
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-047 July 23, 2006

An $Omega(n log n)$ Lower Bound on the
Cost of Mutual Exclusion
Rui Fan and Nancy Lynch

An Ω(n log n) Lower Bound on the Cost of Mutual Exclusion

Rui Fan Nancy Lynch
MIT CSAIL MIT CSAIL

rfan@theory.csail.mit.edu lynch@theory.csail.mit.edu

Abstract

We prove an Ω(n log n) lower bound on the number of
non-busywaiting memory accesses by any determinis-
tic algorithm solving n process mutual exclusion that
communicates via shared registers. The cost of the
algorithm is measured in the state change cost model,
a variation of the cache coherent model. Our bound
is tight in this model. We introduce a novel informa-
tion theoretic proof technique. We first establish a
lower bound on the information needed by processes
to solve mutual exclusion. Then we relate the amount
of information processes can acquire through shared
memory accesses to the cost they incur. We believe
our proof technique is flexible and intuitive, and may
be applied to a variety of other problems and system
models.

1 Introduction

In the mutual exclusion (mutex) problem, a set of
processes communicating via shared memory access
a shared resource, with the requirement that at most
one process can access the resource at any time. Mu-
tual exclusion is a fundamental primitive in many dis-
tributed algorithms, and is also a foundational prob-
lem in the theory of distributed computing. Numer-
ous algorithms for solving the problem in a variety
of cost models and hardware architectures have been
proposed over the past four decades. In addition,
a number of recent works have focused on proving
lower bounds for the cost of mutual exclusion. The
cost of a mutex algorithm may be measured in terms
of the number of memory accesses the algorithm per-
forms, the number of shared variables it accesses, or
other measures reflective of the performance of the
algorithm in a multicomputing environment. In this
paper, we study the cost of a mutex algorithm us-
ing the state change cost model, a simplification of
the standard cache coherent model, in which an algo-

rithm is charged only for performing shared memory
operations causing a process to change its state. Let
a canonical execution consist of n different processes,
each of which enters the critical section exactly once.
We prove that any deterministic mutex algorithm us-
ing registers must incur a cost of Ω(n log n) in some
canonical execution. This lower bound is tight, as the
algorithm of Yang and Anderson [13] has O(n log n)
cost in all canonical executions with our cost mea-
sure. To prove the result, we introduce a novel tech-
nique which is information theoretic in nature. We
first argue that in each canonical execution, processes
need to cumulatively acquire a certain amount of in-
formation. We then relate the amount of information
processes can obtain by accessing shared memory to
the cost of those accesses, to obtain a lower bound on
the cost of the mutex algorithm. Our technique can
be extended to show the same lower bound when pro-
cesses are allowed access to comparison-based shared
memory objects, in addition to registers. Further-
more, we believe that with some modifications, we
can use the techniques to prove an Ω(n log n) lower
bound on the cost of some canonical execution in the
cache coherent model. A report on these results is in
preparation.

We now give a brief description of our proof tech-
nique. Intuitively, in order for n processes to all en-
ter the critical section without colliding, the “visi-
bility graph” of the processes, formed by adding a
directed edge from each process that “sees” another
process, must contain a directed chain on all n pro-
cesses. Indeed, if there exist two processes, neither
of which sees the other, then an adversary can make
both processes enter the critical section at the same
time. To form a directed visibility chain, the pro-
cesses must all together collect enough information
to compute a permutation π ∈ Sn. Such a permu-
tation takes Ω(n log n) bits to specify. We show that
in some canonical executions, each time the processes
perform some memory accesses with cost C, they gain

1

only O(C) bits of information. This implies that in
some canonical executions, the processes must incur
Ω(n log n) cost. To formalize this intuition, we con-
struct, for any permutation π ∈ Sn, an execution
απ in which a process ordered lower in π does not
see any processes ordered higher in π12. In this ex-
ecution, we can show that the processes must enter
their critical sections in the order specified by π. This
implies that απ must be different for different π, so
that the set {απ}π∈Sn

contains n! different execu-
tions. Then, we show that if the cost of execution
απ is Cπ, we can encode απ, that is, produce a string
that uniquely identifies απ, using O(Cπ) bits. But
since it takes Ω(n log n) bits to uniquely identify an
element from a set of size n!, some execution must
have cost Cπ = Ω(n log n).

The remainder of our paper is organized as follows.
In Section 2, we describe related work on mutual ex-
clusion and other lower bounds. In Section 3, we for-
mally define the mutual exclusion problem and the
state change cost model. We give a detailed overview
of our proof in Section 4. In Section 5, we present
an algorithm that, for every π ∈ Sn, produces a dif-
ferent execution απ with some cost Cπ. We show in
Section 6 how to encode απ as a string Eπ of length
O(Cπ). In Section 7, we show Eπ uniquely identifies
απ, by presenting a decoding algorithm that recovers
απ from Eπ. Our main lower bound result follows as
a corollary of this unique decoding. Lastly, in Sec-
tion 8, we summarize our results and techniques, and
discuss some future work and open problems.

2 Related Work

Mutual exclusion is a seminal problem in distributed
computing. Starting with Dijkstra’s work in the
1960’s, research in the area has progressed in response
to, and has sometimes driven, changes in computer
hardware and the theory of distributed computing.
For interesting accounts of the history of this prob-
lem, we refer the reader to the excellent book by
Raynal [12] and survey by Anderson, Kim and Her-
man [4].

The performance of a mutual exclusion algorithm
can be measured in a variety of ways. An especially
relevant measure for modern computer architectures
is memory contention. In [1], Alur and Taubenfeld

1A process is ordered lower in π if it appears earlier in π. For
example, if π = (4213), then 4 is ordered lower in π than 1.

2Actually, we construct an equivalence class of executions, all
of which have this property.

prove that for any nontrivial mutual exclusion al-
gorithm, some process must perform an unbounded
number of memory accesses to enter its critical sec-
tion. This comes from the need for some processes
to busywait until the process currently in the crit-
ical section exits. Therefore, in order for a mutex
algorithm to scale, it must ensure that its busywait-
ing steps do not congest the shared memory. Local-
spin algorithms were proposed in [8] and [11], in
which processes busywait only on local or cached vari-
ables, thereby relieving the gridlock on main memory.
Local-spin mutex algorithms include [13], [10] and [3],
among many others. In particular, the algorithm of
Yang and Anderson [13] performs O(n log n) remote
memory accesses3 in an execution in which n pro-
cesses each complete their critical section once. The
state change cost model we propose discounts certain
busywaiting steps by charging an algorithm only for
memory accesses that change a process’s state. Yang
and Anderson’s algorithm also has O(n log n) cost us-
ing the state change model.

A number of lower bounds exist on the memory
complexity for solving mutual exclusion [6]. Re-
cently, considerable research has focused on prov-
ing time complexity (number of memory accesses)
lower bounds for the problem. Cypher [7] first
proved that any mutual exclusion algorithm must
perform Ω(n log log n

log log log n) total remote memory accesses
in some canonical execution. An improved, but non-
amortized lower bound by Anderson and Kim [2]
showed that some process must perform at least
Ω(log n

log log n) remote memory accesses. However, this
result does not give a nontrivial lower bound for the
total number of remote accesses performed by all the
processes. The techniques in these papers involve
keeping the set of processes contending for the criti-
cal section “invisible” from each other, and eliminat-
ing certain processes when they become visible. Our
technique is fundamentally different in that we do not
eliminate processes, nor do we try to keep all pro-
cesses invisible from each other. Intuitively, we show
that in order for n processes to solve mutual exclu-
sion, they must collectively gather enough informa-
tion to compute a directed “visibility chain”, in which
each process sees the next process in the chain. We
then relate the amount of information processes can
acquire with the cost they must incur to obtain that
information. Information-based arguments have also
been used by Jayanti [9] and Attiya and Hendler [5],

3A remote memory access is the unit of cost in local spin algo-
rithms.

2

among others, though in quite different forms.

3 Model

In this section, we define the formal model for prov-
ing our lower bound. We first describe the general
computational model, then define the mutual exclu-
sion problem, and the state change cost model for
computing the cost of an algorithm.

3.1 The Shared Memory Framework

In the remainder of this paper, fix an integer n ≥ 1.
A system consists of a set of processes p1, . . . , pn, and
a collection L of shared variables. A shared variable
consists of a type and an initial value. In this pa-
per, we restrict the types of all shared variables to be
multi-reader multi-writer registers. Each process is
modeled as a deterministic automaton, consisting of
a state set, an initial state, and a deterministic tran-
sition function that computes a step (e.g., a memory
access) for the process to execute based on its cur-
rent state. We write δ(s, i) for the transition func-
tion of process pi, where s is a state of pi. For every
i ∈ [n], a read step of pi is readi(`), where ` ∈ L, and
represents a read by process pi on register `. We let
own(readi(·)) = i be the process performing the read.
A write step of pi is writei(`, v), where ` ∈ L, v ∈ V ,
and represents a write of value v by process pi on
register `. Here, V is some arbitrary fixed set. We let
own(writei(·, ·)) = i. We define val(write·(·, v)) = v
to be the value written by a write step. Let e be a
step. We define type(e) to be R if e is a read step, and
W if e is a write step. We say that a step read·(`) or
write·(`, ·) accesses register `. An algorithm specifies
a process automaton pi, for each i ∈ [n].

A system state is a tuple consisting of the states
of all the processes and the values of all the regis-
ters. We assume that all systems have a default ini-
tial state s0, consisting of the initial values of all the
registers and the initial states of all the processes.
An execution consists of a (possibly infinite) alter-
nating sequence of system states and process steps.
That is, an execution is of the form s0e1s1e2s2 . . .,
where each si is a system state, and each ei is a
step by some process. For any execution α, we de-
fine α(t) = s0e1s1 . . . etst to be the length t prefix
of α4. We let the projection of α on a process pi

be the sequence α|i consisting only of the states and
steps of pi. If α is a finite execution, we define st(α)

4Or simply α, if α has length < t.

to be the final system state of α, and, for i ∈ [n],
st(α, i) to be the state of process pi in st(α). We
say an execution β is an extension of α if β contains
α as a prefix. For convenience, we sometimes rep-
resent an execution simply as a sequence of process
steps, e1e2 Since we assume that the system has
a unique initial state, and that all the processes and
variables are deterministic, we can uniquely identify
the system state after any sequence of process steps,
and therefore both representations of executions are
equivalent. Given an algorithm A, we let execs(A)
denote the set of all executions of A.

Given a permutation π ∈ Sn, we think of π as a
bijection from [n] to itself, and we write π−1(i) for
the element that maps to i under π, for i ∈ [n]. We
write i ≤π j if π−1(i) ≤ π−1(j); that is, i equals
j, or i comes before j in π. Lastly, if S ⊆ [n], we
write minπ S for the minimum element in S, where
elements are ordered by ≤π.

3.2 The Mutual Exclusion Problem

Let A be an algorithm. For each process pi, the
steps of pi contains the following critical steps:
tryi, enteri, exiti, remi. For any critical step e, we de-
fine type(e) = C. For simplicity, we assume that these
steps, and the read and write steps of pi, are the only
steps performed by pi. We say a process pi is in its
trying section if its last critical step in an execution
is tryi. We say it is in its critical section if the last
critical step is enteri. We say it is in its exit section
if the last critical step is exiti. Finally, we say it is in
its remainder section if the last critical step is remi,
or there are no critical steps.

We say that A solves the livelock-free mutual ex-
clusion problem if any finite execution α ∈ execs(A)
satisfies the following properties.

• Well Formedness: Let pi be any process, and
consider the subsequence s of α consisting only
of pi’s critical steps. Then s forms a prefix of the
sequence tryi ◦ enteri ◦ exiti ◦ remi ◦ tryi ◦ enteri ◦
exiti ◦ remi

• Mutual Exclusion: For any two processes pi 6=
pj , if the last occurrence of a critical step by pi

in α is enteri, then the last critical step by pj in
α is not enterj .

In addition, every fair execution5 α of A satisfies:

5An execution is fair if every process that performs at least one
critical step, and whose last critical step is not remi, takes another
step.

3

• Livelock Freedom: For any process pi, and any
tryi step in α, there exists a later step enterj , for
some process pj . In addition, for any exiti step,
there exists a later step remk, for some process
pk.

The well formedness condition says that every pro-
cess progresses cyclically through its trying, critical,
exit and remainder sections. The mutual exclusion
property says that no two processes can be in their
critical sections at the same time. The livelock free-
dom property says that if a process is in its trying
section, then eventually, some process, perhaps not
the same one, enters its critical section. Additionally,
if a process is in its exit section, then eventually some
process enters its remainder section. This means that
the overall system always makes progress.

In addition to satisfying the three properties above,
we want the mutex algorithm to be nontrivial, so that
each process may request to enter the critical section
anytime it is in the remainder section. For simplicity,
we assume that the initial step of each process pi is
tryi.

3.3 The State Change Cost Model

In this section, we define the state change cost model
for measuring the cost of a shared memory algorithm.
In [1], it was proven that the cost of any shared mem-
ory mutual exclusion algorithm is infinite if we count
every shared memory access. To obtain a more mean-
ingful measure for cost, researchers have focused on
models in which some memory accesses are free. Two
important models that have been studied are the dis-
tributed shared memory (DSM) model and the cache
coherent (CC) model. We define a new cost model,
called the state change (SC) cost model, which is a
simplification of the cache coherent model. Infor-
mally, the state change cost model charges an al-
gorithm for a memory access only when the process
performing the access changes its state. In particu-
lar, we charge the algorithm for each write performed
by a process6. Additionally, the state change cost
model allows unit cost busywaiting reads, but only
on one variable at a time. However, the model is suf-
ficiently generous that it permits algorithms to incur
O(n log n) in all canonical executions. Formally, the
cost model is defined as follows.

6Note that if the process does not change its state after a write,
that process will stay in the same state forever, and livelock free-
dom will be violated.

Definition 3.1 The State Change Cost Model
Let A be an algorithm, and let α = s0e1s1 . . . etst ∈
execs(A) be a finite execution.

1. Let pi be a process, and j ∈ [t]. We define
sc(α, i, j) to be 1 if ej is a shared memory ac-
cess step by pi, and st(α(j − 1), i) 6= st(α(j), i);
it is 0 otherwise.

2. We define the cost of execution α to be C(α) =∑
i∈[n]

∑
j∈[t] sc(α, i, j).

Notice that this model charges only for steps of pi

accessing the shared memory, and not for the critical
steps of pi (even though pi may change its state after
a critical step). The cost of α is simply the num-
ber of times a process changes state following shared
memory steps, summed over all the processes. The
SC cost model allows a limited form of busywaiting
reads with bounded cost. For example, suppose the
value of a register ` is currently 0, and process pi re-
peatedly reads `, until its value becomes 1. As long
as `’s value is not 1, the process does not change its
state, and thus, continues to read `. Then, the algo-
rithm is charged one unit for all reads up to when pi

reads ` as 1.
The cost of most practical algorithms is higher in

the state change cost model than in the standard
cache coherent model. For example, the CC model
allows bounded cost busywaits on multiple registers
at the same time, while the SC model does not.
However, we believe the SC cost model is a math-
ematically clean and interesting model which allows
a clear demonstration of our proof techniques, with
few nonessential technical complications.

4 Overview of the Lower
Bound

In this section, we give a detailed overview of our
lower bound proof. Let A be any livelock-free mu-
tual exclusion algorithm. The proof consists of three
steps, which we call the construction step, the en-
coding step, and the decoding step. The construction
step builds a finite execution απ ∈ execs(A) for each
permutation π ∈ Sn, such that different permuta-
tions lead to different executions. The encode step
produces a string Eπ of length O(C(απ)) for each
απ,. The decode step reproduces απ using only input
Eπ. Since each Eπ uniquely identifies one of n! differ-
ent executions, some Eπ must have length Ω(n log n).

4

Therefore, the corresponding execution απ must have
cost Ω(n log n).

Fix a permutation π = (π1, . . . , πn) ∈ Sn. We say
that a process pi has lower (resp., higher) index (in
π) than process pj if i comes before (resp., after) j in
π. Roughly speaking, the construction step works as
follows. We construct, in n stages, n different finite
executions, α1, . . . , αn ∈ execs(A), where αn = απ.
In each αi, only the first i processes in the permuta-
tion, pπ1 , . . . , pπi , take steps. Thus, α1 is a solo exe-
cution by process pπ1 . Each process runs until it has
completed its critical and exit sections once. We will
show that the processes complete their critical sec-
tions in the order given by π, that is, pπ1 first, then
pπ2 , etc., and finally, pπi . Next, we construct execu-
tion αi+1 in which process pπi+1 also takes steps, until
it completes its critical and exit sections. αi+1 is con-
structed by starting with αi, and then inserting steps
by pπi+1 , in such a way that pπi+1 is not seen by any
of the the lower indexed processes pπ1 , . . . , pπi . Infor-
mally, this is done by placing some of pπi+1 ’s writes
immediately before writes by lower indexed processes,
so that the latter writes overwrite any trace of pπi+1 ’s
presence. Of course, there are many possible ways to
make pπi+1 unseen to the lower indexed processes.
For example, we can place all of pπi+1 ’s steps after all
steps by lower indexed processes. But doing that, we
may not be able to encode the execution using only
O(Cπ) bits. The key to the construction is to pro-
duce an execution that both ensures higher indexed
processes are unseen by lower indexed ones, and that
can also be encoded efficiently.

While the above describes the intuition for the con-
struction step, it is not exactly how we actually per-
form the construction. Instead of directly generating
an execution αi in stage i, we actually generate a set
of metasteps Mi and a partial order �i on Mi in stage
i. A metastep consists of three sets of steps, the read
steps, the write steps, and the winning step, which
is a write step. All steps access the same register.
A process performs at most one step in a metastep.
We say a process is contained in the metastep if it
takes a step in the metastep, and we say the winner
of the metastep is the process performing the win-
ning step. The purpose of a metastep is to hide the
presence of all processes contained in the metastep,
except possibly the winner. Given a set of metasteps
Mi and a partial order �i on Mi, we can generate
an execution by first ordering Mi using any total
order consistent with �i, to produce a sequence of
metasteps. Then, for each metastep in the sequence,

we expand the metastep into a sequence of steps, con-
sisting of the write steps of the metastep, ordered ar-
bitrarily, followed by the winning step, followed by
the read steps, ordered arbitrarily. Notice that this
sequence hides the presence of all processes except
possibly the winner. The sequence of steps resulting
from totally ordering Mi and then expanding each
metastep is an execution which we call a lineariza-
tion of (Mi,�i). Of course, there may be many total
orders consistent with �i, and many ways to expand
each metastep, leading to many different lineariza-
tions. However, we will show that for the particular
Mi and �i we construct, all linearizations are “essen-
tially the same”. For example, in any linearization,
all processes pπ1 , . . . , pπi

complete their critical sec-
tions once, and they do so in that order. It is the
set Mn and partial order �n, generated at the end of
stage n in the construction step, that we eventually
encode in the encoding step. The reason we con-
struct a partial order of metasteps instead of directly
constructing executions is that the partial order �i

affords us more flexibility in stage i + 1 when we add
steps by process pπi+1 , which in turn leads to a more
efficient encoding. We can show that all lineariza-
tions of (Mn,�n) have the same cost, and we call
this cost Cπ.

We now describe the encoding step. In this step,
an encoding algorithm takes as input (Mn,�n), pro-
duced after stage n of the construction step. For any
process pi, we can show that all the metasteps con-
taining pi in Mn are totally ordered in �n. Thus, for
any metastep containing pi, we can say the metastep
is pi’s j’th metastep, for some j. The encoding al-
gorithm uses a table with n columns and an infinite
number of rows. In the j’th row and i’th column
of the table, which we call cell T (i, j), the encoder
records what process pi does in its j’th metastep.
However, to make the encoding short, we only record,
roughly speaking, the type, either read or write, of the
step that pi performs in its j’th metastep. In addi-
tion, if pi is the winner of the metastep, we also record
a signature of the entire metastep. The signature ba-
sically contains a count of how many processes in the
metastep perform read steps, and how many perform
write steps (including the winning step). Note that
the signature does not specify which processes read
or write in the metastep, nor the register or value as-
sociated with any step. Now, if there are k processes
involved in a metastep, the total number of bits we
use to encode the metastep is O(k)+O(log k) = O(k).
Indeed, for each non-winner process in the metastep,

5

we use O(1) bits to record its step type. For the win-
ner process, we record its step type, and use O(log k)
bits to record how many readers and writers are in the
metastep. Notice that the cost to the algorithm for
performing this metastep is also O(k). Informally,
this shows that the size of the encoding is propor-
tional to the cost incurred by the algorithm. The fi-
nal encoding of (Mn,�n) is formed by iterating over
all the metasteps in Mn, each time filling the table as
described above. Then, we concatenate together all
the nonempty cells in the table into a string Eπ.

Lastly, we describe how, using Eπ as input, the de-
coding step constructs an execution απ that is a lin-
earization of (Mn,�n)7. Roughly speaking, at any
time during the decoding process, there exists an
m ∈ Mn such that the decoder algorithm has pro-
duced a linearization of all the metasteps that �n m
(as well as some metasteps that are incomparable to
m). We say all such metasteps have been executed.
This linearization is a prefix of απ. Using this pre-
fix, the decoder tries to find a minimal (with respect
to �n) unexecuted metastep, which it then executes,
by appending the steps in the metastep to the pre-
fix; then the decoder restarts the decoding loop. To
find a minimal unexecuted metastep, the decoder ap-
plies the transition function δ of A to the prefix to
compute, for each process pi, the step that pi takes
in the smallest unexecuted metastep containing pi.
Then, by reading Eπ, the decoder finds the signa-
ture, that is, the number of readers and writers, of
some minimal unexecuted metasteps. Suppose the
decoder finds the signature of a metastep m′ access-
ing some register ` (recall that all steps in a metastep
access the same register), and suppose the signature
indicates that m′ contains r read steps and w write
steps. Then, since the decoder knows each process’s
next step, it can check whether there are r processes
whose next step reads `, and w processes whose next
step writes to `. If so, the decoder executes all these
steps on `. That is, it appends them to the current
execution, placing all the write steps before all the
read steps, and placing the winning write — the write
performed by the process whose cell in Eπ contains
the signature — last among the writes. We can show
that these steps are exactly the steps contained in m′,
and that m′ is a minimal unexecuted metastep. Af-
ter executing m′, the decoder tries to find a minimal
metastep 6�n m′. By repeating this process until it
has read all of Eπ, the decoder produces an execution

7Note that even though our discussion involves π, the decoder
does not know π. The only input to the decoder is the string Eπ .

that is a linearization of (Mn,�n).

5 The Construction Step

5.1 Description of the Construction

In this section, we present the algorithm for the con-
struction step. For the remainder of this paper, fix
A to be any livelock-free mutual exclusion algorithm
with transition function δ. We begin with a formal
definition of a metastep.

Definition 5.1 A metastep is identified by a label
m ∈ M, where M is an infinite set of labels. For
any metastep m, we define the following attributes.

1. We let read(m) and write(m) be a set of read
and write steps, resp. We let win(m) be a
write step. All steps access the same regis-
ter. Any process performs at most one step in
read(m)∪write(m)∪win(m). We say a step in
read(m)∪write(m)∪win(m) is contained in m.
We say read(m) and write(m) are the read set
and write set of m, resp., and we say win(m) is
the winning step of m.

2. We let own(m) be the set of processes that per-
form a step contained in m. We say any process
in own(m) is contained in m. We say the pro-
cess that performs win(m) is the winner of m.

3. For any i ∈ own(m), we let step(m, i) be the step
that process pi takes in m.

4. We let type(m) ∈ {R, W, C}. If type(m) =
R (resp., W, C), we say m is a read (resp.,
write, critical) metastep. If type(m) = W, then
win(m) 6= ∅; if type(m) = R, then win(m) = ∅.

5. If type(m) ∈ {R, W}, we let reg(m) be the register
that all steps in m access. We say m accesses
reg(m).

6. If type(m) = W, we let val(m) be the value writ-
ten by win(m). We call val(m) the value of m.

7. If type(m) = C, then we let crit(m) contain a
critical step.

8. We let pread(m) contain a set of read metasteps,
and we call this the preread set of m. The mean-
ing of pread(m) will be described later.

6

Let M be a set of metasteps, and let � be a par-
tial order on M . Then a linearization of (M,�) is
any execution produced by the procedure Lin(M,�),
shown in Figure 1. The procedure Seq(m) returns a
sequence of steps consisting of the write steps of m,
then the winning step of m, then the read steps. It
uses the helper function concat, which concatenates
a set of steps in an arbitrary order. Notice that both
Lin and Seq are nondeterministic procedures. That
is, on the same input, the procedures may return dif-
ferent outputs in different executions.

In this section, we show how to create a set of
metasteps Mi and a partial order �i on Mi, for i =
1, . . . , n. For every i, the only processes that may take
steps in any metastep of Mi are processes pπ1 , . . . , pπi

.
Furthermore, (Mi,�i) satisfies the property that in
any linearization of (Mi,�i) processes pπ1 , . . . , pπi all
complete their critical sections once, and they do so
in that order. The processes also complete their exit
sections. The construction algorithm is shown in Fig-
ure 1.

The procedure Construct performs the construc-
tion in n stages. It takes as input an arbitrary per-
mutation π ∈ Sn. For the remainder of this paper,
fix an arbitrary π. In stage i, Construct builds Mi

and �i by calling the procedure Generate with in-
puts Mi−1 and �i−1 (constructed in stage i− 1) and
πi. We define M0 =�0= ∅. We now describe Gen-
erate(Mi,�i, πi). For simplicity, we write M for
Mi, � for �i, and j for πi in the remainder of this
section. Generate proceeds in a loop, and termi-
nates when process pj performs its remj action, that
is, completes its critical and exit sections. In each it-
eration of the loop, we compute the next step e that
pj takes. Then, we either insert e into an existing
metastep of M , or create a new metastep containing
only e8. Let m′ be the metastep that was modified or
created in the previous iteration of the loop. Then,
roughly speaking, we will insert e into a metastep if
we can find a write metastep that 6� m′, and which
accesses the same register as e. If we cannot find such
a metastep, we create a new metastep for e. If e is
a write step, we make e the winning step of the new
(write) metastep. Then we check whether there are
any read metasteps in M on e’s register that 6� m′. If
so, we order all such metasteps before e’s metastep.
We also add these metasteps to the preread set of e’s
metastep. If e is a read step, we simply create a new
read metastep containing e. Now, we set m′ to be the

8If we insert e into a metastep m, then we will still refer to the
metastep as m; that is, even though own(m) changes, m retains
the same “name”. We do this for notational convenience.

metastep we just modified or created, add m′ to M
if m′ is a newly created metastep, and change � to
order m′. Then, we let execution α be a linearization
of all metasteps � m′. Using α, we can now compute
pj ’s next step, and the loop repeats.

We now describe the construction in more detail.
We will refer to specific line numbers in Figure 1 in
angle brackets. For example, 〈8〉 refers to line 8. In
〈8〉, Generate begins by creating a new metastep
m containing only the critical step tryj , indicating
that pj starts in its trying section. We add m to M ,
and set m′ to m. m′ keeps track of the metastep we
created or modified during the previous iteration of
the main loop. We then begin the main repeat loop,
which ends when pj performs its remj step. The loop
begins at 〈10〉 by setting α to be a linearization of all
metasteps � m′. This is computed by the function
Plin(M,�,m′). Using α, we can compute pj ’s next
step e as δ(α, j). Let ` be the register that e accesses,
if e is a read or write step.

We split into two cases, depending on e’s type. If
e is a write step 〈13〉, then we set mw to be the min-
imum write metastep in M that accesses `, and that
6� m′. For any register, we can show that the set of
all write metasteps accessing that register are totally
ordered. Thus, if mw exists, it is unique. When mw

exists, we insert e into mw, by adding e to write(mw)
〈16〉. The idea is that this hides pi’s presence, because
e will immediately be overwritten by another write
step in mw when we linearize any set of metasteps
including mw. Next, we add the relation (m′,mw) to
�, indicating that m′ � mw. Finally, we set m′ to be
mw.

In the case where mw does not exist 〈18〉, we cre-
ate a new write metastep m containing only e, with
e as the winning step. Then, we compute the set Mr

of the maximal read metasteps in M accessing ` that
6� m′. The read metasteps accessing ` are not nec-
essarily totally ordered, so Mr may contain several
elements. If Mr is nonempty, then we must be sure
to order m after every metastep in Mr 〈24〉. Oth-
erwise, the processes performing the read metasteps
may be able to see pj . In addition, we set pread(m)
to Mr 〈23〉. We call pread(m) the preread set of m,
and we call each metastep in pread(m) a preread of
m. A preread of m is always ordered before m in �.
Lastly, in 〈26〉, we order m after m′, then set m′ to
m.

The case when e is a read step is similar. Here,
we begin by computing msw, which is the minimum
write metasteps in M accessing ` that 6� m′, and that

7

1: procedure Construct(π)
2: M0 ← ∅; �0← ∅
3: for i← 1, n do
4: (Mi,�i)← Generate(Mi−1,�i−1, πi) end for
5: return Mn, and the reflexive, transitive closure of �n

6: end procedure

7: procedure Generate(M,�, j)
8: m← new metastep; crit(m)← {tryj}
9: M ←M ∪ {m}; m′ ← m
10: repeat
11: α← Plin(M,�, m′); e← δ(α, j); `← reg(e)
12: switch
13: case type(e) = W:
14: mw ← min�{µ | (µ ∈M) ∧ (reg(µ) = `) ∧ (type(µ) =

W) ∧ (µ 6� m′)}
15: if mw exists then
16: write(mw)← write(mw) ∪ {e}
17: �←� ∪{(m′, mw)}; m′ ← mw

18: else
19: m← new metastep; win(m)← {e}
20: reg(m)← `; type(m)← W; M ←M ∪ {m}
21: Mr ← max�{µ|(µ ∈M)∧(reg(µ) = `)∧(type(µ) =

R) ∧ (µ 6� m′)}
22: if Mr exists then
23: pread(m)←Mr

24: for all µ ∈Mr do �←� ∪{(µ, m)} end for
25: end if
26: �←� ∪{(m′, m)}; m′ ← m
27: case type(e) = R:
28: msw ← min�{µ|(µ ∈M) ∧ (reg(µ) = `) ∧ (type(µ) =

W) ∧ (µ 6� m′) ∧ SC(α, µ, j)}
29: if msw exists then
30: read(msw)← read(msw) ∪ {e}
31: �←� ∪{(m′, msw)}; m′ ← msw

32: else
33: m← new metastep; read(m)← {e}
34: reg(m)← `; type(m)← R; M ←M ∪ {m}
35: �←� ∪{(m′, m)}; m′ ← m
36: end if
37: case type(e) = C:
38: m← new metastep; crit(m)← {e}
39: M ←M ∪ {m}; m′ ← m
40: end switch
41: until e = remj

42: return M and �
43: end procedure

44: procedure Seq(m)
45: if type(m) ∈ {W, R} then
46: return concat(write(m)) ◦ win(m) ◦ concat(read(m))
47: else return crit(m)
48: end procedure

49: procedure Lin(M,�)

50: let ≤M be a total order on M consistent with �
51: order M using ≤M as m1, m2, . . . , mu

52: return Seq(m1) ◦ . . . ◦ Seq(mu)
53: end procedure

54: procedure Plin(M,�, m)
55: N ← {µ | (µ ∈M) ∧ (µ � m)}
56: return Lin(N,� |N)
57: end procedure

50: procedure SC(α, m, i)
51: `← reg(m); v ← val(m); choose j ∈ [n], j 6= i
52: return st(α ◦ writej(`, v) ◦ readi(`), i) 6= st(α, i)
53: end procedure

Figure 1: Stage i of the construction step.

would cause pi to change its state if pi read the value
of the metastep 〈28〉. We use the helper function
SC(α, m, i), which returns a Boolean value indicat-
ing whether process pi would change its state if it
read the value of metastep m after execution α. If
msw exists, then we add e to read(msw). Otherwise,
we create a new read metastep m containing only e,
and set read(m) = {e}. Note that in this latter case,
performing e itself will cause pi to change state. In-
deed, if performing e does not cause pi to change its
state, and there also does not exist a write metastep
causing pi to change its state, then pi will be stuck
in its current state forever, violating the livelock free-
dom property of the mutex algorithm.

Lastly, if e is a critical step 〈37〉, then we simply
make a new metastep for e and order it after m′.

After i stages of the Construct procedure, we
produce Mn and �n. For notational simplicity, in
the remainder of this paper, we set M ≡ Mn, and
�≡�n.

5.2 Properties of the Construction

We now present some results about the construction
step. We give mostly proof sketches, and defer full
proofs to a full version of the paper.

Lemma 5.2 For any i ∈ [n], �i defines a partial
ordering on Mi.

Lemma 5.3 Let i ∈ [n], and let ` ∈ L be any regis-
ter. Then, all the write metasteps in Mi that access
` are totally ordered in �i.

Both lemmas can be verified by induction on the main
loops in procedures Construct and Generate.

Lemma 5.4 Let 1 ≤ i ≤ j ≤ k ≤ n, let αj be a
linearization of (Mj ,�j), and let αk be a linearization
of (Mk,�k). Then αj |πi = αk|πi.

This lemma says that a process pπi cannot distin-
guish between a linearization from the j’th or k’th
stage of Construct, for i ≤ j ≤ k. This in turn
implies that for i < j ≤ k, pπi

cannot tell if pro-
cess pπj is present or not in any linearization of
(Mk,�k). This can be shown by considering how
metasteps are created, ordered and linearized. In-
deed, when a higher indexed process (pπj

) performs
a write step, this write step is placed either in a
metastep so that it is immediately overwritten by

8

the write of a lower indexed process, or placed af-
ter all reads by lower indexed processes on the same
register (these reads become prereads of pπj

’s write).
Therefore, lower indexed processes never see any val-
ues written by higher indexed ones, and cannot tell
if they are present. This lemma can be used to show
the following.

Theorem 5.5 Let 1 ≤ i ≤ n. Then in any lineariza-
tion of (Mi,�i), each process pπ1 , . . . , pπi

completes
its critical section, and they do so in that order.

Proof. (Sketch) The fact that processes complete
their critical section follows from the livelock freedom
property of the mutex algorithm, and Lemma 5.4. To
show that they complete them in the order π, consider
the minimum j such that there exists a process pπk

that enters its critical section before pπj
, and j <

k. Now, consider the moment when pπk
performs its

enterπk
step. At this point, pπj has not performed its

enterπj
step yet. Now, since processes pπ1 , . . . , pπj

all
do not see pπk

by Lemma 5.4, then we can pause pπk
,

and run pπ1 , . . . , pπj
, and be guaranteed that pπj

will
eventually perform its enterπj step. However, then
pπj and pπk

have both performed their enter steps,
but not their exit steps, which violates the mutual
exclusion property, a contradiction. Thus, processes
must enter their critical sections in the order π. 2

5.3 Additional Properties of the Con-
struction

Finally, we present several lemmas which we use in
Section 7.2 to prove the correctness of the decoding
step. We begin with the following definitions.

Definition 5.6 Let N ⊆M . We say N is a prefix of
M if ∀m ∈ N , we have {µ | (µ ∈M)∧(µ � m)} ⊆ N .

Thus, a prefix of M is a union of chains of (M,�).

Definition 5.7 Let N be a prefix of M , and let ` ∈ L
and i ∈ [n]. Define:

1. ΓW
i (N) = {µ|(µ 6∈ N)) ∧ (type(µ) = W) ∧ (i ∈

own(µ))}.

2. ΓW(N, `) = {µ | (µ 6∈ N) ∧ (reg(µ) = `) ∧
(type(µ) = W)}.

3. ΓW
i (N, `) = {µ | (µ 6∈ N) ∧ (reg(µ) = `) ∧

(type(µ) = W) ∧ (i ∈ own(µ)))}.

4. ΓR
i (N, `) = {µ | (µ 6∈ N) ∧ (reg(µ) = `) ∧

(type(µ) = R) ∧ (i ∈ own(µ)))}.

5. γW(N, `) = min� ΓW(N, `), or ⊥ if ΓW(m, `) = ∅.

6. γW
i (N, `) = min� ΓW

i (N, `), or ⊥ if ΓW
i (N, `) = ∅.

These functions define various subsets of M re-
lated to N . For example, ΓW

i (N) is the set of write
metasteps not in N that contain pi, ΓW(N, `) is the set
of write metasteps not in N accessing `, and γW

i (N, `)
is the minimum write metastep not in N containing
pi that accesses `, if it exists, etc. We have the fol-
lowing lemmas.

Lemma 5.8 Let N be a prefix of M , and let i ∈ [n].
Define m∗ = γW(N, `), m∗i = γW

i (N, `), and suppose
m∗ 6=⊥, m∗i 6=⊥, and type(step(m∗i , i)) = W. Then
m∗ = m∗i .

That is, if pi does a write step in the first write
metastep on ` not in N that contains pi, then that
metastep equals the first write metastep on ` not in
N .

Proof. (Sketch) To prove this lemma, let j =
own(win(m∗)). Notice that pj is the minimum in-
dex process (w.r.t. π) contained in m∗. We claim
that i ≥π j. Indeed, suppose i <π j. Then, proce-
dure Construct created the steps for process pi in
iteration π−1(i), before it created the steps for pro-
cess pj in iteration π−1(j). Consider iteration π−1(j)
of Construct, and the iteration of the main loop of
Generate where pj ’s step e in m∗ was created; e is a
write step. Since the write metastep m∗i has already
been constructed, then in 〈14〉, Generate will find
m∗i as the minimum write metastep on ` not in N ,
and sets mw = m∗i ; in 〈16〉, it adds e to the write set
of m∗i = m∗. Thus, the minimum index of a process
in m∗ is at most i, a contradiction.

We have shown that i ≥π j. Consider iteration
π−1(i) of Construct, and the iteration of the main
repeat loop of Generate where pi’s step e in m∗i
was created. Since e is a write step, then in 〈14〉,
Generate sets mw = m∗, and in 〈16〉, it adds e to
the write set of m∗ = m∗i . Thus, the lemma holds.

2

Lemma 5.9 Let N be a prefix of M , and let ` ∈ L
and i ∈ [n]. Define m∗i = γW

i (N, `), and suppose
m∗i 6=⊥ and type(step(m∗i , i)) = R. Then m∗i =
min�{µ | (µ ∈ ΓW(N, `)) ∧ SC(Plin(M,�, µ), µ, i)}.

9

Here, we used the functions Plin(M,�,m) and
SC(α, m, i), as defined in Figure 1. Recall that
the former function returns a partial linearization of
(M,�), consisting of all metasteps � m. The latter
function returns true exactly when process pi, whose
state is as in the final state of α, will change its state
upon reading the value written by write metastep m.
This lemma states that, if pi does a read step in the
first write metastep on ` not in N that contains pi,
then that metastep equals the first write metastep on
` not in N whose value causes pi to change its state.

The proof of this lemma is very similar to the proof
for Lemma 5.8. If e is the step pi takes in m∗i , then in
iteration π−1(i) of Construct, and the iteration of
Generate where e was created, 〈30〉 of Generate
adds e to the read set of the minimum write metastep
on ` not in N that causes pi to change its state (if
this metastep exists). We omit the details.

Lemma 5.10 Let N be a prefix of M , and let ` ∈ L
and i ∈ [n]. Suppose ΓW(N, `) 6= ∅, ΓW

i (N, `) =
∅, and ΓR

i (N, `) 6= ∅. Then max� ΓR
i (N, `) ∈

pread(γW(N, `)).

That is, if there exist write metasteps on ` not in
N , but none of them contain pi, and pi is contained
in read metasteps on ` not in N , then the largest read
metastep on ` not in N containing pi is contained in
the preread set of the minimum write metastep on `
not in N . This can be verified by considering lines
〈21− 24〉 of Generate.

6 The Encoding Step

6.1 Description of the Encoding

We can show that all linearizations of (M,�) have the
same cost in the state change cost model, say C. In
this section, we describe an algorithm that uniquely
encodes (M,�) as a string of length O(C). The en-
coding uses a two dimensional grid of cells, with n
columns and an infinite number of rows. We fill some
of the cells with strings. The contents of the cell in
column i and row j is denoted by T (i, j). It represents
the type of operation process pi performs in its j’th
metastep, and possibly a count of how many reads,
writes and prereads are in pi’s j’th metastep. The
complete encoding Eπ is produced by concatenating
all nonempty cells T (1, ·) (in order), then appending
all nonempty cells T (2, ·), etc., and finally append-
ing all nonempty cells T (n, ·). The encoder uses the
helper function Pc(p, m), where p is a process and

m is a metastep containing p. The function returns
a number q, such that m is p’s q’th metastep. We
also use the helper function nrows(T, i), which re-
turns how many nonempty cells there are in column
i of T . Please see Figure 2 for the pseudocode.

1: procedure Encode(M,�)
2: for all m ∈M do
3: switch
4: case type(m) = W:
5: for all e ∈ read(m) ∪ write(m)
6: p← own(e); q ← Pc(p, m); T (p, q)← type(e)
7: end for
8: p← own(win(m)); q ← Pc(p, m)
9: T (p, q)← W,PR |pread(m)| R |read(m)| W |write(m)+1|
10: case type(m) = R:
11: p← own(read(m)); q ← Pc(p, m)
12: if ∃µ ∈M such that m ∈ pread(µ) then
13: T (p, q)← PR
14: else T (p, q)← SR end if
15: case type(m) = C
16: p← own(crit(m)); q ← PC(p, m); T (p, q)← C
17: end switch
18: end for

19: for i← 1, n do
20: for j ← 1, nrows(T, i) do
21: Eπ ← Eπ ◦ T (i, j) ◦ #
22: end for
23: Eπ ← Eπ ◦ $
24: end for
25: return Eπ

26: end procedure

27: procedure Pc(p, m)
28: N ← {µ | (µ ∈M) ∧ (p ∈ own(µ))}
29: sort N in increasing order of � as n1, . . . , n|N|
30: return q ∈ 1, . . . , |N | such that nq = m
31: end procedure

Figure 2: Encoding M and � as a string Eπ.

The encoder works by iterating over every
metastep m ∈ M . Suppose first that m is a write
metastep. Then for every step e in read(m) ∪
write(m), let p be the process that performs e, and
let m be p’s q’th metastep. The encoder writes e’s
type, either R or W, in cell T (p, q). For the winning
step, we record in T (p, q) not only that it is a write,
but also the signature of the metastep 〈9〉. The sig-
nature of m records the number of read and write
steps (including the winning step) in m, as well as
the size of m’s preread set pread(m). It is a string of
the form PRxRyWz.

If m is a read metastep, then it contains only one
step, in read(m), say by process p. If m is a preread
of any other (write) metastep µ, then we write PR in
T (p, q) 〈13〉. Otherwise, we write SR 〈14〉. Lastly, if
m is a critical step, we write C in T (p, q).

In the remainder of this paper, let E be the string
Encode outputs given input M and �.

10

6.2 Properties of the Encoding

We now state some results about the efficiency of the
encoding.

Lemma 6.1 Let α1 and α2 be two different lin-
earizations of (M,�). Then α1 and α2 have the same
cost in the state change cost model.

Since all linearizations have the same cost, we let C
be this cost.

Theorem 6.2 The length of Eπ is O(C).

Proof. (Sketch) For any metastep m ∈ M , we
compare the number of bits used to encode m, and
the cost for the algorithm to execute m in the state
change cost model. The cost to encode a read
metastep is O(1), since we record either SR or PR
for the metastep. Consider a write metastep m, and
suppose m contains k processes. We first ignore the
cost to encode the number of prereads in m. Let r
be the number of reads in m, and w be the number
of writes. If a process p is not the winner of m, then
we use O(1) bits to encode the type of p’s step. If p
is the winner, then we encode its type, and we also
use O(log r) + O(log w) = O(log k) = O(k) bits en-
code the number of reads and writes. Now we count
the bits used to encode the number of prereads. We
notice that a read metastep can only appear as a pre-
read in one write metastep. Thus, by counting every
read metastep twice, we can account for the cost to
encode all the prereads. Thus, if m is any metastep
containing k processes, then the amortized (over all
the metasteps of M) number of bits used to encode
m is O(k). We now claim that the algorithm incurs
O(k) cost in the state change model to execute m.
Indeed, all write steps have unit cost. A read is only
added to a write metastep if the metastep’s value
causes the reader to change its state. A read in a
read metastep also has unit cost, as we have already
argued the reader must change its state after the step.
Therefore, |Eπ| is proportional to the cost to the al-
gorithm C. 2

7 The Decoding Step

7.1 Description of the Decoding

We now describe the decoding algorithm. We first
give an informal description of the algorithm, and
then give a more detailed one. The decoder creates

an execution α, and repeatedly appends steps to α,
until α equals a linearization of (M,�). Note that
this means there is a particular total order on M
consistent with �, and a particular way to expand
each metastep in M via Seq, that produces an exe-
cution that equals α; that is, α equals the output of
Lin(M,�), for some (nondeterministic) execution of
Lin(M,�). Now, each time the decoder appends a
sequence of steps, those steps are exactly the steps
contained in some m ∈ M . We say the decoder has
executed m. m has the property that it is a minimal
(w.r.t. �) unexecuted metastep in M . Thus, the de-
coding algorithm essentially runs a loop where in each
iteration, it finds and executes a minimal unexecuted
metastep of M .

We now describe the decoding algorithm in more
detail. Please see Figure 3 for the pseudo-code. We
first describe the variables in Decode. α is the ex-
ecution that the decoder builds. done ⊆ [n] is the
set of processes that have completed their critical
and exit sections. For i ∈ [n], pci is the number
of metasteps the decoder has executed that contain
pi, and ei is pi’s step in the minimal unexecuted
metastep containing pi. We call ei process pi’s pend-
ing step. At certain points in the decoding, the de-
coder may not yet know the pending steps of some
processes. If the decoder knows the pending step of
process pi, then it places i in wait. For ` ∈ L, R`

(resp., W`) contains the set of processes whose pend-
ing step is a read step (resp., write step) on register
`. For any i ∈ [n], if i ∈ PR`, then pi has performed
its last read on ` in M . Lastly, if sig` 6= ε, then sig`

contains the signature of the minimum unexecuted
write metastep on `.

Each iteration of the main repeat loop of Decode
consists of two sections, from 〈6 − 37〉, and from
〈38 − 45〉. The purpose of the first section is to find
the pending step of each process. The purpose of the
second section is to find a set of processes whose pend-
ing steps together form the steps of a minimal unexe-
cuted metastep. Consider any i 6∈ done∪wait. That
is, pi has not finished its critical and exit sections yet,
and the decoder does not know its pending step. In
〈7〉, the decoder increments pci, and calls the helper
function getStep(E, i, pci) to determine the type of
pi’s pending step. Recall that E is stored as the con-
catenation of type and signature information about
each process’s steps in the metasteps containing that
process. The decoder adds i to wait. It then switches
based on the value of stepi.

Consider the case stepi = W. In 〈11 − 12〉, the

11

1: procedure Decode(E)
2: ∀i ∈ [n] : pci ← 0, stepi ← ε
3: ∀` ∈ L : sig` ← ε, R`, PR`, W` ← ∅
4: α← try1 ◦ try2 ◦ . . . ◦ tryn; done← ∅; wait← ∅
5: repeat
6: for all (i 6∈ done) ∧ (i 6∈ wait)) do
7: pci ← pci + 1; stepi ← getStep(E, i, pci)
8: ei ← δ(α, i); wait← wait ∪ {i}
9: switch
10: case stepi = W:
11: while type(ei) 6= W do
12: α← α ◦ ei; ei ← δ(α, i) end while
13: if stepi contains a signature sig then
14: sigreg(ei) ← makesig(sig, i) end if

15: Wreg(ei) ← Wreg(ei) ∪ {i}
16: case stepi = R:
17: while type(ei) 6= R do
18: α← α ◦ ei; ei ← δ(α, i) end while
19: if sigreg(ei) 6= ε then

20: `← reg(ei)
21: if st(α ◦ esig`.v ◦ readi(`), i) 6= st(α, i) then
22: R` ← R` ∪ {i} end if
23: case stepi = PR:
24: while type(ei) 6= R do
25: α← α ◦ ei; ei ← δ(α, i) end while
26: PRreg(ei) ← PRreg(ei) ∪ {i}
27: α← α ◦ ei; wait← wait\{i}
28: case stepi = SR:
29: while type(ei) 6= R do
30: α← α ◦ ei; ei ← δ(α, i) end while
31: α← α ◦ ei; wait← wait\{i}
32: case stepi = C:
33: α← α ◦ ei; wait← wait\{i}
34: case stepi = $:
35: done← done ∪ {i}
36: end switch
37: end for

38: for all ` such that sig` 6= ε do
39: if (|R`| = sig`.r) ∧ (|PR`| = sig`.pr) ∧ (|W`| = sig`.w)
40: β ← concat(

S
i∈W`\{sig`.v} ei)

41: γ ← concat(
S

i∈R`
ei)

42: α← α ◦ β ◦ esig`.v ◦ γ
43: wait← wait\(R` ∪W`)
44: sig` ← ε; R`, PR`, W` ← ∅
45: end if end for
46: until done = {1, . . . , n}
47: return α
48: end procedure

Figure 3: Decoding E = Eπ to produce a lineariza-
tion of (M,�).

decoder loops until pi’s next step is a write step9.
Let ` be the register that pi’s pending step ei writes
to. In 〈15〉, the decoder adds i to W`. Also,
if stepi contains a signature sig, the decoder sets
sig` to makesig(sig, i). If sig = PRprRrWw, then
makesig(sig, i) sets sig`.v ← i (indicating pi is the
winner of the metastep corresponding to this signa-
ture), sig`.r ← r, sig`.w ← w, and sig`.pr ← pr.

Next, consider the case stepi = R. The decoder
loops until ei is a read step 〈17 − 18〉. Suppose ei

reads `. Then the decoder checks whether sig` 6= ε.

9Note that we do this because pi may do some critical steps
before a write step.

If so, the decoder checks whether the (value of the)
winning (write) step in the metastep corresponding
to this signature, namely esig`.v, would cause pi to
change its state 〈21〉. If so, the decoder adds i to R`.
Otherwise, it does nothing.

Next, consider the case stepi = PR. Then, pi’s
next unexecuted metastep is a read metastep. Let ei

be pi’s pending read step, and let ` be the register
ei reads. Since stepi = PR, the decoder knows ei is
pi’s last read step on ` in M . So it adds i to PR`.
The decoder then executes ei 〈27〉, and removes i
from wait, indicating that it needs to compute a new
pending step for pi in the next iteration of the repeat
loop.

Next, consider the case stepi = SR. Then, pi’s
next unexecuted metastep is a read metastep. The
decoder executes this metastep, and removes i from
wait 〈31〉.

If stepi = C, then ei is a critical step. The decoder
appends ei to α, and removes i from wait. Finally, if
stepi = $, then pi has finished all its steps in M , and
the decoder adds pi to done.

We now describe what Decode does in 〈38− 45〉.
In 〈38〉, the decoder finds some ` for which it knows
the signature. It then checks that the sizes of R`,W`

and PR` match the signature 〈39〉. If so, it sets β to
be the concatenation, in an arbitrary order, of all the
write steps ei, for i ∈W`\{sig`.v}. It sets γ to be the
concatenation of all read steps ei, for i ∈ R`. Then,
it appends β ◦ esig`.v ◦ γ to α. The decoder removes
R`∪W` from wait 〈43〉, to indicate it needs compute
pending steps for these processes in the next iteration
of the repeat loop. It also resets sig`, R`, PR` and
W`.

The decoder performs the repeat loop until done =
[n], indicating all processes have finished their critical
and exit sections.

7.2 Properties of the Decoding

In this section, we show that Decode produces an
execution that is a linearization of (M,�). In par-
ticular, we show that each time the decoder appends
a sequence of steps to α, those steps are exactly the
steps of some minimal unexecuted metastep m, and
that all the steps in write(m) are appended before
win(m), which is appended before all the steps in
read(m). Furthermore, we show that in each itera-
tion of the main loop of Decode, the decoder does
append some steps to α. Thus, eventually α equals a
linearization of (M,�). The proof uses induction on
the execution of the decoder. Below, we define what

12

it means for the decoder to behave correctly up to
some point in its execution.

Definition 7.1 Let j ≥ 0. We say the decoder is
correct up to iteration j if the following hold at 〈6〉
of iteration j:

1. α ∈ Seq(m1) ◦ . . . ◦ Seq(mu), where m1 ∈
min{µ |µ ∈ M}, and ∀i ∈ [u − 1] : mi+1 ∈
min�{µ | (µ ∈ M) ∧ (µ 6� mi)}. Let N =⋃

i∈[u] mi.

2. For any ` ∈ L, let m` = γW(N, `). Then we have
R` ⊆ read(m`), W` ⊆ write(m`)∪win(m`), and
PR` ⊆ pread(m`).

3. For all ` ∈ L, if sig` 6= ε, then sig`.r =
|read(m`)|, sig`.w = |write(m`) + 1|, and
sig`.pr = |pread(m`)|.

Thus, the decoder is correct up to iteration j if
three types of conditions are satisfied. First, at 〈6〉 of
iteration j, the sequence of steps α the decoder has
produced belongs to Seq(m1) ◦ . . . ◦ Seq(mu). By
this, we mean that there exists some (nondeterminis-
tic) execution of Seq(m1) with output σ1, and some
(nondet.) execution of Seq(m2) with output σ2, . . .,
and some (nondet.) execution of Seq(mu) with out-
put σu, such that α = σ1 ◦ σ2 ◦ . . . ◦ σu. In addition,
m1 is a minimal metastep of M , and each mi is a
minimal metastep not preceding mi−1. This implies
that α is a prefix of a linearization of (M,�). Also,
we have that N =

⋃
i∈[u] mi is a prefix of M . Second,

for any ` ∈ L, the sets R`,W` and PR` are subsets of
the read, write and preread set of the minimum write
metastep on ` not in N . Third, if a signature ex-
ists for `, then it contains the sizes of the read, write
and preread set of γW(N, `). We can verify that the
decoder is correct up to iteration 0.

Lemma 7.2 Let j ≥ 0, and suppose Decode is cor-
rect up to iteration j. Then Decode either termi-
nates after iteration j, or it is correct up to iteration
j + 1.

Proof. (Sketch) Suppose the decoder does not ter-
minate in iteration j. We first verify that the con-
ditions in the correctness definition continue to hold
after lines 〈6 − 37〉. Later, we verify they hold af-
ter 〈38 − 45〉. Let i ∈ [n]. We consider four cases,
depending on the type of stepi.

If stepi = W, then i is added to W`, where ` =
reg(ei), and ei is pi’s pending step. Since we do not

append any steps to α in this case, condition 1 holds.
To verify condition 2, let m` = γW(N, `). Note that
the minimum write metastep on ` containing pi and
not in N , namely γW

i (N, `), is equal to m`, by Lemma
5.8. Thus, pi performs a write step in m`, and so
W` ∪ {i} ⊆ write(m`) ∪ win(m`). If stepi contains
a signature, then by the same argument, this is the
signature for metastep m`, so condition 3 holds.

If stepi = R and i is added to R`, then ` = reg(ei),
where ei is pi’s pending step. Let m` = γW(N, `),
and let m′ = γW

sig`.v(N, `). Then m′ = m`, by
Lemma 5.8. Also, since reading val(esig`.v) causes
pi to change its state, we have by Lemma 5.9 that
m` = γW

i (N, `). Thus, pi takes a read step in m`, so
R`∪{i} ⊆ read(m`), and condition 2 (and also 1 and
3) holds.

If stepi = PR, then i is added to PR`, where
` = reg(ei) and ei is pi’s pending step. Again, let
m` = γW(N, `). By the correctness of the decoder, ei

is pi’s final read on ` in M . Thus by Lemma 5.10, i
belongs to pread(m`), and condition 2 holds. Lastly,
if stepi = SR, it is easy to show that condition 1 (and
2, 3) continues to hold.

We now verify that the correctness conditions hold
after lines 〈38−45〉. Suppose that the tests on 〈38, 39〉
succeed, for some `. Let m` = γW(N, `), and let
k = sig`.v; then k is the winner of m`. Because of
conditions 2 and 3, we must have R` = read(m`),
W` = write(m`) ∪ win(m`), and PR` = pread(m`).
Thus, R`∪W` = own(m`), and concat(

⋃
i∈W`\{k} ei)◦

ek◦concat(
⋃

i∈R`
ei) ∈ Seq(m`); that is, the sequence

of steps Decode appends to α in 〈42〉 is the out-
put of some (nondeterministic) execution of Seq(m`).
Lastly, we have that m` ∈ min�{µ | (µ ∈ M) ∧ (µ 6�
mu)}, because for every process in own(m`), their
pending step is their step in m`, and also, every
metastep in pread(m`) has been executed . Thus,
condition 1 (and 2, 3) continues to hold, and the
lemma is proved. 2

Lemma 7.2 shows a safety property of Decode;
that is, the decoder never executes a nonminimal un-
executed metastep. We now show a liveness property,
that in every iteration of the main loop of the decoder,
it executes some metastep.

Lemma 7.3 Suppose Decode is correct up to itera-
tion j, where j ≥ 1. Then Decode either terminates
or it executes some metastep in iteration j.

Let mu be the last metastep the decoder executed
before iteration j. Then we can easily show that the

13

decoder executes some minimal metastep not preced-
ing mu in iteration j. Informally, this is because the
pending step of every process contained in a minimal
metastep not preceding mu, is simply its step in that
minimal metastep. Thus, Decode either executes
a minimal read or critical metastep in 〈27〉, 〈31〉 or
〈33〉, or the tests on 〈38, 39〉 succeed and the decoder
executes a minimal write metastep in 〈42〉. Together,
Lemmas 7.2 and 7.3 imply the following.

Theorem 7.4 Let α be the execution produced by
Decode. Then α is a linearization of (M,�).

7.3 A Lower Bound for Mutual Exclu-
sion

Theorem 7.5 Let A be any livelock-free mutual ex-
clusion algorithm. Then in some α ∈ execs(A) in
which processes p1, . . . , pn all complete their critical
sections once, we have C(α) = Ω(n log n).

Proof. For each π ∈ Sn, let (Mπ,�π) =
Construct(π), Eπ = Encode(Mπ,�π), and απ =
Decode(Eπ). By Theorem 7.4, απ is a lineariza-
tion of (Mπ,�π). Thus, by Theorems 5.5, we have
that p1, . . . , pn all complete their critical sections
once in απ, and they complete them in the order
π. Therefore, for π1, π2 ∈ Sn, π1 6= π2, we have
απ1 6= απ2 . Thus, the (deterministic) algorithm De-
code produces n! different outputs, on input from
the set {Eπ}π∈Sn

. Therefore, there exists π ∈ Sn

such that |Eπ| = Ω(log(n!)) = Ω(n log n)10. By The-
orem 6.2, we have that |Eπ| = O(C(απ)). Thus, we
have C(απ) = Ω(n log n), and the theorem is proved.

2

8 Conclusions

In this paper, we have established a lower bound of
Ω(n log n) memory accesses in the state change cost
model for solving n process mutual exclusion. Our
proof technique uses an information theoretic charac-
terization of a necessary condition for solving mutual
exclusion, and relates this to the information pro-
cesses can gain through access to shared registers.
Our proof technique can be extended to accommo-
date stronger memory primitives. We believe it also

10Note in fact that

P
π∈Sn

|Eπ|
|Sn|

= Ω(n log n).

extends with minor modifications to the cache coher-
ent cost model. We believe our proof technique is
intuitive and flexible, and may be used to establish
lower bounds for other problems for which current
techniques are complex or insufficient.

References
[1] R. Alur and G. Taubenfeld. Results about fast mutual ex-

clusion. In Proceedings of the 13th IEEE Real-time Sys-
tems Symposium, pages 12–21. IEEE, 1992.

[2] James H. Anderson and Yong-Jik Kim. An improved
lower bound for the time complexity of mutual exclusion.
In PODC ’01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing, pages
90–99, New York, NY, USA, 2001. ACM Press.

[3] James H. Anderson and Yong-Jik Kim. Nonatomic mu-
tual exclusion with local spinning. In PODC ’02: Pro-
ceedings of the twenty-first annual symposium on Princi-
ples of distributed computing, pages 3–12, New York, NY,
USA, 2002. ACM Press.

[4] James H. Anderson, Yong-Jik Kim, and Ted Herman.
Shared-memory mutual exclusion: major research trends
since 1986. Distributed Computing, 2003.

[5] Hagit Attiya and Danny Hendler. Time and space lower
bounds for implementations using -cas. In DISC, pages
169–183, 2005.

[6] James E. Burns and Nancy A. Lynch. Bounds on shared
memory for mutual exclusion. Information and Computu-
tation, 107(2):171–184, 1993.

[7] Robert Cypher. The communication requirements of mu-
tual exclusion. In SPAA ’95: Proceedings of the seventh
annual ACM symposium on Parallel algorithms and ar-
chitectures, pages 147–156, New York, NY, USA, 1995.
ACM Press.

[8] G. Graunke and S. Thakkar. Synchronization algorithms
for shared-memory multiprocessors. IEEE Computer,
1990.

[9] Prasad Jayanti. A time complexity lower bound for ran-
domized implementations of some shared objects. In
PODC ’98: Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing, pages
201–210, New York, NY, USA, 1998. ACM Press.

[10] Patrick Keane and Mark Moir. A simple local-spin group
mutual exclusion algorithm. In PODC ’99: Proceedings of
the eighteenth annual ACM symposium on Principles of
distributed computing, pages 23–32, New York, NY, USA,
1999. ACM Press.

[11] J. Mellor-Crummey and M. Scott. Algorithms for scalable
sychronization on shared-memory multicomputers. ACM
Transations on Computer Systems, 1991.

[12] Michael Raynal. Algorithms for Mutual Exclusion. The
MIT Press, Cambridge, Massachusetts, 1986.

[13] Y.-H. Yang and J. Anderson. A fast, scalable mutual
exclusion algorithm. Distributed Computing, 1995.

14

