ENERGY, HEALTHCARE & RETAIL convergence: LIFESTYLE SYSTEMS

SNAP

SENSOR NETWORKING ACADEMIES PROGRAM

<table>
<thead>
<tr>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Outcome</td>
</tr>
<tr>
<td>Accelerate the diffusion of the concepts of energy conservation and energy efficiency [1] and healthcare monitoring and preventative medicine using ubiquitous computing achieved from deployment of sensors.</td>
<td>Grass roots approach and an academic-industry channel to share science and data for issues on energy and climate change. Applicable for healthcare issues.</td>
</tr>
<tr>
<td>Aim</td>
<td>Target</td>
</tr>
<tr>
<td>[1] Improve teaching of physics, mathematics and dynamics of energy [sensors for monitoring usage, optimize energy efficiency] and preventative medicine (remote monitoring).</td>
<td>Potential to engage with local and state authorities that may access stimulus funds for job growth and entrepreneurial innovation.</td>
</tr>
<tr>
<td>Investment</td>
<td>Commercial</td>
</tr>
<tr>
<td>[1] Seed to implement the first Academy</td>
<td>LIFESTYLE Applications: See Convergence of SINS</td>
</tr>
</tbody>
</table>

1 Cisco Systems initiated Cisco Networking Academy (1996) in liaison with Thurgood Marshall High School (TMAHS) in the San Francisco Unified School District, with help from a talented teacher (Dennis Frezzo) and the then visionary Chairman of Cisco Systems (John Morgridge). It gained worldwide acclaim and cited by the White House as a key instrument of IT workforce creation. It was widely disseminated (www.catholiceducation.org/articles/education/ed0026.html) and the cover story of US News & World Report (2 December 1996). A decade later, we have moved ahead from ‘computers’ as boxes and ‘network’ as the transmission backbone to pervasive or ‘ubiquitous’ computing as a function for providing business services. Hence, SNAP.

LIFESTYLE SYSTEMS Proposed by Dr Shoumen Datta (shoumendatta@gmail.com or shoumen@alumni.ucsf.edu)

Is there a problem?

US debt may reach $20 trillion by 2020. It may seem ominous because numbers are relative to the size of the economy and $20 trillion in debt is about 90% of the projected US gross domestic product \(^2\) in 2020. In 2000, there were 4,058,814 new babies born \(^3\) in the US. By 2020 they may be on the verge of joining the workforce in a year where US debt-to-GDP ratio is predicted to approach 90%, if conditions remain unchanged. Last year the debt-to-GDP ratio for Greece was 115%. Are the riots in Athens is the writing on the wall for the US in 2020?

Should we extrapolate?

Are the horrific events in Greece a predictor for what may be in store for the US in 2020 or sooner or later? Predictions about the future are difficult but this one is easy. No. US history offers a different perspective. US debt-to-GDP ratio was 109% in 1945 at the end of WWII yet the country escaped the public wrath that spilled on the streets of Athens in 2010 due to a ratio close to the US figures in 1945. Ask why. Innovation is one answer.

Why Innovation?

The illustration below may offer clues why the fate of Greece may not be an indicator for the US.

Riot police outside the burned branch of Marfin Egnatia Bank, Athens, where 3 people died on May 5, 2010 \(^4\)

New molecular transistor made up of a benzene molecule linked across gold electrodes. \(^5\)

Hyunwook Song, Takhee Lee and Mark Reed, Yale University (2010)

\(^3\) www.cdc.gov/nchs/data/nvsr/nvsr50/nvsr50_05.pdf and www.cdc.gov/nchs/pressroom/02news/womenbirths.htm

\(^4\) www.time.com/time/world/article/0,8599,1987368,00.html

What is the solution?

Innovation. Soon after the end of World War II in 1945, the US and the world witnessed the birth of the transistor in 1947 in New Jersey. In 1953, scientists from US and UK proposed the structure of DNA. In 1954, at the Bell Labs in New Jersey, Charles Townes discovered first the maser and then the laser. These innovations ushered in the new world economy that is currently valued in excess of $50 trillion. The market capitalization of the top 10 US companies alone approaches $1.5 trillion in the information technology industry which was made possible by the transistor. The top 10 bio-medical companies reported revenues in excess of $500 billion in 2006, empowered by bio-technology which rapidly evolved in the US following the discovery of the structure of DNA in 1953.

How can innovation catalyze change?

The lessons from innovation form the foundation of the US economy to recover and grow. However, the nation continues to struggle to implement practices that may stir imagination and empower innovation. Part of the reason is the chasm that separates public education from the national challenges, e.g. health and energy. Any responsible citizen will concur that innovation, invention and imagination are necessary to address the future of energy and healthcare. Yet, it may be difficult to find any significant initiative in the 100,000 public schools in the US or any exposure of the 50 million students to the issues that will shape their future and our destiny. This is the change that must be sought. Infectious innovation must be seeded in a manner that percolates the science, technology, engineering and mathematical (STEM) issues related to the national challenges through the public education system. The creativity latent in the 20 million or more high school students in the US is a resource which remains largely untapped. On 12.21.2010, US House of Representatives approved HR 5116, the America Competes Reauthorization Act which provides $40 billion in support for research, STEM related education and innovation.

How to accelerate change?

We suggest modest beginnings which mimics, in principle, the success of the Cisco Networking Academy which, in 1996, introduced to US high schools the elements of networking as a tool for the information age. Using project based hands-on learning, we propose [1] the introduction of remote health monitoring to improve personal health and [2] energy monitoring to reduce energy use as well as a reduction in greenhouse gases.

6 www.physics.ucla.edu/~ianb/history/

7 http://en.wikipedia.org/wiki/List_of_information_technology_companies_by_market_capitalization

8 http://en.wikipedia.org/wiki/List_of_pharmaceutical_companies

9 www.genengnews.com/gen-articles/twenty-five-years-of-biotech-trends/1005/

10 http://nces.ed.gov

11 http://thomas.loc.gov/cgi-bin/bdquery/z?d111:H.R.5116:

13 http://dspace.mit.edu/handle/1721.1/53329
Justification and Assumptions

[1] The focus on energy and health need little justification in view of the global and national challenges. Those who seek justification why pre- and post-collegiate students may engage in these endeavors (and the obvious challenges it will present) may also wish to consider the following:

[a] knowledge percolates downward with time or in other words, material once believed to be a ‘frontier’ in research or for the elite, will, over time, finds its way into secondary and elementary text books in public schools

[b] K-16 is the tier 1 of the supply chain of ‘adults’ who will face the consequences of energy and healthcare

[c] resistance to adopting benefits of technology is proportional to age if one lacks prior educational exposure

[d] the existing knowledge economy is sluggish in its attempt to foster the mythical ‘innovation society’ partly because partitioning of knowledge and selective dissemination (in K-16 education) continues to breed social injustice by cementing the gulf between knowledge ‘have’ and ‘have-nots’ in a manner resembling the elusive quest for the ‘bridge’ which technology was supposed to build.

[2] The emphasis on health rather than healthcare is rooted in the observation that K-16 education serves the population which may be disinterested in the national healthcare debate. The prevalent opinion is that the latter is for politicians, bureaucrats, hospitals and seniors seeking treatment. At the heart of K-16 effort, therefore, is a nuclear interest in personal health rather than healthcare. Hence, education catalyzes the paradigm shift from healthcare to health. This shift will guide how to develop health related initiatives which will, ultimately, provide healthcare related benefits, without which the K-16 initiative may be yet another purposefully diluted feel-good exercise. Hence, in principle, the K-16 health initiative must adhere to a vision, which, at least in part, must be reproducible, scalable and sustainable in order to be deemed successful. The degree to which the vision may be executed is understandably limited by the type of health models which can be implemented with available resources and contribution from academic partnerships as well as inclination of corporations to form alliances.

[3] Energy requires the least justification due to its pervasive impact on daily lives commencing with the electric tooth brush in the morning to the water-jet floss before bed-time. The sources and the network that drive the energy to these devices are largely unknown to most secondary school students. The expectation is to trigger imagination about sustainability and accomplish defined tasks where the fruits of technology may be used to improve energy conservation and GHG reduction. If other forms of creativity arise in the process, even better.

[4] Risk pooling of both efforts on a shared platform provides a common use case (remote monitoring) through the deployment of wireless sensor networks (WSN). Convergence of data acquisition and transmission using the principles of WSN is applicable across a broad spectrum of verticals including healthcare and energy. WSN is a widely supported engineering system with a deep knowledge base and curricular support for rapid integration.

[5] Embedding innovation as a project in a secondary system is expected to spur entrepreneurial activities which will add to the portfolio of anticipated outcomes. The vision (see Appendix 1) of health and energy are service-centric. It requires human-computer interactions, virtualization and visualization software for devices (iPhone). The application must also offer robust transactional security in order to be commercially viable and profitable.
Description of Work Package [1] Health

The simple yet powerful demonstration of bi-directional data flow is central to future healthcare to reduce cost of operation. Inextricably linked to flow of data is the question of analysis or sense and response. The question of analysis may never be ‘solved’ because analysis will continue to grow as more and more relationships, links and cross-references are uncovered. It is possible, however, to provide a subset of analysis for the proposed project by focusing on a few select parameters. This is the suggestion for this project in order to demonstrate the sense and response scheme due to bi-directional data flow. The proposed project scenario is as follows:

[1] student running on a treadmill serves as the data source for key parameters eg heart rate and blood pressure
[2] real-time readings of the individual are transmitted using wireless or wired sensors (heart rate, BP)
[3] data transmission uses a dedicated gateway for the specific data type (heart rate, blood pressure)
[4] uploads to existing common WLAN infrastructure (no new investment in infrastructure)
[5] via the internet the data arrives at a clinic or hospital site which is monitored by a human or a software agent
[6] data analysis limited to select parameters and narrow definitions of ‘normal’ heart rate or blood pressure
[7] upon completion of training, individual receives a work out summary and physiological report on her iPhone
[8] in a simulated scenario the heart rate is increased which creates an ‘alert’ for the medical practitioner
[9] alert response is also transmitted to individual in school (iPhone) and designated administrator or guardian.
Proposed by Dr Shoumen Datta (shoumendatta@gmail.com) Energy and Health - Catalysts for Innovation and Change in Public Perception

Illustration in Figure 2 (below, right) from commercial sources support the suggested scenario to monitor heart rate and blood pressure using wireless sensors as data acquisition tools (heart rate, blood pressure) and wireless sensor networks (WSN) as data transmission medium connecting through a gateway and internet to the clinic. In an academic version (see Appendix 2) a similar *modus operandi* is presented to address the future of healthcare.

The caveat in this scenario is unauthorized visibility of the data which poses a privacy issue unless the individual is indifferent. The assumption in this scenario is that the data from an individual during an exercise session will remain anonymous and that the data *per se* is of no value because the data is not archived or linked with an id.

However, the ability to create secure data transmission is the eye of the storm in public debates on privacy in healthcare. Various attempts are underway to secure electronic medical records (EMR). The problem presents an opportunity for uncluttered minds in secondary education to take a fresh look at data security with new eyes. With experts as mentors, this is an area where innovation may generate a disruptive technology or tool which may change the way EMR security is handled in future. This is not within the scope of the proposed project but certainly could be a defining moment of this project if students may take an interest to explore this quagmire.

Operational scheme for Work Package [1] Health:
Mobile bidirectional data flow from school to clinic.
Alerts and notifications.

Fig 2

Suggested K-12 scheme for Work Package [1] Health is congruent with commercial as well as academic vision.
Ecosystem of Work Package [1] Health

Implementing the health scenario schematically illustrated in Figure 1 (top left hand corner) is simple if one knows the various elements that must converge. The outcome is a tangible process with explicit data trace. However, the benefit to students and secondary education is not only a project with real-world impact but a plethora of outreach as a result of this endeavor, if appropriately orchestrated. Table below offers a partial list.

<table>
<thead>
<tr>
<th>Academics</th>
<th>Vocational - Careers</th>
<th>Partnerships</th>
<th>Infra-structure</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology</td>
<td>Student Internships</td>
<td>Hospitals</td>
<td>Sensors</td>
<td>Gateway Node</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Respiratory Therapist</td>
<td>University</td>
<td>Wireless LAN</td>
<td>Communication</td>
</tr>
<tr>
<td>Genetics</td>
<td>Sports Medicine</td>
<td>Medical Schools</td>
<td>Monitors</td>
<td>Device to Device</td>
</tr>
<tr>
<td>S T E M</td>
<td>Paramedic Aide</td>
<td>Phillips - Orion</td>
<td></td>
<td>Mobile to Mobile</td>
</tr>
<tr>
<td>C S / A I</td>
<td>Bio-engineering</td>
<td>Google</td>
<td></td>
<td>Secure WSN</td>
</tr>
<tr>
<td></td>
<td>EE / Mechanical Eng</td>
<td>Apple</td>
<td></td>
<td>Data Security</td>
</tr>
<tr>
<td></td>
<td>Network Specialist</td>
<td>CISCO</td>
<td></td>
<td>Virtualization</td>
</tr>
<tr>
<td></td>
<td>Software Applications</td>
<td>AT&T</td>
<td></td>
<td>Visualization</td>
</tr>
<tr>
<td></td>
<td>Programming</td>
<td>GE Healthcare</td>
<td></td>
<td>SOA / Mobile Apps</td>
</tr>
<tr>
<td></td>
<td>RDBMS</td>
<td>UN/UNDP/WHO</td>
<td></td>
<td>Cloud Computing</td>
</tr>
</tbody>
</table>

Simpler to implement than health scenario yet robust return on investment due to monetary savings from reducing energy consumption by improving energy efficiency (Appendix 3) based on the principle of energy conservation. The tools are sensors and wireless sensor networks. Hence, shared grounds with health initiative.

To conserve energy the lowest common denominator is preventing waste. Unfortunately, public schools in the US waste about 60% of energy due to failure to turn off appliances and HVAC when unused or unnecessary. Dependence on personal responsibility to prevent waste in public buildings has proved to be somewhat of an oxymoron. The solution at hand is to ‘sense’ the need (too hot, too cold, occupied or unoccupied) and trigger automated action (on/off) based on data analysis (wireless sensor data for temperature, humidity, occupancy).

This project is a matter of execution but the challenge is to first educate and then train students to implement. The commercial viability of energy conservation is well documented. Hence, the resistance from corporate partners to ‘teach’ implementation of energy conservation using WSN may be an issue. The latter may call for academic partnerships rather than corporate alliances. Illustrations in Figure 3 represents a typical function, generic user interface and wireless sensor technology expected to be installed as a part of this implementation.

Sensor networking using bio-medical (heart rate, blood sugar) or energy related (temperature, light) sensors use the same principles of physics and engineering. The interpretation of data and response creates the difference. Communications network are identical in both cases because its sole purpose is to transmit data packets. Hence, a certification scheme for secondary students trained in sensor networking (see Appendix 4) is likely to help in skilled workforce development as well as job readiness. It also represents, in theory, the potential to embed principles of ubiquitous computing in public education and lead to market growth for energy business services.

Fig 3: Implementation of energy conservation serves the function of human comfort. The interface to control basic parameters may be on a PC or mobile device (iPhone). The underlying technology uses wireless sensors.

Complex inter-relationships between energy forms and its economics are difficult to comprehend but that should not preclude the topic from secondary education, particularly since innovation is key to energy and sustainability. This project aims to stir the academic discussion but focus on the topic of conservation and implementation of energy efficiency schematically outlined in Figure 3. The energy ecosystem includes:

<table>
<thead>
<tr>
<th>Academics</th>
<th>Vocational - Careers</th>
<th>Partnerships</th>
<th>Infra-structure</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Student Internships</td>
<td>University</td>
<td>Sensors</td>
<td>Gateway Node</td>
</tr>
<tr>
<td>Chemistry</td>
<td>EE / Mechanical Eng</td>
<td>ArchRock</td>
<td>Wireless LAN</td>
<td>Communication</td>
</tr>
<tr>
<td>S T E M</td>
<td>Network Specialist</td>
<td>Millennial Net</td>
<td>Monitors</td>
<td>Device to Device</td>
</tr>
<tr>
<td>C S / A I</td>
<td>Software Applications Programming</td>
<td>Rockwell</td>
<td>Automation</td>
<td>Virtualization</td>
</tr>
<tr>
<td>Bio-tech</td>
<td>RDBMS</td>
<td>Siemens</td>
<td>Visualization</td>
<td>Visualization</td>
</tr>
<tr>
<td>Agri-waste</td>
<td></td>
<td>CISCO</td>
<td>SOA / Mobile Apps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GE Energy</td>
<td></td>
<td>Cloud Computing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNFCCC/IPCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Organization

To start small, it may be prudent to incubate the projects within an ‘academy’ with select schools initiating one or more projects. Day to day operation must be designed and supervised without additional work on existing teachers. The ecosystem of partners and alliances must be developed to provide support for implementation.

Appendix

Proposed by Dr Shoumen Datta (shoumendatta@gmail.com) Energy and Health - Catalysts for Innovation and Change in Public Perception