
WORKING PAPER 121

CGOL - an Alternative External Representation For LISP users

Vaughan R. Pratt

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

March 1976

Abstract

Advantages of the standard external representation of LISP
include its simple definition, its economical implementation and
its convenient extensibility. These advantages have been gained
by trading off syntactic variety for the rigidity of paren-
thesized prefix notation. This paper describes an approach to
increasing the available notational variety in LISP without
compromising the above advantages of the standard notation. A
primary advantage of the availability of such variety is the
extent to which documentation can be incorporated into the code
itself, decreasing the chance of mismatches between cods and
documentation. The approach differs from that of MLISP , which
attempts to be a self-contained language rather than a notation
available immediately on demand to the ordinary LISP user. A
striking feature of a MACLISP implementation of this approach,
the CGOL notation, is that any LISP user, at any time, without
any prior preparation, and without significant compromise of
storage or speed, can in mid-stream change to the CGOL notation
merely by typing (CGOL) at the LISP he is presently using, even
if he has already loaded and begun running his LISP program.
Another striking feature is the possibility of notational
transparency; a LISP user may ask LISP to read a file without
needing to know the notation(s) used within that file.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-75-C-0643.

Working Papers are intended for internal use only.

CGOL - an Alternative External Representation For LISP users

V. R. Pratt

11/25/75

#####WARNING#####
CGOL IS AN EXPERIMENTAL FACILITY. ALTHOUGH IT IS HOPED THAT THE
LANGUAGE WILL SETTLE DOWN FAIRLY SOON, IT IS AT PRESENT TOO EARLY TO
COMMIT THE DESIGN TO STONE TABLETS. ALSO, SOME DIFFERENCES PRESENTLY
EXIST BETWEEN THIS MANUAL AND THE IMPLEMENTATION. THE KNOWN
DIFFERENCES ARE DOCUMENTED IN SECTION 9.

#####COME-ON####
BUT DON'T LET THAT STOP YOU TRYING IT OUT. USER FEEDBACK WILL BE
MOST APPRECIATED.

1. PHILOSOPHY

1.1 Representational Nonsense

LISP S-expressions ("abstract" objects in a domain that
contains atoms and is closed under the pairing function CONS) require
an internal and an external representation ("concrete" lobjects). The
former is for the convenience of the programmer, the latter for that
of the machine. The functions (READ) and (PRINT) provide maps between
the two concrete representations.

We use the term "LISP" principally to denote the abstract
objects; out of respect for usage, however, we shall also use it to
denote "the" standard external representation, which varies mainly in
detail from one implementation to the next. We rely on context to
disambiguate these usages. We use "INT" to denote whatever internal
representation obtains in a particular implementation.

1.2 CGOL as an alternative external representation.

This document describes an alternative external
representation, CGOL, for those LISP S-expressions that encode
procedural information. The representation is modeled on McCarthy's
M-expression notation; as such it has Smith and Enea's MLISP language
as a predecessor. See section s for a discussion of similarities and
differences between MLISP and CGOL.

In an environment that supports both CGOL and LISP external
representation, we envisage facilities for mapping between
representations as diagrammed below:

-2-

READ CGOLREAD

1LISP NT CGOL

PRINT CGOLPRINT

This diagram of course generalizes to any set of external
representations.

1.3 Usage

If LISP's top-level, a cut-down version of which might be
(PRINT (EVAL (READ))),
is replaced by
(CGOLPRINT (EVAL (CGOLREAD))) the top level should now expect CGOL

notation, and reply in like notation. (At present CGOLPRINT is
implemented in MACLISP as PRINT, so the user must put up with LISP
replies.)

In MACLISP, the function (CGOL) will set up your top and break
levels as above. Both (CGOLREAD) and (CGOL) are autoloading. Thus if
at any time while talking LISP you suddenly want or need to use
CGOL notation, you need merely type (CGOL) at LISP and LISP will then
expect CGOOL expressions. To revert to standard notation, type LISP
Because of the autoloading feature, no other action on your part is
needed. This implies that you may have a mixture of CGOL and LISP
programs in a single file, provided the appropriate heading
information is given. The overhead of executing (CGOL) and LISPO is
negligible.

It is hoped at a later date to lambda-bind NOTATION to LISP,
CGOL, MAPL or whatever, and to have top-level use NOTATION to choose
the appropriate versions of READ and PRINT. This will facilitate
proper nesting of environments. An immediate application of such a
scheme is to do all flMe reading with LISP as the default NOTAION for
the duration of that file. Thus a user using notation X can read a
file without asking what notation it uses, and on exit from the file
find that he is still using notation X. People preparing files need
merely prefix non-LISP notation with the appropriate instruction to
rebind NOTATION.

1.4 Design Considerations.

The two principles that serve respectively as lower and upper
bounds on the choice of CGOOL notation are:

(i) The notation should fairly match what the non-LISP
community regards as a reasonable notation. In particular, users of

-3-

ALGOL, FORTRAN, PL/I etc, should not-experience difficulty in guessing
the mdanings of those constructs common to. those languages, e.g.
assignment, application, arithmetic and relational operations, and the
more familiar control constructs. This requirement need not apply to
constructs peculiar to LISP, such as LIST, CONS, LAMBODA, EVAL, QUOTE
and so on.

(ii) The notation should restrict itself to being a notation for
LISP abstract objects, and not try to be a full-blown programming
language with its own useful set of constructs. (This represents a

point of departure from the MLISP philosophy.) Useful constructs
should be added to LISP via the same channels (modulo choice of
notation) that are used regularly by all LISP users to augment LISP,
e.g. (DEFUN ...) or its CGOL equivalent.

There is a tension between these two requirements that is at
present not appreciated by the bulk of the computer science community.
That tension is brought about by the two very different techniques for
specifying the syntax of ALGOL-like languages and the semantics of
LISP programs. The former is phrase oriented, the latter is
token oriented. ("Phrase" and "token" may be replaced respectively by
"nen-terminal" and "terminal", to use the formal language
terminology.) A typical syntax specification uses BNF, i.e. a
context-free grammar, whereas LISP programs are specified in terms of
the meaning of atoms. The rich non-terminal structure of, say, the
syntax of ALGOL is replaced by a trivial non-terminal structure for
LISP, namely all non-atomic programs are of the form (FUNCTION
ARGUMENTS).

Not all ALGOL-like languages are specified by their phrase
structure. From time to time attempts are made to use the powerful
macro facilities of assembly languages to implement "higher level"
languagesý Since macros are identified by single tokens, they
constitute a token oriented specification. A limitation of the
approach is that the macro identifier must usually appear before its
arguments. Also a macro interpreter that allows nested calls must be
used.

S
The CGOL notation u4es a token oriented approach to fit

comfortably with constraint (ii). Unlike macro based approaches, a
given token may have either zero or one argument preceding it, in
addition to any number following it (suitably delimited). This gives
rise to the familiar association problem, which we deal with using
Floyd's notion of precedence functionso Each argument position of a
token has an associated "binding power"; association is resolved in
favor of the higher binding power. The binding power idea is due to
Floyd, who called the binding powers "operator functions"; the term we
use appears to have originated with CPL. The parsing algorithm we use
differs from Floyd's in that ours is top-down whereas Floyd's is

-4-

bottom-up. The original version of the CGOL parser was implemented at
Stanford in July 1978; its use of binding bowers was adapted soon after
by Smith for the MLISP systemý We discuss the details of the
association problem in section 3.

2. EXAMPLES OF CGOL EXPRESSIONS

The following examples of CGOL expressions, together with the'
effect of doing (PRINT (CGOLREAD)) on them (i.e. their LISP

translations), are given below. To aid the eye we shall use upper
case for LISP and lower case for CGOL. Note that CGOLREAD demands an
ALTMODE (not shown) after each CGOL expression.

1+1
(PLUS 1 1)

[1, '2+2', sin(.37*x+1))
(LIST 1 '(PLUS 2 2) (SIN (PLUS (TIMES .37 X) 1))

\x,y; 1/sqrt(x**2 + y**2)
(LAMBDA (X Y) (QUOTIENT 1 (SQRT (PLUS (EXPT X 2) (EXPT Y 2)))))

sstatus(toplevel, .'print a; eval read')
(SSTATUS TOPLEVEL '(PROG2 (PRINT *) (EVAL (READ))))

car m & car m - cdr m
(PROG2 NIL (CAR M) (RPLACA M (CDR Ml))

'father' of x - 'brother' Qf relative of y
(PUTPROP X (GET (GET Y RELATIVE) 'BROTHER) 'FATHER)

a(i,j) - 3

(STORE (A I J) 3)

if i isnum and -j<i<j then lil else print i
(COND ((AND (NUMBERP I) (LE§SP (MINUS J) I J}) (ABS I)) ((PRINT i)))

a. (bec) = (a.b)ec
(EQUAL (CONS A (APPEND B C)) (APPEND (CONS A B) C))

for i in aeb do if 7<i<13 then return "In range"
(MAPC (FUNCTION (LAMBDA (I)' (COND ((LESSP 7 I 13)

(RETURN. 'I/n/ /r/a/n/g/e)))))
(APPEND A B))

f(x,y)(u,v,w)(i)
(((F X Y) U V W) I)

if j remainder 6 isin !'(1 S) then print j

-5-

else badlist - j . badlist
<note: - ! is a no-op unary function that expects its argument
in LISP notation>

(COND ((MEMBER (REMAINDER J 6) '(1 5)) (PRINT J))
((SETQ BADLIST 1(CONS J BADLIST))))

while (a;b) do c
<a handy way to put the stopping condition b in the middle of
a loop body a;b>

(DO NIL ((NOT (PROG2 A B))) C)

define a "TO" b; if not a>b then a.((a+l), to b)
(DEFUN TO (A B) (COND ((NOT (GREATERP A B)) (CONS A (TO (PLUS A 1) B)))))

3. GRAMMAR

A CGOL expression is a string of sub-expressions and tokens.
For example the expression "if a=b then 8 else i+1" has six
constituents corresponding to the six items in the "construct"

if a then b else c
In this example those constituents are:
the token "if"
the sub-expression "a=b"
the token "then"
the sub-expression "8"
the token "else" and
the sub-expression "i+1".

In turn, the sub-expression "a=b" has three constituents:
the sub-expression "a"
the token "=" and
the sub-expression "b".

And the sub-expression "a" has one constituent, the token "a".

For those accustomed to BNF, the grammar of CGOL might look
like:

<expression> ::- if <expression> then <expression> [else <expression>]
<expression> :6:= <expression>=<expressi on>
<expression> ::- (<expression>)
<expression> ::= <expression>;<expression>

and so on. Since <expression> will.be the only non-terminal, the Ileft
hand side of productions may be omitted without loss of.information.

Substituting variables for <expression> , we can then write CGOL rules
as:

if a then b l[ese c!
a b
(a)

-6-

a ; b

and so on.

As they stand, such rules are ambiguous. Does a=b;c mean

(a-b);c or a=(b;c) ? The problem is that each of "=" and ";" could take

b as its argument. We say that b associates with the one that takes

it as argument. Thus if "print a+b" means "print(a+b)", "a" has

associated with "+" in preference to "print". In CGOL, all such

disputes are resolved by binding powers, a sort of syntactic version

of atomic valences. Thus if the right binding power (rbp) of "=" is

18 and the left binding power (lbp) of ";" is 1, then a=b;c is read as

(a-b);c because the right hand argument slot of "=" pulls harder on b

than does the left hand argument slot of ";" . (Ties are broken by

associating to.the left.)

Left and right binding powers are completely independent.

Each is relevant when the expression can have a sub-expression

at the left and right hand ends respectively. Thus the left binding

power of "car" is irrelevaný because "car a" does not have a

sub-expression at the left. i However., it has one at the right, so its

right binding power is relevant. The opposite obtains for the suffix.

operator "isatom", which has a left binding power but no right binding

power. In an expression like "if a then b else c", the right binding

power applies to all three arguments even though only the last may

actually be fought over by another operator to its right.

In addition to the left-right association problem there is the

"dangling else" problem, named after an instance of the problem: does
"if a then if b then c else d" mean "if a then (if b then c else d)"

or "if a then (if b then c) else d" ? This problem is just a variant

of the left-right association problem; the argument "else d" could

associate with either the first or the second "if". In CGOL, all such

disputes are resolved by associating to the closer operator. (For

those who liked the atomic-valence analogy, imagine an inverse

(square?) law for distance holds.)

The above two rules'deal *with all ambiguities that might arise

in the CGOL grammar given below'.

The following table lists the explicitly defined CGOL
constructs together with their translation into standard notation.
Except where otherwise noted, a,b,...,z denote CGOL expressions and

A,B,...,Z their corresponding standard forms. The table has three
columns, the CGOL form, the left and right binding powers when

relevant (only given once when they are the same, or when only one is

relevant), and the translation.

--------- BRACKETING OPERATORS-------

-7-

(a)
f(a,b,...,z)
[a, b,..., z

8 A
25 8 (F A B ... Z)
8 (LIST A B ... C)

-------- QUOTING OPERATORS------
ta' 8 (QUOTE A)
"a" (where a is a string) 'tfat
?a (where. a is a character) /a
#a (where a is any CGOL token) A
!A (where A is a LISP S-expr) A

--------- DECLARATIVE OPERATORS---------
\a,b, ;..,z;f
prog a,b,..,p; *q;r;..;z 0
new a,b,..,p; qclr;..;z 8
special a,b,...,z

(LAMBDA (A B ... Z)
(PROG (A B ... P) Q
(PROG (A B ... P) 0
(DECLARE (SPECIAL A

F)
R i.
R ...

B ..

Z)
(RETURN Z))
Z))

-------- CONTROL OPERATORS--------
eval a
a-b
a&b
if a then b [else cl
return a
while a do b
for i in I do f

(EVAL A)
.(PROG2 A B)
(PROG2 NIL A B)
(COND (A B) [(C)1)
(RETURN A)
(DO NIL ((NOT A)) B)
(MAPC (FUNCTION (LAMBDA (1) F)) L)

-------- STORAGE OPERATORS------
a of b + c 25 1 (PUTPROP B C A)
a+b (a is atomic). 25 1 (SETQ A B)
x(a,b,..,,z)gy 25 1 (STORE (X A B ... Z) Y)
a of b 25 24 (GET B A)
a assoc b 25 24 (ASSOC A B)

--------- LIST OPERATORS--------
14 13 (CONS A B)
14 13 (APPEND A B)

---------RELATIONAL OPERATORS--------
a=b
a ne b
a eq b
a<b<...<z
a>b>...>z
a isin b
a isatom
a isnum

10 (EQUAL A B)
18 (NOT (EQUAL A B))
18 (EQ A B)
18 (LESSP A B ... Z)
18 (GREATERP A B ... Z)
18 (MEMBER'A B)
18 (ATOM A)
18 (NUMBERP A)

-------- LOGICAL OPERATORS------
not a 9 (NOT A)

a. b
aeb

-8-

a and b 8 (AND A B)
a or b 7 (OR A B)

---------ARITHMETIC OPERATORS------
lal 0 (ABS A)
+a 20 A
a+b 20 (PLUS A B)
-a 20 (MINUS A)
a-b 20 (DIFFERENCE A B)
a*b 21 (TIMES A B)
a/b 21 (QUOTIENT A B)
a remainder b 21 (REMAINDER A B)
a'n'*b 22 (EXPT A B)

--------- I/O OPERATORS------
print a 2 (PRINT A)
princ a 2 (PRINC A)
write a 2 (PROG2 (TERPRI) (PRINC A))-
uread a b ... z (a-z are tokens) (UREAD A B ... Z)
uwrite a b ... z (UWRITE A B ... Z)

ufile a b ... z (UFILE A B .,. Z)
load a b ... z (a-z are tokens) (FASLOAD A B ... Z)
newline (TERPRI)

In addition to the above, CGOL "knows" about all the unary
functions in LISP. It does this by testing (ARGS token) when said
token is undefined. Thus although "car" does not appear in the above
table, CGOL knows that CAR is a LISP function with one argument. CGOL
treats all such functions f as though they were defined as

f a 25 (F A)

When in doubt you can always drop back into LISP by using
"!". However, that should be rarely necessary - it is intended mainly
for non-procedural items such as lists for doing MEMBER and ASSOC in.
If you can't recall the CGOL form of an expression (F A B ... Z) you
won't'go wrong by writing f(a,b,...,z). Thus if you forget the form
"1+1", you can write "PLUS(1,1)" and it will translate correctly.
By the same token, any LISP function not catered for in the above
table can be written as "f(a,b,...,z)", e.g. "sstatus(toplevel,nil)".

At first sight the binding powers may seem. a lot to learn.
However, they have been chosen on the basis of the data types their
operators take as arguments and return as results in order to minimize
the need for parenthesization? If you want to use CGOL notation but
don't want to have anything to do with binding powers, simply
parenthesize every CGOL expression as though you were writing in
LISP. However, if you omit all parentheses (apart from those needed
in constructs of the form f(a,b,...,z)) you will not often go wrong.

-9-

Most often you will want parentheses for grouping in arithmetic
expressions when the default priority ranking (ll + - * / mod **)
gives the wrong grouping, and when procedural expressions occur as
arguments to non-procedural expressions, e.g. "if a then (b;c)",
"(print a) + b", "a*(b-read)+1" and the like.

Some operators have a right binding power one less than their
left binding power. This is to make those operators right
associative. For example, "a of b of c" is parsed as "a of (b of c)"
(since oftener than not that's what was intended), and "aebec" as
"ae(bQc)" (for efficiency). An interesting pair of right associative

operators is ";" and "&". These are duals of each other. They both
evaluate their arguments in the same order, but differ in the value
they return: a&b returns a, a;b returns b. By making both of them
right associative and giving them the same priority, they interact in
an elegant way. Suppose you want to evaluate a,b,...,z and to return
the value of k. Then the expression a;b;...k&...;z has the desired
effect. That is, follow every argument but the last with ";", except
for the one you want the val.ue of, which if it is not the last should
be followed by "&". A common use for "&" is in tidying up after
computing some value, e.g. "x & x*2" will set x to 2 and return the
old value, "a + (b & bta)" will swap the contents of a and b without
using a temporary variable, and so on. Note that all this is really a
feature of LISP rather than of CGOL; however, the notation makes it
easier to see at a glance the intent of what would be relatively
difficult to follow in LISP.

4. THE DEFINE FACILITY

The CGOL analog of DEFUN is "define". In addition to allowing
the user to attach a lambda expression to some functional property of
an atom, it gives him some syntactic capabilities as well.

The basic form is
define <pattern> 1,bp 1,bp]): body
For example, the following could serve as a definition of "e":
define a "e" b, 14, 13; if a then car a . cdr a a b else b
(For readability, one would normally put in more.parentheses than we
have here.)
In this example, the pattern gives the rule for this operator, and the
two numbers give the two binding powers. The body is what would
normally appear as the body of a OEFUN.

At present the allowable forms of patterns are few in number.
You may write a sequence of variables separated by .one.or more tokens
in string quotes (letters inside string quotes must be capitalized -
this is the one place where a distinction is drawn between upper and
lower case, in the sense that the reader maps all lower-case letters
not in string quotes to upper-case before thinking about what they

-10-

mean). The variables stand for CGOL expressions and the strings for
tokens (recall that a CGOL expression is a sequence of sub-expressions
and tokens). The sequence may start and end with either tokens or
variables.

The first token in the pattern is called the operator, and the
remaining tokens are called delimiters. The operator is said to have
been defined. An operator may be defined twice only if it takes a
left argument in one .case and no left argument in the other, this
being a criterion CGOL uses when deciding what a particular token in a
program means. In the above table, the operators '(", "+"1 and "-" all

have such dual meanings. The delimiters may appear in arbitrarily
many definitions, and arbitrarily often in each. However, note that a
delimiter's binding power is set to the minimum of its previous.
binding power and the right binding power of the operator being
defined. If thd delimiter has already been defined to be an operator
with a left argument (the term is LED, for LEft Denotation - NUD is
the case when the left argument is missing, or NUll), and this new
binding power is less than its old, an error message is given.

The default binding power is 25 if none is specified, and
applies to both left and right binding powers. If one binding power
is given it is the left and right binding powers. If both are given,
they are respectively the left and right ones,

Like LISP, CGOL is a one-pass system. This is so that a user
can type in a definition and have it take effect immediately. This
conflicts with the requirement in any system offering sophisticated
syntax that it be possible to use the syntax of an operator before it
has been defined. This requirement is nice in general, and essential
for mutually reqursive function definitions. To get around this
problem, you may define the syntax of an operator at any time without
giving its semantics, simply by omitting the body of the define
command. This is not an elegant solution, and a later version of CGOL
may deal with this. (A possible solution is to keep around pieces of
unparsable text until they become parsable, and then parse them. Even
more dramatic is the solution of not parsing anything until it is to
be evaluated, i.e. dropping the unparsability condition from the
previous solution.)

5. EXTENDING CGOL

It is possible to add to or change the definitions of the
rules of CGOL (the ones in Section 2). To see examples of such
definitions, look under the heading BASE COMPONENT in the file
AI:PRATT;CGOL > . Given the above table, you should be able to get a
rough idea of how to write such definitions.

The meaning of

-11-

infix "+" 28 is "PLUS"

is as follows. The infix operator "+" is being defined with left and
right binding power 28. (Had I said "infixr" it would make "+" right
associative by making its right binding power 19, one less than its
left.) The translation of "a+b" is then (PLUS A B) . Since the
argument positions are "standard" for infix operators, the only
information you really need to supply is What the LISP function name
is, so you say "is "PLUS"" . You don't have to use "is" - if you want
you can spell it out by saying ["PLUS", left, right] , which is a CGOL
program to build a list whose three elements are the atom "PLUS", the
left hand argument and the right hand argument. Notice the use of
this technique when defining

infixr "&" 1 ["PROG2", nil, left, right]

We can't say 'is "PROG2"' because that would mean '"[PROG2", left,
right]'.

6. COMPILATION

Temporarily there is some awkwardness in compiling which will
hopefully go away soon. In the meantime, a CGOL program is compiled
by saying

maklisp <filename>

to CGOL, using the same syntax as for the other file mapipulating
commands (uread, etc). CGOL will then produce a file with the same
FN1 (if using MIT's ITS) and with FN2 - LISP , and will return the
area the file is on, e.g. (dSK SMITH). This file may then be compiled
in the usual way. This also provides a convenient way of exporting
CGOL programs to sites without CGOL - just send them the LISP
translation.

Sometime it will be possible to have one's CGOL file compiled
by NCOMPL without any action on your part provided your file begins
with the incantation (CGOL). See the discussion at the end of section
1.3.

7. IMPLEMENTATION

CGOL is not resource-hungry. It consumes about 1K of binary
program space and 1.5K of list space. It uses the LISP reader for
lexical analysis, and so loses no more time on this account than does
standard notation. The parser executes about ten instructions per
lexical item, a negligible amount. The semantics of most CGOL
operators is trivial enough that they take little time to execute.
Unlike systems based on BNF grammars, you can extend the CGOL notation

-12-

on-line with none of the overhead associated with. systems that have to

consider the whole grammar before admitting a new rule.

8. COMPARISON WITH MLISP

The similarities between CGOL and Smith and Enea's MLISP are:

(i) the use of ALGOL-like notation for LISP S-expressions;

(ii) the use of numeric operator precedence functions'to resolve

association problems;

(iii) the ability to export LISP translations of MLISP/CGOL programs

to sites supporting LISP but not MLISP/CGOL.

The differences are:

(i) MLISP is a sophisticated programming language offering many

facilities not appearing in LISP. These facilities are only visible

to the speaker of MLISP, and vanish if he wants to use them while

speaking LISP. (Due to the ubiquity of LISP's oblist, the user can

get at them from LISP, though they are undocumented and have names

starting with & to identify them as sytem names not for general

consumption.) Assignment to S-expressions is a particularly complex

example. In contrast, CGOL offers nothing but an alternative

notation for things already meant for consumption by LISP users.

This enables CGOL to be very small, both with respect to its

implementation and its manual.

(ii) MLISP is a system that the user must call from the monitor,

whereas CGOL is a package that can be loaded into LISP when the

need arises. Hence a non-CGOL user can read a CGOL file without

having to commit himself to a CGOL-oriented system when he loads LISP.

In fact, when the !/0 details are worked out as in Section 1.3 he may

never know that he was reading a.CGOL file.

9. KNOWN DIFFERENCES BETWEEN THE MANUAL AND THE IMPLEMENTATION

a<b<c not implemented. (Only a<b). Similarly for a>b.

Can't use GO in the body of "new". Use
prog(a, b, m, c, go m, d)

Use ^ for exponentiation

Use mod for remainder (not really mod since the POP-18 treats negative

moduli incorrectly).

Delimiters presently get Ibp 0.

-13-

Bibliography

0. Floyd, R. W., Syntactic Analysis and Operator Precedence.
3, 316-333 (1963).

1. Leavenworth,, B.M..,, Syntax macros and extended translation.
CACM, 9, 11, 790-793 (1966).

2. Moon, D. MACLISP Reference Manual, Project MAC, MIT,
December 1975.

3. Pratt, V. R., "Top-Down Operator Precedence". SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, Boston,
1973, 41-51.

4. Smith, D. C., "MLISP." STAN-CS-70-179, Stanford University,
1970.

