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ABSTRACT

Symbolic-evaluation is the process which abstractly evaluates an actor program
and checks to see whether the program fulfills its contract (specification). In this paper, a
formalism based on the conceptual representation is proposed as a specification
language and a proof system for programs which may include change of behavior
(side-effects). The relation between algebraic specifications and the specifications based on
the conceptual representation is discussed and the limitation of the current algebraic
specifications is pointed out. The proposed formalism can deal with problems of
side-effects which have been beyond the scope of Floyd-Hoare proof rules.
Symbolic-evaluation is carried out with explicit use of the notion of situation (local state
of an actor system). Uses of situational tags In assertions make it possible to state
relations holding between objects in different situations. As an illustrative example, an
impure actors which behave like a queue is extensively examined. The verification of a
procedure which deals with the queue-actors and the correctness of its implementations are
demonstrated by the symbolic-evaluation. Furthermore how the symbolic-evaluation serves
as an aid to program synthesis is illustrated using two different implementations of the
queue-actor.
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INTRODUCTION

Our goal is to construct a software system called a Programming Apprentice
[Hewitt & Smith 19751 which aids expert programmers in various aspects of programming
activities, such as verification, debugging and refinement of programs. As its major
component, the Programming Apprentice is expected to have a very high level interpreter
which abstractly evaluates a program on abstract data and tries to see whether the program
satisfies its contracts (specifications). We call this process "symbolic-evaluation" [Hewitt
et al 1973, Boyer & More 1975, Burstall & Darlington 1975, Rich & Shrobe 1975, Yonezawa
19751. Our purpose of symbolic-evaluation is not simply to verify program modules, but also
to provide sufficient information for answering questions about dependencies between
program modules and implications of changes in both specifications and program modules.
To accomplish these purposes, the symbolic-evaluation must be based on an adequate
coherent formalism which consists of:

1) a formal language for writing contracts of modules which may change their behavior
(side-effects) [Greif & Hewitt 1975, Yonezawa 19751,

2) a formal language for expressing intentions of programmers,
3) a formal language for representing domain specific knowledge, and
4) a formal system for reasoning.

In addition, since the Programming Apprentice is used in an interactive manner, the
formalism should be Intuitively clear and easily understood by human users. The purpose
of our research is to develop a formalism which meets these requirements.

Obviously our research is closely related to the currently active research on
proving properties of programs. But all previous program verification systems[King 1969,
Deutch 1973, Igarashi London & Luckham 1973, Suzuki 1974, Boyer & Moore 19751 have not
been able to deal with programs with change of their behavior (side-effects) because of the
inadequacy of the formal systems on which these implementations were based. Furthermore,
the previous research on algebraic and axiomatic techniques [Hoare 1972, Wegbreit &
Spitzen 1975, Zilles 1975, Guttag 19761 for specifying data-structures has not dealt with
data-structures with side-effects. Although a program with side-effects can sometimes be
transformed into a program without side-effects [Greif & Hewitt 1975), the transformation
decreases efficiency and requires several times the storage. Also there is a certain type of
side-effect in communication between concurrent processes which is impossible to realize
without side-effects. So the exclusion of programs which change their behavior from the
research domain reduces the range of application. In the early sections of this paper, we
will discuss the limitations of previous work on program verification and algebraic
specification techniques and then propose a new formalism. It will be seen that the
proposed formalism naturally meets the requirements for successful symbolic-evaluation.



PURE ACTORS AND IMPURE ACTORS

Since our symbolic-evaluation is based on the actor model of computation [Hewitt
et al 1973], we will begin with a brief explanation of actors.

An actor is a potentially active piece of knowledge (procedure) which is activated,
when it is sent a message by another actor. No actor can treat another actor as an object to
be operated on; instead it can only send messages to other actors. Each actor decides itself
how to respond to messages sent to it. An actor is defined by its two parts, script and
acquaintances. Its script is a procedural description or code of how it should behave when it
is sent a message. Its acquaintance is a finite set of actors that it directly knows about. If an
actor A directly knows about another actor B, A can directly send a message to B. The
behavior of an actor can be roughly characterized by stimuli (messages as questions) and
responses (messages as answers). In the actor paradigm, the traditional concepts of
procedure and data-structure are unified. Furthermore various kinds of control structures
such as go-to's, procedure calls, and coroutines can be viewed as particular patterns of
message passing [Hewitt 19761 Thus a complete model of computation can be constructed
with a system of actors.

All actors are classified into two categories depending upon their behavior. Actors
which belong to one category never change their behavior. They are called pure actors.
Actors which belong to the other category are called impure actors and their behavior
may change during message passing. More precise definitions are as follows.

An actor is pure if it always gives the same response to the same message.

An actor is impure (not pure) if it does not always give the same response to the
same message.

From this definition, it can be said that a pure actor behave like a mathematical function.
The only primitive impure actor we will use is the "cell". A cell-actor accepts a message
which updates its contents and a message (contents?) which retrieves its contents. A
cell-actor may change its behavior because it can give different answers to the (contents?)
message, depending upon what it contains at the moment. An example of pure actors is a
sequence-actor. One can retrieve elements of a sequence-actor, but cannot change its
elements. To change its elements a completely new sequence-actor must be created. So a
sequence-actor is pure. The notion of impureness of actors is closely related to that of
side-effects in the traditional programming languages. A typical example of "side-effects" is
the effect of updating components of a record which is shared by objects. This type of
side-effects can be viewed as the change of behavior of actors which behave like
data-structures. Cells do not make serious trouble for program verification if sharing Is not
involved. But as will be seen in the next section, serious problems arise when
data-structures such as lists, stacks, queues, bags etc. are shared between actors.



PREVIOUS WORK

An automatic theorem prover for pure LISP functions [Boyer &8 Moore 1975] is
considered to be based on interpretive semantics. The following examples illustrate how
some LISP functions are symbolically evaluated in their system:

(CONS A B) -> (A. B), (CAR A) -> (CAR A), (CAR (CONS A B)) -> A
(EQUAL A A) -- > T, (EQUAL A 9) --> NIL
(CDR (A B C)) --> (B C) where A, B, and C are free variables.

So far as pure LISP functions are concerned, their formalism is sufficient for
proving theorems for the following reasons:

I. Pure LISP functions are constructed solely by the composition of pure primitive
functions. (That is, pure LISP is an applicative language.)

2. The parameter mechanism of pure LISP is call by value.
3. There are no side-effects in primitive functions of pure LISP.

These three facts guarantee that all information necessary for carrying out a proof are
passed through as arguments (or parameters) and a returned value of each function which
is an element of composition. But once the limitation of pure LISP is thrown away, their
symbolic evaluation confronts a serious problem. Let us consider a non-pure function
RPLACA. In their formalism the symbolic evaluation of RPLACA could be expressed as
follows:

(RPLACA (A. B) C) -- > (C. B)

but this description does not capture the most important fact which distinguishes RPLACA
from CONS. Namely (CONS 'a 'b) creates a new dotted pair (a.b) while the result of (RPLACA
'(C.b) 'c) I.e. (c.b) is the same dotted pair as the first argument of RPLACA. The following.
example illustrates the difference more clearly.

(SETQ x (CONS 'a 'b)) ;x become. (a.b)
(SETQ y (CONS 'c x)) ;y becomes (c.(a.b))
(RPLACA x 'd); ???

The real effect is, of course, that x becomes (d.b) and y becomes (c.(d.b)). But what
we can expect from their system is that x becomes (d.b) while y remains (c.(a.b)), because the
information passed through the arguments does not reflect the fact that y is sharing the
same list with x. To get around this problem, we need some device to pass the more global
information to a called function besides the arguments themselves.

Other program verification systems [King 1969, Deutch 1973, Igarashi London &
Luckham 1973, Suzuki 1974] are based on axiomatic semantics originally proposed by R.



Floyd [1967] for flow-chart-like languages and by Hoare [1969] for Algol-like languages.
The main idea of this approach is as follows: Suppose that some assertion P holds before
the execution of statement Q. Then the semantics of statement Q are defined as the
strongest assertion R among those which hold after executing Q. Hoare uses the notation
P{Q)R to express the above meaning. The following figure illustrates how an assignment is
treated in VCG [Igarashi London & Luckham 1973].

P ( A ) Q(,)

P ( A ; x * )I Q(x) where A is an arbitrary statement.

This rule claims that after x is assigned the value e, valid assertions for e are also
valid assertions for x. But this sort of simple substitution of x for • in Q does not work
correctly if shared structures are used. The reason is obvious. This simple substitution does
not take account of shared data. In the following example, the above rule cannot tell the
correct final value of x[2]. (A is a two-dimensional array and X is a one-dimensional array.)

x - A[1] ; a slice of A is assigned to X.

(A[1])[2] *- 4;

By extending Floyd's proof system, R. Burstall [1971] proposed some techniques
which are able to handle list processing languages. But his formalism has not suffuclent
expressive power for our purpose.

PURE qUEUES AND IMPURE qUEUES

Queues are a common type of data-structure in the traditional programming
languages. As we pointed out earlier, since every object is an actor in the actor model of
computation, a queue is also an actor which has its script and acquaintances. The
queue-actor will be used as a very convenient illustrative example throughout this paper.

A pure queue-actor behaves as follows: a queue accepts two kinds of messages, (nq:
x) which is a request to enqueue a new element x and (dq:) which is a request to return the
front element of the queue and the remaining queue. However, if the queue is empty, it
returns a complaint message (complaint: (exhausted:)). Below we give a contract
(specification) of pure queues based on a conceptual representation. The notation
(PURE-QUEUE [!b]) represents a pure queue-actor which has [!b] as its queuees (i.e.
members of the queue). I stands for the "unpack" operation on a sequence. For example, if
x denotes a sequence [a b c1 then [Ix d] becomes [a b c d] instead of [[a b c] d]. If [a b c d] -
Ir I I thIn u e [b riannit ro dAl •nr % mrnr a cm. •rhL· nsive mw U e uLitt .
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Smith 1975]. The following is a contract for pure queue-actors.

A) (cons-pure-queue) a (PURE-QUEUEUE [) ; the ,valaation of (cons-pure-queue)
; creates an empty queue.

B) ((PURE-QUEUE [!b]) <( (nq: X)) n (PURE-QUEUE [(lb X])
; the enqueue message (nq:-) is sent.

C) ((PURE-QUEUE []) c( (dq:)) a (complaint: (exauusted:))
;the dequeue message (dq:) is sent to an empty queue.

D) ((PURE-QUEUE [Y Ic]) (< (dq:)) a (next: Y (rest: (PURE-QUEUE !ic])))
;the dequeue message (dq:) is sent to a non-empty queue.

Figure 1

(PURE-QUEUE ...) is an example of conceptual representations. The conceptual
representation is a new technique for formal specifications of data-structures. In a later
section we will give another contract for pure queues which also uses the conceptual
representation. The techniques which have been actively investigated are algebraic and
axiomatic ones [Wegbreit & Sptizen 1975, Zilles 1975, Guttag 1976]. To compare it with our
approach, we give the following algebraic specification of pure queues.

a) Cons-queue: -> queue
b) Enqueue: queue x item -- > queue
c) Dequeue: queue -- )> tem x queue / error

I) Dequeue(Cons-queue) m Error
II) if Dequeue(q) - <b, q'>,

then Dequeue(Enqueue(q,s)) a <b, Enqueue(q', a)>.

a), b) and c) specify the domains and ranges of the operations associated with a queue. I)
and II) are axioms of the operations. These axioms are easily derived from the above
contract for pure queues based on the conceptual representation. For the derivation of the
axiom II), see Appendix I.

In contrast to the pure queue, let us consider an impure actor which also behaves
like a queue. This actor accepts the same messages, namely (nq: x) and (dq:), but it behaves
in a different way. When it receives the (nq:...) message, it does not create a new
queue-actor. When it receives the (dq:) message, it returns its front element and itself as the
remaining queue. Suppose 0 is an actor which is created by evaluating (cons-impure-queue).
At this moment Q is an empty queue. If a message (nq:a) is sent to Q, then a is absorbed
inside Q and Q itself is returned, but no new queue actors are created during this process. Q
responds to (dq:) in two different ways: if Q receives (dq:), (next: a (rest: Q)) is sent back,
and then if Q receives (dq:) again, (complaint: exhausted:)) is returned. Therefore Q is an
impure actor. In a later section, we will give a contract for this impure queue in a



formalism based on the conceptual representations. It should be noted that either of the
above two specifications of pure queues does not correctly specify the behavior of this
impure queue. Because, for example, in B) of the contract, it is not specified that
(PURE-QUEUE [!b]) and (PURE-QUEUE [!b X]) represent the same queue-actor. The
following example will clarify this point.

(let (queue-1 a (cons-impure-queue)) ;an empty queue is created and bound to queue-I
then
(let (queue-2 a (queue-i <( (nq: 2))) ;(nq: 2) is sent to queue-1 and

;the same actor which has been bound to queue-i is bound to queue-2
then
(queue-i <( (nq: 3))...)) (nq: 3) is sent to queue-i

In the above example, in order to tell that the length of queue-1 is equal to that of queue-2
after the third statement, we have to know that queue-1 and queue-2 refer to the same actor.
This would not be the case if queue-i created and returned a new queue-actor when it
received the message (nq: 2). Floyd-Hoare proof rules cannot deal with this type of a
problems.

( •.EVENTS AND SITUATIOIS

As has been discussed in the preceding sections, we need some device to describe
the more global state at a given moment in order to deal with side-effects. Since our
symbolic-evaluation is carried out on an actor system, we are interested in the state of the
world at the time of message transmissions. I. Greif and C. Hewit.t [1975] introduced a
notion of event for the purpose of defining their behavioral semantics. An event consists
of a target actor, t, a message actor, m, and an activator, ac. Since we are primarily
concerned with an actor system without parallelism [Greif 1975], we will not consider
activators. An event is defined as a transmission of an message actor m to a target actor t
which will sometimes be denoted by the notation (t <a m) borrowed from the PLASMA
syntax [Smith & Hewitt 1975]. This definition of events is slightly simplified one, but
sufficient for our purpose. A situation S can now be defined as the local state of an actor
system at the moment when an event E occurs. In general the complete description of the
state of an actor system is not only physically impossible, but irrelevant. So a situation S will
be used as a tag for referring to a moment of a transmission to state assertions which are
true at that moment. The following examples illustrate how the situational tags [Hewitt
1975a] are used.

(length a-queues ) 8, ;the length of a-queue in a situation S is 8.
((t <( m) in Se), ;she event (i < m) occurs in a situation S0.
(contents a-cell s ) 1984, ;the contents of a-cell in a situation S is 1984.



If we are to state some relations between facts which hold in different situations -
for example, a certain order relation for showing the termination of a program -- the
concept of situations is quite powerful.

A CONTRACT FOR IMPURE QUEUES

Now we will illustrate how a contract for impure queues is written in our
formalism. We use the term "contract" instead of "specification" to emphasize the fact that
it is an agreement between an implementer of a module and users of the module. In
symbolic-evaluation of an actor we are checking to see that an implementation satisfies its
contract.

In our formalism for writing contracts, the following conventions are observed:
variables prefixed with "=" are pattern variables or formal arguments; each variable In
upper case letters denotes an actor, and each variable in lower case letters denotes a sequence
of actors or an empty sequence. Note that a variable in lower case letter does not denote a
sequence-actor!! !x (unpack operation on x) expresses the juxtaposition of actors denoted by
X.

The first thing we have to state in the contract is how an impure queue-actor is
created. We state it in our formalism as follows.

((cons-impure-queue) creates-an-actor
(Q where ((Q is (IMPURE-QUEUE [])))))

Namely, an actor Q is created by evaluating (cons-impure-queue) and the property that Q is
an empty queue is expressed in the notation (Q is (IMPURE-QUEUE [])). This notation is a
special case of (Q is (IMPURE-QUEUE [!a])) which asserts that Q is a queue with [!a] as its
queuees (i.e. members of the queue). The notation (IMPURE-QUEUE [!a]) is a conceptual
representation of an impure queue-actor. As will be seen later, this notation is also used
as assertions in the date base for the symbolic-evaluation.

The next thing to state in the contract is how the actor Q responds to the (nq:...)
and (dq:) messages. As pointed out earlier, the important idea is that these messages do not
cause the creation of new queue-actors, but rather that they cause only the behavior of Q to
change. For the (nq:...) message, we express its response as follows.

(result-of
((Q <- (nq: =X)) where ((Q is (IMPURE-QUEUE [!b]))))

is
(Q where ((Q is (IMPURE-QUEUE [!b X])))))

This notation claims that if an event (Q <= (nq: =X)) (namely, a message (nq:...) is sent to Q)
happens in a situation where (Q is (IMPURE-QUEUE [!b])) holds, then in the succeeding



situation the actor Q is returned and (Q is (IMPURE-QUEU8 [lb X])) holds.
(IMPURE-QUEUE [lb X]) indicates that a new element X is enqueued behind the previous
queuees [!b]. It should be pointed out that the notion of situation is not explicitly
introduced into the contract; instead where-clauses are used. But in the process of the
symbolic-evaluation situations are used explicitly in the reasoning.

For the (dq:) message the response is slightly complicated, because it depends on
whether Q is empty or not. So we must split the cases. For this purpose we introduce an
(either (if ...)...) expression as below. Each clause in an (either ...) expression is mutually
exclusive with the other clauses and the clauses are all inclusive.

(result-of ;the result of the following event:
(Q <( (dq:)) ;(dq:) is sent to Q

is ;is
(either ;either

(if (Q is (IMPURE-QUEUE [])) ;if Q is an empty impure queue
(then: ;then

(complaint: (exhausted:)))) ;the complaint message is returned
(if (Q is (IMPURE-QUEUE [Y !c])) ;or if Q is not empty and its queue is [Y Ic)

(then: ;then
((next: Y (rest: Q)) ;(next:...) is returned and in this situation

( rwhere ((Q is (IMPURE-QUEUE [!c]))))) )) ;Q has [!c] as its queuees.

Suppose that (Q <= (dq:)) (namely, a message (dq:) is sent to Q) happens in a certain situation
and Q is not empty (namely, (Q is (IMPURE-QUEUE [Y !c])) holds in the situation). Then
(next: Y (rest: Q)) should be returned in the next situation and Q has !c as its queuees. For
the case where Q is empty, namely (Q is (IMPURE-QUEUE [])) holds, (complains:
(exhausted:)) should be returned in the next situation. By not stating the property of Q in
the new situation we implicitly assume that the property of Q which held in the previous
situation still holds.

In an earlier section, we gave a contract for pure queues in Figure I using a
conceptual representation (PURE-QUEUE...). In that contract the notation (PURE-QUEUE...)
represents a pure queue-actor itself. But in the contract for impure queues in this section,
the notation (IMPURE-QUEUE..) is used to represent a state of an impure queue-actor. By
using (PURE-QUEUE...) as a notation which represent a state of a pure queue-actor, we can
write a contract for pure queues by slightly changing the contract for impure queues in this
section. Namely, all occurences of (IMPURE-QUEUE...) should be replaced by
(PURE-QUEUE...) and the second if-clause in the result-of-statment for the dequeuing should
be replaced by the following if-clause.



(if (Q is (PURE-QUEUE [Y Ic]))
(then:

((next: Y (rest: Q'))
where ((Q is (PURE-QUEUE [Y !c]))

(Q' is (PURE-QUEUE [!c]))))))

A crucial point is that a different pure queue-actor Q' is returned and Q remains in the same
state. A similar change in the result-of-statement for the enqueuing is also necessary.

The complete contract for an impure queue is depicted in Figure 2. In Appendix II
a contract for a cell-actor In the same formalism is given. The contract for cells will be used
in the symbolic-evaluation of concrete implementations of impure queues. Furthermore, a
contract for an actor whose behavior depends upon a history of its incoming message is
discussed in Appendix III.

[contract-for impure-queue •
(((cons-impure-queue) createsan-nactor

(Q where ((Q is (IMPURE-QUEUE [])))))

(result-of

((Q <W (nq: -X))
where ((Q is (IMPURE-QUEUE [!b]))))

where ((Q is. (IMPURE-QUEUE [!b X])))))

(result-of
(Q <= (dq:)).

Is
(either

(if (Q is (IMPURE-QUEUE []))
(then:
(complaint: (exhausted:))))

(if (Q is (IMPURE-QUEUE [Y !c]))
(then:
((next: Y (rest: Q))

where ((Q is (IMPURE-QUEUE [Ic]))))

;an actor Q Is created
;where Q is an empty impure quewe.

;the result of the following event:
;(nq:...) is sent to Q in the situation

;where Q has [lb] as its queuees

;is
;Q is returned and in this situation

;Q has [!b X] as its queuees.

;the result of the following event:

;(dq:) is sent to Q

;is
;either

;if Q is an empty impure queue
;then

;the complaint message is returned
;or if Q is not empty and its queue is [Y Ic]

;then
;(next:...) is returned and in this situation

)) )) ;Q has [Ic] as its queuees.

Figure 2

As pointed out earlier, the actor model of computation can serve as underlying
semantics of various programming languages such as SIMULA-67[Dahl et al 1968],



CLU[Liskov 1974, Schaffert, Snyder & Atkinson 1975] and ALPHARD[Wulf 1974]. The fact
that the above contract is precisely interpreted in terms of the message passing. (namely, the
actor model of computation) assures that this contract is not biased by the languages in
which the implementations are written.

A CONTRACT FOR (ENmTY QUEUE-I INTO QUEUE-2)

In this section we will give the code and contract for an actor which is supposed to
transfer members (i.e. queuees) of one impure queue to another impure queue. This code
and contract will be used to illustrate symbolic-evaluation in the next section. We present
the contract for this actor (Figure 3) before presenting its concrete implementation. Other
modules which use the (empty...nto....) below should only rely on properties that can be
derived from the contract.

[contract-for (empty ... into ...) £
(result-of

((empty =Q1 into Q=2)
where ((Q1 is (IMPURE-QUEUE [!wl]))

(Q2 is (IMPURE-QUEUE [1w2]))
(Qi not-eq Q2)))

((done: (emptied: 01) (extended: Q2))
where ((Q1 is (IMPURE-QUEUE []))

(Q2 is (IMPURE-QUEUE [!w2 !wl]

;the result of the following event:

;Q1 and Q2 are sent to (empty..into..) where
;Q1 has [!wl] as its qucuees,
;Q2 has [!w2] as its queuees,

;Qi and 02 are not the same actor.

;is
;(done:..) is returned where

;Q1 is an empty queue
)))))] ;Q2 has [!wl !w2] as its queuees.

Figure 3

The implementation of queues using pointers by J. Spitzen and B.Wegbreit 09751
is not protected from illegitimate accesses. Since their queues are implemented as a
non-primitive mode using a mode constuctor, STRUCT, a program could easily destroy the
internal structure of such queues by using an access mechanism provided for STRUCT.
Recently they remedied thil problem by adopting the class concept of SIMULA-67 [Wegbreit
& Spitzen 19761 Any module which uses queues relies implicitly on their integrity. For
example, (empty..Jnto.) strongly relies on the integrity of queues.

Figure 4 below shows an Implementation of this actor.



((empty -ql into -q2) a ;two impure queues are sent to (empty...into...)
;and bound to q1 and q2.

(rules (qi (- dq:)) ;the dequeuing message is sent to q1.
;if qi is not empty

(>) (next: =front-qi ;the front element of qi and
(rest: -dequeued-qi)) ;remaining queue are received

;and bound to front-qi and dequeued-ql.
(nq front-qi at-rear-of q2) ;front-ql is enqueued in q2 behind its previous queuees.
(empty qi into q2)) ;ql and q2 are sent to (empty...into..).

(s> (complaint: (exhausted:)) ;if qi is empty, the complaint message is received
(done: (emptied: qi) (extended: q2))) )) ;emptied qi and

;extended q2 are returned.

Figure 4

One should note that the implementation in Figure 4 crucially depends on the fact
that queue-actors referred to by qi and q2 are impure actors. Suppose that these
queue-actors are pure actors. Every time (dq:) or (nq:...) messages are sent, a new queue-actor
would be created but qi and q2 would still refer to the same queue-actors to which they
originally referred. Therefore after completing of the evaluation of (empty qi into q2),
completely new queue-actors would be returned as (done: (emptied: qi') (extended: q')) and
the original queue-actors referred by qi and q2 would remain intact. This violates the
contract in Figure 3. Also note that qi and dequeued-qi always denote the same queue-actor.

SYMBOLIC-EVALUATION OF (EMPTY QUEUE-I INTO QUEUE-2)

As briefly mentioned before, a contract is a kind of summary or advertisement of
a program for those who use it as a module in writing a larger program. The
symbolic-evaluation' of a larger program should be carried out by using only the contracts of
its modules instead of being bothered by implementation details of the modules. Of course
every program should have an explicit contract. The modularity of contracts should reflect
the modularity of programs. We will get some flavor of such modularity in the
symbolic-evaluation given below of the actor (empty...inlo...).

In general we assume that the symbolic-evaluator has a conceptually uniform data
base (i.e. without the context mechanism of QA4 or Conniver) in which assertions are
entered. If some assertions hold in a particular situation, they are asserted in the data base
with tags which indicate the situations where they hold. In addition, the following rule,
called inheritance-rule is used in the symbolic-evaluation: Suppose that some event takes
place in a situation S. Then assertions which hold in S, but which are irrevelant in that



event automatically hold in S '. Furthermore, we assume that notational devices which
indicate the causal relation between situations are used. For example, one of such notations
(S ' is-caused-by <event> in S) states that a situation S' is caused by an <event> which
occured in a situation S. But these notations are not explicitly shown in the subsequent
symbolic-evaluation.

Now let us consider the symbolic-evaluation of (empl y...into...) actor. In order to
aid the symbolic-evaluation process the augmented code for (empty...into...) shown in Figure
5 is given to the symbolic-evaluator. (Actually this commentary of- the code should be done
through the interaction mode between users and the Programming Apprentice.) The large
capital letters S between the lines denotes the situations in which events occur. They will
be used as situational tags for assertions in the data base.



-S Initial

((empty =ql into =q2)

S dq
(rules (qi <=( (dq:))

-S
" Snext-

(a> (next: =front-qi

(rest: =dequeued-ql))

;two impure queues are sent to (empty...into...)

;and bound to qi and q2.

;the dequeuing message is sent to qi.
;if qi is not empty

;the front element of qi and
;remained queue are received

;and bound to front-ql and dequeued-qi.
-S -" nex_-I

(nq front-qi at-rear-of q2) ;front-ql is enqueued in q2 behind its previous queuees.

- Snext-2
(empty qi into q2)) ;ql and q2 are sent to (empty...into...).

else-"

(0> (complaint: (exhausted:)) ;if q

(done: (emptied: qi) (extended: q2))) ))

i is empty, the complaint message is received

;emptied qi and
;extended q2 are returned.

Figure 5

For example, the Snitial at the top of Figure 5 denotes the situation in which the

transmission of two impure queues to (empty...into...) occurs and the Snext-e denotes the
situation in which the transmission of (next: actor-i (rest: actor-2)) to the continuation of
the dequeuing message to qi occurs.

What follows is a detailed demonstration of the symbolic-evaluation of the
augmented code cited in Figure 5 against the contract for (empty...into...) in Figure 3. The
contract for impure-queue in Figure 2 is used extensively. The notation in S... :
<assertions> is used to mean that the situational tag S is attached to each of the
<assertions>.

First, by reading the contract of (empty...into...) in Figure 3 the symbolic-evaluator
enters the following assertions which are the pre-requisites of (empty...into...) in the data
base. 01, Q2, xl and x2 are newly generated identifiers.



n initial

(QI is (IMPURE-QUEUE [lx1]))
(Q2 is (IMPURE-QUEUE [Ix2]))
(Qi not-eq Q2)

After actors Q1 and Q2 are sent to (empty..Jnto...) and the pattern matching is performed, Q1
and Q2 are bound to program variables qi and q2, respectively. Such binding of actors to
program variables are generally expressed by assertions of the form ((identifier> a (actor>).
So the following assertions are newly entered in the data base.

in Sdq

(qi a Q1)
(q2 a Q2)

Then the dequeuing message is sent to the actor bound to qi in Sdq. By interpreting the
(result-of...) clause for dequeuing in the contract in Figure 2, there are two cases to be
considered, namely, one case where qi Is empty and the other case where qi is not empty.
Corresponding to these two cases, two different situations, S nexte and S*,,,_, , are

considered as the next situations of S For S,,.r, the symbolic-evaluator asserts thedq else- sa
following assertion.

in Sýelse-e
(xl = [])

Now the message (complaint: (exhatsted:)) is returned. The next situation has the
same assertions as S

S .S
else-1 else-I,

Then in Se,sei- the transmission of (done: (emptied: QI) (extended: 42)) to the implicit
continuation that arrived with the original message to (empty...into...). Note that to get (done:
(emptied: Q1) (extended: Q2)) from (done: (emptied: qi) (extended: q2)) we have used the
assertions (qi a Q1) and (q2 n Q2) which are inherited from Sdq through S.,,._- and

S,I._-1. The requirements of the contract of (empry...into...) in Figure 3, namely:

(Qi is (IMPURE-QUEUE []))
(Q2 is (IMPURE-QUEUE [Cx2 !xi]))

can be satisfied by using knowledge about sequences (See [Hewitt & Smith 1975] for
PLASMA syntax):

[ix2 lxi] is equivalent to [ix2] it x1 is equal to [].



So the case where qi is empty is done.

For the other case Snext-e, the symbolic-evaluator enters the following assertion

with a tag Snext-8 where W and z are newly generated identifiers.

in Sn.xt-e •
(xl = [W !z])
(Q1 is (IMPURE-QUEUE [!z]))

In Snext-$, (next: W (rest: Q1)) is transmitted and the pattern matching is

performed. So the symbolic-evaluator asserts the binding information with a tag Snxt-l.

in Sn Snext-1
(front-qi a W)
(dequeued-ql = Q1)

The (nq: W) message is sent to Q2 in Snext-1. By the inheritance rule (Q2 is
(IMPURE-QUEUE [!x2])) holds in Snext_-1 and from the (result-of...) clause for the
enqueuing message in the contract in Figure 2, the symbolic-evaluator enters the following
assertion with a tag Snext-2 . Note that the crucial fact is that Q1 and Q2 are distinct impure
queues.

in Snext-2 t
(Q2 is (IMPURE-QUEUE [!x2 W]))

Now the symbolic-evaluator encounters the transmission of Q1 and Q2 to (empty...into...) in
Snext- 2. Then in order to know the behavior of the (empty...into...), its contract is referred to.
Since the pre-requisites of the (empty...into...), namely:

(Q1 is (IMPURE-QUEUE [!z])) and
(Q2 is (IMPURE-QUEUE [!x2 W]))

hold in Snext-2, the contract guarantees that (done: (emptied: Q1) (extended: Q2)) is

returned and

(01 is (IMPURE-QUEUE [])) and
(Q2 is (IMPURE-QUEUE [![!x2 Wi !z])) hold.

Then the following knowledge about sequences is used to simplify the above two assertions

[![!x2 W] !z] is equivalent to [!x2 W !z],
[![!x2 Wi !z] is equivalent to [!x2 !xl] if xl is equivalent to [W !z], which holds

in Sext-2



So symbolic-evaluator can claim that

(Qi is (IMPURE-QUEUE [])) and
(Q2 is (IMPURE-QUEUE [!x2 |xt])) also hold for this case.

Since the requirements stated in the contact for (empty...in!o...) are satisfied for
both cases, we conclude that the implementation of (empty...into...) in Figure 4 is guaranteed
to meet its contract in Figure 3. In fact the justification of this conclusion is essentially based
on induction on the sequence, namely the first case corresponds to the induction base and
the second case corresponds to the induction step and the contract for (empty...into...) is used
as an induction hypothesis. Note that the conditions of a situation hold when control passes
through the situation. There is no guarantee that the situation described will ever be
reached. The demonstration of convergence is another part of symbolic-evaluation. For a
detailed demonstration of the convergence, see [Yonezawa 19751.

All IMPLEMEITATIOI CONTRACT FOR IMPURE-QUEUE

In the symbolic-evaluation of (empty...into...), the properties of impure queues used
to demonstrate its correctness were only the ones given in the contract for impure queues in
Figure 2. This fact guarantees that the (empty...inso...) works correctly on any
implementations of impure queues as long as the implementations satisfy the contract in
Figure 2. Now we give an example of a concrete implementation of impure queues which is
supposed to satisfy the contract in Figure 2. The code depicted in Figure 6 is such an
implementation written in PLASMA [Smith &c Hewitt 1975]. A similar implementation
written in CLU [Schaffert, Snyder & Atkinson 1975] is presented in Appendix IV. These
two implementations exhibit the same computation sequence in terms of the actor model of
computation (the message passing paradigm).

In Figure 6, a cell which is a typical example of impure actors is used in this
implementation. (cons-cell a) is an expression which creates a cell-actor which contains an
actor a. (a-cell - new-contents) replaces the current contents of a cell-actor, a-cell, by an actor
new-contents. Sa-cell is an abbreviation of the expression (a-cell <a (contents?)) which
retrieves the current contents of the a-cell. (<packager>: elements) is an expression which
stands for an actor called a "package". Packagers are analogous to records in some
languages. The meta-syntactic variable <packager> serves as a name for the package. When
packages are used in a message or a pattern, the ordering of components is unimportant
because the elements are tagged using packagers. Some components may be optional. Some
examples of packages in Figure 6 are (nq: -new-element), (dq:), and (next: front (rest:
the-queue-itself)). I is the unpacked operation on sequences that we explained in the earlier
section. (A brief explanation of the PLASMA syntax is found in [Hewitt & Smith 1975].)



((cons-impure-queue) P
(let (queuees = (cons-cell []))

then
(the-queue-itself .

;a cell which contains an empty sequence is created

;a queue-actor is defined as the following cases-clause
;and denoted by the-queue-itself.

(cases
(s> (nq: =new-element) pthenever an enqueue message with new-element is received,

(queuees 4- [|lqueuees new-element]) ;new-element is stored

;in the cell queuees behind the previous elements.
the-queue-itself) ;and then the-queue-itself is returned.

(W> (dq:)

(rules Squueuees
(.> [] (complaint: (exhausted:)))
(i> [(front I=rest] 9;

;a

(queuees 4- rest)
(next: front (rest: the-queue-itself))) )) ))))

;whenever an dequeue message is received,
;if the contents of queuees

;is empty, then the message is returned.
,therwise the first element is bound to front
nd the rest of the elements is bound to rest.

;the contents of queuees is updated.
;(next:...) is returned.

Figure 6

The idea of this implementation is quite simple. When (cons-impure-queue) is
evaluated, an actor Q which knows about a cell is created. This cell will contain the
members of Q as a sequence. A more formal and precise description for the idea of this
implementation is given as an implementatton contract in Figure 7.

[implementation-contract-for impure-queue
((Q where ((Q is (IMfPURE-QUEUE [Ia]))))

ls-implemented.as
(Q with-acquaintances (queuees, the-qui

where ((the-queue-itself a Q)
(queuees is (CELL S))
(S is (SEQUENCE [la])))))]

;an queue-actor Q with its queuees [ia]
;is implemented as

Due-itself) ;an actor with acquaintances (..)
;where Q is bound to the-queue-itself

; queuees is a cell-actor with its content S
;and S is a sequence-actor with its elements [la].

Figure 7

This implementation contract reads as follows: Q denotes an actor created by evaluating
(cons-impure-queue). When Q is an impure queue with its queuees [is] (namely, (Q is
(IMPURE-QUEUE [I!])) holds), Q is an actor whose acquaititances are queuees and
the-queue-itself and the following assertions hold: Q is bouhd to a program variable
the-queue-itself (namely, (the-queue-itself a Q) holds), queuees is a cell-actor which contains a



sequence-actor S (namely, (queuees is (CELL S)) holds), and S has !a as its elements (namely,
(S is (SREQUNCE [!a])) holds).

A notation (CELL S) is a conceptual representation of a cell-actor which has S as
its contents. When the contents of the cell-actor is updated by some other actor, say SS, the
conceptual representation of the cell-actor becomes (CELL, SS). (A contract of cell is found in
Appendix IL) Similarly, (SEQUENCE [!a]) is a conceptual representation of a sequence-actor
whose elements are [!a].

As one might notice, program variables (e.g. queuees,and the-queue-itself) are used
in implementation contracts. To avoid the problems of scope rules of program variables,
implementation contracts will be inserted between lines of the codes when they are refered to
In the course of the symbolic evaluation. A diagram in Figure 8.will encourage the intuitive
understanding of this implementation. Arrows in the diagram indicate the knows-about
relation.

, ,L._I-

Figure 8

The conceptual representation of impure queues (,I3fPURE-QOUEUIR [!a)))
characterized in the contract in Figure 2'is used in the above implementation contract.
There is virtually an infinite number of different implementations which could be
represented by this (IAPUliR-QUEUE [!a]). The implementation contract in Figurp 7
specifies how this particular implementation in Figure 6 (and/or in Appendix IV) is
realized. The use of the implementation contracts allows us to introduce a hierarchy of the
conceptual representations of actors which behave as data-structures. This is another useful
technique for data abstraction [Liskov & Zilles 1975]. The implemenitation contract in Figure
7 should not be public to those who are only interested in the external behavior of the
modules. For external uses only the ordinary contracts such as the one for impure queues in
Figure 2 and the one for (crupty.into...) in Figure 3 are sufficient. But the implementation
contracts should be available to those who are concerned with how modules are internally
represented and how they work. The topics in the subsequent sections are for such people.



SYMBOLIC-EVALUATION OF INPLEMENTATION OF IMPURE-QUEUE

Now we proceed to the symbolic-evaluation of cons-impure-queue in Figure 6
against its contract in Figure 2. But this time our emphasis is not only on the correctness of
the code, but also on the internal structure of the code which will be exposed during the
process of symbolic-evaluation. The code of cons-impure-queue augumented with the
situation symbols and the intention statement are depicted in Figure 9. Notice that The
implementation contract given in Figure 7 is inserted in Figure 9 as an intention statement.
The following three cases, namely, creation, enqueuing and dequeuing, will be treated
separately. We follow the same convention for situational tags of assertions as In the
symbolic-evaluation of (empty...into...). Instead of attaching a situational tag to each
assertion, the notation in S will be used.



- Spr.-creation

((cons-impure-queue) a
(let (queuees (cons-cell [])) ;a cell which contains an empty sequence is created

then

-S
Snq-or-dq-init ial

(Intention:

((Q where ((Q is (IMPURE-QUEUE [la]))))
is-implemented-as

(Q with-acquaintances (queuees, the-queue-itself).
where ((the-queue-itself a Q)

(queuses is (CELL S))

(S is (sequence [Ia])))))) -

(the-queue-itself o ;a queue-actor is defined as: he following case-clause
;and denoted by the-queue-itself.

(cases
(i) (nq: anew-element) ;whenever an enqueue message with new-element is received,

-S -nq-8
(queuees - [liqueuees new-element]) ;new-element is stored

;in the cell queue.s behind the previous elemenis.
-S -

nq-flnal

the-queue-itself) ;and then the-queue-itself is returned.

(s) (dq:) ;whenever an dequeue message is received,-S-
- dq- -

(rules Squeuees ;if the contents of queuees
C() [] (complaint: (exhausted:))) is empty, then the complaint message is returned.

- Sdq-a-filnal
(o) [-front l-rest] ;otherwise the first element is bound to front

;and the rest of the elements is bound to rest.
-S -

- dq-b-8

(queuees 4- rest) ;the contents of queuees is updated.
- Sdq-b-finail

(next: front (rest: the-queue-itself))) )) )) ;(net:...) is returned.
- t- n - ))

post-crest ion

Figure 9



I. CREATION OF impure-queue

The symbolic-evaluator reads the first result-of clause in the contract (or
impure-queue in Figure 2 and finds that there are no initial assumptions for evaluatqng
(cons-impure-queue). So in the initial situation no assertions are entered in the data base.

in Spre-creation : empty

By the le statement a cell which has an empty sequence NS as its contents is created and
bound to queuees. NS is newly created identifier.

inS.: Se.$S

(queuees, is (CELL NS))
(NS is (SEQUENCE []))

Then in this situation an actor, say QQ, whose script is the code given after (the-queue-itself
=... is returned.. So (the-queue-itself a QQ) holds. Furthermore by looking for free variables
in the script of QQ, the acquaintances of QQ are found: in this case the acquaintances are
queuees and the-queue-itself. To record this, the assertions (QQ knows-aboat queuees) and
(QQ knows-about the-queue-itself) are used. After QQ is returned the following assertions are
entered.

il 5 post-creation :

(the-queue-itself s QQ)
(QQ knowus-about queuees)
Q j r Knows-about Ine-queue-Ilsen)

What the contract for impure-queue in Figure 2 requires is that the returned actor Q be (Q is
(IMPURE-QUEU [])). By virtue of the implementation contract, (Q is (IAIPURE-QUkJiU1I
[])) is translated into the following assertions. Note that (Q with-acquaintances (queuees, the
queue-itself)...) in the implementation contract is interpreted as assertions (Q knows-about
queuees) and (Q knows-about the-queue-itself).

(the-queue-itself 9 Q)
(Q knows-about queuees)
(Q knowus-about the-queue-itself)
(queuees is (CELL S))
(S is (SEQUENCE []))

Since the three assertions in S pot-creation and assertions inherited from S.:

(queuees is (CELL NS)) and
(NS is (SEQUENCE []))

match against the above translated assertions, it is concluded that the returned actor QQ has



the correct internal structure prescribed by the implementation contract. So the creation of
impure queues is correct.

II. ENQUEUING

From the contract for impure-queue in Figure 2, it is assumed that (Q is
(IIPURE-QUEUE [!b])) holds in the initial situation. As noted before, the above assertion
is translated into the following five assertions and entered in the data base.

in Snq-or-dq-initial :

(the-queue-itself a Q)
(Q knows-about queuees)
(Q knows-about the-queue-itse
(queuees is (CELL S)
(S is (SEQUENCE [!b]))

Now the message (nq: A) is sent to Q. The message sent to Q matches the first clause of the
case statement. So the binding of A to new-element takes lace.

in S - :
(new-element =A) VevtS

Then the contents of queuees is updated by a newly created sequence-actor NS with its
elements [!Squeuees new-element]. Squeuees is the contents of queuees in Snq-' namely. S.

!Squeuees is the result of the unpack operation on the sequence S. So the new sequence-actor
NS is represented as (SEQUENCR [!b A]). By the update, (queuees is (CELL S)) is replaced
by (queuees is (CELL NS)). So the following assertions hold in the next situation.

in Sdq-f inal
(queuees is (CELL NS))
(NS is (SEQUENCE [!b A]))

In this situation Q is returned. Note that the contract for impure-queue in Figure 2 requtires
that Q is returned and that (Q is (IMPURE-QUEUE [!b A])) holds. To make all assertions
holding in Sdq-final explicit by applying the inheritance rule, the following assertions are
obtained.



qyeee~s
(queuees :is (CEILL NS))
(NS is (SEOQUENCE [!b A]))
(new-element a A)
(the-queue-itself a Q)
(Q knous-about queuees)
(O knuow.-nlaout the-aueue-itsell)

(S is (SEQUENCE [!b])) <-- S is now garbage!!.

It is easy to see that the assertions obtained by translating (Q is (IMPURE-QUEUE [!b
A])) through the implementation contract are satisfied by the above assertions. So the
enqueuing is correct.

Besides the correctness of the implementation, a very important-fact is revealed by the above
symbolic-evaluation. The sequence S is created by this implementation and never passed
out. S was initially contained in the cell queuees in S nqinit al but it is not contained by

queuees and there are no acquaintances of Q which know about it in Snqf inal. namely, S is

just floating in the air. Thus there will be no chance for S to be used later. S is subject to
the garbage collection. In this implementation every time the enqueuin. takes place, a
garbage sequence is produced.

III. DEQUEUING

As is indicated in the contract for impure-queue in Figure 2, there are two cases
needed to be considered: case 1) where the queue is empty, and case 2) where the queue is
not empty.

Case 1)
Assuming that (Q is (IAIPURE-QUEUE [])) holds in the initial situation, the

implementation contract in the code specifies the following assumption in the same manner
as before.

in Snq-or-dq-init ial ve
(the-queue-itself 2 Q)
(Q knows-abhol queuees)
(Q knotws-about the-queue-itself) S
(queuees iA (CELL S))
(S is (SEQUENCE []))

Now the (dq:).message is sent to Q. Then the message matches against the second clause of
the case statement. Since no binding takes place, all assertions are inherited from

Snq-or-dq-ini t a t Sdq-O'



S aS
dq-8 nq-or-dq-initial

Since the contents of queuees is S which is an empty sequence, we reach the situation
Sdq-a-f nal"

S uSdq-a-final dq- 0

Then the (complaint: (exhausted:)) message is returned and since all assertions assumed in
Snqor-dq-initial hold in Sdq-a-final, Q maintains its legitimate internal structure for which

(IMPURE-QUEUE []) stands. This is what is required.

'Case 2)

For this case, (Q is (impure-queue [Y !c])) is assumed in the contract in Figure 2
and so the translated assertions are as follows.

in Snq-or-dq-initial

(the-queue-itself = Q)
(Q knows-about queuees) S
(Q knows-about the-queue-itself)
(queuees is (CELL S))
(S is (SEQUENCE [Y !c])) Fel ..

Then all assertions are inherited from S dqinital to S as in case I).

S =Sdq- nq-or-dq-ini t ial

The contents of queuees which is S matches the pattern [=front !=rest], because (S is
(SEQUENCE [Y !c])) holds. By this matching a new sequence, say NS, with its elements [!cl
is created and bound to rest and Y is bound to front. So the binding information is added
in the next situation.

in Sdq-b- :
(front a Y)
(rest = NS) (NS is (SEOQUEN

After the updating of the content of queuees, (queuees is (CELL S)) is replaced by (queuees
is (CELL NS)).

in Sdq-b-f inal
(queuees is (CELLI NS))



All assertions which hold in this situation are as follows:

(queuees is (CELL NS))*
(front a Y)
(rest a NS) (NS is (SEQUENCE [!
(the-queue-itself a Q)*
(Q knows-about queuees)*
(Q knows-about the-queue-itself):
(S is (SEQUENCIE [Y !c])) <-- S

In this situation (nest: Y (rest: Q)) is returned. The five assertions marked with * guarantee
that (Q is (IMPURE-QUEUE [!c])) holds through the implementation contract. So all cases
are proved.

As in the case of the enqueuing, it is also revealed by the symbolic-evaluation that
a sequence S initially contained in queuees becomes a garbage sequence at the end of the
dequeuing.

REFINEIENTS OF IIPLEMENTATION OF IMPURlE-QUEUE

The preceding symbolic-evaluation have revealed that the implementation based
on the implementation contract in Figure 7 turns out to be very inefficient in terms of the
amount of space to be consumed. In order to save the wasted space, let us consider the
following refinement of the implementation. A specific cause of the inefficiency is that
every time the enqueuing and dequeuing take place (except in the case where the queue is
empty when it gets (dq:) message), the previous contents of the cell queuees (n'amely, a
sequence-actor which contains the members of the queuee) becomes garbage and that a
completely new sequence has to be created and be put in the cell queuees. To alleviate this
deficiency, instead of keeping all the members of the queue in a single long sequence-actor,
we try another implementation which keeps the current members of the queue in a chain of
short sequence-actors each of which contains only one member of the queue. Additionally,
we will usetwo cells, say front-cell and rear-cell, one of which maintains the front end of
that chain and the other the rear end.
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A diagram for this new implementation and its formal description (.i.e implementation
contract) are given in Figure 10 and Figure II, respectively.



[implementation-contract-for impure-queue-a a
((Q where ((Q is ,(MPURE-QUEUE [!a]))))

is-implemented-as
(Q with-acquaintances (front-cell, rear-cell, the-queue-itself)

where ((front-cell contains [!a] with-end Z)
(roar-cell is (CELL Z))
(Z is (CELL S)) (S is (SEQUENCE []))))

(go-simplify
((front-cell contains [] with-end Z))

try
((front-cell eq Z)

(front-cell is (CELL S)) (S is (SEQUENCE []))))

(to-simplify
((front-cell contains [A !yl with-end Z))

try
((front-cell is (CELL S))

(S is (SEQUENCE [A C]))
(C contains [ly] with-end Z)))

(to-simplify
((front-cell contains [!y A] with-end Z))

try
((front-cell contains [!y] with-end Y)

(Y is (CELL S))
(S is (SEQUENCE [A Z])))) )]

Figure 11

To-simplify clauses in this implementation contract are the characterizations of the assertion
(front-cell contains [Ia] with-end Z). An important property stated in this characterization
which is difficult to see in the diagram in Figure 10 is that if [!a] is [], as stated in the first
to-simplify clause, front-cell and Z turn out to be the same actor. In fact, the assertion
(front-cell contains [ia] with-end Z) can be viewed as abstractly representing a cell front-cell
which contains the chain of short sequences. The role of the cell front-cell is quite similar to
that of the cell queuees in the previous implementation. The cell rear-cell is introduced to
quickly get to the end of the chain when the enqueuing is being accomplished, instead of
tracing down the chain from the front end. In Figure 12 is the PLASMA code which
realizes this new Implementation idea. More details will be revealed by the
symbolic-evaluation of this code.



((cons-impure-queue-a)a

(let (front-cell = (cons-cell []))
then

(let (
then
(the

(c

;a cell uith an empty sequence is created.

rear-cell = (cons-cell front-cell)) ;a cell which contains
;the actor bound to front-cell is created.

-queue-itself = ;a queue-actor is defined as the followring cases-clause
ase ;and bound to the-queue-itself.
() ({nq: =-new-element) ;whenever (nq:...),

(let (new-cell = (cons-cell [])) ia cell-actor with an empty sequence is created.
then

(Irear-cell [- new-element new-cell]) ;the contents of the contents of rear-;elI

(rear-cell #- new-cell)
the-queue-itself))

(s> (dq:)

(rules Sfront-cell

(> [](
(complaint: (exhausted:))

(W> [=front =rest-cell]
(rules Srest-cell
(_. []

(front-cell - [])
(rear-cell -front-cell)
(next: front (rest: the-queue-itself)))

(else
(front-cell #- Srest-cell)

(next: front (rest: the-queue-itself))))) ))

;is updated by.a newly created sequontce

with its elements new-element and new-cell.
;the contents of rear-cell is updated.

phe actor bound to the-queue-itself is returned.

;whenever (dq:...) is receipv¢d

;if the content of front-cell
;is aln empty sequenlce,

;then the complaint is returned.

;if it is a sequence of two elements,
;then check the content of rest-cell.

;if it is an empty seq.Pcri.e,
;the contents of front-cell is updaned.
;the contents of rear-qell is updated.

;(next:...) is retltrited.

;otheruwise

;rhe contents of front-cell is replaced

by the contents of rest-cell.
)) ))) ;(next:...) is returned.

Figure 12

However, instead of going through the symbolic-evaluation here, we restrict
ourselves to stating some interesting observations obtained by the symbolic-evaluation. One
observation is the similarity between two implementations. First of all, both implementations
are behaviorally equivalent, because both satisfy the contract for impure queues in Figure 2.
Furthermore, the clause (>) (nq:...)...) in the second implementation (see the expression inside
the upper solid rectangle) are behaviorally equivalent to the clause ((i> (nq:...)...) in the first
implementation in Figure 6. The same is true for ((-> (dq:)...) clauses in both
implementations. As pointed out before, the role of queuees in the first implementation and
that of front-cell are similar. So when a (dq:) message is received, in order to check for

I



whether the queue is. empty or not, the contents of queuees is tested in one implementation
and the contents of front-cell is tested in the other. Since the first implementation has been
already shown to be correct, these similarities make the justification of the second
implementation easier.

Another interesting observation is that the result of symbolic-evaluation of the
second implementation suggests us the optimization of the code in Figure 12. In Figure 13 a
relevant part of the code in Figure 12 is given. In S' dq-b-a-8' rest-cell (i.e. the contents of
rest-cell) is an empty sequence and in the next situation S' dq-b-,-1 the contents of front-cell
becomes an empty sequence by (front-cal -1 []). So the replacement of (front-cell 4- []) by
(front-cell - Srest-cell) does not change the assertions which hold in Sdqa-.ldq-b-a-1

(W> [f--ront =rest-cell] (>
(rules irest-cell - (r-s

- S dq-b-a-0
(front-cell - [1)

-S dq-b-a-4

(rear-cell .front-cell)
(next:... )

(else
(front-cell 4- Srest-cell)
(next:... ))))))'

[=front =rest-cell]
ules Irest-cell
(U> [3

I- S D dq-b-a-8

(front-cell #- Srest-cell)
- S''o,

dq-b-a-1
(rear-cell - front-cell)
(next:...

(else
(front-cell 4- Srest-cell)
(nert:... ))))))

Figure 13

This fact is easily checked by starting the symbolic-evaluation from S' ' dq-b--8 In Figure

13 and observing the assertions which hold in S ' 'dq-b-- This is a simple example of

applying symbolic-evaluation for checking the implications of changes in codes.
After the above replacement is made, the first statements in the two clauses of the

rules statement are identical. So now two identical statements can be collapsed together and
can be pushed up before the (rules...) (See Figure 14.). To justify this change, again the
symbolic-evaluation starts from S' dq-b-dq-b-Sr



("> [=front =rest-cell] (o> [=front =rest-cell]
(rules trest-cell - S dq-b- -

(*> [] (front-cell + Srest-cell)
- S '' dq-b-a-8 (rules Irest-cell

(front-cell -- [rest-cell) (> []
- S' dq--a-' - (rear-cell '- front-cell)

(rear-cell - front-cell) (next:... )
(next:... ) (else...

(else (next:... ))
(front-cell * Srest-cell)
(next:... ))))

Figure 14

As suggested by the examples above, the use of symbolic-evaluation for analysis of
the implications of changes in codes (perturbation analysis) provides with us a
veryuseful tool in the process of debugging and optimization.

FURTHER WORK

One of the contributions of our work done so far is an explicit introduction of the
notion of situations in the context of meta-evaluation. The successful meta-evaluation of
impure actor programs and the demonstration of the convergence crucially depends on the
use of situational tags which explicitly denote situations. As an extension of our work, we
would like to develop the idea of using the notion of situations more thoroughly. The
following examples are more sophisticated domains where the idea is expected to be
successfully extended.

Recently several garbage collection algorithms using parallel processing have been
proposed [Steele 1975, Dijkstra 1975]. All the currently used garbage collection algorithms
assume that when a garbage collector is running, no other programs operate on the whole
storage area being garbage collected. The proposed algorithms remove this restriction.
Namely, the garbage collector and other programs can be running concurrently and working
on the same storage area. Since a precise formulation of the required properties for such a
parallel garbage collector does not exist yet, we will first try to write its contract [Yonezawa
1976]. We then hope to symbolically evaluate implementations of these proposed algorithms
using the notion of situations and show their correctness.

Another example we plan to pursue is the problem of writing a specification for a
file system in a time-sharing environment. An intuitive description of the specification is



that no two files should attempt to use the same disk track and that the track usage table
should be consistent with the users file directories. This problem was originally raised in
[Hewitt & Smith 1975] as an example of a specification which is difficult to express in
declarative languages such as the first order logic while it is fairly easy to express in a
procedural specification. We will try to formulate this problem using the notion of
situations in hopes of clarifying the kinds of specifications that can be used for such
problems.

Furthermore we believe that the above examples are good research targets for the
Programming Apprentice to extend its domain of application to programs with parallelism
and synchronization.
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APPENDIX I DERIVATION OF AXIOM II FROM CONTRACT FOR PURE QUEUE

We assume the following correspondences between notations in the contract for
pure queues and the algebraic specification of pure queues.

ci) (cons-pure-queue) < ---- Cons-queue
c2) (Q (< (nq: a)) <--> Enqueue(Q, a)
c3) (Q <a (dq:)) <---> Dequeue(Q)
c4) (next: a (resl: Q)) <(--- <a, Q>

The axiom II) is derived from the contract for pure queues as follows:

1) Dequeue(q) = <b, q'> ;given as the premise of the axiom II).
2) ((PURE-QUEUE [b !x]) (< (dq:)) - (next: b (rest: (PURE-QUEUE [Ix])) ;from D).
3) q <---> (PURE-QUEUE [b !x]) ;from 1) and 2).
4) q' <-"-> (PURE-QUEUE [Ix]) ;from 1) and 2).
5) Dequeue(Enqueuelq,a)) ;the left side of the axiom II).

<---> (((PURE-QUEUE [b Ix]) (= (nq: a)) <= (dq:)) ;from 3) c2) and c3).
a ((PURE-OUEUE [b !x a]) <= (dq:)) ;from B).
* (next: b (rest: (PURE-QUEUE.[Ix a]))) ;from D)
, (next: b (rest: ((PURE-QUEUE [!x]) (- (nq: a))))) ;from 8).
<--" (next: b (rest: Enqueue(q', a))) ;from 4) and c2).
<---) (b, Enqueue(q', a)> Ifrom c4).

Therefore Dequeue(Enqueue(q, a)) = <b, Enqueue(q', a))>. q.e.d.



APPENDIX II. A CONTRACT FOR CELLS

[contract-for cell a
(((cons-cell =A) creates-an-actor

(C where ((C is (CELL A))})

(result-of
((C <( (contents?)) where ((C is (CELL B))))

B)

(result-of
(((C D =D) where ((C is (CELL E))))

(C where ((C is (CELL D)))))]

APPENDIX III A CONTRACT FOR "AVERAGE"

Let us consider how a contract for another type of actor is written in our
formalism. In this appendix, we focus on actors whose behavior depends upon the history
of their incoming messages. Obviously such actors are impure. An example of actors of
this type is the "average" actor. It receives a (new-element: X) message which contains a,
number X, and a message (average?) which asks for the average of all the numbers which
have been sent to it. Figure 15 below is a contract for this actor.



[contract-for average 1
((cons-average <( (initial-element: A)) creates-an-actor

(D where ((D has (HISTORY [Al))))

(result-of
((D <( (new-element: 8B))

where ((D has (HISTORY [Ia]))))

(D
where ((D has (HISTORY [!a B])))))

(resull-of
((D <" (average?))

where ((D has (HISTORY [!b]))))
is

(average [!b]))

(to-aimplify (average [Ix]) try ((sigma [Ix])/(length [Ix])))

(to-simplify (sigma []) try 0)

(to-simplify (sigma [x ly]) try (x + (sigma [ly]))) )]

Figure 15

The idea is simple. We introduced a property that the actor D has a history of
incoming messages ia and expressed it in the notation (D has (IIISTORY [Ia])). Again
(IIISTORY [!a]) is an example of the conceptual representations. This Idea is similar to that
of M. Clint[1973] who introduced a "mythical pushdown stack" to have the history recorded.
The characterization of the notation (oaerage Ib) used in the contract is given the above
contract.



APPENDIX IV AN IMPLEMENTATION OF IMPURE QUEUES IN CLU

impure-queue - cluster is cons-impure-queue, nq, dq;

returned-package - record[next: any, rest: impure-queue];
complaints a record[complaint: string];

cons-impure-queue : operO returns(cvl);
return cellScons(nil);

end cons-impure-quueue;
%

nq a oper(a-queue: cvti, nw-element: any) returns(cva);
old-queuees: sequence:- cellScontents(a-queue);
cellSupdate(a-queue, sequenceScons([sequenceSunpack(old-queuees), new-element]));
return a-queue;

end nq;

dq = oper(a-queue: cvt) returns (union[complaint, returned-package]);
queuees: sequence:* cellScontents(a-queue);
if queuees = nil then return 1complaint: 'exhausted);
front: any:= sequencelfirst(queuees);
rest: any:= sequencelbut-first(queuees);
cellSupdate(a-queue, rest);
return (next: front, rest: a-queue);

end dq;

end Impure-queue;


