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Abstract

If we are to understand human-level cognition, we must understand how the mind
finds the patterns that underlie the incomplete, noisy, and ambiguous data from our
senses and that allow us to generalize our experiences to new situations. A wide
variety of commercial applications face similar issues: industries from health services
to business intelligence to oil field exploration critically depend on their ability to find
patterns in vast amounts of data and use those patterns to make accurate predictions.

Probabilistic inference provides a unified, systematic framework for specifying and
solving these problems. Recent work has demonstrated the great value of probabilistic
models defined over complex, structured domains. However, our ability to imagine
probabilistic models has far outstripped our ability to programmatically manipulate
them and to effectively implement inference, limiting the complexity of the problems
that we can solve in practice.

This thesis presents Blaise, a novel framework for composable probabilistic mod-
eling and inference, designed to address these limitations. Blaise has three compo-
nents:

• The Blaise State-Density-Kernel (SDK) graphical modeling language that
generalizes factor graphs by: (1) explicitly representing inference algorithms
(and their locality) using a new type of graph node, (2) representing hierar-
chical composition and repeated substructures in the state space, the interest
distribution, and the inference procedure, and (3) permitting the structure of
the model to change during algorithm execution.

• A suite of SDK graph transformations that may be used to extend a model
(e.g. to construct a mixture model from a model of a mixture component), or
to make inference more effective (e.g. by automatically constructing a parallel
tempered version of an algorithm or by exploiting conjugacy in a model).

• The Blaise Virtual Machine, a runtime environment that can efficiently
execute the stochastic automata represented by Blaise SDK graphs.
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Blaise encourages the construction of sophisticated models by composing simpler
models, allowing the designer to implement and verify small portions of the model and
inference method, and to reuse model components from one task to another. Blaise
decouples the implementation of the inference algorithm from the specification of the
interest distribution, even in cases (such as Gibbs sampling) where the shape of the
interest distribution guides the inference. This gives modelers the freedom to explore
alternate models without slow, error-prone reimplementation. The compositional
nature of Blaise enables novel reinterpretations of advanced Monte Carlo inference
techniques (such as parallel tempering) as simple transformations of Blaise SDK
graphs.

In this thesis, I describe each of the components of the Blaise modeling frame-
work, as well as validating the Blaise framework by highlighting a variety of contem-
porary sophisticated models that have been developed by the Blaise user community.
I also present several surprising findings stemming from the Blaise modeling frame-
work, including that an Infinite Relational Model can be built using exactly the same
inference methods as a simple mixture model, that constructing a parallel tempered
inference algorithm should be a point-and-click/one-line-of-code operation, and that
Markov chain Monte Carlo for probabilistic models with complicated long-distance
dependencies, such as a stochastic version of Scheme, can be managed using standard
Blaise mechanisms.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science

Thesis Supervisor: Joshua B. Tenenbaum
Title: Paul E. Newton Career Development Professor
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Chapter 1

Introduction

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

Probabilistic inference is emerging as a common language for computational stud-

ies of the mind. Cognitive scientists and artificial intelligence researchers are ap-

pealing more frequently to probabilistic inference in both normative and descriptive

accounts of how humans can draw confident conclusions from incomplete or am-

biguous evidence [9, 60]. Explorations of human category learning [61], property

induction [29], and causal reasoning [23] have all found remarkable accord between

human performance and the predictions of Bayesian probabilistic models. Proba-

bilistic models of the human visual system help us understand how top-down and

bottom-up reasoning can be integrated [67]. Computational neuroscientists are even

finding evidence that probabilistic inference may help explain the behavior of indi-

vidual neurons and neuronal networks [37, 52]. Beyond studying the mind, much

practical use is found for probabilistic models in fields as diverse as business intelli-

gence [48], bioinformatics, and medical informatics [27].

Probabilistic models are not the only way to approach problems of reasoning under

uncertainty, but they have recently exploded in popularity for a number of reasons.
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First, Bayesian probabilistic modeling encourages practitioners to be forthright with

their assumptions. As phrased by MacKay [38] (p. 26), “you cannot do inference

without making assumptions.” All inference techniques make assumptions about

how unobserved (or future) values are related to observable (or past) values; how-

ever, non-Bayesian models typically leave these assumptions implicit. As a result, it

is difficult both to evaluate the justification of the assumptions and to change those

assumptions. In contrast, Bayesian models are explicit about their prior assumptions.

Another virtue of probabilistic models is that, given a few intuitive desiderata for rea-

soning under uncertainty, probability theory is the unique calculus for such reasoning

(this result is known as Cox’s Theorem [28]). This provides the modeler with assur-

ance that the mathematical framework in which his models are embedded is capable

of correctly handling future model extensions and provides a common language for

the interchange of modeling results. The use of the term “language” here is non-

accidental: probability theory provides all the elements of a powerful programming

or engineering language: primitives (e.g., random variables and simple conditional

distributions), means of combination (e.g., joint distributions composed from simple

conditional distributions that may share variables), and means of abstraction (e.g.,

marginalizing out variables to produce new conditional distributions) [2].

In addition to these general features of probability theory, a confluence of fac-

tors are contributing to a renaissance of probabilistic modeling in cognitive science.

One of these is the détente between practitioners of structured symbolic reasoning

and statistical inference. This has resulted in the investigation of “sophisticated” (cf.

[9]) probabilistic models, in which the random variables have structured represen-

tations for their domains, such as trees, graphs, grammars, or logics. For example,

[23] treat learning a causal structure as a probabilistic inference problem including

a random variable on the domain of causal networks. This variable is conditioned

on a more abstract structure encoding a simple probabilistic grammar for possible

causal networks. Probabilistic inference on this hierarchical layering of structured

representations, applied to (for example) data about behaviors, diseases, and symp-

toms, allows one to learn not only a reasonable causal network for a particular set
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of observations, but also more abstract knowledge such as “diseases cause symptoms,

but symptoms never cause behaviors.” As another example of sophisticated models,

[54] learn a classification hierarchy from a set of features and relations among ob-

jects while simultaneously learning what level of the hierarchy is most appropriate

for predicting each feature and relation in the dataset; this work can be viewed as a

probabilistic extension of hierarchical semantic networks [10]. These examples illus-

trate how incorporating the representational power of symbolic systems has enabled

the inferential power of probability theory to be brought to bear on problems that

not long ago were thought to be outside the realm of statistical models, resulting in

robust symbolic inference with principled means for balancing new experience with

prior beliefs.

Contemporary probabilistic inference problems are also sophisticated in their use

of advanced mathematics throughout modeling and inference. Nonparametric models

such as the Chinese Restaurant Process (or Dirichlet Process) [6, 30] and the Indian

Buffet Process [24] allow the dimensionality of a probabilistic model to be determined

by the data being explained; in effect, the model grows with the data. Nonparamet-

rics are the basis of many recent cognitive models such as the Infinite Relational

Model [30], in which relational data is explained by partitioning the objects in each

domain into a set of classes, each of which behaves homogeneously under the relation.

The number of classes in each domain is not known a priori, and instead a Chinese

Restaurant Process is used to allow the Infinite Relational Model to use just as many

classes as the data justifies. Along with advanced mathematics for modeling come

advanced techniques for performing inference on these models. For example, when

performing inference in a nonparametric model, special care must be taken to account

for the variable dimensionality of the model. For approximate inference techniques

based on Markov chain Monte Carlo (MCMC), this special care takes the form of

Reversible Jump MCMC [21] and involves the computation of a Jacobian factor re-

lating parameter spaces of different dimension. Reversible Jump MCMC ensures only

the correctness of inference; other advanced techniques are focused on making infer-

ence tractable in models of increasing complexity, whether that complexity is due to
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complexly structured random variables (e.g., with domains such as the space of all

graphs), hierarchically layered models (e.g., causal structures and causal grammars as

in [23]), or models with unknown dimensionality (e.g. resulting from the use of non-

parametrics). Examples of advanced techniques for improving inference performance

include parallel tempering [15], in which probabilistic inference on easier versions of

the probabilistic model is used to guide inference in the desired full-difficulty model,

and sequential methods such as particle filtering [14], an online, population-based

Monte Carlo method that only uses each datapoint once, at the time when it arrives

online.

Unfortunately, existing tools are not designed to handle the kind of sophisticated

models and inference techniques that are required today. As a result, most modelers

currently construct their own special purpose implementations of these algorithms

for every model they create — an inefficient and error-prone process which frequently

leads the practitioner to forgo many advanced techniques due to the difficulty of

implementing them in a system that does not offer use of the proper abstractions.

1.1 Thesis statement and organization

My thesis is that a framework for probabilistic inference can be designed that enables

efficient composition of both models and inference procedures, that is suited to the

representational needs of emerging classes of probabilistic models, and that supports

recent advances in inference.

Chapter 2 reviews the mathematical underpinnings of probabilistic inference.

Chapters 3–6 directly address the claims in my thesis statement. Chapter 3 in-

troduces the Blaise State–Density–Kernel (SDK) graphical modeling language and

shows how this language supports composition of models and inference procedures.

Chapter 4 highlights how several recent advances in inference are supported by in-

terpreting them as graph transformations in the SDK language. Chapter 5 describes

the Blaise virtual machine, which can efficiently execute the stochastic automata

described by Blaise SDK graphs. Chapter 6 describes several applications involv-
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ing emerging classes of probabilistic models, each of which has been built using the

Blaise framework.

With the thesis supported, chapter 7 compares Blaise to existing probabilistic

inference frameworks, and chapter 8 reviews the contributions this thesis makes to

the field.
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Chapter 2

Background: Monte Carlo

Methods for Probabilistic Inference

This thesis focuses on Monte Carlo methods for probabilistic inference, a class of

algorithms for drawing conclusions from a probabilistic model. Anthropomorphiz-

ing for a moment, Monte Carlo methods can be interpreted as hallucinating possible

worlds and evaluating those worlds according to how well they fit the model and how

well they explain observations about the real world. From this perspective, the re-

jection sampling Monte Carlo method hallucinates complete random worlds, drawing

conclusions only from those hallucinations that match the observed evidence. Like-

lihood weighting, another Monte Carlo method, hallucinates random worlds up to

(but not including) the gathering of evidence, then weights any conclusions drawn

from one of these hallucinated worlds by how well the world fits with the observa-

tions of the real world. Markov chain Monte Carlo also hallucinates possible worlds,

but tries to be more systematic about it by continually adjusting its hallucination

to try to better account for real world observations. There are a wide variety of

abstract ideas from artificial intelligence that can be concretized as Monte Carlo in-

ference. For example, streams and counterstreams [65] is an interesting proposal for

modeling the interaction of top-down and bottom-up effects on visual perception.

Unfortunately, the proposal is framed in terms of priming cognitive states, with no

guidance provided on how such priming might be realized in a computational model.
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In contrast, work on data-driven Markov chain Monte Carlo [64] has approached the

same problem from a Monte Carlo inference perspective, resulting in a concrete model

that seems to provide the most promising computational interpretation available of

streams and counterstreams. Monte Carlo-based probabilistic inference holds the po-

tential to systematize a wide range of artificial intelligence theories, offering to add

both algorithmic alternatives and rational analysis to the existing intuitions.

This chapter surveys the mathematics of probabilistic inference, focusing on those

aspects that will provide the foundation for the remainder of this thesis.

2.1 Probabilistic Models and Inference

In probabilistic models on discrete variables, P (x = xi) denotes the probability that

the random variable x takes on the value xi. This is often simply written as P (x) or

P (xi). Likewise, the joint probability of two variables is written P (x = xi, y = yj)

and indicates the probability that random variable x takes the value xi and variable

y takes the value yj. Conditional probabilities are denoted P (x = xi|y = yj) and

indicate the probability that the random variable x = xi, given that y = yj. If y is

the empty set, then P (x|y) = P (x). Probability distributions on discrete variables

satisfy several properties: 0 ≤ P (x|y) ≤ 1, and if the set X contains all possible

values for the variable x, then
∑

xi∈X P (x = xi|y) = 1.

For continuous variables, the terminology is slightly different. P (x ∈ X) de-

notes the probability that the random variable x takes on a value in the set X.

A probability density function p(x = xi) is then derived from this by the relation∫
xi∈X

p(x = xi) = P (x ∈ X). The terminology for joint and conditional distributions

changes analogously. Probability distributions on continuous variables satisfy several

properties: 0 ≤ P (x ∈ X|y) ≤ 1, p(x = xi|y) ≥ 01, and if the set X contains all

possible values for the variable x, then
∫

xi∈X
p(x = xi|y) = 1.

For the remainder of this thesis, references to distributions will be written as if

1Note that for continuous variables, p(·) denotes the density of the probability distribution and
is not restricted to be less than 1. For example, a uniform distribution on the interval [0, 1

2 ] has
density 2 on that interval.
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the distribution is over continuous variables. However, it should be understood that

all methods are equally applicable to discrete variables unless otherwise noted.

There are a few useful rules for computing desired distributions from other distri-

butions. First, marginal probabilities can be computed by integrating out a variable:

p(x|a) =
∫

y
p(x, y|a). Bayes’ theorem declares that p(x, y|a) = p(y|x, a)p(x|a), or

equivalently,

p(y|x, a) =
p(x, y|a)

p(x|a)
=

p(x|y, a)p(y|a)∫
y
p(x|y, a)p(y|a) dy

In problems of probabilistic inference, the following are specified: a set of variables

~x; a partition of the variables ~x into three groups: ~e (the evidence variables with

observed values), ~q (the query variables), and ~u (the uninteresting variables); and a

joint density p(~x) = p(~e, ~q, ~u) over those variables. The goal of inference, then, is to

compute the distribution of the query variables given the observed evidence:

p(~q|~e) =
p(~q,~e)

p(~e)
=

∫
~u
p(~e, ~q, ~u) d~u

p(~e)
=

∫
~u
p(~e, ~q, ~u) d~u∫

~q,~u
p(~e, ~q, ~u) d~q d~u

Once the conditional distribution p(~q|~e) is in hand, it can be used answers queries2 such

as the expected value of some function f(~q):

Ep(~q|~e)[f(~q)] =

∫
~q

f(~q)p(~q|~e) d~q

For example, in a classification task, ~e might be a set of observed object properties,

~q might be the assignments of objects to classes, and ~u might be the parameters

governing the distribution of properties in each class. Suppose you were interested

in whether two particular objects belonged to the same class. Letting f(~q) be an

indicator function

f(~q) =

 1 if ~q assigns the two objects to the same class;

0 otherwise.

then Ep(~q|~e)[f(~q)] would be the probability that the two objects belong to the same
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class.

This is an elegant expression of the goals of inference, but unfortunately it is rarely

possible to directly apply the inference formulae because the required integrals (or

the analogous summations in the discrete case) are intractable for most probabilistic

models. As a result, even after specifying the model and the inference task to be

performed, it is still necessary to derive a method for performing that inference that

does not require the evaluation of intractable integrals.

2.2 Approximate Inference

For this thesis, I focus on approximate probabilistic inference methods. While exact

inference methods exist and are useful for certain classes of problems, exact infer-

ence in sophisticated models is generally intractable, because these methods typically

depend on integrals, summations, or intermediate representations that grow unman-

ageably large as the state space grows large or even infinite.

There are two main classes of approximate inference: variational methods and

Monte Carlo methods. Variational methods operate by first approximating the full

model with a simpler model in which the inference questions are tractable. Next,

the parameters of this simpler model are adjusted to minimize a measure of the

dissimilarity between the original model and the simplified version; this adjustment

is usually performed deterministically. Finally, the query is executed in the adjusted,

simplified model.

In contrast, Monte Carlo methods draw a set of samples from the target dis-

2Another popular inference goal is to find the maximum a posteriori (MAP) value of the query
variables: ~qMAP = arg max

~q
p(~q|~e). MAP values are typically used to find the “best explanation”

of a set of data. Unfortunately, they do not satisfy intuitive consistency properties. In particular,
a change-of-variables transformation of the target distribution is likely to change the MAP value.
More concretely: let f : q → q∗ be some invertible function, let F : Q → Q∗ be the analogous
set-valued invertible function F (Q) = {f(q)|q ∈ Q}. Consider the change-of-variables transformed
distribution P ∗(Q∗|e) = P

(
F−1(Q∗)|e

)
with density p∗(q∗|e) = d

dq∗P ∗(Q∗|e). Intuitive consistency
is violated because, in general, arg max

q
p(q|e) 6= f−1

(
arg max

q∗
p∗(q∗|e)

)
, implying that the choice of

representation can change the “best explanation.” This and other shortcomings notwithstanding,
MAP values can also be estimated using Monte Carlo methods.
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tribution; inference questions are then answered by using this set of samples as an

approximation of the target distribution itself.

Variational methods have the advantage of being deterministic; the corresponding

results, however, are in the form of a lower bound on the actual desired quantity,

and the tightness of this bound depends on the degree to which the simplified dis-

tribution can model the target distribution. Furthermore, standard approaches to

variational inference such as variational message passing [66] restrict the class of

models to graphical models in which adjacent distributions are conjugate3. For ex-

ample, when conjugacy assumptions are not satisfied, [66] recommends reverting to

a Monte Carlo approach. In contrast, Monte Carlo techniques are applicable to all

classes of probabilistic models. They are also guaranteed to converge – if you want

a more accurate answer, you just need to run the inference for longer; in the limit

of running the Monte Carlo algorithm forever, the sampled approximation converges

to the the target distribution. Furthermore, it is possible to construct hybrid infer-

ence algorithms in which variational inference is used for some parts of the model,

while Monte Carlo methods are used for the rest. These mixed approaches, however,

are outside the scope of this work. For this thesis, I concentrate on Monte Carlo

methods because the mathematics for this class of inference supports inference com-

position in a way that parallels model composition (For example, see the description

of hybrid kernels in section 2.4). Notwithstanding the particular focus of this thesis,

the stochastic automata developed here (Blaise SDK graphs, chapter 3) could be

used to model processes other than Monte Carlo inference, including other inference

techniques (e.g. belief propagation [49, 31]) and even non-inferential processes.

3A prior distribution p(θ) is said to be conjugate to a likelihood p(x|θ) if the posterior distribution
p(θ|x) is of the same functional form as the prior. Conjugacy is generally important because it
allows key integrals to be computed analytically, and because it allows certain inference results to
be represented compactly (as the parameters of the posterior distribution).
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2.3 Monte Carlo Methods

There are a wide variety of Monte Carlo methods, but they all share a common recipe.

First, draw a number of samples 〈~q1, ~u1〉, · · · , 〈~qN , ~uN〉 from the distribution p(~q, ~u|~e),

and then approximate the interest distribution using

p(~q|~e) ≈ p̃N(~q|~e) =
1

N

N∑
i=1

δ~qi
(~q)

where δ~qi
is the Dirac delta function4. As the number of samples increases, the ap-

proximation (almost surely) converges to the true distribution: p̃N(~q|~e)
a.s.

N→∞−−−→ p(~q|~e).

Expectations can similarly be approximated from the Monte Carlo samples:

Ep(~q|~e)[f(~q)] =

∫
~q

f(~q)p(~q|~e) d~q ≈
∫

~q

f(~q)
1

N

N∑
i=1

δ~qi
(~q) d~q =

1

N

N∑
i=1

f(~qi)

If it were generally easy to draw samples directly from p(~q, ~u|~e), the Monte Carlo

story would end here. Unfortunately, this is typically intractable due to the same

integrals that made it intractable to compute p(~q|~e) exactly. Fortunately, a range of

techniques have been developed for producing samples from p(~q, ~u|~e) indirectly.

One of the simplest Monte Carlo techniques is rejection sampling. In rejection

sampling, samples from the conditional distribution p(~q, ~u|~e) are produced by gener-

ating samples from the joint distribution p(~q, ~u,~e) and discarding any samples that

disagree with the observed evidence values. Rejection sampling is extremely ineffi-

cient if the observed evidence is unlikely under the joint distribution, because almost

all of the samples will disagree with the observed evidence and be discarded. Further-

more, as the amount of observed data increases, any particular set of observations

gets increasingly unlikely.

Importance sampling is a Monte Carlo technique that avoids discarding samples

by only sampling values for ~q and ~u; these samples are then weighted by how well

4The Dirac delta function δx0(x) has the properties that it is non-zero only at x = x0,∫
X

δx0(x) dx = 1, and
∫

X
f(x)δx0(x) dx = f(x0). The Dirac delta can be thought of as the derivative

of the Heaviside step function Hx0(x) =
{

0 for x < x0;
1 for x ≥ x0.
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they conform to the evidence. More specifically, samples 〈~qi, ~ui〉 are drawn from a

proposal distribution q(~q, ~u) and assigned weights w(~qi, ~ui) = p(~qi,~ui,~e)
q(~qi,~ui)

. Observing

that p(~qi, ~ui, ~e) = q(~qi, ~ui)w(~qi, ~ui), the Monte Carlo approximation of the conditional

distribution becomes

p(~q|~e) ≈
∑N

i=1 δ~qi
(~q)w(~qi, ~ui)∑N

i=1 w(~qi, ~ui)

Efficient importance sampling requires that the proposal distribution q(~q, ~u) produces

samples from the high-probability regions of p(~q, ~u|~e). Choosing a good proposal

distribution can be very difficult, becoming nearly impossible as the dimensionality

of the search space increases.

2.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an inference method designed to spend most

of the computational effort producing samples from the high probability regions of

p(~q, ~u|~e). In this method, a stochastic walk is taken through the state space ~q×~u such

that the probability of being in a particular state 〈~qi, ~ui〉 at any point in the walk is

p(~qi, ~ui|~e). Therefore, samples from p(~q, ~u|~e) can be produced by recording the states

visited by the stochastic walk. The stochastic walk is a Markov chain: the choice of

state at time t + 1 depends only on the state at time t. Formally, if st ∈ ~q × ~u is

the state of the chain at time t, then p(st+1|s1, · · · , st) = p(st+1|st). Because Markov

chains are history-free, they can be run for an unlimited number of iterations without

consuming additional memory space; contrast this with classic backtracking search

strategies which maintain a complete history of visited states and a schedule of states

to be visited. The history-free property also means that the MCMC stochastic walk

can be completely characterized by p(st+1|st), known as the transition kernel. I will

use the notation K(st → st+1) = p(st+1|st) for transition kernels to emphasize the

directionality of the movement through the state space. The transition kernel K is a

linear transform, such that if pt = pt(s) is the row vector encoding the probability of

the walk being in state s at time t, then pt+1 = ptK.

27



If the stochastic walk starts from state s0, such that the distribution over this

initial state is the delta distribution p0 = δs0(s), then the state distribution for the

chain after step t is pt = p0K
t. The key to Markov chain Monte Carlo is to choose

K such that lim
t→∞

pt = p(~q, ~u|~e), regardless of choice of s0; kernels with this property

are said to converge to an equilibrium distribution peq = p(~q, ~u|~e). Convergence is

guaranteed if both:

• peq is an invariant (or stationary) distribution for K. A distribution pinv is an

invariant distribution for K if pinv = pinvK.

• K is ergodic. A kernel is ergodic if it is irreducible (any state can be reached

from any other state) and aperiodic (the stochastic walk never gets stuck in

cycles).

Markov chain Monte Carlo can be viewed as fixed point iteration on the domain of

probability distributions, where K is the iterated function and peq is the unique fixed

point, even though in practice K is iteratively applied to a sample from peq, rather

than peq itself, side-stepping the issue of explicitly representing distributions.

Transition kernels compose well. Let K1 and K2 be two transition kernels with

invariant distribution pinv. The cycle hybrid kernel Kcycle = K1K2 is the result of

first taking a step with K1, then taking a step with K2. Kcycle has the same invari-

ant distribution pinv. Kernels can also be composed using a mixture hybrid kernel

Kmixture = αK1 +(1−α)K2 for 0 ≤ α ≤ 1, which is the result of stochastically choos-

ing to apply either K1 or K2, with α being the probability of choosing K1. Mixture

hybrid kernels also maintain the invariant distribution pinv. These hybrid kernels do

not guarantee ergodicity, but it is generally very easy to show that the composite

kernel is ergodic. Hybrid kernels are the key that will enable MCMC-based inference

to compose in the same way that probabilistic models compose.

Kernel composition is only useful to the extent that effective base kernels can be

generated. The most common recipe for constructing an MCMC transition kernel

with a specific equilibrium distribution is the Metropolis-Hastings method [43, 26],

which converts an arbitrary proposal kernel q(st → s∗) into a transition kernel
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with the desired invariant distribution peq(s). In order to produce a sample from

a Metropolis-Hastings transition kernel, one first draws a proposal s∗ ∼ q(st → s∗),

then evaluates the Metropolis-Hastings acceptance probability

A(st → s∗) = min

(
1,

p(s∗)q(s∗ → st)

p(st)q(st → s∗)

)
.

With probability A(st → s∗) the proposal is accepted and st+1 = s∗; otherwise the

proposal is rejected and st+1 = st. Intuitively, Metropolis-Hastings kernels tend to

accept moves that lead to higher probability parts of the state space due to the p(s∗)
p(st)

term, while also tending to accept moves that are easy to undo due to the q(s∗→st)
q(st→s∗)

term. Because Metropolis-Hastings kernels only evaluate p(s) as part of the ratio

p(s∗)
p(st)

, one may include in every evaluation of p(s) an unknown normalizing constant

without altering the kernel’s transition probabilities. For inference, this means that

instead of computing the generally intractable integral involved in evaluating p(st) =

p(~qt, ~ut|~e) = p(~qt,~ut,~e)
p(~e)

= p(~qt,~ut,~e)R
~q,~u p(~q,~u,~e)

, we can let c = 1
p(~e)

be an unknown normalizing

constant and evaluate p(st) ∝ p(~qt, ~ut, ~e).

2.5 Transdimensional MCMC

Sophisticated models often have an unknown number of variables. For example, a

mixture model typically has parameters associated with each mixture component; if

the number of components is itself to be inferred, the model has an unknown number

of variables. MCMC kernels that change the parameterization of the model, such as

those that change the dimensionality of the parameter space, must ensure that the

reparameterization is accounted for5.

Reversible jump MCMC [21], also known as the Metropolis-Hastings-Green method,

5For example, consider a Kernel that can reparameterize a model from a variable x distributed
uniformly on the range [0, 1] to a variable x′ distributed uniformly on [0, 1

2 ]. Even though there
is a one-to-one correspondence between x and x′ values, e.g. x = 2x′, the two parameterizations
have different densities. Specifically, for any value of x ∈ [0, 1], the probability density is 1, whereas
for any value of x′ ∈ [0, 1

2 ] the probability density is 2. Any “compressing” or “stretching” of the
state space must be accounted for. As described in the context of Reversible jump MCMC in this
section, the Jacobian of the transformation is the mathematical tool for measuring this state space
distortion.
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is an extension of the Metropolis-Hastings method for transdimensional inference. In

the Reversible Jump framework, sampling from the proposal distribution q(st → s∗) is

broken into two phases. First, a vector of random variables v is sampled from a distri-

bution q(v); note that this distribution is not conditioned on st. Then s∗ is computed

from st and v using an invertible deterministic function g; that is, 〈s∗, v′〉 = g(〈st, v〉)

and 〈st, v〉 = g−1(〈s∗, v′〉), where the dimensionality of 〈st, v〉 matches the dimension-

ality of 〈s∗, v′〉. Finally, the Metropolis-Hastings acceptance ratio is adjusted to reflect

any changes in the parameter space caused by this move using a Jacobian factor:

A(st → s∗) = min

(
1,

p(s∗)q(v
′)

p(st)q(v)

∣∣∣∣∂〈s∗, v′〉∂〈st, v〉

∣∣∣∣)
where

∣∣∣∂〈s∗,v′〉
∂〈st,v〉

∣∣∣ is the Jacobian factor: the absolute value of the determinant of the

matrix of first-order partial derivatives of the function g.

2.6 Tempered Inference

A number of Monte Carlo inference variants, including simulated annealing and par-

allel tempering, operate by changing the “temperature” τ of the interest distribution:

ptempered(s) ∝ p(s)1/τ

where ptempered(s) reduces to p(s) when τ = 1. As τ goes to 0, ptempered(s) concentrates

all of its mass on its modes; therefore, sampling from ptempered(s) for very small τ is

much more likely to produce the maximum a posteriori value than sampling from p(s).

However, such “peaky” interest distributions, whether they arise naturally or through

tempering, are generally more difficult for Monte Carlo methods to handle effectively.

For example, Metropolis-Hastings kernels operating on a “peaky” distribution are

much more likely to have their proposals rejected.

In contrast, as τ goes to ∞, ptempered(s) gets increasingly flat, and Monte Carlo

methods can produce samples very easily. The disadvantage of these high-τ samples is

that they are less likely to come from high-probability regions of the original interest
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distribution p(s). Simulated annealing and parallel tempering both use a sequence of

tempered distributions from τ = 1 to a τ large enough to make inference easy; the

intuition is to leverage results from the easy-inference values of τ to perform better

on the harder τ values.

In simulated annealing [17, 32], τ is initialized to a large value. Then, as MCMC

proceeds, τ is gradually decreased. The hope is that the stochastic walk will find the

mode of the distribution while τ is large, and will settle in that mode as τ is decreased.

Once τ is small, the stochastic walk is unlikely to leave that mode (assuming a “peaky”

distribution); therefore, simulated annealing is most useful for locating the maximum

a posteriori value.

In parallel tempering [18, 15], multiple MCMC chains are run in parallel, each

at a different fixed value of τ . Occasionally, swaps of adjacent chains are proposed

and evaluated according to the Metropolis-Hastings acceptance ratio. Samples are

only collected from the lowest τ chain. One interpretation of parallel tempering is

that the high τ chains act as proposal distributions for the lower τ chains. The sam-

ples gathered from parallel tempering should be representative of the whole interest

distribution (as opposed to simulated annealing, which produces samples only from

one mode). Parallel tempering provides a generic means for the MCMC inference to

move efficiently between modes of the interest distribution, even when those modes

are widely separated by low-probability regions. Without parallel tempering, the

probability that plain MCMC will make these moves becomes vanishingly small un-

less a great deal of problem specific knowledge is used to construct clever proposal

distributions.

2.7 Particle Filtering

Particle filtering, also known as Sequential Monte Carlo, is a population-based Monte

Carlo method similar to importance sampling. It is typically applied to dynamic mod-

els with unobserved variables xi forming a Markov chain such that p(xi|x0, . . . , xi−1) =

p(xi|xi−1) and with observed variables yi modeled by p(yi|xi), yielding a joint density
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p(x0, . . . , xn, y1, . . . , yn) = p(x0)
∏n

i=1 p(xi|xi−1)p(yi|xi). Inference by particle filtering

produces an approximation to p(xn|y1, . . . , yn).

This technique unrolls inference over the same timeline used to index the dynamic

model, such that the inference results for p(xn|y1, . . . , yn) together with the observa-

tion yn+1 are all that is needed to infer p(xn+1|y1, . . . , yn+1). Inference is achieved

using a population of “particles”: weighted samples 〈xj
i , w

j
i 〉 which together form a

Monte Carlo estimate of p(xn|y1, . . . , yn) ≈
∑

j δxj
i
(xi)w

j
i (the weights are normalized

such that
∑

j wj
i = 1).

Inference is initialized by drawing a number of particles from the prior distribution

on states and assigning each particle an equal weight:

xj
0 ∼ p(x0); wj

0 =
1

#particles

Inference is then advanced to the next time step by stochastically advancing each

particle according to an importance distribution q, such that xj
i ∼ q(xj

i |x
j
i−1, yi).

The simplest cases are those in which it is tractable to sample from q(xj
i |x

j
i−1, yi) =

p(xj
i |x

j
i−1)p(yi|xj

i ). Otherwise, a common choice for q is q(xj
i |x

j
i−1, yi) = p(xj

i |x
j
i−1),

though any approximation can be used. Weights are then updated as in importance

sampling:

wj
i =

p(xj
0, . . . , x

j
i , y1, . . . , yi)∏i

k=1 q(xj
k|x

j
k−1, yk)

= wj
i−1

p(xj
i |x

j
i−1)p(yi|xj

i )

q(xj
i |x

j
i−1, yi)

.

Next, the weights are renormalized to sum to 1:

wj
i ←

wj
i∑#particles

k=1 wk
i

.

Finally, the particles may be resampled and the weights set to equal values:

x′
j
i ∼ p(x′

j
i = xj

k) = wj
k; w′j

i =
1

#particles
.

Without resampling, most of the particle weights would drift towards 0; resampling

effectively kills off particles with small weights while duplicating particles with large
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weights. Resampling is often only performed when certain criteria are met, such as

when an estimate of the number of effective particles (i.e., particles with relatively

large weight) falls below a predetermined threshold.
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Chapter 3

The Blaise State–Density–Kernel

Graphical Modeling Language

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

In this chapter, I support this thesis by introducing the Blaise State–Density–

Kernel graphical modeling language and showing how this language supports compo-

sition of models and inference procedures.

By the end of this chapter, you will understand all the elements of the Blaise

SDK graphical modeling language. You will be able to draw complete graphical mod-

els, including graphical representations of inference, for sophisticated models such as

multi-feature non-parametric mixture models, and you will understand how models

can be built up iteratively by composing existing probabilistic models and inference

methods with minimal effort. This chapter also provides the foundation for chap-

ters 4–6, which will discuss transformations of SDK models, a virtual machine that

can execute SDK models, and applications built using Blaise.

This chapter introduces a graphical modeling language, including several symbols.

Each symbol is described as it is introduced. For reference, appendix B also supplies a
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complete legend of symbols, including the page on which the symbol was introduced.

3.1 An overview of the Blaise modeling language

In order to fully specify a probabilistic modeling application, three things must be

described. One thing the modeler must describe is the state space. This is a descrip-

tion of the domain of the problem: what are the variables we might be interested

in? What values can those variables take on? Could there be an unknown number of

variables (for example, could there be an unknown number of objects in the world we

are trying to describe, such as an unknown number of airplanes in an aircraft track-

ing problem?) Are there structural constraints amongst the variables (for example,

is every variable of type A associated with a variable of type B?) One of the Blaise

modeling language’s three central abstractions, State, is devoted to expressing these

aspects of the model.

The state space typically describes a vast number of possible variable instantia-

tions, most of which the modeler is not very interested in. The second central ab-

straction, Density, allows the modeler to describe how interesting a particular state

configuration is. For discrete probabilistic models, this is typically the joint proba-

bility mass function. If continuous variables are used, then Density would represent

the joint probability density function (from which the abstraction derives is name).

When describing how to score a State, the modeler will be expressing things such

as: how does the joint score decompose into common pieces, such as standard prob-

ability distributions? How does the score accommodate state spaces with unknown

numbers of objects – does it have patterns that repeat for each one of these objects?

The Density abstraction is designed to represent the modeler’s answers to these

questions.

With State and Density in hand, the modeler can now express models, but cannot

yet say how to extract information from these models. As described in chapter 2,

there are a wide variety of inference techniques that can be applied. Blaise focuses

on those inference techniques that can be described as history-free stochastic walks
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p(x|p, α, β) = Beta(p|α, β) ·Binomial(x|p)

(a) Joint Density Equation

(b) Bayes Net (c) Factor Graph

(d) Blaise, without inference

(e) Blaise, with inference

Figure 3-1: A preview of the Blaise modeling language, showing the same simple
Beta-Binomial model as (a) a joint probability density equation, (b) a Bayes net, (c)
a factor graph, (d) a Blaise probabilistic model (no inference), and (e) a Blaise
probabilistic model with inference.
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through a State space, guided by the Density1. All such walks can be completely

described by a transition kernel: an expression of the probability that the stochastic

walk will make a particular step in the state space, given the state the walk is currently

at. To describe a transition kernel, a modeler will have to make choices such as: which

variables in the state space will change on this step? How exactly will these variables

be updated – are there common update procedures that can be used? How will these

update rules be coordinated so that the whole state space is explored efficiently – that

is, how are fragments of an inference algorithm composed? How does the inference

method accommodate state spaces with unknown numbers of objects? Often the

modeler will want to maintain a certain relationship between the Density and the

exploration of the state space; for example, a modeler designing an Markov chain

Monte Carlo-based inference method will want to ensure that the transition kernel

converges to the Density as an invariant distribution. How will the modeler meet this

goal? These consideration are the focus of the Kernel abstraction in Blaise.

A common design tenet runs throughout the entire modeling language: support

composability. That is, it should be easy for the modeler to reuse existing models

in the creation of new models. For example, if the modeler has constructed a State–

Density–Kernel representation of a Chinese Restaurant Process, it should be easy for

the modeler to reuse this representation to create a CRP-based mixture model. In

most cases, in fact, the SDK for the original model should not need to be modified at

all – even the same inference procedure should continue to work in the new model,

despite the fact that there are now other States in the state space and other Densities

affecting the joint probability density. Realizing this design philosophy will mean that

if a modeler extends an existing model or composes several existing models, develop-

ment resources can be reserved for the truly novel parts of the new model. It is my

hypothesis that such an approach will provide the leverage required to effectively en-

gineer sophisticated models of increasing complexity, such as are becoming ever more

important in artificial intelligence, cognitive science, and commercial applications.

1The history-free limitation is restrictive, because history-dependent stochastic walks can also be
modeled by augmenting the State space with an explicit representation of the history.
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This chapter will compare compare and contrast the Blaise modeling language

with classical graphical modeling languages such as Bayes nets and factor graphs. It

should be noted that Blaise models are strictly more expressive than factor graphs;

see section 6.5 for a simple demonstration of how any factor graph can be translated

to a Blaise model.

Although Blaise SDK graphs are presented here in the specific context of Monte

Carlo methods for probabilistic inference, the SDK foundation (consisting of a domain

described using States, functions over the domain described using Densities, and a

stochastic process for domain exploration described using Kernels, together with sim-

ple composition and locality rules for each of these representations) can also serve as a

general framework for expressing and manipulating any stochastic (or deterministic)

automaton.

3.2 Blaise States

The state space describes the domain of the inference problem; that is, the variables

and their valid settings. All probabilistic modeling languages have some representa-

tion of the state space: graphical modeling languages, such as Bayes nets and factor

graphs, use nodes to represent variables (as in figure 3-2), whereas programmatic

modeling languages, such as BLOG [45], allow the user to declare variables. Blaise

follows in the graphical modeling tradition by representing variables as graph nodes

called States. State nodes are also typed, carrying information about what values

the represented variable can take on. For example, a State node might be typed as a

continuous variable, indicating that it will take real numbers as values.

Unlike classical graphical modeling languages, however, Blaise requires that its

State nodes be organized into a single rooted tree via containment (has-a) links in

the graph (See figure 3-3). This organization is the foundation of State composition

in Blaise – it allows the modeler to take several States and bundle them together

as children of some parent State. Note that the space of States is closed under this

composition structure: composing several States produces another State.
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Figure 3-2: A simple graphical model for a single draw x from a beta-binomial model,
drawn as a factor graph. Several of the examples in this chapter build on this familiar
model, though most will ignore the conjugacy properties of the model. Exploiting
conjugacy in Blaise will be discussed in section 4.6.

(a) Factor Graph (without factors) (b) Blaise State Space

Figure 3-3: Omitting the factors from the beta-binomial model factor graph in fig-
ure 3-2 leaves just the variables, representing the state space of the model, as in (a).
Figure (b) shows the same state space as it might be implemented in Blaise. States
in Blaise models form trees. The State in the Blaise model that does not have an
analog in the factor graph (i.e., the root of the tree) is used to compose diverse States
into a single state space. The root State is highlighted with a gray annulus.

The tree-structured organization of States is a critical enabler in modeling re-

peated structure in the state space. Information about repeated structure is com-

monly represented in a graphical modeling language using “plate notation” – draw-

ing a box (a “plate”) containing the variables that will be repeated, and writing a

number in the corner of the box to indicate how many times that structure will be

repeated. Plate notation has several limitations. Most significantly, state spaces rep-

resented using plate notation are not closed under composition: composing several

variable nodes produces a new class of object (a plate) rather than a variable. This

in turn means that the number of copies of a plate is not part of the state space.

This information is not available as a variable, so, for example, one cannot express

a prior over the number of copies of a plate nor perform inference to determine how

many copies of the plate should be used. This prevents an intuitive expression of even

simple models such as mixture models, if the number of components is not known a

40



(a) Factor Graph (b) Blaise (c) Factor Graph (d) Blaise

Figure 3-4: Figures (a) and (c) show the state spaces for simple factor graphs, using
plate notation to represent repetition. Figures (b) and (d) show the corresponding
Blaise state spaces. States marked with a star are Blaise Collection States. The
unmarked State in (d) is a generic composite State containing x and y.

priori. Expressing non-parametric mixture models is even more complicated.

There are a number of other important shortcomings of plate notation. Plate

notation is most often used in the context of Bayes nets, where there is the additional

limitation that the notation does not express how the model’s joint density should

factor across the plate boundary. Inference procedures also need to account for re-

peated structures in the state space, particularly when the number of repetitions is

not fixed a priori. Finally, plate notation only allows plates to interact by having

one plate embedded in another; it does not permit plates to intersect, nor interact

in other more complex relationships, without making the meaning ambiguous. This

makes it challenging to express many interesting models. Each of these limitations

will be addressed in this chapter (specifically in sections 3.5, 3.6 and 3.7).

Instead of plates, Blaise uses State composition to capture repeated structure.

Blaise allows States to have arbitrarily-sized collections of children. Such Collection

States are used to capture the idea of repetition. For example, a model that would be

denoted in plate notation as a single variable x inside a plate would be captured in

Blaise as a Collection State with a collection of x States as children (see Figure 3-

4 (a) and (b)). Composition allows the same containment mechanism to be used for

repeated state structure rather than just single states. For example, a model that

would be denoted in plate notation as two variables x and y inside a plate would be

captured in Blaise as a Collection State with a collection of composite States, where

each composite has an x and a y (see Figure 3-4 (c) and (d)). For easy interpretation,
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(a) Factor Graph (b) Blaise State Space

Figure 3-5: The beta-binomial models from Figure 3-3 can be extended to model
multiple datapoints drawn from the same binomial distribution. This figure shows
state space of this extended model, in plated factor graph notation and as a Blaise
State structure.

Blaise will also include plate-like boxes surrounding the repeated structure. However

it must be emphasized that these ornamentations carry no new information – they

simply highlight the children of a Collection State, allowing the grouping to be seen

at a glance, much as a syntax highlighting text editor might highlight balanced pairs

of parentheses without providing any additional information.

Reifying the repetition of State structure using Collection States remedies the

weakness of plate notation wherein the number of copies of a repeated structure is

not available as a variable. Because the Collection State is a State like any other, it

serves as a variable in the State space. Thus the computation of the joint density can

naturally reference the size of the Collection State (the representation of the joint

density will be described shortly in section 3.3).

In order to perform Monte Carlo inference in state spaces with repeated structure

where the repetition count is not known a priori, it will be necessary to consider

states with different repetition counts. That is, it will be necessary, at inference time,

to allow instances of the repeated structure to be added to and removed from the

state space. Thus, the topology of Blaise States is considered to be mutable at

inference time, so that children may be added and removed from Collection States.

It also follows that the State topology carries information. Consider, as an example,

the information contained in the size of a Collection State, which might be used to

compute the joint density (as above), or might itself be the target of inference (e.g. for
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a query such as “how many mixture components are required to explain this data?”).

An interesting effect of allowing the State topology to bear information is that

many models that would normally require the used of integer indices no longer require

such indices. For example, consider a mixture model, where the number of mixture

components is fixed a priori, but where the assignment of data to components is to

be inferred. A Bayes net for such a model would assign a unique integer index from

the range [0, number of components−1] to each component (a name, in essence), and

each data point would have associated with it a component index from the same the

range (see figures 3-6a and 3-6b). Inference is then a matter of choosing appropriate

values for the integer indices associated with the datapoints. In a Blaise model,

it would be more natural to use a Collection State to represent each component,

with the data points currently assigned to each component being the children of that

component’s Collection State (see figures 3-6c and 3-6d). Inference is then a matter

of moving data points from one component to another (figure 3-6e). This formulation

has several advantages. First, it is more parsimonious insofar as the components of

a mixture model usually do not actually have an order; the component indices in

the Bayes net formulation are an artifact of the formalism that must be explicitly

worked around when it comes time to compute the joint density or to evaluate a

state in order to answer a query. Second, integer indices are often assumed to be

contiguous, which imposes several inefficiencies in the implementation of the system.

For example, deleting a component with a mid-valued component index will require

changing the component index of at least one other component, otherwise the existing

components will not have contiguous indices. Changing the value of a component

index is inefficient because it requires finding all the data points associated with the

component and updating their component index as well; thus, deleting a component

in a integer-indexed model is usually implemented as an operation with time cost

linear in the number of datapoints rather than the constant-time operation it is in

a Blaise model in which data point assignment is represented directly by the State

topology.

Because Blaise allows the topology of the State space to bear information, there
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(a) Bayes Net (b) Bayes Net state
space

(c) Blaise

(d) Expanded Blaise (e) Expanded Blaise, after reassign-
ment

Figure 3-6: Mixture models are among the simplest models with interesting repeated
structure. (a) shows a simple mixture model, represented as a Bayes net. There are m
components, with Θ representing the parameters for a component. All the Θ variables
are governed by a common hyperparameter Ω. There are also n datapoints, where
the value of the datapoint is x, and a ∈ [0, n − 1] encodes the component to which
the associated datapoint is assigned. (b) shows just the state space for this Bayes
net. (c) shows the the state space for a mixture model in Blaise notation. Rather
than using integer-valued component assignment variables (a in the Bayes nets), the
Blaise model uses Collection States for each component, where each Collection State
contains just those datapoints assigned to the component. (d) shows an expanded
version of this Blaise model with two components and three datapoints, and (e)
demonstrates how the State structure would change when datapoint x2 is moved
from component c1 to component c2.
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(a) Factor Graph

(b) Blaise

Figure 3-7: A model for a single draw x from a beta-binomial model, drawn as (a) a
factor graph, and (b) a Blaise model. In Blaise models, Densities form trees. Den-
sities also have States as children, encoding the portions of the State hierarchy that
will be used when evaluating the Density. Note that the Density→State connections
reflect the factor→node connections in the graphical model. The Density without
a graphical model analog represents the (multiplicative) composition of individual
Densities into a Density over the whole state space. The gray annulus around this
Density highlights it as the root Density.

may be cases in which a reference to more than one State is required. For example,

in an admixture model, a State may belong to more than one mixture component

simultaneously. To capture this type of pattern, Blaise States support state-to-state

dependency links in addition to has-a links. These links are permitted to connect the

States in non-tree-structured ways. State-to-state dependency links are also used to

model constraints in the State space, as described in section 3.7.

3.3 Blaise Densities

Whereas States are used to model the domain of the state space for a probabilistic

model, Densities are used to describe the joint probability density function over that

state space. It is often advantageous to decompose the joint probability density
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(a) Graphical Model

(b) Blaise Model

Figure 3-8: A model for a multiple draws from a beta-binomial model, drawn as (a) a
factor graph, and (b) a Blaise model. The density labeled π is a Multiplicative
Collection Density; it composes any number of child Densities by computing the
product of their values.

function into a number of simpler Densities that only depend on a subset of the

state space variables (i.e., a projection of the state space onto a lower-dimensional

subspace). For example, Bayes nets decompose the joint Density into a product of

conditional probabilities and factor graphs decompose the joint Density into a product

of factors. Decomposing the density is beneficial for several reasons:

• Pragmatic: the modeler can often express the joint density as a composition

of common Densities which are built into the modeling language and which are

easy for another human to interpret

• Learnability: decomposing the joint density often reduces the number of de-

grees of freedom. For example, expressing the joint density over two boolean

variables x and y as a single conditional probability table would require 3

parameters, e.g. p(x ∧ y), p(x ∧ ¬y), and p(¬x ∧ y), with p(¬x ∧ ¬y) =

1− p(x∧ y)− p(x∧¬y)− p(¬x∧ y); in contrast, if the joint probability can be
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decomposed into two Densities, each of which depends on only one of the vari-

ables (e.g., if x and y are independent), then only two parameters are needed,

e.g. p(x) and p(y), with p(¬x) = 1− p(x) and p(¬y) = 1− p(y).

• Efficiency: decomposing the joint density often allows the joint density to be

computed more quickly, by avoiding the re-evaluation of Densities for which the

dependent States have not changed, or by exploiting parallelism (computing

multiple Densities simultaneously on different processing units)

• Algorithmic: the decomposition of the joint density determines which vari-

ables in the state space are conditionally independent. Some algorithms can

exploit this independence in order to be more efficient in time or storage re-

quirements, or operate on multiple segments of the state space in parallel. For

instance, in a factor graph, two variables a and b are conditionally indepen-

dent given a set of variables C ⊆ V ars − {a} − {b}, if every path from a to

b contains at least one variable from C. It is therefore possible to use Gibbs

sampling, for example, to resample a and b simultaneously and independently

if C is (temporarily) held constant.

Just as the Blaise State representation can be viewed as an extension of the Bayes

net/factor graph representation of variables, the Blaise Density representation is an

extension of the factor nodes in a factor graph. Like factor nodes, Blaise Densities

are graph nodes that have edges connecting them to each of the States on which the

value of the Density depends. For example, see figure 3-7.

Unlike factor graph nodes, however, Blaise Densities are structured into a tree.

In addition to Density→State edges, a Density might also have edges connecting it to

other Densities, the value of which it might depend upon. These Density→Density

edges form a rooted tree where the root node represents the joint probability density

function for the entire state space. Leaf nodes in the Density tree typically represent

common (primitive) probability densities, such as the Beta and Binomial Densities

in figure 3-7. Internal nodes in the Density tree represent functional composition

of Densities. Whereas the only functional composition rule permitted (implicitly)

in factor graphs is multiplication (i.e. the total joint density is the product of the
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factors), the Blaise modeling language allows great freedom in the functional form

of a Density. Specifically, if a Density d has links to States S1, . . . , Sn and links to

child Densities C1, . . . , Cm, the value of the Density may be computed by any function

f of the form

density(d) = f(density(C1), . . . , density(Cm); S1, . . . , Sn).

with the explicit interpretation that depending on state Si implies that the density

may inspect Si and any of its descendents.

Most internal (composite) Density nodes will be simple Multiplicative Densities,

which will have no State links and which have the functional form

f(density(C1), . . . , density(Cm); S1, . . . , Sn) =
m∏

i=1

density(Ci)

Leaf (atomic) Density nodes have no Density children, so their functional form is

f(density(C1), . . . , density(Cm); S1, . . . , Sn) = p(S1, . . . , Sn)

where p is a local contribution to the joint density.

However, there exist useful composite Densities that are not multiplicative, or

even linear. For example, in parallel tempered inference or simulated annealing,

it is necessary to adjust the “temperature” of a distribution by exponentiating the

density; this can accomplished with a Density that has one dependent State Sτ (the

temperature) and one child Density C1, and is evaluated using

f(density(C1); Sτ ) = density(C1)
1/Sτ .

Blaise’s support for non-linear Density composition, and specifically the temper-

ing Density shown above, will be highlighted in sections 4.2.1–4.2.3.

One side effect of allowing such non-linear density functions is that if Droot is

the root density and Ddescendant is some density with Droot as an ancestor, then

changes to the value of density(Ddescendant) can have an arbitrary effect on the value

48



of density(Droot). In order to determine this effect, it will be necessary to consider

the effect of each Density on the path from Ddescendant to Droot. It is one of the

hypotheses of this thesis that all density calculations required for standard inference

can be expressed as evaluations of Droot, even if it is known that only a smaller

portion of the Density tree has links to the State currently being updated by the

inference algorithm. This hypothesis will be supported as the Blaise treatments of

the Metropolis-Hastings method, the Gibbs sampling method, and particle filters are

presented.

In section 3.2, it was noted that many models use repeated structures in the State

space. It is usually the case that these repeated State structures give rise to function-

ally identical terms in the joint density. For example, reconsider a simple model for

fitting a beta-binomial model. Figure 3-7 showed this model for a single datapoint

x, and figure 3-5 showed the state space for this model for multiple datapoints. To

update the Density structure from the single datapoint model to accommodate the

multiple datapoint statespace, the first step is to create a binomial Density for each

datapoint, connected to the datapoint and to the shared parameter p. To compose

these Densities, Blaise supports Multiplicative Collection Densities, which are the

Density analog to Collection States. A Multiplicative Collection Density composes

any number of child Densities by computing the product of their values (see figure 3-

8).

3.4 Blaise Kernels

A State–Density graph describes a complete probabilistic model in terms of a join

density over a state space. While existing probabilistic modeling languages typically

stop here, Blaise goes one step farther by also graphically representing the inference

procedure that will be executed on the model. Blaise focuses on those inference

techniques that can be described as history-free stochastic walks through a State

space, guided by a Density2.

2Restricting inference to methods that can be implemented as history-free stochastic walks is
actually not as restrictive as it may first appear, given that deterministic walks are a subset of
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The central abstraction for inference procedures in Blaise is the Transition Ker-

nel, typically abbreviated to just Kernel3. Mathematically, a transition kernel is

an expression of the probability that the stochastic walk will make a particular step

in the state space, given the state the walk is currently at. That is, if the walk is

currently at State St, a transition kernel will specify, for any State S∗ in the state

space, the probability that the next state St+1 = S∗. This probability could be writ-

ten p(St+1 = S∗|St); however, this thesis will use the alternate notation K(St → S∗)

to emphasize the directionality of the transition being evaluated4.

In Blaise graphical models, a Kernel is represented as a small triangle. The

symbol was chosen to bring to mind the capitalized Greek letter delta (∆), because

delta is the traditional symbol for change and Kernels update the walk to the next

State. Each Kernel operates on some subgraph of the State hierarchy. Most Kernels

operate on only a single State and may only inspect or modify that State and its

descendents. The State that the Kernel operates on is indicated graphically using a

directed edge from the Kernel to the State. For example, a Kernel that will resample

the value of a continuous State variable (for example, p in the beta-binomial model

in section 3.3) must have a directed edge to that State or one of its ancestors. More

complex Kernels may use multiple Kernel→State edges, indicating that the Kernel

operates on a sub-forest of the State graph (rather than a simple sub-tree in the

single-edge case). For example, if a mixture model’s components were represented

as Collection States as in figure 3-6, then a datapoint reassignment Kernel would

change the assignment of a datapoint by removing the datapoint from one compo-

stochastic walks, and that the state space may be augmented with any information that would
normally be considered the history of the kernel. See chapter 4 for examples of state space augmen-
tation; for example, the simulated annealing transform in section 4.2.2 augments the state space
with a temperature variable, using a deterministic Kernel to decrease the temperature slowly over
the course of inference.

3It should be emphasized that, despite their name, Transition Kernels are unrelated to the kernels
used in “kernel methods” such as support vector machines, or to kernels of homomorphisms in
algebra, etc.

4In the author’s experience, even those who are experienced practitioners of MCMC-based in-
ference make frequent mistakes when using the traditional notation p(S∗|St), particularly when
working with quantities such as the Metropolis-Hastings acceptance ratio, which includes both the
terms p(S∗|St) and p(St|S∗). The alternate notation, e.g. K(St → S∗) and K(S∗ → St) produces
significantly less confusion.
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Figure 3-9: The beta-binomial model from figure 3-8, with a Kernel to perform infer-
ence on the parameter p. A Kernel is represented as a triangle with links to the States
it may inspect and modify. The gray annulus around the parameter adjustment kernel
in this example highlights it as the root Kernel.

nent’s Collection State and adding it to another component’s Collection State. Such

a Kernel could be implemented with a single edge to a common ancestor of the two

components, as in figure 3-10a. Alternately, the Kernel could be implemented with

two edges: one to the source component and one to the target component, as in

figure 3-10b. The latter implementation allows the Kernel to be reused more flexibly

by separating the datapoint reassignment logic from the component selection logic.

Kernels also have limited access to the Density graph: Kernels may evaluate the

root node of the Density tree, but may not inspect the Density tree in any other

way. Specifically, Kernels may not inspect the structure of the Density tree, nor

may they modify the Density tree, nor may they evaluate any node but the root

node of the Density tree. These restrictions are motivated by two points: first,

as stated in section 3.3, it is part of the hypothesis of this thesis that all density

calculations required for standard inference can be couched as evaluations of the root

Density node. Second, it is a central design goal for Blaise to support composition of

models, including inference algorithms on those models, and further including that it

should be possible to mix-and-match fragments of models with minimal effort. If the

Kernel were permitted to inspect the Density tree, it would be much more difficult to

perform these types of composition. For further justification of these design choices,

see section 3.9 for a comparison to the Model-View-Controller design pattern.
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(a) Single Link Kernel

(b) Dual Link Kernel

Figure 3-10: As described in figure 3-6, datapoint reassignment Kernels for Blaise
mixture models move datapoints from one Collection State to another. (a) shows
a datapoint reassignment Kernel that uses a single edge to find the Collection of
components. (b) shows an alternate form for a datapoint reassignment Kernel that
uses two edges to locate the two components that will be the source and destination
for the moving datapoint (the expanded form of the Blaise model is used here to
show that the Kernel is linking to two distinct components). In these two diagrams,
each State that may be inspected or modified by the Kernel is highlighted with a
dotted orange outline.
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Every Blaise Kernel provides a Sample-Next-State operation; this operation

considers the current state St and samples a next state S∗ for the stochastic walk from

the transition distribution encoded in the kernel, i.e. S∗ ∼ K(St → S∗). Standard

Markov chain Monte Carlo inference in Blaise, then, is a matter of:

1. initializing the State structure so that it is in the domain and is matches the

observed evidence

2. repeatedly calling Sample-Next-State on an appropriate Kernel (i.e. a Ker-

nel with the correct invariant distribution)

3. recording the states visited by the stochastic walk as samples from the target

distribution.

The observed variables should be held constant either by attaching Kernels only to the

unobserved variables or by attaching Dirac delta Densities to the observed variables

(such that any value but the observed value causes the Density to evaluate to 0).

Blaise Kernels may also support two optional operations: Sample-Next-Move

and Enumerate-Possible-Moves. Sample-Next-Move is much like Sample-

Next-State, except that instead of producing just a sample S∗, Sample-Next-

Move produces a Move object: St
K−→ S∗. A Move object carries several pieces of

information. The next state is still available:

Move-Target(St
K−→ S∗) , S∗.

Move objects also carry additional information, such as the probability that the Ker-

nel’s Sample-Next-Move will produce this move:

Move-Forward-Transition-Density(St
K−→ S∗) , K(St → S∗)

and the probability that the Kernel’s Sample-Next-Move would produce the in-

verse move from the target state:

Move-Reverse-Transition-Density(St
K−→ S∗) , K(S∗ → St).
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Operations for a Kernel K

Sample-Next-State(St) Sample S∗ ∼ K(St → S∗), returning S∗
Sample-Next-Move(St) Sample S∗ ∼ K(St → S∗), returning a Move

St
K−→ S∗ (optional)

Enumerate-Possible-Moves(St) Return a collection of all Moves St
K−→ S∗

that could be generated by Sample-Next-
Move (optional)

Figure 3-11: The operations supported by a Kernel K. Some operations are op-
tional, though some Kernels may require that their subkernels support a particu-
lar optional operation. For example, a Metropolis-Hastings Kernel requires that its
proposal Kernel supports Sample-Next-Move. Other Kernels may only support
optional operations if their children support the appropriate operations as well. For
example, a concrete cycle Kernel supports Enumerate-Possible-Moves only if all
its subkernels support Enumerate-Possible-Moves.

Finally, in order to support transdimensional MCMC, Moves also carry information

about the Jacobian of the Move under the Kernel, accessible via Move-Jacobian5.

Sample-Next-Move enables the fully-generic implementation of algorithms such

as Metropolis-Hastings, as will be discussed in section 3.4.2, and particle filtering, as

will be discussed in section 4.3. Note that any Kernel implementing Sample-Next-Move

can implement Sample-Next-State simply as

Sample-Next-State() = Move-Target(Sample-Next-Move).

The other optional operation of a Kernel is Enumerate-Possible-Moves, which

produces the set of all possible Move objects that that could be returned by a

call to Sample-Next-Move. Note that implementing Enumerate-Possible-

Moves may be impossible; for example, if the the Kernel operates on continuous

variables, it probably can produce an infinite number of distinct moves, and thus

can’t implement Enumerate-Possible-Moves. Enumerate-Possible-Moves

5Although all Moves support the Move-Jacobian operation, in many cases it will simply evalu-
ate to 1. In particular, if the methods defined in the Kernel do not require the use of reversible-jump
MCMC (for example, if they do not change the dimension or parameterization of the State space),
then the Kernel’s Moves’ Jacobian will be 1.
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Operations for a Move St
K−→ S∗

Move-Target(St
K−→ S∗) return S∗

Move-Forward-Transition-Density(St
K−→ S∗) return K(St → S∗)

Move-Reverse-Transition-Density(St
K−→ S∗) return K(S∗ → St)

Move-Jacobian(St
K−→ S∗) return this Move’s Jacobian6

Figure 3-12: The operations supported by a Move St
K−→ S∗. Moves are generated

from Kernels via the Sample-Next-Move and Enumerate-Possible-Moves op-
erations to carry information about the sampling process executed by the Kernel.

enables the fully-generic implementation of algorithms such as Gibbs sampling for

enumerable variables, as discussed in section 3.4.2. Any Kernel that implements

Enumerate-Possible-Moves can implement Sample-Next-Move simply by sam-

pling from the the set of Moves produced by Enumerate-Possible-Moves, with

each Move St
K−→ S∗ sampled with Move-Forward-Transition-Density(St

K−→

S∗).

Like States and Densities, Kernels are also composed into trees. In the case of

Kernels, the tree structure represents algorithmic composition: a Kernel may call

operations on any of its child Kernels any number of times as part of its operation7.

Composition Kernels may also be viewed as analogous to the control-flow operations

in other programming languages (e.g. for, case, if-then-else, etc.), including

stochastic generalizations of these constructs.

3.4.1 Hybrid Kernels

Hybrid Kernels are the most common composite Kernels because they are stationary

distribution-preserving; that is, if all of a hybrid Kernel’s child Kernels share a sta-

tionary distribution on the State space, then the hybrid Kernel is guaranteed to share

that stationary distribution as well. As described in chapter 2, the two standard hy-

brid Kernels are the cycle and mixture hybrids. A concrete8cycle Kernel can have an

arbitrary number of child Kernels and implements Sample-Next-State by calling

7Only it’s immediate children – a Kernel may not invoke operations on other descendents.
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Sample-Next-State on each of its child Kernels one after another. If the child

Kernels are unrelated, the resulting sequential control flow will be similar to a series

of statements in an imperative language like Java or C, or like the body of a begin

statement in Scheme. If, instead, each child Kernel performs the same operation but

targets a different State, the resulting control flow is akin to a for statement (though

see section 3.6 for an even closer relative to the for statement). Figure 3-13a shows

an example of concrete cycle Kernels in Blaise SDK diagrams.

A concrete mixture kernel has an arbitrary number of child Kernels and associates

a weight with each child Kernel; when the hybrid Kernel’s Sample-Next-State op-

eration is called, the Kernel first selects one of its child Kernels, sampled proportional

to their weights, then delegates to the selected child’s Sample-Next-State method.

The resulting control flow is analogous to a case statement, where the expression be-

ing switched upon is a random number drawn according to the child Kernels’ weights.

Figure 3-13b shows an example of concrete mixture Kernels in Blaise SDK diagrams.

Blaise also introduces a novel class of hybrid Kernels: conditional hybrid Ker-

nels. A (binary) conditional hybrid Kernel has two child Kernels; a true−Kernel

and a false−Kernel. It also has a deterministic binary predicate that is defined over

the Kernel’s operating State space. A conditional hybrid Kernel interprets calls to

Sample-Next-State by evaluating the predicate, then delegating to the child Ker-

nel associated with the predicate’s result (i.e. if the predicate evaluates to true, then

the conditional hybrid Kernel delegates to its true−Kernel’s Sample-Next-State

operation.) Conditional hybrid Kernels are not restricted to binary predicates; the

predicate may be replaced with any deterministic function of the State, so long as

the conditional hybrid Kernel can map any value of the function to exactly one child

Kernel. Appendix A proves that, if all the children of a conditional hybrid Kernel

share a stationary distribution, and if no child can change the value of the conditional

hybrid Kernel’s predicate/expression, then the resulting conditional hybrid Kernel is

guaranteed to have the same stationary distribution as its children. The control flow

8Virtual hybrid Kernels, including virtual cycle Kernels and virtual mixture Kernels, will also be
introduced in section 3.6.
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(a) Cycle Hybrid

(b) Mixture Hybrid

Figure 3-13: A Kernel for performing parameter inference in a single parameter beta-
binomial model was shown in Figure 3-9. What if the model were instead a Gaussian
(normal) model, with two parameters (µ and σ) to be inferred? Figures (a) and (b)
show such a model (hyperparameters on µ and σ are omitted for legibility, but the
Densities representing the priors on µ and σ are depicted). Each model has one
parameter inference Kernel for each parameter. In (a), a concrete cycle Kernel, labeled
“C”, composes the two parameter inference Kernels into a single Kernel structure; on
each step of the walk, both parameters will be adjusted. Other hybrid Kernels are
also possible. For example, in (b) the concrete cycle Kernel is replaced by a concrete
mixture Kernel, labeled “M”; on each step in the walk, the mixture Kernel randomly
chooses to update either µ or σ.
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resulting from a conditional hybrid Kernel is much like an if statement or a case

statement.

3.4.2 Metropolis-Hastings and Gibbs Sampling

The Metropolis-Hastings (MH) method, as described in chapter 2, is a popular

method for producing kernels with the desired stationary distribution. In Blaise,

the MH method is implemented generically using Kernel composition; the user sup-

plies a proposal Kernel defined on the State space, then uses a Blaise-standard

generic MH Kernel that has the proposal Kernel as a child. The MH Kernel uses

Sample-Next-Move from its proposal Kernel to make a proposal. The acceptance

ratio can then be evaluated using the operations defined by the Move in concert with

evaluations of the Density tree. Finally, the MH Kernel either accepts or rejects the

proposal. (As a side note, the Blaise MH Kernel is actually a reversible-jump MH

Kernel, though in the common case where the proposal Kernel returns Moves whose

Jacobians are 1, the reversible-jump method recovers the standard MH method. See

figure 3-15 for pseudo-code for the MH Kernel).

Gibbs sampling, as described in chapter 2, is a common subcase of the MH method

that usually produces efficient MH kernels. Blaise supports Gibbs sampling as a

generic method when the values of the State to be resampled can be efficiently enumer-

ated as a discrete set. Much like the Blaise implementation of MH, the user supplies

an “enumeration” Kernel (a Kernel defined on the appropriate State and supporting

the Enumerate-Possible-Moves operation, also called a proposal Kernel by anal-

ogy to MH), then specifies a Blaise-standard generic Gibbs Kernel that has the enu-

meration Kernel as a child. The Gibbs Kernel uses Enumerate-Possible-Moves

from the enumeration Kernel to produce a set of Moves to all possible values of the

State being resampled; the Gibbs Kernel then uses evaluations of the Density tree

to weight each of these Moves (ignoring the transition probabilities assigned to the

Moves by the enumeration Kernel). Finally, the Gibbs Kernel samples one of the

Moves proportional to the weights. (See figure 3-17 for pseudo-code for the Gibbs

Kernel).
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(a) This model exhibits Brownian motion

(b) This model samples from interest distribution

Figure 3-14: Metropolis-Hastings (MH) Kernels in Blaise are generic adapters. In
figure (a), a Gaussian Perturbation Kernel is being used to adjust a parameter by
sampling from a Gaussian distribution centered on the current value of that param-
eter: Kgp(st → s∗) = Normal(p = p∗; µ = pt, σ = σ0). This configuration produces
Brownian motion on the parameter p, resulting in diffusion rather than convergence
to the interest distribution (i.e. the joint density induced by the Density structure).
In figure (b), a generic MH Kernel has been added to the model. This Kernel uses
the Gaussian Perturbation Kernel to generate proposal Moves. These moves are then
accepted or rejected using the standard Metropolis-Hastings acceptance ratio cal-
culations, resulting in an MCMC chain that converges to the interest distribution
p(p|alpha, beta, ~x).
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Metropolis-Hastings.Sample-Next-State(State,Root-Density)

1 move ← Proposal -Kernel .Sample-Next-Move(State, Root-Density)
2 densitypre ← Root-Density(State)
3 densitypost ← Root-Density(Move-Target(move))
4 proposalforward ← Move-Forward-Transition-Density(move)
5 proposalreverse ← Move-Reverse-Transition-Density(move)

6 paccept ← min
(
1, densitypost

densitypre
· proposalreverse

proposalforward
·Move-Jacobian(move)

)
7 accepted ∼ Bernoulli(paccept)
8 if accepted
9 then return Move-Target(move)

10 else return State

Figure 3-15: Pseudocode for a Metropolis-Hastings Kernel’s Sample-Next-State.

The MH and Gibbs Kernels are important examples of the Blaise framework for

several reasons. First, they illustrate Kernel composition, using composition strate-

gies other than the standard hybrid Kernels. They also illustrate an “adapter” pattern

that is common in Blaise, as will be seen in the discussion of State–Density–Kernel

(SDK) transformations in chapter 4. In fact, Metropolis-Hastings and (enumerative)

Gibbs sampling can be considered two of the most basic transformations supported

in Blaise. The “MH transformation” takes as input an SDK graph, where the Ker-

nel supports the operation Sample-Next-Move but does not have as a stationary

distribution the Density’s distribution over the State space. By transforming the

SDK graph – that is, by wrapping the existing Kernel in an MH Kernel – the MH

transformation produces an SDK graph in which the Kernel does have the correct

stationary distribution. Likewise, the “Gibbs transformation” takes as input an SDK

graph, where the the Kernel supports the operation Enumerate-Possible-Moves

but does not have as a stationary distribution the Density’s distribution over the State

space. By transforming the SDK graph – that is, by wrapping the existing Kernel

in a Gibbs Kernel – the Gibbs transformation produces an SDK graph in which the

Kernel does have the correct stationary distribution and is efficient.

Because MH and Gibbs Kernels use regular Blaise Kernels to describe their

proposals, Blaise’s composition tools can be used to form interesting proposals. For
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(a) This model distributes datapoints
randomly across components

(b) This model samples from the interest
distribution

Figure 3-16: Gibbs Kernels in Blaise are generic adapters. In figure (a), the Uniform
Reassignment Kernel’s Sample-Next-State selects a datapoint uniformly from the
set of all datapoints, then selects a mixture component uniformly from the set of com-
ponents, and finally moves the datapoint out of its current component and into the
selected component. This configuration will produce a random shuffling of the data-
points, distributing them uniformly across the components without regard the value
of the datapoints, rather than converging to the interest distribution. In figure (b), a
generic enumerative Gibbs Kernel has been added to the model. This Kernel uses the
Uniform Reassignment Kernel’s Enumerate-Possible-Moves to generate candi-
date Moves. The Gibbs Kernel then selects from these Moves, weighting each move
using the joint density of its target state, resulting in an MCMC chain that converges
to the interest distribution.

Gibbs.Sample-Next-State(State,Root-Density)

1 moves [] ← Proposal -Kernel .Enumerate-Possible-Moves(State, Root-Density)
2 for each move ∈ moves[]
3 do density [move]← Root-Density(Move-Target(move))
4 densitysum ←

∑
move density [move]

5 move ∼ moves [] weighted by density[move]
densitysum

6 return Move-Target(move)

Figure 3-17: Pseudocode for a Gibbs sampling Kernel’s Sample-Next-State.
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(a) Unblocked

(b) Blocked

Figure 3-18: Kernel composition can be used to create interesting proposal Kernels.
Figure (a) shows a standard cycle Kernel composition of two unblocked Metropolis-
Hastings samplers for the parameters of a Normal model. In figure (b), the cycle
Kernel has been “pushed through” the Metropolis-Hastings Kernel, yielding a blocked
sampler that will resample both µ and σ together. Blocked Metropolis-Hastings
samplers allow larger steps to be taken in the state space and may produce a Markov
chain that mixes better (e.g. by making it more likely to move between two modes);
however, these larger moves can also negatively impact mixing (e.g. by making it
more likely that moves will be proposed into low probability regions of the state
space).
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(a) Unblocked (b) Blocked

Figure 3-19: Kernel composition can be used to create interesting proposal Kernels.
Figure (a) shows a standard Gibbs sampler for reassigning datapoints in a mixture
model. In figure (b), a cycle Kernel has been introduced into the Gibbs Kernels’
proposal, yielding a blocked sampler that will resample assignments for two datapoints
together. Blocked Gibbs samplers allow larger steps to be taken in the state space and
may produce a Markov chain that mixes better; however, blocking also exponentially
increases the number possible moves that must be evaluated.
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example, using a cycle hybrid as the proposal for an MH or Gibbs Kernel will result in

blocked MH or Gibbs, respectively, where several variables are resampled as a group

or “block.” These patterns are demonstrated in figures 3-18 and 3-19.

3.5 Densities for state spaces of unknown dimen-

sionality or variable structure

The Blaise tools described so far would be sufficient if the topology of Blaise State

spaces were static; however, to fully support mutable State spaces, a few more tools

are needed. Specifically, Blaise should be able to model how the Densities and

Kernels accommodate State spaces that change.

Consider, for example, Collection States that may have children added and re-

moved at inference time, such as those representing the components in a beta-binomial

mixture model. As data points are added to a mixture component, the structure of

the density of that component should be updated to reflect the addition. As per the

previous discussion of beta-binomial models, the Density of a component could be rep-

resented as a Multiplicative Collection Density, with one child Binomial Density per

datapoint. Keeping the Density up-to-date then requires a new Binomial Density to

be created, to be connected to the data point and the component’s parameter p, and

to be added as a child of the component’s Collection Density. An important question

remains: where does the responsibility for this update lie? One option would be for

the Kernel that modifies the State space topology to make sympathetic modifications

to the Density topology; however, section 3.4 already concluded that this strategy of

directly coupling Kernels and Densities is detrimental to compositionality, preferring

instead to let the State space mediate between them. This leaves two clear options:

either the State space can respond to changes by mutating the Density hierarchy, or

else Densities can watch the State space for changes and update their own structures

accordingly. The difference is in where the information and responsibility for updates

resides: in the former case, the information resides in the State space, whereas in the
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Figure 3-20: Associated Collection Densities allow the Density structure to main-
tain consistency with the State structure, even as States are added to and removed
from Collection States. An Associated Collection Density has a Density→State edge
to a Collection State, ensuring a one-to-one correspondence between children of the
Collection State and children of the Associated Collection Density. The Associated
Collection will construct and destroy child Densities as needed to satisfy this contract.
This figure shows the State and Density structure for a mixture model, using two As-
sociated Collection Densities: one to make sure that every datapoint x has a likelihood
Density connecting it to the component parameter Θ, and one to ensure that each
component has the appropriate Density structure (i.e. the aforementioned datapoint
Associated Collection Density, a prior Density connecting Θ to Ω, and a Multiplicative
Density to compose the two). This Density structure will stay consistent as Kernels
move datapoints from one component to another, and even if components are created
or destroyed.

latter case, the information resides in the Density hierarchy. Given that the State

space, as described earlier in this chapter, has no dependencies whatsoever on Den-

sities and their structure, and given that the Density structure is already intimately

connected with the structure of the State space via the Density→State links, the

choice seems clear: in Blaise, Densities may watch the State space and mutate their

own structure in response to changes in the State space.

Let us now use this premise to complete the Density structure for a mixture

model. We wish to ensure that a component’s Multiplicative Collection Density has a

Density associated with each datapoint in the component’s Collection State; therefore,

the Multiplicative Collection Density should watch the Collection State and add (or
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remove) a child Density each time the Collection State has a child datapoint added

(or removed). To note this graphically, we reuse the notation for Density→State

dependencies and add an edge from the Multiplicative Collection Density to the

Collection State, as in figure 3-20. This pattern is so common in Blaise models

that the Multiplicative Collection Density implementing it is given a special name:

an Associated Collection Density (because it associates a child with every child of

a Collection State). The Density story is now almost complete, with just one thing

remaining: in order for the Associated Collection Density to create the datapoint

Density children, it will need to be able to locate the component parameter State.

Therefore, the Associated Collection Density has a link to the component parameter

Θ – not because the Collection Density’s value directly depends on Θ, nor because it

is going to mutate its structure in response to Θ, but because it will need to find Θ

to construct the datapoint Densities.

3.6 Kernels for state spaces of unknown dimen-

sionality or variable structure

As State spaces vary in dimension, it is also important to ensure that Kernels are dis-

patched appropriately to explore the entire State space. For example, in the mixture

model example, it is important to make sure that Kernels for component parameter

inference are applied to each of the components, no matter how many components

exist. If the number of components is known a priori, the designer can simply use a

concrete hybrid kernel (either a mixture or a cycle). However, what if determining

the number of components is one of the inference goals?

Blaise introduces a novel kind of Kernel, called a virtual hybrid Kernel, to man-

age Kernel dispatch over Collection States. A virtual hybrid Kernel can be thought

of as a concrete hybrid Kernel that has, as children, a copy of a subkernel for each ele-

ment of the Collection State. For example, a virtual cycle Kernel for the components

of a mixture model would act as if it had one copy of the component-parameter-
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Figure 3-21: As the number of components in a mixture model changes, the number of
component parameters requiring inference also changes. Blaise uses virtual hybrid
Kernels, like the virtual cycle Kernel labeled “C” in this diagram, to represent a
hybrid Kernels that operate over an unknown number of States. This virtual cycle
Kernel will apply the Metropolis-Hastings-adapted Gaussian Perturbation Kernel to
the Θ parameter of each component in turn.

adjustment-kernel for each component in the mixture. When a component is added,

the virtual cycle acts as if it has had added a new component-parameter-adjustment-

kernel with an edge to the new component.

Virtual hybrid Kernels are called “virtual” because they only actually need one

copy of the child Kernel; rather than making many copies of the child Kernel, the

virtual hybrid just calls the same child Kernel multiple times, directing it at a different

state each time. Virtual hybrid Kernels are possible because Kernels are history-free,

that is, stateless9.

Like concrete hybrid Kernels, virtual hybrid Kernels have the property that the

hybrid Kernel shares the same stationary distribution as its child Kernel, so long

as it can be guaranteed that the child Kernel is unable to change the number of

9In comparison, some machines for executing Blaise SDK automata might treat Densities as
mildly stateful once they are attached to the State hierarchy, in that different copies of the same
Density, if connected to different States, will have different values. For example, chapter 5 will
describe how Densities in the Blaise Virtual Machine maintain some state in the form of a cache
that significantly improves the performance of Density evaluation.

67



(a) Virtual Hybrid

(b) Possible Reduction

Figure 3-22: Virtual Hybrid Kernels can be analyzed as a Conditional Hybrid of
Concrete Cycles, as described in section 3.6. Figure (a) shows a simple Virtual Hybrid
Kernel configuration. Figure (b) shows a hypothetical reduction of the virtual hybrid
configuration, using a conditional hybrid Kernel (labeled “?”) that partitions that
state space based on the number of children in the Collection State. The dotted gray
boxes show example states that would fall into the partition subspaces for Collections
States of size 1, 2, and 3, with the ellipsis indicating the omission of larger subspaces
from the diagram. The gray Collection State depicted in each subspace would not
actually exist in the real model; it is just a placeholder for the actual Collection State
that would exist in all the subspaces and which is depicted beside the Conditional
Hybrid Kernel.

children in the Collection State that the virtual hybrid Kernel is operating on. This

restriction can be understood by considering the reduction of a virtual hybrid Kernel

to a conditional hybrid of concrete hybrids. The conditional hybrid would use the size

of the Collection State as its partitioning function – that is, it would partition the

State space into subspaces in which the Collection State has a fixed number of children

(for example, one subspace might contain only those states where the Collection State

has 2 children). The hypothetical conditional hybrid would have a concrete hybrid

kernel for each subspace, where that concrete hybrid kernel would have a copy of

the virtualized subkernel for each child of the Collection State (see Figure 3-22). In
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Appendix A it is shown that such a Kernel structure will have the correct stationary

distribution, so long as the virtualized hybrid Kernel cannot change the value of the

partition function; that is, cannot change the size of the Collection State.

3.7 Compositionality and state space constraints

One of the primary goals for Blaise is to allow the construction of probabilistic

models and inference algorithms by composing different existing models together.

For example, suppose you had data about a number of objects. Each object has

several features, and you wish to model each feature using a mixture model, with the

constraint that each mixture model uses the same object partitions. How could this

be accomplished? To what extent can we reuse our previous Normal mixture model

implementation?

Blaise addresses this issue by supporting State space constraints. These con-

straints connect disparate portions of the State space, allowing changes in one region

of the State space to cause corresponding changes in a different region. Constraints in

Blaise are represented using State→State dependency edges in one of two forms. “In-

line” constraints between two States are represented as an edge to the freely changing

State from the State reacting to those changes. “Bridged form” constraints introduce

a layer of indirection, with a special State whose only function is to reify the con-

straint. This State has State→State dependency edges to both the freely changing

State and the State to be updated by the constraint. Bridged form constraints are

useful as a form of “glue”: neither the freely changing State nor the State being up-

dated needed to have their implementation changed; all of the new information lives

in the new Constraint State. A bridged form constraint State might not even have an

interpretation as a “random variable.” Still, it is considered to be part of the State

space because it is an expression of the domain of the State space – in particular, it

is a restriction of the valid domain.

For the purposes of Kernels, modifications to the State space as a result of a

constraint are considered to be part of the operation that triggered the constraint.
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To be more concrete, if a Kernel constructs a Move that modifies one State and a

constraint causes a second State to be updated in response, changes to that second

state are also considered to be part of the Move constructed by the Kernel. This will

become important in section 3.8.

Returning to the motivating example, State space constraints can be used to

achieve this multi-feature model, reusing our previous mixture model implementation

almost completely. First, we define a new piece of State to represent the definitive par-

tition of objects. This will look like a mixture model, but instead of components with

parameters to adjust, the partition will have plain groups, implemented as Collection

States. Each object will be reified as a State, with one of the inference goals being

to assign the object States to appropriate groups. Next, we add to the model one

copy of the mixture model implementation for each feature to be modeled, gathered

up using a Collection State. Finally, for each feature we add a constraint State that

connects the common object partition to the feature’s mixture model; this constraint

State will be responsible for reassigning the feature datapoints to the components

that correspond with the object partition’s groups when an object is moved to a new

group (see figures 3-23 and 3-24.)

For inference, we can also reuse the existing Kernels, with just a bit of reorgani-

zation. A single copy of the Kernels used to reassign datapoints will be used, now

targeted at the common object partition. For each feature, we will also have a copy of

the component-parameter-adjustment Kernels, gathered using a virtual hybrid Ker-

nel on the Collection State that contains the mixture model States. Finally, we use

a concrete hybrid Kernel to compose the reassignment Kernel and the parameter-

adjustment Kernel.

It is worth noting that, though some pieces of the SDK graph were combined in

new ways, the only new pieces that needed to be implemented were the constraint

States required for this particular problem. This is appropriate, insofar as the con-

straint between mixtures was exactly that which was new to the problem description.

This reflects a general trend with Blaise: when your modeling language is designed

for composition, you only spend your time working on the part of the problem that
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Figure 3-23: Constraint States allow the constraints to be enforced in the state space.
This figure shows a two-feature mixture model, written in “bridged form” – that is,
using constraint states to bridge between a master partitioning of the datapoints (the
center column) and the model for each feature (on the right and left). The feature
models are copies of the same mixture model that has been developed throughout
this chapter. The States labeled “1 : 1” are Constraint States that maintain a one-
to-one correspondence between groups in the master partition and components in
the feature models; components are created and destroyed as necessary to maintain
this constraint. The States labeled “sort” are constraint States that ensure that
when an object is assigned to a component in the master partition, the corresponding
datapoint assignment is made in the feature model – that is, that the datapoints in
each of the feature models are sorted into the appropriate components. Though both
feature models are depicted similarly in this diagram, the joint density and inference
procedure for each feature model could be different. For example, the x feature model
might be a Gaussian model, while the y feature model was a Beta-Binomial mixture
model.
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Figure 3-24: This multi-feature mixture model extends the two-featured mixture
model in figure 3-23 to support an arbitrary number of features. The feature models
are gathered using a Collection State. This diagram also shows the Kernels that
would be used for inference on this model assuming a fixed number of components,
(section 3.8 will relax this assumption). The right-hand branch of the Kernel hierar-
chy performs parameter inference in each of the models, using the same Metropolis-
Hastings methods described in figure 3-14 and 3-21. The left-hand branch of the
Kernel hierarchy performs datapoint assignment inference using the Gibbs sampling
methods described in figure 3-16. Note that the Gibbs Kernel operates only on the
master partition. The feature partitions are kept up-to-date automatically by the
constraint states, and any changes to the value of Density hierarchy resulting from
reassigned datapoints are automatically incorporated into the calculations performed
by the Gibbs Kernel. Both the Gibbs Kernel and the Uniform Reassignment Kernel
need not even know the feature partitions exist, due to the compositional nature of
Blaise models.
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is new. In chapter 6, we will see how a model with even more complicated con-

straints, an infinite relational model, can be built by reusing the same models we

have described here – including inference using exactly the same kernels.

To sum up, constraint States are a general-purpose tool for composing State spaces

– they allow State spaces that were designed independently to be “glued” together

without modification, and they increase the expressiveness of Blaise by enabling the

values some States to deterministically derived from the values of other States.

3.8 Initialization Kernels

Blaise is intended for sophisticated modeling. Therefore, let us consider one final

extension to our mixture model example: using a Chinese Restaurant Process as a

prior for the partition of objects. At first blush, this seems straightforward using our

current set of tools: first, add a new Kernel on the common object partition that will

create and destroy groups; then, for each feature, add a new constraint State that

will ensure that adding a group to the object partition causes a new component to be

created for that feature, and likewise destroying a group will destroy the corresponding

component. These shouldn’t be too hard to implement: the constraint State is no

more complicated than our previous constraint State, and the group-create/destroy

Kernel can be implemented easily as a Metropolis-Hastings Kernel with a proposal

Kernel that randomly chooses to either create or destroy a group.

Unfortunately, there is a complication. When a new mixture component is created,

what value should be assigned to the component parameter Θ? Moreover, where does

the responsibility lie for choosing that value?

One natural approach would be to let the constraint State create mixture com-

ponents with the parameter Θ set to a pre-determined constant (zero, for example).

Notice what this implies about destroying components, however: a proposal to destroy

a component can only be accepted by the Metropolis-Hastings Kernel if the inverse

move has positive probability. That is, a proposal that destroys a mixture component

will only be accepted if there is positive probability of recreating that mixture com-
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Figure 3-25: When new States are added to the State hierarchy, it is often necessary
to sample some aspect of them. For example, if a new component is to be added to a
mixture model, any component parameters will need to be sampled. This figure shows
a simple mixture model. A Metropolis-Hastings adapted component birth/death
Kernel on the left will add and remove components from the model, allowing the
number of components to be a target of inference. Each time a component is added,
the Initialization Kernel (highlighted with an orange annulus) will be invoked by
Blaise to sample an initial value for Θ.
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Figure 3-26: Inline mixture models like figure 3-25 could avoid Initialization Ker-
nels by writing a special purpose Birth/Death Kernel that samples the component
parameter Θ when a component is created. In contrast, bridged form mixture mod-
els like the multiple-feature mixture model shown here require Initialization Kernels
in order to support inference on the number of components, because feature model
components created by Constraint States need to be initialized.
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ponent exactly as it existed before deletion. If mixture components are only created

with parameters assigned to pre-determined constants, then mixture components can

only be deleted when the parameters equal those pre-determined constants, resulting

in extremely poor performance (i.e. slowly mixing Markov chains).

The standard solution to this issue is to sample parameter values from some

distribution when mixture components are created. In this way, component deletion

proposals can be accepted because there is always a positive probability density of

proposing to recreate the component with the same parameter values.

One question remains, though: where does the responsibility for sampling param-

eter values lie? It is possible that constraint States could sample parameter values;

however, the choice of what parameter sampling strategy to use is most naturally an

aspect of the inference method description rather than an aspect of the state space

description. This suggests that parameter sampling should be a responsibility of the

Kernel that causes the components to be created, but this has its own challenges.

For example, consider the multi-feature mixture model described in section 3.7. One

of the apparent virtues of that model implementation was that additional features

could be added without modifying the Kernels that operated on the common object

partition – that is, the feature mixture models were thoroughly decoupled from the

object partition implementation.

As described previously, Kernels are normally invoked by calling Sample-Next-

State on the root of the Kernel hierarchy, with each such call advancing the Markov

chain to the next state. Blaise supports decoupled State initialization by introducing

a second way for Kernels to be invoked: when new elements of State are added to the

State structure and need to have an initial value sampled for them, an Initialization

Kernel is triggered. Initialization Kernels are bound to specific locations in the State

space; for example, one Initialization Kernel might be triggered only by new States

being created as a specific Collection State’s children, while a different Initialization

Kernel might be responsible for initializing State elsewhere in the State hierarchy.

Initialization Kernels are automatically invoked on pieces of State that needs to

be initialized. Returning to the mixture model example, when a new component

76



is created as part of some Kernel’s Sample-Next-State operation, the constraint

State would give the parameter Θ a dummy value, then add the component to the

components Collection State. This would trigger an invocation of the Initialization

Kernel’s Sample-Next-State on the new mixture component, allowing Θ to be

initialized. As discussed in section 3.7, modifications to the State space as a result of

a constraint are considered to be part of the operation that triggered the constraint;

this includes any State initialization done by Initialization Kernels. In the Normal

mixture model example, this implies a group birth/death Kernel for the common

object partition would produce Moves for which operations such as Move-Forward-

Transition-Density include the probability of any triggered Initialization Kernels

sampling the values they did. In other words, there are two ways for one Kernel A

to invoke another Kernel B: either A could have B as a child and invoke it directly,

or A could cause some change to the State space which triggers an invocation of B

as an initialization Kernel; in either case, though, any sampling performed by B on

behalf of A will be accounted for by Move-Forward-Transition-Density, etc.

Similar patterns allow the automatic invocation of Initialization Kernels as part of

Sample-Next-Move and Enumerate-Possible-Moves operations.

Initialization Kernels are also invoked when a previously-initialized State is about

to be destroyed. The Initialization Kernel is signaled that this is a destroy operation

rather than a construction operation, enabling the Kernel to make the appropriate

contributions to the Move (e.g., incorporating into to the Move’s Move-Reverse-

Transition-Density value the probability of sampling this exact configuration on

a subsequent Initialization).

It is worth noting that hybrid Kernels may also be used to construct Initialization

Kernels via composition. For example, one might choose to use a concrete mixture

Kernel to randomly choose between two different initialization strategies.
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Figure 3-27: This non-parametric multi-feature beta-binomial mixture model is the
capstone of this chapter, using almost all the features that have been presented. This
model uses a Chinese Restaurant Process (CRP) prior on the partition of objects. As
will be seen in chapter 6, the Infinite Relational Model is very similar to this model,
and will use exactly the same inference methods.
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3.9 Comparison to the Model-View-Controller ar-

chitecture

A useful analogy may be drawn between the Blaise’s SDK architecture and the

Model-View-Controller (MVC) design pattern [7, 34, 16]. MVC is an architectural

design pattern for interactive systems found in a number of the predominant interac-

tive frameworks, including Java Swing [35], Ruby on Rails [59], and Qt (since version

4) [63]. MVC decouples the data representation (the “model”), the presentation of

that data via a (graphical) user interface (the “view”), and the interpretation of user

input as modifications to the model (the “controller”).

The Blaise SDK architecture has a similar structure (see figure 3-28b). States fill

the role of the MVC model as the data representation abstraction. Densities are then

similar to views: they provide a particular interpretation of the data. Whereas MVC

Views are (typically) used to reduce complex data to a 2-dimensional visualization,

Densities reduce the complex data to a 1-dimensional continuous quantity: the value

of the joint density on the State space. Finally, Kernels are analogous to MVC

controllers, with Blaise’s random bit stream filling the role of MVC’s user input.

The MVC controller interprets user input in relation to the view in order to make

appropriate changes to the model; these changes will then be reflected in the view.

Likewise, a Blaise Kernel interprets random bits from the bit stream in relation to

the Density in order to make appropriate changes to the model; these changes will

then be reflected in the Density. Note that it is natural to bring the MVC user and

the Blaise random bit stream into correspondence, because both are the primary

sources of non-determinism in their respective application domains.

3.10 Comparison to reactive programming languages

Blaise’s SDK architecture also has interesting similarities with reactive programming

languages (for example, FrTime [11]). Reactive programming languages seek to model

the flow of information as data changes over time. A statement such as “a = b + c”
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(a) MVC design pattern (b) Blaise SDK architecture

Figure 3-28: The Model-View-Controller architectural design pattern and the Blaise
SDK architecture are analogous: Models and State represent data, Views and Den-
sities provide an interpretation of that data, and non-determinism (either from user
input or random bit sources) are interpreted by Controllers and Kernels. In this
diagram, the dependency of Kernels on Densities is drawn as a dashed arrow to em-
phasize the narrowness of this communication channel (a single number encoding the
evaluation of the joint density).

in a non-reactive language would be interpreted as “compute the sum of the current

values of b and c, and assign that value to a;” even if b or c were to have its value

changed, a would still maintain the same value (the original sum). In a reactive

language, a similar statement would have a more constraint-like interpretation, i.e.

ensure that a always has the value b+c. In such a language, a dataflow would connect

a to b and c so that the the value of a will react to changes in the value of b or c.

Blaise Densities are much like expressions in reactive programming languages:

they define a computation on a set of values; those values may change over time, and

the Densities are expected to reflect such changes. Drawing a correspondence to the

example above, a Density might fill the role of a, a State the role of b, and another

Density the role of c; filling the role of addition would be some function f of the form

a = f(b, density(c)). Reactive programming languages are generally concerned with

directed acyclic dataflows. Similarly, Blaise Densities are required to be trees (a

subclass of acyclic graphs); considering Densities and the States they depend upon

results in a singly-rooted directed acyclic graph10.

10Density “dataflows” are singly rooted, even though general reactive programming data-flows
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Unlike most other languages, reactive programming languages typically reify and

store the result of intermediate computations, even if these values are never directly

accessed later; this reification and storage is required to determine how changes should

propagate through the dataflow. As will be described in chapter 5, the Blaise virtual

machine uses a similar strategy by memoizing the value of all Density evaluations.

Also like many reactive programming language implementations, the Blaise VM

uses an invalidation/lazy-evaluation scheme to maintain efficiency by only evaluating

the necessary portions of large dataflows/Density hierarchies.

3.11 Comparison to Infinite Contingent Bayes Nets

Infinite Contingent Bayes Nets (ICBNs) [44] are another approach to representing

graphical models in which there may be an unbounded number of objects. ICBNs

are much like standard Bayes Nets, except that edges may be labeled with conditions

(boolean expressions on the other variables in the graph) that must be satisfied for the

edge to be active (that is, to have an effect on the joint distribution). ICBNs underlie

the implementation of BLOG [45], a first order probabilistic modeling language.

Blaise SDK models bear a relation to ICBNs. Unlike Blaise models, ICBNs

have fixed topology; however, the set of active edges is dynamic and changes over the

course of inference. This is similar to how the structure of the Density hierarchy in

Blaise changes over the course of inference – the set of currently existing Densities

and their connections to the State hierarchy is analogous to the set of active edges

in an ICBN. Blaise SDK models provide advantages over ICBNs, such as avoiding

index variables and supporting undirected models.

are not. This reflects the fact that Blaise models are only interested in a single joint probability
density defined over the state space, whereas in general reactive programming, there may be multiple
quantities of interest.
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3.12 Discussion

In this chapter, I supported my thesis statement by inventing the Blaise State–

Density–Kernel (SDK) graphical modeling language. In the Blaise SDK language,

the state space is represented using a tree of States. Distinguishing features of the

State representation include the ease and explicitness of composition, the encoding

of information in the mutable topology of the state space, the ability to include

unknown numbers of objects (using Collection States), and the incorporation of state

space constraints (using Constraint States).

Densities were then presented as a means of encoding a joint probability density

that decomposes naturally over the state space. The Blaise density model is distin-

guished by providing explicit control over the composition of Densities, which enables

the density structure to reflect unknown numbers of objects (using Associated Col-

lection Densities) and which provides for non-linear composition strategies (such as

tempering Densities).

Next, this chapter presented Blaise’s unique approach to modeling inference by

adding Kernel nodes to Blaise graphical models. Kernel composition was described,

including an interpretation of traditional composition strategies, such as concrete

cycle and mixture kernels, in terms of the Blaise framework, as well as the develop-

ment of novel composition strategies such as conditional hybrid Kernels and virtual

cycle and mixture Kernels. In addition, the Metropolis-Hastings algorithm and Gibbs

sampling for value-enumerable States were reinterpreted as generic Blaise Kernels.

Initialization Kernels were also invented as a means of decoupling the logic for initial-

izing new States from the logic for determining when new State should be created.

In this chapter, I also put forward the hypothesis that the probability density

evaluations required for inference can generally be couched in terms of the joint

probability density – that is, evaluations of the root Density. This hypothesis is

supported by the implementations of the Metropolis-Hastings and Gibbs Kernels

outlined in this chapter, and will be further supported in chapter 4.

Finally, throughout this chapter I detailed how Blaise is designed from the
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ground up for composability, including describing the composition strategies for States,

Densities, and Kernels, showing how useful models can be built up piece-by-piece and

by recycling existing models. It is particularly striking that in many cases, the mod-

eler can continue to use exactly the same inference Kernels even as the model grows

to significant complexity. The soundness of the design was also justified by draw-

ing an analogy between the Blaise SDK probabilistic inference architecture and

the well-established Model-View-Controller interactive system architecture, as well

as an analogy between the Blaise States and Densities and the dataflows in reactive

programming systems.
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Chapter 4

Blaise Transformations

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

In this chapter, I support this thesis by highlighting how several recent advances

in inference are supported by interpreting them as graph transformations in the SDK

language.

By the end of this chapter, you will be able to use Blaise transformations to

automatically convert a normal Blaise SDK model to a version that uses simulated

annealing, parallel tempering, or particle filtering. You will be able to transform a

model for a single mixture component into a variety of complete mixture models, or

to integrate out a variable in a conjugate model.

4.1 An introduction to Blaise transformations

Chapter 3 introduced the Blaise SDK graphical modeling framework, focusing on

the patterns of composition enabled by the Blaise abstractions. In this chapter,

I will explore another virtue of the the SDK modeling language: its ability to be

programmatically manipulated. Such manipulations take the form of transformations

on the SDK graph.
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SDK transformations have many uses. One might transform an SDK graph in or-

der to extend the probabilistic model; for example, to transform a mixture component

into a mixture model. One could also transform an SDK graph in order to enhance

inference. The Metropolis-Hastings transform, introduced in section 3.4.2 and used

to correct the stationary distribution of a kernel, is such an inference enhancement

transform. There are many other examples, however, including transformations for

simulated annealing, parallel tempering, and particle filtering. Finally, Blaise trans-

formations may be useful to make an existing SDK graph more efficient: for example,

by rewriting portions of the model to exploit conjugacy.

Different kinds of transformations are likely to be used in different ways. For

example, model extension transforms such as the mixture model transform will likely

only be useful when specifically requested by a user during the model creation pro-

cess. Efficiency transforms, however, could be deployed automatically as part of

an optimizing compilation stage that is invoked just before inference begins. Infer-

ence enhancement transformations could be used in either fashion, depending on the

transformation; for example, Metropolis-Hastings transforms are likely to be under

direct user control, while the parallel tempering transformation might be invoked

by an optimizing compiler. Still, even if parallel tempering were only available as

a user-controlled operation, the ability to convert an existing inference algorithm to

a parallel tempered version of the same algorithm using one line of code (or maybe

even just a point-and-click operation) is of incredible value to the modeler, insofar as

it reduces both development and computation time.

The transformations presented here are far from an exhaustive set; rather, the

goal of this chapter is to provide enough familiarity with Blaise transformations

that the reader can get a feeling for their utility and for how even advanced infer-

ence techniques, such as parallel tempering, can be made accessible if the modeling

language uses the appropriate abstractions.
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Figure 4-1: The temper transformation is used to change the temperature at which a
model is evaluated (section 4.2.1). Tempering is an important component of simulated
annealing (figure 4-2) and parallel tempering (figure 4-3).

4.2 Tempered models

The shape of a joint density landscape can be modified by a process called tempering,

wherein a joint density is evaluated at a specific “temperature” τ by raising the joint

density to the power of 1/τ . As τ approaches infinity, (i.e. when the temperature is

very hot), the distribution becomes relatively flat, assigning nearly equal probability

to all events in the support of the original joint density. Such hot distributions are

useful because they are easier to explore. For example, it is easier to produce a

Metropolis-Hastings Kernel that mixes well for a hotter distribution, because it is

less likely that proposals will be made to low-probability regions of the state space.

As τ approaches zero (i.e. when the temperature is very cold), the distribution

becomes very “peaky,” assigning all the probability mass to the maximum a posteriori

(MAP) state. Such cold distributions are useful because MCMC samples from a cold

distribution are more likely to produce samples at or near the MAP value. Note that

the original joint density is recovered when τ = 1 .

As described in section 3.3, Blaise models can have Densities that introduce

non-linearities, and therefore can represent inference techniques based on tempering

as transformations of the Blaise SDK model. The section introduces the temper

transform to temper a Blaise model, then builds upon this transform to implement

simulated annealing and parallel tempering transforms.

4.2.1 The temper transform

The Temper transform extends an existing SDK model to produce a tempered ver-

sion:
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Figure 4-2: Simulated annealing in Blaise is implemented by the Anneal transform
(section 4.2.2). This transformation uses the Temper transform (figure 4-1) to create
a version of the model with an adjustable temperature τ . A concrete cycle Kernel is
used to adjust the temperature on every iteration of inference.

〈S, D,K〉, τ temper−−−−→ 〈Sτ , Dtemper, K〉

where S is a State, D is a Density, and K is a Kernel (see figure 4-1). Under

this transformation, Sτ will have S as a child and will contain the variable for the

temperature τ . Dtemper will have D as a child density and a reference to Sτ , with

the density being evaluated as density(Dtemper) = density(D)1/τ . The Kernel K is

unaffected.

The Temper transform is relatively simple, but the next two sections will show

how simulated annealing and parallel tempering can be implemented using this trans-

form as a subroutine.

4.2.2 Simulated Annealing

Simulated annealing [17, 32] is a temperature-based inference enhancement scheme in

which a model is tempered to a hot temperature, then slowly cooled to either τ = 1

(to produce samples from the untempered joint distribution), or to a τ near 0 (to

produce a MAP estimate).

Simulated annealing can be implemented as a Blaise transformation that takes

a standard Blaise SDK model and an annealing schedule (i.e., a description of how

aggressively to reduce the temperature), and produces an annealed SDK model:

〈S, D,K〉, schedule
anneal−−−−→ 〈Sτ , Danneal, Kanneal〉
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Figure 4-3: Parallel tempering in Blaise is implemented by the parallel temper trans-
form (section 4.2.3). This transformation uses the temper transform (figure 4-1) to
create multiple copies of the original model, each running at a different temperature.
A virtual cycle Kernel is used to update each copy of the model using K. Occasion-
ally, the mixture Kernel will choose to apply the swap-chains Kernel instead of the
advancement Kernel; the swap-chains Kernel proposes swapping a pair of chains with
adjacent temperatures.

(see figure 4-2). Under this transformation, Sτ and Danneal are tempered versions of

S and D (produced using the Temper transform):

〈S, D,K〉, τ1
temper−−−−→ 〈Sτ , Danneal, K〉

where τ1 is the initial temperature for the annealing schedule. The Kernel Kanneal is a

concrete cycle Kernel with two children: K and a Kernel that makes a deterministic

update to τ according to the annealing schedule.

4.2.3 Parallel Tempering

Parallel tempering [18, 15] is another temperature-based inference enhancement scheme.

In parallel tempering, a number of copies of a model are produced and each is tem-

pered to a different temperature; each copy represents a (nearly) independent Markov

chain. Inference is performed on each of the chains independently and in parallel,

except that occasionally chain inference is paused and there is an opportunity to
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swap the state between two chains with similar temperatures. Swaps are accepted

or rejected such that each chain is guaranteed to produce samples from its tempered

distribution. Specifically, if a chain has τ = 1, it is guaranteed to produce samples

from the untempered joint density, just as standard MCMC would; the goal, though,

is to produce samples more efficiently than standard MCMC (by converging faster

and mixing better).

Parallel tempering can be viewed as a generic method for providing intelligent pro-

posals for a Metropolis-Hastings kernel. For example, consider a two-chain parallel-

tempered system, where the cold chain has τcold = 1 and the hot chain has τhot > 1.

The hot chain has a flatter, easier-to-search distribution; therefore, we expect MCMC

on the hot chain to converge faster and mix more effectively than MCMC on the cold

chain. Assuming the temperature difference between the two chains isn’t too large,

however, the hot chain’s distribution is still similar to that of the cold chain. Consid-

ering a swap is much like using the hotter distribution to propose the next value for

the cold chain, and the τhot parameter can be adjusted to make it sufficiently likely

that swap proposals will be accepted while maximizing the ease with which the hot

chain mixes.

Parallel tempering can be implemented as a Blaise transformation

〈S, D,K〉, schedule, period
parallel temper−−−−−−−−→ 〈Spt, Dpt, Kpt〉,

where period is the expected number of steps to advance each of the parallel chains

between attempts to swap chains (see figure 4-3). Under this transformation, Spt

is a Collection State having one child state, ChainStatei, for each temperature in

schedule = τ1, . . . , τn, and Dpt is an Associative Collection Density with one child

Density, ChainDensityi, for each temperature. ChainStatei and ChainDensityi are

then created using the tempering transform

〈S, D,K〉, τi
temper−−−−→ 〈ChainStatei, ChainDensityi, K〉.

The kernel Kpt is the composition of two simpler kernels: Kadvance and Kswap.
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Figure 4-4: Particle filtering in Blaise is implemented by the particle filter transform
(section 4.3). The input to the transformation is an empty initial state S and a density
D for that state, together with a Kernel K that makes sequential extensions to the
state (e.g. adds variables for next time step of a dynamic Bayes net, sampling values
for those variables). This transformation makes several copies of the original model to
use as particles; each copied State is embedded in an particle State that also contains
the particle weight. A cycle hybrid kernel Kadvance is used to update each copy of
the model and its associated weight. Next, Knormalize renormalizes all the weights,
and finally Kresample optionally resamples the particles. A cycle hybrid kernel Kpf

orchestrates Kadvance, Knormalize, and Kresample.

Kadvance is used to advance each of the chains one step. It is implemented as a virtual

cycle Kernel, virtualizing K over the collection of chains. Kswap attempts to swap

chains with adjacent temperatures. It is constructed as a Metropolis-Hastings Kernel,

where the proposal Kernel selects an index i ∈ [1, n−1] and proposes swapping the S

part of ChainStatei and ChainStatei+1. This proposal is then stochastically accepted

according to the standard Metropolis-Hastings acceptance ratio. The hybrid Kernel

Kpt is a concrete mixture Kernel that applies Kswap with probability 1/(period + 1);

otherwise it applies Kadvance.
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4.3 Particle Filtering

Particle filtering, also known as sequential Monte Carlo, is a population-based variant

of importance sampling. Several samples, called particles, are built up in parallel (i.e.

the same variable will be sampled in all the particles, then the next variable will

be sampled in all the particles, and so on). As in standard importance sampling, a

weight is associated with each particle to encode how well the sampling process for

the particle matches the interest distribution – for example, how well the sampling

process is able to account for the observed evidence. Before moving on to sample the

next variable, the particle filter may optionally resample the population of particles

by sampling from the current set of particles in proportion to their weights. This

process tends to discard particles that explain the data poorly, while generating new

particles in those regions of the state space that explain the data well.

Although particle filtering is not typically thought of as a Markov chain Monte

Carlo method, it is still a Monte Carlo method that can be implemented in a Markov

chain. As will be seen, particle filtering inference can even be constructed atop the

same SDK framework described throughout this thesis for MCMC, despite not being

analyzable as an MCMC method (but see [46]).

In Blaise, particle filtering is implemented as an SDK transformation

〈S0, D,K+〉, #particles
particlefilter−−−−−−−→ 〈Spf , Dpf , Kpf〉,

where S0 is an “empty” state (i.e. no variables sampled yet), D is the interest

distribution, and K+ is a Kernel that makes sequential extensions to S0 (see figure 4-

4). For example, if the model is a dynamic system, then S0 might be the model for

just the initial conditions of the system, and K+ might add the next unincorporated

time step to the S by adding the appropriate variables for that time step and sampling

values for those variables.

Spf is a Collection State that has #particles children Sparticle, where each Sparticle

is a particle, implemented as a composite State containing a copy of Sparticle−model

and a real-valued State Sparticle−weight encoding the particle’s weight. Initially, all of
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the particles have a weight of 1/#particles.

Dpf is an Associative Collection Density containing a copy of D for each Si.

Kpf is a concrete cycle Kernel with three children, Kadvance, Knormalize, and

Kresample. Kadvance is a virtual cycle Kernel that applies a Kernel Kadvance−particle

to each particle Si in Spf . Kadvance−particle uses K+ to sample a move St
K+−−→ St+1.

It then advances the particle’s model State to reflect St+1 and updates the particle’s

weight using the update rule

Sparticle−weight ← Sparticle−weight ·
densityroot(St+1)

densityroot(St)

· 1

Move-Forward-Transition-Density(St
K+−−→ St+1)

.

Knormalize normalizes all of the particle weights by computing the sum of all the

particles weights, then dividing each particle’s weight by that sum.

Finally, Kresample optionally resamples the particles by drawing a set of #particles

independent and identically distributed new particle states, sampled with replacement

from the existing set of particles and weighted by the particle’s weight. The newly

sampled particles’ weights are all reset to 1/#particles.

4.4 Hybrid Algorithms

Because everything in Blaise is implemented in terms of the same three founda-

tional abstractions, it is easy to create hybrid inference procedures. For example, in

Blaise, hybridizing reversible jump MCMC with other inference methods such as

parallel tempering is simply a matter of applying the parallel tempering transform to

a model using the reversible jump features of the standard Metropolis-Hastings Ker-

nel (see figure 4-5). More sophisticated hybrids are also possible, such as combining

particle filtering with Markov chain Monte Carlo methods (see figure 4-6) [19]. In

Blaise, this can be achieved by using either a cycle hybrid or mixture hybrid kernel

to interleave applications of the particle filtering kernel Kpf with applications of a
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Figure 4-5: A parallel tempered reversible jump MCMC hybrid inference algorithm
can be constructed by applying the parallel tempering transform to a model using
the reversible jump features of the standard Metropolis-Hastings Kernel.

virtual cycle Kernel that applies an MCMC kernel Kmcmc to the model State of each

particle in the particle filter. One could also observe that many probabilistic infer-

ence innovations (e.g. Gibbs sampling, simulated annealing) originated in statistical

mechanics, and seek new analogies to physical systems. For example, one might be

inspired by the Czochralski process [13], a method for growing large single-crystal

ingots (for e.g. semiconductors) by slowly extending an existing crystal while simul-

taneously controlling the temperature gradient. Analogous inference processes could

be constructed using sequential Monte Carlo (particle filtering) in place of crystal ex-

tension and tempering methods (simulated annealing, parallel tempering) in place of

the temperature gradient, as in figures 4-7 and 4-8. The ease of creating these hybrid

algorithms should enable researchers to explore the advantages of such methods.

4.5 Mixture Models

Unlike the inference enhancement transforms that have been discussed so far, the

Mixture-Model transform is an example of a model extension transform. The
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Figure 4-6: A Markov chain Monte Carlo–particle filtering hybrid inference algo-
rithm [19] can be constructed by applying the particle filtering transformation to a
model, then interleaving applications of an MCMC Kernel using a virtual cycle Ker-
nel to apply the MCMC Kernel to each chain’s State. The style of interleaving is
controlled by how the hybrid Kernel H is realized: if H is a concrete cycle Kernel,
then MCMC will be interleaved between each particle filter step; if H is a concrete
mixture Kernel, then the choice between whether to advance to particle filter or make
an MCMC update will be stochastic.

Mixture-Model transform takes as input a mixture component and produces a

mixture model with that type of mixture component. There are several basic varia-

tions on the mixture model transformation, resulting in mixture models with different

properties (e.g. parametric versus non-parametric). Keep in mind that for each of

these transform variations, the basic input (an SDK model representing a mixture

component) is the same, so it is easy for the the user to switch from one mixture

model variation to another.

Throughout this discussion of mixture models, I will use a coin-flipping game

to illustrate the assumptions made be each mixture model variation. In this game,

imagine that I have a bag of visually indistinguishable coins, each of which may be

unfairly weighted. You will be allowed to draw a coin from the bag, flip it a few times,

then return it to the bag. After some time, I will offer you a wager on, for example,

whether the coin you are holding is fair. In order to determine whether you should
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Figure 4-7: Blaise allows the concatenation of transformations. Here, the simulated
annealing transform has been applied to a model, after which the particle filter trans-
formation was applied. (Note: analyzing this hybrid inference method for correctness
and performance is outside the scope of this thesis; the method is included here as
an example of Blaise’s potential to support such research.)

accept my wager, you might want to make several inferences using a mixture model,

where each mixture component corresponds to a coin, and each datapoint encodes

the coin flips resulting from a single draw from the bag. You will need to infer both

the coin weights (component parameters) and which coin was drawn from the bag for

each datapoint.

4.5.1 Parametric mixture models with fixed size and fixed

weights

If it was known ahead of time how many coins were in the bag, as well as how likely

it was that a particular coin would be drawn from the bag, then you might consider

using a parametric mixture model with a fixed number of components and known

mixture weights. The mixture model transformation given these assumptions is:
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Figure 4-8: Blaise allows the concatenation of transformations. Here, the particle
filter transformation has been applied to a model, after which the parallel tempering
transformation was applied, resulting in a parallel tempered particle filter. (Note:
analyzing this hybrid inference method for correctness and performance is outside
the scope of this thesis; the method is included here as an example of Blaise’s
potential to support such research.)

〈S, D,K〉, #components, weights
parametric mixture−−−−−−−−−−−−→

fixed size and weights
〈Smix, Dmix, Kmix〉,

where S is a mixture component implemented as a Collection State that has the

datapoints as children, weights is a vector of #components component weights sum-

ming to 1, and K is an inference kernel on the parameters of S. The transform first

extends S with a weight by creating a new State Scomp that contains S and a real-

valued State Sw. Smix is then a Collection State containing #components copies of

Scomp, with each weight from weights being assigned to one component’s Sw State.

Dmix is an Associated Collection Density with one copy of the component Density

Dcomp for each mixture component in Smix, where Dcomp is a Multiplicative Density
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Figure 4-9: A mixture model transformation that transforms a model for a mix-
ture component into a complete parametric mixture model with fixed size and fixed
component weights.

containing a copy of D (to evaluate the probability of the model parameters and

the likelihood of the data assigned to that component) and also containing a Den-

sity Dassign to compute how likely it is that the datapoints were assigned to this

component (i.e. S#dp
w , where #dp is the number of datapoints assigned to this com-

ponent). Kmix is a concrete hybrid Kernel that composes a datapoint reassignment

Kernel (for example, a Metropolis-Hastings Kernel that proposes moving a datapoint

from one mixture component to another) and a virtual hybrid Kernel that applies

the component-parameter-inference kernel K to each of the components.
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Figure 4-10: A mixture model transformation that transforms a model for a mix-
ture component into a complete parametric mixture model with fixed size, but with
component weights to be inferred.

4.5.2 Parametric mixture models with fixed size and un-

known weights

What if some coins were more likely to be drawn from the bag than others, but it

was not known ahead of time what the probability of drawing a particular coin was?

This situation can be modeling by relaxing the fixed-weight assumption, as in the

fixed-size unknown-weights transform:

〈S, D,K〉, #components
parametric mixture−−−−−−−−−−−→

fixed size
〈Smix, Dmix, Kmix〉,

that first applies the fixed-weight parametric mixture transform

〈S, D,K〉, #components,
−−−−−−−−−−−→
1/#components

parametric mixture−−−−−−−−−−−−→
fixed size and weights

〈Smix, Dfixed, Kfixed〉,

where
−−−−−−−−−−−→
1/#components is a vector of length #components where each entry’s value is

1
#components

. The transformed model is then extended by creating a new Multiplicative
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Figure 4-11: A mixture model transformation that transforms a model for a mixture
component into a complete parametric mixture model, with the number of compo-
nents to be inferred.

Density Dmix containing Dfixed and a prior distribution over the mixture weights –

say, a symmetric Dirichlet distribution. Finally, Kmix is a concrete hybrid kernel

composing Kfixed and a Kernel Kweights that adjusts the mixture weights.

4.5.3 Parametric mixture models of unknown size

Suppose even the number of coins were in the bag was unknown; you would have

to infer this while playing the game. This situation could be modeled using a prior

distribution on the number of components, as in the variable-size parametric mixture

transform:

〈S, D,K〉, p(#components), Kinit
parametric mixture−−−−−−−−−−−→

variable size
〈Smix, Dmix, Kmix〉,

where p(#components) is a prior on the number of components and Kinit is an ini-

tialization kernel that can sample parameter values for a component. This transform
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Figure 4-12: A mixture model transformation that transforms a model for a mixture
component into a complete non-parametric mixture model.

would first apply the fixed-size parametric mixture transform

〈S, D,K〉, 1 parametric mixture−−−−−−−−−−−→
fixed size

〈Smix, Dfixed, Kfixed〉.

The transformed model is extended by creating a Multiplicative Density Dmix contain-

ing Dfixed and a Density D#components that evaluates p(#components) on the number

of components in Smix. A new concrete hybrid Kernel is also created that contains

Kfixed and a new Kernel Kbirth/death that can create and destroy mixture components.

Finally, Kinit is attached to the model such that components created (or destroyed)

by Kbirth/death will have their parameters properly initialized (or de-initialized).

4.5.4 Non-parametric mixture models

Non-parametric mixture models are similar to variable size parametric mixture mod-

els. However, instead of using component weights and a prior over the number of

components, non-parametric mixture models use a single prior distribution over the
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partitioning of the datapoints into groups (components), such as a Chinese Restau-

rant Process (CRP) distribution. The non-parametric mixture transformation can be

specified as:

〈S, D,K〉, α,Kinit
non−parametric mixture−−−−−−−−−−−−−−→ 〈Smix, Dmix, Kmix〉,

where α is the parameter of the CRP prior on partitions. Smix is then a Collection

State containing #components copies of S as well as a real-valued State Sα to hold

the value α. Dmix is a Multiplicative Density containing DCRP that evaluates the

CRP prior and an Associated Collection Density with one copy of the component

Density D for each mixture component in Smix. Kmix is a concrete hybrid Kernel

that composes:

• a virtual hybrid Kernel that applies the component-parameter-inference kernel

K to each of the components.

• a datapoint reassignment Kernel Kreassign (for example, a Metropolis-Hastings

Kernel that proposes moving a datapoint from one mixture component to an-

other)

• a component creation and destruction kernel Kbirth/death, as in the variable size

parametric mixture transform.

Finally, Kinit would be attached to the model such that components created (or de-

stroyed) by Kbirth/death will have their parameters properly initialized (or de-initialized).

4.5.5 Bridged-form mixture models

The mixture model transformations in this section have all produced inline mixture

models, in which the partitioning of objects (datapoints) into groups is implemented

by the same structure that implements the mixture components themselves. For each

inline mixture model transform, an analogous transform for bridged form mixture

models, as described in section 3.7, could also be written.
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Figure 4-13: A conjugacy transformation can be used to analytically integrate out a
variable in a conjugate model. For example, the Beta-binomial conjugacy transform
shown here integrates out the variable p.

4.6 Conjugate models

In addition to inference enhancement transformations (such as Parallel-Tempering)

and model extension transformations (such as the mixture model transformations),

there are transformations that change the State and Density structures to make the

manipulation of States or the evaluation of Densities more efficient. In this section, I

will describe conjugacy-exploiting transforms, an example of such an efficiency trans-

form.

A prior distribution p(θ) is said to be conjugate to a likelihood p(x|θ) if the

posterior distribution p(θ|x) is of the same functional form as the prior. In conjugate

models, certain integrals can be computed analytically that are generally intractable,

allowing the parameter θ to be “integrated out” – that is, removed from the model

without changing the joint distribution on the rest of the variables.

Integrating out variables is advantageous because such variables no longer need

to be sampled; for example, if a mixture model uses a conjugate model for its

components, you can eliminate the inference that would normally be needed to

sample the components’ parameters. Consider a mixture component for a Beta-

Bernoulli mixture model1 implementing the joint density p(θ|α, β)
∏

i p(xi|θ), where

p(θ|α, β) = Beta(θ; α, β) and p(x|θ) = Bernoulli(x; θ). Because Beta is a conju-

1The interpretation of this model is that there is a weighted coin that has probability θ ∈ [0, 1]
of coming up heads. x1 . . . xN are binary variables representing whether each of N flips came up
heads, and α and β are hyperparameters governing the prior distribution on the weight of the coin.
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gate prior for the Bernoulli distribution, it is possible to analytically compute the

posterior distribution on θ:

p(θ|x1 . . . xN) =
p(θ|α, β)

∏
i p(xi|θ)∫

p(θ|α, β)
∏

i p(xi|θ)dθ
= Beta(θ; α + #heads, β + (N −#heads))

where #heads is the number of heads in x1 . . . xN .

Furthermore, it is also possible to analytically compute the predictive density of

a conjugate model p(xN+1|x1 . . . xN , α, β); that is, given some data x1 . . . xN , what

is the probability of the next flip being heads? For example, for the Beta-Bernoulli

model, the predictive distribution is

p(xN+1|x1 . . . xN , α, β) =
B(α + #heads1...N , β + (N −#heads1...N))

B(α + #heads1...N+1, β + (N + 1−#heads1...N+1))

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt = Γ(x)Γ(y)

Γ(x+y)
is the Beta function.

Note that the posterior distribution and the predictive distribution depend only

on summary information about the datapoints: the total number of datapoints, and

the number that were heads. In general, for conjugate models this type of summary

information, called sufficient statistics, is all that is required to fully track the pos-

terior distribution and predictive distribution. Furthermore, the sufficient statistics

are easy to update as datapoints are added to and removed from the component. By

maintaining a running product of the predictive distribution for each new datapoint

that is added to the model, it is also possible to incrementally compute the marginal

likelihood of all the data (i.e., the joint density of the component).

p(x1 . . . xN |α, β) =
N∏

i=1

p(xi|x1 . . . xi−1, α, β)

A conjugacy transformation can be used to perform the “integrating out” oper-

ation in a Blaise conjugate model (see figure 4-13). For example, a Beta-Bernoulli

conjugate transform would eliminate the State representing θ, the Beta Density con-

necting Sα, Sβ, and Sθ, and the Bernoulli Densities connecting θ to each of the
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datapoints. The transform would then add a Beta-Bernoulli conjugate Density that

uses sufficient statistics of the data to compute the marginal likelihood.

4.7 Discussion

In this chapter, I supported my thesis by describing several classes of Blaise SDK

transformations in the SDK language, including efficiency-enhancing transformations

and model extension (i.e. composition-focused) transformations, as well as transfor-

mations that interpret several recent advances in inference as automated changes to

the graph structure. The transformations provide significant power to the modeler.

Whereas techniques such as parallel tempering are often considered to be too com-

plicated to implement for most projects, Blaise transformations make the difference

between an untempered model and a parallel tempered model a matter of a single line

of code, or a single click if a GUI were being used. Moreover, Blaise transformations

suggest how one might construct an optimizing compiler for probabilistic inference

methods by automatically identifying opportunities to apply transformations to an

SDK model.
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Chapter 5

The Blaise Virtual Machine

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

In this chapter, I support this thesis by describing the Blaise Virtual Machine,

a software system that can efficiently execute the inferences represented by Blaise

SDK graphs.

5.1 An introduction to the Blaise Virtual Ma-

chine

Chapter 3 introduced the Blaise State–Density–Kernel (SDK) graphical modeling

language and identified several ways in which the SDK language is more flexible

than traditional graphical modeling languages. Chapter 4 built upon this flexibility,

demonstrating how a range of inference enhancements, model extensions, and model

simplifications can be implemented as generic transformations of SDK graphs. In this

chapter I introduce the Blaise Virtual Machine (VM), a software framework that

executes the stochastic processes described by SDK graphs on common off-the-shelf

computers. I focus on those aspects of the Blaise VM that support the flexibility of
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the SDK language while maintaining efficient operation.

The Blaise VM is implemented in Java. Each State, Density, and Kernel in a

Blaise model is represented as a Java object. Blaise provides abstract base classes

for States, Densities, and Kernels; each of these classes extends a common graph node

base class, Node, that provides support for assembling the SDK graphical model from

the individual State, Density, and Kernel objects. Node provides support for directed

graph semantics, and allows edges to be efficiently traversed in either direction. Node

also allows specific edges to be efficiently located based on a number of criteria, includ-

ing the role the the edge plays (e.g. State→State versus State→Density), incidence

(i.e. incoming versus outgoing), and user-specified tags (for example, a State con-

taining two children, one representing a random variable α and one representing a

random variable β, might tag its outgoing State→State edges “alpha” and “beta,”

respectively.) The Node abstraction also provides facility for passing messages across

across incoming edges (e.g. from a Node to its “parents”). Messages can be selectively

propagated across only those incoming edges that have certain roles in the graph (e.g.

A message might propagate across only State→Density or Density→Density edges).

The specific messages used by the Blaise VM will be described shortly.

The VM supplies abstract base classes for each of the central representations

(State, Density, Kernel) as well as standard modeling components for each of those

representations. Specifically, the VM provides:

• a State abstract base class, along with States for primitive variables (e.g. Integer

State, Real State, Boolean State, etc.) and Collection States. The VM also

makes it easy to create composite States.

• a Density abstract base class, along with Densities for common probability dis-

tributions (e.g. Gaussian, Poisson, Chinese Restaurant Process, etc.), Densities

for conjugate models (e.g. a Beta-Binomial Density as described in section 4.6),

and Multiplicative and Associated Collection Densities. The VM also makes it

easy to create composite Densities.

• a Kernel abstract base class, along with Concrete Hybrid Kernels (i.e. Con-

crete Mixture Kernels, Concrete Cycle Kernels, Concrete Conditional Kernels),
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Virtual Hybrid Kernels (i.e. Virtual Mixture Kernels, Virtual Cycle Kernels),

Kernels for specifying the piece of a state space that another Kernel should oper-

ate on (called “Let Kernels”), Kernels for Metropolis-Hastings and enumerative

Gibbs Sampling (as described in section 3.4.2), and Kernels for performing sim-

ple inference on primitive variables (for example, the Gaussian Perturbation

Kernel used for Metropolis-Hastings on real-valued States in section 3.4.2).

5.2 States are mutated in-place

Moving around the state space is the most central operation in Blaise, and therefore

must be as efficient as possible. For this reason, States are mutated in place rather

than copied. For example, a Kernel’s Sample-Next-State is an operation that

takes a state St and samples a next state S∗ by mutating the St to become S∗. In-

place mutation is more efficient both in terms of space (no need for multiple copies

of the State hierarchy to be held in memory) and in terms of time (no need to spend

time copying the State hierarchy.) Figure 5-1 demonstrates the performance benefits

of in-place mutation.

5.3 Density evaluations are memoized

As State and Density structures grow more complex, it will often be the case that

changes to a small piece of the State space will only cause the value of a small

number of the Densities to change. For example, changing the parameters in one

component of a mixture model will not affect the Densities attached to any of the other

components. The Blaise VM therefore memoizes Density evaluations; whenever a

Density is evaluated, the value is cached in the Density. Whenever a State changes

value or structure, the Blaise VM ensures that all dependent Densities have their

memos flushed. This is achieved by having the changing State emit a message which

propagates up State→Density and State→State edges; whenever a Density receives

such a message, the Density flushes its cache. The Density also emits a message that
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Figure 5-1: The Blaise Virtual Machine uses in-place mutation for efficiency. This
figure shows the runtime data for a family of different-sized models, contrasting in-
place mutation and the alternative copy-on-write strategy, plotted on a linear scale
in (a) and a log-log scale in 5-1b. The models are ising models: simple lattice-
structured factor graphs with boolean variables (see section 6.5). The model size was
varied between 400 variables (20x20 graph) and 60,000 variables (200x300 graph).
The data plotted here is the average time cost of a Gibbs sampling sweep through
the entire model, averaged over 10 runs, each with 20 sweeps. Copy-on-write cost
was calculated by running the mutation-based inference, eliminating any time spent
on mutation and transaction bookkeeping, and adding the empirical cost of a model
copy every time a model copy was needed. Note that the copy-on-write strategy gets
exponentially more costly as the model size increases; this is because every site in the
Gibbs sweep requires the model to be copied.
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propagates up Density→Density edges so that all parent Densities flush their cache

as well. The next time density(Droot) is evaluated, all these Densities will have their

value recomputed using the new State values.

This memoization is critical to Blaise’s efficiency and eliminates a lot of compli-

cations when designing algorithms. For example, consider computing the Metropolis-

Hastings acceptance ratio. One of the terms in this ratio, p(s∗)
p(st)

involves comparing the

joint density of two states: the proposed state and the current state. When crafting

an efficient algorithm by hand, a practitioner will often symbolically manipulate the

joint densities to cancel terms that are known not to change, so that time is not spent

computing these terms. These considerations must be made separately in each M-H

kernel, because each kernel will make changes that affect different terms in the joint

density. Any change to the structure of the joint density also requires reconsidering

which terms will change. Considering both the large number of times when these con-

siderations must be made, and the fact that this tends to be an error-prone process,

the result is in an extremely brittle system.

The Blaise VM relies on the automated memoization of Densities instead of

manual cancellation of terms. In a Blaise M-H Kernel, the Densities whose caches

are invalidated by a move ST
K−→ S∗ are exactly the Densities whose values change

because of the move; that is, the same set of Densities that would remain after the

manual cancellation of terms described above. The Blaise VM therefore achieves

similar performance to the symbolic approach, while remaining automated and robust

to the modification of M-H proposal Kernels or changes to the joint density landscape.

Figure 5-2 demonstrates the execution efficiency gained by density memoization.

5.4 Tree-structured Transactional Caching for States

and Densities

Memoization conserves a lot of computation, but there is still significant opportunity

for wasted computation whenever changes to the State space are “undone.” For
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Figure 5-2: The Blaise Virtual Machine uses a variety of memoization techniques
in order to maintain efficiency while supporting the generality of the Blaise SDK
modeling language. This figure shows the effects of disabling various elements of the
Blaise VM’s memoization support, using the same models as in figure 5-1. “Normal”
indicates Blaise’s normal operation, using memoized densities managed by a hier-
archical transaction system, and using incremental update logic for Multiplicative
Collection Densities and conjugate Densities. “No Density Caching” disables den-
sity memoization (including incremental updates), “No Transactions” disables the
hierarchical transaction system, and “No Incremental Densities” disables just the in-
cremental update logic. Inference runs were limited to 1 hour (3,600,000 ms). Note
that the “No Transaction” line tracks the “Normal” line. This is because the factors
in an Ising model are extremely quick to compute; figure 5-3 will expand on this.
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Figure 5-3: In the experiment in figure 5-2, the “No Transaction” line tracks the
“Normal” line. This is because the factors in an Ising model are extremely quick
to compute, as each factor can only take on two values that are known at model
creation time (see section 6.5 for more details). If each factor takes just one additional
millisecond to compute, as in this experiment, the advantage of “Normal” over “No
Transaction” becomes apparent. Many standard probability distributions require
non-trivial computation to evaluate. In some models, such as the Generative Vision
model in section 6.1, evaluating a single Density could easily take tens to hundreds
of milliseconds.
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example, consider a Metropolis-Hastings Kernel which proposes the move St
K−→ S∗.

To evaluate the acceptance ratio, the Kernel first evaluates density(Droot) while the

State hierarchy is configured to St, then updates the State hierarchy to reflect S∗ and

evaluates density(Droot) again. Suppose the Kernel rejects the proposal, and reverts

the State space back to St – if the next Kernel also needs to evaluate density(Droot),

should it have to re-evaluate all the Densities that are dependent on the States that

the Metropolis-Hastings Kernel touched, even though the State hierarchy is back in

St, and density(Droot) was computed for this configuration just moments ago?

The Blaise VM eliminates this wasted computation by using a transaction system

to manage States and Densities. The VM’s transaction management system allows a

Kernel to begin a State-Density transaction, make changes to the State space which

result in changes to the Density space, and then roll back the transaction to efficiently

return the State and Density hierarchies to their original configuration. A rolled-back

transactions can also be re-applied, which will efficiently put the State and Density

hierarchies in the configuration they were in before the transaction was rolled-back.

Transactions can be committed (making the applied configuration permanent) or

aborted (making the rolled-back configuration permanent).

The Blaise VM can nest transactions in other transactions. For example, suppose

one Kernel begins a transaction, then invokes a second Kernel to do some work on

the State space. The second Kernel is permitted to begin its own transaction, and

this transaction would be nested inside the first Kernel’s transaction. If the second

Kernel commits its transaction, any mutations performed as part of that transaction

will be absorbed by the outer Kernel’s transaction.

A stack of nested transactions is sufficient to support a Metropolis-Hastings Ker-

nel, but what about an enumerative Gibbs Kernel? Such a Kernel evaluates density(Droot)

on many candidate states before sampling just one to be the actual next state. The

transaction manager also supports this interaction pattern by extending the stack of

transactions to a tree of transactions; that is, it is possible to begin a transaction,

roll it back, begin a new transaction (parallel to the first one), roll that back too,

then re-apply and commit either of the transactions. With such a system, even an
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(a) (b) (c) (d) (e)

Figure 5-4: Blaise uses a tree-structured transactional caching system to enhance
performance. This figure shows how the caching system supports Metropolis-Hastings
kernels and enumerative Gibbs sampling over a variable with a finite, discrete domain.
(a) The caching system always has exactly one active transaction: the transaction
with which Density changes will be associated. (b) Before doing any speculative work,
such as considering a Metropolis-Hastings proposal, a new transaction opened. This
transaction becomes active, while the previous transaction enters the pending state:
the changes associated with it are reflected in the current State, but new changes will
be associated with a different transaction (the active one). After evaluating the pro-
posal, a Metropolis-Hastings kernel would either commit the new transaction (causing
its changes to be incorporated into the parent transaction), or it would abort (dis-
carding changes). (c) Enumerative Gibbs kernels must evaluate many possible moves;
a new transaction is opened for each of these. Transactions that are siblings to the
active transaction are dormant: their changes are not reflected in the current State.
(d) Once a move has been chosen, the transaction associated with that move is reac-
tivated and committed, simultaneously aborting all its sibling transactions. (e) Both
Metropolis-Hastings kernels and enumerative Gibbs kernels return the transaction
tree to its original structure by the end of their operation.

enumerative Gibbs Kernel does only as much computation as is strictly necessary.

(See figures 5-4, 5-2, and 5-3.)

5.5 Incremental Updates for Efficient Collection

Densities

Because Multiplicative Densities are such a common Density composition tool in

Blaise, special care was taken in the Virtual Machine to ensure that these Densities

are efficient.

Consider a Multiplicative Collection Density with some number of child Densities.

Suppose a Kernel modifies a State that affects just one of those child Densities. The

child density attached to this State will have its memoized value cleared; all the other

child Densities will retain any memoized values they had. The Multiplicative Collec-
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tion Density’s memoized value will also have its memoized value cleared, reflecting

the fact that it needs to be recomputed because one of its children has changed value.

A näıve implementation of the Multiplicative Collection Density would just recom-

pute the product of its children’s values from scratch; only the changed child would

have to do any work to determine its value, but just asking each child for its value

means that the Collection Density’s operation would take time linear in the number

of children. If the number of children is large, this can be a significant waste of effort,

and such situations are not uncommon. For example, Multiplicative Densities could

be used to support mixture models that may have large numbers of components, such

as the Infinite Relational Model (section 6.3), or to support large graphical models

(section 6.5). Introducing an O(#children) slowdown is therefore highly undesirable.

Instead, the Multiplicative Collection Densities in the Blaise VM are imple-

mented using an incremental update mechanism that reduces the O(#children) op-

eration to an O(k) operation, where k ≤ #children is the number of recently inval-

idated child densities. The Multiplicative Density partitions its child densities into

two disjoint sets: Cused and Cpending. It also maintains an internal cache of the value

densityused =
∏

Ci∈Cused
density(Ci). When a child density Ci ∈ Cused is invalidated,

the cache is updated by the rule densityused ← densityused

density(Ci)
, where density(Ci) represents

the density before taking into consideration the invalidation-causing change; Ci is also

moved from Cused to Cpending. Then density(d) can be evaluated by performing the

update densityused ← densityused

∏
Ci∈Cpending

density(Ci), moving all densities from

Cpending to Cused, and returning densityused. The size of the set Cpending is k because

it contains exactly those child Densities that have been modified since the last eval-

uation of the Multiplicative Density; thus evaluating Density in Cpending is an O(k)

operation. (See figure 5-2.)

Other Densities can benefit from similar incremental-update mechanisms. For

example, conjugate model Densities (see section 4.6) such as the Beta-Binomial Den-

sity use incremental updates to maintain the sufficient statistics for the conjugate

model and to maintain a running product of predictive densities so that the marginal

likelihood can be evaluated efficiently.
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5.6 State, Density, and Kernel responses to State

modifications

Modifications to the State hierarchy, especially changes to the structure of the hier-

archy, can require many sympathetic changes elsewhere in the SDK model: Densities

may evaluate to a different value, Constraint States may need to alter a constrained

piece of the State hierarchy, Associated Collection Densities may need to construct a

new child Density or remove an existing child Density, and virtual hybrid Kernels may

now have a different number of States to cycle or mix over. I have already explained

how Densities values are kept up to date, but how do the rest of these updates happen

efficiently?

Section 5.3 described how States emit messages when changing value or struc-

ture. Constraint States maintain their constraints efficiently by responding to these

messages. Whenever such a message is received, the Constraint state responds by

making sympathetic changes to other portions of the State space to which the Con-

straint State is connected. Note that this process can cascade – one change can cause

a Constraint State to make another change, which in turn causes a more distant

Constraint State to make a change, and so on.

Similarly, an Associated Collection Density responds to messages from its asso-

ciated Collection State; messages indicating that a child State was added cause the

Associated Collection Density to construct a new Density and attach it to the new

child State, whereas messages indicating a child State was removed cause the corre-

sponding child Density to be removed from the Associated Collection Density.

Kernels maintain no state whatsoever (unlike States, which are clearly stateful,

as well as Densities, which have internal state to enable caching). Furthermore,

in the Blaise VM representation of SDK models, Kernel→State edges aren’t even

represented; instead, the State that a Kernel should operate on is passed to the Kernel

as a parameter (see figure 5-5 for more details). Therefore, Virtual Hybrid Kernels

do not require a separate copy of the virtualized child Kernel for each child of the

Collection State that the hybrid kernel will mix or cycle over. Instead, the Hybrid
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(a) Blaise SDK model (b) Blaise VM realization

Figure 5-5: Kernels are realized in the Blaise VM using a method-call-with-
arguments semantics, so that virtual hybrid Kernels may be implemented more effi-
ciently. Every composite Kernel in the Blaise VM has a contract specifying what
parameters (States) will be passed to its child Kernels when they are invoked, given
the parameters that were passed to the composite Kernel. For example, a virtual
cycle Kernel expects a Collection State as its parameter, and will invoke its child
Kernel once for each State in the collection, passing the Collection State’s child State
as the argument to the child Kernel. Sometimes, the Blaise SDK model dictates
that a child Kernel should act on a descendent of the child State, rather than the
child State itself, as in figure (a). The Blaise VM realizes such models using a “Let”
Kernel, indicated with an “L” in figure (b). A Let Kernel is a composite Kernel that
selects a specific descendent of its argument State and passes that descendent to its
child Kernel.

Kernel simply determines which children are currently contained in the Collection

State that it is passed at invocation time. For example, a Virtual Cycle Kernel

would be passed a Collection State S? and would find the Collection State’s children

S1 . . . SN . The Virtual Cycle Kernel would then invoke its virtualized child Kernel

N times, each time passing as an argument a different child State (i.e., a different

element in the set {S1 . . . SN}). Because Kernels are invoked using an argument-

passing paradigm rather than actually having edges connecting to the State hierarchy,

the Kernel structure does not need to change over the course of inference.

In Blaise, there are are two ways for Kernels to be invoked. First, the root

of the Kernel hierarchy can be applied to the root of the State hierarchy, which

results in the State hierarchy advancing one step in the Markov Chain. Alternately,

Initialization Kernels may be invoked in response to pieces of State being created or

destroyed. Whenever a new piece of State that may need to be initialized (such as a

new component in a mixture model) is created and attached to the State hierarchy,
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the Virtual Machine determines where in the State hierarchy the new State was

attached and looks up whether any Initialization Kernels were configured to handle

initializations matching this location. If so, the Initialization Kernel is invoked on the

new State. Likewise, when that State is later removed from the State hierarchy, the

Virtual Machine will look up the same Initialization Kernel and once again invoke it

on the new State, this time passing the Initialization Kernel a flag indicating that it

should De-initialize this State.

5.7 Discussion

In this chapter I supported my thesis by implementing a virtual machine for the

Blaise SDK modeling language. This virtual machine is implemented in Java and

runs on a wide variety of off-the-shelf hardware, making Blaise an accessible frame-

work. In this chapter I also identified several issues that had to be resolved in order

to ensure that the Blaise VM could execute even large SDK models efficiently. Han-

dling these improperly could cause the execution time to grow inappropriately with

the size of model. For example, without Density memoization, the execution time

for evaluating the root Density would grow with every Density added to the graph;

with Density memoization, execution time only reflects the changed densities. This is

typically orders of magnitude faster; for example, if only one Density is attached to a

State that changes value, then only that Density and its ancestors in the Density tree

need to be reevaluated. Similarly, without incremental updates, the execution time of

a Multiplicative Collection Density grows with the number of children of that Density;

with the appropriate incremental update scheme, the execution time is independent

of the number of children.

For each of the efficiency issues I identified, I described how I solved these issues

in Blaise and provided benchmarks to quantify the improvements gained from these

optimizations. In each case, the optimizations are transparent to the end user, who

only needs to think about the Blaise SDK formalism and can allow the virtual

machine to handle the efficient implementation. For example, transactions were used
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to make Metropolis-Hastings and Gibbs Sampling significantly more efficient, but the

end user never needs to worry about these issues because the transactions are handled

automatically by the implementations of the M-H and Gibbs Kernels supplied by the

Blaise VM.

The algorithms and data structures described here yield significant performance

improvements and enable the ease-of-modeling provided by the SDK formalism. How-

ever, implementing these features requires the entire system to be built with them in

mind. As a result, one-off implementations – that is, starting from scratch every time

time a model and inference algorithm are to implemented, a standard practice in the

field – almost never include such features. Blaise brings these efficient algorithms

and data structures to every model built in Blaise, so even simple models run faster,

and can be grown into more sophisticated models without being rewritten.
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Chapter 6

Applications in Blaise

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

In this chapter, I support this thesis by describing several applications that have

been built using the Blaise framework. The applications presented in this chapter

fall into three categories. Some of the applications are domain-specific models of

moderate sophistication that benefit largely from Blaise’s rapid development, ex-

tensibility, and inference-enhancing transformations. These applications include a

generative model for computer vision, and a model for analyzing neurophysiological

data. Other applications in this chapter highlight Blaise’s support for very sophis-

ticated models, in which there are multiple unknown-sized sets of objects interacting

in interesting ways. These applications, including models for relational data and for

topic analysis, benefit from Blaise’s complexity-localizing abstractions and exercise

all aspects of the SDK formalism. Finally, this chapter presents three examples of

other modeling languages built on the Blaise framework: standard graphical models

(e.g. Bayes nets, Markov Random Fields, factor graphs), a reimplementation of the

BUGS language [58, 62], and Church [20], a stochastic extension of Scheme. Embed-

ding these modeling languages in Blaise demonstrates the wide coverage of Blaise
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models.

Because Blaise is intended to be used as a tool by the probabilistic inference

community, it was important to evaluate whether Blaise is useful to researchers

other than myself; therefore, several of the applications described in this chapter

are the result of collaborations with colleagues. In these collaborations, I provided

Blaise training and support, as well as the implementation of all general aspects of

Blaise described in chapters 3 through 5, while my collaborators provided domain

expertise. I explicitly delineate my role in each of these applications.

6.1 Generative Vision

Author’s role: Modeler, Implementation Lead

One of the first applications developed with Blaise was a simple exploration

into generative models of vision. Hermann von Helmholtz initiated scientific inquiry

into visual perception in the nineteenth century with the idea that vision constitutes

inference from incomplete data to the most likely explanation of that data. However,

only recently have probabilistic models of the human visual system been developed

that fully embrace this idea [67]. In part, this is because even extremely simplified

models of vision tend to be sophisticated in their modeling and inference requirements.

This application explores a generative model of vision in a toy context as a proof of

concept that Blaise could support work in this area. The goal of this application is

to identify and locate simple solids in a moderate resolution (320x240 pixel) rendering

of a 3-dimensional scene. The model assumes a simple generative explanation of how

images are formed: first, a number of simple solids are generated in 3-space. This

scene is then rendered to an image using standard computer graphics. Finally, each

pixel is independently corrupted by a noise source to produce the final image. Visual

inference in this model is then a matter of inferring from the final image the best

explanation (or a distribution over good explanations) for how many of what kinds

of simple solids are in the scene and where they are located.
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This generative description of the model translates directly to a Blaise SDK

graph. I restrict the model to two kinds of simple solids: spheres (of fixed radius)

and blocks (with fixed dimensions, but of unknown axis-aligned orientation). Each

solid is represented as a Composite State containing real-valued States X, Y , and Z,

representing the location of the solid in 3-space; the Composite State for blocks also

contains a discrete (6-valued) State Orientation representing the orientation of the

block. The scene is then represented as a Composite State containing a Collection

State of spheres and a Collection State of Blocks. The data (i.e. the input to vision)

is implemented as a Compound State containing an image State as well as real-valued

States X, Y , Z representing the location of the camera (and assuming that the camera

is looking in the positive z direction, with other camera parameters known a priori).

The State hierarchy is completed using a Compound State containing the scene State

and data State just described.

The Density hierarchy for the model has a similar structure to the State hierarchy.

For each solid, there is one Density connected to each of X, Y , and Z representing

the prior on location; for this simple model, uniform Densities were used, represent-

ing equal probability over a rectangular prism of 3-space. For blocks, there is also

a Density connected to the block’s Orientation state which assigns equal probabil-

ity mass to each possible orientation. For each solid, all of the priors are composed

using a Multiplicative Density Dsolid. Next, each Collection State (i.e. the “spheres

collection” and the “blocks collection”) has a parallel Associated Collection Density

that manages the Dsolid Densities for that object type. Each Collection State also

has a Density representing the prior on the number of objects of that type; for this

implementation, a geometric distribution with known parameters was used. The two

Densities associated with each Collection State are composed using a Multiplicative

Density D{spheres} or D{blocks}. The Density on the Scene is completed using a Multi-

plicative Density Dscene containing D{spheres} and D{blocks}. Finally, a single Density

Dimage|scene connects the scene State to the image State, and a Multiplicative Density

containing Dscene and Dimage|scene is used as the root Density. Dimage|scene computes

the probability p(image|scene) by rendering the scene from the camera’s viewpoint,
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Figure 6-1: Input for the toy generative vision exploration described in section 6.1.
The inference goal is to explain the image using appropriately located and oriented
blocks and spheres. This input was generated by forward sampling from the model
prior.

using OpenGL and off-the-shelf graphics hardware, then computes the probability

that each pixel in the target image was generated by adding pixel-wise Gaussian

noise to the rendered image.

For inference, I use simple stock-Blaise Kernels to adjust the parameters of the

simple solids, as well as birth/death Kernels to create and destroy solids. To ad-

just real-valued parameters (i.e. X, Y , Z), I use Metropolis-Hastings Kernels with

Gaussian Perturbation Kernels; that is, if the current value of the State is x, the

proposal will be sampled from Normal(µ = x, σ = σ0). For discrete parameters (i.e.

Orientation), enumerative Gibbs Kernels will be used. The birth/death Kernels cre-

ate (or destroy) the appropriate States for new solids, using initialization Kernels to

sample values for the parameters from the uniform prior. It is worth re-emphasizing

that these inference Kernels are completely isolated from the implementation of the

Density, with its OpenGL complexity. For example, the Kernels that perform infer-

ence on the object locations are the the same Kernels that were used to infer mixture

model component parameters in section 3.4.2.

The execution time of this model is dominated by the OpenGL rendering step.

The Blaise Virtual Machine’s transaction and caching systems are crucial for main-

taining efficiency. This model has a large number of non-optimal local optima. For
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Figure 6-2: The Blaise SDK diagram for the toy generative vision model described
in section 6.1. For legibility, the Kernels for inference on the parameters of the spheres
and blocks are abstracted away in this diagram.

example, it is easy for two blocks positioned side by side to render very similarly to

a single block. This model therefore provides challenges for implementing an infer-

ence kernel that mixes well. Fortunately, Blaise has an automatic tool for handling

such situations: the parallel tempering transformation. Parallel tempering the model

makes it significantly easier to escape local optima and greatly reduces the number

of samples required.

A number of variations to this model are also possible. For example, stereo (or even

multi-camera) vision is simply a matter of adding more data States (the compound

state containing the image State and the eye location) as well as the appropriate

Dimage|scene; the inference Kernels stay exactly the same. Localization would also be

possible using this model by using the the same State and Density hierarchies, but

instead of pre-setting the camera location, the scene is completely pre-set. The Kernel

hierarchy would then be rewritten to adjust only the camera location; these Kernels

are just like the Kernels used to adjust the X, Y , and Z of a solid.
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(a) Cold chain

(b) All chains

Figure 6-3: The Generative Vision model is prone to local optima; for example, two
adjacent blocks render very similarly to a single block closer to the camera. Parallel
tempering is required for MCMC on this model to mix well. (a) shows the current
state in of the cold chain after 5000 samples when the model has nearly converged
on ground truth. (b) shows the current state in each of 12 parallel tempered chains
after 5000 samples; each chain is labeled with its temperature.
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Figure 6-4: A common functional model for a neuron in the primary visual cortex
(V1). The information input for the neuron (the stimulus) is a time-varying image.
The stimulus is convolved with a linear filter, such as a Gabor filter. This signal then
undergoes a nonlinear transform, and finally a stochastic process, such as a Poisson
process, generates a neural spike train response that can be detected experimentally.
(Adapted from [55])

6.2 Analysis of Neurophysiological Data

Author’s role: Support

Neurophysiologists seek to understand how the brain embodies the mind by first

understanding how individual neurons in various regions of the brain respond to

stimuli. For example, a neurophysiologist studying the V1 region of the visual cortex

(a region specialized for extracting basic information about visual scenes) might be

interested in characterizing the neural response to spatiotemporal patterns in visual

input (e.g. [55]). A simple functional model of such neurons, the linear-nonlinear-

Poisson (LNP) model, is shown in figure 6-4. More complicated models, such as

the generalized LNP model [55], include multiple linear filters, each with a distinct

nonlinearity transform, as well as a nonlinear combination function to combine the

signals from each filter before generating the spike train.

Analyzing experimental data requires inferring model parameters governing the

linear filter (for example, spatial orientation and wavelength of a Gabor function)

and the shape of the non-linear function. Traditional approaches to this analysis

have used frequentist statistical analyses of the mean and covariance of that portion

of the stimulus which occurred in a temporal window immediately preceding a spike

to attempt to fit the model to observer responses. This “spike-triggered” analysis is

complicated due to the non-linearities in the model [55]. Only in the last year have

127



Figure 6-5: The LNP functional model for a V1 neuron, cast as a generative model in
Bayes net notation. The L variable represents the linear filter parameters, governed by
hyperparameter ΦL. The N variable represents the nonlinearity parameters, governed
by hyperparameter ΦN . Each instance of the plate captures an experimental trial,
with stimulus variables capturing the stimulus that was presented during that trial
and response variables capturing the neural response. The conditional probability
distribution p(response|stimulus, L,N) captures the probability that the stochastic
process (i.e. the Poisson process) would produce the given response when presented
with the stimulus.

Cronin et al. [12] developed general tools to perform a principled Bayesian analysis of

these experiments (but see [56]). These tools treat the neural functional model (e.g.

LNP or generalized LNP) as a Bayesian generative model and use Blaise to estimate

the conditional distribution on the parameter values. These tools have a number of

advantages over existing techniques:

• Bayesian priors allow the incorporation of other prior knowledge (for example,

soft constraints on the shape of the nonlinearity).

• Bayesian model selection supports inferences about the functional form the

linear filter or nonlinearity.

• Probabilistic inference produces a distribution on parameter values, allowing

easy assessment of confidence in a particular parameter value

• Unlike the traditional frequentist statistical analyses, a wide range of models can

be tested using the same techniques. For example, inference for the generalized

LNP model is very similar to inference for the LNP model. The same framework

can also support inference in models which have not yet been considered in the

literature, due to the difficulty of performing parameter inference.
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Figure 6-6: The same generative model from figure 6-5, case as a Blaise model,
including inference Kernels for the linear filter and nonlinearity parameters. This
model is a slightly idealized version of the Blaise model actually used in [12, 57, 41].
For example, the actual model included additional support for media descriptors to
describe the type of media in the stimuli and support for the same stimulus instance
to be shared across multiple trials in order to minimize storage requirements.

Implementing Bayesian methods for LNP requires the use of modeling components

that typical modeling packages do not include. For example, evaluating the model’s

Density requires convolving a linear filter with the stimulus and computing the non-

linear transform of this convolution. Blaise SDK modeling language supports these

requirements through the abstraction barrier between Densities and Kernels; all the

standard inference techniques that ship with Blaise continue to work, even with

custom Densities. The Blaise VM makes it easy to implement custom Densities,

and the transactional caching in the VM automatically minimizes the number of po-

tentially expensive custom Density evaluations. The flexible infrastructure has also

allowed Cronin et al. to provide a Matlab interface to these tools, allowing a model

to be fit with an instruction as simple as:

tc sample(x, y, ’circular gaussian 360’, ’poisson’)

where x is a vector of stimuli, y is a vector of responses, circular gaussian 360

determines the functional form of the linear filter and non-linearity, and poisson

selects the stochastic process.
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Figure 6-7: An extension of the model LNP model from figure 6-6, this model imple-
ments inference for the generalized LNP functional model [55] with a fixed number
of linear filter subunits. Generalized LNP was also implemented by Cronin et al. in
Blaise. This model could be extended to infer the number of subunits by adding a
prior on the number of subunits and including a subunit birth/death kernel.

The Blaise-based tools developed by Cronin et al. are already advancing the

field of neuroscience. For example, Schummers et al. [57] used these tools to examine

the temporal dynamics of orientation tuning of V1 neurons in cats, finding that the

tuning parameters change over the time-course of a neural response in more than

forty percent of V1 cells, and that these temporal dynamics are influenced by the

cell’s location within the cortical network.

A major challenge in systems neuroscience is to determine how neuronal classes

identified on the basis of morphology or gene expression patterns perform different

functional roles; the Blaise-based toolbox is ideal for testing hypotheses about the

nature of these functional differences. Mao et al. [41] used these tools to investigate

the roles of different types of inhibitory interneurons in the production of stimulus-

specific responses (e.g. orientation-selective responses) in the visual cortex, finding

that reducing the number of caltrenin-positive neurons in the visual cortex of mice

resulted in fewer orientation-tuned V1 cells.

In response to developing these analysis tools using Blaise, Cronin reported the
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(a) Experimental Data (b) Model

Figure 6-8: Schummers et al. [57] used Blaise-based tools to model the temporal
dynamics of orientation tuning of V1 neurons in cats. (a) The recorded time-varying
response of a neuron to different stimulus orientations. The horizontal axis is time
from the presentation of the stimulus. The vertical axis is the stimulus orientation.
The plotted data is the number of recorded cell spikes (binned in 5ms intervals). Note
that high-spike-count region of the graph is slightly angled, indicating that the cell’s
orientation changes over time. (b) The model estimated using Blaise-based tools.
The plotted data is the firing rate predictions from the model. Reproduced from [57]
(figure 4E-F) with permission.

following:

Before Blaise, I had implemented (and reimplemented) a number of sam-
plers for my data analysis models. At a certain point, I realized that there
was a rather large class of models that I would like to be able to represent
and upon which I would like to perform inference. While I understood
the domain well, the prospect of creating a general, flexible, and robust
implementation of the entire class of models was daunting.

It was at this point that I was introduced to Blaise, which (even in an early
version) offered an extremely powerful set of modeling and inference tools.
The Blaise abstractions and library allowed me to quickly develop a general
implementation of my model class, and the resulting software has held up
very well to a number of practical tests. Most importantly, a number of
other members of my lab now use this software toolbox, BayesPhys, to
analyze their data, and a number of forthcoming publications will use it
when answering crucial questions about neurophysiological data. It would
simply not have been possible to accomplish these goals without Blaise -
not even a grad student has that much time.

∼ Beau Cronin

6.3 Relational Models

People are remarkably adept at making appropriate generalizations – extracting pat-

terns from their experiences, and using these patterns to make predictions about novel
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scenarios. If cognitive scientists are to understand human cognition, they must under-

stand the mechanism that enable such generalizations. Similar challenges emerge in

any number of industrial settings, where the ability to gather and store data has out-

stripped our ability to process the data automatically. Even with human assistance,

there is simply too much data to manage. Further complicating matters is the fact

that in many industrial databases are very sparse and noisy: most of the data that

could theoretically be gathered is missing (perhaps impatient users are only willing to

provide a few pieces of information each), and what data is present is often gathered

through some noisy medium (such as subjective user ratings). If such industries are

to make effective use of their data, they need ways to generalize so they may fill in

the missing elements, and they need ways to extract concise patterns from the data,

so that humans may work with the hidden structure underlying the data rather than

the overwhelming raw data itself.

For interpreting the properties of a single type of object, mixture models are often

used. Mixture models partition the individual objects into groups whose features can

be explained in the same way. These groups form the underlying structure of the

data and license inferences about unobserved properties (because same-group objects

share a feature model).

Probabilistic relational models are used to model relationships between entities

(objects); that is, the kind of data that might be found in a relational database.

Relational models are defined over domains of entities; for example, a relational model

for a movie rental company might have two domains: Users and Movies, where the

entities in the Users domain are the various users (e.g. Alyssa, Ben, Louis, etc.)

and the entities in the Movies domain are various movies (e.g. Monty Python and

the Holy Grail, The Life of Brian, Real Genius, etc). Each relation model also has

a number of relations, defined as a mapping from an ordered tuple of domains to a

type of data. For example, the movie rental company might have a relation for movie

ratings, defined as

Ratings , Users×Movies→ {0, 1, 2, 3, 4, 5}
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indicating a mapping of 〈User,Movie〉 pairs to the rating that user gave that movie,

represented as an integer between 0 and 5. If the movie rental company also operated

a social networking site, the relational model might also have a relation

SocialNetwork , Users× Users→ {Likes, Dislikes}

indicating a mapping of 〈User, User〉 pairs to whether or not the first user likes the

second user. Given a set of domains and relations defined on those domains, a rela-

tional model is a probabilistic model of how specific data was generated. Continuing

the movie example, a relational model might try to explain data such as:

Ratings SocialNetwork

〈Alyssa, Monty Python and the Holy Grail〉 → 5 〈Alyssa, Ben〉 → Like

〈Alyssa, The Life of Brian〉 → 4 〈Ben, Alyssa〉 → Like

〈Ben, Monty Python and the Holy Grail〉 → 4 〈Ben, Louis〉 → Dislike

〈Ben, Real Genius〉 → 4 〈Alyssa, Louis〉 → Dislike

〈Louis, Monty Python and the Holy Grail〉 → 1 〈Louis, Alyssa〉 → Like
...

...

Relational models typically operate by assuming additional structure among the

entities; for example, a model might assume that each domain can be partitioned into

groups of entities that behave similarly. This structure is an unobserved variable that

must be inferred, but it is this structure that licenses generalization for inferences

such as: “Assume a new user Lem joins the system, and the only information you

have on Lem is that Alyssa dislikes him. Would Lem give Monty Python and the

Holy Grail a high rating, if he were to rate it?”

Recently developed relational models are quite sophisticated. They involve in-

ference over structured representations including partitions and trees, they use non-

parametrics (for example, to allow the number of entity groups to grow as justified

by the data), and they benefit from sophisticated inference techniques to explore the

model space efficiently. In this section, I present two relational models that have been

implemented in Blaise: the Infinite Relational Model and the Annotate Hierarchies
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relational model.

6.3.1 Infinite Relational Model

Author’s role: Implementation Lead

The Infinite Relational Model (IRM) [30] assumes that each domain of entities

is partitioned using a Chinese Restaurant Process (see figure 6-9). Viewing each

relation as a matrix, the domain partitions1divide the matrix into blocks, with the

blocks playing the same role as components in a mixture model. For example, if the

Movies relation were being modeled using a Beta-Binomial model, each block would

have an independent Beta-Binomial model to explain the datapoints assigned to that

block, just as each component of a Beta-Binomial mixture model would have an

independent Beta-Binomial model to explain the datapoints assigned to that mixture

component. The Blaise implementation of the IRM draws on this observation that

an IRM’s relation model is, in essence, a multi-dimensional extension of a mixture

model (see figures 6-10 through 6-14).

The state space for the Infinite Relational Model is deceivingly large. There are

Bn distinct ways to partition a domain of n objects into disjoint non-empty subsets,

where Bn is the nth Bell number [53]. The Bell numbers grow quite quickly; for

example, B10 = 115975. In the IRM, there are multiple domains, so the size of

the state space (putting aside any variables representing parameters associated with

each mixture component) is the product of the Bell numbers for each domain. The

examples in figures 6-12 and 6-13 each have two domains of 300 objects; thus the

size of the state space is (B300)
2, or approximately 10908. It is therefore striking that

in just 100 inference sweeps, comprising 6 · 105 entity visits, MCMC inference can

converge as in figures 6-12b and 6-12c.

1To be clear, each domain is partitioned exactly once, even if the domain is used in multiple
relations or if the domain is used multiple times in the same relation.
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(a) Input

(b) Partitions

(c) Component Models

Figure 6-9: Relational models take as input relational data, such as the mock customer
purchase data in (a). The Infinite Relational Model explains this data by reordering
and partitioning the entities in each domain (b) and generating a mixture model
component for each partition-induced block of data (c).
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Figure 6-10: The multi-feature mixture model presented in chapter 3, reproduced
from figure 3-26. The IRM model will be an extension of this model.
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Figure 6-11: The Infinite Relational Model (IRM) State and Kernel structures. The
primary difference between the IRM and the multi-feature mixture model presented
in figure 6-10 is that there are multiple domains of objects on the left side of the
model, with a Collection State containing all the domains. The 1 : 1 Constraint
State from the mixture model has also been replaced with a Cartesian Product state.
The Cartesian Product state is a standard Blaise State that has edges to multiple
object partitions, and ensures that for each tuple of object groups drawn from those
partitions, there is a corresponding component. For example, a Users × Movies
relation in an IRM would have a Cartesian Product State with one edge to the
Users domain and one to the Movies domain; this State would ensure that every
〈UserGroup, MovieGroup〉 pair had a corresponding component associated with it.
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(a) Input

(b) Partitions (c) Component Models

Figure 6-12: In this figure, the Infinite Relational Model is applied to a randomly
generated synthetic dataset, where each datapoint is an integer on the range 0–5.
This dataset is meant to be an easy-to-interpret version of the Movielens [25] dataset
used in figure 6-13. (a) shows the 300 × 300 entity synthetic input. To generate
the input, each domain was partitioned into 5 entity groups. Parameters for each
IRM component’s beta-binomial model were sampled from a prior distribution, then
50% of the datapoints were observed by sampling values from the component model.
Observed datapoints are colored in a teal–blue–magenta palette, where teal=0 and
magenta=5; missing data is left white. The entity order was then randomized before
being presented to the algorithm; the ground truth partition assignments are color
coded in the ruler bars to the top and left of the data matrix (these values were
not available to the algorithm). After a 100-sweep run of my Blaise-based IRM
implementation, the partitions in (b) were found. The mean value of the component
models are seen in (c), where black=0 and white=5. The ground truth was recovered
almost perfectly, as seen in the ruler bars.
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(a) Input

(b) Partitions

(c) Component Models

Figure 6-13: The Movielens [25] dataset is a real-world dataset with a Users×Movies
relation, where each datapoint is a user’s rating of a movie on a 0-5 scale. In (a) shows
a 300 user × 300 movie subset of Movielens, where movies are on the vertical axis
and movies are on the horizontal axis. Only about 4% of the possible datapoints are
present in the Movielens dataset. (b) and (c) show the result of a 200 sweep inference
run.
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Figure 6-14: Recent analysis [39] suggests that proper data structures and caching
should allow Gibbs-sampling-based inference in an Infinite Relational Model to be
performed in O(g · dp · arity2) time, where g is the number of groups in each domain,
dp is the number of observed datapoints, and arity is the relation arity. This figure
shows timing results from a Blaise-based IRM, using a beta-binomial conjugate
model as the component model for a single relation over two domains. The model
was run for 200 sweeps of inference over all the entities. The data collected was
the average number of groups over the course of inference (g̃) and the total runtime
t. Data was collected for a variety of dataset sizes; in the plot, relation size is the
number of datapoints that could be observed in the relation (i.e. the product of
the two equal-sized domains), while observed datapoint proportion is the fraction
of those datapoints that were actually observed (thus dp in the timing estimate is
size · proportion. If this implementation is O(g · dp · arity2), it should be the case
that (for a specific arity) t/200 = tdp · g̃ · dp, where tdp is constant for all runs
and represents the time per sweep per observed datapoint per group. In the plot,
bars indicate mean value of tdp over 10 runs; whiskers indicate standard deviation.
Each run used a different randomly generated synthetic dataset with 5 groups in each
domain. Observed g̃ values ranged from approximately 5 for the smallest models to 10
for the largest models, indicating that larger models require more sweeps to converge.
Results show that tdp is constant, indicating that the Blaise implementation of the
IRM is O(g · dp · arity2), at least over several orders of magnitude for dp. Note that
the smallest models show a slightly non-constant tdp; this is most likely the result of
Java’s Just-In-Time compilation.
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6.3.2 Annotated Hierarchies

Author’s role: Support

The Infinite Relational Model makes several potentially over-restrictive assump-

tions about the structure of the data being modeled. First, it assumes that the entities

in each domain are divided into flat partitions – that is, that every entity belongs to

exactly one group. When a domain participates in multiple relations, the IRM also

assumes that the domain is partitioned in the same way for each domain it partici-

pates in. Finally, the IRM assumes that domain partitions carve the relational data

into a regular grid – there is no possibility that a Users×Movies relation would have

one group of users for which there are three relevant movies groups, while another

group of users has only two relevant movie groups.

The Annotated Hierarchies model for relational data [54] relaxes all these assump-

tions. Instead of assuming a flat partition on each domain, the Annotated Hierarchies

model assumes that entities in each domain are assembled into trees, where the leaves

of the tree are the entities and the inner nodes are nested subgroups of entities. En-

tities are then partitioned into a flat group structure by selecting a set of inner nodes

from the tree, such that the nodes cover all the entities without overlap; this is called

a tree-consistent partition. When a domain participates in multiple relations, the

same tree is used each time, but a different tree-consistent partition is used; that

is, the domain may be partitioned differently for each use in a relation, but all the

domain partitions will be consistent with the single tree for that domain. The Anno-

tated Hierarchies model also relaxes the assumption that the relational data must be

carved into a regular grid. In the Users×Movies example, it would be possible for

one group of users to have one tree-consistent partition on movies, while a different

group of users used a different tree-consistent partition. In fact, every time relational

data is subdivided, the resulting subdivisions are treated as independent with respect

to further partitioning.

Annotated Hierarchies is a very sophisticated probabilistic model, and inference in

this model is likewise challenging. Roy et al. [54] implemented Annotated Hierarchies
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Figure 6-15: Roy et al. [54] used Blaise-based tools to fit the Annotated Hierarchies
model to relational data from the Unified Medical Language System (UMLS) data
set [42]. In this dataset there was only one domain D of entities, with 49 binary
relations on these entities. For example, the binary relation Causes , D × D →
{True, False} indicates for each pair of entities 〈E1, E2〉 whether E1 causes E2. This
figure shows the maximum a posteriori estimate. At the top of the figure is the tree
from domain D that is shared across all relational uses of D, where each leaf is an
entity in the UMLS dataset. The first four figures at the bottom show four of the
49 relations modeled using Annotated Hierarchies. The green oval highlights the
captured knowledge that chemicals cause diseases. The fifth figure shows just the
causes relation, as modeled by the IRM. Note that the way the IRM does explain the
causes data as well as the Annotated Hierarchies model (i.e., there are significantly
more data components whose parameters must be fit using less data, and there are
non-homogeneous components). This reflects the IRM’s assumption that the domain
D is partitioned in the same way along both axes of all 49 relations. Reproduced
from [54] (figure 3) with permission.

using an early version of Blaise to manage this complexity. The memoization and

transactional caching provided by the Blaise virtual machine were key to achieving

good inference performance, while the Blaise SDK modeling framework allowed

development effort to be used effectively. Roy reports:

Implementing the Annotated Hierarchies model was a matter of defining
the state space, joint density, and stochastic moves; we wrote virtually no
generic MCMC code.

∼ Daniel Roy
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Figure 6-16: A Bayes net for the Latent Dirichlet Allocation model [5, 22] with M
documents, each containing N words.

6.4 Latent Dirichlet Allocation

Author’s role: Support

In the last few decades, technological advances have made it easy to instantly

access vast numbers of natural language documents, provided that you can determine

exactly which document you wish to access. The field of Information Retrieval focuses

on indexing, organizing, and summarizing natural language corpora so that desired

information can be located quickly. For example, the Google search engine is an

information retrieval tool for documents on the internet. Topic modeling is a branch

of information retrieval that seeks to organize documents into groups with similar

semantic topics.

The Latent Dirichlet Allocation (LDA) model is a generative probabilistic model

for topic modeling [5, 22]. LDA models topics as probability distributions over words.

For a language with W words, each topic ~βi is a W -element vector sampled from a

symmetric Dirichlet distribution

~βi ∼ Dirichlet(γ).

Each document ~Dj is represented as a bag of words. Associated with each document

is a probability distribution over topics, denoted ~θj. For an LDA model with N topics,
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Figure 6-17: The Blaise SDK for the Latent Dirichlet Allocation model. The left half
of the model defines the topic; the right half of the model defines the corpus, including
the assignment of each word of each topic to a topic. To perform inference most
efficiently in this model, the θ and β weights would be integrated out via Dirichlet-
multinomial conjugacy, leaving only corpus with word assignments in the state space.
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each ~θj is a N -element vector sampled from a symmetric Dirichlet distribution

~θj ∼ Dirichlet(α).

Each word ~Dj[k] is generated by first sampling a topic ~zj[k] using the document’s

distribution over topics

~zj[k] ∼Multinomial(~θj)

then sampling a word from that topic’s distribution over words

~Dj[k] ∼Multinomial(~β~zj [k]).

Intuitively, each document in an LDA model has an effective distribution over

words produced by a linear combination of the N topic-word distributions ~βi, weighted

by the document-topic distribution ~θj. Thus the topic-word distribution vectors form

a linear algebraic basis for the intuitive document-word distribution. Document like-

lihoods will be maximized when the document-word distributions most closely match

the observed word frequencies in the documents. It is therefore the intuitive goal

of inference to determine an appropriate basis set ~βi from which to construct the

document-word distributions. These basis vectors are probability distributions, so

they can contain only positive values. It follows that the best vectors for the basis

set will be those that put probability mass on words that are typically used in the

same document – that is, words that are about the same topic of discussion.

Beau Cronin (MIT Brain and Cognitive Sciences, Navia Systems, Inc) designed

and implemented LDA in Blaise (see figure 6-17 for an implementation sketch). As

a brief demonstration, the LDA implementation was used to perform topic analysis

on the introductions of 32 Wikipedia [1] articles. Example input is seen in figure 6-18.

The topics extracted with this model can be seen in figure 6-19.
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Ontology:

Ontology is a study of conceptions of reality and the nature of being.
In philosophy, ontology is the study of being or existence and forms
the basic subject matter of metaphysics. It seeks to describe or posit
the basic categories and relationships of being or existence to define
entities and types of entities within its framework.

Some philosophers, notably of the Platonic school, contend that all
nouns refer to entities. Other philosophers contend that some nouns
do not name entities but provide a kind of shorthand way of referring
to a collection (of either objects or events). In this latter view, mind,
instead of referring to an entity, refers to a collection of mental events
experienced by a person; society refers to a collection of persons with
some shared interactions, and geometry refers to a collection of a
specific kind of intellectual activity.

As a philosophical subject, ontology chiefly deals with the precise
utilization of words as descriptors of entities or realities. Any ontol-
ogy must give an account of which words refer to entities, which do
not, why, and what categories result. When one applies this process
to nouns such as electrons, energy, contract, happiness, time, truth,
causality, and God, ontology becomes fundamental to many branches
of philosophy

Reality:

Reality, in everyday usage, means “the state of things as they actually
exist.” The term reality, in its widest sense, includes everything that
is, whether or not it is observable or comprehensible. Reality in this
sense may include both being and nothingness, whereas existence is
often restricted to being (compare with nature).

In the strict sense of philosophy, there are levels or gradation to the
nature and conception of reality. These levels include, from the most
subjective to the most rigorous: phenomenological reality, truth, fact,
and axiom.

Figure 6-18: The introductions to 32 Wikipedia [1] articles were used as documents
to demonstrate Latent Dirichlet Allocation topic analysis. Shown here are 2 of the
32 documents. Stop words (such as: “the,” “an,” “to,” and “or”) were removed and
a rudimentary word stemming was performed before analysis. Wikipedia articles are
copyrighted by Wikipedia contributors and licensed under the GNU Free Documen-
tation License; these excerpts are believed to be covered by fair use.
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Figure 6-19: This figure depicts the topics LDA infers when applied to the dataset
described in figure 6-18, assuming 4 topics. Nodes are documents, labeled by their
Wikipedia title, colored by their predominant topic, and projected from the 4-
dimensional topic simplex to a 2-dimensional space for visualization. The most com-
mon words in each topic are also displayed, with size proportional to frequency in the
topic.
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6.5 Standard Graphical Models in Blaise

Author’s role: Implementation Lead

A wide range of standard graphical modeling languages can be embedded in

Blaise. For example, factor graphs are particularly natural to represent. Recall

that a factor graph is a bipartite graphical model with variables X as one type of

node and factors F as the other. Each factor Fj ∈ F is connected to a set of variables

Xj ⊂ X and has a function fj : Xj → R associated with it, such that the joint density

of the graphical model is given by

p(X) ∝
∏

j

fj(Xj)

A simple example of a factor graph is the two-dimensional Ising model from sta-

tistical mechanics, in which the variables Xij ∈ {1,−1} form a grid of spins. Factors

connect each adjacent pair of spins X1, X2 with the function f(X1, X2) = eJX1X2 ,

providing soft constraints that adjacent spins should be the same or different (cor-

responding to “ferromagnetic” or “antiferromagnetic” models and controlled by the

“coupling” parameter J). Each spin may also have a unary factor eHXij attached to

it, representing an external field preferring the spin to be positive or negative and

controlled by the parameter H. Thus, the joint density for the model is

p(X) ∝

( ∏
adjacent X1,X2

eJX1X2

)∏
Xij

eHXij

 .

A Blaise model can be constructed for any factor graph. The Blaise State

hierarchy for the model is formed by using a State object for each variable, with the

root of the model being a Collection State containing each of the variable States.

Likewise, the Blaise Density for the factor graph can be constructed by using a

Density object for each factor, with each Density having State→Density edges to the

variable States on which that factor depends. The root Density is a Multiplicative

Collection Density containing each of the factor Densities.
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(a) Factor Graph

(b) Blaise (expanded) (c) Blaise

Figure 6-20: Lattice-structured factor graphs called Ising models are standard models
from statistical mechanics (a). In Blaise, any factor graph can be represented as a
Collection State containing all the variables, plus a Collection Density containing all
the factor densities (b),(c).

A variety of inference methods could be used, so there are many options for con-

structing the Kernel hierarchy; however, many of these can be easily automated. For

example, if all the variables States are the same type, as in the Ising model, one could

use a Virtual Hybrid Kernel on the Collection State, where the virtualized subkernel

is a variable-type-appropriate single-site Metropolis-Hastings Kernel or enumerative

Gibbs Kernel. If variables are of different types, the virtualized sub-Kernel could

be a Conditional Hybrid Kernel which selects an appropriate Metropolis-Hastings or

Gibbs sub-Kernel based on the type of the variable State. Of course, more compli-

cated inference is also possible, using specialized inference Kernels for different States,

or blocking the sampling of several variables together by using a Cycle Hybrid Kernel

as the proposal of a Metropolis-Hastings or Gibbs Kernel.

Other graphical modeling languages, such as Bayes nets or Markov Random Fields
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(a) Homogeneous (b) Heterogeneous

Figure 6-21: Kernels can be dispatched onto the variables in a factor graph using a
virtual cycle Kernel (a). If the factor graph is heterogeneous – that is, it contains
variables of different types – a conditional hybrid Kernel may be used to dispatch the
appropriate Kernel for a variable’s type (b).

(MRF, i.e. undirected graphical model.), can also be embedded in Blaise, because

every Bayes Net or MRF can be reduced to a factor graph, which can then be em-

bedded in Blaise as described above.

The factor graph equivalent to a given Bayes Net will have the same set of variable

nodes as the Bayes Net. In a Bayes Net, each variable V has a set of parent nodes

parents(V ), where the parent nodes are exactly those nodes Vp for which a directed

edge Vp → V exists. Each variable V also has a conditional probability function

p(V |parents(V )), such that joint density on the Bayes Net is

p(·) =
∏
V

p(V |parents(V )).

This matches the joint density of a factor graph p(·) ∝
∏

j fj(Xj) when, for each

variable V , there is a factor fV connected to V and its parents that evaluates the

conditional probability function defined at V : fV (V, parents(V )) = p(V |parents(V )).

Like Bayes Nets, the factor graph equivalent to a given Markov Random Field

will have the same set of variable nodes as the MRF. In an MRF, each clique V{k} of

variables has a potential function φk(V{k}) associated, such that the joint density on

the MRF is

p(·) ∝
∏
V{k}

φk(V{k})
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(a) Bayes Net (b) Factor Graph

Figure 6-22: Any Bayes net can be reduced to a factor graph by converting each
variable’s conditional probability function to a factor that evaluates that function, as
seen in this figure with a simple Bayes net. Because Blaise can model any factor
graph, it can therefore also model any Bayes net.

This matches the joint density of a factor graph p(·) ∝
∏

j fj(Xj) when, for each

clique V{k}, there is a factor f{k} connected to each node in the clique that evaluates

the potential function for that clique: f{k}(V{k}) = φk(V{k}).

Factor graphs, Bayes Nets, and Markov Random Fields are simplistic uses of the

Blaise SDK modeling language; however, there is still significant advantage to be

derived from Blaise. All the transformations defined in chapter 4 are now easy to

apply to models in any of these languages. For example, it is now a simple task to

parallel temper a Bayes Net or use simulated annealing on a factor graph.

6.6 Systematic Stochastic Search

Author’s role: Collaborator

Classical search and probabilistic inference, two of the most fundamental algorith-

mic building blocks of artificial intelligence, share a variety of deep commonalities,

yet are usually treated independently. Systematic stochastic search is a new research

program that attempts to unify these two operations to produce new, more efficient

algorithms.

Classical search algorithms (e.g. A*) and Monte Carlo probabilistic inference

algorithms have related goals: locate high-scoring states in a state space. However,
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the goals differ in an important way: classical search typically seeks to find the single

best-scoring state, where Monte Carlo inference algorithms seek to produce states

(i.e. samples) proportionally to their score, so that high-scoring states are sampled

more frequently, but lower-scoring states should also be sampled, just less frequently.

Markov chain Monte Carlo, one of the most commonly used branches of Monte

Carlo inference, also differs from classical search algorithms in how solution states are

formed. Classical search algorithms such as A* typically start with an empty state

which is extended step-by-step into a complete solution state. In contrast, MCMC

starts with some complete, though potentially low-scoring, solution state and makes

a sequence of small updates to the state. For example, if trying to find short paths

through a map from point A to point B, a classical search algorithm would begin

with a empty path starting and ending at A, and incrementally extend that path to a

neighbor of A, then to a neighbor of that neighbor, and so on until the path reached

B. In contrast, MCMC would start with some (probably highly suboptimal) path

from A to B, and try making a series of small variations while always maintaining

the path’s endpoints.

In this regard, Markov chain Monte Carlo is more closely akin to constraint prop-

agation algorithms, which start with a superset of the valid solutions and iteratively

whittle away undesired states. In fact, probabilistic inference, particularly on factor

graphs, can be viewed as soft constraint satisfaction; that is, constraints can be vio-

lated, but violating a constraint incurs a penalty proportional to the violation. Under

this interpretation, the interest distribution for probabilistic inference encodes how

well the constraints are being satisfied: well-satisfied constraints correspond to high

probability states.

Classical search algorithms, on the other hand, seem more closely related to Monte

Carlo methods based on importance sampling, because both start with empty solu-

tions which are built up incrementally. Likelihood weighting for a Bayes net is the

most direct analog, allowing a weighted sampled to be produced by visiting variables

in topological order from parents to children. Each unobserved variable is sampled

conditioned on its parents, and each observed variable is assigned the observed value,
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adjusting the weight of the sample based on how likely it would have been to sample

this value instead of just assigning it. Sampling unobserved variables corresponds

to extending a path in classical search, and adjusting the sample weight to account

for evidence corresponds to determining whether the goal has been reached (again,

using a soft goal-function in the probabilistic setting rather than the hard binary goal

function common in classical search).

Particle filtering2 is no more than likelihood weighting applied to the specific

setting of dynamic models; i.e. probabilistic models with structure that recurs for each

time step in a dynamic process. Importance sampling methods suffer when variables

that are sampled early in the process must take on a priori unlikely values in order to

produce good solutions. Particle filters work around this difficulty by evolving a fixed

number of particles (samples) in parallel, and allowing highly weighted particles to be

replicated into multiple particles, while low weighted particles are killed off. In this

way, particle filtering is closely related to beam search algorithms in classical search.

Systematic stochastic search [40] is a new research program that attempts to unify

all of the techniques just described into a single search and inference framework. By

unifying the previously disparate techniques, the hope is to transfer insights from

classical search to probabilistic inference and vice versa, resulting in the construction

of more efficient inference and search algorithms.

Systematic stochastic search rests on three insights:

1. Classical search and constraint problems can be viewed as the deterministic

limit of probabilistic inference problems

2. MCMC updates can be run on partially constructed states, allowing MCMC

updates to be interleaved with importance sampling extensions.

3. Particle filtering methods are applicable to all probabilistic models, not just

dynamic models

Basic systematic stochastic search [40] enables particle filtering on any factor

graph, visiting the variables in any pre-determined order3. In Blaise, systematic

2at least, in the single-particle no-resampling setting
3Because the variables may be visited in any order, the algorithm designer is free to choose
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Figure 6-23: The sequentialization transform takes a complete factor graph and pro-
duces version of the same factor graph suitable for sequential Monte Carlo (e.g. par-
ticle filtering). The transform constructs an empty factor graph as the “active” factor
graph. The transform also builds a “prototype” from the original factor graph. This
prototype replaces all the original factor graph’s Densities with States so they may be
manipulated (as will be described momentarily). The prototype allows an extension
Kernel (labeled “+”) to find a variable that needs to be added to the active factor
graph each time it is called. As variables are added to the active factor graph, the root
Density locates any proto-factor for which the last-attached variable was just added to
the active factor graph and adds the corresponding factor to the factor graph as well
(note that the root Density evaluates only the active factor graph’s Density; it has
a link to the prototype factor graph’s Density only in order to locate proto-factors.)
This transform, concatenated with the particle filtering transform (section 4.3), pro-
vides the basic systematic stochastic search algorithmic recipe described in [40].

stochastic search is implemented as a sequentialization transform that converts a

factor graph to a sequential model, as seen in figure 6-23. This sequential model can

then be passed to the particle filtering transform (section 4.3), yielding a complete

inference method.

An example of systematic stochastic search applied to stereo vision can be seen in

figure 6-24. Blaise enabled the experimental implementation of systematic stochas-

tic search that produced these results. Running the experiments in this paper also

demonstrated that Blaise scales well; our largest inference runs included 8 particles

on the dataset described in figure 6-24, resulting in a Blaise model with approxi-

mately 500,000 States and 1,500,000 Densities.

When asked about Blaise’s impact on this project, Roy reports:

For the Systematic Stochastic Search project we relied heavily on SDK

an order that is appropriate to the model in hand. Various choices of variable ordering and the
advantages thereof are presented in [40].
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Figure 6-24: This figure compares the performance of annealed Gibbs sampling
and the demonstration of the Blaise-based implementation of systematic stochastic
search [40] on a realistic stereo vision problem. The model was a 61,344 variable
lattice-structured factor graph, with each variable having 30 possible values repre-
senting the possible stereo disparities at a particular image location. In this figure,
the model was applied to the “map” image pair from the Middlebury Stereo Vision
benchmark set. The main graph demonstrates that the systematic stochastic search
method with a single particle reaches a high probably solution with significantly less
computational effort than Gibbs sampling. (a) and (b) show the samples resulting
from 1 Gibbs sweep and 1 particle systematic stochastic search, respectively. Though
the computation time required for these two operations is equivalent, the result from
systematic stochastic search is significantly better. For comparison, (c) shows the
result obtained once the Gibbs sampler has converged after 140 sweeps.
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transformations to re-express inference in factor graphs as systematic search.
What made this efficient, despite its generality, was Blaise’s caching sys-
tem.

∼ Daniel Roy

Mansinghka describes his experience using Blaise for this project:

SDKs and SDK transformations were a critical enabler for my research
on systematic stochastic search. Without them, I doubt I would have un-
derstood how to implement search on generic factor graphs. Furthermore,
without the Blaise Virtual Machine, I doubt I would have been able to
conduct a broad range of satisfying experiments on the algorithm.

∼ Vikash Mansinghka

6.7 Higher-level probabilistic programming languages

Blaise SDK graphs are useful directly as a modeling language, but the Blaise

framework can also be viewed as an abstract machine upon which to construct even

higher-level probabilistic modeling languages.

As we seek to build more and more sophisticated models, such higher-level lan-

guages will be necessary to manage the complexity. Sophisticated models will cer-

tainly require sophisticated inference techniques in order to perform inference tractably,

and will most likely require special optimizing compilers in order to orchestrate this

inference. Just as nearly all compilers go through multiple layers of intermediate rep-

resentation, I hypothesize that compilers for high-level probabilistic languages will be

no different. Because Blaise reifies the elements of probabilistic inference methods

into composable, reusable units, and inspired by the transformations presented in

chapter 4, the Blaise framework is uniquely well suited to become a foundation of

higher level languages.
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Model:

model {

for (i in 1 : N) {

theta[i] ~ dgamma(alpha, beta)

lambda[i] <- theta[i] * t[i]

x[i] ~ dpois(lambda[i])

}

alpha ~ dexp(1)

beta ~ dgamma(0.1, 1.0)

}

Data:

list(t = c(94.3, 15.7, 62.9, 126, 5.24, 31.4, 1.05, 1.05, 2.1, 10.5),

x = c( 5, 1, 5, 14, 3, 19, 1, 1, 4, 22), N = 10)

Figure 6-25: “pump,” a standard BUGS [58, 62] model as it appears in the BUGS
documentation’s examples. Recently, one week of development was sufficient to reim-
plement enough of BUGS on Blaise to run this and many other standard BUGS
models. Blaise’s support for Constraint States (and automatic management of the
long-distance dependencies they introduce) and standard library of reconfigurable
inference components were critical elements in the rapid development of this project.

6.7.1 BUGS on Blaise

Author’s role: Support

BUGS (Bayesian inference Using Gibbs Sampling) [58, 62], is a popular system for

MCMC inference on Bayes nets. BUGS consists of a declarative text-based modeling

language for Bayes net models, together with software for automatically deriving a

Monte Carlo inference algorithm based on the type of the full conditional distribution

at each node. BUGS supports variables with domains of integers, real numbers or

fixed-dimension matrices of these. BUGS variations have been in development since

1989. The ease with which BUGS models can be specified has lead to widespread

adoption in the statistical community and pedagogical settings.

As an example of ease-of-development in Blaise as well as Blaise’s utility as

a compilation target/interpreter substrate for other probabilistic languages, Beau

Cronin (MIT Brain and Cognitive Sciences, Navia Systems, Inc) recently started

reimplementing the BUGS language atop the Blaise framework. As of this writing,
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Parametric Model:

model {

for (i in 1 : NComponents) {

p[i] ~ dbeta(a, b)

}

w[] ~ ddirch(alpha[])

for (j in 1 : NDatapoints) {

z[j] ~ dcat(w[])

x[j] ~ dbin(p[z[j]],OutOf)

}

}

Parametric Data:

list(a = 1, b = 1,

alpha = c(1, 1, 1), NComponents = 3,

x = c(10, 12, 11, 13, 30, 32, 34, 33, 80, 78, 79),

OutOf = 100, NDatapoints = 11)

Hypothetical Non-Parametric Model:

model {

z[] ~ dcrp(alpha, NDatapoints)

NComponents <- ndistinct(z[])

for (i in 1 : NComponents) {

p[i] ~ dbeta(a, b)

}

for (j in 1 : NDatapoints) {

x[j] ~ dbin(p[z[j]],OutOf)

}

}

Hypothetical Non-Parametric Data:

list(a = 1, b = 1,

alpha = 1,

x = c(10, 12, 11, 13, 30, 32, 34, 33, 80, 78, 79),

OutOf = 100, NDatapoints = 11)

Figure 6-26: Reimplementing BUGS on the Blaise framework should enable the lan-
guage features of BUGS to be extended in a variety of useful directions. For example,
extending the language to support for loops with non-constant bounds and includ-
ing nonparametric distributions would allow nonparametric mixture models to be
implemented in BUGS. This figure compares a traditional BUGS parametric mixture
model (top) with a nonparametric mixture model in a hypothetical extended-BUGS
language (bottom). Note that NComponents is part of the data in the parametric
model, but is an inference target in the nonparametric model.
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the project has received one week of development time, and already has sufficient

coverage of the language that many standard BUGS models run without any modifi-

cation (for example, see figure 6-25). A sizable portion of that time was spent creating

a parser for the BUGS language specification. Beyond that, most of the implemen-

tation was assembled from standard Blaise components. The implementation uses

standard Blaise States to represent variables. Deterministic assignments (“logical

nodes” in BUGS terminology, e.g. lambda[i] <- theta[i] * t[i]) and math ex-

pressions are implemented as Constraint States, while stochastic assignments (e.g.

alpha ∼ dexp(1)) are implemented as Densities in the Blaise model. Inference is

implemented as a Concrete Mixture Kernel over standard Blaise Kernels for each

unobserved variable in the model. We hope that, in the future, we can also make

more of Blaise’s features available through extensions to the BUGS language. For

example, for loops in BUGS are required to have their iteration bounds fixed at com-

pile time; Blaise’s support for transdimensional MCMC should allow us to remove

this limitation. With this in place, it might also be possible to bring nonparametrics,

such as the Chinese Restaurant Process, to BUGS models. Figure 6-26 shows what a

nonparametric mixture model might look like in such an extended BUGS language.

6.7.2 Church: A stochastic lambda calculus

Author’s role: Collaborator

As a final demonstration of Blaise’s expressivity, I present Church [20], a uni-

versal language for generative models with non-parametric memoization and approx-

imate inference. Church builds on a pure (i.e. mutation-free) subset of Scheme [2].

Church adds random procedures such as: (flip) that flips a fair coin, (flip weight)

that flips a weighted coin, (normal mean var) that draws a sample from a normal

distribution, etc. Church also adds the primitive (mem a p) that returns a stochas-

tically memoized version of the procedure p (see figure 6-27). As with any Lisp vari-

ant, Church has full support for higher-order procedures; for example, you can write

(lambda (f1 f2 x) ((if (flip) f1 f2) x)) to define a procedure that takes two
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Church IRM

(defmem 1.0 (drawclass domain) (gensym))

(defmem 0 (class entity domain) (drawclass domain))

(defmem 0 (component-mean class1 class2)

(normal 0.0 10.0))

(defmem 0 (datapoint entity1 entity2)

(normal (component-mean (class entity1 ’T1)

(class entity2 ’T2))

1.0))

Figure 6-27: A complete Church [20] program for a two-domain (T1 × T2) Infi-
nite Relational Model [30] with normal-normal component models. In Church, the
(mem a p) returns a stochastically memoized version of the procedure p, using a
Chinese Restaurant Process with parameter a to govern whether a new draw from
p is generated, or whether a previous draw from p is returned instead (or in Dirich-
let Process terms, p provides the base measure for the DP). Note that invoking the
memoized procedure with different parameters will access different Chinese Restau-
rant Processes. If p is a procedure taking a single parameter that has been memo-
ized using (define pmem (mem a p)), then every evaluation of (pmem 1) will access
the same CRP, but (pmem 2) will access a different one. This is akin to a tradi-
tional memoizer storing an independent value for each set of parameters a mem-
oized procedure is called on. Because memoization is a very common operation
in Church, syntactic sugar is provided to make it more concise. Analogous to the
standard Scheme sugar where (define (A args) B) is syntactic sugar for (define
A (lambda (args) B)), in Church (defmem a (A args) B) is syntactic sugar for
(define A (mem a (lambda (args) B))). Note that when a is 0, mem reduces to de-
terministic memoization. For example, in this program, (defmem 0 (class entity

domain) (drawclass domain)) ensures that a persistent class is assigned to each
entity.
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Church Infinite Hidden Markov Model

(defmem 1.0 (get-state) (gensym))

(defmem 1.0 (ihmm-transition state) (get-state))

(define (ihmm state length)

(if (= n 0)

’()

(pair (pair state (observation-model state))

(ihmm (ihmm-transition state) (- n 1))))

Figure 6-28: This figure shows the implementation of an Infinite Hidden Markov
Model [4] as a short Church program. Evaluating (ihmm ’start 10) will result in a
sequence of 10 (state . observation) pairs sampled from the model, starting from
the state ’start.

single-argument procedures f1 and f2, flips a fair coin to choose one of them, then ap-

plies it to x. The expressiveness of Church allows sophisticated probabilistic models

to be expressed succinctly. For example, figure 6-27 shows how the Infinite Rela-

tional Model [30] (see section 6.3.1) can be written with just a handful of Church

statements, and figure 6-28 shows the simple church program for an Infinite Hidden

Markov Model [4].

Evaluation in Church equates to sampling; that is, (eval expr) draws a sam-

ple from the generative model defined by expr. Church also provides a new proce-

dure (query expr pred), where pred is of the form (lambda (x) ...) 7→ {True,

False}. Evaluating (query expr pred) draws a sample s from the generative model

expr, conditioned on (pred s) evaluating to True. Note that (query expr (lambda

(x) True)) is equivalent to (eval expr).

As part of Church’s debut, we created a Blaise-based MCMC algorithm for

inference on Church models. The state space for this search is the space of all pos-

sible execution histories for a Church program. Elements of a search history (e.g.

procedure applications, evaluations, random choices made by flip, environments,

etc) are represented as different types of Blaise States, with random choices also

having appropriate Densities attached to them. MCMC inference is implemented

by using Metropolis-Hastings Kernels to consider resampling a new value for random

choices. Constraint State functionality is used extensively throughout the Church sys-
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tem; whenever a value is changed (for example, if MCMC changes the outcome of a

(flip)), any expression depending on that value receives a constraint message trigger-

ing it to re-evaluate itself (which will likely trigger further cascading re-evaluations).

These re-evaluation cascades can also cause the state space to change dimensionality.

For example, consider (if (flip) 1 (normal 1 2)). When the value of (flip) is

True, only the consequent (i.e. 1) is evaluated. If a Metropolis-Hastings proposal

changes the value of (flip) to False, then only the alternate (i.e. (normal 1 2)) is

evaluated. Because normal is a random procedure, this introduces new random state

into the system. Church therefore also makes extensive use of Initialization Kernels

to manage sampling values for these state-space dimensionality changes. It is strik-

ing that Blaise’s long-distance compositionality patterns (i.e. Constraint States and

Initialization Kernels) allow Church to use the stock Blaise Kernels for changing the

value of a random procedure. To reiterate, Church was implemented in Blaise with-

out writing a single custom inference Kernel, a testament to the power of composable

inference.

In response to his experience using Blaise to implement Church, Mansinghka

writes:

Managing the complexity of a random walk over consistent execution histo-
ries of a Lisp machine would have been impossible without the constraints
provided by the SDK language, which routinely exposed fundamental errors
in our thinking.

∼ Vikash Mansinghka

6.8 Discussion

In this chapter, I presented a variety of models implemented in Blaise. These

implementations demonstrate the breadth of models to which Blaise is amenable.

No matter how sophisticated or simple the model, Blaise enabled the models to be

implemented more rapidly and reliably. The Blaise SDK modeling language has also

proven itself to be extremely useful to modelers just in thinking about and discussing

their models before implementation has even begun. For example, Roy reports:
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The decomposition of Monte Carlo algorithms into abstract states, den-
sities, kernels and transformations thereof simplifies a vast literature. At
the same time, the composition rules that SDKs satisfy support the en-
gineering of complex models. More than a few times during the Church
project, apparent violations of these rules revealed mistakes in our prelim-
inary sketches for universal inference.

∼ Daniel Roy

The excitement of the user community around Blaise attests to the framework’s

usefulness.
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Chapter 7

Related Work

There are a variety of existing software packages for inference in probabilistic models.

In this section, I briefly review some of the most popular tools1.

7.1 Bayes Net Toolbox

The Bayes Net Toolbox for Matlab (BNT) [47] supports a variety of inference meth-

ods on Bayes nets. BNT supports variables with domains of integers, real numbers,

or booleans. Conditional probability distributions for continuous variables are limited

to Gaussian distributions; discrete variables typically use table-based distributions,

though a few other distributions such as noisy-or or softmax are also available. BNT

supports a wide variety of exact inference methods; for approximate inference, it sup-

ports belief propagation, likelihood weighting, and gibbs sampling (for discrete nodes

only).

In contrast to Blaise, BNT does not focus on Monte Carlo methods, nor does

it support sophisticated models: there is no support for structured variable domains,

non-parametric (or even commonly used parametric) distributions, nor models with

unknown dimensionality.

1Appendix B of [33] indexes a wider variety of Bayes net software packages.
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BNT BUGS VIBES BLOG IBAL Blaise

Continuous Domains Yes Yes Yes No No Yes
Structured Domains No No No Yes Yes Yes
Unknown Dimensionality No No No ± NPa –NP +NP
Standard Distributions No Yes No Yes Yes Yes
Inference Scheme E,O MC V MC E MC
Advanced Inference No No No No No Yes
Compositional Inference No No No No No Yes
User-defined Inference No No No No No Yes

Figure 7-1: Existing software packages for probabilistic inference have different focuses
than Blaise.

• Continuous Domains: Are continuous domains supported? Yes is the preferred
value.

• Structured Domains: Are structured domains (e.g. trees, graphs, etc.) sup-
ported? Yes is the preferred value.

• Models with unknown dimensionality: +NP = Yes, including nonparametrics;
–NP = Yes, but not nonparametrics; No. +NP is the preferred value.

• Standard distributions: Yes = most common distributions are easily available
and applicable anywhere in the model; No = there are serious restrictions on
distribution choice. Yes is the preferred value.

• Inference Scheme: E=Exact, MC=Monte Carlo approximate, V=Variational
approximate, O=other approximate. MC is the preferred value; see sections 2.1
and 2.2.

• Advanced Inference: Does the package support higher-order variations of infer-
ence methods (e.g., tempered inference). Yes is the preferred value.

• Compositional Inference: Does the package focus on composition of inference
methods? Yes is the preferred value.

• User-defined Inference: Does the package encourage user-defined inference? Yes
is the preferred value.

aThe NP-BLOG extension to BLOG aims to support nonparametrics, but this support is not a
standard part of BLOG.
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7.2 BUGS

BUGS (Bayesian inference Using Gibbs Sampling) [58, 62], is a popular system for

MCMC inference on Bayes nets. BUGS supports model creation in either a text-

based modeling language or a graphical Bayes net editor called DoodleBUGS. BUGS

supports variables with domains of integers, real numbers or fixed-dimension matrices

of these. Given a BUGS model, the software will automatically derive a Monte Carlo

inference algorithm based on the type of the full conditional distribution at each node.

In contrast to Blaise, BUGS does not support user-defined or structured variable

domains, nor does BUGS allow models of unknown dimensionality2, so sophisticated

models including such structures as trees or graphs are not supported. While BUGS’s

automatically derived inference is good for many relatively simple models, BUGS

does not have much support for tailoring inference to take advantage of the domain

structure.

7.3 VIBES

VIBES (Variational Inference in BayESian networks) [66] is a variational message

passing system with modeling features similar to BUGS. VIBES models are defined

using a graphical Bayes net editor or by writing XML files. Variational message

passing requires distributions to be conjugate around each variable in the model;

while it may be possible to use Monte Carlo approximations for variables with non-

conjugate distributions, this is not implemented.

In contrast to Blaise, VIBES can handle only a very restricted class of mod-

els. In addition to supporting only a few types of conditional distributions, and the

constraint of having to satisfy conjugacy, VIBES does not support user-defined or

structured variable domains, nor does it allow models of unknown dimensionality, so

sophisticated models including such structures as trees or graphs are not supported.

2There exists an experimental Reversible Jump extension to WinBUGS [36]. However, even with
this extension, only a limited class of transdimensional models are supported.
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7.4 BLOG: Bayesian Logic

BLOG (Bayesian Logic) [45] is a language for describing probabilistic models over

relational structures, where the number of objects in the model is unknown and ob-

ject identity may be uncertain. Models over sophisticated domains can be expressed

using the relational structures. While BLOG does not include nonparametrics, a non-

parametric extension (NP-BLOG) has been proposed [8]. [45] also provides inference

over BLOG models, using likelihood weighting and Markov chain Monte Carlo.

In contrast to Blaise, BLOG focuses largely on the declarative specification of

probabilistic models, whereas Blaise focuses on the composition of inference. Blaise

also provides a variety of sophisticated inference techniques that are not available in

the BLOG. It could be interesting future work to use BLOG (or NP-BLOG) as a

modeling language for building Blaise models.

7.5 IBAL

IBAL [51] (Integrated Bayesian Agent Language) is a functional language with

stochastic choice primitives, designed for describing probabilistic models as a gen-

erative process. IBAL models sophisticated domains naturally, using standard func-

tional programming representations (e.g., lists formed from “cons” cells). Variables

may be integers, booleans, symbols, or abstract data types over these; although real

numbers are not primitive types in IBAL, [50] shows how they may be implemented

using IBAL’s abstract data types.

In contrast to Blaise, IBAL uses exact inference methods; as a result, as models

grow more sophisticated, they are likely to become intractable in IBAL’s inference

scheme. Implementing a Markov chain Monte Carlo version of IBAL would require a

significant departure from IBAL’s current representational assumptions.
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Chapter 8

Conclusion

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.

I have supported this thesis by developing Blaise, including the Blaise State-

Density-Kernel graphical modeling language, Blaise transformations, and Blaise

virtual machine, and by means of several sophisticated applications built on Blaise.

In this chapter, I outline how Blaise enables new perspectives and future research,

followed by a review of the contributions I have made to the field of artificial intelli-

gence.

8.1 New perspectives

The Blaise modeling language provides a more unified view of Monte Carlo infer-

ence by making inference choices explicit in a human-readable graphical modeling

language. For example, many MCMC practitioners conflate single-site Gibbs kernels

with a Gibbs inference sweep; explicit cycle kernels make this distinction clear. Oth-

ers fail to distinguish a mixture of Metropolis-Hastings kernels from a single M-H

kernel with a mixture of proposals; likewise, for both M-H and Gibbs sampling, the
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notion and impact of blocking variables is frequently overlooked. Blaise makes these

considerations tangible, as different arrangements of the same components (e.g. a M-

H Kernel and a Cycle Kernel) in the Blaise SDK graph (e.g. figures 3-18 and 3-19).

At the most fundamental level, many practitioners do not even think in terms of

composable Kernels, with the result that effective inference methods are either over-

looked or used without any justification (e.g. mixing both Gibbs sampling and other

Metropolis-Hastings methods within the same inference task).

Blaise transformations also provide a critical avenue for unifying our under-

standing of sophisticated probabilistic inference, by making explicit exactly how an

existing model/inference routine should be adapted to achieve such inference, using

a language with sufficient precision that these changes can be completely automated.

Precise, compact descriptions significantly lower the barrier of entry to working with

these techniques, while having the descriptions phrased in terms of reusable pieces

encourages the exploration of novel variants. For example, interpreting parallel tem-

pering as a Blaise transform (section 4.2.3) makes the technique easy to use (simply

extend the model using the transform), easy to analyze (Metropolis-Hastings-based

swaps and composition using standard hybrid kernels guarantee the correct station-

ary distribution), and easy to extend (for example, by swapping only part of each

chain’s state or tempering only part of each chain’s density).

By enabling new perspectives such as these, Blaise holds the potential to trans-

form the perception of Monte Carlo inference from a hodgepodge of isolated tech-

niques into coherent engineering discipline.

8.2 Enabled research

Blaise is a critical component of a larger stack of software and hardware tools for

high-performance, easy-to-use probabilistic inference. As part of this thesis, I cre-

ated the Blaise SDK graphical modeling language, which enabled the creation of

higher-level modeling tools such as Stochastic Lambda Calculus (section 6.7.2) and a

reimplementation of the popular BUGS language (section 6.7.1). Building on these
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Figure 8-1: Blaise is part of a larger stack of software and hardware abstractions.
At the top of this stack are high level probabilistic modeling tools, such as BUGS on
Blaise (section 6.7.1) Stochastic Lambda Calculus (section 6.7.2), BLOG on Blaise
or a purely graphical modeling environment. All of these tools are implemented atop
the Blaise SDK language. I have already developed a Java-based Blaise virtual
machine to execute SDK models, but other execution environments are also possible,
including custom built stochastic circuits. In this figure, the parts of the abstraction
stack that I developed and that were central to this thesis are shaded gray, with
supporting elements discussed as part of this thesis in bold.

successes, I am also exploring an implementation of BLOG (Bayesian Logic) [45],

a first-order probabilistic modeling language, atop the Blaise modeling language.

In addition, given the range of models that can be created by mixing and match-

ing standard Blaise SDK elements, it should be possible to create a point-and-click

graphical modeling environment for Blaise that allows the user to draw SDK dia-

grams on screen, apply transformations with a click, and execute the resulting model

on the Blaise virtual machine. With these tools, it would be possible to create even

complicated models in a matter of hours, rather than the weeks or months currently

standard. Furthermore, because Blaise is designed for extensibility, it should be

relatively easy for users to customize inference methods to suit the model, or even

create entirely new SDK elements to interact with these high-level tools.

In this thesis, I also invented the Blaise virtual machine to execute Blaise SDK

graphs efficiently on common off-the-shelf hardware. However, this is only one pos-
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sible execution environment. MIT researchers Vikash Mansinghka and Eric Jonas

are currently developing a suite of stochastic circuit primitives to exploit hardware-

level parallelism on field-programmable gate arrays (FPGAs) or application-specific

integrated circuits (ASICs). Stochastic circuit implementations of Monte Carlo al-

gorithms can produce massive increases in speed – sometimes even converting linear

time algorithms to constant time algorithms. I am working with Mansinghka and

Jonas to use stochastic circuits as an alternative to the Blaise virtual machine.

This research will focus on developing a compiler for SDK graphs that can target the

stochastic circuit machines. The Blaise SDK language is well-suited for this purpose

because it makes inference into an explicit and manipulable element of the model,

enabling a compiler to interpret it.

Trends in computing hardware today indicate that parallelism will be an impor-

tant aspect of high-performance software, even without customized hardware. Large

compute clusters are becoming more commonplace in both commercial and academic

settings, and even personal computers are typically have 2–8 processor cores today.

It follows that another important avenue of future research for Blaise is automatic

parallelization. For example, a future version of Blaise might support a “parallel

hybrid Kernel” that operates somewhat like a cycle Kernel, but makes no guarantees

about the order in which its child Kernels are applied. On a serial machine, a parallel

hybrid Kernel would pick an arbitrary order in which to execute its child Kernels,

but on a parallel machine, it might execute several of its child Kernels simultaneously

on different processing units. So long as the child Kernels operate on conditionally

independent portions of the State–Density graph, the results on the parallel machine

should be indistinguishable from the results on a serial machine.

Automatic optimization of inference in a Blaise model is another exciting avenue

of future research. For example, detecting that a cycle Kernel can be safely converted

to a parallel hybrid Kernel could result in dramatic performance increases with no

effort from the modeler. As mentioned in chapter 4, other transformations might

also be automatically applied as well, such as conjugacy-exploiting transformations,

the parallel tempering transformation, or other inference-enhancing transformations
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yet to be designed. Furthermore, automatic optimization has the advantage that, if

the modeler later makes changes that prevent a particular optimization strategy, the

inference may get slower, but the modeler does not need to completely reimplement

her model to make it functional again.

The most exciting aspect of these potential research paths is their SDK-mediated

interaction – advances in any of these research paths bring more power to all the oth-

ers. How long will it be before we have automatically parallelized parallel-tempered

stochastic lambda calculus models running on thousand node supercomputers or sim-

ulated annealed BLOG models running on a custom-purpose ASIC? Only time will

tell.

8.3 Contributions

In this thesis I have made several contributions to the field of artificial intelligence.

I began by identifying probabilistic models as a key component both to under-

standing human-like cognition and to addressing industrial data interpretation chal-

lenges, after which I identified several key shortcomings in the tools we currently use

when discussing and implementing probabilistic models. Chief among these concerns

was that our current approaches to probabilistic inference do not compose in the same

way that probabilistic models do; though a modeler might be able to compose two

traditional models together with only moderate work, she would almost certainly be

forced to reimplement inference for the composite model from scratch. Implementing

probabilistic inference is a time consuming and error-prone process, and sophisticated

inference techniques are typically eschewed due to the complexity they would add to

the system.

With these thoughts in mind, I introduced my thesis statement:

My thesis is that a framework for probabilistic inference can be designed

that enables efficient composition of both models and inference procedures,

that is suited to the representational needs of emerging classes of proba-

bilistic models, and that supports recent advances in inference.
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I then began to address this statement by inventing the Blaise State–Density–

Kernel (SDK) graphical modeling language. The SDK language is distinctive in

that it explicitly represents in the graphical model both inference (via Kernels) and

composition (via State, Density, and Kernel hierarchies). I also created a number

of novel composition strategies, including Constraint States, non-linear Densities,

virtual hybrid Kernels, conditional hybrid Kernels, and Initialization Kernels.

Using this modeling language, I reinterpreted a variety of existing probabilistic

inference techniques, including Gibbs sampling, Metropolis-Hastings, simulated an-

nealing, parallel tempering and particle filtering, as straightforward transformations

of a Blaise SDK model. In contrast to the unmanageable complexity tradition-

ally introduced by these methods, in Blaise these transformations are point-and-

click/one-line-of-code operations and may even be automatable in the future. As a

concrete example of the flexibility obtained by compositionality, I demonstrated how

Blaise transforms could isolate the choice of mixture model style from the imple-

mentation of mixture model components. This isolation allows the same component

model to be used for mixtures varying from fixed-weight, fixed-size mixtures through

non-parametric mixture models and even through infinite relational models, noting

that the modeler could continue to use exactly the same inference implementation in

all these cases.

Next, I implemented the Blaise virtual machine, a Java-based software system

running on common off-the-shelf hardware that can execute the stochastic automata

represented by Blaise SDK graphs and can perform Blaise model transformations.

In my implementation, I strove for efficiency, and have reported my conclusions re-

garding algorithms and data structures necessary for an efficient virtual machine

implementation.

Finally, I validated the Blaise framework through the implementation of several

models and other probabilistic modeling languages atop the Blaise SDK abstrac-

tions. These models included generative models of vision∗, models for analysis of

∗Author’s role: Implementation Lead
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neurophysiological data†, models for relational data (including the Infinite Relational

Model∗ [30] and the Annotated Hierarchies model† [54]), the Latent Dirichlet Allo-

cation topic model† [5], traditional graphical models (Bayes nets, factor graphs)∗, a

reimplementation of the BUGS [58, 62] probabilistic modeling language on Blaise†,

and Stochastic Lambda Calculus probabilistic modeling language‡. In order to de-

termine whether Blaise was a productive and natural probabilistic modeling frame-

work, I encouraged and supported other researchers in using Blaise in their work,

with great success, resulting in several of the applications above (my role in each

application is noted with a footnote symbol.) I also demonstrated Blaise’s potential

to drive research in the development of probabilistic inference methods by collabo-

rating on Systematic Stochastic Search‡, a new research program that attempts to

unify classical search and probabilistic inference, that has already resulted in a novel

Blaise-based transformation that generalizes particle filtering from dynamic Bayes

nets to arbitrary sequentializations of factor graphs.

The ideas developed in this thesis are already changing the way people think about

probabilistic inference, and enabling new perspectives and serving as the foundation

for future work. For example, one user writes:

The SDK language has changed the way I think about probabilistic models,
stochastic processes, and stochastic (and deterministic) state machines,
by allowing me to build up all these objects out of pieces. It has also
proved beautifully consistent with the constraints imposed by physical cir-
cuit design, bridging much of the gap between the abstract descriptions of
stochastic processes from Church and the messy world of registers, combi-
national logic, and state transitions. I am excited to continue working with
the language, both as an intermediate representation in a series of linked
compilers and as a source of inspiration for new models of computation.

∼ Vikash Mansinghka

The foundation for each of these contributions is a single idea: composable prob-

abilistic inference. This is the key to building sophisticated probabilistic models

tractably, and Blaise shows that it is possible today.

†Author’s role: Support
‡Author’s role: Collaborator
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Appendix A

Conditional Hybrid Kernels

Conditional Hybrid Kernels are a new class of MCMC hybrid kernels that implement

a conditional control flow semantics for inference Kernels, much as if statements or

case statements do in programming languages.

A.1 An Introduction to Conditional Hybrid Ker-

nels

The intuition behind Conditional Hybrid Kernels is simple: a predicate partitions

the state space into two subspaces, and a different subkernel is applied for states in

each subspace. However, even if one assumes that both subkernels have the desired

stationary distribution, care must be taken to ensure that the resultant Conditional

Hybrid Kernel has the same stationary distribution. For example, consider using

MCMC to explore the very simple distribution ptarget(x) = Binomial(x; 3, 0.5) =[
0.125 0.375 0.375 0.125

]
(the probability of flipping three fair coins and getting

x heads). Transition kernels for this space can be compactly represented as 4x4

matrices. Many transition matrices have the appropriate stationary distribution;

consider the following two arbitrarily selected transition matrices, each with ptarget as
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a stationary distribution:

K1 =


0.265 0.249 0.229 0.257

0.083 0.709 0.204 0.004

0.076 0.204 0.624 0.095

0.257 0.011 0.285 0.447

 K2 =


0.666 0.041 0.099 0.194

0.014 0.864 0.121 0.002

0.033 0.121 0.835 0.011

0.194 0.004 0.032 0.770


(where state distribution pxi+1

equals pxi
K).

If one partitions the state space into Ω1 = {0, 1}, Ω2 = {2, 3}, then a näıve attempt

at a Conditional Hybrid Kernel using K1 on Ω1 and K2 on Ω2 would append the first

two rows of K1 to the last two rows of K2:

Knaive =


0.265 0.249 0.229 0.257

0.083 0.709 0.204 0.004

0.033 0.121 0.835 0.011

0.194 0.004 0.032 0.770


Unfortunately, Knaive no longer has the appropriate stationary distribution:

[
0.125 0.375 0.375 0.125

]
∗Knaive =

[
0.101 0.343 0.422 0.138

]

The problem is that the transitions between partitions Ω1 and Ω2 are no longer

balanced according to the target distribution. To resolve this issue, some additional

constraint is needed. The solution presented here is simple: when constructing a

Conditional Hybrid Kernel for a given partitioning of the state space, the subkernels

must not generate transitions that cross the partition. More formally, I will constrain

Ω1, Ω2, K1, and K2 such that:

∀x ∈ Ω1, x
∗ ∈ Ω2 : K1(x→ x∗) = 0, K2(x→ x∗) = 0

∀x ∈ Ω2, x
∗ ∈ Ω1 : K1(x→ x∗) = 0, K2(x→ x∗) = 0

(A.1)

In the coin flipping example, the constraint implies blocks of zeroes in certain
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regions of K1 and K2, so that both these subkernels and the resulting hybrid KΩ1,Ω2

assign zero probability to any partition crossing transitions:

K1, K2, KΩ1,Ω2 ∈


· · 0 0

· · 0 0

0 0 · ·

0 0 · ·


It is proven below that this constraint guarantees that the correct stationary

distribution is produced. Furthermore, it is a constraint that is naturally satisfied in

many situations. For example, in any multi-variable system, a single-site transition at

variable X will never produce a partition-crossing transition for any partition function

defined on variables other than X.

One consequence of this constraint is that Conditional Hybrid Kernels are never

ergodic on their own, because Conditional Hybrid Kernels are not irreducible. There-

fore, Conditional Hybrid Kernels will typically be used as subkernels for mixture

hybrids or cycle hybrids.

For simplicity, this appendix focuses on Conditional Hybrid Kernels based on

binary partitions of the state space. This is without loss of generality, because an

n-ary partitioning of the state space can be reduced to a series of binary partitions,

each carving out one piece of the n-ary partition and recursing to another binary

Conditional Hybrid Kernel to handle the remaining n− 1 partitions.

A.2 Conditional Hybrid Kernel Stationary Distri-

bution Proof

This section first formally defines a Conditional Hybrid Kernel in terms of its sub-

kernels, and then uses that definition to prove that the stationary distribution of

the Conditional Hybrid Kernel is a linear combination of the subkernels’ truncated

stationary distributions.

If Ω1 and Ω2 are disjoint state spaces, such that Ω = Ω1 ∪ Ω2, and if K1(x→ x∗)
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and K2(x → x∗) are two transition kernels defined on Ω that satisfy equation A.1,

then define K̂(x→ x∗), x ∈ Ω, the Conditional Hybrid Kernel of K1 and K2, as:

K̂(x→ x∗) =

 K1(x→ x∗), if x ∈ Ω1;

K2(x→ x∗), if x ∈ Ω2;
(A.2)

Conditional Hybrid Stationary Distribution. If K1 has stationary distribution

p1(x) and K2 has stationary distribution p2(x), then for any α, 0 ≤ α ≤ 1, the

Conditional Hybrid Kernel K̂(x → x∗) has p̂ = αp̂1 + (1 − α)p̂2 as a stationary

distribution, where p̂1 and p̂2 are renormalized truncations of p1 and p2 to Ω1 and Ω2,

respectively.

Proof. I wish to prove that p̂ is a stationary distribution of K̂(x → x∗); that is, p̂ is

a valid distribution for which:

p̂(x∗) =

∫
Ω

p̂(x)K̂(x→ x∗)dx (A.3)

Because p1 and p2 are stationary distributions of K1 and K2 respectively, one can

prove that p̂1 and p̂2 are also stationary distributions of K1 and K2 respectively. (See

Truncated Stationary Distribution Lemma in the section A.3.) Therefore:

p̂1(x
∗) =

∫
Ω

p̂1(x)K1(x→ x∗)dx (A.4)

p̂2(x
∗) =

∫
Ω

p̂2(x)K2(x→ x∗)dx (A.5)

Expanding equation A.3 with p̂ = αp̂1 + (1 − α)p̂2 and noting that K̂(x → x∗) =

K1(x→ x∗) everywhere that p̂1(x) is nonzero, and likewise K̂(x→ x∗) = K2(x→ x∗)

everywhere that p̂2(x) is nonzero, yields:

αp̂1(x
∗) + (1− α)p̂2(x

∗) = α

∫
Ω

p̂1(x)K1(x→ x∗)dx + (1− α)

∫
Ω

p̂2(x)K2(x→ x∗)dx

(A.6)

which clearly holds given equations A.4 and A.5.

All that remains is to show that p̂ is a valid distribution; that is,
∫

Ω
p̂(x)dx = 1
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and ∀x ∈ Ω : p̂(x) ≥ 0. Because p̂1 and p̂2 are renormalized,
∫

Ω
p̂1(x)dx = 1 and∫

Ω
p̂2(x)dx = 1. Therefore

∫
Ω

p̂(x)dx = α · 1 + (1− α) · 1 = 1.

Because both p1 and p2 are valid distributions, one also knows that ∀x ∈ Ω :

p̂1(x) ≥ 0 and ∀x ∈ Ω : p̂2(x) ≥ 0, which implies that ∀x ∈ Ω : p̂(x) = αp̂1(x) +

(1 − α)p̂2(x) ≥ 0 so long as α ≥ 0 and (1 − α) ≥ 0, or equivalently, 0 ≤ α ≤ 1 as

stipulated.

A.3 Truncated Stationary Distribution Lemma

Truncated Stationary Distribution Lemma. Let Ω1 and Ω2 be two disjoint state

spaces, and let K is a transition kernel defined on Ω = Ω1∩Ω2. Let p be a stationary

distribution of K, and let p̂ be the distribution p truncated to Ω1 and renormalized. If

K is such that ∀x ∈ Ω1, x
∗ ∈ Ω2 : K(x∗|x) = K(x|x∗) = 0 then p̂ is also a stationary

distribution of K.

Proof. p̂ is a renormalized truncation of p to Ω1, that is:

p̂(x) =

 1
z
p(x), if x ∈ Ω1;

0, if x ∈ Ω2;
(A.7)

where z =
∫

Ω1
p(x)dx. p̂ is a stationary distribution of K exactly when:

p̂(x∗) =

∫
Ω

p̂(x)K(x∗|x)dx (A.8)

=

∫
Ω1

p̂(x)K(x∗|x)dx +

∫
Ω2

p̂(x)K(x∗|x)dx (A.9)

Because Ω1 and Ω2 are disjoint, x∗ is either in Ω1 or in Ω2; consider these cases

separately.

Case 1: x∗ ∈ Ω1. In this case, equation A.9 reduces to

1

z
p(x∗) =

∫
Ω1

1

z
p(x)K(x∗|x)dx +

∫
Ω2

p̂(x)K(x∗|x)dx (A.10)
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Because K(x∗|x) = 0 for x ∈ Ω2, x
∗ ∈ Ω1, it is the case that

∫
Ω2

p̂(x)K(x∗|x)dx =

0 =
∫

Ω2

1
z
p(x)K(x∗|x)dx, and therefore:

1

z
p(x∗) =

∫
Ω1

1

z
p(x)K(x∗|x)dx +

∫
Ω2

1

z
p(x)K(x∗|x)dx (A.11)

Canceling the 1
z

factors and combining the integrals produces:

p(x∗) =

∫
Ω

p(x)K(x∗|x)dx (A.12)

This must hold because p was stipulated to be a stationary distribution of K.

Case 2: x∗ ∈ Ω2. In this case, equation A.9 reduces to

0 =

∫
Ω1

1

z
p(x) 0 dx +

∫
Ω2

0 K(x∗|x)dx (A.13)

which is clearly true.
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Appendix B

Blaise SDK Legend

States

Symbol Description Page

State 39

Root State 40

Collection State 41

State→State edge 39

State→State dependency edge 43

Densities

Symbol Description Page

Density 47

Root Density 45

Multiplicative Density 48

Multiplicative Collection Density 49

Associated Collection Density 66

Density→Density edge 47

Density→State edge 47
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Kernels

Symbol Description Page

Kernel 49

Root Kernel 51

Initialization Kernel 76

or Concrete Mixture Kernel 56

or Virtual Mixture Kernel 66

or Concrete Cycle Kernel 55

or Virtual Cycle Kernel 66

Metropolis-Hastings Kernel 58

Gibbs Kernel 58

Conditional Hybrid Kernel 56

Let Kernel 118

Kernel→Kernel edge 55

Kernel→State edge 50

Other

Symbol Description Page

Structure repetition highlight 41
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