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Abstract

Object localization and classification are important problems in computer vision.
However, in many applications, exhaustive search over all class labels and im-
age locations is computationally prohibitive. While several methods have been
proposed to make either classification or localization moreefficient, few have
dealt with both tasks simultaneously. This paper proposes an efficient method
for concurrent object localization and classification based on a data-dependent
multi-class branch-and-bound formalism. Existing bag-of-features classification
schemes, which can be expressed as weighted combinations offeature counts can
be readily adapted to our method. We present experimental results that demon-
strate the merit of our algorithm in terms of classification accuracy, localization ac-
curacy, and speed, compared to baseline approaches including exhaustive search,
the ISM method, and single-class branch and bound.

1 Introduction

In many object localization and classification applications, exhaustive search over all class labels
and/or image windows can be too time-consuming to be practical. To improve localization effi-
ciency, it is desirable to reduce the number of windows that need to be processed. Previous ap-
proaches have identified clusters of promising local features and searched over windows around
these clusters [3], and/or used local features to vote for object locations and verify the voted loca-
tions though back-projection [8]. Recently, branch-and-bound approaches have been revisited in the
computer vision literature, and have been shown to greatly speed up object detection [7] using con-
temporary object category recognition representations, e.g., visual word histograms. These methods
all dramatically improve localization speed, but generally require a linear scan of model hypotheses,
which can be costly when the number of categories or instances under consideration is large.

To improve classification efficiency with large numbers of categories or instances, tree-based data
structures have been proposed to index class labels, such asthe measurement-decision tree technique
[10], the vocabulary tree technique [9], and the random-forests technique [1]. Given an image feature
as input, these tree structures can quickly lookup relevantclass labels. After every image feature has
been considered, the most probable class label is simply theone that has been looked up the most
number of times. Graph-based data structures have been proposed which organize 1-vs-1 SVM
classifiers into a directed acyclic graph (DAG-SVM) so that only a small subset of SVMs need to be
evaluated [11]. These methods improve classification speed, but assume the localization is irrelevant
or already specified.
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This paper deals with the problem of concurrent classification and localization, by proposing a multi-
class formalism of branch-and-bound and introducing a data-dependent region hypothesis sampling
scheme to more efficiently select promising candidate regions. Additionally, we incorporate a ge-
ometric verification stage into the method and show how the method can be extended to consider
non-rectangular object regions, e.g., those defined by setsof stacked bounding boxes. Existing
bag-of-features classification schemes, which can be expressed as weighted combinations of feature
counts, can be readily adapted to our method. We present experimental results that demonstrate the
relative merit of our algorithm in terms of classification accuracy, localization accuracy, and speed,
in comparison with baseline approaches including exhaustive search, the ISM method of [8], and
single-class branch and bound.

There has been a large body of work dealing with similar typesof concurrent vision tasks. For
instance, the problem of concurrent recognition and segmentation has been explored by [14], which
uses graph partitioning to recognize patches containing body part, find the best configuration of these
detected parts for a given object model, and return a segmentation mask based on this configuration,
and by [13], which learns generative probabilistic models for recognition and segmentation capable
of dealing with significant with-in class variations. Thesemethods assume the object has been
localized somewhere in the middle of an image. Also, the problem of concurrent object detection
and segmentation has been studied by [6], which proposes a probabilistic method called OBJCUT
that combines bottom-up and top-down cues to detect and segment a single instance of a given object
category, such as cows and horses, by [12], which applies OBJCUT to detect and segment multiple
objects (i.e., faces), and by [4], which searchers over affine invariant regions in images for matches
consistent with a given object modal and uses an efficient algorithm for merging matched regions
into segmentation masks. However, these methods either assume the class model is known or require
repeated applications over all class models.

2 Concurrent object localization and classification

Given an input image withN local features and a set ofM object class models learned previously,
the task of concurrent object localization and classification can be cast as a joint optimization prob-
lem over a bounding regionr and a class labeli that maximizes the sum of the features bounded
by r, weighted by thei-th class model. We can formally define this problem by expressing theN
local features as a set ofN tripletsT : {(xj , yj , ~vj)|1 ≤ j ≤ N}, where(xj , yj) marks the location
of each feature and~vj is am-dimensional vector whosei-th element~v(i) stores the feature weight
assigned by thei-th class model. Then, the objective function can be given asfollows:

arg max
r,i

∑

j∈T (r)

~vj(i) (1)

whereT (r) denotes the indices of the subset of triplets inT spatially bounded by the regionr.

We initially consider bounding regions which are traditional rectangles, although below we intro-
duce an extension of the method to consider composite box regions. Rather than uniformly sample
image coordinates, we define the space of bounding region hypotheses in a data-dependent manner,
using the actual locations of feature points to determine the four edges of a box. Our search space
consists of five variables:c, x−, x+, y−, y+, wherec is the class label,x− andx+ are the two ex-
treme points of the box along the horizontal direction, andy− andy+ are the extreme points along
the vertical direction. The time complexity of exhaustive search would beO(mn4). In the next
section, we describe an efficient algorithm to solve this optimization problem based on branch-and-
bound, which is also illustrated in Figure 1 and Algorithm 1.

2.1 Multi-class, data-dependent Branch-and-bound

We present a multi-class, data-dependent branch-and-bound method for concurrent object classifica-
tion and localization. Branch-and-bound is a well-known search technique that is capable of finding
the global optimal solution. In computer vision, this technique has bee applied in geometric match-
ing [2], segmentation [5], and localization [7]. Two components critical to the branch-and-bound
technique are the mechanism for branching—dividing the search space into different subspaces, and
the criterions for bounding—estimating the upper and lower bounds of the optimal value that can be
discovered within each subspace.
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Figure 1: Searching the best bounding box and class model by branch-and-bound. Inputs arem
weighted feature representations each weighted by one ofm class models. Green and red markers
denote positive and negative features w.r.t. a class model.The objective is to find a bound box
and a class label that jointly maximize the sum of the weighted features inside the box (i.e., more
green and fewer red).X−, X+, Y −, Y +, are the four candidate sets that specify a set of candidate
bounding boxes (any box that can be drawn within the shaded regions).b+ andb− are the largest and
smallest candidate bounding boxes definable by these four candidate sets.C is the fifth candidate set
specifying the candidate class models. In this example, a subset of classes have been discarded from
the current hypothesis (e.g., class 2) because their upper-bound estimates are low. To branch, we
pick Y − and split it into halves, because it has the most feature points (data-dependent sampling).

A subspaceS can be defined by a set of five candidate setsX−, X+, Y −, Y +, C for the five vari-
ablesx−, x+, y−, y+ , c respectively. A candidate set specifies a set of feature points or labels a
variable can still take on. In contrast to [7], we initializeX ’s andY ’s to be the set of all feature
points, not the set of all image coordinates;C is the set of all class labels. At each iteration, the
branching step is to pick a candidate and split it into two halves. Then,thebounding step is to esti-
mate the bounds of the resulting new subspaces. These boundsare used to prioritize these subspaces
in a queue. The subspace with the highest upper bound will be moved to the top of the queue and
will be processed at the next iteration. As the search progresses, the size of each candidate set will
gradually decrease. When every candidate set of the subspaceat the top of the queue has only one
member, a solution is found. The global optimality of this solution is guaranteed because all the
subspaces remaining in the queue must have upper bounds below this solution.

To split a subspaceS into two smaller subspacesS1 andS2, we choose the largest candidate set and
split it into two equal-size subsets. ForX ’s, we split the set horizontally, where points in one set are
strictly to the left of the points in another set. ForY ’s, we split the set vertically, where points in one
set are strictly above the points in another set. ForC, we split the set according to the upper-bound
estimates, where class labels in one set possess higher upper-bounds estimates than do those in the
other set. After a candidate set is split into halves,V1 andV2, we first create two copies ofS. Then,
from each copy we remove the members in each half to obtainSi : {X−

i , X+
i , Y −

i , Y +
i , Ci}, i =

1, 2. For instance, ifY − is split, in order to obtainS1, we remove points inV1 not only fromY −

1
but also fromX1’s as well. A benefit of our data-directed branching scheme when compared to a
uniform sampling of the image coordinates is that fewer degenerate or redundant hypotheses will be
considered. This efficiency advantage will be empirically demonstrated in Section 2.2.

Given a subspaceS and its candidate setsX−, X+, Y −, Y + , C, the largest boxb+ discoverable in
this subspace must be the one defined by the left-most point inX−, the right-most point inX+, the
bottom-most point inY −, and the top-most point inY +. Similarly, the smallest boxb− discoverable
must be the right-most point inX−, the left-most point inX+, the top-most point inY −, and the
bottom-most point inY +. For each class labelc ∈ C, our goal is to find a box betweenb+ andb−

that includes as many positive numbers and exclude as many negative points as possible at dimension
c. Also, we know that this box cannot contain more positive points than doesb+ and cannot contain
fewer negative points than doesb−. Thus, we can calculate the class-specific upper-boundfc for the
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Algorithm 1 Localize and classify the object in an input imageI concurrently.

function LOCALIZEANDCLASSIFY(I)
X−

0 ,X+
0 , Y −

0 , Y +
0 ← all points inI

SortX ’s andY ’s alongx andy axis
C0 ← all class labels
S0 ← {X

−

0 ,X+
0 , Y −

0 , Y +
0 , C0}

P ← empty priority queue
InsertS0 into P
while S ← POP(P ) do

if ∀V ∈ S, |V | = 1 then
return S

end if
(S1,S2)← SPLIT(S)
InsertS1 to P with keyfc(S1)
InsertS2 to P with keyfc(S2)

end while
end function

function SPLIT(S : {X−,X+, Y −, Y +, C})
Let V be the largest candidate set
if V = C then

Let Sc denote{X−,X+, Y −, Y +, c}
Sort allc ∈ V by fc(Sc)
V1 ← top half of allCis
V2 ← bottom half of allCis

else
V1 ← first half ofV
V2 ← second half ofV

end if
S1 ← copy ofS with V1 removed
S2 ← copy ofS with V2 removed
return (S1,S2)

end function

subspaceS as follows:

fc(S) =
∑

j∈T (b+)

h+(~vj(c)) +
∑

j∈T (b−)

h−(~vj(c)) (2)

whereh+(x) andh−(x) are functions that evaluate tox if x is positive or negative respectively, and
0 if otherwise. Similarly, the lower-bound is attained by including as many negative numbers and
excluding as many positive numbers as possible. The class-specific lower-boundgc can be obtained
by

gc(S) =
∑

j∈T (b−)

h+(~vj(c)) +
∑

j∈T (b+)

h−(~vj(c)). (3)

Finally, we compute the overall upper-boundf(S) and lower-boundg(S) for the subspaceS by
taking the maximum and minimum of the individualfc’s andgc’s for the classes inC respectively.
The lower bound measurements are useful for pruning the search space, discarding those subspaces
whose upper-bounds are lower than the lower-bounds of knownsubspaces.

To deal with multi-instance localization and classification, we optionally let our search algorithm
continue to run even after it has discovered the optimal solution. To avoid redundant detections we
remove features used in previous detections. Finally, we also add an optional post verification step to
check the spatial consistency between features enclosed bythe bounding region, simply by applying
the ISM method using these features. If these features are consistent, the hypothesis made by ISM
will also be consistent with the bounding box; we would expect the localization predicted by ISM
would be within the bounding box. If not, we can reject the current bounding box hypothesis and
try the second best bounding box, until it passes the ISM verification step.

Our joint optimization problem for concurrent object localization and classification operates on a set
of triplets(xj , yj , ~vj). Many common object category classification schemes, including voting and
SVMs with kernels defined on visual word histograms, can be straightforwardly expressed in this
weighed-feature representation, as we show in the following paragraphs.

Voting-based classification schemes simply allow each feature to cast votes on a set of class labels,
ideally with an efficient indexing scheme to retrieve relevant labels for a given feature. E.g., with
a vocabulary tree each leaf node in the tree corresponds to a visual word and stores the id’s of the
training images that contains such word and the counts of this word in each training image. To
obtain the desired representation, we add a triplet(xj , yj , ~vj) for each featurefj . (xj , yj) are the
coordinates of the feature location. To obtain~vj , let W (j) be the set of id’s of the training examples
indexed by the word looked up byfj . Let k be the id of a training image,lk its class label, andck
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Figure 2: Examples of training images.

Correct Examples

Incorrect Examples

Figure 3: Examples of localization and classification results of our method. The top rows show
correct results. The first three incorrect examples are cases when classification failed; our algorithm
mistaken background regions as some books. The last two incorrect examples are cases when lo-
calization failed (the object center is outside the bounding box) despite correct classification. These
mistakes are mainly due to the failure to extract salient features from some regions of a book, but
can be remedied by geometric post-verification.

the count of its votes. Then, thei-th element of~vj can be calculated as

~vj(i) =
∑

k∈W (j)

h(lk = i)ck (4)

whereh(x) evaluates to1 if x is true and0 if otherwise.

Typical SVM-based classification schemes use bag-of-visual-word representations to compute pair-
wise similarity scores between training images as kernels to learn support vectors, and between
support vectors and the test image to calculate margins. Since the bag-of-feature similarity score
is simply the aggregate of the partial similarity scores contributed by individual image features, the
margin for thei-th class is the weighted sum of similarity scores to a set of training examples plus
an offsetβi; this can be computed by aggregating the weighted partial similarity scores of individual
image features. For thek-th training image, let~αk be a vector containing its support vector weights
wherei-th element denotes its weight in thei-th SVM. Then, the partial score contributed by a local
image featurefj to the overall score of thei-th SVM can be calculated as

~vj(i) =
∑

k∈W (j)

h(lk = i)ck ~αk(i) (5)

Also, class-specific bound estimates must be adjusted by theoffset of each SVM as follows:

f ′c = fc + βc , g′c = gc + βc . (6)

2.2 Experiments

The objective of our first experiment is to evaluate the effectiveness of our algorithm in localization
and classification tasks in relation to baseline methods. Wechoose a typical large-category recogni-
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Method BOF ISM ISM+ EES EES+ CCL− CCL
Classification accuracy 59.2% 86.1% 83.8% 85.3% 85.3% 85.3% 85.3%
Localization accuracy N/A 39.2% 82.3% 80.0% 80.0% 80.0% 80.0%
Time per image (sec) 0.12 61.32 524.28 606.65 182.53 2.27 1.14

Table 1: Empirical comparisons of our method to six alternatives (Section 2.2).

tion task, recognizing book covers in a set of input images. Our training set was a database of book
covers from an online retailer (e.g., Figure 2). For the testset, we collected images with multiple
books placed in varying orientations in a cluttered environment. Figure 3 shows some examples of
test images with bounding boxes and labels (indicated by different colors) found by our algorithm.

On a task with 120 books in the index and 130 test images, we compared our concurrent classifi-
cation and localization method (CCL) to six alternatives: (1) simple bag-of-feature voting (BoF),
which performed no localization and used all the image features to vote on class labels, (2) the
implicit shape model (ISM) [8], which provided localization by letting image features to vote on
scales and locations using class-specific codebooks, (3) animproved, robust-to-rotation version of
ISM (ISM+), which augmented the training set with rotated versions of each training image in 45
degree increments, (4) efficient sub-window search (EES) [7], which also uses branch-and-bound to
find optimal bounding boxes but does not split thee search space in a data-dependent manner, (5)
EES with data-dependent sampling (EES+), and (5) a reduced version of our method without data
dependent hypothesis sampling (CCL−), which aimed to demonstrate the benefit of this sampling
technique. Note that the first five alternatives all require repeated applications over all the class
models in order to find the best class label1.

Table 1 reports the result of this comparative experiment along three criteria: classification accuracy,
localization accuracy, and running time. All the methods involved were implemented in C++ and
executed on a machine with a 3.2GHz CPU. In terms of speed, BoFachieved the fastest performance
at 0.12 sec. per image; however, it had the lowest classification performance at 59.2% and provided
no localization. The original ISM method achieved the best classification accuracy, but it only
managed to correctly localize the book in 39.2% of the test images, mainly when the book in a test
image happens to be in an orientation close to that of the training image of the same book. By
using 8 rotated images of books as training images, ISM+ improved the localization accuracy to
82.3%; yet, it took close to 10 minutes to process each test image because of the need to check every
codebook. The running time ofM applications of EES also took about 10 minutes. Using data-
dependent sampling (EES+), this time was reduced to about 3 minutes. In comparison, our method
was able to provide localization and classification with an accuracy comparable to that of the two
variants of ISM, while recording a computation time of a little more than a second per test image, at
least two-orders of magnitude faster than ISM+ and EES. Moreover, the benefit of data-dependent
sampling has been verified; when this feature was turned off (i.e., CCL−), the running time more
than doubled (1.14 versus 2.27 sec.).

Figure 4 demonstrates the scalability of our method. It shows the classification accuracy and per-
image running time of our method using the same set of 130 testimages but against a database of up
to 1000 books. Our method still achieved a classification accuracy above 70% at 1000 books with
running time growing linearly to the number of classes. Figure 5 shows some examples of multi-
instance localization and classification results demonstrating that our method can handle multiple
objects in the same image. Figure 6 shows examples of adding ISM verification after a bounding
box and class label is discovered by our algorithm.

3 Search with composite box regions

While bounding boxes have been widely used for localization because of computational simplicity,
there are situations when these boxes are too coarse for localization. For example, when the target
is a long, thin object positioned at a 45 degree angle, any rectangular bounding box is deemed to

1In all experiments, SIFT were the features descriptors. In ISM-related experiments, the Harris detector
was used on images resized to 640x480 and the threshold for agglomerative clustering was -40000. In all other
experiments, the MSER detector was used on images resized to 1024x768.
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Figure 4: Scalability of our multi-class branch-and-boundalgorithm. As the number of classes
increases (i.e., up to 1000 books), the classification accuracy slowly declines but still stays above
70%. The running time grows linearly instead of quadratically to the number of classes.

.

Figure 5: Examples of concurrently localizing and classifying multiple copies of different books.

Figure 6: Examples of using implicit shape model (ISM) to verify the spatial consistency of the
feature points in a bounding box. Our method quickly find the best bounding box and the class
label. Then, only the ISM corresponding to the label is evaluated to predict the object center (black
circle). Here, all centers are inside the bounding boxes, thus spatially consistent.
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Figure 7: Composite versus single bounding boxes (Section 3). In single-class examples (top),
green and red markers are positive and negative features, which are filled if bounded. Single boxes
(1st row) cannot maximize the sum of the weighted features inthem, whereas composite boxes
can capture more positive features and discover higher scores (2nd row). In multi-class examples
(bottom), each class has a unique color and bounded featuresare filled. Similarly, composite boxes
(right) can find higher scores by avoiding more negative features than single boxes (left).

include many unwanted background features. In the other extreme are methods that do not assume
any bounding shape, such as [8], that are immune to this problem; however, such methods can be
computationally costly.

An attractive compromise between the two extremes that can be efficiently implemented with our
method is to use composite bounding regions comprised of a series ofk bounding boxes in a vertical
stack. Instead of using two extreme points to mark the left and right sides of a single bounding box,
we usek pairs of left-right feature points to define the two sides of each of thek bounding boxes.
Namely, we splitX− andX+ into {X−

1 . . . X−

k } and{X+
1 . . . X+

k } respectively. Thus, together
with Y −, Y +, C, the total number of candidate sets in the new joint optimization problem is2k +3.
Moreover,k can be determined automatically by incrementally increasing it by one until the optimal
score improves no more. Figure 7 show examples of complex distribution of features that can be
bounded by composite boxes to find optimal scores but not by single boxes.

4 Conclusion

This paper described an efficient method for concurrent object localization and classification based
on a data-dependent multi-class branch-and-bound formalism. In our experiments, we compared our
approach to existing methods, and demonstrated the superior performance of our method in terms
of overall classification and localization accuracy, and speed.
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