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Abstract

Object localization and classification are important peofd in computer vision.
However, in many applications, exhaustive search overlafisclabels and im-
age locations is computationally prohibitive. While seveng@thods have been
proposed to make either classification or localization neffecient, few have
dealt with both tasks simultaneously. This paper proposesfficient method
for concurrent object localization and classification lobea a data-dependent
multi-class branch-and-bound formalism. Existing badeaftures classification
schemes, which can be expressed as weighted combinatifeetafe counts can
be readily adapted to our method. We present experimergaltsethat demon-
strate the merit of our algorithm in terms of classificatioowracy, localization ac-
curacy, and speed, compared to baseline approaches imglexhaustive search,
the ISM method, and single-class branch and bound.

1 Introduction

In many object localization and classification applicasioexhaustive search over all class labels
and/or image windows can be too time-consuming to be pedcti€o improve localization effi-
ciency, it is desirable to reduce the number of windows tlestdnto be processed. Previous ap-
proaches have identified clusters of promising local festiand searched over windows around
these clusters [3], and/or used local features to vote figoblocations and verify the voted loca-
tions though back-projection [8]. Recently, branch-and#r approaches have been revisited in the
computer vision literature, and have been shown to grepted up object detection [7] using con-
temporary object category recognition representatiags, ésual word histograms. These methods
all dramatically improve localization speed, but gengregquire a linear scan of model hypotheses,
which can be costly when the number of categories or instameder consideration is large.

To improve classification efficiency with large numbers dfegaries or instances, tree-based data
structures have been proposed to index class labels, stioh m&asurement-decision tree technique
[10], the vocabulary tree technique [9], and the randoredtstechnique [1]. Given an image feature
as input, these tree structures can quickly lookup releslass labels. After every image feature has
been considered, the most probable class label is simplgrtbeghat has been looked up the most
number of times. Graph-based data structures have beengmwpvhich organize 1-vs-1 SVM
classifiers into a directed acyclic graph (DAG-SVM) so thalya small subset of SVMs need to be
evaluated [11]. These methods improve classification spgeg@ssume the localization is irrelevant
or already specified.



This paper deals with the problem of concurrent classificedind localization, by proposing a multi-
class formalism of branch-and-bound and introducing a-datendent region hypothesis sampling
scheme to more efficiently select promising candidate regid\dditionally, we incorporate a ge-
ometric verification stage into the method and show how ththarkecan be extended to consider
non-rectangular object regions, e.g., those defined bydettacked bounding boxes. Existing
bag-of-features classification schemes, which can be sspdeas weighted combinations of feature
counts, can be readily adapted to our method. We presentiggeal results that demonstrate the
relative merit of our algorithm in terms of classificatiorcatacy, localization accuracy, and speed,
in comparison with baseline approaches including exhaisiarch, the ISM method of [8], and
single-class branch and bound.

There has been a large body of work dealing with similar typlesoncurrent vision tasks. For
instance, the problem of concurrent recognition and setgtien has been explored by [14], which
uses graph partitioning to recognize patches containidg part, find the best configuration of these
detected parts for a given object model, and return a segti@minask based on this configuration,
and by [13], which learns generative probabilistic modelsrécognition and segmentation capable
of dealing with significant with-in class variations. Thesethods assume the object has been
localized somewhere in the middle of an image. Also, the lpratof concurrent object detection
and segmentation has been studied by [6], which proposesbalptfistic method called OBJCUT
that combines bottom-up and top-down cues to detect andesggnsingle instance of a given object
category, such as cows and horses, by [12], which applieCOBIo detect and segment multiple
objects (i.e., faces), and by [4], which searchers overeaffimariant regions in images for matches
consistent with a given object modal and uses an efficiemtriétgn for merging matched regions
into segmentation masks. However, these methods eithanagke class model is known or require
repeated applications over all class models.

2 Concurrent object localization and classification

Given an input image withV local features and a set 8f object class models learned previously,
the task of concurrent object localization and classificatian be cast as a joint optimization prob-
lem over a bounding region and a class labelthat maximizes the sum of the features bounded
by r, weighted by the-th class model. We can formally define this problem by exgngsthe N
local features as a set &f tripletsT" : {(x;,y;,v;)|1 < j < N}, where(z;,y;) marks the location

of each feature and; is am-dimensional vector whoseth element(i) stores the feature weight
assigned by théth class model. Then, the objective function can be giveiolisvs:

arg max Z 03(4) (1)
" jer(n
whereT (r) denotes the indices of the subset of triplet§ispatially bounded by the region

We initially consider bounding regions which are tradiibnectangles, although below we intro-
duce an extension of the method to consider composite basnegRather than uniformly sample
image coordinates, we define the space of bounding regiosthgges in a data-dependent manner,
using the actual locations of feature points to determirefolir edges of a box. Our search space
consists of five variables:, z—, 2™, y~,y™, wherec is the class labely~ andx™ are the two ex-
treme points of the box along the horizontal direction, andandy™ are the extreme points along
the vertical direction. The time complexity of exhaustieasch would be)(mn?). In the next
section, we describe an efficient algorithm to solve thisnoiation problem based on branch-and-
bound, which is also illustrated in Figure 1 and Algorithm 1.

2.1 Multi-class, data-dependent Branch-and-bound

We present a multi-class, data-dependent branch-anddboathod for concurrent object classifica-

tion and localization. Branch-and-bound is a well-knowarsh technique that is capable of finding

the global optimal solution. In computer vision, this teicjug has bee applied in geometric match-
ing [2], segmentation [5], and localization [7]. Two comgaits critical to the branch-and-bound

technique are the mechanism for branching—dividing thecbespace into different subspaces, and
the criterions for bounding—estimating the upper and loveerrals of the optimal value that can be

discovered within each subspace.
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Figure 1: Searching the best bounding box and class modetdnch-and-bound. Inputs are
weighted feature representations each weighted by one déiss models. Green and red markers
denote positive and negative features w.r.t. a class mobet objective is to find a bound box
and a class label that jointly maximize the sum of the weidliéatures inside the box (i.e., more
green and fewer red)X —, X+, Y, Y+, are the four candidate sets that specify a set of candidate
bounding boxes (any box that can be drawn within the shadgadng).b* andb™— are the largest and
smallest candidate bounding boxes definable by these fodidate setsC is the fifth candidate set
specifying the candidate class models. In this examplehsetwof classes have been discarded from
the current hypothesis (e.g., class 2) because their upperd estimates are low. To branch, we
pick Y~ and split it into halves, because it has the most featurap@iata-dependent sampling).

A subspaceS can be defined by a set of five candidate séts, X+, Y —, YT, C for the five vari-
ablesz—, z%, y~, y™ , c respectively. A candidate set specifies a set of featurgpoinlabels a
variable can still take on. In contrast to [7], we initialiZBs andY’s to be the set of all feature
points, not the set of all image coordinatés;is the set of all class labels. At each iteration, the
branching step is to pick a candidate and split it into two halves. THleabounding step is to esti-
mate the bounds of the resulting new subspaces. These batgdsed to prioritize these subspaces
in a queue. The subspace with the highest upper bound willdedto the top of the queue and
will be processed at the next iteration. As the search pesgi® the size of each candidate set will
gradually decrease. When every candidate set of the subapttetop of the queue has only one
member, a solution is found. The global optimality of thisusion is guaranteed because all the
subspaces remaining in the queue must have upper boundsthé&solution.

To split a subspacs into two smaller subspacés and.S,, we choose the largest candidate set and
split it into two equal-size subsets. Far's, we split the set horizontally, where points in one set are
strictly to the left of the points in another set. Bois, we split the set vertically, where points in one
set are strictly above the points in another set. ®pwe split the set according to the upper-bound
estimates, where class labels in one set possess higherhqp®ls estimates than do those in the
other set. After a candidate set is split into halMésand V5, we first create two copies &f. Then,
from each copy we remove the members in each half to olstain{ X, X;", Y,~, ;. Ci},i =

1,2. For instance, i’ ~ is split, in order to obtairb;, we remove points i, not only fromY;~

but also fromX;’s as well. A benefit of our data-directed branching schememd¢ompared to a
uniform sampling of the image coordinates is that fewer deggte or redundant hypotheses will be
considered. This efficiency advantage will be empiricablynibnstrated in Section 2.2.

Given a subspac§ and its candidate sef§—, X+, Y, YT, C, the largest box™ discoverable in
this subspace must be the one defined by the left-most poitinthe right-most point inX +, the
bottom-most point i —, and the top-most point iF . Similarly, the smallest bok~ discoverable
must be the right-most point iX —, the left-most point inX+, the top-most point i’ —, and the
bottom-most point i’ ™. For each class labele C, our goal is to find a box betweér andb™
that includes as many positive numbers and exclude as mgagivepoints as possible at dimension
c. Also, we know that this box cannot contain more positivengothan does™ and cannot contain
fewer negative points than do&s. Thus, we can calculate the class-specific upper-bguihar the



Algorithm 1 Localize and classify the object in an input imalgeoncurrently.

function SPLIT(S : {X—, X+, Y, Y*.C})
Let V be the largest candidate set
if V= C then

function LOCALIZEANDCLASSIFY(])
Xy, X, Yy, Y, < all points in
Sort X’s andY’s alongx andy axis

Cy « all class labels
So {XO_,XS_,YO_,YJ,CO}
P «— empty priority queue
InsertS, into P
while § — Popr(P) do

if VI € S,|V] = 1then

return S
end if
(S1,82) « SPLIT(S)

LetS, denote{ X —, X+t Y~ YT ¢}

Sortallc € V by f.(S.)

V1 « top half of allC;;s

V5 « bottom half of allC;s
else

V1 « first half of V

V5 « second half ol
end if
S1 « copy of S with V; removed

InsertS; to P with key f.(S1)
InsertSs to P with key f.(S2)
end while
end function

Sy + copy of S with V; removed
return (S1,S2)
end function

subspace as follows:

f(S)= > hrwie)+ Y. h(w5(0) )
)

JET(b+ JET(b—)

whereh* (z) andh~ () are functions that evaluate taif x is positive or negative respectively, and
0 if otherwise. Similarly, the lower-bound is attained bylirding as many negative numbers and
excluding as many positive numbers as possible. The classfie lower-bound;. can be obtained

by
ge(S) = > hr@ie)+ > h(5j(c). €)

JET(b™) JET(bF)

Finally, we compute the overall upper-bouridS) and lower-bound;(S) for the subspacé by
taking the maximum and minimum of the individugls andg.’s for the classes id' respectively.
The lower bound measurements are useful for pruning thetsepace, discarding those subspaces
whose upper-bounds are lower than the lower-bounds of krsolvapaces.

To deal with multi-instance localization and classificatiove optionally let our search algorithm
continue to run even after it has discovered the optimaltesiu To avoid redundant detections we
remove features used in previous detections. Finally, seadd an optional post verification step to
check the spatial consistency between features enclostbe typunding region, simply by applying
the ISM method using these features. If these features aigstent, the hypothesis made by ISM
will also be consistent with the bounding box; we would expke localization predicted by ISM
would be within the bounding box. If not, we can reject therent bounding box hypothesis and
try the second best bounding box, until it passes the ISMigation step.

Our joint optimization problem for concurrent object Ideation and classification operates on a set
of triplets (z;, y;,v;). Many common object category classification schemes, dieduvoting and
SVMs with kernels defined on visual word histograms, can kagttforwardly expressed in this
weighed-feature representation, as we show in the follgwaragraphs.

Voting-based classification schemes simply allow eachufeab cast votes on a set of class labels,
ideally with an efficient indexing scheme to retrieve retevabels for a given feature. E.g., with
a vocabulary tree each leaf node in the tree correspondsisual word and stores the id’s of the
training images that contains such word and the counts sfvloird in each training image. To
obtain the desired representation, we add a triftety;, v;) for each featuref;. (z;,y;) are the
coordinates of the feature location. To obtajnlet 1V (j) be the set of id’s of the training examples
indexed by the word looked up bfs. Let k be the id of a training imageé, its class label, and,

4



CLoReIn alzant | 1 National Bestseller |
Omnivo THE {HABITSO - : Adub_e
N Premiere63

filcllﬁl(%ﬂilc ] : 0 Pt ‘ RAVDA KKJ

Smesr | v B 8 |, omn

Figure 2: Examples of training images.
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Figure 3: Examples of localization and classification ressaf our method. The top rows show

correct results. The first three incorrect examples aresoabken classification failed; our algorithm

mistaken background regions as some books. The last twor@at@xamples are cases when lo-
calization failed (the object center is outside the bougdiox) despite correct classification. These
mistakes are mainly due to the failure to extract salientufes from some regions of a book, but
can be remedied by geometric post-verification.

the count of its votes. Then, thidh element of; can be calculated as

G =Y hllx=de )
kew (5)
whereh(z) evaluates td if z is true and) if otherwise.

Typical SVM-based classification schemes use bag-of-lsisoad representations to compute pair-
wise similarity scores between training images as kerreledrn support vectors, and between
support vectors and the test image to calculate marginceShre bag-of-feature similarity score
is simply the aggregate of the partial similarity scorestdbated by individual image features, the
margin for thei-th class is the weighted sum of similarity scores to a setaifiing examples plus
an offsetg;; this can be computed by aggregating the weighted partidlagity scores of individual
image features. For thieth training image, letvi, be a vector containing its support vector weights
wherei-th element denotes its weight in thth SVM. Then, the partial score contributed by a local
image featuref; to the overall score of theth SVM can be calculated as

G(i) = > hlle = i)crdi(i) (5)
kew (5)
Also, class-specific bound estimates must be adjusted hyffiet of each SVM as follows:
fc/:fc+ﬂc ) gézgc"‘ﬂc . (6)

2.2 Experiments

The objective of our first experiment is to evaluate the eiffeaess of our algorithm in localization
and classification tasks in relation to baseline methodschgese a typical large-category recogni-



Method BOF ISM ISMT EES | EEST | CCL™ CCL
Classification accuracy 59.2% | 86.1% | 83.8% | 85.3% | 85.3% | 85.3% || 85.3%
Localization accuracy| N/A | 39.2% | 82.3% | 80.0% | 80.0% | 80.0% || 80.0%
Time per image (sec)| 0.12 | 61.32 | 524.28 | 606.65| 182.53| 2.27 1.14

Table 1: Empirical comparisons of our method to six altéwest(Section 2.2).

tion task, recognizing book covers in a set of input imagas. t@ining set was a database of book
covers from an online retailer (e.g., Figure 2). For the $e$t we collected images with multiple
books placed in varying orientations in a cluttered enviment. Figure 3 shows some examples of
test images with bounding boxes and labels (indicated Wgreéifit colors) found by our algorithm.

On a task with 120 books in the index and 130 test images, weamed our concurrent classifi-
cation and localization method (CCL) to six alternativek) gimple bag-of-feature voting (BoF),
which performed no localization and used all the image festto vote on class labels, (2) the
implicit shape model (ISM) [8], which provided localizatidy letting image features to vote on
scales and locations using class-specific codebooks, (By@mved, robust-to-rotation version of
ISM (ISM+), which augmented the training set with rotatedsi@ns of each training image in 45
degree increments, (4) efficient sub-window search (EElS)Mfich also uses branch-and-bound to
find optimal bounding boxes but does not split thee searcbespaa data-dependent manner, (5)
EES with data-dependent sampling (EBSand (5) a reduced version of our method without data
dependent hypothesis sampling (CQL which aimed to demonstrate the benefit of this sampling
technique. Note that the first five alternatives all requépeated applications over all the class
models in order to find the best class lahel

Table 1 reports the result of this comparative experimentgithree criteria: classification accuracy,
localization accuracy, and running time. All the methodsined were implemented in C++ and
executed on a machine with a 3.2GHz CPU. In terms of speedaBoieved the fastest performance
at 0.12 sec. per image; however, it had the lowest classdicperformance at 59.2% and provided
no localization. The original ISM method achieved the bedasgification accuracy, but it only
managed to correctly localize the book in 39.2% of the tesiges, mainly when the book in a test
image happens to be in an orientation close to that of thaitgiimage of the same book. By
using 8 rotated images of books as training images, ISM+ ongat the localization accuracy to
82.3%; yet, it took close to 10 minutes to process each tegjénbecause of the need to check every
codebook. The running time dff applications of EES also took about 10 minutes. Using data-
dependent sampling (EE$, this time was reduced to about 3 minutes. In comparisongaihod
was able to provide localization and classification with aocusiacy comparable to that of the two
variants of ISM, while recording a computation time of ddittnore than a second per test image, at
least two-orders of magnitude faster than ISM+ and EES. blae the benefit of data-dependent
sampling has been verified; when this feature was turned.eff CCL™), the running time more
than doubled (1.14 versus 2.27 sec.).

Figure 4 demonstrates the scalability of our method. It shttive classification accuracy and per-
image running time of our method using the same set of 13@nbegfes but against a database of up
to 1000 books. Our method still achieved a classificatiomiaary above 70% at 1000 books with
running time growing linearly to the number of classes. Fégb shows some examples of multi-
instance localization and classification results dematisty that our method can handle multiple
objects in the same image. Figure 6 shows examples of ad8ixgverification after a bounding
box and class label is discovered by our algorithm.

3 Search with composite box regions

While bounding boxes have been widely used for localizatiecelnse of computational simplicity,
there are situations when these boxes are too coarse fdizhiaan. For example, when the target
is a long, thin object positioned at a 45 degree angle, artamgalar bounding box is deemed to

In all experiments, SIFT were the features descriptors. In ISM-rklex@eriments, the Harris detector
was used on images resized to 640x480 and the threshold for aggtveehastering was -40000. In all other
experiments, the MSER detector was used on images resized to 1024x768
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Figure 4: Scalability of our multi-class branch-and-bowidorithm. As the number of classes
increases (i.e., up to 1000 books), the classification acguslowly declines but still stays above
70%. The running time grows linearly instead of quadralycal the number of classes.

Figure 5: Examples of concurrently localizing and clasaiymultiple copies of different books.
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Figure 6: Examples of using implicit shape model (ISM) toifyethe spatial consistency of the
feature points in a bounding box. Our method quickly find tlesttbounding box and the class
label. Then, only the ISM corresponding to the label is eatid to predict the object center (black
circle). Here, all centers are inside the bounding boxess fipatially consistent.
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Figure 7 Composne versus smgle bounding boxes (Sect)onlrﬁ smgle cIass examples (top),
green and red markers are positive and negative featurésh ate filled if bounded. Single boxes
(1st row) cannot maximize the sum of the weighted featurethém, whereas composite boxes
can capture more positive features and discover higheesd@nd row). In multi-class examples
(bottom), each class has a unique color and bounded featredled. Similarly, composite boxes
(right) can find higher scores by avoiding more negativeufiest than single boxes (left).

include many unwanted background features. In the otheemet are methods that do not assume
any bounding shape, such as [8], that are immune to this gmgbhowever, such methods can be
computationally costly.

An attractive compromise between the two extremes that eagffiiently implemented with our
method is to use composite bounding regions comprised afess# & bounding boxes in a vertical
stack. Instead of using two extreme points to mark the ledtraght sides of a single bounding box,
we usek pairs of left-right feature points to define the two sides afleof thek bounding boxes.
Namely, we splitX ~ and X * into {X; ... X, } and{X; ... X, } respectively. Thus, together
with Y=, Y+, C, the total number of candidate sets in the new joint optitiongproblem i2k + 3.
Moreover,k can be determined automatically by incrementally incregigiby one until the optimal
score improves no more. Figure 7 show examples of compléxtditon of features that can be
bounded by composite boxes to find optimal scores but notriglesboxes.

4 Conclusion

This paper described an efficient method for concurrentobligealization and classification based
on a data-dependent multi-class branch-and-bound fasmalin our experiments, we compared our
approach to existing methods, and demonstrated the superformance of our method in terms
of overall classification and localization accuracy, aneesh
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