~ shows the sensitivity of the angular diameter
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distance ratio to the cosmological parameters nMo = no and OAo, for fixed source
and lens redshifts. (These redshifts are for the giant lensed are, Zs = 0.724, (Soucail
et al. 1988), in the cluster Abell 370, ZL = 0.373.) Note that the ratio is particularly
sensitive to the deceleration parameter qo = ~Oo - OAo. The region below the curve
at the lower corner of the plot parameterizes universes which did not evolve from an
initial singularity, that is, ones which had ~~= 0 for a finite scale factor a smaller
than the present value (Carroll et al. 1992).
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Equivalently, for a deflector which is itself a cluster of galaxies, its x-ray gas temper-

ature may be used in place of the velocity dispersion

Ds I
-- = Tgas x C modelDLS dependent

(4.42)

Cmodel is a model dependent constant depending on the radial profile of the lumi-
dependent

nous matter and the shape of the potential well but having no dependence on the

cosmological model used for the universe. Note that the ratio DDs is particularly
LS

sensitive to the deceleration parameter qo = ~Oo - OAo. This is shown in figure 4-6.

4.4 Summary: requirements for determining the

deflector mass distribution and the Hubble pa-

rameter and other cosmological parameters

Deflector mass distribution

The study of the image geometry of a single lens may be enough to give the angular

dependence of the mass of that lens, a(f) ex: \i'2q>(f). Combined with knowledge of the

source and deflector redshifts, an assumed cosmology, and an assumption concerning

the mass sheet degeneracy, this gives as absolute distribution of the mass. This

distribution of all the matter, dark plus luminous, is of interest for comparing the

distribution of dark matter in the deflector with the distribution of luminous matter.

Hubble parameter

Measurement of a single gravitational lens may give a measurement of the angular

diameter distances in the lens system independent of the cosmic distance ladder. This

gives a point-estimate of the Hubble parameter, independent of the cosmic distance

ladder, but with some uncertainty due to 00 and OAo. To estimate the Hubble

parameter, a number of things must be known about the lens system:

• The time delay between two images must have been measured.
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• The deflector redshift must be known.

• There must be a good model for the 2-D lensing potential, from maps, and/or

from observations of the deflector itself. One must

- assume that there is no component to the deflector which approximates a

mass sheet. (In this case one has determined Deff = DD'JD~.)
LS

- or measure the velocity dispersion of the lens galaxy to distinguish between

the convergence due to the lens galaxy and convergence due to the mass

sheet. (In this case one has determined DL.)

• The source redshift as well as the deflector redshift must be known to deduce

the Hubble parameter from angular diameter distances. (Only the deflector

redshift need be known if the velocity dispersion of the principal deflector is

being used to break the degeneracy.)

So far such measurements have been made for B0957+561 (Grogin & Narayan 1996a;

Grogin & Narayan 1996b; Haarsma et ale 1997; Haarsma 1997; Kundic et ale 1997)

and for PG Bll15+080 (Schechter et ale 1997).

Cosmological parameters no and nAo

Measurements of many multiple-image lenses at various redshifts may, when they

have been made, be used to trace out the dependence of Deff = DD'JDs on ZL and Zs
LS

or of DL on ZL. The normalization of the curves will give the Hubble parameter Ho,

and the shape of the curve will gives no and nAo.
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Chapter 5

Lens Modeling: Using

Observations to Constrain Models

of the Deflector

5.1 Introduction

To model a gravitational lens system one needs two pieces. First is needed a model

of the deflector, either its mass distributions or else its gravitational potential. One

also needs a model for the source: its sky-brightness as it would be in the absence of

the intervening deflector.

For purposes of studying the cosmological parameters, including Ho, it is the

model of the deflector that is of particular importance. The deflector potential, as

well as the deflector and source redshifts and the time delay between two images, must

be known in order to constrain Ho. The model of the deflector potential also provides

information on the mass distribution of the deflector. This is direct information on

the matter's mass from its gravitational effects, rather than indirect information from

the matter's luminosity.

This chapter discusses how one may use the observed sky brightness of a lens

system to provide constraints on a model of the deflector.
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The model sky brightness, mapped through the model deflector and then con-

volved with the detector response, must match the actual observed map of the lens

- at least to within the noise of the observation. The flux in every pixel of the map

provides constraints on the system, and all must be in agreement with the model for

the model not to be rejected.

In practise, one would like to explore a wide range of lens models. For this purpose

one would like a computationally fast way of rejecting the models that cannot come

close to producing the images seen. This can be done if one can capture the most-

important information from the observed images into just a few constraints. For

example, the VLBA 6 cm maps of MG J0414+0534 (figure 3-6) show that each image

(AI, A2, B, and C) of the background object has four resolved components. From the

shapes of the components, it is clear which component of Al corresponds to which

components of A2, of B, and of C. A deflector model for MG J0414+0534 must be able

to correctly account for the positions of all these components. A deflector model that

correctly accounts for the positions of the components mayor may not also correctly

account for the component fluxes, the components' shapes, and the extended flux.

But any deflector model that is rejected by the component positions alone need not

be considered further when all the constraints, the flux in each pixel, are used.

5.2 "Point" modeling - using positions but not

fluxes

The simplest approach is "point" modeling. One identifies some number Nz of fea-

tures, or knots, or components in the background source, and the images of each. The

positions of the images are used as constraints. The source model consists merely of

Nz point sources, of unspecified flux. The requirement for the deflector model is that

it correctly map the sources' positions onto the image positions.

More precisely, the modeling is done as follows:

From the map of the gravitational lens system, one identifies Nz features, each of
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which has No images. The Nl X No measured right-ascensions and Nl X No measured

declinations provide 2 x Nl X No model constraints,

__ { l = 1, ... , Nl independent sources
rla for

a = 1, ... , No images of each source.

Each measured image location has its own estimate of the measurement error,

(5.1)

(5.2)

The source model consists of the locations of Nl point sources:

s" for l = 1, ... , Nl independent sources. (5.3)

The deflector model is assumed to take the form of a 2-D lens potential ~ {a} (T) that

depends on some set of Na parameters {a}.

The deflector model may be used to map positions from the source-plane to the

image-plane

(5.4)

The inverse mapping is not unique, since each source-plane position can map to

multiple image-plane positions. We denote the position of the ath image of a particular

source location S by

f'a(S). (5.5)

Assuming that the errors are Gaussian, the maximum-likelihood statistic is the

familiar chi-squared

X~ositions = L L (ra(Sl) - fia) . Sial. (f'a(Sl) - fia) .
sources images

l a

(5.6)

The chi-squared is minimized with respect to the model source locations s" and the

model deflector parameters {a}. (These model parameters enter the chi-squared
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expression only in the mapping fa (Sz).) The minimum of the chi-squared gives the

maximum-likelihood estimate for the best-fit model parameters Sz and {a}.

5.2.1 Mathematical simplification: the source-plane approx-

imation

The constraints on the model are the measured image positions, which are image-plane

positions. The model source parameters are source-plane positions. To compute the

chi-squared (equation 5.6), the model source-plane positions must be mapped to the

image plane.

Source-plane positions can easily be computed from image-plane positions, for

a given potential: s(fj = r - Vr~(fj. But image-plane positions cannot easily be

computed from source-plane positions. The equation cannot be analytically inverted

for a general potential. Indeed in the interesting (strong lensing) case the inversion

is non-unique. Each source-plane positions maps to multiple image-plane positions,

and these solutions must be found numerically.

If the form of the model is such that a good fit can be obtained, then (ro(sz) - fia)

is small near the minimum of the chi-squared. A Taylor expansion 1 may be made for

s(fj near an image positions fia:

The partial derivative is simply the inverse of the magnification matrix ~ = M-1 ij.
)

This Taylor expansion can be rewritten in term of the magnification matrix:

IThroughout this chapter, the coordinate indices i, j, k, and p appearing twice in a term indicate
implied summation, in the usual manner. Note that all sums over sources I and images a are shown
explicitly.

120



Evaluating this at f = fa(Si), and using vector notation,

Si - s(Da) = (5.9)

M-1(Da)(fa(Si) - Da) + ((fa(Si) - Da) . VfM-1(Da)) (fa(Si) - Da) + ....

Near the chi-squared minimum, for a well-fitting model, the model image position

fa(Si) is near the observed image positions Da, so the expansion can be truncated with

little error. As one can see, this amounts to assuming that the change in magnification

is negligible between the observed image location Da and the model image location

fa(Si):

(5.10)

An approximation is adequate as long as it is good near the chi-squared minimum,

because we are unconcerned about the behavior of the function far from the minimum,

unless new lower minima are introduced. Truncating the approximation to first order,

Si - s(Da) ~ M-1(Da)(fa(Si) - Da),

M(Da)(Si- s(Da)) ~ fa(sz) - Da.

This yields an approximation to X~ositions in the source plane

(5.11)

(5.12)

2
Xpositions -

srcplane sources images
I a

where s(Da) = Da - V fl
Q

<I> {a} (Da), (5.13)

where the components of the inverse magnification matrix are M-\j(f) = 8ij -

a~i a~j <I> {a} (f). This expression for the chi-squared is simple to compute, provided

that the first and second derivatives of the model for the deflector potential are easy

to calculate. A quickly computable chi-squared is desirable regardless of the mini-

mization algorithm used to minimize the chi-squared. Note that the global minimum

of each function, X~ositions and X;ositions, is zero in the case that the model exactly
srcplane

reproduces the observation. We expect that even with noise and measurement error,
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the source-plane approximation to the chi-squared, X;ositions' has a global minimum
srcplane

which corresponds to the minimum of the true image-plane chi-squared, X~ositions' and

that no lower minimum is introduced by this approximation.

The "source-plane" approximation assumes that the change in magnification is

small between the observed image location and the best-fit model's image location.

Therefore the validity of the "source-plane" approximation depends on the model

being a sufficiently good fit; if the deflector model perfectly reproduced the observed

image locations, this approximation would be fine. The source-plane approximation

can fail in two cases. The first case is when the deflector model is so poor that the

model cannot reproduce the observed positions, but in that situation the model would

be rejected anyway. The "source-plane" approximation can fail in a more subtle fash-

ion if the error on the observed image locations is large enough that the magnification

changes significantly within the error region. In such a case, the model's X;rcplane could

be low enough that the model would not be rejected, yet the magnification at the

model image locations could be significantly different from the magnification at the

true image locations.

5.2.2 An analytic expression for the best-fit source positions

in the source-plane approximation

The source-plane approximation to the chi-squared (equation 5.13) is quadratic in the

2 x Nk model source positions, 8". Therefore the minimization over these parameters

may be done analytically. The value of 8" at the minimum may be found by setting

VS-,X2
.t. to zero and solving for Sl:pOSI Ions

srcplane

o = VS1X;ositions = 2 L M(Tia) . Sial. M(Tia) (8" - 8(Tia)) ,
srcplane images

a
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so that the model positions that minimize the chi-squared are

Sz = [.L M(fio) . Sic} . M(fio)] -1 [.L M(fio) . Sial. M(fio)S(fio)]
Images Images

a a

(5.15)

where s(fio) = fio - Vfjo <I> {a}(fio).

This analytical minimization reduces the dimensionality of the parameter space

from (2 x Nl) +Na to merely Na, where Na is the number of parameters of the deflector

model. For MG J0414+0534, where Nl = 4, this reduces the dimensionality of the

parameter space by 8 dimensions. Therefore this technique is a significant aid to any

minimization algorithm used to minimize the chi-squared.

5.2.3 Other simplifications to "point" modeling

Other simplifications to the "point" modeling chi-squared (equation 5.6) are dis-

cussed, for example, by Kochanek (1991). His aim was to simplify the chi-squared in

such a way as to make the chi-squared quadratic in all model parameters in \vhich

the deflector's potential <I> was linear. This method of course made finding the pa-

rameters that minimize the chi-squared quite straightforward. However, in order to

make the chi-squared quadratic, one must neglect the dependence of the magnification

matrix M(fio) on the deflector model parameters {a}, (see equation 5.13), thereby

distorting the weighting appropriate to the measured errors. This thesis does not

use these sorts of approximations for the following reasons: (1) The approximations

introduce some error into the weightings of the measured constraints. (2) This thesis

uses more general deflector models which are nonlinear in some of their parameters,

and a method was wanted that would work for any model for which V <I> and or7;rj <I>

could be calculated. (3) Ample computer power was available to do without the

approximation.
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5.3 "Point" modeling - using positions and fluxes

The point modeling technique may be extended to use image fluxes as well as image

positions.

Again one identifies some number Nl of features, knots, or components in the

background sources, and the images of each. The positions and the integral fluxes

of the images are used as constraints. As before, the source model consists of Nl

point sources, but in this case flux as well as position must be specified for each. The

requirement for the deflector model is that it transform the model source flux into

the observed image flux as well as correctly mapping sources positions onto image

positions.

More precisely, the modeling is done as follows:

The Nl source features, each of which has No images, provide 3 x Nl X No model

constraints: x-position, y-position, and flux for each image of each source. The

position constraints and error matrix are as in equations 5.1 and 5.2. The additional

flux constraints are the fluxes of the lensed images, the "image-plane" fluxes

I { l = 1, ... , Nl indepe.ndent sources
Slo for

a = 1, ... , No images of each source.
(5.16)

Each measured image flux has an error estimate alo.

The source model consists of locations and fluxes of the Nl point sources. The

locations are as in equation 5.3. The fluxes are the unlensed source fluxes, the "source-

plane" fluxes,

sf for l = 1, ... , Nl independent sources. (5.17)

The type of deflector model used is the same as for point-modeling when flux

constraints were not used, a 2-D lens potential ~{a}(T) parameterized by a set of Na

parameters {a}.
For point sources, the flux magnification is given by the determinant of the mag-

nification at the model image location. Therefore the model image-plane flux to be
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compared with the measured image-plane flux is:

S? det M(fa(Sz)). (5.18)

Assuming that the errors are Gaussian, the maximum-likelihood statistic is the fa-

miliar chi-squared with the contribution of the fluxes added to the position-only

point- modeling chi-squared

where X~ositions is as given in equation 5.6 and where

2 = ""'" ""'" {Sf det M (fa (Sz)) - Sio }2
~~ ~ ~ a .

sources images La
L 0:

(5.19)

(5.20)

As before, the chi-squared is minimized with respect to the model deflector param-

eters {a} and the model source parameters. The minimum of the chi-squared gives

the maximum-likelihood estimate for the best-fit model parameters, {a}, Sz, and Sf.

5.3.1 Mathematical simplification: the source-plane approx-

imation

Reasonable approximations are again used to simplify the chi-squared computation.

Taylor expanding around an observed image plane position fio:,one finds

detM(f') = detM(fio) + (f' - fio)' VrdetM(f)I_ + ....
riOt

(5.21)

As in section 5.2.1, this is evaluated at f' = fa(Sz) and terms of order (fa(Sz) - fio) .

V det M(fio) = O(€') are neglected. This drops the higher order terms that involve

the gradient of the magnification matrix, so that

det M(fa(Sz)) ~ det M(fio)'
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Then
2 I"V" " {SP det M(fia) - Sla}2

Xflux I"V L.J L.J -------- .
sources images ala

I a

(5.23)

This is plainly the same result as if we had mapped the observed fluxes and errors

back to the source plane: X~ux ~ X~ux which is given by
srcplane

2 _ L L {SP - sladetM-l(fia)}2
X~r~~lane sources images ala det M-1 (fia)

I a

(5.24)

where M-\j(f) = 6ij - a~i a~i <I>{a}(f) is a 2 x 2 matrix that is already calculated in

the course of calculating X;ositions. (See equation 5.13.)
srcplane

5.3.2 An analytic expression for the best-fit source fluxes in

the source-plane approximation

When fluxes are used as constraints, the "point" modeling chi-squared is the sum of

two pieces, one due the positions, and one due to the fluxes,

2 2 2
Xsrcplane = Xpositions + Xflux ,

srcplane srcplane
(5.25)

where the expressions for X;ositions and X~ux are given in equations 5.13 and 5.24.
srcplane srcplane

Only the second term of equation 5.25 depends on the model source fluxes. This

second term is quadratic in the model fluxes. Therefore the minimization over the

model fluxes may be done analytically. The value of Sp at the minimum may be

found by setting V SpX;rcPlane to zero and solving for Sp,

.... 2 .... 2 " {sp - sla det M-1(fia)}o = V' Sp Xsrcplane = V' Sp Xflux = 2 L.J ( 1) 2 •
srcplane im~ges ala detM- (fia)
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Thus the model fluxes that minimize the chi-squared are

(5.27)

Since the second term in equation 5.25 does not depend of the model source posi-

tions Sz, the X;rcplane is, like X;ositions, quadratic in the model source positions. The min-
srcplane

imization over the model source positions is done analytically, just as in section 5.2.2.

The positions Sz that minimize X;rcplane are still the same as in equation 5.15.

Adding the fluxes as constraints increases the number of modeling constraints by

No: x Nl. It increases the number of model source parameters by Nl - one flux for

each source object. However, these additional source parameters may all be found by

analytical minimization of the chi-squared. Adding the fluxes as constraints does not

increase the dimensionality of the parameter space to be searched by the algorithm

used to minimize the chi-squared.

5.4 Corrections to "point" modeling for slightly

extended sources in the presence of magnifica-

tion gradients

"Point" modeling uses only the locations of each image, even for resolved objects,

assuming that the centroids of the images of a source object correspond to each

other. In other words, the centroid of the source flux is assumed to map to the

centroid of the image flux under lensing. If this assumption is false, then "point"

modeling introduces some error.

It will be shown below that if the magnification is constant across an image, the

centroid of the image is the same as the image-plane position corresponding to the

source centroid. For sources whiGh are only somewhat extended, an expression for

the displacement caused by a magnification gradient will be found,
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5.4.1 Notation

Let the surface brightness distribution of a lensed image be denoted by Ir(fj. The

surface brightness distribution of the source, as it would appear in the absence of

lensing, will be denoted by Is (S). These surface brightness distributions are related

by the lens equation; as surface brightness is unchanged by lensing,

Is(s(fj) = Ir(fj, where s(fj = r - V<I>(fj. (5.28)

It is also useful to introduce the total flux of an image, where the integral is understood

to extend only over that region where that image has non-zero flux,

(5.29)

Similarly, the flux of the source as it would be in the absence of lensing is

(5.30)

The centroid of the lensed emission, also referred to as the image centroid, is

(5.31 )

If the emission were not lensed, the centroid would be the source centroid,

(5.32)

The extent of the lensed emission is described by the quadrupole moment of each

Image,

W\j = ~I / d2r II(f)(ri - roi)h - roj). (5.33)

Similarly the width of the source as it would be in the absence of lensing is

WSij = ;S / d2s /s(s')(Si - Soi)(Sj - Soj). (5.34)
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5.4.2 Approximation appropriate to slightly extended sources

Attention will now be focused on the effect of source extent on "point" modeling

and how one corrects for it. The analysis will be performed for "slightly extended"

sources.

By "slightly extended" sources we mean sources for which (f - fa) is in some sense

small for f in the region where an image has non-zero flux, where fa is that image's

centroid. Actually, what is relevant is that (f - fa) times the magnification gradient

be small. One can think of this as requiring that the change in magnification across

the image size be small. More quantitatively, it is assumed that (f - fa) . V M-11_
To

is small for f in the region of non-zero surface brightness. For convenience we denote

this small quantity as being 0(£), thus

(5.35)

It follows also that (f - fa) . V det M-11_ = 0(£). We note that (ri - roi)(rj -
To

roj)8i M-11_ 8j M-1/_ = 0(£2).
To To

We assume that if the first derivative of the magnification matrix is small then

the second derivation is smaller. In other words, we assume that

(5.36)

from which it follows that (ri - roi)(rj - roj)8i8j det M-11_ = 0(£2).
To

In the approximations in the following sections, only the more significant terms

will be kept. The terms that are higher order in these small quantities will be dropped.

This approximation we will call the "slightly-extended" approximation.

Note that the assumptions that go into the "slightly-extended" approximation are

quite different from the assumptions that go into the "source-plane" approximation,

(sections 5.2.1 and 5.3.1). For the "slightly-extended" approximation it is assumed

that the magnification changes little over the extent of each image; this could be a

poor approximation for extended sources, even if the deflector model were perfect.
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On the other hand, for sufficiently point-like sources, it is a fine approximation, even

when the deflector model itself is poor. This is in contrast to the "source-plane"

approximation which assumes that the change in magnification is small between the

observed image location and the best-fit model's image location; the validity of the

"source-plane" approximation depends on the model being a sufficiently good fit.

5.4.3 Relation between source flux and image flux for slightly

extended sources

Starting from the integral for the source flux, Ss = f d2s 1s(8) one can change vari-

ables from 3 to r, getting Ss = f d2r h(f} det M-1(f}. One then Taylor expands the

determinant around the image centroid fa. Dropping the terms that are higher order

in the derivatives of the magnification, one finds

(5.37)

The 0(E) term vanishes because the expansion is done around the centroid of the

image flux.

Unless the second derivative of the magnification matrix is significant over the

region of the image flux, the "point" modeling flux transformation should be ade-

quate, Ss ~ SI det M-1(fa). This is true even when we are including the first order

corrections, the 0(E) corrections, to account for slightly extended sources.

5.4.4 Relating the image centroid to the image-plane loca-

tion of the source centroid

Starting from the integral for the source centroid, 30 = .is J ~s 3!S(8) one can again

change variables from 3 to r, getting 30 = .is f d2r II(f) {det M-1 (f) 3(f} }. One then

Taylor expands the term in curly braces around the image centroid fa, and uses for

source flux Ss the expression above in equation 5.37. Dropping the terms of higher
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order in the expansion parameter, one finds:

Soi - si(fo) =

WI.k (~ak M-1 ..1 + M-1 .. 1 aklndetM-11 ) + 0(f.2) x O(source size).
J 2 'tJ To 'tJ fo fo

"- ~
y

O(€) X o(source size)

(5.38)

This is the discrepancy in the source plane between the source centroid So and the

image centroid mapped back to the source plane, s(fo). Note that this is O(f.). The

discrepancy goes to zero for point-like sources, as expected. The discrepancy also

goes to zero if there is no magnification gradient over the source size JWI ij. However

there is a discrepancy if the source is somewhat extended and there is a change in

magnification over the extent of the source. The discrepancy is a first order effect,

and any extension to "point" modeling to take source size into account must account

for this.

The expression for the discrepancy in the image plane can also be found. Taylor

expansion gives f(so) - fo = M(fo) (so - s(fo)) +O((so - S(fa))2). Since (so - s(fa)) is

itself O(f.) (see equation 5.38), the O((so - s(fa)?) term is 0(f.2) and can be dropped

if we are keeping terms only to 0(f.). Therefore

rp(so) - rpo =

W1jk (~MpiOkM-lij + OpjOk Indet M-1) Iro + 0((2) x O(source size).
.I

y

O(€)xO(source size)

(5.39)

This is the displacement in the image plane between the image of the source centroid

f(so) and the image centroid fa. This displacement is roughly the image width multi-

plied by the fractional change in the magnification over the extent of the image. If, for

the sake of illustration, it is assumed that the image extent WI ij and the magnification

matrix M-\j are both diagonal in some basis, and that the only non-zero gradient

. a M-1 h h d. I . - -(- ) - 3 A ( a M-l /M-l )term IS x xx t en t e ISp acement IS ro-r So - -'2WxX Wx x xx xx ~
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~2 x x-width x D.map;~:f where Wx is the rms width of the image in the x-direction. As
magm

one expects, the image centroid is displaced in the x-direction if the magnification

increases in the x-direction.

5.4.5 The "slightly-extended" corrections to "point" model-
.lng

When the lens images are somewhat extended and there are magnification gradients

at the image locations, the "point" modeling introduces slight errors as shown above.

It is desirable to correct these effects to O(€), the first order in the gradient effects.

This corrected chi-squared is called the "slightly-extended" corrections to the "point"

modeling approximation.

The relation between source flux and image flux is only affected at second or-

der, 0(€2), in the magnification gradients. Therefore the "point" modeling relation

can be used unchanged, Ss = SI det M-1(fo). Thus the "point" modeling X~ux (equa-

tion 5.20) and X~ux (equation 5.24) carryover unchanged to the "slightly-extended"
srcplane

approximation:

and

2 2
Xflux = Xflux'

extended - source

2 _ 2
Xflux - Xflux

srcplane,extended-source srcplane

(5.40)

(5.41)

The relation between source position and image position needs a correction at

first order, O(€), in the magnification gradients. In "point" modeling we have been

treating the image-centroid and the source-centroid as being the same - under the

lens mapping. As seen in equations 5.38 and 5.39 these actually differ by O(€) for

slightly extended sources in the presence of magnification gradients. However these

same expressions, 5.38 and 5.39, allow one to make corrections to the "point" model-

ing, to eliminate the O(€) discrepancy and to leave only an O(€2) discrepancy. These

corrections use the measured image extents, W11o'ii' and the inverse of the model

magnification matrix and its derivatives evaluated at the measured image locations,
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M-1(TloJ and V M-1
\_ . One corrects from the measured location of the image

ria

centroid ( ~ = Tla, or s(~) = s(Tla) ) to the location of the source centroid ( So = Si,
or f(so) = ~(Sk) ) since the source centroids are the model source parameters. This

correction needs to be done for all the images so that the various images may be

compared with each other.

In the actual chi-squared as calculated in the image plane (X~ositions equation 5.6)

the expression (~(Si) - Tla) enters into the chi-squared. This compares the image-

plane position corresponding to the model source centroid, ~(Si), to the observed

image centroid Tlo. This observed position should be corrected by the difference

between the image-of-the-source-centroid and the centroid-of-the-image. In short,

Tla, should be replaced by

where the correction term is from equation 5.39. Note that l denotes which source

1, ... , Nl, that a denotes which image of the source 1, ... , Na, that i, j, k, and pare

indices running over the x- and y-components, and that ep is a basis vector x or y.
The position chi-squared is then

X;ositions = ~ ~ (~(Si) - f~o) . Sic} . (~(Sl) - f~o) .
extended-source sources images

l 0

(5.43)

If the source-plane approximation is being used then it is the expression Si -

s(Tla) that appears in the expression for the chi-squared, X;ositions' equation 5.13. This
srcplane

compares the model source centroid, Si, to the observed image centroid as mapped

to the source plane, s(Tlo). This mapping of the observed position to the source

plane should also be corrected for the difference between the source-centroid and the
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source-plane-position-of-image-centroid,

s(fia) + ei { WI1a,jk G8kM-1 ij + M-1 ij8k Indet M-1) Irja}
Tla - V <I> (Tla)

+ ei {W1la'jk (~8kM- \ + M- \8k IndeU\1-1
) Irla} .

(5.44)

This can be thought of as a correction to the deflection angle. The source-plane

approximation to the chi-squared is then

X;ositions = L L (Si - s'(Tla)) M(Tla) . Sic} . M(Tla) (Si - s'(Tla)) .
srcplane,extended-source sources images

1 a
(5.45)

Note that since s'(Tla) does not depend on 8[, the analytic minimization of the

chi-squared over model source parameters Si is not affected. Equation 5.15, which

gives the model positions Si that minimize the chi-squared, is changed only by the

replacement of s(Tla) by s'(Tla)' Equation 5.27, that gives the model fluxes that

minimize the chi-squared, remains unchanged.

Note that this "slightly-extended" correction to the "point" modeling technique

requires that the third derivatives of the model potential, 8i8j8k<I>(fj, be calculated.

5.5 Beyond "point" modeling

The "point" modeling discussed above utilized only a single position and integral flux

for each distinct component of each lens image. The rationale for this method was to

capture just the most important information about the lens system thus allowing there

to be a computationally quick way of ruling out bad models for the deflector. Even the

corrections to "point" modeling for slightly extended sources used basically the same

small subset of information about the lens system. In some cases it will be desirable

to use more of the information contained in the surface brightness distribution.
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5.5.1 Using source major axis, minor axis, and orientation

The logical next step beyond treating each image as a point is to acknowledge its finite

extent. That is, one measures the second moment of the sky brightness distribution

for each image and uses these second moments as constraints.

(5.46)

The source and the image widths are related by

(5.47)

(This is a matrix equation. There is a 2 x 2 symmetric matrix WI10: for each image

a of each source l.) Therefore the image widths can be used as modeling constraints

provided that the source widths WS1 are added as additional model parameters.

Astronomical source sizes are often characterized by specifying major axis length,

minor axis, and orientation angle. The source and image widths can alternately be

described by specifying the major axis, minor axis, and orientation angle of each

image if that is preferred over the second moments.

The source widths give three constraints, rms x-width yWI10:,xx' rms y-width

yWI10:,yy' and xy-covariance WI10:,XY' for each image a of each source l. This provides

3x N1 X No:additional constraints on the model. For each image l one must also include

in the model three additional model parameters: rms x-width yWS1,xx' rms y-width

yWS1,yy' and xy-covariance WS1,XY' for a total of 3 x N1 additional model parameters.

Thus including the widths of the images increases that number of constraints of the

deflector by a net of 3 x N1 x (No: - 1).

The only difficulty in formulating the chi-squared expression to use the source

extent as a constraint is obtaining an estimate of the measurement error on each of the

axes and the orientation angle, and estimating the covariance in these measurement

errors. In general the measurement errors in the major axis, minor axis, orientation

angle, and flux will be correlated with each other. The errors in x-position and y_
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position, while correlated with each other, will be uncorrelated with the errors in the

major axis, the minor axis, the orientation, and the flux. See appendix A.

The effect of magnification gradients on the mapping from image to source widths

(equation 5.47) shows up at O(€). The effect depends on the third moment of the

image flux. For the nth image of the [th source, the effect is

Ws -l,ij - M-1 im(fio)M-1jn(fio)WI[o,mn

+ T1'c<,mnk { M-1 imM-1 jnak Indet M-1

II}+ 2M-1
im8kM-

1
jn + 2M-1

jn8kM-1
im ITin

+ 0(€2) x O(source size2), (5.48)

where the third moment of an image's flux around its centroid To is

(5.49)

As the third moments are likely to be poorly constrained, and as the errors on the

second moments will be larger than the error on the image centroids, it seems sensible

to ignore the effects on magnification gradients on the source widths when using the

source widths as constraints. Besides, for symmetrical sources, the third moments

are zero.

5.5.2 LensClean

In some cases one wants to use all the surface brightness information available in

constraining models of the deflector's potential, despite the computational cost. This

is particularly desirable for lens systems in which there is extended flux that is not

adequately described by the parameters that describe a Gaussian: position, flux,

width, and orientation.

The LensClean algorithm was developed to do this (Kochanek & Narayan 1992).

It deconvolves the beam pattern from the map of the lens system, mapping the clean
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components through the current lens model and removing all the lensed images of the

clean components simultaneously. The deflector model parameters are adjusted to

minimize the residual errors caused by inconsistency between the map and the model.

A more sophisticated version, Visibility LensClean (Ellithorpe et ai. 1996), subtracts

the lensed clean components directly from the interferometer visibility data rather

than from the source map. These LensClean methods require that a CLEAN be done

for each set of deflector model parameter values which are tried in the course of finding

the best-fit parameter values. For maps in which even the ordinary CLEAN without

lensing (Hogbom 1974; Clark 1980; Schwab 1984) takes hours on a workstation2, with

models having an eight-to-ten-or-more dimensional parameter space to explore3, the

computational cost of LensClean is prohibitive.

5.6 Confidence limits on model parameters

It is desirable to know not only what the best-fit model parameters are, but also

whether the model adequately explains the data, and if so how well the model pa-

rameters are constrained. An especially lucid and accessible introduction to this

subject is given in Press et ai. (1992), where it is made clear under what conditions

one may use what techniques, although some of the results are stated without proof.

The "point" modeling technique described above requires measured positions and

error estimates on the measured positions for the identifiable components in the emis-

sion. The position errors estimated from fitting elliptical Gaussians to the maps of

MG J0414+0534, (table 3.5), contain only the statistical error due to the map noise

(see appendix A). They do not take into account the systematic error introduced

by the deconvolution (CLEAN) algorithm. In fact, the errors introduced by the de-

convolution are not well understood. Due to this unknown error introduced by the

deconvolution, (1) it is expected that the statistical errors are underestimates of the

total error, and (2) the errors are not known to be Gaussian.

2such as the observation of MG J0414+0534 described in this thesis
3For this MG J0414+0534 observation, the simpler models can be ruled out using "point" mod-

eling techniques.
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That the size of the errors is not well known prevents an absolute measure of

goodness of fit of the deflector models. The standard method of estimating goodness of

fit, that the reduced X2 be near 1, requires that the measurement errors be known, that

they be Gaussian, and that the model be adequately approximated by a linearizable

model in the region of interest. In that case the minimum of the chi-squared is

distributed as a chi-squared with n - m degrees of freedom, where m is the number of

fitted model parameters and n is the number of measured data points or constraints.

If the data yields a minimized chi-squared that is is unlikely to have been drawn from

the model, then the model may be rejected.

We would however like to say something about goodness of fit, rejecting at least

those models which are grossly wrong. To this end, it is assumed that the deconvolu-

tion algorithm will not displace components by a whole beam width. More precisely,

a Gaussian is fitted to each component in the clean map, and this Gaussian is used as

the error distribution. The clean map consists of the clean component model of the

source, convolved with a Gaussian which is the size of the central lobe of the beam,

and added to the residual map noise. Therefore this error estimate is just the beam

size for point sources, and is the beam size convolved with the actual source width for

extended sources. As crude as this upper limit on the position errors is, the simplest

lens models (less than 9 parameters) are all rejected by this criterion (see table 7.2).

Using the convolved image sizes as estimates of the position errors gives an over-

estimate of the errors. Using only the statistical errors on the image centroids un-

derestimates the errors. A better estimate of the errors, between these upper and

lower limits, is to add the deconvolved image size in quadrature with the statistical

errors on the image centroids, since this make some allowance for image shifts due to

deconvolution errors.

For those models which are not rejected by these crude goodness-of-fit criteria, we

would like to know how well the model parameters are constrained.

The concept of confidence limits on model parameters is as follows: If a mea-

surement were repeated many times, and fitted parameters ai were found for each

measurement, then any region of any shape within with p% of the measurements

138



would fall is a p% confidence region. If the best-fit model is a good model, then

simulated data drawn from the best-fit model, with an error distribution the same

as the actual error distribution, result in simulated model parameters itf which are

assumed to be distributed approximately the same as the hypothetical repeated mea-

surements ai. Once one knows the shape of the distribution of the itf's, one can find

confidence regions for any subset of the parameters containing the specified p% of the

distribution.

Were the error distribution known well enough to simulate, whether it were Gaus-

sian or not, then a Monte-Carlo technique could be used. Using the best-fit model,

simulated data sets could be generated, and errors generated from the known error

distribution could be added to the simulated data. These simulated data sets then

could be processed in the same way as the actual data set, yielding "best-fit" param-

eter values for each simulated data set. This distribution of these simulated results

would give one the confidence interval on one's fitting results.

However, our error distribution is not well enough known to use this technique.

Instead we make a few assumptions:

1. It is assumed that the errors are Gaussian and that their size is given by the

statistical error on the centroid positions added in quadrature with the decon-

volved image sizes.

2. It is assumed that the parameterized model is linearizable in the region of

interest. This is sensible since any well-behaved function is linear locally.

3. It is assumed that the parameterized model is indeed the one from whose dis-

tribution the data were drawn. A typical data set drawn from this distribution

should have X~in = n - m, where n is the number of data points and m
expected

is the number of fitted model parameters. Actually, X~in is drawn from a
expected

chi-squared distribution with n - m degrees of freedom, which has mean n - m

and variance 2(n - m). It is seen in practise (table 7.2) that the better-fitting

models for the VLBA observation of MG J0414+0534 all have X~in < n - m,

indicating that the values of X~in are artificially low or equivalently that the er-
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ror estimate is an overestimate of the position errors. Therefore the confidence

regions resulting from them will be over large.

Then to calculate confidence limits on the model parameters, we use the following

technique which is suitable for Gaussian errors and linearizable models. The con-

fidence region for v interesting parameters out of the m fitted parameters can be

found as follows: Let x~(a) be the X2 with the v interesting parameters held fixed

and minimized over the m - v remaining parameters. Then the v-dimensional confi-

dence region is the region where x~(a) < X~in + ~X: . The level ~X: is a
theoretical theoretical

function of the number of interesting parameters v and the desired probability level

p%. For example, for one interesting parameter, ~X:=l = 1, 2.71, and 4 for confi-
theoretical

dence regions of 68.3%, 90%, and 95.4%, respectively. For two interesting parameters,

~X;=2 = 2.30, 4.61, and 6.17 for these same confidence levels. Therefore, to find
theoretical

each parameter's confidence limits, that parameter is stepped away from its value at

the minimum, while the chi-squared is minimized over all the other parameters, until

the minimized chi-squared reaches the level X~in + ~X;=l
theoretical
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Chapter 6

Choosing a Model for the Deflector

Mass Distribution or Potential

In modeling a gravitational lens system one needs a model of the deflector: its mass

distribution, its Newtonian gravitational potential, or its 2-D lensing potential, as

described in chapter 4. Indeed in the thin lens approximation, only the 2-D lens-

ing potential, proportional to the integral along the line of sight of the Newtonian

gravitational potential, is actually constrained.

A parameterized form for the deflector is chosen, <I>{a}(f) depending on some

number Na of model parameters {a}. The model parameters are tuned to find the

best fit model of its type. Even if one chooses to parameterize the mass distribution

instead of parameterizing the potential directly, one can still think of the model as

a model of the 2-D lens potential, since the 2-D lens potential is calculable from the

mass distribution, and only the 2-D lens potential enters into the expression for the

deflection of light.

The form of the potential may be motivated by a desire to have a model that is a

reasonable shape for a galaxy mass distribution. Alternately it may be motivated by

an attempt to be sensitive to those features of the deflector mass distribution which

lensing is expected to constrain.
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6.1 How many parameters can a model have?

The complexity of the model is limited by the number of observational constraints

on the modeling.

For point-modeling a lens-system that has No: images of Nl background sources,

without using flux information, there are 2 x No: X Nl constraints - the right ascension

and declination of each image. From this must be subtracted the 2 x Nl model

source positions: right ascension and declination for each model source. This leaves

2 x Nl X ( No: - 1) constraints available to constrain deflector model parameters.

For a typical quad lens, with four images of a single background source, this leaves

only six constraints to constrain the deflector potential. As the very simplest deflector

models have five parameters, such a system is not much over-constrained.

Using image fluxes as constraints increases the net number of constraints available

for modeling the deflector. There are now 3 x No X Nl model constraints: x, y, and

flux for each image. However x, y, and flux for each model source, 3Nl parameters,

must be included in the source model. This leaves 3 x Nl x (No - 1) constraints

available to constrain deflector model parameters. This is a significant improvement

in the number of available constraints. Is there any reason why one would not use the

flux information? There are three principal reasons why one would ignore the flux

information. Firstly, as in the case of MG J0414+0534, there may be significant dis-

crepancies in the flux ratios at two different wavelengths - causing doubt as to which

fluxes to trust. In the case of MG J0414+0534, these may be due to microlensing,

which is expected to be a more significant effect in the optical than in the radio as the

optical flux is assumed to come from a smaller region than the radio flux. Another

explanation for the flux ratio discrepancy is that there may be obscuration by dust

in one part of the deflector galaxy. One may want to assume that such microlensing

and obscuration effects are unimportant at radio wavelengths. Alternately one may

simply dispense with fluxes, and use only the positions which are not distorted by

these effects. A second reason to ignore the flux information in modeling is that the

source may be variable in flux. Variability combined with the time delay could result
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Lens Type Constraint type
Nl No: position position position position, flux

& flux & galaxy x,y & galaxy x,y
any Nl No: 2Nl(No-l) 3Nl(No-l) 2+2Nl(No-l) 2+3Nl(No-l)
double 1 2 2 3 4 5
quad 1 4 6 9 8 11
(PG BII15+080)
double 6 2 12 18 14 20
(B0957+561)
quad 4 4 24 36 26 38
(MG J0414+0534)

I No. of constraints on deflector model when using specified modeling constraints I

Table 6.1: The number of constraints on the deflector model when the specified type of
constraints are used. These are given for lens systems with various numbers of source
objects Nl and with various numbers of images No of each source. In parentheses are
names of lens systems that fall within these classes. (B0957+561: Garrett et ale 1994)

in the observed flux in one image corresponding to a flux minimum while the flux

in another image corresponds to a flux maximum. Thirdly, the positions may be

so much better constrained than the fluxes that it is expected that the fluxes have

little contribution to the chi-squared; this is the case for the for VLBA observation

of MG J0414+0534 described in this thesis.

One may also use direct observation of the deflector in modeling the deflector:

x-position, y-position, velocity dispersion, ellipticity of isophotes, orientation, etc.

However, instead of using the luminous matter to construct a model of the deflector's

mass, one would prefer to constrain the deflector's mass based on direct gravitational

effects - and then compare with the observed properties of the luminous matter.

Yet in a case where there is too little information in the lens images, and where a

deflector model is needed to calculate a time delay to compare with an observed time

delay, such information will be used. However for MG J0414+0534, where the images

positions have errors of well under a milliarcsecond (chapter 3 of this thesis) and the

galaxy position has 50 mas errors (Falco et ale 1997) we chose not the use the galaxy

position as a constraint.

The very simplest deflector models have at minimum five parameters: x- and y-
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position of the deflector, the strength of the lens, the amount of ellipticity or shear,

and the orientation of the ellipticity or shear. (The strength of the lens is variously

specified by Einstein ring radius, deflector mass, or velocity dispersion.) One can see

(table 6.1) that for a simple double lens one is forced to use constraints from direct

observation of a luminous deflector even to attempt to model the system. For a quad

lens, if one neither trusts the flux measurements nor has observations of the deflector

then there are barely enough constraints (six) for a simple model (five parameters).

So one must use flux or deflector positions if one wants to consider more complicated

models.

For lenses that have multiple background objects, such as knots in a jet, the

number of available constraints is much larger, and one can hope to learn more about

the deflector's mass distribution.

6.2 Taylor-expanded multipole model: An expan-

sion in terms expected to be of decreasing sig-

nificance

6.2.1 Motivation

One way to model the deflector potential is to use a physically motivated potential

shape that has no more free parameters than observational constraints. A different

approach, used here, is to tailor the model choice to be sensitive to what can be

learned from the gravitational lens, rather than to what one would wish a priori to

learn.

The deflections and magnifications in a gravitational lens system provide con-

straints on the gradient and higher derivatives of the lens potential only at the lo-

cations of the lensed images. In other words, there are constraints on V<I>(T) and

8i8j<I>(T) only at those locations r where there is flux. One may wish to know the

behavior of the potential at the center of the mass distribution, but there are no
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constraints there - except perhaps for some limits from the absence of additional

images above a certain flux level. One may wish to know the behavior of the potential

at the very far edges of the deflector galaxy. However, there is only information on

the behavior of the potential at the locations of the lensed images.

For quad lenses, or for Einstein rings, all the lensed flux lies roughly equidistant

from the center of the deflector. For MG J0414+0534 all the VLBA components lie

within :1:0.23arcsec of a ring of radius 1.16 arcsec around the measured galaxy position

of Falco et at. (1997). Letting r equal the radial distance to each image and letting

b be this ring radius, then Irbb I < 0.20 for all the images of MG J0414+0534. For

such a system, Taylor-expanding the radial dependence of the potential in powers

of Irbb I is a natural choice. Successive terms become successively less important:

I rbb 1
3 < 1% for all the images of MG J0414+0534. This expansion was suggested by

Kochanek (1991).

Since the lens potential is a function of both angular location and radial location,

(r, ()), some way of choosing the important contributions to the angular dependencies

must be selected. The 2-D Poisson equation is separable, leading to the multipole

expansion, so a multipole expansion in angle is used. This separability allows one

to relate the multipole components of the potential term by term to the correspond-

ing multipole components of the mass distribution, which is convenient for gaining

physical insight into the deflector system. The assumption is made that the mass

distribution varies smoothly with angle so the higher order angular multipole terms

may be neglected.

6.2.2 Using a multipole expansion in angle to solve the 2-D

Poisson equation

The 2-D lens potential, ~(f), is related to the surface mass density of the deflector,

a(f), by a two dimensional Poisson equation

(6.1)
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where O"crit is constant for any particular lens, and where r is a two-dimensional

angular vector, (see chapter 4).

In the case of the three dimensional Poisson equation it is useful, and standard,

to expand the potential field (the left-hand side of the equation) and the source,
term (the right-hand side of the equation) in terms of a complete set of orthonormal

basis functions which make the Poisson equation separable. This is the multipole

expansion. See, for example, Jackson (1975) chapter 3 for electrostatics or Binney &

Tremaine (1987) section 2.4 for the Newtonian gravitational field. The same method

is readily, and even more simply, used in the two dimensional case.

To find the basis functions in which the Poisson equation is separable, one attempts

to find solutions to the homogenous Poisson equation \1~f(f) = 0 which are separable,

f(r,O) = R(r)8(O). In (r,O) coordinates the Poisson equation is

{
82 1 8 1 82 }

o = 8r2 + -:;:8r + r2802 R(r)8(O).

Separating the variables,

(6.2)

(6.3)

where the constant J-L has been introduced for convenience, and where different val-

ues of J-L will correspond to different solutions of the Poisson equation. For J-L < 0,

letting J-L = -m,2, it is seen that ::28(0) = m'28(O) requiring that 8(0) be a linear

combination of cosh(m'O) and sinh(m'O). Only solutions on a circle are of interest,

for which 8(0) = 8(0 +27r),so these hyperbolic solutions may be ignored. For J-L ~ 0

we may let J-L = m2, so that ::28(0) = -m28(O). Thus 8(0) is a linear combination

of cos mO and sin mO. We note in passing that the left-hand side of equation 6.3 can

be solved to find the solutions R(r) for each angular function solution.

These angular solutions form a complete and orthonormal set of basis functions

over the interval from 0 to 27r. The orthonormality relations are, for m and n positive
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1

o

o

integers:

{2-rr dB sin mB sin nB
io Vi Vi

_ {2-rr dB cos mB cos nB
io Vi Vi

!n
2-rr 1 1
dB--

o V'IiV'Ii
(2-rr dB cos mB sin nB

io Vi Vi

!n2-rr 1 cos mB
dB----

o V'Ii Vi

!n
2-rr 1 sin mBo - d()-----

o V'Ii Vi

for m and n positive integers

for m and n positive integers

for m and n positive integers

for m a positive integer

for m a positive integer. (6.4)

The completeness relation is,

o2-rr(B - B') = lim {_1 1_ + t {cos mB cos mB' + sin mB sin mB/}} (6.5)
N -+00 V'Ii V'Ii m=l Vi Vi Vi Vi

where 02-rr(B - B') is defined as having the following behavior when integrated against

any sufficiently smooth function f (B), namely, f (B') = fg-rr dB f (B) 02-rr(B - B').

Any function of rand B may be re-written in terms of these angular basis functions,

with coefficients which are functions of r only,

00

f(r, B) = fo(r) + L {!mc(r) cosmB + !ms(r) sin mB},
m=l

and where the coefficient functions are related to f(r, B) by,

(6.6)

!o(r) 1 l~- dB f(r, B)
27r 0

fmc(r) ll~- dBf(r, B) cos mB
7r 0

fms(r) ll~- - dB f(r, B) sin mB. (6.7)
7r 0

As a consequence of the separability of the Poisson equation, the Poisson equation

must hold term by term in the multipole expansion. As can be seen, the Laplacian
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operator does not mix terms in the multipole expansion.

Thus each multipole term in the solution of the inhomogenous Poisson equation

\72 f(r, B) = g(r, B) depends only on the corresponding multipole term in the source

term of the Poisson equation:

{::2 + ~:r - ~:}!mc(r) - 9mc(r)

{~+~~_m2}fms(r) _ ()ar2 r ar r2 gms r

{::2 + ~~ } !o(r) = 9o(r) (6.9)

The solutions to the homogenous Poisson equation \72 f(r, B) = a may readily be

found in the multipole expansion from equations 6.9, setting 9 to zero:

fme(r) - Amerm + Bmer-m

fms(r) - Amsrm + Bmsr-m

fo(r) Co+ Cllnr (6.10)

The integration constants Ame, Bme, Ams, Bms, Co,and Cl, are determined by the

boundary conditions.

Since Poisson's equation is linear, we may solve \7~<I>(T) = 2CT(~, by summing upCTent

contributions to <I> from matter on circular rings - actually matter on cylindrical

shells that, projected along the line of site, form circular rings. For the ring at radius

(6.11)
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Angular multipole expansions are done both of <I>(ro; r, B) and of a(ro, B). Each mul-

tipole component of <I> depends only on the corresponding multipole component of

a as shown above. Everywhere except at the ring r = ro, the potential <I>(ro; r, B)
satisfies the homogenous, free-space, Poisson equation, with one set of coefficients

Arne, Erne, Arns, Erns, Co, and CI, outside the ring, and another set of coefficients

inside the ring. The boundary conditions are used to determine the coefficients for

each multipole moment from the corresponding multipole moment of cr(ro, B). In par-

ticular one requires that far from the mass distribution the potential must behave as

that of a point mass, limr-+oo cI>(ro; r, B) <X In r. Since there is no matter at the origin,

it is required that <I> (ro; r, B) be well behaved at the origin, that is that it must be

continuous and have a continuous first derivative. The divergence theorem is used to

relate the discontinuity in the derivative at the circular shell to the mass distribution

on the shell. It is found that for r > ro the multipole components of <I>(ro; r, B) are

(6.12)

and for r< ro

(6.13)

The contribution of all matter located on all the rings may be integrated to give the

complete solution to the 2-D Poisson equation.

The solution to the 2-D Poisson equation, for the multipole components of <I>(r, B)
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in terms of the multipole components of a(r, B) is:

(6.14)

This is the same as in Kochanek (1991) but with a different normalization convention.

6.2.3 Physical significance of the multipole components of

the surface mass density

The multipole components of the 2-D lensing potential have been related to the

multipole components of the projected surface mass distribution of the deflector. It

was claimed that this allows physical insight into the shape of the mass distribution

generating the potential. In this section the physical significances of the surface mass

density's multipole components are shown.

For thinking about the physical meanings of the dipole and higher moments in

the multipole expansion, it is convenient to write them in vector or vector-like form.

For any function f(r, B) for which a multipole expansion has been made, define

Then

and

f:(r) = xfmc(r) + yfms(r).

00

f (r, B) = fo (r) + f . f~ (r) + L (x cos mB + y sin mB) . f: (r )
m=2

... 112
11"fm(r) = - dB(x cos mB + y sin mB)f(r, B).

7r 0

(6.15)

(6.16)

(6.17)

Note that the dipole f~ (r) is a genuine vector as defined by its behavior under rotation.

The higher multipole moments, for m ~ 2, are not genuine vectors, not behaving as

150



vectors do under rotation. It only takes a rotation by ;: to map !:(r) back onto itself,

rather than the 27rrotation needed by a true vector. We note in passing that the mth

multipole moment for m ~ 2 may be written as a traceless symmetric 2-dimensional

rank m tensor.

Each of these multipole components instead of being described by its sine and

cosine components may alternately be described by an angle 'lj;f,m and an amplitude

!m (r ), defined so that

!mc(r) - !m(r) cosm'lj;f,m(r)

!ms(r) - !m(r) sin m'lj;f,m(r),

and consequently,

00

f(r, B) = fo(r) + L !m(r) cosm(B - 'lj;f,m(r)).
m=l

Notice that in general the angle of a multipole moment may vary with radius.

The multipole expansion of the deflector's surface mass density is therefore

00

o-(r, B) = o-o(r) + L lTm(r) . (i cosmB + y sin mB),
m=l

where the multipole components are

o-o(r) - ~ (21r dBo-(r, B)
27rJo

lTm(r) - .!. (21r dB(xcosmB + ysin mB)o-(r, 0).
7r Jo

(6.18)

(6.19)

(6.20)

(6.21)

Note that each multipole component, o-o(r) and lTm(r), at radius r depends only on

the surface mass in an infinitesimally narrow annulus of radius r centered at the

origin. The multipole components are zero at radius r if there is no mass in that

annulus. If there is mass in the annulus, then the multipole components describe the

distribution of the mass within that annulus.

The monopole moment o-o(r) is the average surface mass density in the infinites-

151



imally narrow circular annulus at a radius r. Another way of saying the same thing

is that the monopole moment is the angularly averaged surface mass density.

(6.22)

The dipole moment vector ill (r) gives the location of the center of mass of a

narrow annulus of matter near radius r. This center of mass is

(6.23)

so that
1_
-Xcomr ring at r

1il1(r)
2 O"o(r)"

(6.24)

Note that since the surface mass density must be non-negative, the center of mass of

the ring cannot fall outside of the ring; therefore from equation 6.24 the amplitude of

the dipole moment may not be more than twice the average surface mass density of

the ring. Also of interest is that the center of mass of all the matter within distance

r of the origin is given by the integral of the dipole moment,

2r O"average
:5r

(6.25)

where O"average is the average surface mass density of the matter within distance r of
:5r

the origin.

While the monopole term O"o(r) gives the average surface mass density in an annu-

lus at radius r, the m ~ 1 multi pole terms give the distribution of matter around that

annulus. The dipole il1(r) is related to an offset of matter from the origin, as seen

above. The quadrupole moment, m = 2 is caused by an elongation of the mass dis-

tribution. A triangularity or wedge-shaped-ness would give rise to a non-zero m = 3

multipole moment. Boxiness or diskiness of the mass distribution would give rise to

an m = 4 multipole moment. A change of angle with radius, "pq,m(r) changing with

r, can be caused by "twisted" isodensity contours. In particular, a rank m multipole
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moment with orientation angle 'l/Ju,m(r), as defined in equation 6.18, could be caused

by an excess of mass at radius r in any of the m equally spaced directions 'l/Ju,m +n;: ,
where n = 0,1, ... , m - 1. Equivalently it could be caused by a deficit of mass in the

m "opposite" directions 'l/Ju,m + (n +~);:. Therefore knowing the multipole moments

of the surface mass density allows one to have an intuitive picture of where the mass

is that is causing the multipole moment.

Since the surface mass density of the deflector is non-negative, a(r, B) > 0,

there is an upper limit on the amplitude of 8m(r). From equations 6.21 and 6.15,

amc(r) = ~fi1rdBO"(r,B)cosmB. Therefore 100mc(r)I S; ~fi1rdBIO"(r,B)"cosmBI S;

~ fi1r dB O"(r, B) = 20"o(r), using equation 6.21 in the last step. This may be done (for

each r) in a coordinate system chosen so that O"ms(r) is zero and O"mc(r) = 18m(r)l.

Therefore we have shown that

(6.26)

The amplitude of the mth multipole moment of the surface mass density (m ~ 1) is

less than twice the angularly averaged surface mass density. The multipole moment

8m(r) attains its maximum amplitude if all the mass in the annulus at radius r is

located at a single angle 'l/Ju,m(r) or is divided (not necessarily evenly) between the

equally spaced angles 'l/Ju,m(r) + n;: where n = 0, 1, ... , m - 1. If some fraction p

(0 S; p S; 1) of the mass in the ring is in point perturbers at these angles and the rest

is evenly distributed around the ring, then

(6.27)

If the perturbers are non-pointlike, then the amplitude of 8m(r) is lower.
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6.2.4 Taylor expansion of the radial dependencies of the co-

efficients of the multipole terms

For modeling purposes one may chose to limit oneself to using only the lower multipole

components of the mass distribution, as these are sufficient to describe fairly well a

smoothly varying mass distribution. From equation 6.14 it is seen that this is the

same as limiting oneself to using only the lower multipole components of the 2-D lens

potential.

However, the multipole components have coefficients that are arbitrary functions

of radius: <I>o(r) and <j;m(r). The relevant part of the radial dependence must be

parameterized in just a few parameters in order to be suitable for use in lens modeling.

The lens flux gives constraints on V <I> and 8i8j<I> only at the locations of the flux. For

Einstein rings and quad lenses this flux is located near the lens system's characteristic

ring radius. Since all the constraints on <I> are near the ring radius, Kochanek (1991)

suggests Taylor expanding about the ring radius.

To Taylor expand around the Einstein ring radius, one must first define what

is meant by the ring radius for a non-circularly-symmetric system. First define an

Einstein "curve" for a non-circularly-symmetric system as a closed contour, all of the

points of which map back to the same point in the source plane. If there is such a

closed curve f('\), such that S(f(A)) = So = constant for all '\, then by the divergence

theorem, the average surface mass density in the region bounded by the closed curve

is the critical surface mass density O"crit. For a circularly symmetric system, this

Einstein "curve" is a circle, and the Einstein ring radius is simply its radius, b, which

satisfies the relation b = dd <I>(r) I . For a non-circularly-symmetric system, the ring
r r=b

radius may be defined using the behavior of the monopole term of the potential,

b = t <I>O(r)L=b' It can be shown that the average surface mass density, due to all the

multipole components, within this radius b is simply the critical surface mass density

O"crit - the same average mass density as within the "true" Einstein curve. If the

surface mass density falls with radius, then the "true" Einstein curve will lie in some

places at r < b and at other places at r > b.
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For purposes of constructing a model, we will Taylor expand each multipole coef-

ficient, 4>o(r) and ~m(r) around the Einstein ring radius b, and use as the model the

most significant terms in the expansion in powers of p = (r;;b). The coefficients of

these terms will be the model parameters. Therefore we must know how these coef-

ficients relate to the underlying mass distribution, so that we know what the lensing

says about the mass distribution. This will be worked out below. First we will name

the terms in the expansion.

The potential, as written in a multipole expansion, is

00

4>(r, 0) = 4>o(r) + L ~m(r) . (x cos me + y sin me).
m=l

(6.28)

For each term in the multipole expansion, the radial dependences of ~m(r) and 4>o(r)

are Taylor expanded. The potential is therefore a sum of terms, each term specified

by m and t, where m identifies which multipole component and t identifies which

term in the Taylor expansion.

00 00

<I>(r,e) = L L<I>mt(r,0)
m=O t=O

The terms in the expansion are

<pQO.(r,O) - :, {bt :t <po(r)lr=J pt

<PQ~l(r,O) - :, {bt :t<Pm(r{=J /. (x cosmO+ ysinmO)

(6.29)

(6.30)

(6.31)

The 0- and r-dependence of each term 4>mt(r, e) is shown explicitly in equations 6.30

and 6.31, since p = (r;;b). The bt ::t ~m(r) L=b factor is just a two-component constant

with no r- or O-dependence. Likewise, the bt dd
t
t <I>o(r)I factor is a scalar constant

r r=b
with no r- or O-dependence. These constants are used as parameters of a potential

model. These parameters will be related to the underlying mass distribution.

The expressions for the multipole moments of the potential as functions of the

multipole components of the surface mass density are give in equation 6.14. The
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derivatives as evaluated at the ring radius are:

constant

- 1, by the definition of the ring radius

_ -1+ 20"o(b)
0"crit

_ 2 - 20"o(b) + 2 b~ (O"o(r)) I
O"crit dr O"crit r=b

for general t, t ~ 2

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

and

{Am + Em}

{m(Am - Em)}

(6.37)

(6.38)

+2am(b) _ 2 b~ am(r) I} (6.40)
O"crit dr O"crit r=b

for general m and t, for m ~ 1 and t ~ 2 (6.41)

(6.42)bm-2 00 - ( ')

A- - --1 ,(l-m)d ,O"m rm- r r .
m b O"crit

The quantity Am is attributable to the mth mass multipole of the mass exterior

to the ring radius,

The quantity Em is attributable to the mass interior to the ring radius,

(6.43)
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The reason for the special treatment in naming the coefficients of the constant and

linear terms in the expansion of the m ~ 1 multipole, Msum and Mdiff, is clear since
m m

they are related to the sum and difference respectively of the effects of the mass

located exterior to the ring radius and the mass located interior to the ring radius.

These parameters b, It for t ~ 2, Msum = xMsum + yMsum = Msum (x cos m'lj;sum +
m me ms m m

y sin m'l/Jsum) for m ~ 1, Mdiff = XMdiff + yMdiff = Mdiff(X cos m'lj;diff + y sin m'lj;diff) for
m m me ms m m m

m ~ 1, and Fmt = xFmtc + yFmts = Fmt(x cos m'lj;Pmt + y sin m'lj;Pmt) for m ~ 1

and t ~ 2, will be used as parameters in the model. The multipole parameters can

be specified either as cosine and sine components, for example Fmtc and Fmts, or as

amplitude and angle, for example Fmt and 'lj;Pmt' The cosine and sine parameterization

is more robustly handled by minimization algorithms, since the potential is linear in

these parameters and thus the chi-squared is roughly quadratic in them, at least far

from the minimum. However the parameter error estimates on the amplitude-angle

parameterization are more useful for insight into the location of the mass, since the

amplitude is affected by the mass sheet degeneracy (see below) while the angle is not

affected.

Wri tten in terms of these parameters, the potential is,

(6.44)
1

b2 <P(r, B) 1 2 ~ 1 t
const + p+ -2P 12 +0 ,P It

t=3 t.

-f ({Msum +pmMdiff+ f 1,ptFmt}' (xcosmB+YSinmB)).
m=l m m t=2 t.

The constant term in the expansion of the monopole can be ignored, as it just adds

an overall constant level to the potential. The linear term in the expansion of the

monopole sets the ring radius and does not have any other adjustable coefficient.

Two more model parameters which are hidden in this way of writing the potential

are 9x and 9y, the location of the origin. This origin should be centered on the

deflector in order for the multipole components of the surface mass density to be

readily understandable; section 6.2.5 below shows how to enforce this when fitting

the model to a lens.
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6.2.5 Effects of lensing degeneracies on the multipole-Taylor

model

Certain parameters in this Multipole- Taylor expansion, equation 6.44, must be fixed

due to degeneracies between the parameters. When a degenerate parameter is changed

in value, the other parameters with which it is degenerate can be adjusted in com-

pensation so that there is no change in the model predictions for the lensed emission.

Therefore such degeneracies must be removed before a minimization algorithm can

minimize a goodness-of-fit measure.

Special attention is needed for the t = 0 and t = 1 parts of the dipole term,

:2 iI>r;,Ol + b~iI>r;,'l1 - {-M~~l - pM~~J (i: cos 0 + ysin 0)
- {-~Al + (p-l)B1}. (i:cosO + ysinO). (6.45)

B1 is the contribution to the dipole term of the matter interior to the ring radius.

By equations 6.43 and 6.25, this is simply the center-of-mass of the matter interior

to the Einstein ring radius,

B... 1 lob ,2d , ... (~) I_
I = -- r r 0"1 r = -Xcom •b30" crit 0 b matter within ring

(6.46)

It is desirable for the center of mass of the matter interior to the ring to be at the

origin. This is done by fixing the two parameters B1 = 0, and allowing the location

of the origin (gx, and gy) to be fitted in the modeling. Note that one may fit for

either B1 or for the deflector location (gx, gy), but not for both simultaneously, due

to a degeneracy.

Once B1 has been fixed to zero,

1 1
b2 <Pm=1 + b2 <Pm=1t=o t=l

(6.47)

where Al is the contribution to the dipole of mass exterior to the ring. This is precisely

the prismatic degeneracy, one of several transformations to the potential that have no
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effect on the relative locations and brightnesses of the lensed flux. (These degeneracies

were pointed out by Falco, Gorenstein, and Shapiro (Falco et ai. 1985; Gorenstein

et ai. 1988) and are discussed in section 4.1.6 of this thesis.) This term may be ignored

without affecting image locations, image fluxes, or the time delay. Therefore, <1> m=l
t=o

and <1>m=l will be fixed to zero in the deflector model.
t=l

The other degeneracy to be considered is the mass sheet degeneracy. The trans-

formation from the true deflector potential <1> to an alternate model potential <1>',

(6.48)

leaves the image locations and fluxes unchanged. This is equivalent to reducing the

surface mass density by multiplying it by a factor (1 - K) and adding in a sheet of

uniform surface mass density Kacrit,

a(T) -7 a'(T) = (1 - K) a(T) + Kacrit. (6.49)

Adding such a mass sheet to the true deflector potential <1> and scaling the potential,

as in equation 6.48, gives an expression for this model potential <1>' that predicts the

same image locations and fluxes as does the true potential <1>.

b~ if>(T) -----+ ~ if>' (T) { (1 - I\:)constant + ~I\:} +p + ~p2 J(1 - l\:~f2 + I\:~

~ oo~~. ~
00 1

+L ,pt (1 - K) It
t=3 t. '----v-----'

f~
00

- L (1 - K)Msum .(x cos m() + y sin m())
m=2~

M~um
m

00

- L pm (1 - K)Mdiff .(x cos m() + y sin m())
m=2 ~

M~iff
m

00 00 1 -..- L L ,pt (1 - K)Fmt .(x cos m() + y sin m()) (6.50)
m=1't=2t. ~

i:nt
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The constant offset has been altered, but this is immaterial since adding a con-

stant to the potential has no effect. The transformation must leave the ring radius

unchanged, therefore the coefficient of p in the monopole part of the potential is un-

changed. The quadratic monopole term, which depends on the surface mass density

at the ring radius, f2 = -1+ 2Uo~b), has been changed,
Ucnt

(6.51 )

because the surface mass density at the ring radius has been changed. All the coef-

ficients of the other terms in the model, ft>3, Msum, Mdiff, and Fmf7 have been scaled
- m m

by a factor 1-~. These simultaneous adjustments of f2 and all the ft>3, Msum, Mdiff,
- m m

and Fmt parameters leave the model predictions unchanged.

This factor 1 - ~ is unconstrainable in lens modeling. Thus one of the degenerate

parameters must be fixed to some value, rather than being fitted. The parameter

f~ will be fixed, and the value to which it is fixed may be incorrect. (Fixing f~ is

equivalent to fixing the surface mass density at the ring radius to the possibly incorrect

value a~(b) = ~acrit(l + f~).) Therefore all the fitted values of the other parameters

will be wrong by a factor (1 - ~) = 11=ff~ = (1 - u~(~»)/(l - uo(~»). For example,
2 Ucnt Ucnt

the fitted value F:nt will be related to the true value Fmt by F:nt = (1 - ~)Fmt. See

table 6.2 where the value of 1 - ~ is tabulated for several possible radial profiles for

the "true" and the model deflector potentials.

Most simple is to fix f~ = 0, which is the value appropriate for the radial profile

of a singular isothermal sphere. Then the model to be fitted is the model with Msum ,
m=l

Mdiff , f~, and the additive constant set to zero:
m=l

1 '(;;'\ ~ 1 tl'b2 <P r J - p + ~ t! P t

-f {M:um + pmM~iff} . (x cos m() + fJ sin mO)
m=2 m m

-f f ~pt F:nt . (x cos mO + fJ sin mO).
m=l t=2 t.
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Scaling factor (1 - K,)
Value to which (J~(b) and I~ are fixed for modeling
point mass: singular isother- mass sheet:

mal sphere:
(J~(b) = 0 (J~(b) = (Jcrit/2 (J~(b) = (Jcrit

True deflector monopole f' - -1 I~ = 0 I~ = 12-

point mass: <Po(r) = b2lnr
12 = -1, (Jo(b) = a 1 1/2 0

singular isothermal sphere:
<Po(r) = br 2 1 0
12 = 0, (Jo(b) = (Jcrit/2

mass sheet: <Po(r) = !r2

12 = 1, (Jo(b) = (Jcrit 00 00 1

power law: <po(r) = ~: (~)2a

a -+ 0, point mass
a = 1/2, isothermal 2 1 0

2(I-a) 2(I-a) 2(1-0)
a -+ 1, mass sheet

12 = 2a - 1, (Jo(b) = a(Jcrit
general case: 12, (Jo(b) 2 1 0

2(1-~) 2(1-~) 2(1-~)
UCrlt 0'crit Ucrit

Table 6.2: Scaling factors due to the interaction of the mass sheet degeneracy with a
mismatch between true and model monopole profiles. This shows the factor 1 - K, by
which the Multipole- Taylor parameters It>3, Msum, Mdiff, and Fmt are scaled, if there

- m m

is a mismatch between the actual value of the surface mass density at the location of
the ring radius, (Jo(b), and the value to which this is fixed for the purpose of modeling,
(J~(b) .
The column at left lists several possibilities for the true deflector potential monopole,
<Po(r), with the corresponding true values of the surface mass density at the ring
radius (Jo(r) and of the quadratic coefficient 12. The three columns at right give
the scaling factors (1 - K,) that there will be if these potentials are modeled using,
respectively, a point mass monopole profile, a singular isothermal sphere monopole
profile, and (as a limiting case) a mass sheet with critical surface mass density.
For lenses in which the t ~ 3 terms do little to constrain the radial dependence
of the potential, there is a near degeneracy between all model monopole profiles,
which affects the fitted amplitudes of the m ~ 1 multipoles and the time delay. For
example, in such a case, all multipole amplitudes are twice as large when using a
point mass profile for the model than when using a singular isothermal sphere profile
(Kochanek 1991), and the model predicted time delay is twice as long - whatever
the actual radial profile of the potential.
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Note that this resealing does not affect the angles of the multipole coefficients.

However it does make it more difficult to understand the amplitudes of the m ~ 1

multipole components. The relationship of these resealed parameters to the actual

surface mass distribution 0" and the true potential <P of the deflector is:

f~ - 1 - b!£ In (1 _ O"o(r))
dr O"crit r=b

f:~3 (1 - ~)ft~3
1 dt

(1 -~) b2bt drt <Po(r) for general t, t ~ 3
r=b

(6.53)

(6.54)

and

..... ,
(1 - ~)Msum = (1 - ~) {Am + Bm} (6.55)Msum

m~2 m~2
..... ,

(1 - ~)mMdiff= (1 - ~) {m(Am - Bm)} (6.56)mMdiff -
m~2 m~2

....., {~ ~ 20'm(b)} (6.57)Fm - +(1 -~) m(m -l)Am - m(-m - l)Bm-
t=2 O"crit

.....,
(1 - ,,) { m(m - l)(m - 2)AmFm

t=3

-m(-m -l)(-m - 2)Bm
+20'm(b) _ 2 ~ O'm(b) } (6.58)

O"crit dE O"crit r=b
.....,

(1 - ~)Fm~l for general m and t, for m ~ 1 and t ~ 2Fm>l -
t~ t~2

1 t
dt

~ I (6.59)- -(1 -~) b2 b drt <pm(r) r=b

6.2.6 Each term in the multipole-Taylor model discussed

For the purposes of lens modeling we need expressions for the firstand second1 deriva-
..... +- .....

tives of the model potential, V r<P' and VrV r<P'. Thus for each term <P~t(r, 0) the first

1 It is convenient to use a dyadic notation. (See, e.g., Goldstein (1980) chapter 5.) The antecedent
vector of a dyad rf will be written as r and the consequent as r as a reminder that this is a dyad.
However when the antecedent and the consequent are unit vectors, the dyad will be written, for
example, as ff.
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and second derivatives must be found. The firstand second derivatives will be written
in terms of f, 0, ff, 00, and (fO + Of). To be explicit, their components in Cartesian
coordinates are shown.

( COSO)f - x cos 0 + 17 sin 0 = .
sInO

0 ( -sino)- -x sin 0 + 17 cos ()=
cosO

Vr - (~:)
( cos20 coso sin0 )ff -

cos 0 sin 0 sin2 ()

00 ( sin20 - cosOsin 0 )
-

- cosOsinO cos2O

fO + Of
( -2cosOsinO

(cos20 - sin20) )
-

(cos20 - sin2 0) 2 cos Osin 0

( a' a' )

+- -0 8x2 8x8y\1/Vr -
82 82

8y8x 8y2

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

is:

The constant term in the Taylor expansion of the monopole term of the potential

1
b2 <p~=00(r,0) = constant'

I+- -0, ( )b2 b\1rb\1r<P't:=o0 r,O = 0

(6.67)

(6.68)

(6.69)

This is just a constant offset in the potential. It may be ignored, since only potential
differences are of importance.
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The linear term in the Taylor expansion of the monopole term of the potential is:

:2 <J>~10(r,0) = p (6.70)

(6.71)

(6.72)
b
I2bVTbVT<I>~=o(r, 0) = ee {_1_}

t=l 1+ P

This term in the expansion has no adjustable parameters besides the Einstein ring

radius itself. Therefore this term sets the ring radius, b. The ring radius is the radius

within which the average surface mass equals the critical surface mass density acrit,

therefore this term is sensitive to the average mass density within the ring radius.

This term causes image displacements only in the radial direction. It causes image

magnification only in the tangential direction. This term, by itself, is the singular

isothermal sphere potential, and if it were the only non-zero term would cause infinite

tangential magnification at the ring radius p = o.
The higher terms in the Taylor expansion of the monopole term of the potential

are:
1, ( ) It,

b2<I>m=o r,O = -tIP it
t~2 •

(6.73)

(6.74)

(6.75)

While these expressions are valid for t ~ 2, the quadratic t = 2 term in the expansion

is unconstrainable due to the mass-sheet degeneracy, as described above. The coeffi-

cient of this quadratic m = 0, t = 2 term depends only on the surface mass density at

the ring radius. (See equation 6.34.) Accordingly, the surface mass density at the ring

radius is not directly constrained by lens modeling. This is disappointing. Different

radial profiles, with the same ring radius, could be distinguished by the surface mass

density at the ring radius - were this information available through lens modeling.

The first monopole term that does give information on the radial profile, is the cubic
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term, t = 3, which actually becomes easier to interpret given the mass-sheet degener-

acy. (See equations 6.35 and 6.53.) This term depends only on how the surface mass

density near the Einstein ring radius falls with radius, being more sensitive to radial

falloff when the surface mass density at the ring radius, O'o(b), is close to the critical

surface mass density O'crit than when O'o(b) is much less than O'crit:

f' 1 d ( 0'0 (r )) I3 = ~ 13 = 1- b-d In 1- -- .
2(1 -) r O"crit_b

O"crit r-

(6.76)

This term in the potential is proportional to p3 = (rbb) 3, which is less than 1% for

each of the images of the quad lens MG J0414+0534, and is expected to be similarly

small for other quad lenses and rings, therefore the radial profile of the deflector mass

distribution is expected to be quite difficult to constrain for such lenses. If the f~

parameter can be constrained, then one can draw conclusions about the radial profile:

The f~ parameter is ~ 1 for surface mass densities that do not increase with radius.

For a point mass, f~ = 1. For a singular isothermal sphere, f~ = o. For a power

law potential <I>o(r) = ;: (~~)O: then f~ = 1 - 2a. Since a ranges from 0 for a point

mass, through a = 1/2 for an isothermal model, to a = 1 for a mass sheet, then

-1 ~ f~ ~ 1for such a model. For a potential with a core radius, or for any mass

distribution in which O'o(r) drops abruptly near the ring radius, f~ can be even more

negative.

Note that all the monopole terms in the expansion can cause only radial displace-

ments of the images, and not tangential displacements, however for t 2:: 2 the radial

displacements are small for small p. These higher monopole terms cause radial mag-

nification of images, which for t 2:: 3 are small for small p. These higher monopole

terms produce even less tangential magnification than they do radial magnification.
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The constant t = 0 piece in the Taylor expansion of the dipole and higher multipole

terms m ~ 1 is:

:2 <I>~}.1(r, 0) = {-I}{M;:;> cos mO + M;:o sin mO} (6.77)

o {~} {M:umsinmO - M:um cosmO}
1+ P me ms

(6.78)

(6.79)

These formulas are valid for m ~ 1, but setting the m = 1, t = 1 and m = 1,

t = 0 terms to zero is used to force the center-of-mass of the matter inside the

ring radius to be at the origin, and to avoid the prismatic degeneracy. Note that

M:um cos mO + M:um sin mO can also be written in terms of the amplitude and angle of
me ms

the multipole moment as M:um cos m(O - "psum), where the angle is unaffected by the
m m

mass sheet degeneracy. Note also that M:um sin mO - M:um cos mO = M:um sin m(O -
me ms m

This first t o term of each multipole component results in only tangential,

not radial, image displacements, and these displacements can be of significant size,

even for small p. Mass perturbations, whether interior or exterior. to the ring radius,

contribute in the same sense to the tangential displacements, since they contribute in

the same sense to Msum. In particular, perturbing masses, interior or exterior to the
m

ring, located at angles "psum +n 211" for n = 0, ... , m-1, could produce such a multipole
m m

term. For the mth multipole, the displacements of the image from the source, V<P,
are displacements away from the angles "psum + n;;; for n = 0, ... , m - 1, the angles

m

at which the perturbing mass may be located.
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t=O

m=O
monopole

Degenerate
Constant offset to po-
tential

m=l
dipole

Degenerate
Fixes location of cen-
ter of mass of mass
interior to ring to be
at the origin. (Loca-
tion of origin is then al-
lowed to vary.) Pris-
matic degeneracy.

m 2: 2
quadrupole, octupole,

Multi pole-Constant
Sum of exterior and in-
terior contributions to
the multipole moment
of the mass
distribution.

t=l

t=2

Monopole- Linear
Sets Einstein ring ra-
dius. Sensitive to total
mass within ring.

Degenerate
Mass sheet degeneracy.
Surface mass density
at ring unconstrainable

Multipole-Linear
Difference of exterior
and interior contribu-
tions to the multipole
moment of the mass
distribution.

Multipole- Taylor
Some dependence on the behavior of the mul-
tip ole moment of the matter near the ring ra-
dius. Must detangle effects of interior and ex-
terior mass.

t 2: 3 Monopole- Taylor
For t = 3 gives the fall-
off of surface mass den-
sity with radius, evalu-
ated at the ring radius.

Table 6.3: Physical significance of terms in the Multipole- Taylor expansion. Certain
terms are unconstrainable due to degeneracies as explained in the text. Five functional
forms are needed to represent all the other terms in the expansion. These five forms
are all that need be coded into a lens modeling program. They can be used with m
and t fixed to the appropriate values.
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The linear t = 1 part in the Taylor expansion of the dipole and higher multipole

terms m ~ 1 is:

b12<I>~~1 (r, 0) = {-pm} {M~jff cos mO + M~iff sin mO}
t=l me ms

f {-m} {M~iff cosmO + M~iff sin mO}
me ms

+ 0 { pm
2

} {M~iff sin mO - M~iff cos mO}
1+ P me ms

(6.80)

(6.81)

(6.82)

These formula are valid for m ~ 1, but setting the m = 1, t = 1 and m = 1, t = 0

terms to zero is used to force the center-of-mass of the matter interior to the ring

radius to be at the origin, and to avoid the prismatic degeneracy.

This second, t = 1, term in each multipole component results in primarily radial,

not tangential image displacements, since p is small. The sense of the image displace-

ments V<I> is inward for 1Pdiff + (n - -41) 211" < 0 < 1Pdiff + (n - -41) 211", for n = 0, ... , m -1.
m m m m

That is, the sense of the image displacements changes sign every ~ radians around

the ring, and the image displacement is inward for 0 = 1Pdiff'
m

Mass perturbations interior and exterior to the ring radius contribute in opposite

sense to the radial displacements, since they contribute in the opposite sense to Mdiff.
m

In particular, perturbing mass exterior to the ring located at angles 1Pdiff + n 211" could
m m

produce such a multipole moment, or perturbing mass interior to the ring located at

angles 1Pdiff + (n + -21) 211" could produce such a multipole moment.
m m

Comparing the first two Taylor terms in the mth multipole, the tangential dis-

placements (t = 0) give the overall strength of the mth multipole component, while
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the direction of the radial displacements (t = 1) indicates whether the mass that is

driving this multipole component is interior or exterior to the ring.

Note that the radial displacement can be significant even when p is small, thus

the size of the radial displacement from multipole terms can be much larger than

the size of radial displacement from t ~ 3 monopole terms. This makes it hard to

constrain t ~ 3 monopole terms when the lens images sample only a few different

angular locations around the ring (such as for quad lenses); that is, it is difficult

to constrain the radial profile of the deflector angularly-averaged mass distribution.

Ring lenses may be able to better constrain the m ~ 2 multipole terms, to permit

the t ~ 3 monopole terms to be constrained.

The general term, applying to the quadratic and higher, t ~ 2, Taylor terms of

the dipole and higher, m ~ 1, multipole terms is:

b12<I>~~1(r,(}) = {_p:} {F:ntccosm(}+ F:ntssinm(}}
t~2 t. (6.83)

1 .... ,
b2 b\1 f<I>m~l (r, (})

t~2
{

p(t-l)}
- f - (t _ I)! {F:ntc cos m(}+ F:nts sin m(}}

+ 0 { ~ (1: P)} {F~tc sin mO - F~ts cos mO} (6.84)

1 ~ .... , )
b2 b\1 fb\1 f<I>m~l (r, (}

t~2

ff { - (:~-~)! } {F;'tc cos mO + F~ts sin mO}

+ 00 { - ~ (i:-~)2(t - (m2
- t)P)} {F~tc cos mO + F~ts sin mO}

+ (fO + Of) {~ (i:~)2(t+ (t - l)P)} {F~tc sin mO - F~ts cos mO} (6.85)

Note that image displacements caused by these terms are small for small expansion

parameter p.

As for the t = 0 and t = 1 terms, the angle 7/JFmt of the multipole moment can be
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related to the location of the mass excess that is causing such a multipole moment.

In particular, for t ::;m, a mass external to the ring radius, at any of the angles

'lfJFmt + n;:, for n = 0, ... , m - 1, could cause the multipole moment. For t > m, a

mass excess external to the ring does not affect this multipole moment. Alternately,

for all m and t, a mass excess internal to the ring at angle 'lfJdiff + n 211" for t even, or
m m

at 'lfJdiff + (n + -21) 211" for t odd, could drive such a multipole moment.
m m
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6.3 Modifications to the Taylor-expanded multi-

pole model

For the m ~ 1 multipole components, the first two terms, t = 0 and t = 1 in the Taylor

expansion constrain, respectively, the sum Msum and the difference Mdiff of effects due
m m

to mass perturbations exterior to and interior to the Einstein ring radius. If the lens

models are well enough constrained that both Msum and Mdiff are well constrained,
m m

the physical meaning of the model becomes clearer if Msum and Mdiff are replaced as
m m

model parameters by directly using Am = (Msum+Mdiff)/2 and Em = (Msum -Mdiff)/2.
m m m m

Recall that Am (equation 6.42) and Bm (equation 6.43) are the mth mass multipole

moments of the mass exterior to the ring radius and interior to the ring, respectively.

The mass interior to the ring radius contributes to the mth multipole moment

to all orders t in the Taylor expansion. The mass exterior to the ring contributes

to the mth multipole moment only to orders t ~ m in the Taylor expansion. See

equations 6.39 and 6.40 for the contribution of Am and Bm to Fmt. The contribution

of Am and Bm to the potential can be calculated exactly, and only the effect of the

mass near the ring radius be left to Taylor-expand.

When this is done, the potential may be written as:

1
b2 <I>(r, 0) =

1 2 ~ 1 tconst + p+ -p 12+ ~ ,P It
2 t=3 t.

00 { (r)m ..... (r)-m ..... 00 1 .....}+Il - b Am- b Bm+~t!ptGmt . (xcosmO+ysinmO)

(6.86)

where the coefficients of the m ~ 1, t ~ 2 terms have been renamed Gmt since the

effects of Am and Bm have been separated out from these terms.

Again the effects of the lensing degeneracies must be taken into effect. A constant

offset to the potential has no effect and may be set to zero. As before, the Bl may

be set to zero to force the center of mass of the matter inside the ring radius to be at
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the origin. The Al term is the prismatic degeneracy, the dipole moment due to mass

exterior to the Einstein ring; it does not affect the image fluxes or locations, and is

therefore unconstrainable. It should therefore be set to zero for modeling. The mass

sheet degeneracy again causes the following transformation from the correct model <I>

to an alternate model <I>', leaving the image locations and fluxes unchanged:

(6.87)

In order to use this model for lens modeling, one of the parameters involved in the

degeneracy must be fixed; as before the coefficient of the p2 term in <I>' is fixed to

zero.

The form of the model suitable for lens modeling is then

1 () ~lt,
b2 <I> r, (} = P + 6 tiP It

00- 2: {(1 + p) mA~ + (1 + p) -m i3:n} . (x cosm(}+ y sin m(})
m=2

+ f f 1rptG~t' (xcosm(}+ysinm(}).
m=l t=2 t.

(6.88)

The model parameters are related to the true potential <I> and mass distribution CT

by:

I~ d ( (To(r))! (6.89)- 1- b-In 1---
dr CTcrit r=b

1 d
l

I1:"23 - (1- ~)b2 b
t

drt <I>o(r) r=b (6.90)

and

-, (1- ~)Am (6.91)Am -
-, (1- ~rBm (6.92)Bm -

-, am(b) (6.93)Gm -
CTcrit - CTo(b)t=2
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where

. ~ (b) {bd
d

{]m(r)1 - (]m(b)}
acnt ao r r=b

1 t dt ....
- (1-~) b2b -d t<I>m . (r)

r near rmg r=b

~m . (r) __ ~ (~)m lb (r') I-m dr' (]m(r)
nearrmg m b r b b acrit

_~ (:.)-m (r (r') l+m dr' (]m(r)
m b Jb b b a crit

(6.94)

(6.95)

(6.96)

Formulas for the derivatives of the monopole terms, as needed in lens modeling,

and a discussion of the significance of these terms is given in section 6.2.6. The m ~ 1

multi pole terms are described below.

The external-mass piece of the m ~ 1 multipole term is:

(6.97)

1
2
bV r<I>~~l (r,O) - f { -m(1 + p)(m-l)} {A~c cos mO + A~s sin mO}

b exterior

+ {){m(1 + p)(m-l)} {A~c sin mO - A~s cos mO} (6.98)

ff {-m(m - 1)(1 + p)(m-2)} {A~c cos mO + A~s sin mO}

+ {)O {m(m - 1)(1 + p)(m-2)} {A~c cos mO + A~s sin mO}

+ (fO + Of) {m(m - 1)(1 + p)(m-2)} {A~c sin mO - A~s cos mO} (6.99)

The m = 1 term is set to zero to avoid the prismatic degeneracy. An Am term can

be generated by a mass excess, exterior to the Einstein ring radius, in any of the

m equally spaced directions 'l/JAm + n~, for n = 0, ... , m - 1. The displacement of

the image away from the source, V <I>, is generally a displacement away from these
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m=O m=l m~2
monopole dipole quadrupole,

octupole, ...
Degenerate Degenerate Multipole-Exterior

Constant offset to po- t=O Prismatic degeneracy. Sensitive to the mul-
tential ~ Dipole moment of the tipole moment of the

mass exterior to the mass exterior to the
Exterior rIng IS unconstrain- Einstein ring.

==> able.
Monopole-Linear Degenerate Mul ti pole- Interior

Sets Einstein ring ra- t=l Fixes center of mass Sensitive to the mul-
dius. Sensitive to total ~ of the mass interior to tip ole moment of the
mass within ring. ring to be at the ori- mass interior to the

Interior gin. (Location of ori- Einstein ring.
==> gin is then allowed to

vary.)
Degenerate modified Multipole- Taylor

Mass sheet degeneracy. t=2 Depends on the behavior of the multipole
Surface mass density at moment of the matter near the ring radius:
ring unconstrainable For t = 2 gives mth multipole moment of

mass in a narrow annulus at the ring radius.
Monopole-Taylor

For t = 3 gives the fall- t~3 For t ~ 3 has more complicated dependence
off of surface mass den- on mth multipole moment of mass in a nar-

sity with radius, evalu- row annulus at the ring radius.
ated at the ring radius.

Table 6.4: Physical significance of terms in the modified Multipole- Taylor expansion.
Certain terms are unconstrainable due to degeneracies as explained in the text. Five
functional forms are needed to represent all the other terms in the expansion. These
five forms are all that need be coded into a lens modeling program. They can be used
with m and t fixed to the appropriate values.
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perturber locations. The tangential displacements are displacements away from the

perturbing mass locations. The radial displacements are inwards, away from the per-

turber locations, for images within :l:i (~) of one of the possible perturber locations.

The radial displacements are outwards otherwise.

Looking ahead to section 6.5.3 of this thesis, a point-mass perturber, further from

the origin than the furthest lensed image, would contribute to each external multipole:

2(1- (Jo(~)) IA~I = IAml = ~ (!!..)m (bPM)2
(Jent m R b

(6.100)

(see equation 6.120) where b is the Einstein ring radius of the primary deflector, R is

the distance from the origin (of the primary deflector) to the perturber, and bPM is

the Einstein ring radius of the perturber. Note that the effect decreases for increasing

m. Constraints on two external multipole moments, m =/:. m', caused by an external

perturber, would allow the determination of both the distance to the perturber and

the Einstein ring radius of the perturber.

The internal-mass piece of the m ~ 1 multipole term is:

b12<P~2:1. (r,O) = {- ( 1 )m} {B:ne cosmO + B:ns sin mO}
interior 1+ P

(6.101)

12bV T<P~2:1 (r,O) - f { (1 + ~(m+l) } {B:ne cosmO + B:ns sin mO}
b interior

+ 0 L1 + ~(m+l) } {B:"csinm8 - B:"scosm8} (6.102)

"" { m(m + 1) } {B' 0 B' . O}- rr (1 + p)(m+2) me cosm + ms SInm

",,{ m(m+l)} , , .+ 00 (1 + p)(m+2) {Bme cosmO + Bms SInmO}

,," "" { m(m+1)}{,. ,+ (rO + Or) - (1 + p)(m+2) Bme SInmO - Bms cos mO}
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The m = 1 term is set to zero to force the center of mass of the mass interior to

the ring to be at the origin - this origin, the deflector location, is parameterized by

model parameters (gx, gy). A Bm term can be generated by a mass excess, interior

to the Einstein ring radius, in any of the m equally spaced directions 'l/1Bm + n;;;, for

n = 0, ... , m - 1. As with the Am term, the displacement of the image away from the

source, V <I>, is generally a displacement away from these perturber locations. The

tangential displacements are displacements away from the perturbing mass locations.

The radial displacements are outwards, away from the perturber locations, for images

within :i:i (;:;) of one of the possible perturber locations. The radial displacements

are inwards otherwise.

The terms in the Taylor expansion of the remainder of each multipole component

are:

b12<I>~~l (r, 0) = {p;} {G~tc cos mO + G~ts sin mO}
t~2 t. (6.104)

1 -+ I

b2 b\l f<I> m~l (r, 0)
t~2

{
p(t-l) }

f (t _ I)! {G~tc cosmO + G~ts sin mO}

+ {j { - ~ (1 : p) } {C;"tc sin m(} - C;"ts cos m(}} (6.105)

The G~t terms depend on the behavior of the surface mass distribution in the narrow

radial range within which the lensed images are located. The dominant term, G'm ,
t=2

can be generated by an excess of mass, at the ring radius, located in any of the m

equally spaced directions 'l/1cmt +n;:; , for n = 0, ... , m -1, since the coefficient G'm is
t=2
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directly related to the corresponding multipole moment of the surface mass density,

(6.107)

Non-negativity of the surface mass density limits the amplitude of am (b) (see equa-

tion 6.26), which limits the amplitude of G'm to
t=2

(6.108)

This limit ranges from zero for O"o(b) = 0 (no mass at the Einstein ring radius) to +00

for O"o(b) :- O"crit. For a mass distribution with a singular isothermal sphere monopole,

the limit is

IG~ I ::; 2.
t=2 SIS

(6.109)

For mass distributions more centrally concentrated than a singular isothermal sphere,

the limit on G'm would be lower. If some fraction p of the mass at the Einstein ring
t=2

radius is located in point-like (single-angle) perturbers at angles 'l/;Gm,t=2 + n;: , with

the remainder evenly distributed around the ring, then this fraction is

(6.110)

If the perturbers were extended in size, then a larger fraction of the mass in the ring

would need to be involved in the perturbers to give the same value of IG'm I.
t=2

The radial and tangential image displacements caused by this m ;:::1, t ;:::2 term

are small for p small. The t = 2 term may cause significant radial magnification, even

for p small, but all the higher terms contribute little to the magnification for small p.
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6.4 An elliptical variant on the Taylor-expanded

multipole model?

Since the Einstein "ring" is approximately an ellipse for lens systems, it would seem

sensible to use elliptical coordinates. One could separate the variables in elliptical

coordinates to get an analog of the multipole expansion - and then Taylor expand in

offsets from the ellipse location. However in elliptical coordinates, the various uncon-

strainable degeneracies do not coincide nicely with individual terms in the expansion.

In cylindrical coordinates as used above, the various unconstrainable degeneracies do

coincide nicely with individual terms in the expansion, allowing these degeneracies to

be avoided in the modeling.

6.5 Comparisons with other previously-used mod-

els

Previous efforts at modeling the gravitational lens MG J0414+0534 have used sim-

ple models with few parameters, due to the limited number of modeling constraints

available, or due to the computational cost of running LensClean. In generally these

models have used physically motivated radial forms, either with an elliptical mass

distribution or potential, or with such an elliptical mass distribution or potential

truncated at the quadrupole moment.

These potentials may be related to the multipole- Taylor model by showing what

the coefficients are in the multipole- Taylor model expansion of each potential. This

is useful for relating coefficients of the multipole- Taylor model to physical parameters

of the potential. It is also useful for understanding which differences between the

models are relevant for lens modeling of rings and quads - and which are not.

A typical deflector model is a 2-D lens potential consisting of a simple monopole

term added to a simple quadrupole term. Such models were used by, for exam-

ple, Kochanek (1991), Witt et al. (1995), Ellithorpe (1995), Falco et at. (1997), and
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Schechter et al. (1997). Ellithorpe (1995) also used a surface mass density model

which was truncated at the quadrupole term of the surface mass density. However,

since each multipole moment of the potential depends only on the corresponding

multipole moment of the surface mass density, this is equivalent to truncating the

potential at the quadrupole moment.

6.5.1 Monopole terms

Table 6.5 lists several monopole profiles: the singular isothermal sphere, the point

mass, the power-law profile, and the power-law profile with core radius. Other phys-

ically motivated radial profiles have been used, such as that corresponding to a de

Vaucouleurs surface mass density (Ellithorpe 1995), but unless one can constrain the

f~ parameter in the Taylor expansion of the monopole term, little will be gained by

using such profiles in modeling ring and quad lenses.

The monopole terms listed in the table are all parameterized with ring radius b.

Note that they have differing values of the surface mass density at the ring radius

and of the f~ parameter which is related to the decrease in surface mass density with

radius. The surface mass density at the ring radius is unconstrainable due to the

mass sheet degeneracy, so for lens modeling purposes, the first significant difference

between the radial profiles is the f~ term. When using a model to fit a potential

whose actual surface mass density at the ring radius is ao(b), the mismatch between

ao (b) and ao(b) causes a scaling of all the higher multipole parameters and of the
model

time delay. The resealing factor (1 - ~) is also tabulated in the table.

Note that this f~ parameter, if constrainable, will nicely distinguish the continuum

of models from a point mass, to a singular isothermal sphere, all the way on out to

a mass sheet, as the power law index goes from zero to 1/2 to 1. Note that a core

radius or a sudden drop in the surface mass density with radius can make f~ even

more negative that -1.

If one can constrain the f~ term, one has a chance of learning about the radial

profile of the deflector potential, and of predicting the f~ term that enters into the

(1 - ~) scaling factor, instead of merely fixing f~ = O. But if one cannot constrain
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Model Potential ~ f~ 1-~= 1
/:Tcrit 2(1-~) O'crit

point mass b2ln r 0 1 1/2
singular isothermal br 1/2 0 1
sphere
mass sheet with critical lr2 1 -1 002
surface mass density
power law

a -7 0, point mass
!C (r)20a = 1/2, isothermal a 1- 2a 1
20 b 2(1-0)

a -7 1, mass sheet
power law with core s2+b2 (s2+r2.) u s2+o:b2 (1-20:)b:l-3s:l 1 s2+b2

20 s2+b2 s2+b2 s2+b2 2(1-0)~
radius

Table 6.5: Several physically motivated monopole profiles. The first column is the
form of the 2-D lens potential. The second column is the surface mass density at the
ring radius as a fraction of the critical surface mass density. The multipole- Taylor
model parameter f~ = 1 - bd

d In (1 - /:To(~)) I is the first parameter in that model
r /:Tcnt r=b

sensitive to radial profile. Suppose that the deflector of a gravitational lens truly
has the monopole potential tabulated in the first column. Suppose that it is fitted
with a multipole- Taylor model, with parameter f~ fixed to zero to fix the mass sheet
degeneracy, as described in sections 6.2 and 6.3. The third column lists the fitted
value that f~ would have in that case. In such a case, the fitted multipole- Taylor
model predicts a time delay that differs from the actual time delay by a factor (1-~)
that arises due to the mass sheet degeneracy. For example, if the deflector truly is a
point mass (black hole) and we fit a multipole- Taylor model, then the model predicted
time delay will be shorter than the true time delay by a factor of 1/2.

the f~ term, then there is little point in using more complicated monopole profiles for

ring and quad lens systems.

6.5.2 Quadrupole terms

There are several quadrupole terms commonly used to accompany the monopole term.

External quadrupole This is a quadrupole moment due only to mass lying com-

pletely outside the Einstein ring radius. In our notation the potential is

(6.111)
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where 'ljJA2 and 'ljJA2 + 7r are the possible directions to the perturbing mass causing the

quadrupole moment. This is sometimes also called an "external shear" and parame-

terized

(6.112)

where the convention for the angle B"{ differs by 7r /2 radians from that for 'ljJA2 •

Internal quadrupole This is a quadrupole moment due only to mass lying com-

pletely inside the Einstein ring radius. In our notation the potential is

(6.113)

where 'ljJB2 and 'ljJB2 + 7r are the possible directions to the mass excess driving this

quadrupole moment.

Mixed quadrupole This is a quadrupole due to mass both outside and inside the

ring radius. This particular radial dependence is used, because it is obtained by

truncating a singular isothermal elliptical potential at the quadrupole term in the

multipole expansion.

(6.114)

Again, one must be careful about factors of two in the definition of E and offsets of

7r /2 in the definition of B£. Here, B£ and B£ + 7r are the directions of higher surface

mass density.

Recall that the size of the quadrupole moment determines the tangential image

displacements. The balance between the internal and external quadrupole moments

determines the radial displacement that accompanies the tangential displacement. By

using only a single quadrupole piece, with a fixed ratio between internal and external

origin for the quadrupole, one fixes the radial displacement relative to the tangential

displacement. The value to which it is fixed may not match that of the true potential.
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6.5.3 Other potentials

There are a few other potentials that deserve mention.

Singular isothermal elliptical potential

The followingelliptical potential was used by Hewitt et ale (1992) and Falco et ale (1997):

~(r, 0) = b'ry1 - € cos 2(0 - Of) (6.115)

where, for € small, € is related to the axial ratio of the isopotential contours by

€ = 1 - ~ where acJ.> and bcJ.> are respectively the major and minor semi-axes of an
a<l>

isopotential contour. Equivalently, for € small, € is related to the axial ratio of the

isodensity contours (of the surface mass density) by 3€ = 1 - ~ where au and bu are I

respectively the major and minor semi-axes of an isodensity contour. Note that by

symmetry this potential has no odd m multiple components.

For small ellipticities the potential is:

1 1
~ (r, 0) = br - 2br€ cos2(0 - 0 to) - 16br€2 cos4(0 - 0to) + brO ((3) (6.116)

where b = (1 - €2/16 + 0(€3)) b'. This is a singular isothermal sphere monopole term,

plus a "mixed" quadrupole term, with small amounts of a "mixed" m = 4 multipole

term.

If a deflector potential with such a shape were fitted with our modified Taylor-

expanded multipole model, then the fitted values of the amplitudes of the m = 2

external and internal multipole moments would be IA~I= ~€ and IB~I = l€, so that

the ratio of external to internal quadrupole would be IA~/IB~I = 3.

Elliptical potential with softness a and core radius s

This potential was suggested by Blandford & Kochanek (1987).

const {[ (X)2 (y)2] a }~(x, y) = ~ 1 + (1 - €) -; + (1 + €) -; - 1
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Keeping only terms to O(E), this gives a monopole piece that is the same as the power

law with core radius monopole (which is tabulated in table 6.5) and a quadrupole term

linear in E with a radial dependence specified by a and s.

Perturbing point mass displaced from the center of the potential

Another approach is to use a multipole expansion for the principal deflector, but

to use a point mass or a singular isothermal sphere located some distance away, to

account for a secondary deflector object. If there is such an object, and it is not

accounted for separately, how does it appear in the multipole- Taylor expansion?

For a point mass M located at a displacement R(x cos 'l/JPM + Y sin 'l/JPM) away

from the origin, the surface mass density is

(6.118)

where DL, the angular diameter distance to the deflector, enters the problem because

x, y, r, and R are angular distances on the sky. The corresponding 2-D lens potential

can be written as a sum over its multipole components

00 1 (r)m~PM(f) = const - L - R b~M cos m(O - 'l/JPM),
m=l m

(6.119)

where this expression is valid for 1f1 < R, and where b~M = D~1 . is the squared
11" L (1cnt

Einstein ring radius of the perturber. This expression is adequate as long as this

perturbing point mass is further from the origin than any of the lens images.

This potential consists of external multipole moments to all orders m in the mul-

tip ole expansion. (Compare with equation 6.86.) The m = 1 term has no effect on

the image positions, due to the prismatic degeneracy. The dominant term is the ex-

ternal quadrupole, with the effects of the higher-order terms being smaller by powers

of rIR. For ring and quad lenses, the images are located near the ring radius, r ~ b.

Therefore for a perturbing mass much further away than the ring radius (bl R small),

it should be adequate to represent the effect of the mass by just the first few terms
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in the multipole expansion, which have amplitudes (in the notation of section 6.3)

(6.120)

where b is the ring radius of the principal deflector. For a nearby perturber (b/R ~ 1),

such a truncation of the multipole expansion will not be adequate. Therefore if there

is a known nearby perturber, it may be worth explicitly adding to tbe potential model

a point mass at the perturber's location.

Slightly extended perturbing point mass displaced from the center of the

potential

How do radial and tangential extent in an external perturber affect the external'

multipole amplitudes due to the perturber? This can be found by considering a

perturber with a center of mass at a radial distance R from the center of the principal

deflector, and with surface mass density uniform over a region of radial extent !1R

and tangential extent R!1B. Such a perturber contributes to the external multipole

moments of the potential to all orders m in the multipole expansion, with amplitudes

Am= ~ (~rCper~rberr { 1 + m(~4+1) (~:)2- m(~4+1) (M)2

+ 0 (~RR)4+o (M)4 + o (M)2 0 (~RR)2},
(6.121)

Extension in angle causes the multipole amplitudes to fall more rapidly with m;

angular extent to a perturber washes out the higher m multipole moments more than

the lower m multipole moments, since the surface mass density is being integrated

against sin mB. In contrast, radial extent increases the multipole amplitudes, with

a larger effect for higher m, since these require an integration in radius against a

weight r(1-m). The net effect for perturbers with similar radial and tangential extents,

!1R = R!1B, is that there is no effect through CJ ( LlRR) 3. Therefore, using the point

mass perturber formula (equation 6.120) to estimate the distance to and the Einstein
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ring radius of a perturber with small extent, D.R « R, should cause no problem.

However this formula will not be valid for significantly extended perturbers, D.R ~ R,

for which the detailed shape of the perturber must be taken into account.

6.6 Effects of the lensing degeneracies on the model

predicted time delay

In whatever manner one chooses to make a parameterized model of the potential, the

mass sheet degeneracy makes it impossible to constrain the deflector's surface mass

density at the Einstein ring radius, O"o(b), from the image locations and fluxes. The

value of 0"0 (b) can be deduced only by making model-dependent assumptions of how it

depends on other features of the deflector. These assumptions may be hidden in the

choice of the deflector model. For example, choosing a point mass monopole term,

makes the assumption that O"o(b) = O. Choosing a singular isothermal monopole term,

makes the assumption that O"o(b) = O"crit/2. With slightly more sophistication, one

can attempt to deduce O"o(b) in a model-dependent way from the fall-off of surface

mass density with radius, 1 - bd
d In (1 - (To(~») I . However this latter is expected
r (Tent r=b

to be difficult to constrain for quad and ring lenses.

The mismatch between one's model-dependent assumptions and the true value of

O"o(b) = 0 gives a factor 1 - /\', that enters into the model-predicted time delay:

(6.122)

For example, assuming a singular isothermal sphere profile, when the deflector truly

is a point mass, results in underestimating the time delay by a factor of two, 1 - /\,=

1/2. Assuming a singular isothermal sphere profile when the deflector is much more

extended than an isothermal sphere can result in overestimating the time delay by a

large factor. This scaling factor 1 - /\, is tabulated in tables 6.2 and 6.5 for various

cases. The error in the time delay prediction is a systematic error based on modeling

assumptions. It is therefore difficult to quantify.
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Chapter 7

Modeling in practise: modeling the

VLBA maps of MG J0414+0534

The deflector models developed in chapter 6 were used to model the VLBA obser-

vation of MG J0414+0534 described in chapter 3 (figure 3-6) using the modeling

techniques of chapter 5. This chapter describes how the modeling was done and what

the modeling results were.

7.1 Implementation of the modeling

A program was written to find the best-fit model parameters by minimization of the

chi-squared, and to calculate confidence intervals and time delays for the models. The

significant features of this implementation of lens modeling are described below.

7.1.1 The chi-squared

Only the image positions, not the image fluxes were used as modeling constraints.

For speed of computation, the "source-plane" approximation was used, wherein the

observation positions and errors were mapped back to the source plane. The form of

the chi-squared used was that of equation 5.13.

For model parameters that minimized the "source-plane" approximation to the
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chi-squared, the actual "image-plane" chi-squared was also calculated, using equa-

tion 5.6, as a check on the approximation. For the models that were adequate (see

below) the "source-plane" chi-squared at its minimum differed from the true "image-

plane" chi-squared by no more than 1.5 percent, and typically only by 0.2-0.6%. Since

this is much less than the chi-squared increment used in finding the confidence limits

on the model parameters, this approximation did not introduce any appreciable error

- and saved significant computation time.

The reasons that only positions and not fluxes were used were as follows. Each

MG J0414+0534 image, AI, A2, B, or C, consists of four components, "a", "b",

"c", and "d", which are somewhat non-collinear. Three non-collinear components

would be sufficient to determine the magnification matrix at each image, AI, A2,

B, or C, provided that the magnification matrix was constant over the region of the \

subcomponents "a", "b", "c", and "d". Using the fluxes of each subcomponent merely

adds the information about how the determinant of the magnification matrix changes

between "a", "b", "c", and "d".

However for MG J0414+0534 there are significant discrepancies in the flux ratios

at different wavelengths. It may be that these are due to microlensing - which is

expected to be a more significant effect in the optical than in the radio as the optical

flux is assumed to come from a smaller region than the radio flux. Alternately, the

flux ratio discrepancy may be explained by obscuration by dust in one part of the

deflector. One may want to assume that such microlensing and obscuration effects

are unimportant at radio wavelengths. Alternately, one may simply dispense with

the fluxes and use only the positions for lens modeling.

Given the MG J0414+0534 flux ratio discrepancy, given that the positions are

much better constrained than the fluxes for MG J0414+0534, and given the secondary

nature of the information that the fluxes provide in modeling this source, it was

decided to use only the MG J0414+0534 positions and not the fluxes for the lens

modeling.
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7.1.2 The implementation of the models

In writing the lens modeling program, a modular approach to deflector potential

models was taken. The basic building blocks which were coded into the program

could be added together to form a complete potential model simply by listing them in

the input file. New potential models (or building blocks) could easily be implemented

as long as functions could be written to calculate the potential itself <I>(r), its gradient

V<I>(r), and its second derivative matrix 8i8/p(fj, as functions of the position fin the

image plane. (The third derivative tensor 8i8j8k<I>(fj would also be needed if one were

making the corrections for slightly extended sources in the presence of magnification

gradients, equations 5.44 and 5.45.)

The basic building blocks that were implemented include several simple models:

the singular isothermal sphere "818", the point mass "PM" , the external shear "X8",

and a singular isothermal elliptical potential truncated at the quadrupole moment

"8IEP" which is actually a singular isothermal sphere plus a mixed quadrupole. These

basic models were described in section 6.5.

The building blocks of the Multipole-Taylor model were also coded. Only five

functional forms were needed for this. They are tabulated in table 6.3, and the

expressions for <I>(fj, V<I>(r), and 8i8j<I>(fj are given in section 6.2.6.

The building blocks of the modified Multipole-Taylor model, as tabulated in ta-

ble 6.4, were also coded in. The two monopole forms are the same as for the Multipole-

Taylor model. The expressions for <I>(fj, V<I>(fj, and 8i8j<I>(fj for the three m 2:: 1

multipole forms are given in section 6.3.

Necessary for this implementation was the ability to link model parameters be-

tween the model building blocks. For example, consider a modified-Multipole- Taylor

model of several terms including the linear part of the monopole and the internal

part of the quadrupole. Each term has as parameters the ring radius b and the deflec-

tor location (gx, gy), yet this composite model must have only one ring radius band

one deflector location (gx, gy). The chi-squared minimization algorithm allows these

parameters to be linked and treated as one. Actually, the implementation allows
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arbitrary parameters to be linked: one could link the orientation angle of the internal

part of the quadrupole with that of the external part of the quadrupole if so desired.

The lens modeling program also allows parameters to be held fixed during the

chi-squared minimization. For example, one might want to fix the deflector location

to be that of the optically observed galaxy.

Several of the models have vector or vector-like components: the XS, the SIEP, and

the m 2: 1 multipole terms of the MuItipole-Taylor and modified-Multipole- Taylor

models. For example the general m 2: 1, t 2: 2 term in the modified Multipole-

Taylor model has a parameter G~t. This can be parameterized by its x- and y-

components, G~t = xG~tc +ifG~ts' or by its orientation angle and amplitude: G~t =

G~t(x cos m'lj;Gmt + if sin m'lj;Gmt). Two forms have been implemented for each model

of this type, one using as parameters the cosine and sine components G~tc and G~ts' \

the other using the amplitude G~t and the angle m'lj;Gmt. (Note the factor of m.)

For purposes of visualizing the significance of the model parameters, the amplitude-

angle form, and error estimates on the amplitude and angle parameters, are more

illuminating. For ease in minimization, the Cartesian form is better, since in this form

the chi-squared becomes approximately quadratic in the model parameters when the

parameter values are far from the chi-squared minimum. Therefore for those vector-

like model parameters, when neither the amplitude nor the angle was fixed or linked

to another parameter, the modeling program converted the model to its Cartesian

form before minimization and converted back to its original form before displaying

the output.

7.1.3 The minimization algorithms

The best-fit model is determined by finding the model parameters that minimize the

chi-squared.

The model parameters are of two sorts: the model source positions and the model

deflector parameters. For fixed values of the model deflector parameters, the mini-

mization over the model source positions can be done analytically. The expression for

the model source positions that minimize the chi-squared (with the model deflector
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parameters held fixed) is given in equation 5.15. For each set of deflector parameters

examined, the minimization over the source parameters was done analytically. There-

fore the dimensionality of the parameter space to be explored by a general-purpose

minimization algorithm was reduced from (2 x Nl) + Na, to merely Na, where Na

is the number of deflector parameters and Nl is the number of model sources. For

MG J0414+0534 where Nl = 4 this reduces by 8 dimensions the dimensionality of

the parameter space. This is a significant aid to any minimization algorithm used to

minimize the chi-squared.

Three different algorithms were used for finding the minima of the models' chi-

squareds within the deflector-parameter space: the Powell direction set method which

does line minimizations successively in various directions (Press et al. 1992), the

downhill simplex method which is also known as the "amoeba" (Press et at. 1992), and

a variant of simulated annealing combining a downhill simplex with some probability

of taking uphill steps (Press et al. 1992). Before discussing the relative merits of these

algorithms for lens modeling, the problems encountered in chi-squared minimization

will be briefly discussed.

The search for the global minimum of a general function in a multi-dimensional

parameter space is plagued by two problems. Firstly the algorithm may find a local

minimum and stop. There may be a lower minimum some distance away in parameter

space, but if the algorithm has not sampled that portion of parameter space, and has

found a minimum, the true global minimum may go undetected.

Secondly, the algorithm may stray into a region of parameter space in which the

function value decreases asymptotically approaching a limiting value as some param-

eter becomes arbitrarily large. A concrete example of this is a model containing a

deflector at a fixed location and a secondary deflector some distance away whose po-

sition is allowed to vary. As the secondary deflector's position is moved arbitrarily

far from the primary deflector, the effect of this secondary deflector asymptotically

approaches that of an external shear. The symptoms of this problem appear in two

different forms: The minimization algorithm may hit a maximum iteration limit with-

out converging. Alternately, the function value may become so close to its asymptotic
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limit, within the convergence tolerance of the algorithm, that a "minimum" is reported

- but this "minimum" contains parameters that are so large as to be not physically

meaningful, for example, a secondary deflector hundreds of arcseconds away from the

pnmary.

For complicated deflector models, with ~11 parameters, minimization algorithms

that walk downhill to the first encountered minimum, such as the Powell direction

set method or the downhill simplex method, tend to find and become stuck in local

minima. Once the Powell method reaches a local minimum, restarts do not lift it

out of this minimum because all directions are uphill. In contrast, for the downhill

simplex, restarts starting with a finite-sized simplex in some cases allowed the simplex

to reach outside of small local minima, and make further progress downhill to a lower \

minimum. For one particular II-parameter model, for example, 90 amoeba restarts

were required before a final minimum was reached.

From this behavior of the minimization algorithms, one may conclude that the chi-

squared surfaces for moderately complicated models have a number of local minima at

higher values of chi-squared than the true local minimum. Indeed, one would expect

a local minimum at deflector parameter values that cause some but not all of the

model images to be aligned with the observed image positions.

The simulated annealing method was introduced because of the local minimum

problem, and it was found that it dealt well with the small local minima. In very

few cases did a restart from its best-found value find a lower minimum, and the need

could be reduced by "cooling" at a slower rate.

Even the simulated annealing algorithm did not handle well the case of two differ-

ent minima well-separated in parameter space. All our modeling started with a guess

of the ring radius based on previous modeling work and a guess of the galaxy position

based on the HST observations of Falco et at. (1997). Using simulated annealing with

a high starting temperature (10 times the starting chi-squared) sometimes ended in

a much higher local minimum with the model galaxy position well away from the op-

tically observed galaxy position (which was not being used as a constraint). A high

starting temperature thus introduced the possibility of escaping from the physically
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reasonable portion of parameter space and becoming stuck in a deep local minimum

far from the desired global minimum. Therefore a moderately low starting tempera-

ture was used (1% of the starting chi-squared) which allowed the exploration of the

region of parameter space near the physically motivated best guesses of the galaxy

location and the ring radius. The starting guesses for all m 2:: 1 multipole moments

were zero.

7.1.4 Error estimates and confidence limit calculation

Three different error estimates were used for the errors on the image positions. For a

crude upper limit on the position error of each image, the fitted image size was used.

This is the actual image size convolved with the VLBA beam width. Deconvolution

errors, and centroid shifts due to magnification gradients, should both be less than

this amount. The error estimate is referred to as "fit-size-as-errs" in some tables. A

lower limit on the position error of each image is the statistical error on the fitted

centroid due to thermal noise in the map, "centroid-errs". A better estimate of the

position error of each image is to add the statistical error on the centroid position

in quadrature with the deconvolved image size. Magnification gradients can cause

image centroid shifts of the order of the image width times the fractional change in

magnification over the image size. This error estimate ("deconv-size-n-centroid-errs")

makes allowance for this as well as for deconvolution error.

The confidence limits on each model parameter were determined by stepping the

parameter away from the chi-squared minimum, while minimizing over all other pa-

rameters, until a certain f),.X2 was obtained. The method and the reason for using this

method are described in section 5.6 of this thesis. Nominal 68.3% confidence limits

were found.

7.1.5 The time delays and error estimates on the time delays

The time delay between two images of the same source is given in equation 4.20. For

modeling purposes it is convenient to introduce a dimensionless version of the time
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(7.2)

delay by which image a of source llags image /3 of source l:

This dimensionless time delay depends on the modeled potential, but does not depend

on the assumed values of the cosmological parameters. It must be multiplied by a

cosmological factor
(1+ ZL) DLDS

c DLS

to convert the "dimensionless time delay" into a time delay. For MG J0414+0534,

with Zs = 2.639 (Lawrence et ai. 1995b), and assuming that Zl = 0.5, no = 1, nAo = 0,

and Ho = 75h75km/sec/Mpc then1 this factor is

2.845 X 1012

h days
75

(7.3)

Dimensionless time delays are computed from the best-fit model parameters for each

model.

To compute error estimates on the time delay from the error estimates on the

model parameters by standard error-propagation methods would require that the

covariance of the model parameters be known - and these covariances were not

computed. Instead the following method was used. Time delays were computed at

the upper and lower confidence limits for each model parameter. The most extreme

of these time delays were taken to be error estimates on the time delays. This method

takes the covariance between model parameters into account, since at the confidence

limit for a model parameter, the other parameters have been adjusted to minimize

the chi-squared.

Keep in mind that these error estimates on the time delay do not include the

systematic errors that may result from the interaction of the mass sheet degeneracy

1For a flat universe dominated by a cosmological constant, (no = 0, nAo = 1). this cosmological
factor is 3.2% higher, (I-+::ZL) DD~S' = 2.937 x 1012 h'ildays. The cosmological factor is 16.5% higher,
(I-+::ZL) DJ~" = 3.315 x 1012 h'ildays, assuming an open, empty, no-cosmological-constant universe,
no = 0, nAo = O.
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with an error in the assumed radial profile. This systematic error is discussed in

chapter 6, in particular in section 6.6.

7.2 Results from simple models previously used

for modeling MG J0414+0534

In section 5.6 it was explained that the convolved size of each lens images (actual

size convolved with the beam width) would be used as a crude upper limit on the

position error for each image. Even though this is an overestimate of the VLBA

positions errors, these position errors are still much smaller than those from VLA or

HST observations - and positions could be measured for four subcomponents "a",

"b", "c", and "d" which could not be done with the VLA or HST observations. Using

this upper limit on the position errors, the simplest lens models for MG J0414+0534

are all rejected. These models include a singular isothermal sphere with external

shear, "SIS+XS", as used by Falco et al. (1997), Ellithorpe (1995), and others, a

point mass with external shear, "PM+XS", used by, for example, Falco et ale (1997),

and the singular isothermal elliptical potential truncated at the quadrupole moment,

"SIEP", used by Ellithorpe (1995) and which is very similar to that used by Hewitt

et al. (1992) and Falco et ale (1997).

<I>SIS+XS (r, B)

<I>SIEP (r, B)

As can be seen in table 7.1, the chi-squareds are extremely large. The model

image locations are a qualitatively bad fit. This can be seen in figure 7-1 which shows

the observed image locations, the model image locations, the ring radius, and the

orientation of the mass that would cause this shear, for the SIS+XS model.

The best-fit model parameters are listed in table 7.1. The fitted values are similar
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Goodness of fit
Model 2 NDOF NqXmin
SIS+XS 16803 19 3851
PM+XS 14477 19 3317
SIEP 23567 19 5402

Best-fitmodel parameters
Model 9x gy b , € A2=,/2, 2'lj;A2' 'lj;A2 ,

or €/4 or 20f or Of
SIS+XS 1.116 0.599 1.1849 0.127 0.064 -0.4133 78.16
PM+XS 1.098 0.597 1.1631 0.258 0.129 -0.4146 78.12
SIEP 1.323 0.537 1.1969 0.245 0.061 -0.4353 77.53

Time delays for best-fitmodel parameters
Model ~TAlaA2a ~TAlaBa ~TAlaCa ~tAlaA2a ~tAlaBa ~tAlaCa

~TRaAla

~TAlaCa

dimensionless hil days
SIS+XS 3.84e-14 -1.54e-12 1.06e-11 0.109 -4.39 30.1 0.146
PM+XS 7.77e-14 -3.14e-12 2.0ge-11 0.221 -8.92 59.3 0.150
SIEP 5.92e-14 -2.17e-12 2.05e-11 0.169 -6.19 58.2 0.106

Table 7.1: Results of fitting simple models to MG J0414+0534.
NDOF is the number of constraints minus the number of fitted model parameters. For
datasets drawn from the model, with errors of this size, the minimized chi-squared
should have mean J..L = NDOF and standard deviation (J = yNDoF. The column "Nq"

in the table shows by how many standard deviations the actual data differs from what
would be expected from this model. Note that the convolved size of each lens image
(actual size convolved with the beam width) was used to approximate the position
error on each image. This gives an upper limit on the position errors, and thus a
lower limit on the chi-squareds.
The deflector position (gx,9y) is in arcseconds from the position of the correlation
center at AI, with 9x increasing to the west and 9y increasing the north. Ring
radius b is in arcseconds. Quadrupole parameters € and, are dimensionless, as in
equations 7.4,7.5, and 7.6. Definitions of the quadrupole parameters differ by factors
of 2; an additional column rescales these parameters for ease in comparison with the
quadrupole moments of the modified-Multipole- Taylor model. The first angle column
is in radians north of west. The second angle column, for comparison with previous
modeling, is in degrees east of north.
The time delays are given for the brightest component "a". These are the light
arrival times of the A2a, Ba, and Ca images relative to the Ala image. Ba leads
and Ca lags. The first three columns are the "dimensionless time delays" described
in equation 7.1. The second three columns have been multiplied by the cosmological
factor in equation 7.3 to give the delay in days. Note that the time-delays (and the
quadrupole moment) are twice as large for the PM monopole as for the SIS monopole.
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Best fit SIS-XS model for MG J0414+0534

....
".. ~

observation .a ••
observation .b ..
observation .c ..
observation .d. "

model Images 'a. a
model Images .b ••
model Images .c ..
model images .d ..

SIS
gx 1.116028 .

gy 0.5986215 .
b 1.184923 .

XSpolar .
gamp 0.1273322 .

gang 2.728261 .

-0.5 0.5 1
Arcsec

1.5 2 2.5

Figure 7-1: Singular isothermal sphere with external shear (SIS+XS) model, fitted
to the MG J0414+0534 VLBA 5 GHz map. Observed image locations, model image
locations, Einstein ring radius, and the orientation of the mass that would cause this
shear are shown. It clearly fails to reproduce the observed image locations.

to those of Falco et at. (1997) and of Ellithorpe (1995), but a number of the fitted

parameters lie somewhat outside of the previous works' error ranges. This is not

surprising for the following reason. The models are inadequate and cannot reproduce

all of the features of the observation. Changing the relative weights on the constraints

would be expected therefore to change the fitted model parameters - since with one

set of weights certain constraints would be well fit, and with other weights other

constraints would be well fit.

No confidence limits were calculated since they would be meaningless for a model

which fits the data so poorly.
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7.3 Results from the Multipole-Taylor model and

the modified Multipole-Taylor model

The simple five-parameter models above, with a fixed radial dependence and with a

single shear term, were unable to reproduce the approximate image locations. There-

fore the modified Multipole- Taylor model was used because it allows one to select,

and add to the potential, terms that are expected to have a significant effect on lens-

ing, while ignoring terms with less effect on lensing. These terms are tabulated in

table 6.3 for the Multipole- Taylor model and in table 6.4 for the modified Multipole.;.

Taylor model. The only terms that cause shifts in image positions for images at the

ring radius are the first (t == 1) monopole (m == 0) term and the first two terms (t == 0

and t == 1, or "external" and "internal") of each higher multipole (m ;:::1) term.2 For

all other terms the image shifts go to zero for (r - b) / b == 0

7.3.1 Selection of a "basic model": terms to include in all

models

The only monopole m == 0 term that is expected to be readily constrainable for lenses

all of whose images lie near the ring radius is the linear t == 1 term. This "mOtl"

term sets the ring radius and was used in all of the models.

Which m ;:::1 terms should be included? The quadrupole moment (m == 2) is

expected to be the dominant m ;:::1 multipole term. Ellipticity in the deflector mass

distribution would show up primarily in the quadrupole moment of the deflector. Also,

the dominant effect of an external perturber would be to contribute to the quadrupole

moment of the potential. Therefore both the external "m2ext" and internal "m2int"

pieces of the quadrupole were included in all of the models.

Comparing this mOtl+m2ext+m2int model with the single-shear models of sec-

tion 7.2 (SIS+XS = mOtl+m2ext and SIEP = mOtl+mixed-quadrupole) we see that

2However the first two m = 1 terms are not used as model parameters due to degeneracies in the
model. See table 6.3 or 6.4.
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the addition of the second shear term caused a vast improvement in the fit. The

chi-squared dropped by two orders of magnitude. (The chi-squareds of the fitted

models are tabulated in table 7.2. The fitted model parameters are listed and shown

graphically in figures in appendix B.)

7.3.2 Adding an additional term to the basic model

Higher (t ~ 2) terms in the quadrupole, ("m2t2", "m2t3", ... ), should cause lit-

tle displacement in model image locations for images lying near the ring radius, so

they are expected to have little effect. The first dipole term ("m1t2") and the next

monopole term ("mOt3") also should cause little displacement for images near the

ring. Therefore the m ~ 3 multipole terms were considered.

The second term in which effects of an external perturber would appear is the

external octupole term ("m3ext"). If the perturber were nearby it would appear with

lesser amplitude also in the "m4ext" and higher multipole terms. An asymmetry

in the mass distribution of the primary deflector would be reflected in an internal

octupole term ("m3int"). Diskiness or boxiness of the deflector's mass distribution

could cause an m = 4 internal multipole term ("m4int"), or if the mass distribution

extends past the ring radius a "m4ext" term.

Therefore, to the basic mOt1+m2ext+m2int model, were in turn added each of

these terms: m3int, m3ext, m4int, and m4ext. The terms mOt3, m1t2, and m2t2

were also tried, even though they are expected to have less effect when the images lie

near the ring radius, since they are the next most significant terms for their respective

values of m. No m ~ 5 multipole components were tried, as there was little physical

motivation for doing so. The m3tO and m4tO terms were also used, for a different

balance between internal and external multipole effects on those multipole terms

(half internal and half external). The chi-squareds are given in table 7.2 and the

fitted model parameters are in appendix B.

Each one of these additional terms improved the fit. However, the greatest im-

provement was caused by an external or a mixed internal-and-external octupole term

(m3ext or m3tO), each of which caused another order of magnitude drop in the fitted
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Error estimate on image positions errors
"fit-size-as-errs" "centroid-errs" "deconv-size-n-

~OF (an upper limit) (a lower limit) centroid-errs"
Model Ndeflector

2 Nq
2 Nq

2 Nq
narms

Xmin Xmin Xmin

SIEP 5 19 2.357e4 5.402e3 1.297e8 2.976e7 3.667e5 8.412e4
SIS+XS (mOt1+m2ext) 5 19 1.680e4 3.851e3 1.078e8 2.474e7 1.910e5 4.382e4
PM+XS 5 19 1.448e4 3.317e3 1.012e8 2.321e7 2.080e5 4.771e4

I mOtl +m2ext+m2int 7 171 2.485e2 5.615el 11.636e5 3.967e4 I 3.996e3 9.651e2 I

+m3int 9 15 1.356e2 3.113el 1.143e5 2.950e4 2.022e3 5.181e2
+mm2t2 9 15 1.757e2 4.14gel 9.875e4 2.54ge4 1.357e3 3.464e2
+mOt3 8 16 1.108e2 2.371el 1.040e5 2.601e4 1.438e3 3.554e2
+mmlt2 9 15 1.400e2 3.227el 1.430e5 3.691e4 8.457e2 2.145e2
+m4ext 9 15 1.011e2 2.224el 7.958e4 2.054e4 7.493e2 1.896e2
+m4tO 9 15 1.235e2 2.801el 8.522e4 2.200e4 3.913e2 9.717el
+m4int 9 15 4.168el 6.889 5.551e4 1.433e4 1.983e2 4.733el
+m3ext 9 15 1.61gel 0.308 1.831e4 4.723e3 1.351e2 3.100el
+m3tO 9 15 8.783 -1.605 1.603e4 4.135e3 7.038el 1.430el

I +m4ext+m4int 11 1311.917el 1.712 I 3.370e4 9.344e3 11.297e2 3.235el I

+m3tO+mOt3 10 14 8.113 -1.573 1.596e4 4.261e3 6.284el 1.305el
+m3tO+m4int 11 13 5.087 -2.195 6.435e3 1.781e3 5.647el 1.206el
+m3tO+m4tO 11 13 3.795 -2.553 6.130e3 1.697e3 2.862el 4.331
+m3tO+m4ext 11 13 2.459 -2.924 3.998e3 1.105e3 1.23gel -0.1692
+m3tO+mm2t2 11 13 3.285 -2.694 8.421e3 2.332e3 1.17gel -0.3348
+m3tO+mmlt2 11 13 2.527 -2.905 7.794e3 2.158e3 1.145el -0.4291

+m3ext+m4tO 11 13 9.435 -0.989 1.223e4 3.38ge3 5.506el 1.167el
+m3ext+m4int 11 13 7.374 -1.560 1.050e4 2.908e3 4.732el 9.519
+m3ext+mOt3 10 14 9.144 -1.298 1.631e4 4.356e3 4.183el 7.439
+m3ext+mml t2 11 13 7.254 -1.594 1.528e4 4.235e3 3.612el 6.413
+m3ext+m3int 11 13 1.654 -3.147 4.176e3 1.155e3 8.960 -1.120
+m3ext+mm2t2 11 13 4.783 -2.279 5.986e3 1.657e3 8.387 -1.279
+m3ext+m4ext 11 13 1.257 -3.257 3.863e3 1.068e3 6.073 -1.921

+m3tO+m4int+mOt3 12 12 4.889 -2.053 6.342e3 1.827e3 3.17gel 5.711
+m3tO+m4tO+mOt3 12 12 3.791 -2.370 5.948e3 1.714e3 2.455el 3.622
+m3tO+m4ext+mOt3 12 12 2.321 -2.794 3.798e3 1.093e3 1.234el 0.099
+m3tO+mm2t2+mOt3 12 12 1.364 -3.070 2.795e3 8.033e2 9.373 -0.758
+m3tO+mml t2+mOt3 12 12 2.203 -2.828 5.505e3 1.586e3 8.495 -1.012

+m3ext+mmlt2+mOt3 12 12 6.160 -1.686 1.445e4 4.16ge3 3.431el 6.439
+m3ext+m4tO+mOt3 12 12 3.376 -2.490 7.54ge3 2.176e3 1.696el 1.431
+m3ext+m3int+mOt3 12 12 1.571 -3.011 3.98ge3 1.148e3 8.193 -1.099
+m3ext+mm2t2+mOt3 12 12 3.163 -2.551 4.895e3 1.410e3 7.334 -1.347
+m3ext+m4int+mOt3 12 12 2.000 -2.887 4.914e3 1.415e3 6.157 -1.687
+m3ext+m4ext+mOt3 12 12 0.720 -3.256 2.306e3 6.622e2 2.721 -2.679

I +m4ext+m4int+mOt3 12 1211.814el 1.773 I 2.871e4 8.285e3 I 8.107el 1.994el I

Table 7.2: Results of fitting modified Multipole- Taylor models to MG J0414+0534.
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Figure 7-2: Model mOtl+m2ext+m2int+m3ext, fitted to MG J0414+0534. The ta-
ble at right lists the fitted model parameters with confidence limits. These model
parameters are also illustrated graphically. An x marks the model deflector center
of mass (gx, gy), and a ring is drawn at the model Einstein ring radius b. The error
range on the ring radius is shown by additional rings drawn at the upper and lower
confidence limits. (In this plot of this model they cannot be distinguished from the
Einstein ring itself) Each m 2:: 1 multipole moment is illustrated by arrows pointing
in the possible directions to mass perturbations (excesses) that would cause such a
multipole moment. The arrows are labeled with the number m of the multipole mo-
ment, and their lengths are proportional to the amplitudes of the multipole moments.
Confidence ranges on the angles are indicated by small arcs at the tip of each arrow.
Also show on the plot are the optical location of the deflector galaxy (R-band and
I-band, relative to the location of image C, from Falco et ai. (1997)), the position of
Object X (Falco et ai. 1997), the direction to the nearby group of galaxies noted by
Falco et ai. (1997), and the orientation angle of the deflector's optical isophotes (Falco
et ai. 1997) indicated by arcs drawn near the Einstein ring radius. The locations of
components "a", "b", "c", and "d" of images AI, A2, B, and C are also shown for
reference, but cannot be seen clearly on a plot of this scale. The location of the model
sources is also shown, slightly northeast of the deflector location.
In the table, "AAmp" is IA~I and "A_ang" is m'ljJAm (with m = 2) of equation 6.88.
Similarly the parameters "B_amp" and "B_ang" give B:n, the parameters "GAmp"
and "G_ang" (in some other figures) give G~t, and the parameter "f" (in some other
figures) gives If of equation 6.88. The parameters "msumAmp" and "msumAng" are
the IV!' of equation 6.52. Angles are in radians N of W.sum

m
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Figure 7-3: Model mOtl+m2ext+m2int+m3tO, fitted to MG J0414+0534. This figure
and figure 7-2 show the two best-fitting 9-parameter models. An explanation of the
symbols in the plot is given in the caption to figure 7-2.
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chi-squared. Only these two models ("+m3ext" and "+m3tO")3 fit the image posi-

tions well enough to satisfy the upper limits on the position errors, as given by the

beam size convolved with the image extents. This is consistent with the finding of

Ellithorpe (1995) that a 3-(J term improved the model fit. However, neither of the

models reproduced the observed positions well enough to satisfy the better estimate of

the position errors, the deconvolved image sizes added in quadrature to the statistical

errors on the image centroids.

For both the +m3ext and +m3tO models, the angle of the m2ext term is consistent

with the optical isophote angle of the deflector as measured by Falco et at. (1997). The

angles of the m = 3 terms of the two models are almost consistent with each other,

and point somewhat to the east of Object X, somewhat to the south of the nearby

group of galaxies noted by Falco et al. (1997), and somewhat counterclockwise from

the isophote orientation. See figures 7-2 and 7-3. The angle of the internal m = 2

term is consistent with the optical isophote angle for the +m3ext model, but lies

somewhat counterclockwise of the isophote orientation for the +m3tO model.

7.3.3 Adding two terms to the basic model

Of the models examined above, the models which best fitted MG J0414+0534 had

external or mixed-external-and-internal m = 3 multipole components: mOt1+m2ext-

+m2int+m3ext = "+m3ext" and mOt1+m2ext+m2int+m3tO = "+m3tO".

To these models were added, one at a time, the next most significant terms in each

of the m = 0,1,2,3, and 4 multipoles: mOt3;mm1t2; mm2t2; m3ext or m3tO or m3int;

m4ext or m4tOor m4int. The m = 0, m = 1, and m = 2 terms were tried even though

these terms should have little effect for (r-b)/b small. The model +m4ext+m4int was

also used to provide, for comparison, another model with the same number of model

parameters, all of whose terms can cause significant displacements for images near

the ring radius, but which contains no m = 3 term. The chi-squared are tabulated in

table 7.2 and the fitted model parameters are given in appendix B.

3A model name preceded by a "+" means that the basic mOtl +m2ext+m2int terms are also part
of the model.
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As expected the +m4ext+m4int model was a worse fit than any of the models

containing a m = 3 multipole term and also having 11 deflector parameters. In this

group of models, the models containing the m3ext term were generally better fits

than the models containing the m3tO term. The best-fitting model with this number

of deflector parameters was +m3ext+m4ext, (figure 7-4). The +m3ext+m4ext model

has the lowest chi-squared, no matter which estimate of the position errors is used.

Note that this model is too good of a fit, when using the deconvolved image sizes in

quadrature with the statistical errors as a position error estimate. Therefore these

some,vhat overestimate the position errors.

Note that none of the models adequately fitted the error estimates given by the

statistical errors alone. One problem is that these errors do not include the systematic

errors in the deconvolution of the beam from the maps. Another problem may well

be that magnification gradients are not properly being taken into account - adding

deconvolved size to the statistical errors will crudely make allowances for this.

The model with the second-lowest chi-squared value, +m3ext+mm2t2 appears to

have an unphysical value for its quadrupole parameter G~=2.4
t=2

In the best fitting model, the +m3ext+m4ext model, both the internal and ex-

ternal quadrupoles are aligned with the optical isophote angle. The m4ext angle is

anti-aligned with the m2ext angle and with the optical isophotes. By this I mean that

the direction of mass deficit indicated by the m4ext term, 73.90 :i: 1.00 E of N (plus

multiples of 900), is consistent with the optical isophote angle and has a confidence

region which overlaps the confidence region of the external quadrupole angle. The

m3ext angle, 7/JAm=3' has been shifted about 13° clockwise relative to the +m3ext

model. This is further from Object X, further from the group of galaxies, and closer

to the angle of m2ext and the optical isophotes. The m3ext angle is approximately

4To have IG~=21 = 0.5 (as this model requires) would require that of the mass in a narrow
t=2

annulus around the Einstein ring, at least a quarter of it be involved in driving this quadrupole
moment - and more if the perturbing mass is not in point-like locations. (This assumes that the
mass of the deflector is not more extended than an SIS. See equation 6.110.) A large value of this
G~=2 coefficient is needed to cause much of an image displacement, because it has to overcome the

t=2

small factor (r - b)jb. This term is apparently compensating for some of the internal and external
quadrupole, which have been displaced relative to their orientations in the +m3ext model.
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Figure 7-4: Model mOt1+m2ext+m2int+m3ext+m4ext. This is the best-fit 11-
parameter model. An explanation of the symbols in the plot is given in the caption
to figure 7-2.

aligned with the quadrupole in the east, and with the m4ext angle to the west of

south, though the confidence ranges do not overlap.

One could attempt any of the following identifications:

1. The external m = 2 and m = 3 multipole components might indicate an external

perturber to the east. It is only by coincidence that these angles line up with

the optical isophotes. If there were such a perturber, and it were a point mass,

its Einstein ring radius would be 0.95 ::l: 0.05 arcseconds and the distance to

it would be 3.2 ::l: 0.2 arcseconds. The m = 2 internal quadrupole moment is

aligned with the optical isophotes because they are both oriented with the mass

of the deflector itself. The external m = 4 multipole moment is not explained.

This explanation seems unlikely because (a) the external quadrupole is so well

aligned with the optical isophotes, which is unlikely to happen by chance, and

(b) no indication of a perturber in that approximate location is seen in the
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I-band and R-band HST maps of Falco et ai. (1997).

2. The external m = 3 and m = 4 multipole components might be attributable to

an external perturber to the west of south, at about -65° :I: 4° N of W. If this

were the case, and the perturber were a point mass, the perturber's Einstein ring

radius would be 0.56:1:0.10 arcseconds and the distance to the perturber would

be 2.24:1:0.24 arcseconds. The perturber would contribute to the external part

of the quadrupole term, and the contribution to the external quadrupole term,

with amplitude 0.032:1:0.013, would be significant relative to the dominant part

from the primary deflector. Removing such a contribution from the external

quadrupole moment would leave a residual external quadrupole of amplitude

0.060 oriented in the direction 2'l/J Am=2 = 0.052 radians, or 'l/JAm=2 = 1.5° or

181.5° degrees N of W.

The orientation of this residual external quadrupole moment is not consistent

with the optical isophote angles. Its amplitude is large to be caused be the

primary deflector, with the ratio external quadrupole to internal quadrupole of

IAm=21/IBm=21 = 3.8. In contrast, a deflector that followed a singular isother-

mal elliptical potential would have an external to internal quadrupole ratio of

IAm=211IBm=21 = 3. Therefore the explanation (2) seems a poor explanation

of the modeled multipole components. There is however an object seen in the

optical in the HST images of Falco et ai. (1997) at about 5 arcseconds from the

deflector and at an orientation angle of about -54° N of W.

3. The external and internal quadrupole (m = 2) moments are both aligned with

the optical axis of the deflector because they are both caused by the ellipticity

of the primary deflector. This indicates that the mass of the deflector and its

ellipticity extends beyond the Einstein ring radius. A deflector that followed

a singular isothermal elliptical potential would have an external to internal

quadrupole ratio ofm2ext/m2int of \Am=2\/IBm=2\ = 3, with which this model's

value of 2.90:1: 0.17 is consistent; therefore this quadrupole ratio is consistent

with the deflector being as extended as an isothermal profile. The ellipticity of
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the isopotential contours near the ring radius is €<I> = 2IAm=2+Bm=2\ = 0.120:1:

0.002. In contrast the ellipticity of a singular isothermal elliptical potential

having an isodensity ellipticity of €a = 0.20:l: 0.02 (equal to the mean ellipticity

of the fitted isophotes of Falco et al. (1997)) would be €<I> = 0.07.

The m = 4 multipole term is due to a boxiness in the outer regions of the

deflector's mass distribution. The m = 3 multipole moment is caused by an

asymmetry in the outer parts of the deflector's mass distribution, with more

mass at one end of the isophote axis than at the other. It is only by coincidence

that the m = 3 term is sufficiently misaligned with the deflector axis so as to

be approximately aligned with the m = 4 term in the south.

Note that this model's m = 4 external multipole amplitude of (4.1 :l: 0.4) x

10-3 is an order of magnitude larger than the m = 4 external amplitude of

6 x 10-4 that a singular isothermal elliptical potential of this ellipticity would

have (equation 6.116), and it is oriented in the opposite direction (boxy rather

than disky).

Only interpretation (3) adequately explains the best-fit model's parameter values.

This best-fit model, +m3ext+m4ext, indicates that neither Object X nor the group

of galaxies to the southwest contributes significantly to the lensing.

7.3.4 The deflector's radial dependence

To each of the 5-term, II-parameter models above, were added a radial depen-

dence ("mOt3") to the monopole term. The minimized chi-squareds are tabulated in

table 7.2 and fitted model parameters are given in appendix B.

The fitted values of the radial profile parameter are given in table 7.3. The con-

fidence ranges are quite large. The fitted value of the radial profile parameter shifts

depending on what other multipole components are included in the model- the for-

mal confidence ranges do not even all overlap. For mass densities that do not increase

with radius, the value of this radial profile parameter must be less than one. For some

models the entire confidence range lies within the unphysical region f~ > 1.
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I Model f~ 2
Xmin I Model 2

Xmin

+m3ext+mOt3 248+0.09 4.183e1 +m3ext 1.351e2. -0.09

+m3tO+mOt3 075+0.24 6.284e1 +m3tO 7.038e1. -0.26

+m4ext+m4int+mOt3 o 75+0.16 8.107e1 +m4ext+m4int 1.297e2. -0.17

+m3tO+m4int+mOt3 2 90+0.30 3.17ge1 +m3tO+m4int 5.647e1-. -0.25

+m3tO+m4tO+mOt3 3 59+1.57 2.455e1 +m3tO+m4tO 2.862e1-. -0.99

+m3tO+m4ext+mOt3 024+0.91 1.234e1 +m3tO+m4ext 1.23ge1-. -2.18

+m3tO+mm2t2+mOt3 965+3.30 9.373 +m3tO+mm2t2 1.17ge1-. -8.50

+m3tO+mm1t2+mOt3 1 99+1.14 8.495 +m3tO+mm1t2 1.145e1-. -0.98

+m3ext+m4tO+mOt3 2 49+0.18 1.696e1 +m3ext+m4tO 5.506e1. -0.21

+m3ext+m4int+mOt3 230+0.17 6.157 +m3ext+m4int 4.732el. -0.19

+m3ext+mm1t2+mOt3 1 09+0.81 3.431e1 +m3ext+mmlt2 3.612e1. -0.81

+ m3ext+ m3int+ mOt3 1 20+0.89 8.193 + m3ext+ m3int 8.960. -1.35

+ m3ext+ mm2t2+ mOt3 069+0.67 7.334 +m3ext+mm2t2 8.387-. -0.58

+ m3ext+ m4ext+ mOt3 113+0.39 2.721 +m3ext+m4ext 6.073. -0.52

Table 7.3: Radial profile parameter. Fitted values and formal confidence ranges
for models fitted to MG J0414+0534 using the "deconv-size-n-centroid-errs" error
estimates. For comparison, the models' chi-squareds and the chi-squareds of the
corresponding models without the radial profile parameter terms are also listed.
Recall that values of f~ > 1 are unphysical, indicating that the surface mass density
increases with radius. A point mass would have f~ = 1 and a singular isothermal
sphere would have f~ = O.
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Figure 7-5: Model mOtl+mOt3+m2ext+m2int+m3ext+m4ext. This is the best-fit
12-parameter model that includes a radial profile parameter.

That this parameter's value is difficult to determine by model fitting can be ex-

plained. It takes a large change in this parameter's value to cause a small change

in the radial positions of images near the ring radius. In contrast, small values of

the m 2:: 2 internal and external multipole components can cause shifts in the radial

positions of images near the ring radius. The radial image shifts caused by the mOt3

term do not depend on angular position, whereas the radial image shifts caused by

the m 2:: 2 internal and external multipole moments do depend on angular position.

However since for MG J0414+0534 there are only images at a few angular locations,

there can be some interplay between the effects of the mOt3 term and of the m 2:: 2

multipole terms. For example, for the +m3ext, the +m3ext+m4int, and the +m3ext-

+m4tO models, which were not adequate fits, the addition of the radial profile term

greatly lowered the chi-squareds to values closer to those of some the models contain-

ing different m 2:: 2 multipole terms, at the cost of unphysically large values of the

radial profile parameter (formal lower confidence limit 2:: 2). For MG J0414+0534,
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the radial profile parameter is not usefully constrained by lens modeling. This is

expected to be the case for other quad lenses, also.

For systems with rings of lensed emission, information is available from imaged

flux at all angles. Therefore, for ring systems it remains to be seen whether the radial

profile parameter can be constrained.

For quads, the available information on the radial distribution of the matter in

the deflector appears to be the balance between the amplitudes of the internal and

external multipole moments - for those lenses in which the external multipole com-

ponents are attributable to the outer regions of the primary deflector rather than to

secondary perturbers.

7.3.5 Time delays

Time delays for the 9-parameter, II-parameter, and 12-parameter deflector models

with the lowest chi-squareds are given in tables 7.4 and 7.6. For the II-parameter and

12-parameter models, only models are included which adequately fit the observation

when using the deconvolved image size in quadrature with the statistical centroid

errors as the position error estimate (requiring Nq < 3 for "deconv-size-n-centroid-

errs"). The +m3ext+m4tO+mOt3 and +m3ext+m4int+mOt3 models are excluded

because their radial profile parameters, f~, lie in the unphysical region with the lower

confidence limit greater than 2.5 The +m3ext+mm2t2 model is rejected because it

has an apparently unphysically large value of its parameter G~=26
t=2

Note that there is a systematic trend that models with higher values of the radial

profile parameter f~ have shorter time delays than models with the radial profile

parameter fixed to zero as suitable for a singular isothermal profile.

The best model time delays are from +m3ext+m4ext: fi.TA1aA2a = 5.15~g:t~

10-14 A 1 802+0.034 X 10-12 A 1 044+0.018 X 10-11 dx , uTA1aBa = -. -0.036 , uTA1aCa = . -0.017 , an

fi.TBaCa = 1.225~g:gg x 10-11, where the error bars are the formal errors from the

5Dimensionless time delays for all models, including the poorly fitting models, are given in ap-
pendix B in tables B.l through B.3.

6See note on page 204.
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.6.rBaCa

1.099_0:012
x 10-11

1 244+0.016. -0.016
X 10-11

1.249 -0:029
x 10-11

1 394+0.017. -0.016
X 10-11

1 044+0.034 '. -0.029
X 10-11

1.318_0:052
x 10-11

1 010+0.017. -0.017
X 10-11

1 225+0.017. -0.017
X 10-11

1.280_0:117
x 10-11

1155+0.757. -0.230
X 10-11

1188+0.129
. -0.116

X 10-11

1.162_0:108
x 10-11

1 075+0.077. -0.079
X 10-11

1 086+0.062. -0.045
X 10-11

.6.rAlaCa

0.866_0:009
x 10-11

O 996+0.012. -0.012
X 10-11

0.987 -0:030
x 10-11

1133+0.020. -0.017
X 10-11

O 838+0.027. -0.023
X 10-11

1.069_0:051
x 10-11

O 811+0.015. -0.015
X 10-11

1 044+0.018. -0.017
X 10-11

1.010_0:092
x 10-11

O 864+0.548. -0.164
X 10-11

O 928+0.093. -0.085
X 10-11

0.949_0:093
x 10-11

O 857+0.063. -0.063
X 10-11

O 913+0.061. -0.046
X 10-11

.6.TAlaBa

-2.326_0:039
x 10-12

2 481+0.037-. -0.037
X 10-12

- 2.616_0:047
x 10-12

-2.610~g:g~~
x 10-12

2 061+0.059-. -0.068
X 10-12

- 2.486_0:028
x 10-12

1 985+0.019-. -0.020
X 10-12

-1 802+0.034. -0.036
X 10-12

- 2.694_0:703
x 10-12

2 912+0.664-. -2.092
X 10-12

2 604+0.304-. -0.360
X 10-12

- 2.133_0:410
x 10-12

2 183+0.194-. -0.174
X 10-12

1 734+0.029-. -0.029
X 10-12

.6.TAlaA2a

5.19_0:09
x 10-14

5 88+0.09. -0.09
X 10-14

6.60_0:13
x 10-14

6 19+0.16. -0.13
X 10-14

4 85+0.12. -0.12
X 10-14

5.89_0:11
x 10-14

5 36+0.03. -0.04
X 10-14

5 15+0.19. -0.17
X 10-14

6.80_0:72
x 10-14

7 09+5.31
. -1.74

X 10-14

6 02+0.92. -0.79
X 10-14

4.93_0:51
x 10-14

5 88+0.47. -0.51
X 10-14

4 70+0.22. -0.17
X 10-14

+ m3ext+ mm2t2+ mOt3

+ m3ext+ m3int+ mOt3

+m3ext+m4ext+mOt3

+ m3ext+ m3int

+m3ext+m4ext

+m3tO+mmlt2

+m3ext+mm2t27

+m3tO

+m3ext+mmlt2+mOt3

+m3tO+mm2t2+mOt3

+m3tO+m4ext+mOt3

+m3tO+mm2t2

+m3tO+m4ext

I Model
+m3ext

Table 7.4: "Dimensionless time delays" for models fitted to MG J0414+0534,
using the "deconv-size-n-centroid-errs" position error estimate. The time delays
are given for the brightest component "a". Image B leads and image C lags.

7Model +m3ext+mm2t2 has an apparently unphysically large value of its parameter 6'...=2' See
t=2

note on page 204.
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Model f).rBaA1a/f).TA1aCa f).TBaA2a/f).TA2aCa

+m3ext o 268+0.003 o 276+0.003. -0.003 . -0.003

+m3tO 0249+0.002 o 256+0.002. -0.002 . -0.002

+m3tO+m4ext o 265+0.010 o 274+0.011. -0.011 . -0.011

+m3tO+mm2t2 o 230+0.007 o 237+0.007. -0.008 . -0.008

+m3tO+mmlt2 o 246+0.002 o 253+0.002. -0.002 . -0.002

+m3ext+m3int o 233+0.011 0239+0.011. -0.011 . -0.012

+m3ext+mm2t2 o 245+0.004 0253+0.004. -0.004 . -0.004

+m3ext+m4ext o 173+0.006 o 178+0.006. -0.006 . -0.006

+m3tO+m4ext+mOt3 o 267+0.015 o 275+0.015. -0.012 . -0.013

+ m3tO+ mm2t2+ mOt3 o 337+0.020 o 348+0.021. -0.017 . -0.018

+ m3tO+ mml t2+ mOt3 o 245+0.001 o 253+0.001. -0.001 . -0.001

+ m3ext+m3int+ mOt3 o 225+0.013 o 231 +0.014. -0.008 . -0.008

+ m3ext+ mm2t2+ mOt3 o 255+0.016 o 263+0.016. -0.014 . -0.015

+m3ext+m4ext+mOt3 o 190+0.012 o 196+0.012. -0.012 . -0.012

Table 7.5: Time delay ratios for models fitted to MG J0414+0534.
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Model ~tA1aA2a ~tAlaBa ~tAlaCa ~tBaCa

h"7ldays h7l days h7l days h7l days

+m3ext o 1476+0.0024 -662+0.11 24 6+0.2 31 3+0.3. -0.0024 . -0.11 . -0.2 . -0.3
+m3tO o 1673+0.0024 -706+0.10 28 3+0.4 35 4+0.5. -0.0024 . -0.10 . -0.4 . -0.5

+m3tO+m4ext o 1879+0.0039 7 44+0.13 281+0.9 35 5+0.9. -0.0038 -. -0.13 . -0.9 . -0.8
+m3tO+mm2t2 o 1762+0.0045 -743+0.19 32 2+0.6 39 7+0.5. -0.0038 . -0.22 . -0.5 . -0.5
+m3tO+mm1t2 o 1381+0.0034 5 86+0.17 23 8+0.8 29 7+1.0. -0.0035 -. -0.19 . -0.6 . -0.8

+ m3ext+m3int o 1677+0.0034 707+0.10 30 4+1.7 37.5~L~. -0.0031 -. -0.08 . -1.4
+ m3ext+ mm2t2 o 1524+0.0009 5 65+0.05 231+0.4

28.7~g:~. -0.0010 -. -0.06 . -0.4
+m3ext+m4ext o 1465 +0.0053 5 13+0.10 29 7+0.5 34 8+0.5. -0.0049 -. -0.10 . -0.5 . -0.5

+m3tO+m4ext+mOt3 o 1936+0.0489 766+0.78 28 7+7.1 36 4+9.1. -0.0205 -. -2.00 . -2.6 . -3.3
+ m3tO+ mm2t2+ mOt3 o 2016+0.1511 8 29+1.89 24 6+15.6 32 9+21.5. -0.0496 -. -5.95 . -4.7 . -6.6
+m3tO+mm1t2+mOt3 o 1495+0.0048 6 26+0.21 25 5+0.5 31.8~~:~. -0.0056 -. -0.12 . -0.9

+ m3ext+m3int+mOt3 o 1402+0.0317 6 07+0.46 270+4.2 331+5.3. -0.0146 -. -1.17 . -2.6 . -3.1
+m3ext+mm2t2+mOt3 o 1672+0.0135 6 21 +0.55 24 4+1.8 30 6+2.2. -0.0144 -. -0.49 . -1.8 . -2.2
+ m3ext+ m 4ext+ mOt3 o 1338+0.0063 4 93+0.08 26.0~L~ 30.9~Lg. -0.0049 -. -0.08

Table 7.6: Time delays for models fitted to MG J0414+0534. The time delays are
given for the brightest component "a". Image B leads and image C lags. This is
the same information as in table 7.4, but each dimensionless time delay has been
converted into a time delay in days, using a multiplicative factor appropriate for
Zl = 0.5, no = 1, nAo = 0, and Ho = 75h75km/sec/Mpc.
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model fit. There is more uncertainly due to the uncertainty in the choice of mod-

els, with ~rA1aBa ranging from -2.9 x 10-12 to -1.7 X 10-12; ~rA1aCa ranging from

0.84 x 10-11 to 1.13 X 10-11; and ~rBaCa ranging from 1.04 x 10-11 to 1.39 X 10-11;

for the models adequately fitting the "deconv-size-n-centroid-errs".8

Ratios of ~ r AB / ~ r AC may be used to further distinguish between models, if both

time delays are measured. The measured ~rAB/ ~TAC may be able to confirm that

+m3ext+m4ext is the best model for this system, as the ratios ~TB~A1a/ /:i.rA1aCa =

0.173 ::i::: 0.006 and ~TBaA2a/ ~TA2aCa = 0.178 ::i::: 0.006 fall outside the error ranges of

all the other models. (See table 7.5. The error ranges of the time delay ratios of the

+m3ext+m4ext and +m3ext+m4ext+mOt3 models do overlap, but the latter model

is the same as the former model with the addition of a radial profile term.) Of the

models that adequately satisfy the "deconv-size-n-centroid-errs" error estimate, the

next closest in time delay ratio to our best-fit model, besides +m3ext+m4ext+mOt3, is

+m3ext+m3int+mOt3 with ~rBaA1a/ ~TA1aCa = 0.225~g:g6~and ~rBaA2a/ ~TA2aCa =

0.231~g:g6:,which are 30% higher than the values for the best-fit +m3ext+m4ext

model. The lower limit of 0.217 on ~TBaA1a/ ~rA1aCa for this model is 18% higher

than the upper limit of 0.184 on ~rBaA2a/ ~rA2aCa for the best-fit model +m3ext-

+m4ext. Therefore, measuring the time delay ratio ~rAB/ ~rAC with 18% errors

should be adequate to distinguish between our best-fit model +m3ext+m4ext (or its

generalization +m3ext+m4ext+mOt3) and the rest of the models.

Using the delays for the brightest radio component "a" whose relative positions

are consistent with the relative positions of the optical images, and using an average

of the Al and A2 arrival times under the assumption that the joint A1-A2 light curve

will be used in measuring the time delay, then

~TBA = 1.828 X 10-12
( 1::tm :l: ~ ::~ ) ,

formal A.~-A2 which
errors dlUerence model

(7.7)

8If the model +m3ext+mm2t2 is included despite the apparently unphysical value of its param-
eter 0'...=2 (see note on page 204) then ~TAlaCa ranges from 0.81 x 10-11 and ~TBaCa ranges from

t=2

1.01 X 10-11
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.6.TAC - 1.042 X 10-11
( 1 :l::~:l:: ~ ~~) ,

formal A;1-A2 which
errors dIfference model

.6.TBC = 1.225 X 10-11
( 1:l:: ~~ ~ ) .

~~~~~l which
model

(7.8)

(7.9)

The first error term is due to the formal error on the fit of the +m3ext+m4int model.

The second error term on D..TBA and D..TAC is just half the difference between the Al

and A2 arrival times. The last error term gives the spread of the time delays over the

models that adequately satisfy the "deconv-size-n-centroid-errs" error estimate.9

This last uncertainty term can be reduced if the time delay ratio D..TAB / D..TAC is

measured. A measurement of D..TAB/ D..TAC to rv 2 - 3%, if it confirms the +m3ext-

+m4int model's time delay ratio, could exclude all the other models, allowing the

"which model" uncertainty term to be dropped. A measurement of D..TAB/ D..TAc to

only rv 18%, assuming it confirms the +m3ext+m4int model's time delay ratio, would

exclude all the other models except the generalization of the best-fit II-parameter

model: +m3ext+m3int+mOt3, and for this model we may limit the radial profile

parameter to stay within the physical range f~ ~ 1. With this verification of the

model form, the model predicted dimensionless time delays would be

.6.TBA =1.828 X 10-12
( 1~ ~ :l:: ~ ~e)

formal A.I-A2 which
errors dIfference model

.6.TAC =1.042 X 10-11
( 1 :l::~:l:: ~ ~lm)

formal A.I-A2 which
errors dIfference model

.6.TBC =1.225 X 10-11 ( 1:l:: ~~ ~ )
formal which
errors model

Assuming the
time delay ratio
measured
to rv 18% agrees
with the best-fit
model.

(7.10)

These uncertainties in the time delays listed in this chapter do not include the

systematic error due to the interaction of the mass sheet degeneracy with the choice

of the model angularly-averaged surface mass density at the Einstein ring radius.

9If the model +m3ext+mm2t2 is included despite the apparently unphysical value of its param-
eter 6'...:::2 (see note on page 204) then the fractional error on the time delay ATAC is -0.223 not

t=2

-0.198, and the fractional error on the time delay ATBC is -0.176 not -0.148.
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Unfortunately the ~TBA/ ~T AC time delay ratio cannot resolve this degeneracy.

The ratio of the model-predicted dimensionless time delay to the true measurable

time delay is the cosmology-dependent distance factor

~T C DLS
-~t (1+ ZL) DLDs.

(7.11)

The modeled value of ~T may be compared with a yet-to-be-measured value of ~t
(for any pair of images) and the result be used to determine this distance factor and

thereby Ho. Assuming that Zl = 0.5, no = 1, and nAo = 0 then10

_ 75 km 5.201days (1 _ K) ( 1+ 0.020 ::l:0.014 + 0.616 )
sec Mpc ~tBA - ~ '-..-' - ~

formal A.I-A2 which
errors difference model

_ 75 km 29.64days (1 _ K) ( 1 ::l:0.017::l:0.002 + 0.085 )
sec Mpc ~tAC '-..-' '-..-' - ~

formal J\1-A2 which
errors difference model

75 km 34.84days (1 _ K) ( 1 ::l:0.017+ 0.138 )
secMpc ~tBC '-..-'-~

formal which
errors model

(7.12)

(7.13)

(7.14)

where, as explained above, measurement of the time delay ratio may reduce the error

due to "which model", and where the factor (1 - K) is due to the interaction of

an incorrect model value of the surface mass density at the Einstein ring radius,

CTo(b), with the mass sheet degeneracy. The modeling was done using an angularly-

averaged surface mass density at the Einstein ring appropriate for an isothermal

profile, CTo(b) = CTcrit/2, therefore if the true deflector profile is also an isothermal

profile, then K = o.

lOThe Hubble parameter values are 3.2% higher assuming no = 0, nAo = 1, and 16.5% higher
assuming no = 0, nAo = O.
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Chapter 8

Conclusion

8.1 New observation of MG J0414+0534

Observation of the gravitational lens MG J0414+0534 with the VLBA at 6 cm wave-

length revealed substructure that was not resolvable at lower resolutions. This is

shown in figure 3-6 and figures 3-7 through 3-10. Each image AI, A2, B, and C,

clearly shows four subcomponents "a", "b", "c", and "d". These are named in order

of decreasing peak flux in the VLBA maps. Image B, which is highly stretched in

the direction of the component separations, shows another subcomponent "e" close

to subcomponent "a". Subcomponent "d" is quite extended in all four images AI,

A2, B, and C.

Previous VLBI maps showed clearly only two subcomponents. The 5 GHz obser-

vation of Ellithorpe (1995) shows both "a" and "d" in images AI, A2, and B, with

"a" being the brighter. The 1.7 GHz EVN map of Patnaik & Porcas (1996) also

shows AI, A2, and B to have some substructure, but with "d" clearly separated from

"a" only in image B, and with "d" having flux closer to that of "a" at 1.7 GHz than

at 5 GHz. The secondary component in A2 in the 1.7 GHz map appears to be at the

location of component "c".
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8.1.1 Correspondence between radio and optical sources

The relative AI, A2, B, and C image locations for subcomponents "a", "b", "c", and

"d" , were compared with the optical image locations reported by Falco et al. (1997).

The relative positions of subcomponents "c" and "d" were clearly incompatible with

the relative positions of the optical source. The relative positions of subcomponents

"a" and "b" are both compatible with the relative positions of the optical sources.

(Note however that the Ba-Ca separation in RA is large enough to be marginally

inconsistent with the optical.) Therefore if the source of the optical flux is coincident

with any of these radio sources, it must be the brightest source "a" or its closest

companion "b".

8.1.2 Resolution effects

The total summed flux in a 0.2 x 0.2 arcsecond box around each image was 0.336 Jy

for AI, 0.242 Jy for A2, 0.125 Jy for B, and 0.054 Jy for C. By comparison, a VLA

observation at 5 GHz (Katz et at. 1997) found fluxes of 00401 Jy, 0.362 Jy, 0.156 Jy,

and 0.058 Jy for AI, A2, B, and C, respectively. The VLBA to VLA flux ratios are

0.84,0.67,0.80, and 0.93, respectively. This indicates that a certain amount of the flux

has been resolved out of the VLBA maps for images Al and B, and even more so for

image A2. This is unsurprising. Image C which shows the least linear magnification

has been least resolved out, and image A2 which shows the most linear magnification

has been most resolved out. Most of the flux resolved out has presumably been lost

from source "d" which is quite extended. (See figure 3-6.)

8.1.3 Insight into the radi%ptical flux ratio discrepancy

An outstanding MG J0414+0534 puzzle is the cause of the radi%ptical A1/ A2

flux ratio discrepancy, with the flux ratio A1/ A2 being 2.5 in R-band and 2.1 in

I-band (Falco et at. 1997), which is higher than that observed at radio wavelengths.

The A1/ A2 ratios of the integral fluxes from elliptical Gaussian fits to the image

components at 5 GHz were 1.18 for "a", 1.25 for "b", 0.89 for "c", and 1.24 for "d".
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Subcomponent "d" is rather extended, so the elliptical Gaussians fit to the peaks of

AId and A2d do not measure all of the flux. The ratio of cleaned flux in Al (all

components) to cleaned flux in A2 is rather higher, 1.43, but a certain amount of flux

remains in the residuals of image A2 near A2d, and it is expected that A2d has lost

more flux from being resolved out than has Ald.

If the optical source lies at or close to the radio source a or b, as permitted by the

relative locations of the images, then the radi%ptical flux ratio discrepancy persists

as before.

It has been suggested that magnification gradients over the region of the source,

with radio and optical flux coming from different regions of the source, might explain

the radio-optical A1/ A2 flux ratio discrepancy. A slight magnification gradient has

been observed over the extent of the source, as seen from the flux ratios, but clearly

much less than would be needed to explain the radio-optical flux ratio discrepancy.

For magnification gradients to provide an explanation, the optical source would have

to be displaced perpendicularly away from the c-b-a-d axis, and there would have to

be large magnification gradients in that direction, of which no indication is seen in

the VLBA map.

Therefore either microlensing or extinction in the deflector galaxy remains a better

explanation for the discrepancy than the magnification-gradient explanation.

8.1.4 Limits on radio emission from a fifth image of the

source

Only four lensed images of each radio source were seen; no fifth image was seen. Katz

et at. (1997) take the flux limits on the fifth image to be 10 times the RMS surface

brightness in their maps, finding limits of 6.1, 2.0, 1.2, 2.5, and 3.3 mJy at 1.4, 5,

8, 15, and 22 GHz, respectively. The present observation's map RMS of somewhat

over 0.2 mJy /Beam at 5 GHz confirms Katz's finding at 5 GHz but does not allow a

better limit to be set.
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8.2 Advances in modeling techniques

8.2.1 Advances in "point" modeling techniques

In this thesis the technique of "point modeling" , treating subcomponents as point-like

objects and using just their positions and perhaps their fluxes as modeling constraints,

is justified on the grounds that it permits a computation ally quick way of distinguish-

ing between models and rejecting those which are truly a poor fit.

Validity of the "source-plane" approximation to "point" modeling.

The practise of transforming the position errors to the source plane by means of the

magnification matrix (equation 5.13), to speed the computation of the chi-squared,

is shown in section 5.2.1 to be equivalent to Taylor-expanding the difference between

the model source-plane positions and the observed positions (as mapped back to the

source-plane) in terms of a small quantity which is roughly the fractional change in

magnification between the observed and model image-plane positions - and drop-

ping the higher order terms in the Taylor expansion. Therefore for point sources, the

"source-plane" approximation is valid as long as the model is a sufficiently good fit.

The source-plane approximation can fail in two cases. The first case is when the de-

flector model is so poor that the model cannot reproduce the observed positions, but

in that situation the model would be rejected anyway. The "source-plane" approxi-

mation can fail in a more subtle fashion if the error on the observed image locations

is large enough that the magnification changes significantly within the error region.

In such a case, the model's chi-squared could be low enough that the model is not

rejected, yet the magnification at the model image locations could be significantly

different from the magnification at the true image locations.

For the models that adequately fit the image positions from the VLBA 5 GHz ob-

servation of MG J0414+0534, the "source-plane" chi-squared at its minimum differed

from the true "image-plane" chi-squared by no more that 1.5%, and typically only by

0.2-0.6%. Since this is much less than the chi-squared increment used in finding the

confidence limits, the approximation did not introduce any appreciable error - and
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saved significant computation time.

Reducing the dimensionality of minimization-algorithm parameter space

In minimizing the chi-squared, the parameter space to be searched has a dimen-

sionality D equal to the number of deflector parameters plus the number of source

parameters. It is shown that, for the source-plane approximation, the minimization

over the sources parameters (positions and, if used, flux) may be done analytically.

The source parameters that minimize the chi-squared for fixed values of the deflector

parameters are given in equations 5.15 and 5.27. This significantly reduces the di-

mensionality of the parameter space to be searched. For four sources, ignoring fluxes,

this reduced the dimensionality by 8 dimensions, a significant aid to any minimization

algorithm.

Corrections to point modeling for slightly extended sources

For lenses with subcomponents which are not truly point-like, but which are slightly

extended, a correction to point modeling may be needed because the centroid of the

source may not map to the centroid of the image if there are magnification gradi-

ents. The "extended-source" correction to the chi-squared is given in equations 5.42

and 5.43, and the "extended-source" correction to the source-plane approximation to

the chi-squared is given in equations 5.44 and 5.45. The expression in equation 5.44

for s'(fia) is substituted for s(fia) in equation 5.15 to give the "extended-source"

corrections for the source positions that minimize the "source-plane" chi-squared.

The "point" modeling formulas are valid only if the magnification does not change

significantly over the extent of each image. These "extended-source" corrections are

valid for the case where the magnification does change somewhat over the extent of

each image. Note that the validity of these approximations depends on how extended

the source is rather than on how good of a fit the model is. For a deflector model which

perfectly reproduces the observations, the "point-source" approximation could fail if

the source were extended and there were magnification gradients across the images.

For somewhat extended sources, the "slightly-extended" approximation accounts for
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these magnification gradients; however even this "slightly-extended" approximation

could fail if the source were too extended and the magnification gradients too large.

Use of components' major axes, minor axes, and orientation angles as

modeling constraints

This is discussed in section 5.5.1 where the relation between source and image extents

is given in equation 5.47, and where an expression for the correction for magnification

gradients is given in equations 5.48 and 5.49.

Statistical errors on elliptical Gaussian fits

For "point" modeling, it is necessary to know the correlation between the x- and y-

position errors. When including fluxes and image extents it is necessary to know the

correlations between the measurement errors in these quantities also. The statistical

errors, including correlations, are worked out in appendix A, for elliptical Gaussian

fits to maps in which the noise is correlated on the scale of the beam.

8.2.2 New models suitable for ring and quad lenses

The surface mass density and the 2-D lens potential of a deflector are related by the

2-D Poisson equation, therefore it is natural to expand both the density and the po-

tential in a multipole expansion in angle, as each multipole component of the potential

depends only on the corresponding multipole component of the surface mass density.

The question that is not so obvious is how to handle the radial dependence of each

multipole component. In electromagnetism, one is interested primarily in fields at

radii r ~ rmax where rmax is the extent of the source terms, the charges and currents;

therefore one expands in terms of rmaxi r, discarding all higher order terms. This is

inappropriate in lensing since the region of interest is the region where the images

are located, which is near the region where the mass is located. Kochanek (1991)

suggested expanding in the distance from the ring radius. This is appropriate for

quads and rings since all images lie near the ring. This expansion is done, and it is
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shown how each, tth, term in the Taylor expansion of each multipole component of the

potential relates to the underlying surface mass density. In particular, the constant

(t = 0) piece in the mth multipole moment depends on the sum of contributions to

that multipole moment from mass exterior and mass interior to the ring radius. The

next, linear (t = 1), piece in the mth multipole moment depends on the difference of

contributions to that multipole moment from mass exterior and mass interior to the

ring radius. Given the fitted value of a multiple component, this directly indicates

the possible directions to the perturbing mass that might be driving that multipole

moment.

A modification to the Multipole- Taylor model, which makes the physical meaning

of the parameters clearer, is to reparameterize and directly use Am and Bm, the

multipole moments of the surface mass density exterior and interior respectively to the

ring (equations 6.42 and 6.43), instead of using their sum and difference as parameters.

Therefore the first two terms in the Taylor expansion of the radial dependence are

replaced by the "external" and "internal" pieces. Rather than simply taking the first

two parameters to be the difference and sum of the linear and constant pieces in the

Taylor expansion, once can also include the effects of Am and Bm to all orders in the

radial expansion parameter, p = (r - bE)/bE. This leaves the quadratic and higher

(t ~ 2) terms depending only on the surface mass density near the ring, that is,

between the innermost and outermost images. The meaning of the quadratic (t = 2)

term is then very clear - it is just the multipole moment of the surface mass density

in a circular annulus near the ring radius (equation 6.93). An upper limit on its

amplitude (equation 6.108) arises from the upper limit on the amplitudes of m ~ 1

multipole moments of the surface mass density (equation 6.26).

This model parameterization makes it very easy to visualize the location of the

mass driving the multipole moment - at least the direction in which it lies and

whether it is interior or exterior to the Einstein ring.

The strength of a multipole moment caused by an external perturber depends on

the strength of the perturber (the perturber's own Einstein ring radius bperturber) as

well as on the distance to R the perturber (equations 6.120 and 6.121). Therefore
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the distance to an external perturber cannot be determined from a single muItipole

component. However, in principle, both the distance to a point mass perturber and

the perturber's Einstein ring radius can be found from two multipole moments (the

mth and m,th multipole moments with m # m') if they are sufficiently well constrained.

There are several degeneracies in the mapping from the source plane to the image

plane that cause certain transformations of the potential be to completely uncon-

strained by lensing. ((Falco et at. 1985; Gorenstein et at. 1988), see discussion in

section 4.1.6 of this thesis.) The significance of these degeneracies, as to what they

prevent one from learning about the mass distribution of the deflector, becomes clear

in this modified MuItipole-Taylor deflector model. The prismatic degeneracy simply

prevents lens modeling from constraining in any way the dipole (m = 1) moment

due to mass further from the origin than the furthest lensed image. The first m ~ 1

multipole moment in which such mass will show up is the quadrupole (m = 2 multi-

pole) moment. (Mass which is further from the origin than the furthest lensed image

does not affect the monopole m = a term either, apart from contributing an additive

constant which has no effect, see equation 6.14.)

The other significant degeneracy is the mass sheet degeneracy, which in the ter-

minology of Gorenstein et at. (1988) is called the magnification transformation. If

the depth of the potential is scaled down by a factor (1 - /\,) and a mass sheet of

surface mass density /\,(Tcrit is added to the system to make up the missing amount of

convergence, then the image locations and fluxes are unchanged (Falco et at. 1985).

The consequence of this is that (1) one cannot constrain the angularly-averaged sur-

face mass density of the deflector at the Einstein ring radius, (Ta(bE), and that (2)

if one's model differs from the "true" value for the surface mass density at the ring

radius, (Ta(bE), then all the model parameters (besides the location and ring radius)

will be scaled by a factor that depends on the model-assumed (Ta(bE). More precisely,

all parameters in which the model is linear, except for the Einstein ring radius, will

be scaled by this scale factor. (These factors are tabulated for various cases in ta-

ble 6.2.) This scaling also affects the model predicted time delay (Falco et at. 1985;

Kochanek 1991).
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While the angularly-averaged surface mass density at the ring radius, (Jo(bE),

is unconstrainable, the Taylor-expanded multipole model shows, however, to which

features of the angularly-averaged radial profile the lens modeling is sensitive. The

constant term in the Taylor expansion of the monopole is an additive constant to the

potential and therefore has no effect. The linear terms sets the Einstein ring radius.

The quadratic term is unconstrainable due to the mass sheet degeneracy. The first

sensitivity to radial profile of the angularly averaged surface mass density comes in

the cubic term. Its fitted parameter is

, d ( (Jo(r)) If3=1-bE-ln 1--- .
dr (Jcrit r=bE

(8.1)

This is sensitive to the falloff in (Jo(r) near the Einstein ring radius. If (Jo(r) decreases

with radius then f~ < 1. However, it is more sensitive to radial falloff when (Jo(bE) is

close to (Jcrit than when (Jo(bE) is much less than (Jcrit.

If this cubic term cannot be constrained by lens modeling for a quad or ring lens,

then one may conclude that the angularly-averaged radial profile is unconstrainable.

If, however, this term can be constrained, then the surface mass density of the mass

at the ring radius can be deduced in a model-dependent way from this radial profile

term, and used to fix the mass sheet degeneracy. (See table 6.5.)

In summary, the Multipole-Taylor model and modified Multipole-Taylor model

are very suited to modeling rings and quads. They allow one to include the terms

needed to accurately reproduce the potential near the ring radius - which is ,vhere

the constraints (images) are located and where one needs to know the potential in

order to calculate the time delay. These models also allow one to exclude terms

which only affect the potential at large distances from the ring radius, and which are

therefore poorly constrained for rings and quads. These models are, however, not well

suited for modeling lenses in which the images are at very different distances from

the deflector.
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8.3 Modeling results for MG J0414+0534

8.3.1 Modeling results and angular distribution of mass

The positions of components "a", "b", "c", and "d" of images AI, A2, B, and C,

from the 5 GHz VLBA observation of MG J0414+0534, were used as constraints for

modeling the lens's deflector potential. The source-plane approximation to the point-

modeling chi-squared was used, without making corrections for the sources being

slightly extended. As position error estimates, the deconvolved (intrinsic) size of each

image was added in quadrature to the centroid errors due to the thermal noise in

the maps. This makes adequate allowance for the centroid shifts that magnification

gradients may induce in extended sources.

The abundance of position constraints, 24 net constraints on the deflector potential

which are more than previously available, and the high resolution of the very long

baseline interferometry, provide more stringent constraints on the deflector potential

than were used in previous modeling work. Accordingly, the simplest 5-panimeter

deflector models (position, lens strength, and shear) were shown to be inadequate to

describe the potential, allowing the investigation of further features of the deflector

potential.

Starting from a basic model (position, lens strength, internal quadrupole, and

external quadrupole/shear), additional model terms from the Multipole- Taylor and

modified Multipole-Taylor models were added in turn, and the fits of the models to

MG J0414+0534 were compared. It was clear that the external m = 3 multipole

and the mixed-external-and-internal m = 3 multipole did most to improve the fit.

However neither one adequately fit the position within the error estimates.

To these models (position, lens strength, internal and external (m = 2)quadrupoles,

and external or mixed-external-and-internal m = 3 multipole) were added in turn

additional terms from the Multipole- Taylor and modified Multipole- Taylor models.

Adding any term improved the fit somewhat, and several of the models adequately

satisfied the error estimates. Actually, the best-fit model was too good of a fit, with

X~in = 6.1 for 13 degrees of freedom, indicating, unsurprisingly, that to include the
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deconvolved component sizes in the error estimate was to overestimate the errors.

This best-fit II-deflector-parameter model had both an external m = 3 multipole

and an external m = 4 multipole. The potential was

<I>(x,y) = <I>(p,IJ) = ~2 (p - {(1 + p? A~ + (1 ~ p)2B~ } . (has 21J+ ysin 21J)

{(I + p)3 A~} . (xcos30 + ysin30)

{(I + p)4A~} . (xcos41J + ysin41J) ) , (8.2)

where the angle 0 is given by tanO = (y-gy)/(x-gx), and the fractional distance from

the Einstein ring radius bE is p = (V(x - gx)2 + (y - gy)2 - bE) /bE. See figure 7-4

for an illustration of the fitted model parameters. The fitted model parameters are

listed below; the confidence limits are formal 68.3% confidence limits:

deflector positions:

(Wand N of the correlation gx = 1.0788 ::i: 0.0020 arcseconds

center at AI) gy = 0.6635 ::i: 0.0012 arcseconds

ring radius: b - 11474+0.0025 arcsecondsE -. -0.0026

internal quadrupole: B' - 0 01542+0.000892 -. -0.00085

B~= B~(x cos 2'ljJB2 + y sin 2'ljJ B2) 2'ljJB2= -0.713~g:g~~ radians N of W

'ljJB2 = 69.57~g:~5 degrees E of N

external quadrupole: A' - 0 04478+0.000342 -. -0.00033

A~= A~ (x cos 2'ljJA2 + Y sin 2'ljJ A2 ) 2'ljJ - 0 513+0.013 radians N of WA2 - -. -0.012

'ljJA2 = 75.29~g:~~ degrees E of N

external m = 3 multipole: A' - 0 01080+0.000623 -. -0.00060

A~= A~ (x cos 3'ljJ Aa + Y sin 3'ljJ Aa) 3'ljJ - 2 678+0.057 radians N of WAa-' -0.055

'ljJAa = 81.15~tg~ degrees E of N

external m = 4 multipole: A' - 0 00415+0.000394 -. -0.00038

A~= A~ (x cos 4'ljJ A4 + Y sin 4'ljJ A4) 4'ljJ A4 = 2.020~g:g~~radians N of W

'ljJA4 - 28 93+1.01 degrees E of N- . -0.99
45° + 'ljJ - 73 93+1.01 degrees E of NA4- . -0.99
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The deflector centroid (gx, gy) agrees with the optical galaxy position observed

by Falco et al. (1997), even though the optical position was not used as a modeling

constraint. The directions of the mass excess indicated by both the internal and

external quadrupoles are aligned with the optical isophote angle 71° :i: 5° E of N

measured by Falco et al. (1997). The external m = 4 multipole is anti-aligned with

the optical isophotes and with the quadrupole. That is, the direction of the mass

deficit indicated by the m = 4 term, 73.9°:i: 1.00E of N, is consistent with the optical

isophote angle and is almost consistent with the external quadrupole angle. The

m = 3 multipole is approximately aligned with the quadrupole in the east and with

the m = 4 multipole in the south, though the confidence ranges do not overlap.

The internal and external quadrupole moments being so closely aligned with each

other and with the optical isophote axis indicates that they are both caused by the

ellipticity of the primary deflector itself, and not by some external perturber. This

indicates that the mass of the deflector and its ellipticity extend beyond the Einstein

ring radius (1.147 arcseconds = 5.44 h7i kpC).l A deflector that followed a singular

isothermal elliptical potential would have an external to internal quadrupole ratio of

IA21/1.821 = 3, with which this model's value of2.90:i:0.17 is consistent. Therefore this

quadrupole is consistent with the deflector being as extended as an isothermal profile.

The ellipticity of the isopotential contours near the ring radius is 21Am=2 + Bm=21 =
0.120 :i: 0.002. In contrast the isopotential ellipticity would be 0.07 for a singular

isothermal elliptical potential having an isodensity ellipticity of 0.20 :i: 0.02 (equal to

the mean ellipticity of the fitted optical isophotes of Falco et al. (1997)). The m = 4

term is due to a boxiness in the outer regions of the deflector's mass distribution. Note

that the model's external m = 4 multipole amplitude of (4.1:i: 0.4) x 10-3 is an order

of magnitude larger than the m = 4 external amplitude of 6 x 10-4 that a singular

isothermal elliptical potential of this ellipticity would have, and it is oriented in the

opposite direction, boxy rather than disky. The m = 3 multipole cannot be attributed

to an external perturber (see discussion starting on page 205) and therefore must be

caused by an asymmetry in the outer parts of the deflector's mass distribution, with

lassuming that Zl = 0.5, no = 1, nAo = 0, and Ho = 75 h75 km/sec/Mpc.
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more mass at one end of the isophote axis than at the other. It is only by coincidence

that the m = 3 term is sufficiently misaligned with the deflector axis so as to be

almost as well aligned with the m = 4 term to the west of south as it is with the

external quadrupole in the east. Note that neither Object X nor the group of galaxies

to the southwest is implicated in the lensing.

8.3.2 Radial profile

The first model term that can give information on the radial profile of the angularly-

averaged surface mass density is that monopole term which is cubic in the fractio~al

distance p of the lensed images from the ring radius. The effect of such a term should

be small and its coefficient parameter difficult to constrain since all the images are near

the ring radius; nevertheless such a term was added to each II-parameter deflector

model. The fitted parameter values have large error ranges (:i: 0.4 - 0.5 for a radial

profile term added to the best-fit II-parameter model form) compared to the range

of interesting values, from f~ = 1 for a point mass to f~ = 0 for a singular isothermal

sphere monopole. More problematic is that the value of this parameter is extremely

sensitive to which other m 2: 1 monopole components are present, with values ranging

from -9.7 to 2.3 for I2-parameter models that adequately satisfy the position error

estimates. It is clear that useful information on the radial profile of MG J04I4+0534 is

not obtained from this term. For other quad lenses the radial profile of the monopole

term will prove similarly unconstrainable.

That this parameter's value is difficult to determine by model fitting can be ex-

plained. It takes a large change in the radial profile parameter to cause a small

change in the radial positions of images near the ring radius. In contrast, small val-

ues of the m ~ 2 internal and external multipole components can cause shifts in the

radial positions of images near the ring radius - in particular changes in the balance

between internal and external will change the radial image displacements. The radial

image shifts caused by the radial profile parameter do not depend on angular position,

whereas the radial image shifts caused by the m 2: 2 internal and external multipole

terms do depend on angular position. For quad lenses there are only images at a few
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angular locations, so there can be some interplay between the effects of the radial

profile term and of the m ~ 2 multiple terms, with large shifts in the radial profile

parameter balancing small shifts in the m ~ 2 internal and external multipoles.

For systems with rings of lensed emission, information is available from images

flux at all angles for constraining the m ~ 2 multipoles. Therefore for ring systems

it remains to be seen whether the radial profile parameter can be constrained, but it

will not be possible to do so unless the m ~ 2 internal and external multipoles can

be very well constrained. MG J0414+0534's arc may provide more information to

constrain MG J0414+0534's angular multipole moments - but only if its location

can be very precisely measured. Measurements of its location to the precision of these

VLBA observations would be useful.

That the radial profile parameter is so difficult to determine is unfortunate. The

radial profile parameter provides information on how the angularly-averaged surface

mass density decreases with radius near the Einstein ring radius. Such information

on the angularly-averaged radial profile could be used to inform the choice of a'model

value for the angularly-averaged surface mass density at the ring radius, O"o(bE). The

quantity O"o(bE) is not directly constrain able from lensing, but using a model value

that differs from the true value would affect the time delay estimates.

For quad lenses, the available information on the radial distribution of the matter

in the deflector is the balance between the amplitudes of the internal and external

multipole moments - for those lenses in which the external multipole components

are attributable to the outer regions of the primary deflector rather than to secondary

perturbers. For MG J0414+0534, the ratio of external to internal quadrupole am-

plitudes, 1121/1.821 = 2.90:i: 0.17 is consistent with the value, 3, expected for an

isothermal elliptical potential.

230



8.3.3 Model predicted time delays for use in determining the

Hubble parameter

The model predicted time delays were calculated for the fitted models. The B-A,

A-C, and B-C "dimensionless" time delays for the best-fit II-parameter model are:

ATBA 1.828 X 10-12 ( 1+ 0.020 :l: 0.014 + 0.616 )- 0.018 ~ - 0.038 ,
;:;::; dA.~-A2 ~
errors Inerence model

I:1TAC - 1.042 X 10-11
( 1 :I:~:I: ~ ~~) ,

~~~~~l ~ik";~~ce ~~~~l

I:1TBC = 1.225 X 10-11
( 1:1: ~ ~ till) .

~~~~~l which
model

(8.3)

(8.4)

(8.5)

These time delays are for the brightest subcomponent "a" of each image - it is this

component and its fainter nearest neighbor "b" that are consistent with the relative

positions of the optical images. The light arrival times at Al and A2 have been

averaged to give the time for "A", under the assumption that the joint AI-A2 light

curve will be used in measuring the time delay; the separate Al and A2 time delays

are given in chapter 7. The first error term is the formal (68%) error on the fit of

the best-fit model, from the error estimates on the position errors. The second error

term is just half the difference between the Al and A2 light arrival times. The last

error term gives the spread of time delays over the models that adequately satisfy

the position errors. That the best-fit model is too good of a fit is evidence that the

position errors are overestimated. Therefore this range is an overly large estimate of

the ranges of time delays from adequate models.

The time delay ratio may be used to further distinguish the best-fit model from the

other models that fit the image positions. A measurement of ATAB/ 6.TAC to rv 2-3%,

if it confirms the best-fit II-parameter model's time delay ratio, could exclude all the

other models, allowing the "which model" uncertainty term to be dropped. Apart

from the model which is our best-fit II-parameter model form plus a radial profile

term, the lower limit on 6.TBA/ ATAC for the model with the next closest time delay
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ratio is 18% higher than the upper limit on ~TBA/ ~rAC for the best-fit model. Such a

measurement, assuming it confirms the fitted model's time delay ratio, would exclude

all the other models except the generalization of the best-fit II-parameter model to

include a radial profile parameter, for which model we may limit the radial profile

parameter to stay within the physical range. With this verification of the model form,

the model predicted dimensionless time delays would be

~T =1.828 X 10-12 ( 1+ 0.020 :f: 0.014 + 0.000 )BA - 0.018 '-v-' - 0.037
'-v-' '-v-'
formal J\1-A2 which
errors difference model

~TAC =1.042 X 10-11 ( 1 :I:~:1: ~ ~tm)
formal J\1-A2 which
errors dIfference model

~TBC =1.225 X 10-11 ( 1 :I:~~~)
~~~~~l which

model

Assuming the
time delay ratio
measured
to rv 18% agrees
with the best-fit
model.

(8.6)

These uncertainties in the time delays do not include the systematic error due to

the interaction of the mass sheet degeneracy with the choice of the model angularly-

averaged surface mass density at the Einstein ring radius. Unfortunately, the time

delay ratio ~rBA/ ~TAC cannot resolve this degeneracy.

The "dimensionless time delay" above is related to the true measurable time delay

by a cosmology-dependent distance factor:

~r c DLS

~t (1+ ZL) DLDs . (8.7)

The modeled value of ~r may be compared with a yet-to-be measured value of ~t

(for any pair of images) and the result be used to determine this distance factor and

thereby the Hubble parameter Ho. Assuming that Z, = 0.5, no = 1, and nAo = 0

then2

_ 75 km 5.201 days (1 _ K) ( 1+ 0.020 :f: 0.014 + 0.616 )
secMpc ~tBA -~ '-v-'-~

formal A.I-A2 which
errors dIfference model

(8.8)

2The Hubble parameter values are 3.2% higher assuming no = 0, nAo = 1, and 16.5% higher
assuming no = 0, nAo = O.
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_ 75 km 29.64days (1 _ K) ( 1 :f:0.OI7:f: 0.002 + 0.085 )
sec Mpc ~tAC '--v-" '--v-" - ~

Cormal A,l-A2 which
errors difference model

_ 75 km 34.84days (1 _ K) ( 1 :f:0.017+ 0.138 )
secMpc ~tBC '--v-"- ~

~~~:~l which
model

(8.9)

(8.10)

where, as explained above, measurement of the time delay ratio may reduce the error

due to "which model", and where the factor (1 - K) is due to the interaction of an

incorrect model value of the angularly-averaged surface mass density at the Einstein

ring radius, ao(bE), with the mass sheet degeneracy. The modeling was done using

an angularly-averaged surface mass density at the Einstein ring appropriate for an

isothermal profile, ao(bE) = aCrit/2. Therefore if the true deflector profile is also

an isothermal profile, which is supported by the ratio of the external to internal

quadrupole amplitudes, then K = O.

8.4 Perspective

Using time delay measurements to measure the effective distance to a gravitational

lens, for use in determining the Hubble parameter, the proportionality constant in

the redshift-distance relation, is very appealing for several reasons: (1) The large dis-

tances involved, with redshifts of rv ~ to rv 3, reduce the effects of peculiar velocities

of the observer and of the astronomical object on the deduced Hubble parameter.

(2) Uncertainties in the normalization of the cosmic distance scale do not affect this

method, since this is a one-step distance measurement that bypasses the cosmic dis-

tance ladder. (3) The physics of the time delay phenomenon is well understood:

deflection of light in a gravitational field and the slowing of time in a gravitational

potential well.

The chief sources of error in the determination of the Hubble parameter using

this technique arise from the difficulty in adequately determining the characteristics

of the gravitational field that deflects and delays the light. The only other measure-

ments needed are the source and lens redshifts and the time delay itself which can
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be measured to high precision if one is fortunate enough to see an abruptly rising or

falling flare in the lens source emission. Among these gravitational uncertainties are

the effects of density fluctuations along the line of sight (Bar-Kana 1996), effects due

to the curvature of space-time or the presence of a cosmological constant, and the dif-

ficulty of determining the gravitational potential of the deflector having information

on it from only a few lensed image locations.

For the determination of the deflector potential itself, the modeling work on

MG J0414+0534 done in this thesis shows that with high precision constraints from

VLBI observations of the positions of image subcomponents, most of the error in the

model-predicted dimensionless time delays comes from the possibility of error in the

selection of the model functional form to use, rather than being due to the imprecision

of the positions themselves. Yet, this modeling work on MG J0414+0534 is encour-

aging: even trying a wide range of model forms, selected so as to explore the effects

of the dominant terms in an expansion in small quantities, the error on the model-

predicted dimensionless time delay (and therefore on the Hubble parameter due to

the lens modeling) is under 15% if the B-C time delay is used to determine theHub-

ble parameter. The error may be reduced if measurements of the A-B and A-C time

delays determine the ratio /:i.TBA/ /:i.TAc to rv 18%, verifying the best-fit II-parameter

model, and thereby excluding the other model forms except for the generalization of

the best-fit II-parameter model to include a radial profile parameter. This would

reduce the uncertainty on the time delays due to the choice of model form, leaving

only a rv +2%/ - 4% error on the determination of the Hubble parameter from the

A-B time delay, or a rv +2%/ - 10% error using the B-C time delay. Measurement

of the time delay ratio /:i.TBA/ /:i.TAc to rv 2 - 3% could further reduce the uncertainty

due to the choice of model forms.

While modeling difficulties due to the scarcity of information of the deflector

potential may prevent this technique from being used for an extremely high precision

measurement of the Hubble parameter, a time delay measurement on a single lens

- provided its model is as well-constrained as MG J0414+0534's is, can constrain

the Hubble parameter to a precision which in interestingly small, given the current
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state of the measurements of Ho. Measurements from multiple lenses will serve as

checks against modeling errors due to peculiarities in individual lenses. Such lens-

time-delay determinations are valuable also for being completely independent of the

other techniques for the determination of the Hubble parameter.

If MG J0414+0534's redshift and time delays can be measured, MG J0414+0534

will give a good no-cosmic-distance-Iadder measurement of the Hubble parameter.
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Appendix A

Errors on elliptical Gaussian fits to

maps with correlated noise

In this appendix, using reasonable assumptions, are calculated the correlations in

the errors of the fitted parameters, due to thermal noise, when fitting an elliptical

Gaussian to a source in a radio-interferometry map.l This work takes into account

the pixel-to-pixel noise correlations in interferometer maps, extending the work of

Condon (1997) and Kogan (1996) who for simplicity neglected the pixel-to-pixel noise

correlations in their covariance matrix calculation, and included correlated noise in

only an approximate and semi-empirical way.

A.I Introducing the covariance matrix of the fit of

a model to jointly Gaussian random variables

Consider a data set of N data points, Zi for i = 1, ... , N, for which the measurement

errors are normally distributed though not independent. The expected values of the

data points, that is, the mean values of the distribution from which they are drawn,

are denoted by (Zi) = Zi. The covariance matrix of these jointly Gaussian random

variables is denoted by stata = (Jh = ((Zi - zd(zj - Zj)).

IThis does not include the deconvolution error.
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A model is fitted to the data, 9i(a), which predicts the i = 1, ... , N data values

Zi. The model is parameterized by M model parameters, which may be written as

an M-dimensional vector a, or as the vector's components ao for Q = 1, ... , M. It

is assumed that the model may be treated as linear in the model parameters ii over

the region of interest - which is reasonable since any well-behaved function may be

approximated as being linear over a small enough region.

To find the best-fit model parameters for a particular data set {Zi} drawn from

the probability distribution for the data, one minimizes the maximum likelihood

statistic with respect to the model parameters. For this case of Gaussian errors, the

appropriate maximum likelihood statistic is the familiar X2,

N N
X2 = L L (Zi - 9i(ii)) {sdata}ijl (Zj - 9j(ii)).

i=l j=l
(A.I)

Assuming that 9i (ii) is linearizable in the model parameters ii in the region of interest

near the X2 minimum, then the M best-fit model parameters afit that minimize the

X2 can be found analytically by setting the M derivatives ~dd 2 to zero. As a thoughtao:

experiment, it is assumed that many datasets {Zi} are drawn from the same distribu-

tion, and that for each dataset the fitted model parameters iifit that minimize the X2

for that realization of the dataset are calculated. Then, for the ensemble of datasets,

the mean (afit) = afit and the covariance of the fit results may be computed. The

covariance of the fitted parameters may shown to be

(A.2)

(A.3)

where

DQ(3 =tt dgi {3data}i dgj.
i=l j=l dao dap

Note that Dop is symmetric, and it has been assumed to be invertible.

n-1 is called the covariance of the fit. It gives the variance and the covariance

of the errors in the fitted parameters due to the Gaussian errors in the data points

{Zi}. The covariance matrix is also useful for calculating the expected value and the
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standard deviation of functions of the fitted model parameters. For a function of the

fitted parameters f(ii), in the region where f is linearizable, the expected value of f
is (f(ii)) = f( (ii)) and its variance is

(A.4)

where the derivatives are evaluated at the expected value of ii.

It is this covariance matrix n-1 that this appendix computes for the parameters

of an elliptical Gaussian fitted to a radio interferometry map in which the map noise

is correlated from pixel to pixel.

A.2 From discrete to continuous data

When fitting a model to an interferometry map, the amplitude of the flux in the ith

pixel is the ith data point Zi, for i = 1, ... ,N. This amplitude can also be written

Z(Xi) where Xi is the (x, y) location of the ith pixel. If the pixel spacing is small

enough compared with the beam size then the beam is well sampled, and the map

values change little from pixel to pixel.2 In this case it is sensible to approximate the

discrete sum over pixels with an integral over pixel locations. Let h be the pixel size,

and h2 be the pixel area; the integral approximation becomes exact in the limit that

the pixel size h becomes arbitrarily small. The appropriate correspondence between

discrete and continuous is:

i, j ~
...... Identifies the pixel by number/locationx,y

Nh2 ~ A Total pixel area/integration area

E~l ~ f d
2x Summation/Integration (A.5)h2

~ij ~ h2~(2) (x - Y) Discrete/continuous delta function

fi ~ f(x) A function of the pixel number/location

2It is obvious that the source flux will not change significantly over scales much smaller than the
beam size. It will be shown below that the effect of the map's thermal noise on the pixel values will
not change significantly over scales much smaller than the beam size.
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Similarly the definition of an inverse matrix is extended to the continuous case:

N ,pI
'" M M-1 - ~ f x M( -+ ~)M-1 (-+I ;1\ - h2 ~(2) (-+ ;1\!--' ij jk - uik +---+ /;2 X,X. X 'YJ - U X - YJ.
J=l

(A.6)

Therefore equation A.3, for the inverse covariance matrix of the model parameters

of a fitted model, may be converted from a discrete sum over pixels to a continuous

integral over pixel locations:

D = f ,px f d2
y [89(i)] S-l (-+ ;1\ [89(Y'J]

a{3 h2 h2 8a
a

data X, Y J 8a{3 . (A.7)

For known functional forms of the model g(x) and the pixel-noise covariance matrix

Sdata(x, fj), the elements Da{J are straightforwardly computed using Fourier transform

techniques.

A.3 Fourier transform techniques

Using the relation that the noise correlation in the map depends only on the vector

displacement of one pixel from another (verified below) then the covariance matrix

for the pixel noise may be written as

sdata (x, fj) = sdata (x - YJ.

In terms of its Fourier transform this is

(A.B)

where
sdata(k) = f ,px e-ikoi sdata(x)

(21r )2/2 .
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The inverse of sdata, needed for equation A. 7, is readily found using the Fourier

transform:

The functional form of the model, too, may be Fourier transformed,

( .....) / f12k ik-x -(k)
9 x = (27r)2/2e 9 ,

where

(A.II)

(A.I2)

(A.13)- (k.....) / d
2
x -ik-x ( .....)

9 = (27r)2/2e 9 x .

Equations A.II and A.I3 may be used in equation A.7, giving the following ex-

pression for the inverse of the model parameters' covariance matrix:

(A.14)

A.4 Covariance matrix for the map noise

For radio interferometry data, in which there is independent Gaussian white noise in

each of the real and imaginary parts of each visibility data point, the resultant flux

errors in the pixels of an interferometer map (due to this noise) are correlated with

each other, and their correlation is given by the beam pattern.

sdata( .....;1\ _ (( ( .....) -( .....)) ( ( .....) -( .....))) _ 2 Ibeam (y - x)X,Y)= zx -zx zy -zy -J-L .....
Ibeam(O)

(A.15)

where J-L is the root-mean-square noise in a single pixel and Ibeam(Y - x) is the (dirty)

beam pattern. Note that as presumed above, sdata(x, YJ = Sdata(x - YJ.
The beam pattern varies from observation to observation. However, the effect on

the model fits to the map, caused by the pixel-to-pixel correlation of the noise, should

be mainly dependent on the high degree of correlation between nearby pixels. There

should be little effect due to the low degree of correlation between widely separated
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pixels. It is assumed that the central portion of the beam is well enough approximated

by an elliptical Gaussian, which can be parameterized by a major axis, minor axis,

and orientation angle.
T (-) T (-) _lx.B-l.xl.beam X = l.beam 0 e 2 ,

where

B = _1_ ( B~ sin2 <PB + B~ cos2 <PB -(B~ - B~) sin <PB cos <PB ) ,
8ln 2 -(B~ - B~) sin <PB cos <PB B~ cos2 <PB + B~ sin2 <PB

(A.16)

(A.17)

and where EM is the beam major axis, Bm is the beam minor axis, and for x increasing

to the west and y increasing to the north, <PB is the angle east of north to the major

axis. Thus the covariance matrix for the pixel noise is

(A.18)

and its Fourier transform (defined in equation A.I0) is

where

A.5

r:;-:-:;:;dB = BM Bmv aet J:) I .8 n2

The fitted model: an elliptical Gaussian

(A.19)

(A.20)

The model to be fitted to the interferometry map is itself an elliptical Gaussian:

1 ( - -) G-l (- -)(-) A -- X-Xo •• X-Xo9 X = e 2 ,

where

1 (B~ sin2 <PG + B~ cos2 <PG -(B~ - B~) sin <PG cos <PG ) ,
G = 81n 2 _ (O~ - O~) sin <PG cos <PG O~ cos2 <PG + O~ sin2 <PG
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where the six model parameters are

Xo = (X, Y) - Location of Gaussian to west (X) and north (Y) (A.23)

4JG - Angle east of north to major axis (A.24)

OM - Model major axis (A.25)

Om - Model minor axis (A.26)

A - Amplitude of Gaussian model (A.27)

The Fourier transform of this model is

where
r:;-;-;:;dG _ OM Omy aet \.:i' - •

8ln2

(A.28)

(A.29)

A.6 The inverse of the covariance matrix computed

for an elliptical Gaussian fitted to an interfer-

ometer map with pixel-to-pixel noise correla-

tions

Expression A.14 for the inverse of the covariance matrix requires the Fourier trans-

forms of the model and of the pixel-noise covariance-matrix. These are given in

equations A.28 and A.19. Plugging equations A.28 and A.19 into equation A.14,

and doing rather a lot of derivatives, integrals, and matrix algebra, one can grind

out the expressions for the components Daf3 of the inverse of the model-parameter

covariance matrix. The indices 0: and /3 run over the model parameters, referring to

X, Y, 4JG, OM, Om, and A respectively for a = 1, ... ,6.

It is found that D is block diagonal; the position errors are uncorrelated with the
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errors in the other fitted model parameters:

0 0 0 0 f-X
Dpos

0 0 0 0 f-Y

0 0 f- rPGD= (A.30)
0 0 f- OM

Dsize
0 0 f- Om

0 0 f-A

The matrices Dpos and Dsize will be given below. For writing the elements of these

matrices, it will be useful to introduce some new notation. The rotation matrix is

_ ( - sin rPG - COS CPG )R- .
+ COS CPG - sin CPG

(A.31)

Using the rotation matrix, the matrix describing the model may be rotated to a frame

aligned with its axes,

GO = R-1GR = _1_ (O~ 0).
BIn 2 0 02

m

(A.32)

The following combination also appears: the model convolved with itself, from which

the beam has been deconvolved,

G' = 2G - B.

This same combination, in a frame aligned with the model axes, is

The following quantities will also appear:

P = det(G'G-1) = det(2 - BG-1),
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Q = Tr (G'G-I) - 1 = 3 - Tr (BG-I). (A.36)

Using the quantities defined above the 2 x 2 position-error portion of the inverse

covariance matrix (A.30) is

Dpos
A2 detG (G')-I,-
J-l2 vdet Bvdet G'

A2 detG (2G - B)-I,-
J-l2 Vdet Bv det G'

(A.37)

(A.38)

and the 4 x 4 angle-axes-amplitude portion of the inverse covariance matrix (A.30) is

o~-o~ 0 0 081n2

A2 detG 0 ~ 0 0
Dsize

81n2
X-

J-l2 vdet Bvdet G' 0 0 ...!!m- 081n2

0 0 0 I
A

f{lf~2+ 2 [f{2]2 f{2(3f{l-fll) f{2(3f~2-f22) -f{2

f{2(3f{l-fll) (f{l-fll)2+ 2 [f{l]2 (f{l-fll)(f~2-f22)+ 2 [f{2]2 -f{l + fll

f{2(3f~2-f22) (f{l-rll)(r~2-f22)+ 2 [r{2]2 (f~2-f22)2+ 2 [r~2]2 -f~2+ f22

- r{2 -f{l + fll -f~2+ f22 1

o~-o~ 0 0 081n2

0 J!.M.... 0 0
X 81n2 (A.39)

0 0 ...!!m- 081n2

0 0 0 I
A

where the 2 x 2 matrixes r' and rare r' = (Go,)-I and r = (GO)-I. To find the

covariance matrix D-l, both Dpos and Dsize must be inverted.
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A.7 The covariance matrix computed for an ellip-

tical Gaussian fitted to an interferometer map

with pixel-to-pixel noise correlations

When the above equation is inverted, the covariance matrix of the fitted model pa-

rameters is found to be

n-1 0 0 0 0 -(-X
pos

0 0 0 0 -(-y

n-1 =
0 0 -(- <PG

(A.40)
0 0 n-1 -(- BM

size
0 0 -(- Bm

0 0 -(-A

where the 2 x 2 covariance matrix for the position errors is

n-1 J-t2 Vdet B Vdet G' G' (A.41)pos - A2 detG
,

J-t2 vdet Bvdet G'
(2G - B), (A.42)- A2 detG
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and where the 4 x 4 covariance matrix for the angle-axes-flux errors is

81n2 0 0 09~-9~

/-L2 Vdet BVdet G' 0 81n2 0 0n-1 - 8M Xsize A2 detG 81n20 0 0;;:- 0

0 0 0 A

G~~G2~ + [G~~]2 GOl GOl GOl GOl -Gol Q12 11 12 22 12

GOl GOl ! [Go/]2 ! [Go/]2 ~(G~1 P - G~~Q)12 11 2 11 2 12 ~
no
prime

GOl GOl ! [Go/]2 ! [Go/]2 ~(G22 P - G2~Q)12 22 2 12 2 22 ~
no
prime

-Gol Q ~(G~l P - G~~Q) ~(G22 P - G2~Q) ~ (3 + Q2 - 2P)12 ~ ~
no no
prime prime

81n2 0 0 0 +- 4>G9~-9~

0 81n2 0 0 +- BM
x e;- (A.43)

0 0 81n2 0 +- Bm0;;:-

0 0 0 A +-A

Equations A.41 and A.43 are the main results of this appendix: the covariance

matrix for the fitted parameters of an elliptical Gaussian model fitted to a radio-

interferometry map which has pixel-to-pixel noise correlated on the scale of the beam.

The matrices B, G, GO, G', and GOl are defined in equations A.17, A.22, A.32, A.33,

and A.34, respectively, and the quantities P and Q are defined in equations A.35,

and A.36.
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A.8 Variance of the integral flux

The variances of the fitted elliptical Gaussian's orientation angle, major axis length,

minor axis length, and peak flux are given by the diagonal elements in the array AA3.

The integral flux of the fitted elliptical Gaussian can be computed from its major axis

length, minor axis length, and peak flux,

(AA4)

The variance of the integral flux can be computed using equation AA and the co-

variance matrix in equation AA3, assuming that the major axis length, minor axis

length, and peak flux are all fitted parameters:

A.9 Special cases

(AA5)

The expressions above for the covariance matrix (AAO, AAl, AA3), and for the

variance of the integral flux (AA5) simplify for special cases.

A.9.l Model Gaussian fitted using fixed major axis, minor

axis, and orientation angle

If the model major axis, minor axis, and orientation angle were held fixed when the

model was fitted to the data, then the corresponding rows and columns drop out of

the expression (A.30, A.37, A.39) for the inverse of the covariance matrix, and the

inverse of the covariance matrix is

D = A2 detG
J-L2 ydet Bydet G'
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The inverse of this is simply found, giving the covariance matrix

n-1 = J-l2 JCIetBv det G'
A2 detG

G' a
a

~X

~Y (A.47)

In this case the variances of the peak flux and of the integral flux are both given by

Var (A)
I

A2
_ Var (fflux) I
- 12

(}M ,(}m fixed flux (}M ,(}m fixed

J-l2 JCIetBVdet G'
A2 detG (A.48)

Note that the variance of the integral flux is half as large as for the case in which

the model major axis, minor axis, and orientation angle are fitted parameters (equa-

tion A.45).

A.9.2 Beam equal in size to the fitted Gaussian

If the fitted Gaussian is equal in size to the beam, the fitted values of the major axis,

minor axis, peak flux, and orientation angle are uncorrelatedwith each other.

a a a a
G a a a a

2 a a (}~(}~ a a an-1 = ~ ((}~_(}~)2 (A.49)A2 a a a !(p a a2 M

a a a a !(j2 a2 m

a a a a a A2

In the case where the major axis, minor axis, and orientation angle have been fitted,

and their fitted values match the beam size, then the variance of the integral flux is

Var (fflux) = 2 J-l2
2 A2'fflux
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If instead, the model major axis and minor axes and orientation angle had been fixed

to the beam size, then the variance of the integral flux is

J-L2
= A2'

OM,Om fixed
(A.51)

which has the same fractional error as the peak flux.

A.9.3 Beam small with respect to the fitted Gaussian

In the case that the fitted elliptical Gaussian size is much larger than the beam size,

the covariance matrix of the fitted model parameters is

0 0 0 0
G

0 0 0 0
2 0 0 20~O~ 0 0 0n-1 = 4 !!:.- (O~-o~)2

'Y A2
0 0 0 B~ 0 -~ABM

0 0 0 0 B2 -lABm 2 m
0 0 0 -~ABM -lAB A2

2 m

(A.52)

and the variance of the integral flux is

where 'Y is the ratio of the beam area to the fitted Gaussian's area:

7rBMBm/ (41n 2)
'Y = 7rBMBm/ (41n 2) .

(A. 53)

(A.54)

If the beam is very small with respect to the model extent, then the region over

which the noise is correlated (which is the beam size) is very small with respect

to the model extent. In that case, the covariance matrix should be the same as the

covariance matrix for uncorrelated noise. It can be shown that equation A.52 gives the

same covariance matrix as is found for the case of no pixel-to-pixel noise correlations,
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provided that the area of such pixels equals the beam size used for equation A.52:

(A.55)

The expression in A.52 combined with the effective pixel size in A.55 gives the same

variances as calculated by Condon (1997) for model parameters fitted to maps with

uncorrelated noise.
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Appendix B

Parameters of Models fitted to

MG J0414+0534

The fitted model parameters, for the modified Multipole- Taylor models fitted to

MG J0414+0534, are shown graphically in figures B-1 through figure B-37 with the

parameter values tabulated alongside each plot. Confidence ranges on the model pa-

rameters are given if they were calculated. An explanation of the symbols in the plots

is given in figure 7-2

Dimensionless time delays for the models fitted to MG J0414+0534 are tabulated

in tables B.l - B.3. Time delay ratios for the models fitted to MG J0414+0534 are

tabulated in tables B.4 - B.6

B.l Two- or three-term models
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Figure B-1: Model SIS+XS (mOt1+m2ext), fitted to MG J0414+0534.
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Figure B-2: Model mOt1+m2ext+m2int, fitted to MG J0414+0534.

254



Model Parameters

MONOP UN •
gx 1.00195

f ?:n~~~
MO~O~ifx~~

f 2.88878
M_MUL TIP _EXT _polar

m 2 fixed
A._amp 0.04179

~'U.~utrl~~?NT~~~~
m 2 fixed

B ..amp 0.00797
B_.arig -1.8377

Observed Images •
Modellmages ..

Mode! Sources •

B.2 Four-term models

Polntsolver MG J0414t0534

2.5

Object X

+
2 B ..y.

1.5

lsophote Angle

I~ 2r! ,,*c(

0.5 ~\ Galaxy 2

0

-0.5

to~

-1

•1 -0.5 0 0.5 1 1.5 2 2.5 3
Arcsec

Figure B-3: Model mOtI +mOt3+m2ext+m2int, fitted to MG J04I4+0534.
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Figure B-5: Model mOtI +m2ext+m2int+rn 2t2,fittedto MG J04I4+0534.
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B.3 Five-term models

B.3.! Models without an m = 3 multipole term
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Figure B-12: Model mOtI+m2ext+m2int+m4ext+m4int.
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B.3.2 Models with a mixed internal...;external m = 3 multipole

term
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Figure B-16: Model mOtI+m2ext+m2int+m3tO+m4int, fitted to MG J04I4+0534.
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Figure B-17: Model mOtI+m2ext+m2int+m3tO+m4tO.
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Figure B-18: Model mOtl+m2ext+m2int+m3tO+m4ext.
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B.3.3 Models with an external m =-3 multipole term
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Figure B-19: Model mOtl+mOt3+m2ext+m2int+m3ext, fitted to MG J0414+0534.
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Figure B-23: Model mOtI+m2ext+m2int+m3ext+m4int.
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Figure B-24: Model mOtI+m2ext+m2int+m3ext+m4tO.
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Figure B-25: Model mOtl+m2ext+m2int+m3ext+m4ext.

268



B.4 Six-term models

B.4.1 Models without an m = 3 multipole term

Figure B-26: Model mOtI+mOt3+m2ext+m2int+m4ext+m4int.
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B.4.2 Models with a mixed internal-external m = 3 multipole

term
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Figure B-27: Model mOtl+mOt3+mmlt2+m2ext+m2int+m3tO.

270



Model Parameters

MONOP_UN ~
gx 1.0512 ( 1.0414 1.0618) .
gy 0.7906 (0.7778 0.8033) .
b 1.1502 ( 1.1307 1.1599) .

MONOP TAY
t 3-flXed

. f -9.6 (-182 -6.3)
M_MUL TIP _EXT_polar

m 2 fixed
A_amp 0.0434 ( 0.0399 0.0571 )

A_ang -0.423 ( -0.461 -0.283 )
M_MUL TIP _INT J)Olar

m 2 fixed
B_amp 0.0136 (0.0055 0.0419)

B_ang -0.625 ( .0.774 -0.473)
M_MULTIP _TAYJ>Olar

m 2 fIXed
t 2 fIXed

G_amp 1.36 ( 0.97 2.45 )
G_ang 1.701 ( 1.6181.781 )

MULTIP _CNSTJ>Olar
m 3 fIXed

msum_amp 0.0109 ( o.oon 0.0208 )
msum_ang -2.827 (-2.888 -2.767)

Observed Images ..
Modellmages ..

Model Sources ..

3

to~

Figure B-28: Model mOtl+mOt3+m2ext+m2int+mm2t2+m3tO.
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Figure B-29: Model mOtl+mOt3+m2ext+m2int+m3tO+m4int.
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Figure B-30: Model mOti +mOt3+m2ext+m2int+m3tO+m4tO.
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B.4.3 Models with an external m ='3 multipole term
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Figure B-32: Model mOtI+mOt3+mmI t2+m2ext+m2int+m3ext.
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Figure B-33: Model matI +mOt3+m2ext+m2int+mm2t2+m3ext.
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Figure B-35: Model mOtl+mOt3+m2ext+m2int+m3ext+m4int.
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Figure B-36: Model mOtl+mOt3+m2ext+m2int+m3ext+m4tO.
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Figure B-37: Model mOtI +mOt3+m2ext+m2int+m3ext+m4ext.
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B.5 Time delays tabulated for all models
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Model ~TAlaA2a ~TAlaBa ~TAlaCa ~TBaCa

SIEP 2.01 -2.358 4.525 4.760
x 10-14 x 10-12 X 10-11 X 10-11

SIS+XS (mOt1+m2ext) 2.15 -1.627 2.925 3.088
x 10:-14 x 10-12 X 10-11 X 10-11

PM+XS 0.00 0.532 0.482 0.429
x 10-14 x 10-12 X 10-11 X 10-11

mOt1+m2ext+m2int 2.16
X 10-14

-1.422
X 10-12

0.541
X 10-11

0.683
X 10-11

+m3int 3.15 -1.271 0.605 0.732
x 10-14 x 10-12 X 10-11 X 10-11

+mm2t2 4.44 -2.004 0.897 1.097
x 10-14 x 10-12 X 10-11 X 10-11

+mOt3 2.69 -1.413 0.587 0.729
x 10-14 x 10-12 X 10-11 X 10-11

+mm1t2 3.31 -1.487 0.604 0.752
x 10-14 x 10-12 X 10-11 X 10-11

+m4ext 8.10 -3.250 0.760 1.085
x 10-14 x 10-12 X 10-11 X 10-11

+m4tO 13.56 -4.608 0.492 0.953
x 10-14 x 10-12 X 10-11 X 10-11

+m4int 5.59 -1.900 1.846 2.036
x 10-14 x 10-12 X 10-11 X 10-11

+m3ext 5 19+0.09 2 326+0.038 0866+0.009 1 099+0.012• -0.09 -. -0.039 • -0.009 • -0.012

X 10-14 X 10-12 X 10-11 X 10-11

+m3tO 588+0.09 2 481+0.037 0996+0.012 1 244+0.016
• -0.09 -. -0.037 . -0.012 • -0.016

X 10-14 X 10-12 X 10-11 X 10-11

Table B.1: "Dimensionless time delays" for two- to four-term models fitted to
MG J0414+0534, using the "deconv-size-n-centroid-errs" position error estimate. The
time delays are given for the brightest component "a". Image B leads and image C
lags. 278



Model LlrA1aA2a LlrAlaBa LlrAlaCa LlrBaCa

+m4ext+m4int 6 99+0.18 2 154+0.059 0942+0.047 1158+0.044. -0.18 -. -0.067 . -0.043 . -0.041
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+mOt3 5 35+0.19 2 265+0.069 o 908+0.031 1134+0.038. ...:.0.17 -. -0.077 . -0.028 . -0.034
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+m4int 588+0.28 2 489+0.037 o 940+0.031 1188+0.028. -0.23 -. -0.027 . -0.025 . -0.024
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+m4tO 637+0.28 1 714+0.091 1 617+0.122 1 788+0.113• -0.27 -. -0.097 . -0.111 • -0.102
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+m4ext 660+0.14 2 616+0.047 0987+0.032 1 249+0.031. -0.13 -. -0.047 . -0.030 • -0.029
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+mm2t2 6 19+0.16 2 610+0.066 1133+0.020 1 394+0.017. -0.13 -. -0.077 . -0.017 . -0.016
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+mm1t2 4 85+0.12 2 061+0.059 o 838+0.027 1 044+0.034. -0.12 -. -0.068 . -0.023 . -0.029
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4tO 764+0.31 2 642+0.137 o 942+0.050 1 206+0.039. -0.32 -. -0.132 . -0.051 . -0.040
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4int 626+0.20 2 330+0.032 0880+0.048 1113+0.046. -0.22 -. -0.028 . -0.045 . -0.043
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+mOt3 423+0.07 1 912+0.027 0722+0.009 0913+0.011. -0.07 -. -0.028 . -0.008 . -0.010
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+mm1t2 7 15+0.48 3 027+0.185 1 036+0.051 1 339+0.073. -0.40 -. -0.221 . -0.046 • -0.064
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m3int 5 89+0.12 2486+0.034 1 069+0.060 1 318+0.061. -0.11 -. -0.028 • -0.051 . -0.052
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+mm2t2 536+0.03 1 985+0.019 o 811+0.015 1 010+0.017'-0.04 -. -0.020 . -0.015 . -0.017
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4ext 5 15+0.19 1 802+0.034 1 044+0.018 1 225+0.017. -0.17 -. -0.036 . -0.017 . -0.017
X 10-14 X 10-12 X 10-11 X 10-11
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+0534, using the "deconv-size-n-centroid-errs"position error estimate. The time



Model LlTA1aA2a Ll7 A1aBa Ll7A1aCa Ll7BaCa

+m4ext+m4int+mOt3 6.41 -1.549 3.011 3.166
x 10-14 x 10-12 X 10-11 X 10-11

+m3tO+m4int+mOt3 691 +0.20 2 734+0.058 1 339+0.119 1 613+0.123. -0.23 -. -0.048 . -0.111 . -0.113
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+m4tO+mOt3 10.11~~J~ 3 462+0.761 2477+0.348 2823+0.378-. -0.333 . -0.331 . -0.322
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+m4ext+mOt3 6 80+1.72 2 694+0.273 1 010+0.249 1 280+0.318. -0.72 -. -0.703 . -0.092 . -0.117
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+mm2t2+mOt3 709+5.31 2 912+0.664 0864+0.548 1155+0.757. -1.74 -. -2.092 . -0.164 . -0.230
X 10-14 X 10-12 X 10-11 X 10-11

+m3tO+mml t2+mOt3 5 25+0.17 2 202+0.075 o 898+0.016 1118+0.021. -0.20 -. -0.044 . -0.031 . -0.038
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+mml t2+mOt3 602+0.92 2 604+0.304 o 928+0.093 1188+0.129. -0.79 -. -0.360 . -0.085 . -0.116
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4tO+mOt3 4 62+0.29 2 910+0.323 o 556+0.070 o 847+0.040. -0.28 -. -0.380 . -0.076 . -0.038
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m3int+mOt3 4 93+1.11 2 133+0.161 o 949+0.148 1162+0.186. -0.51 -. -0.410 . -0.093 . -0.108
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+mm2t2+mOt3 5 88+0.47 2 183+0.194 o 857+0.063 1 075+0.077. -0.51 -. -0.174 . -0.063 . -0.079
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4int+mOt3 400+0.30 2 254+0.056 0606+0.034 o 832+0.030. -0.25 -. -0.059 . -0.031 . -0.026
X 10-14 X 10-12 X 10-11 X 10-11

+m3ext+m4ext+mOt3 4 70+0.22 1 734+0.029 o 913+0.061 1 086+0.062. -0.17 -. -0.029 . -0.046 . -0.045
X 10-14 X 10-12 X 10-11 X 10-11

Table B.3: "Dimensionless time delays" for six-term models fitted to MG J0414+0534,
using the "deconv-size-n-centroid-errs" position error estimate. The time delays are
given for the brightest component "a". Image B leads and image C lags.
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Model ~TBaAla/ ~TAlaCa ~TBaA2a/ ~TA2aCa

SIEP 0.052 0.053

SIS+XS (mOt1+m2ext) 0.056 0.056

PM+XS -0.110 -0.110

I mOt1+m2ext+m2int 0.263 0.268

+m3int

+mm2t2

+mOt3

+mm1t2

+m4ext

+m4tO

+m4int

+m3ext

+m3tO

0.210 0.217

0.223 0.230

0.241 0.246

0.246 0.253

0.428 0.443

0.936 0.991

0.103 0.106

o 268+0.003 o 276+0.003
. -0.003 . -0.003

o 249+0.002 o 256+0.002
• -0.002 . -0.002

Table B.4: Time delay ratios for two- to four-term models fitted to MG J0414+0534.
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Model l::1"-BaA1a/ l::1,,-A1aCa l::1"-BaA2a/l::1"-A2aCa

+m4ext+m4int o 229+0.014 o 238+0.015
. -0.014 . -0.014

+m3tO+mOt3 o 249+0.002 o 257+0.002
. -0.002 • -0.002

+m3tO+m4int o 265+0.010 o 273+0.010
. -0.012 . -0.012

+m3tO+m4tO o 106+0.014 o 110+0.014
. -0.013 . -0.013

+m3tO+m4ext o 265+0.010 o 274+0.011
. -0.011 . -0.011

+m3tO+mm2t2 o 230+0.007 o 237+0.007
. -0.008 . -0.008

+m3tO+mm1t2 0246+0.002 o 253+0.002
. -0.002 . -0.002

+m3ext+m4tO o 281+0.031 o 291+0.031
. -0.027 . -0.028

+m3ext+m4int o 265+0.017 o 274+0.017
. -0.016 . -0.016

+m3ext+mOt3 o 265+0.003 o 272+0.003
. -0.003 . -0.003

+m3ext+mm1t2 o 292+0.007 o 301+0.007
. -0.005 . -0.005

+m3ext+m3int o 233+0.011 o 239+0.011
. -0.011 . -0.012

+m3ext+mm2t2 0245+0.004 o 253+0.004
. -0.004 . -0.004

+m3ext+m4ext o 173+0.006 o 178+0.006
. -0.006 . -0.006

Table B.5: Time delay ratios for five-term models fitted to MG J0414+0534.
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Model /),.TBaAla/ /),.7AlaCa /),.7BaA2a//),.TA2aCa

I +m4ext+m4int+mOt3 0.051 0.054

+m3tO+m4int+mOt3 o 204+0.017 o 210+0.017
. -0.015 . -0.015

+m3tO+m4tO+mOt3 o 140+0.026 o 144+0.027
. -0.024 . -0.024

+m3tO+m4ext+mOt3 o 267+0.015 o 275+0.015
. -0.012 . -0.013

+m3tO+mm2t2+mOt3 o 337+0.020 o 348+0.021
. -0.017 . -0.018

+m3tO+mm1 t2+mOt3 o 245+0.001 o 253+0.001
. -0.001 . -0.001

+m3ext+mm1 t2+mOt3 o 281+0.010 o 289+0.010
. -0.008 . -0.008

+m3ext+m4tO+mOt3 o 523+0.160 o 536+0.163. -0.110 . -0.112

+m3ext+m3int+mOt3 o 225+0.013 o 231+0.014
. -0.008 . -0.008

+m3ext+mm2t2+mOt3 o 255+0.016 o 263+0.016
. -0.014 . -0.015

+m3ext+m4int+mOt3 o 372+0.030 o 381+0.030
. -0.027 . -0.027

+m3ext+m4ext+mOt3 o 190+0.012 o 196+0.012
. -0.012 . -0.012

Table B.6: Time delay ratios for six-term models fitted to MG J0414+0534.
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