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A NOTE ON PERTURBATION RESULTS FOR LEARNING
EMPIRICAL OPERATORS

L. ROSASCO, M. BELKIN, E. DE VITO

Abstract. A large number of learning algorithms, for example, spec-
tral clustering, kernel Principal Components Analysis and many mani-
fold methods are based on estimating eigenvalues and eigenfunctions of
operators defined by a similarity function or a kernel, given empirical
data. Thus for the analysis of algorithms, it is an important problem to
be able to assess the quality of such approximations. The contribution
of our paper is two-fold:
1. We use a technique based on a concentration inequality for Hilbert
spaces to provide new much simplified proofs for a number of results in
spectral approximation.
2. Using these methods we provide several new results for estimat-
ing spectral properties of the graph Laplacian operator extending and
strengthening results from [26].

1. Introduction

A broad variety of methods for machine learning and data analysis from
Principal Components Analysis (PCA) to Kernel PCA to Laplacian-based
spectral clustering and manifold methods, rely on estimating eigenvalues
and eigenvectors of certain data-dependent matrices. In many cases these
matrices can be interpreted as empirical versions of underlying integral op-
erators or closely related objects, such as continuous Laplace operators.
Thus establishing connections between empirical operators and their con-
tinuous counterparts is essential to understanding these algorithms. In re-
cent years there has been a considerable amount of theoretical work on
building these connections. One of the first studies of this problem was con-
ducted in [16, 15], where the authors consider integral operators defined by
a kernel. This investigation was continued in [19, 20] (see also references
therein). Convergence of Kernel PCA was addressed in [22] and refined
in [6, 28]. Convergence of the graph Laplacian in various settings was ad-
dressed in [4, 11, 12, 23, 17, 10, 5, 26]. In particular, the last two papers
considered spectral convergence.

This paper proposes a method based on analyzing the empirical operators
in the Hilber-Schmidt norm and using concentration inequalities in Hilbert
spaces of operators. This technique together with some standard perturba-
tion theory allows us to derive a number of results on spectral convergence in
an exceptionally simple way. We note that the approach using concentration
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inequalities in a Hilbert space has already been proved useful for analyzing
supervised kernel algorithms, see [9, 27, 3, 24].

We start with introducing the necessary mathematical objects in Sec-
tion 2. We introduce basic operator and spectral theory and discuss concen-
tration inequalities in Hilbert spaces. This technical summary section aims
at making this paper self-contained and provide the reader with a (hopefully
useful) overview of the needed tools and results.

In Section 3, we study the spectral properties of kernel matrices gen-
erated from random data. We study concentration of operators obtained
by an out-of-sample extension using the kernel function and obtain consid-
erably simplified derivations of several existing results on eigenvalues and
eigenfunctions. We expect that these techniques will be useful in analyzing
algorithms requiring spectral convergence. In fact, in Section 4, we apply
these methods to prove convergence of eigenvalues and eigenvectors of the
asymmetric graph Laplacian defined by a fixed weight function. We provide
stronger convergence results than results than [26], which, to the best of our
knowledge, is the only other paper to consider the problem so far. Similar
results to the one we prove here have been independently derived by Smale
and Zhou and are contatined in the following preprint [25].

2. Notation and preliminaries.

In this section we will discuss various preliminary results necessary for
the further development.
Operator theory. We first recall some basic notions from the operator
theory (see, e.g. [18]). In the following we let A : H → H be a linear operator,
where H is a (in general complex) Hilbert space with scalar product (norm)
〈·, ·〉 (‖·‖) and (ej)j≥1 a Hilbert basis in H. We often use the notation j ≥ 1
to denote a sequence or a sum from 1 to p where p can be infinite. The set
of bounded operators on H is a Banach space with respect to the operator
norm ‖A‖ = sup‖f‖=1‖Af‖. If A is a bounded operator, we let A∗ is adjoint,
which is also a bounded operator with ‖A∗‖ = ‖A‖.

A bounded operator A is Hilbert-Schmidt if
∑

j≥1‖Aej‖2 < ∞ for some
(any) Hilbert basis (ej)j≥1. The space of Hilbert-Schmidt operators is also
Hilbert space (a fact which will be key in our development) endowed with the
scalar product 〈A,B〉HS(H) =

∑
j 〈Aej , Bej〉 and we denote by ‖·‖HS(H) the

corresponding norm. In particular, Hilbert-Schmidt operators are compact.
A closely related notion is that of a trace class operator. We say that a

bounded operator A is trace class, if
∑

j≥1

〈
(A∗A)1/2ej , ej

〉
< ∞ for some

(any) Hilbert basis (ej)j≥1. In particular, Tr(A) =
∑

j≥1 〈Aej , ej〉 < ∞ and
Tr(A) is called the trace of A. The space of trace class operators is a Banach
space endowed with the norm ‖A‖TC = Tr(

√
A∗A). Trace class operators

are also Hilbert Schmidt (hence compact). The following inequalities relate
the different operator norms:

‖A‖ ≤ ‖A‖HS ≤ ‖A‖TC .
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It can also be shown that for any A ∈ HS(H) and bounded operator B

‖AB‖HS(H) ≤ ‖A‖HS(H)‖B‖(1)

‖BA‖HS(H) ≤ ‖B‖‖A‖HS(H).

Spectral Theory for Compact Operators. Recall that the spectrum of
a matrix K can be defined as the set of (in general, complex) eigenvalues
λ, s.t. det(K − λI) = 0, or, equivalently, such that λI −K does not have a
(bounded) inverse. This definition can be generalized directly to operators.
Let A : H → H be a bounded operator, we say that λ belongs to the
spectrum σ(A), if (A − λI) does not have a bounded inverse. For any
λ 6∈ σ(A), R(λ) = (A−λI)−1 is the resolvent operator, which is by definition
a bounded operator.

It can be shown (e.g., [13]) that if A is a compact operator, then its
spectrum is discrete with the only accumulation point at zero. That means
that the spectrum consists of isolated points with finite multiplicity |λ1| ≥
|λ2| ≥ · · · , such that limn→∞ λn = 0.

If the operator A is self-adjoint (A = A∗, analogous to a symmetric matrix
in the finite-dimensional case), the eigenvalues are real. To each eigenvalue λ,
we can associate its eigenspace, the set of eigenvectors with this eigenvalue.
The corresponding projection operator Pλ is defined as the projection onto
the span of eigenvectors associated to λ. It can be shown that a self-adjoint
compact operator A can be decomposed as follows:

A =
∞∑
i=1

λiPλi
,

the key result known as the Spectral Theorem. Moreover, it can be shown
that the projection Pλ can be written explicitly in terms of the resolvent
operator. Specifically, we have the following remarkable equality:

Pλ =
1

2πi

∫
Γ⊂C

(γI −A)−1dγ

where the integral can be taken over any closed curve in C containing λ
and no other eigenvalue. We note that while an integral of an operator-
valued function may seem unfamiliar, it is defined along the same lines as an
integral of an ordinary real-valued function. Despite the initial technicality,
the equation above allows for far simpler analysis of eigenprojections than
other seemingly more direct methods.

This analysis can be extended for operators, which are not self-adjoint, to
obtain a decomposition parallel to the Jordan canonical form for matrices.
In the case of non-self-adjoint operators the projections are to generalized
eigenspaces associated to an eigenvalue. To avoid overloading this section,
we relegate the precise technical statements for that case to the Appendix
A.
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Reproducing Kernel Hilbert Space. Let X be a subset1 of Rd .
An Hilbert space H of functions f : X → C such that all the evaluation
functionals are bounded, that is,

f(x) ≤ Cx‖f‖ for some constant Cx,

is called a Reproducing Kernel Hilbert space. It can be shown that there
is unique symmetric, positive definite kernel function K : X × X → C, a
reproducing kernel, associated to H and the following reproducing property
holds

repro (2) f(x) = 〈f,Kx〉 ,

where Kx := K(·, x). It is also well known [2] that each given reproducing
kernel K uniquely defines a reproducing kernel Hilbert space H = HK . We
denote the scalar product and norm in H with 〈·, ·〉 and ‖·‖, respectively.
We will assume that the kernel is continuous and bounded2.

Concentration Inequalities in Hilbert spaces.We recall that if ξ1, . . . , ξn

are independent (real-valued) random variables with zero mean and such
that |ξi| ≤ C, i = 1, . . . , n, then Höeffding inequality ensures that ∀ε > 0

P

[ ∣∣∣∣∣ 1n∑
i

ξi

∣∣∣∣∣ ≥ ε

]
≤ 2e−

nε2

2C2

If we set τ = nε2

2C2 then we can express the above inequality saying that with
probability at least (with confidence) 1− 2e−τ

hoff (3)

∣∣∣∣∣ 1n∑
i

ξi

∣∣∣∣∣ ≤ C
√

2τ√
n

.

Similarly if ξ1, . . . , ξn are zero mean independent random variables with
values in a Hilbert space and such that ‖ξi‖ ≤ C, i = 1, . . . , n, then the
same inequality holds with the absolute value replaced by the norm in the
Hilbert space. The following inequality

vec_hoff (4)

∥∥∥∥∥ 1
n

∑
i

ξi

∥∥∥∥∥ ≤ C
√

2τ√
n

.

is given in [21].

1For technical reasons X needs can be taken to be an intersection of an open and a
closed subset.

2This implies that the elements of H are bounded continuous functions, the space H is
separable and is compactly embedded in C(X), with the compact-open topology, [2]. The
assumption about continuity is not strictly necessary, but it will simplify some technical
part.
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3. Integral Operators defined by a Reproducing Kernel

Let the set X ⊂ Rd and the reproducing kernel K as above. We endow
X with a probability measure ρ, we let L2(X, ρ) be the space of square
integrable functions with norm ‖f‖2

ρ = 〈f, f〉ρ =
∫
X |f(x)|2dρ(x), and

c1 (5) sup
x∈X

K(x, x) ≤ κ2,

we define LK : L2(X, ρ) → L2(X, ρ) to be the corresponding integral oper-
ator defined by

int_op (6) LKf(x) =
∫

X
K(x, s)f(s)dρ(s).

Suppose we are now given a set of points x = (x1, . . . , xn) sampled i.i.d.
according to ρ. Many problems in statistical data analysis and machine
learning deal with the empirical kernel n × n-matrix K given by Kij =
1
nK(xi, xj).

The question we want to discuss is to which extent we can use the kernel
matrix K (and the corresponding eigenvalues, eigenvectors) to estimate LK

(and the corresponding eigenvalues, eigenfunctions). Answering this ques-
tion is important as it guarantees that the computable empirical proxy is
sufficiently close to the ideal infinite sample limit.

The first difficulty in relating LK and K is that they operate on different
spaces. By default, LK is an operator on L2(X, ρ), while K is a finite
dimensional matrix.

To overcome this difficulty we let H be the RKH space associated to K
and define the extension operators LK,H, LK,n : H → H

LK,H =
∫

X
〈·,Kx〉HKxdρ(x),(7)

LK,n =
1
n

n∑
i=1

〈·,Kxi〉HKxi .T (8)

Note that LK,H is the integral operator with kernel K with range and
domain H rather than in L2(X, ρ). In next subsection, we show that LK,H
and LK have the same eigenvalues (except zeros) and the corresponding
eigenfunctions are closely related, and a similar relation holds for LK,n and
K. Thus to establish a connections between the spectral properties of K/n
and LK , it is sufficient to bound the difference LK,H − LK,n, which is done
in the following theorem.

op_bound Theorem 1. The operators LK,H and LK,n are Hilbert-Schmidt. Under the
above assumption with confidence 1− 2e−τ

‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

.
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Proof. We introduce a sequence (ξi)n
i=1 of random variables in the space of

Hilbert-Schmidt operators HS(H) by

ξi = 〈Kxi , ·〉Kxi − LK,H.

From (8) follows that E(ξi) = 0. By a direct computation we have that
‖〈·,Kx〉Kx‖2

HS = ‖Kx‖4 ≤ κ4 so that using again (8) we have

‖ξ‖HS ≤ 2κ2, i = 1, . . . , n.

From inequality (4) we have with probability 1− 2e−τ

‖ 1
n

∑
i

ξi‖HS = ‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

,

which establishes the result. �

As an immediate corollary of Theorem 1 we obtain several concentration
results for eigenvalues and eigenfunctions discussed in subsectiion 3.2. How-
ever before that we provide a discussion of the Nyström extension needed
to properly compare the above operators.

3.1. Extension operators. To compare the spectral properties of LK and
LK,H we recall the following result, whose proof can be found in [9, 8].

Proposition 1. The following facts hold:
(1) The operators LK and LK,H are positive, self-adjoint and trace class.

In particular both σ(LK,n) and σ(K) are contained in [0, κ].
(2) The spectra of LK and LK,H are the same, possibly except zeros,

moreover if σj is nonzero eigenvalue and uj , vj associated eigenfunc-
tions of LK and LK,H (normalized to norm 1 in L2(X, ρ) and H)
respectively, then

uj(x) =
1

√
σj

vj(x) for ρ-almost all x ∈ X

vj(·) =
1

√
σj

∫
X

K(·, x)uj(x)dρ(x)

(3) Also for all g ∈ L2(X, ρ) and f ∈ H the following decompositions
hold:

LKg =
∑
j≥1

σj 〈g, uj〉ρ uj

LK,Hf =
∑
j≥1

σj 〈f, vj〉H vj

the eigenfunctions (uj)j≥1 of LK form an orthonormal basis of ker LK
⊥

and the eigenfunctions (vj)j≥1 of LK,H for an orthonormal basis on
ker(LK,H)⊥.
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Note that the RKHS H does not depend on the measure ρ. If the support
of the measure ρ is only a subset of X (e.g., a finite set of points or a
submanifold), then functions in L2(X, ρ) are only defined on the support of
ρ whereas function inH are defined on the whole space X. The eigenfunction
u of LK and LK,H coincide (up-to a scaling factor) on the support of the
measure, and v is an extension of u outside of the support of ρ.
An analogous result relates the matrix K and the operator LK,n .

Proposition 2. The following facts hold:
(1) The finite rank operator LK,n is and the matrix K are positive, self-

adjoint. In particular the spectrum σ(LK,n) has only finitely many
nonzero elements and is contained in [0, κ].

(2) The spectra of K and LK,n are the same up to the zero, that is,
σ(K)\{0} = σ(LK,n)\{0}. Moreover, if σ̂j is a non zero eigenvalue
and ûj , v̂j are the corresponding eigenvector and eigenfunction of
K/n and LK,n then (normalized to norm 1 in Rn and H)

ûi
j =

1√
σ̂j

v̂j(xi)

v̂j(·) =
1√
σ̂j

(
1
n

n∑
i=1

K(·, xi)ûi
j

)
(3) Also for all w ∈ Rn and f ∈ H the following decompositions hold:

Kw =
∑
j≥1

σ̂j 〈w, ûj〉 ûj ,

LK,nf =
∑
j≥1

σ̂j 〈f, v̂j〉H v̂j ;

where the sum runs on the nonzero eigenvalues, the family (ûj)j≥1 is
an othonormal basis in kerK⊥ ⊂ Rn and the family (v̂j)j≥1 of LK,n

form an orthonormal basis for the space ker(LK,n)⊥ ⊂ H, where

ker(LK,n) = {f ∈ H | f(xi) = 0 ∀i = 1, . . . , n}

sec_bounds

3.2. Bounds on eigenvalues and spectral projections. To estimate
the variation of the eigenvalues, we need to recall the notion of extended
enumeration of discrete eigenvalues. We adapt the definition of [14], which
is given for an arbitrary selfadjoint operator, to positive compact operators
If A is a compact operator, an extended enumeration is a sequence of real
numbers where every nonzero eigenvalue of A appears exactly as its multi-
plicity and the other values (if any) are zero. A nenumeration is an extended
numeration where any element of the sequence is an isolated eigenvalue with
finite multiplicity. If the sequence is infinite, this last condition is equivalent
to the fact that any element is non zero.
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The following result, due to Kato [14], is an extension to infinite dimen-
sional operators of an inequality due to Lidskii for finite rank operator.

Theorem 2 (Kato 1987). Let H be a separable Hilbert space with A, B
self-adjoint compact operators. Let (γj)j≥1, be an enumeration of discrete
eigenvalues of C, then there exist extended enumerations (βj)j≥1 and (αj)j≥1

of discrete eigenvalues of B and A respectively such that,∑
j≥1

φ(|βj − αj |) ≤ φ(
∑
j≥1

γj).

where φ is any nonnegative convex function with φ(0) = 0.

If A and B are positive operators and φ is an increasing function, it is pos-
sible to choose either (βj)j≥1 or (αj)j≥1 as the decreasing enumeration, and
the other sequence as the decreasing extended enumeration. In particular
we have

(
∑
j≥1

|βi − αj |p)1/p ≤ (
∑
j≥1

|γj |p)1/p, p ≥ 1,

so that
(
∑
j≥1

|βj − αj |2)1/2 ≤ ‖B −A‖HS

and
sup
j≥1

|βi − αj | ≤ ‖B −A‖.

The above results together with Theorem 1 immediately yields the following
result.

eigs Proposition 3. There exist extended enumerations (σj)j≥1 and (σ̂j)j≥1 of
discrete eigenvalues for LK,H and LK,n, respectively. With confidence 1 −
2e−τ

sup
j≥1

|σj − σ̂j | ≤ ‖LK,H − LK,n‖ ≤
2
√

2κ2√τ√
n

and ∑
j≥1

(σj − σ̂j)2

1/2

≤ ‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

.

If we are interested into concentration of the sum of the eigenvalues we
can give a straightforward proof.

conc_trace Proposition 4. Under the assumption of Proposition 3 with confidence 1−
2e−τ

|
∑

j

σj −
∑

j

σ̂j | = |Tr(LK,H)− Tr(LK,n)| ≤ 2
√

2κ2√τ√
n

.
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Proof. Note that

Tr(LK,n) =
1
n

n∑
i=1

K(xi, xi), and Tr(LK,H) =
∫

X
K(x, x)dρ(x).

Then we can define a sequence (ξi)i=1
n of real-valued random variables by

ξi = K(xi, xi)− Tr(LK,H). Clearly E[ξi] = 0 and |ξi| ≤ 2κ2, i = 1, . . . , n so
that Höeffding inequality (3) yields with confidence 1− 2e−τ∣∣∣∣∣ 1n∑

i

ξi

∣∣∣∣∣ = |Tr(LK,H)− Tr(LK,n)| ≤ 2
√

2κ2√τ√
n

.

�

Eigenfunctions and Spectral Projections To control the spectral pro-
jections associated to one or more eigenvalues we need the following pertur-
bation result, whose proof is given in [28] (see also Theorem 6 below). If A
is a positive compact operator such that #σ(A) = ∞, for an N ∈ N, let PA

N
be the orthogonal projection on the eigenvectors corresponding to the top
N eigenvalues.

Proposition 5. Let A be a compact positive operator. Given an integer
N , let δ = αN−αN+1

2 . If B is another compact positive operator such that
‖A−B‖ ≤ δ

2 , then

‖PB
D − PA

N ‖ ≤
‖A−B‖

δ
where the integer D is such that the dimension of the range of PB

D is equal
to the dimension of the range of PA

N . If A and B are Hilbert-Schmidt, in
the above bound the operator norm can be replaced by the Hilbert-Schmidt
norm.

The proof of the above result can be found in the appendix.
We note that control of projections associated to simple eigenvalues im-

plies that the corresponding eigenvectors are close since if u and v are taken
to be normalized and such that 〈u, v〉 > 0 then the following inequality holds

‖Pu − Pv‖2
HS ≥ 2(1− 〈u, v〉) = ‖u− v‖2

H.

We are ready to state a probabilistic bound on eigenprojections. Assume
that #σ(LK) = ∞

Theorem 3. Let N be an integer and gN = σN − σN+1. Given τ > 0, if
the number n of examples satisfies

gN

2
>

2
√

2κ2√τ√
n

,

then with probability greater than 1− 2e−τ

‖PN − P̂D‖HS ≤
2
√

2κ2√τ

gN
√

n
,
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where PN = PLK
N , P̂D = PK

D and the integer D is such that the dimension
of the range of PD is equal to the dimension of the range of P̂N .

4. Asymmetric Graph Laplacian

As before X is a subset of Rd endowed with a probability measure ρ
and L2(X, ρ) the space of square integrable functions with respect to ρ.
Moreover, W : X × X → R+ is a symmetric, positive weight contiunuous
function so that W (x, s) ≥ 0 for all x, s ∈ X. Note that here we do not
require W to be a positive definite kernel. Let Lr : L2(X, ρ) → L2(X, ρ) be
defined by

Lrf(x) = f(x)−
∫

X

W (x, s)f(s)
m(x)

dρ(s)

where m(x) =
∫
X W (x, s)dρ(s), is called the degree function.

Note that a set x = (x1, . . . , xn) ∈ X sampled i.i.d. according to ρ defines
a weighted undirected graph with the weight matrix W given by Wij =
1
nW (xi, xj). The (asymmetric) normalized graph Laplacian Lr : Cn → Cn

is an n× n matrix given by

Lr = I−D−1W,

where the degree matrix D is diagonal with Dii = 1
n

∑n
j=1 W (xi, xi).

We will view Lr as a perturbation of Lr due to finite sampling and will ex-
tend the approach developed in this paper to relate their spectral properties.
Note the methods in from the previous section are not directly applicable in
this setting since W does not have to be a positive definite kernel so there
is no RKHS associated to it. Moreover, even if W is positive definite, Lr

involves division by a function, and may not be a map from the RKHS to
itself.

To overcome this difficulty in our theoretical analysis, we will rely on
an auxiliary RKHS (which eventually will be taken to be an appropriate
Sobolev space). Interestingly enough, this space will play no role from the
algorithmic point of view, but only enters the theoretical analysis. More
precisely, let mn(·) = 1

n

∑n
i=1 W (·, xi), be the empirical degree function, we

will need the following

cond2 Assumption 1 (A1). Assume that H is a RKHS with bounded continuous
kernel and, for all x ∈ X, that W (x, ·)/m(·) ∈ H, W (x, ·)/mn(·) ∈ H and
also that for all x, s ∈ X, 0 < c ≤ W (x, s) < ∞.

We can now consider the following extension operators: Lr,H, Lr,H,n, AH, An :
H → H

Lr,Hf = f −AHf = f − 1
m(·)

∫
X
〈f,K(x, ·)〉HW (x, ·)dρ(x),op1 (9)

Lr,H,nf = f −Anf = f − 1
mn(·)

1
n

n∑
i=1

〈f,K(xi, ·)〉HW (xi, ·),op2 (10)
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It can be seen (see the next subsection, where a detailed analysis is given)
that Lr, Lr,H and AH have related eigenvalues and eigenfunctions and that
eigenvalues and eigenfunctions (eigenvectors) of An and L are also closely
related. In particular we will see in the following that to relate the spectral
properties of Lr and L it suffices to control the deviation AH−An. However
before doing this we make the above statements precise in the following
subsection.

4.1. Extension Operators. The following proposition relates the opera-
tors Lr, AH and Lr,H.

ext_lap Proposition 6. The following facts hold:

(1) The operator AH is Hilbert-Schmidt, the operators Lr and Lr,H are
bounded and have positive eigenvalues.

(2) The eigenfunctions of AH and Lr,H are the same and σ(AH) =
σ(Lr,H)− 1.

(3) The spectra of Lr and Lr,H are the same, moreover if σ 6= 1 is an
eigenvalue and the u, v eigenfunctions of Lr and Lr,H (normalized
to norm 1 in L2(X, ρ) and H) respectively, then

u(x) =
1√

1− σ
v(x)

v(·) =
1√

1− σ

∫
X

dρ(x)
W (x, ·)
m(·)

u(x)

(4) Finally the following decompositions hold

Lr = I−
∑
j≥1

σjPj ,

Lr,H = I−

∑
j≥1

σjQj + D

 ,

where Qj , Pj are the spectral projection in L2(X, ρ) and H associated
to the eigenvalues σj and e eigenvalues σj and D is a quasi-nilpotent
operator such that

QjD = DQj = 0.

As in Section 3,we have an analogous result allowing us to relate Lr to
Lr,H,n and An.

ext_lap_emp Proposition 7. The following facts hold:

(1) The operator An is Hilbert-Schmidt, the matrix Lr and the operator
Lr,H,n have non-negative eigenvalues.

(2) The eigenfunctions of An and Lr,H,n are the same and σ(An) =
σ(Lr,H,n)− 1.
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(3) The spectra of Lr and Lr,H,n are the same up to the eigenvalue 1,
moreover if σ̂ 6= 1 is an eigenvalue and the û, v̂ eigenvector and
eigenfunction of Lr and Lr,H,n, (normalized to norm 1 in Cn and
H) respectively, then

ûi =
1√

1− σ̂
v̂(xi)

v̂(·) =
1√

1− σ̂

n∑
i=1

W (xi, ·)
mn(·)

ûi

where ûi is the i−th component of the eigenvector û.
(4) Finally the following decompositions hold

Lr = I−
n∑

j=1

σ̂jP̂j ,

Lr,H,n = I−

 n∑
j=1

σ̂jQ̂j + D̂

 ,

where Q̂j , P̂j are spectral projections, in Cn and H, associated to
the eigenvalues σ̂j and D̂ is a quasi nilpotent operator such that
Q̂jD̂ = D̂Q̂j = 0.

The last decomposition is parallel to the Jordan canonical form for (non-
symmetric) matrices.

The assumption W (x, ·)/m(·) ∈ H is crucial and is not satisfied in general.
For example, it is not necessarily the case even if W (x, y) is a reproducing
kernel. however it is the case when the RKH space H is a Sobolev space
with sufficiently high smoothness degree and the weight function is also
sufficiently smooth. To estimate the deviation of Lr,H to Lr,H,n we consider
this latter situation.

4.2. Convergence for Operators in Sobolev Spaces and Smooth
Weight Function. We briefly recall some basic definitions as well some
connection between Sobolev spaces and RKHS. For the sake of simplicity,
X can be assumed to be a bounded open subset of Rd or a compact smooth
manifold and ρ a probability measure with density (wrt to the uniform mea-
sure) bounded away from zero.

Recall that for α = (α1, . . . , αd) ∈ Nd and |α| = α1 + · · ·+ αd, we denote
with Dαf the (weak) derivative of f on X. For any s ∈ N, the Sobolev
space Hs is defined as the space of square integrable functions having weak
derivatives on X for all |α| = s and such that

‖f‖s = ‖f‖ρ +
∑
|α|=s

‖(Dαf)(x)‖ρ < ∞,

the above definition of Hs can be generalized allowing s ∈]0,+∞[.
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The Sobolev Embedding theorem ensures3 that, for s > d/2 the inclusion
Hs ↪→ C(X) is well defined and bounded or in other words we have

‖f‖∞ ≤ C1‖f‖s.

Then Hs is a RKHS with reproducing kernel Ks(x, y) and f(x) = 〈f,Ks
x〉s

where Ks
x := Ks(x, ·). Moreover we also have supx∈X‖Ks

x‖s = C1 < ∞.
In the following we will need the following result from [7].

Lemma 1. Let g ∈ Cs(X) where all derivatives are bounded up to order s.
The operator Mg : Hs → Hs defined by Mgf(x) = g(x)f(x) is a well defined
bounded operator with norm

molt_norm (11) ‖Mg‖ ≤ a‖g‖s′ < ∞.

In view of the relation between Lr, Lr,H and AH (and their empirical
counterparts) to relate the spectral properties of Lr and L it suffices to con-
trol the deviation AH−An. To this aim we make the following assumption.

cond3 Assumption 2 (A2). Let Hs′ ,Hs to be a Sobolev spaces such that s′ > s +
d/2. We assume that supx∈X‖Ks

x‖s = C1, supx∈X‖Wx‖s′ ≤ C2, ‖m−1‖s′ ≤
C3, ‖m−1

n ‖s′ ≤ C4.

The following theorem establishes the desired result.

lapla_main Theorem 4. If assumption A2 holds, then for some positive constant C
with confidence 1− 2e−τ we have

‖AH −An‖HS ≤ C

√
τ√
n

The proof of the above result is postponed to section 4.4 and in the next
section we consider concentration for the spectra.

4.3. Bounds on eigenvalues and spectral projections. Since the oper-
ators are no longer self-adjoint the perturbation results in section 3.2 cannot
be used. The following result is a reformulation of a result [26], see also [1].

Theorem 5. Let B,Bn be bounded compact operators such that Bn → B
in operator norm as n → ∞. Let α be a non zero eigenvalue of B with
finite multiplicity m. Let Γ be a simple closed curve enclosing α, then there
exist N such that for n > N there is a finite set of eigenvalues of Bn with
multiplicity summing up to m enclosed in Γ. Moreover every eigenvalue αn

of Bn in such finite set converges to α as n →∞.

This result together with Theorem 4 allows to derive convergence of eigen-
values in the sense of the above proposition. To obtain bounds on spectral
projections we can use the following result.

3Under mild conditions on the boundary of X for the case of domain in Rd.
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caldo Theorem 6. Let A be a compact operator. Given 1 ≤ N ≤ pA, there exist
two costants δ and R > 0, depending on N and σ(A), such that for any
compact operator B satisfying ‖A−B‖ ≤ δ/2, then

2pert (12) ‖PB
N − PA

D‖ ≤ R‖A−B‖,

for a suitable integer D, depending on B. If R‖A−B‖ ≤ 1, D is such that
the sum of the multiplicity of the first D eigenvectors of B is equal to the
sum of the multiplicity of the first N eigenvectors of A.
If A and B are Hilbert-Schmidt operator, in (12) it is possible to replace the
operator norm with the Hilbert-Schmidt norm.
Finally, if A is a positive operator, δ = αN−αN+1

2 , R = 1
δ and D is always

such that the sum of the multiplicity of the first D eigenvectors of B is equal
to the sum of the multiplicity of the first N eigenvectors of A.

Then we can immediately derive the following result.

Theorem 7. Consider the first N eigenvalues of AH. There exist two
costants δ and R > 0, depending on N and σ(AH), such that if δ

2 > C
√

τ√
n

with C as in Theorem 4, then with confidence 1− 2e−τ ,

‖PN − P̂D‖HS ≤ R
C
√

τ√
n

.

where PN , P̂D are the eigenprojections corresponding to the N eigenvalues
of AH and D eigenvalues of An. If RC

√
τ√
n
≤ 1, then D is such that the sum

of the multiplicity of the first D eigenvectors of An is equal to the sum of
the multiplicity of the first N eigenvectors of AH.

sec_proof
4.4. Proofs. We start giving the proof of Proposition 6.

Proof of Proposition 6. We first need some preliminary observations. Note
that ρW = mρ defines a finite measure on X having density w.r.t. ρ.
The measures ρW , ρ are equivalent4 and the spaces L2(X, ρ) and L2(X, ρW )
(square integrable functions with respect to ρW ) are the same vector space
but they are endowed with different norm/scalar product. Functions that
are orthogonal in one space might not be orthogonal in the other. In partic-
ular if Lr is regarded as an operator from and to L2(X, ρW ), the eigenvalues
and eigenfunctions are the same. The operator UW : L2(X, ρ) → L2(X, ρW )
defined by UW f(x) = m(x)−1/2f(x) is unitary.

4Two measures are equivalent if they have the same null sets. In terms of absolute con-
tinuity of measures, two measures are equivalent if and only if each is absolutely continuous
with respect to the other.
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Note that the operator IK : H → L2(X, ρW ) defined by IKf(x) =
〈f,Kx〉H is linear and Hilbert-Schmidt since

‖IK‖2
HS =

∑
j≥1

‖IKej‖2
ρW

=
∫

X
dρW (x)

∑
j≥1

〈Kx, ej〉2H

=
∫

X
K(x, x)m(x)dρ(x) ≤ ‖Kx‖2‖m‖∞.

The operator I∗W : L2(X, ρW ) → H defined by

I∗W f =
∫

X
dρ(x)

W (x, ·)
m(·)

f(x)

is linear and bounded by ‖Wx/m‖2
H. A direct computation shows that

I∗W IK = AH = I − Lr,H

and
IKI∗W = I − Lr,

where Lr : L2(X, ρW ) → L2(X, ρW ). Both the above operators are linear
and Hilbert-Schmidt since they are composition of a bounded operator and
Hilbert-Schmidt operator. Again by a direct computation we have that

σ(IKI∗W ) = σ(I∗W IK) = σ(Lr)− 1 = σ(Lr,H)− 1.

Moreover if σ 6= 1 and v ∈ H, v 6= 0 such that Lr,Hv = σv, then if we let√
1− σu = IKv then u 6= 0, u is an eigenfunction of Lr and

√
1− σv = I∗W u.

Similarly we can prove that if σ 6= 1 and u ∈ L2(X, ρ), u 6= 0 such that
Lru = σu, then if we let

√
1− σv = I∗W u then v 6= 0, v is an eigenfunction

of Lr,H and
√

1− σu = IKv.
We now show that Lr and Lr,H have positive eigenvalues. To this aim

note that
Lr = UW LsU

−1
W .

where Ls : L2(X, ρ) → L2(X, ρ) is defined by

Lsf(s) = f(s)−
∫

X

W (x, s)√
m(x)

√
m(s)

f(x)dρ(x).

The operator Lr is positive since ∀f ∈ L2(X, ρ),

〈Lsf, f〉ρ =
∫

X
|f(x)|2dρ(x)−

∫
X

∫
X

W (x, s)√
m(x)

√
m(s)

f(x)f(s)dρ(x)dρ(s)

=
1
2

∫
X

∫
X

[
|f(x)|2

m(x)
− 2

|f(x)||f(s)|√
m(x)

√
m(s)

− |f(s)|2

m(s)

]
W (x, s)dρ(x)dρ(s)

=
1
2

∫
X

∫
X

W (x, s)

[
|f(x)|√
m(x)

− |f(s)|√
m(s)

]2

> 0,
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where we used∫
X
|f(x)|2dρ(x) =

∫
X
|f(x)|2dρ(x)

∫
X W (x, s)dρ(s)∫
X W (x, s)dρ(s)

=
∫

X

∫
X

|f(x)|2

m(x)2
W (x, s)dρ(x)dρ(s).

Finally we prove that both Lr and Lr,H admits a decomposition in terms
of spectral projections.
To this aim we note that since IKI∗W is a self adjoint operator, it can be
decomposed as

IKI∗W =
∑
j≥1

σjPj

where for all j, Pj : L2(X, ρW ) → L2(X, ρW ) is the spectral projection
associated to an eigenvalue σj 6= 0. Note that by definition Pj satisfies:

P 2
j = Pj ,

P ∗
j = Pj ,

PjPi = 0, i 6= j,

PjPker(IKI∗W ) = 0∑
j≥1

Pj = I − Pker(IKI∗W )

where Pker(IKI∗W ) is the projection on the kernel of IKI∗W and the sum in
the last equation converges in the strong operator topology. In particular
we have

IKI∗W Pj = PjIKI∗W = σjPj .

Let Qj : H → H be defined by

Qj =
1
σj

I∗W PjIK .

Then from the properties of the projections Pj we have,

Q2
j =

1
σ2

j

I∗W PjIKI∗W PjIK =
1
σj

I∗W PjPjIK = Qj ,

QjQi =
1

σjσi
I∗W PjIKI∗W PiIK =

1
σi

I∗W PjPiIK = 0.

Moreover, since∑
j≥1

σjQj =
∑
j≥1

σj
1
σj

I∗W PjIK = I∗W (
∑
j≥1

Pj)IK = I∗W IK − I∗W Pker(IKI∗W )IK

so that
IKI∗W =

∑
j≥1

σjQj + I∗W Pker(IKI∗W )IK ,
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where again all the sums are to be intended as converging in the strong
operator topology. If we let D = I∗W Pker(IKI∗W )IK then

QjD =
1
σj

I∗W PjIKI∗W Pker(IKI∗W ) = I∗W PjPker(IKI∗W ) = 0,

and, similarly,DQj = 0. By construction σ(D) = 0, that is, D is a quasi-
nilpotent operator. �

The proof of Proposition 7 is the essentially the same.

Proof of Proposition 7. The proof is the same as the above proposition
by replacing ρ with the empirical measure 1

n

∑n
i=1 δxi. �

Next we prove Theorem 6.

Proof of Theorem 6. Recall that for any bounded operator T with norm
strictly less than 1, then Neumann series converges so that

∞∑
i=0

T i = (I − T )−1

and this allows to show that if T is invertible and L is another operator
such that q = ‖T − L‖‖T−1‖ < 1, then L is also invertible with ‖L−1‖ ≤
1/(1− q)‖T−1‖. This can be seen writing L = T (I − (I − T−1L)) = T (I −
T−1(T − L)) so that

L−1 = (I − T−1(T − L))−1T−1 =
∞∑
i=0

[T−1(T − L)]iT−1.

Let Γ be a (counterclockwise) closed simple curve enclosing α1, . . . , αN , but
no other points of σ(A). The existence is ensured by the fact that all the αi

are isolated points. Since the spectrum of A is a subset of the real line, we
can always choose Γ in such a way that Γ intersects the positive real axis
only in two points: first point is between αN and αN+1, whereas the second
point is strictly bigger that 2‖A‖. Let

δ−1 = sup
λ∈Γ

‖(λI −A)−1‖,

which is finite since Γ is compact curve in the resolvent set ρ(A). Possibly
redefining δ we can also assume that δ ≤ ‖A‖.

For λ ∈ Γ, we can take T = λI −A and L = λI −B so that, if

radius (13) ‖(λI −A)−1(A−B)‖ ≤ δ−1‖(A−B)‖ =
1
2

< 1

then the above results give

(λI −B)−1 =
∞∑
i=0

(−1)k[(λI −A)−1(A−B)]i(λI −A)−1

= (λI −A)−1 +
∞∑
i=1

(−1)k[(λI −A)−1(A−B)]i(λI −A)−1.neu (14)
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In particular, Γ does not intersect the spectrum of B. Moreover, since
σ(B) ⊂ [0, ‖B‖] and, by assumption,

‖B‖ ≤ ‖B −A‖+ ‖A‖ < 2‖A‖,
Γ is a (counterclockwise) closed simple curve enclosing the first D eigenvalues
β1, . . . , βD of B, but no other points of σ(B). Recall that the spectral
projections can be written as

PA
Γ =

1
2πi

∫
Γ
(λI −A)−1dλ, PB

Γ =
1

2πi

∫
Γ

.(λI −B)−1dλ

The above expression and (14) give

PB
Γ − PA

Γ =
1

2πi

∫
Γ
((λI −B)−1 − (λI −A)−1)dλ

=
1

2πi

∫
Γ

∞∑
i=1

(−1)k[(λI −A)−1(A−B)]i(λI −A)−1dλ

so that taking q ≤ 1/2 the following inequalities hold

‖PB
Γ − PA

Γ ‖ ≤ 2δ−1 `(Γ)
2π

≤ ‖A−B‖
δ2

`(Γ)
π

= C‖A−B‖

where `(Γ) is the length of Γ. In the above computations, one can re-
place the operator norm with the Hilbert-Schmidt norm. Notice that, if
C‖A−B‖ ≤ 1, ‖PA

N − PB
D ‖ ≤ 1. Since both are projections, it follows that

the corresponding ranges have the same dimensions.
If A and B are positive, one can choose the curve Γ as in [28] and, following

their proof, this gives the explicit form for δ and C. �

To prove Theorem 4 we need the following preliminary estimates.

op_bound2 Proposition 8. The operators LW,H, LW,n : Hs → Hs defined by

LW,H =
∫

X
〈·,Ks(x, ·)〉s W (x, ·)dρ(x), op1

LW,n =
1
n

n∑
i=1

〈·,Ks(xi, ·)〉s W (xi, ·) op2,

are Hilbert Schmidt and with confidence 1− 2e−τ

‖LW,H − LW,n‖HS ≤
2
√

2C1C2

√
2τ√

n
.

Proof. Note that ‖
〈
·,Ks

xi

〉
s
Wxi‖HS = ‖Ks

xi
‖‖Wxi‖s ≤ C1C2 so that LW,n, LW,H

are Hilbert Schmidt. The random variables (ξi)n
i=1 defined by ξi =

〈
·,Ks

xi

〉
s
Wxi−

LW,H are zero mean and bounded by 2C1C2. Applying (4) we have with con-
fidence 1− 2e−τ

op_bound2 (15) ‖LW,H − LW,n‖HS ≤
2
√

2C1C2
√

τ√
n

.

�
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Next the multiplication operators defined by the degree functions are con-
sidered.

mul_bound Proposition 9. Let M,Mn : Hs → Hs be defined by Mf(x) = m(x)f(x)
and Mnf(x) = mn(x)f(x). Then M,Mn are linear operators bounded by C2

and with confidence 1− 2e−τ

‖M −Mn‖ ≤
2C2a

√
2τ√

n
.

where is a positive constant.

Proof. It follows from (11) that under assumption A2 M,Mn are well defined
operators whose norm is bounded by 2aC2 (we assume a is the same for sake
of simplicty).

The random variables (ξi)n
i=1, defined by ξi = Wxi −m are zero mean and

bounded by 2C2a. Applying (4) we have with high probability

‖m−mn‖s′ ≤
2aC2

√
2τ√

n
.

It follows from (11) that

molt_bound (16) ‖M −Mn‖ ≤
2aC2

√
2τ√

n
.

�

We can combine the above two propositions to get the proof of Theo-
rem (4).

Proof of Theorem 4. It follows from (11) and by assumption A3 that the
operators M−1,M−1

n : Hs → Hs defined by M−1f(x) = m(x)−1f(x) and
M−1

n f(x) = m−1
n (x)f(x) are linear operators bounded by C3, C4 respec-

tively. Then AH = M−1
n LW,H and An = M−1LW,n so that we can consider

the following decomposition

Lr,H − Lr,H,n = M−1
n LW,n −M−1LW,H

= (M−1
n −M−1)LW,H + M−1

n (LW,n − LW,H)

= M−1
n (M −Mn)M−1LW,H + M−1

n (LK,n − LW,H).deco (17)

Recalling (1), we consider the Hilbert-Schmidt norm of the above expression.
Using the inequalities (9), (15), (11) and the assumption A3 we see that there
is a constant C, such that

‖M−1
n LK,n −M−1LK,H‖HS ≤ C

√
τ√
n

.

�
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Appendix A. Spectral theorem for non-self-adjoint compact
operators

Let A : H → H be a compact operator. The spectrum σ(A) of A is
defined as the set of complex number such that the operator(A − λI) does
not admit a bounded inverse, whereas the complement of σ(A) is called the
resolvent and denoted by ρ(A). For any λ ∈ ρ(A), R(λ) = (A−λI)−1 is the
resolvent operator, which is by definition a bounded operator. We recall the
main results about the spectrum of a compact operator, [13]

Proposition 10. The spectrum of a compact operator A is a countable
compact subset of C with no accumulation point different from zero, that is,

σ(A)\{0} = {λi | i ≥ 1, λi 6= λj if i 6= j} with lim
i→∞

λi = 0 if |σ(A)| = ∞

For any i ≥ 1, λi is an eigenvalue of A, that is, there exists a nonzero
vector u ∈ H such that Au = λiu. Let Γi be a (counterclockwise) closed
simple curve enclosing λi, but no other points of σ(A), then the operator
defined by

Pλi
=

1
2πi

∫
Γi

(λI −A)−1dλ

satisfies

Pλi
Pλj

= δijPλi
and (A− λi)Pλi

= Dλi
for all i, j ≥ 1,

where Dλi
is a nilpotent operator such that Pλi

Dλi
= Dλi

Pλi
= Dλi

. In
particular the dimension of the range of Pλi

is always finite.

We notice that Pλi
is a projection onto a finite dimensional space Hλi

,
which is left invariant by T . A nonzero vector u belongs to Hλi

if and only
if there exists an integer m ≤ dimHλi such that (A− λ)mu = 0, that is, u
is a generalized eigenvector of A. However, if A is symmetric, for all i ≥ 1,
λi ∈ R, Pλi

is an orthogonal projection and Dλi
= 0 and it holds that

A =
∑
i≥1

λiPλi

where the series converges in operator norm. Moreover, if H is infinite
dimensional, λ = 0 is always in σ(A), but it can be or not an eigenvalue of
A.

If A be a compact operator with σ(A) ⊂ [0, ‖A‖], we introduce the fol-
lowing notation. Denoted by pA the cardinality of σ(A) \ {0} and given an
integer 1 ≤ N ≤ pA, let λ1 > λ2 > . . . , λN > 0 be the first N nonzero eigen-
values of A, sorted in a decreasing way. We denote by PA

N the spectral pro-
jection onto all the generalized eigenvectors corresponding to the eigenvalues
λ1, . . . , λN . The range of PA

N is a finite-dimensional vector space, whose di-
mension is the sum of the algebraic multiplicity of the first N eigenvalues.
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Moreover

PA
N =

N∑
j=1

Pλj
=

1
2πi

∫
Γ
(λI −A)−1dλ

where Γ is a (counterclockwise) closed simple curve enclosing λ1, . . . , λN ,
but no other points of σ(A).

References

anse [1] P. M. Anselone. Collectively compact operator approximation theory and applications
to integral equations. Prentice-Hall Inc., Englewood Cliffs, N. J., 1971. With an ap-
pendix by Joel Davis, Prentice-Hall Series in Automatic Computation.

aron50 [2] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404,
1950.

bapero07 [3] F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning
theory. J. Complexity, 23(1):52–72, 2007.

belkin03 [4] M. Belkin. Problems of Learning on Manifolds. PhD thesis, 2003.
belniy06 [5] M. Belkin and P. Niyogi. Convergence of laplacian eigenmaps. New York, 2006.

Springer.
blbozw06 [6] G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel principal

component analysis. Machine Learning, 0885-6125 (Print) 1573-0565 (Online), 2006.
bur98 [7] V. Burenkov. Sobolev spaces on domains. B. G. Teubuer, Stuttgart-Leipzig, 1998.

deroca06 [8] E. De Vito, L. Rosasco, and A. Caponnetto. Discretization error analysis for Tikhonov
regularization. Anal. Appl. (Singap.), 4(1):81–99, 2006.

devroscap05 [9] E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning
from examples as an inverse problem. Journal of Machine Learning Research, 6:883–
904, May 2005.

ginkol06 [10] E. Gine’ and V. Koltchinskii. Empirical graph laplacian approximation of laplace-
beltrami operators: Large sample results. High Dimensional Probability, 51:238259,
2006.

hein2006 [11] M. Hein. Uniform convergence of adaptive graph-based regularization. pages 50–64,
New York, 2006. Springer.

headlu [12] M. Hein, J. Audibert, and U. von Luxburg. From graphs to manifolds - weak and
strong pointwise consistency of graph laplacians. pages 470–485, 2005. Student Paper
Award.

kato66 [13] T. Kato. Perturbation theory for linear operators. Springer, Berlin, 1966.
kato87 [14] T. Kato. Variation of discrete spectra. Commun. Math. Phys., III:501–504, 1987.

koltch98 [15] V. Koltchinskii. Asymptotics of spectral projections of some random matrices ap-
proximating integral operators. Progress in Probabilty, 43, 1998.

kolgin00 [16] V. Koltchinskii and E. Gine’. Random matrix approximation of spectra of integral
op- erators. Bernoulli, 6:113–167, 2000.

lafon04 [17] S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, 2004.
lang93 [18] S. Lang. Real and Functional Analysis. Springer, New York, 1993.

menpaj05 [19] S. Mendelson and A. Pajor. Ellipsoid approximation with random vectors. pages 429–
433, New York, 2005. Springer.

menpaj06 [20] S. Mendelson and A. Pajor. On singular values of matrices with independent rows.
Bernoulli, 12(5):761–773, 2006.

pinelis92 [21] I. Pinelis. An approach to inequalities for the distributions of infinite-dimensional
martingales. Probability in Banach Spaces, 8, Proceedings of the 8th International
Conference, pages 128–134, 1992.

shcrka02 [22] J. Shawe-Taylor, N. Cristianini, and J. Kandola. On the concentration of spectral
properties. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in



22 L. ROSASCO, M. BELKIN, E. DE VITO

Neural Information Processing Systems 14, pages 511–517, Cambridge, MA, 2002.
MIT Press.

singer06 [23] A. Singer. From graph to manifold laplacian: The convergence rate. Appl. Comput.
Harmon. Anal.,, 21:128–134, 2006.

smazho05 [24] S. Smale and D. Zhou. Learning theory estimates via integral operators and their
approximations. submitted, 2005. retrievable at http://www.tti-c.org/smale.html.

smazho08 [25] S. Smale and D. Zhou. Geometry of probability spaces. preprint, 2008. retrievable at
http://www.tti-c.org/smale.html.

vobebo04 [26] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.
Ann. Statist., 36(2):555–586, 2008.

yaroca07 [27] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learn-
ing. Constr. Approx., 26(2):289–315, 2007.

zwabla06 [28] L. Zwald and G. Blanchard. On the convergence of eigenspaces in kernel principal
component analysis. In NIPS, 2006.

Mikhail Belkin, Department of Computer Science and Engineering, Ohio
State University

E-mail address: mbelkin@cse.ohio-state.edu

Ernesto De Vito, D.S.A., Università di Genova, Stradone Sant’Agostino,
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