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A real-time list processing system is one in which the time required by each elementary list operation
(CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is bounded by a (small) constant. Classical
list processing systems such as LISP do not have this property because a call to CONS may invoke the
garbage collector which requires time proportional to the number of accessible cells to finish. The space
requirement of a classical LISP system with N accessible cells under equilibrium conditions is (1.5+11)N or
(I+p1)N, depending upon whether a stack is required for the garbage collector, where />0 is typically les
than 2.

A list processing system is presented which:
1) is real-time--i.e. T(CONS) is bounded by a constant independent of the number of cells in use;
2) requires space (2+21p)N, i.e. not more than twice that of a classical system;
3) runs on a serial computer without a time-sharing clock;
4) handles directed cycles in the data structures;
5) is fast--the average time for each operation is about the same as with normal garbage collection;
6) compacts--minimizes the working set;
7) keeps the free pool in one contiguous block--objects of nonuniform size pose no problem;
8) uses one phase incremental collection--no separate mark, sweep, relocate phases;
9) requires no garbage collector stack;
10) requires no "mark bits", per se;
11) is simple-suitable for microcoded implementation.

Extensions of the system to handle a user program stack, compact list representation ("CI)R-co ling"),
arrays of non-uniform size, and hash linking are discussed. CDR-coding is shown to reduce memory
requirements for N LISIP cells to -s(I+)N. Our system is also compared with another approach to the
real-time storage management problem, reference counting, and reference counting is shown to be neither
competitive with our system when speed of allocation is critical, nor compatible, in the sense that a ýystem
with both forms of garbage collection is worse than our pure one.
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List Processing in Real Time on a Serial Computer

1. Introduction and Previous Work

List processing systems such as.LISP [25] have slowly gained popularity over the years in spite of somen

rather severe handicaps. First, they usually interpreted their programs instead of compiling them, thus

increasing their running time by several orders of magnitude. Second, the storage structures used in such

systems were inefficient in the use of storage; for example, compiling a program 'sometimes halved the

amount of storage it occupied. Third, processing had to be halted periodically to reclaim storage by a long

process k'nown as garbage collection, which laboriously traced and marked every accessible cell so that those

inaccessible cells could be recycled.

.That such inefficiencies were tolerated for so. long is a tribute to the elegance and productivity gained

by programming in these languages. These languages freed the programmer from a primary concern:

storage management. The programmer had only to call CONS (or its equivalent) to obtain a pointer to a

fresh storage block; even better, the programmer had only to relinquish all copies of the pointer and tlhe

storage block would automatically he reclaimed by the tireless garbage collector. The programmer tlo

longer had to worry about prematurely freeing a block of storage which was still in use by another part of

the systelm.

IThe first problem was solved with the advent of good compilers (27,32] and new languages such as

SIMULA especially designed for efficient compilation [14,5,1]. The second was also solved to some exte:nt by

tlhose same compilers because tChe user programs could be removed from the list storage area and freed from

its inefficient constraints on representation.' Other techniques such as compact list representatioh

("CM)R-coding") [19,123 have been proposed which also offer partial solutions to this problem.

'This paper presents a solution to the third problem of classical list processing techniques aind remmmoves

that roadhlock to their more general use. Using the method given here, a computer could have list

processing primitives built in as machine instructions and the programmer would still be assured that. each

.inst.ruction would finish in a reasonable.amount of time. For example, the interrupt handler for a keyboard

could store its.characters on the same kinds of lists--and in the same storage area--as the lists of the main

program. Since there would be no long wait for a garbage collection, response time could be guaranteed to

1: In many cases, a rarely used program is compiled not to save time in its execution, but to save
garbage-collected storage space.
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he small. Eve,.: an operating system could use these primitives to manipulate its burgeoning databases.

Business dataflase designers no longer need shy away from pointer-based systems, for fear that their

systemns will .be impacted by a week-long garbage collection! As memory is becoming cheaper 1 , even

microcompiuters could .be built having these primitives, so that the prospect of controlling one's kitchen

stove with LISP is not so far-fetched.

A real-time list processing system has the property that the time required by each of tile elementary

operations is bounded by a constant independent of the number of cells in use. This property does not

guarantec tIhat the constant will be small enough for a particular application on a particular computer, and

hence has been called "pseudo-real-time" by .some. However, since we are presenting the system independent

of a particular computer and application, it is the most that can be said. In all but the most demanding

applications, the proper choice of hardware can reduce the constants to acceptable values.

Except where explicitly stated, we will assume the classical Von Neumann serial computer architecture

with real mem.ory in this paper. This model consists of a memory, i.e. a one-dimensional array of words,

each of which is large enough to hold (at least) the representation of a non-negative integer which is an

in.ckx into that array; and a central processing unit, or CPU, which has a small fixed number of registers

the size of a word. The CPU can perform most operations on a word in a fixed, bounded amount of time.

The only operations we require are load, store, add, subtract, test if zero, and perhaps some.bit-testing. It is

hard ito find a computer today without these operations.

As simple as these requirements are, they do exclude virtual memory computers. These machines are

interesting because they take advantage of the locality of reference effect, i.e. the non-zero serial

correlation of accesses to memory, to reduce the amount of fast memory in a system without greatly

increasing the average access time. However, the time required to load a particular word from virtual

memory into a CPU. register is not bounded because the primary memory may have to fetch it from a lower

level memory. Since we are more interested in tight upper bounds, rather than average performance, this

class.of mrachines is excluded.

1: Work is progressing on 106 bit chips.
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Since ilhe primary list processing language in use today is LISP, and since most of the literature uses

the LISP paradigm when discussing these problems, we will continup this tradition and center our discussion

around it. Due to its small cells, which consist of 2 pointers apiece, LISP is also a kind of worst case for

garbage collection overhead.

There are two fundamental kinds of data in LISP: list cells and atoms. List cells are ordered pairs

consisling of a car and a edr, while atoms are indecomposable. ATOM(x) is a predicate whiich is true if and

only if x is an atom (i.e. if and only if x is not a list cell); EQ(x,y) is a predicate which is true if and only if

x and y are the same shject; CAR(x) and CDR(x) return the car and cdr components of the list cell x,

respectively; CONS(x,y) returns a.new (not EQ to any other accessible list cell) list cell whose car is initially

x and whose cdr is initially y; RPLACA(x,y) and RPLACD(x,y) store y into the car and cdr of x,. respectively.

We asumrne here that these seven primitives are the only ones which can access or change the representation

of a list cell.

There have been several attempts to tackle the problem of real time list processing. Knuth [22, p. 422]

credits Minsky .as the first to consider the problem, and sketches a multiprogramming solution in which the

garbage collector shares time wit4 the main list processing program. Steele's [30] was the first in a flurry

of papers about multiprocessing garbage collection which included contributions by Dijkstra [)6,17] and

Lamport: [23,24]. Muller [28] independently detailed the Minsky-Knuth--Steele method, and both lie and

Wadler [33] analyzed the time and storage required to make it work.

The Minsky-K nuth -Steele-Muller-Wadler (MKSMW) method for real-time garbage collection has two

processes running in parallel. The list processor process is called the mutator while the garbage collector is

called the collector (these terms are due to Dijkstra [16]). The mutator executes the user's program while

the collector performs garbage collection, over and over again. The collector has three phases: mark, su:eep,

and relocate.. During the mark phase, all accessible storage is marked as such, and any inaccessible storage

is picked up during the sweep phase. The relocate phase relocates accessible cells in such a way as to

minimize the address space required. Since the mutator continues running while the mark and relocate

phases procceed,.the free list must be long enough to keep the mutator from starvation. During the sweep

phase, cells must be added to the free list faster than they can be taken off, on the average, else the net

gain in cells from that garbage collection cycle would be negative.
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Mullcr [28] and Wadler [33) have studied the behavior of this algorithm under equilibrium conditions

(whcn a cell is let go for every cell CONS'ed, and when the rates of cell use by the mutator, and of marking,

sweeping, and relocating by the collector, are all constant). If we let m be the ratio of the rate of CONS'ing

to that. of marking, s be the ratio of the rate of CONS'ing to that of sweeping, and r be the ratio of the

rate. of CONS'ing to. that of relocating, then we can derive estimates of the size of storage needed to support

an acccs-ible population of N cells under equilibrium conditions.1  Using these assumptions,. we derive:

m+(m+l) (r+l)
Maximum MKSMW Storage Required s N ------------ + size of collector stack

1-s(r+1)

We note that r=O if there is no relocation (i.e. it happens instantaneously), in which case we have the

simpler expression:

1+2m
Mlaximumi MKSMW Storage Required 5 N ---- + size of collector stack

1-s

The collector stack seems to require depth N to handle the worst case lists that can arise, but each

position on the stack need only hold one pointer. Since a LISP cell is two pointers, the collector stack space

requirement is .5N. Thus, we arrive at the inequality:

1.5+2m-.5s
Maximum MKSMW Storage Required N ----------

1-s

'Th.ese estimatcs become bounds for non-equilibrium situations so long as the. ratios of the rate of

CONS'ing to the rates of marking, sweeping, and relocating are constant. In other words, we relativizre the

rates.of marking, sweeping, and relocating with respect to a cons-counter rather than a clock.

The I)ijkstra-Lamport (I)L) meth9d [16,17,23,24] also has the mutator and collector running in parallel,

but .the collector uses no.stack. It marks by scanning all of storage for a mark bit it can propagate to the

marked cell's offspring. This simple method of garbage collection was considered because their main concern

was proving that the collector actually collected only and all garbage. Due to its inefficiency, we will not

consider the storage requirements of this method.

1: Of course s<l, or else the storage required is infinite.
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Both the MKSMW and the DL methods have the drawback that they are parallel algorithms and as a

result are incredibly hard to analyze and prove correct. By contrast, the method we present is serial,

making analyses and proofs easy.

2. The Method

Our method is based on the Minsky garbage collection algorithm (26], used by Fenichel and Yochelson

in an early Multics LISP (181, elegantly refined by Cheney [li], and applied by Arnborg to SIMUI.A (1].

This method divides the list space into two semispaces. During the execution. of the user program, all list

cells are located in one of the semispaces. When garbage collection is invoked, all accessible cells are traced,

and instead of simply being marked, they are moved to the other semispace. A forwarding address is left

at thie old location, and whenever an edge is traced which points, to a cell containing a forwarding address,

the edge is updated to reflect the move. The end of tracing occurs when all accessible cells. have been

moved into tile "to" semispace (tospace) and all edges have been updated. Since the tospace now contains all

accessible cells and the "from" semispace (fromspace) contains only garbage, the collection is done and tilhe

computation can proceed with CONS now allocating cells in the former fromspace.

This method 'is simple and elegant because 1) it requires only one pass instead of three to both collect

and compact, and 2) it requires no collector stack. The stack is avoided through the use of two pointers,B

and S. B points to the first free word (the bottom) of the free area, which is always in the tospace. B is

incremented by COPY, which. transfers old cells from the fromspace to the bottom of the free area, and ly

CONS, which allocates new cells. S scans the cells in tospace which have been moved, and updates them by

moving the cells, they point to. S is initialized to point to the beginning of tospace at every flip of tile

semispaces and is incremented when the cell it points to has been updated. At all times, then, the cells

between S and B have been moved, but their cars and cdrs have not been updated. Thus when S=B all

accessible cells have been moved into tospace and their outgoing pointers have been updated. This nmethod

of pointer updating is equivalent to using a queue instead of a stack for marking, and therefore traces a

spanning tree of the accessible cells in breadth-first order.

Besides solving the compaction problem for classical LISP, the

Minsky-Fcnichel-Yochelson-Cheney-Arnborg (MFYCA) method allows simple extensions to handle
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non-uniformly sized arrays and CDR-coding because free storage is kept in one large block. Allocation is

therefore trivial; one simply adds n to' the "free space pointer" to allocate a block of size n.

Copying garbage collectors have been dismissed by many as requiring too much storage for practical

use (because they appear to use twice as much as classical LISP), but we shall see that perhaps this

judgement was premature.

We present the 1]FYCA algorithm here in pseudo-Algol-BCPL notation. The notation "c[4/]" means

the contents of the word whose address is the value of oc plus the value of /3, i.e. the contents of or~+. If

it appears on the left hand side of ":=", those contents are to be changed. Thus, p[i] refers to the i-th

component of the vector pointed to by p. The function size(p) returns the size of the array pointed to l,y

p. The notation "o0 & /3" is similar to the notation "o6;/3" in that o/ and /3 are executed in order; however,

"c/ & " returns the value of o. rather than the value of 3. Thus, ";" and "&" are the duals of one another:

":l/;c2;..j-n" returns the last value (that of oCn) whereas "ol& 1 2&&...&n" returns the first value (that of

Our conventions are these: the user program has a bank of registers R[1],...,R[NR]. The user program

may not "squirrel away" pointers outside of the bank R during a call to CONS because such pointers

would become obsolete if garbage collection were to occur. (We will show later how to deal with a user

program stack in such a way that the real-time properties of our system are not violated.) Pointers either

are atoms or 'refer to cons cells in fromspace or tospace. A cons cell c is represented by a 2-vector of

poi,,ters: car(c)=c[O], cdr(c)=c[l]. FLIP, FROMSPACE and TOSP/ICE are implementation dependent

routines. FlIP interchanges the roles of fromspace and tospace by causing CONS and COPY to allocate in

the other semispace and the predicates F;ROMSPACE and TOSPACE to exchange roles. FLIP also has the

responsibility of determining when the new tospace is too small to hold everything from the fromspace plus

the ncwlv CONS'cd cells. Before flipping, it checks if size(fromspace) is less than (1+m)[size(tospacc)-(T-B)],

where T is the top of tospace, and if fromspace (the new tospace) is too small, either it must be extended, or

the syslem may later stop with a "memory overflow" indication.

REALLP
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% The Minsky-Fenichel-Yochelson-Cheney-Arnborg [26,18,11,11 Garbage Collector %
pointer B: % Bottom; points to bottom of free area. %
pointer S; % Scan; points to first untraced cell. %
pointer T; % Top; points to top of tospace. %

% Assertions: S 5 B : T and T-B is even. %
pointer procedure CONS(x,y) a % Allocate the list cell (x . y). %

begin
if B=T % If there is no more free space, %

then % collect all the garbage. %
begin % This block is the "garbage collector", %

flip(); % Interchange semispaces. %
for i = 1 to NR % Update all user registers. %

do R[i]:=move(R[iJ);
x:=move(x); y:=move(y); % Update our arguments. %
while S<B % Trace all accessible cells. %

do begin
S[80:=move(S[BO); % Update the car and cdr. %
S(13:=move(S[1]);
S :- S+2 % Point to next untraced cell. %

end
end:

if BeT then error;
B[03 := x; B[l :B= y;
B & (B := B+2)

end;

pointer procedure CAR(x) = x[8];

pointer procedure CDR(x) = x[11;

procedure RPLACA(xy) 6 x(O] :=

procedure RPLACD(x,y) a x[1] :=

boolean. procedure EQ(x,y) = x=y;

boolean procedure ATOM(x) =
not tospace(x);

pointer procedure MOVE(p) N

if not fromspace(p)
then p
else begin

if not tospace(D[8])

p 181
then pp[18 := copy(p);

Memory is full. %
Create new cell at bottom of free area.%
Return the current value of B %
after stepping it to next cell. %

A cell consists of 2 -ords; %

car is let; cdr is 2nd. %

car(x) : y %

cdr(x) := y %

Are x,y are the same object? %

Is x an atom? %

Move p if not yet moved;
return new address. %
We only need to move old ones. %
This happens a lot. %

We must move p. %
Copy it into 'the bottom of free area. %
Leave and return forwarding address. %

end;

pointer procedure COPY(p) a % Create a copy of a cell. %
begin % Allocate space at bottom of free area. %

if B1T then error: % Memory full? %
B(01 := p(1); B(1] := pt1]; % Each cell. requires 2 words %
B & (B := B+2) % Return the current value of B %

end: % after moving it to next cell. %
% TOSPACE. FROMSPACE test whether a pointer is in that semispace. %

R EALLP 7
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In order to convert MFYCA into a real-time algorithm, we force the mark ratio mn to be constant by

changing CONS so that it does k iterations of the garbage collection loop before performing each allocation.

But this means that both semispaces contain accessible cells at almost all times. In order to simplify the

algorithm and the proof, we trick the user program into believing that garbage collection ran and

finished at the time of the last flip; i.e. we assert that, as before, the user program sees addresses only in

tospace.

Some slight. effort must be made to keep up this appearance. When the semi spaces are interchanged, all

the user program registers must be updated immediately to point to tospace. This gives the collector a

head start on the mutator. Since the only operations that might violate our assertion are CAR and CDR, we

make sure that CAR and CDR cause forwarding addresses to be followed, and cells to be moved, when

necessary. This ensures that the mutator cannot pass the collector. It turns out that preserving our

assertion is much simpler than.preserving the corresponding assertions of DL [16,17,23,24]. In particular,

RPLACA and RPLACD cannot cause any trouble at all!

There is another problem caused by interleaving garbage collection with normal list processing: the

new cells that CONS creates will be interleaved with those moved, thereby diluting the moved cells which

must be traced by CONS. Of course, new cells have their cars and cdrs already in tospace and therefore do

not need to hbe traced. We avoid this waste of trace effort through the use of the pointer T, which points to

the top of the free area, and allocating all new cells there.

R EALLP
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% Serial Real-Time System (SRT) %

integer k; % Global trace ratio parameter:
the number of cells to trace per cons. %

pointer T; % Top; Points to top of free area. %

pointer procedure CONS(x,y) = % Do some collection,
then allocate (x . y). %

begin
if B=T % Check if free area is empty. %

then begin % Switch semispaces. Memory is full %
if S<B then error; % if tracing is not finished. %
flip(); % Flip semispaces. %
for i = 1 to NR

do R[i]:=move(Ril]); % Update user registers %
x:.=move(x); y:=move(y) % and our arguments. %

-end;
for i = 1 to k while S<B % Do k iterations of gc. %

do begin
S [0) : =move(S [3); % Update car and cdr. %
S[1] :=move(S1] );
S := S+2 % Go on to next untraced cell. %

end;
if B=T then error;
T := T-2: % Actually create the cell. %
T(B] := x; T[13 := y; % Move in car and cdr. %
T % Return address' of new cell. %

end;

pointer procedure CAR(x) a % Move, update and return x[8]. %
xl01 := move(xl 0);

pointer procedure CDR(x) = % Move, update and return xt1l. %
x[ll := move(x[L1);

% Procedures not redefined here are as before. %

Th'e time required by all of the elementary list operations in this algorithm, with the exception of

CONS, can easily be seen to be bounded by a constant because they are straight-line programs composed

from primitives which are bounded by constants. CONS is also bounded by a constant because tilhe number

of mulator registers is a (small) fixed number (e.g. 16), and the parameter k is fixed. In principle, given the

number of registers and the parameter k, the two loops in CONS could be expanded into straight-line code;

hence the time it requires is also bounded by a constant.

'I'lTe proof that the incremental collector eventually moves all accessible cells to tospace is an easy

induction. Upon system initialization there are no accessible cells, hence none in tospace, and so we have a

correct basis. Suppose that at some point in the computation we have just switched semispaces so that
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tospace is empty. Suppose further that there are N accessible cells in fromspace which must be moved to

t.ospace. Now, every cell which was accessible at the time of flipping eventually gets moved when it is

traced. unless lost through RPLACA and RPLACD, and as a result appears between S and B. Furthermore, a

cell is moved only once, because when it is moved it leaves behind a forwarding address which prevents it.

from being moved again. When the pointer S reaches a cell, its edges are traced--i.e. the cells they point to

are moved., if necessary. Finally, only cells which have been moved appear between S and B. Therefore, the

nuimbeir of those accessible, unmoved cells in fromspace decreases monotonically, eventually resulting in no

accessible, unmoved cells in fromspace. At this point, the collector is done and can interchange the two

semis paces.

It should be easy to see why the other list operations cannot adversely affect the progress of the

collector. A CAR or CDR can move a cell before the collector has traced it, but since moving it increases B

but not S, it will be traced later. RPLACA and RPLACD can affect connectivity, but since all of their

argunient.s are already in tospace, they have already been moved and may or may not have beehr traced.

Consider RPLACA(p,q). Suppose that p has been traced and q has not. But since q has been moved but not

tracedI, it must be between S and B and will not be missed. Suppose, on the other hand, that q has been

traced and p has not. Then when p is traced, the old CAR of p will not be traced. But this is all right,

because it may no longer be accessible. If it still is the target of an edge from some accessible cell, then it.

either already has, or will be, traced through that edge. Finally, if either both p and q have been traced or

both have not been, there is obviously no problem.

This algorithm can also be proved correct by the methods of DL [16,17,23,24], because this particular

sequence of interleaving collection with mutation is only one of the legal execution sequences of the I)L

algoilthm on a serial machine. Therefore, if the DL algorithm is correct, then so is this one. The

correspondence is this: white nodes are those which reside in fromspace, i.e. those which have not yet been

moved; grey nodes are those which have been moved but have not yet been traced, i.e. those bctween S and

B; anril black nodes are those which have been moved and traced, and those which have been allocated

directly in tospace (cells below S or above T). Then the assertions are:

A) cach node will only darken monotonically;
B) no cdge will ever point from a black node to a white one; and
C) the user program sees only grey or black nodes.

R EhALLP
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We can now see why the burden is on CAR and CDR rather than RPLACA and RPLACD--the latter

will not violate B so long as the former do not violate C. Using these assertions, we see that tile mutator

and the mark phase of the collector are essentially doing the same thing: tracing accessible cells. "'The

difference is that the collector goes about it systematically whereas the mutator wanders. Thus, only tile

collector knows for sure when all the cells in fromspace have been traced so that the two semispaces cari be

interchanged. Assertion C also allows CAR and CDR to update a cell in which a pointer to frornspace is

found, thus reducing pointer-chasing for cells which are accessed more than once.

We must now analyze the storage required by this algorithm. Suppose that at some flip of tile

s.rnispaccs there.are N accessible nodes. Then the collector will not have to move or trace any more than N

cells. If it traces (makes black) exactly k cells per CONS, then when the collector has finished, the new

scmisjpace will contain • N+N/k = N(l+m) cells. If only N of these are accessible, as in equilibrium

conditions, then. the next cycle of the collector will copy those N cells back to the first semispace, while

performing Nm CONS'es. Hence, we. have the inequality:

Maximum SRT Storage Required < N(2+2m) = N(2+2/k)

Threrefore, for a program which has a maximum cell requirement of N cells operating on a fixed-size

real nmemnory of 2M cells, the parameter k must be greater than N/(M-N) to guarantee that tracing is

finished before every flip.

If we compare the bound for our algorithm with the bound for MKSMW, using the unlikely

assumplion tlat sweeping and relocation take no time (s=r=O), we find that they are quite similar in storage

requ irements.

Maximum MKSMW Storage Required < N(1.5+2m)
Maximum SRT Storage Required - N(2+2m)

If m=1 (which corresponds to one collector iteration per CONS), the two algorithms differ.by only I

part in 8, which is insignificant given the gross assumptions we have made about MKSMW's sweeping and

relocation speeds. It is not likely that the storage requirements of a MKSMW-type algorithm can he

significantly improved because it cannot take advantage of techniques like stack threading or CDR-coding.

Stack threading cannot be done, because accessible cells have both their car and cdr in use.' C])R-coding

i: The l)eutsch-Schorr-Waite collector [22, p. 417-418] "threads" the stack but temporarily reverses the
list structu.re, thus locking out the mutator for the duration.
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using MKSMW is very awkward because CONS must search for a free cell of the proper size and location

beforc allocating a cell, since the free space is fragmented. On the other hand, our algorithm can be easily

modifi4ed to use C1)R-coding and thereby reduce storage requirements to approximately N(l+tn).

3. The Parameter m (= 1/k)

If k is a positive integer, then the parameter m (=1/k) will lie in the interval 0<mnil. Therefore, the

factor of 1+m in our bounds must lie between I and 2. This means that the storage requirements for our

method can be adjusted by varying k, but they will not vary by more than a factor of 2 (so long as k is

integral). Now, the time to execute CONS is proportional to k+c, for some suitable constant c. Therefore,

one can trade off storage for CONS speed, but only within this limited range. Furthermore, as k rises above

I. the slorage savings become insignificant; e.g. doubling k to 8 yields a storage savings of only 10%, yet

almost doubles CONS time. Of course, if storage is limited and response time need not be fast, larger k's

might be acceptable.

If the method is iuscd for the management of a large database residing on secondary storage, k could

bhe made a positive rational number less than 1, on the average. For example, to achieve an average k=1/3

(m=3), one could have CONS perform an iteration of the collector only every third time it was called. The

result of this would double the storage required (m+l=4), but would reduce the average CONS time by

almost 2/3. Of course, the worst case time performance for CONS would still be the same as if k were 1.

Th'lis improvement is significant. because each iteration of the collector traces all the pointers of one

record. This requires retrieving that record, updating all of its pointers by moving records if necessary, and

then rewriting the record. If there are t pointers to be updated, then +l1 records must be read and written.

This sounds like a lot of work, but this much work is done only when a record is created; if there are no

record creations, then with the exception of the first access of a record via a pointer stored in another

record, the accessing and updating functions will be as fast as on any other file management scheme.

Therefore, since secondary storage is usually cheap but slow, choosing k<l in a file management system

allows us to trade off storage space against average record creation time.

With a little more effort, k can even be made variable in our method, thus allowing a program to

dynamically optimize its space-time' tradeoff. For example, in a database management system a program
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might set k=O. during an initial load of the database because it knows that even though there arc many

records, being created, none are being let go, and therefore the continual copying of the collector will achieve

no.compaction. The function READ in LISP might want to exercise the same prerogative, for the same

reason. Of .course, any reduction of k should not take effect until the next flip, to avoid running out of

st.orarge before then.

4. A User Program Stack

If the user program utilizes its own stack as well as a bank of registers, the stack may (in theory)

grow to an unbounded size and therefore cannot be wholly updated when the semispaces are flipped and still

prescrve a constant bound on the time for CONS. This problem may be trivially solved by simulating the

slack in the.heap .(i.e. PUSH(x) s CONS(x,stack) and PQPO P()CDR(stack)); this simulation will satisfy the

bounded-time constraints of classical stack manipulation. However, this simulation has the unfortunate

property that accessing items on the stack requires time proportional to their distance from the top.

In order to maintain constant access time to elements deep in the stack, we keep stack-like allocation

and deallocation strategies but perform the tracing of the stack in an incremental manner. We first fix the

stack accessing routines so that the user program never sees pointers in fromspace. This change requires

that the MOVE routine must be applied to any pointers which are picked up from the user stack. We must

then change CONS to save the user stack pointer when the semispaces are flipped.so that it knows which

stack locations must be traced. Finally, the user stack POP routine must keep this saved pointer current to

avoid tracing locations which are no longer on the user stack [281

The only remaining question is how many stack locations are to be traced at every CONS. To

guarantee that stack tracing will be finished before the next flip, we must allocate the stack tracing ratio

k'. (the. number of stack locations traced per CONS) so that the ratio k' /k is the same as the ratio of stack

locations in use to cons cells in use. We recompute k' at each flip, because the "in use" statistics are

available then. Due to this computation, a constant bound on the time for CONS exists only if the ratio of

slack size to heap size is bounded, and is proportional to that ratio.

The following code exhibits these changes.
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Serial Real-Time System with User Stack

November 29, 1977

The user stack resides in the array "ustk" and grows upward from
"ustk[81". The global variable "SP" is the user stack pointer and
points to the current top of the user stack. The global variable 'SS"
scans the user stack and points to the highest stack level which
has not yet been traced by the collector. %

integer SP init(O);
integer SS init(8);

procedure USERPUSH(x)
bec i n

SP := SP+1;
ustk[SP] x

end:

pointer procedure USER_POP() -

move(ustk[SP]) &
begin

SP := SP-1;
SS := min(SS,SP)

end :

pointer procedure USER_GET(n) =
ustk[SP-n) := move(ustk[SP-n]);

pointer procedure CONS(x,y) a
beg in

if B=T
then begin

if SS>. or S<B
then error;

N := flip();
SS := SP;
k' := ceil(k*SS/N);
for i = 1 to NR

do R[i):=move(R[il);
x: =move (x); y:=move(y)

end;
for i = 1 to k' while SS>8

do begin
ustk[SS :=move(ustk[SS;):
SS := SS-1

end;
for i = 1 to k while S<B

do begin
S[E] := move(S[])) ;
S11l := move(S11):;
S := S+2

end:
if B=T then error;
T := T-2;
T[0] := x; T[1) := y:
T

end:

% User stack pointer. %
% User stack scanner. %

% Push x onto user stack. %
% Note: x will not be in fromspace. %

% Pop top value from user stack. %
% Move value if necessary; %

% then update stack pointer. %
% Keep stack scanner current. %

% Get n'th element from top of stack. %
% Move and update if necessary. %

% Collect some, then allocate (x . y), %

Check if free area is empty. %
Interchange semispaces. %
Check for memory overflow. %

% Set N to number of cells in use. %
% Start stack scan at top of stack. %
% Calculate stack trace effort. %

% Update user registers %
% and our arguments. %

% Move k' user stack elements and %
% update scan pointer. %

% Do k iterations of gc. %

% Trace & update car, cdr. %

% Actually create the cell. %
% Install car and cdr. %
% Return address of copied cell. %
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',iThe complexity involved in this conversion is essentially that necessary to make the serial real-time

metlhod work for several different spaces [27). In such a system, each space is a contiguous area in the

address space disjoint from the other spaces, and has its own representation conventions and allocation (and

deallocation) strategies. The system of this section thus has two spaces, the heap and the user stack, which

must be managed by cooperating routines.

5. CDR-Coding (Compact List Representation)

In this section, we discuss the interaction of our algorithm with a partial solution to the second big

problem with list structures: their inefficient use of storage. Whereas a list of 5 elements, in a language

like Fortran or APL would require only a 5 element array, such a list in LISP requires 5 cells having two

pointers apiece.- So-called "CJ)R-coding" [19,12] can reduce the storage cost of LISP lists by as much as

50%. The idea is simple: memory is.divided up into equal-sized chunks called Q's. Each Q is big enough to

lhold 2 bits plus.a pointer p to another Q. The 2 bits are decoded via the following table:

00 - NORMAL; CAR of this node is p; CDR is in the following Q.
01 - NIL,; CAR of this node is p; CDR is NIL.
10 - NEXT; CAR of this node is p; CDR is the following O.
11 - EXTEXNDED; The cell extension located.at p holds the car and cdr for this node. 1

CDR-coding can reduce by 50% the storage requirements of a group of cells for which CDR is a 1-1

function whose range excludes non-nil atoms. This is a non-trivial saving, as all "dot-less" s-expressions

read in by. the LISP reader have these properties. In fact, Clark and Green [12] found that after

linearization 98% of the non-NIL, cdrs in several large LISP programs referred to the following cell. These

savings" are due to the fact that CDR-coding takes advantage of the implicit linear ordering of addresses in

address space.

What. implications does this coding scheme have for the elementary list operations of LISP? Most

operations must dispatch on the CD.R-code to compute their results, and RPLACD needs special handling.

Consider HRPLACD(p,q). If p has a CDR code of NIL or NEXT, then it must be changed to EXTENDE)D,

and the result of CONS(CAR(p),q) placed in p.2

1: ' ihese conventions are slightly different from those of [19].

2: We note in this context .that if RPLACD is commonly used to destructively reverse a list--e.g. by LISP's
"NREVERSE"--the system could also have a "PREVIOUS" CDR-code so that RPLACD need not call CONS
so often.
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The number of memory references in the elementary operations has been minimized by making the

following policies [20]:

1) every EXTENI)EI) cell has a NORMAL extension;
2) the user program will never see a pointer to the extension of an EXTENDED cell; and
3) when COPY copies an EXTENDED cell, it reconstitutes it without an extension.

CONS, CAR, CDR, RPLACA and RPLACD must be changed to preserve these assertions, but EQ and

ATOM require no changes from their non-CDR-coded versions. Since an EXTENDED cell cannot point to

another I'XTENI)DED cell, the forwarding of EXTENDED pointers need not be iterated. These policies

seem to minimize memory references because each cell has a constant (between flips) canonical address,

therchy avoiding normalization [30] by every primitive list operation.

Cl)R-coding requires a compacting, linearizing garbage collector if it is to keep allocation simple

(becauise it. uses two different cell sizes) and take full advantage of the sequential coding cfficienlcy. The

MillYCA algorithm presented above compacts, but does not linearize cdrs due to its breadth-first trace

order. However, .the trace order of a MFYCA collector can be easily modified at the cost of an additional

pointer, PB. PB keeps track of the previous value of B (i.e. PB points to the last cell copied), so that tracing

the cdr of the cell at PB will copy its successor into the next consecutive location (B), thus copying whole

lists into successive contiguous locations.

The mecaning of the scan pointer S is then changed slightly so that it points to the next uword which

muist he updated rather than the next cell. Finally, the trace routine is modified so that tracing the cdr of

PB has priority over tracing the edge at S and the condition on the trace loop is modified to amortize both

thte copying effort (measured by movements of B) and the tracing effort (measured by movements of S) over

all the CONS'cs. These modifications do not result in a depth-first trace order, but they do result in

cd.r-chaimns being traced to the end, with few interruptions. Thus an MFYCA collector can minimize the

amnount of memory needed by CDR-coded lists.

The size of the tospace needed for CDR-coding is (1+m) times the amount of space actually used in

fror•space. With a coding efficiency improvement of e over the classical storage of LISP cells, and under

equilibrium conditions, we have the inequality:

Maximum SRTC Storage Required < Ne(2+2m)
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Since we have claimed that ew.5, we get the following estimate:

SRTC Storage Required z N(l+m) (1)

But this latter expression is less than the bound computed for MKSMW. Thus, CDR-coding has given

us back the factor of 2 that the copying garbage collector took away.

The real-time properties of our algorithm have not been affected in the least by CDR-coding; in fact,

good microcode might be able to process CDR-coded lists faster than normal lists since fewer references to

main memory are needed.

CDR-coding is not the final answer to the coding efficiency problems of list storage, because far more

compact codes can be devised to store LISP's s-expressions. For example, both the car and cdr of a .cell

could he coded by relative offsets rather than full pointers [121 However, a more compact code would

represent some cells in so few bits that the pointer we need for a forwarding address would not fit,

rendering our scheme unworkable. Part of the problem is inherent in LISP's small cell size; small arrays can

perform much better.
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Serial Real-Time System with CDR-Coding

Novcmber 29, 1977

pointer S;
pointer PB;
pointer L,H;

pointer procedure CONS(x,y)
beg i n

if T-B<2
then begin

if S<B then error;
fl ip();
for i =.1 to NR
do R[i) :=move(Rli]);
x:=move(x); y:=move(y)

end;
w- hile (S+B)/2-L < k*(H-T) and S<B
do if PB<B

then PB := (B & CDR(PB));
else begin

S [0 :=move (S[03);
S := S+1

end:
if B=T then error;
T := T-1;
if y=ni I
then code(T) := "NIL"
else if y=T+1

then code(T) := "NEXT"
else begin

if B=T then error;
T := T-1;
code(T) := "NORMAL";
Ti11 := y

end;
T[O) := x;
T

end:

pointer procedure CAR(x)
brpl aca (x, move(bcar (x)));

procedure RPLACA(x,y) s
brp I aca'(x, y);

pointer procedure BCAR(x) =
if code(x) ="EXTENDED"

then (x [0) 0)
else x[0);

pointer procedure BRPLACA(p,q) F
if code (p)="EXTENDED"

then (p[18) [0 := q
else p[8) := q;

Next cell whose car needs tracing.
Pointer to previous value of B. %
Low and high limits of tospace. %
Assertion: L 5 S < PB s B < T < H.
Create a new cell in tospace with %

% Flip when free area is exhausted. %
% This part is the same as usual. %
% Copying is not done; memory overflow!
% Interchange semispaces. %

% Update user registers. %
% Update our arguments. %

Trace and copy a measured amount.
Extend current list, if possible.
CDR will trace this edge for us. %

% Update this edge. %
% Step S over this cell. %

% Check for memory overflow. %
% Create new cell at top of free area.

% If y is special case, %
% then create a short cell %
% with appropriate cdr-code. %
% Otherwise, create a normal cell. %
% Need more space for the cdr. %

% Set in "NORMAL" cdr-code. %
% Set in the cdr. %

% Set the car in the new cell.
% Return the new cell. %

% CAR must move cell it uncovered. %
% Update this edge. %

% x[03 := y. May require subtlety. %

Basic car; dispatch on CDR-code.
Type "EXTENDED" means %
indirect car. %

All other types have normal cars.

% Basic rplaca; dispatch on CODR-code. %
% If extended cell, clobber indirectly.

% All others have normal car. %
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poi'nter procedure COR(x) =
brplacd(x, move(bcdr(x))):

procedure RPLACD(x,y) =
begin

if code(x)="NIL" or
code (x) ="NEXT"
then

begin pointer p;
p := CONS(CAR(x), "DUMMY");
x := move(x); :=- move(y);
x[01 := p;
code(x) := "EXTENDED"

end;
brplacd (x, y):

end:

pointer procedure BCDR(x) =
if code(x)="NORMAL" then x[ll
else if code(x)="NIL" then nil
else if code(x)="NEXT" then x+1
else (x(0e) [1];

pointer procedure BRPLACO(p,q) =
if cocde(p)="EXTENDED"

then (p(03)[11 := q
else if code(p)="NORMAL"

then pil := q
else. q;

integer procedure SIZE(p) a
if code(p) ="NORMAL"

then 2 else 1;

point.er procedure COPY(p) 6
begin

if PB=B-2 and bcdr(PB)=p.
then behgin

code(PB) :=-"NEXT";
B := B-1

end;
if bcdr(p)=nil

then code(B) := "NIL";
else code(B) := "NORMAL";

B[83 := bcar(p);
brplacd(B,bcdr(p));
PB ;= B .
B := B+size(B);
if B>T then error;

PB
end:

% Procedures not redefined here are as

% CDR moves uncovered cell, but updates %
% only if still possible after move. %

% x[l] := y. May require bru.te force. %

% Test for screw cases. %
% Cannot have code(x)="EXTENDED". %

% Extend the cell x. %
% Construct guaranteed NORMAL cell. %
% Update arguments in case CONS flipped. %
% Leave forwarding address in old cell. %
% The old cell has now been extended. %

% Finally replace the cdr. %

% Basic cdr; dispatch on CDR-code. %
% NORMAL cells have a second word. %
% Interpret NIL COR-code. %
% Interpret NEXT COR-code. %
% EXTENDED cells point to NORMAL cells. %

Handle easy cases of RPLACD.
We have extended cell; %
clobber the NORMAL indirect.
The easiest case of all. %

% In all cases, return q as value. %

% Find the size of p from its COR-code. %
% "NIL", "NEXT", and "EXTENDED" all have %
% size(p)=l. %

Copy the cell p; append to current %
train if possible. %

See if we can hop this NEXT train. %

% Convert NORMAL cell to NEXT cell. %
% Reuse extra space now available. %

% Create a NIL cell, if appropriate. %

% Otherwise, all cells are NORMAL. %
% Copy over car; %
% and cdr too, if necessary. %
% PB is end of current NEXT train. %
% Step B over newly copied cell, I.
% check for memory overflow, %
% and return pointer to new copy. %

before. %
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G. Vectors and Arrays

Arrays can be included quite easily into our framework of incremental garbage collection by simply

enclosing certain parts of the collector program in loops which iterate through all the pointers in the array,

not just the first and second. The convergence of the method with regard to storage space can also be

proved, and bounds derived. However, the method can no longer claim to be real-time because neither the

time taken by the array allocation function (ARRAY-CONS) nor the time taken by the array clerment

accessing function is bounded by a constant. This unbounded behavior has two sources: copying an array

and tracing all its pointers both require time proportional to the length of the array. Therefore, if these

operations are included in a computer as non-interruptable primitive instructions, hard interrupt reponse

time boundls for that computer will not exist. However, an arbitrary bound (say 10) placed on the size of all

arrays by cither the system or the programmer, allows such bounds to be derived.

Guy Steele [31] has devised a scheme which overcomes some of these problems. He gives each vector a

special link word which holds either a forwarding pointer (for vectors in fromspace which have been

partially Inoved), a backward link (for incomplete vectors in tospace), or NIL (for complete vectors). MOVE

no ionger copies the whole array, but only allocates space and installs the forward and backward links. Any

reference to an element of a moved but incompletely updated vector will follow the backward link to Ithe

fromspace and access the corresponding clement there. When the scan pointer in the tospace encounters

such a vector, its elements are incrementally updated by applying MOVE to the corresponding elements of

its old self; after tire new one is complete, its link is set to NIL. Element accesses to incomplete vectors

compare the scan pointer to the element address; access is made to the old (new) vector if the scan pointer is

less (rceatcr or equal). Tracing and updating exactly kn vector elements (not necessarily all from the same

vector) upon every allocation of a vector of length n guarantees convergence.

StIcle's scheme has the following properties: the time for referencing an element of any cell or vector

is bounded by a constant while the time to allocate a new object of size n is bounded by clkn+c2 , for some

constants c, and c 2 . Hence, a sequence of list and vector operations can be given tight time bounds.

REALLP



List Processing in Real Time on a Serial Computer

7. Hash Tables and Hash Links

Some recent artificial intelligence programs written in LISP have found it convenient to associate

I)rop('rly lists with list cells as well as symbolic atoms. Since few cells actually have property lists, it is a

waste of storage to allocate to every cell a pointer which points to the cell's property list. Therefore, it has

been suggested (9) that one bit he set aside in every cell to indicate whether the cell has a property list. If

so, the property-list can be founi by looking in a hash table, using the address of the list cell as the key.

Such a Lable requires special handling in systems having a relocating garbage collector. Our copying

scheme gives. each semispace its own-hash table, and when a cell is copied over into tospace, its property list

pointer is entered in the "to" table under the cell's new address. Then when the copied cell is encountered

by the "scan" pointer, its property list pointer is updated along with its normal components. A

"CI)R-coding" system with two "scan" pointers should also keep a third for tracing property list pointers to

prevent properly lists from destroying chains of "next"-type cells.

8. Referenice Counting

In this section we consider whether reference counting can be used as a method of storage reclamation

to process lists in real time; i.e. we try to answer the question, at least for the real-time context, is

reference counting worth the effort, and if so, under what conditions?

A classical reference count system [13,34] keeps for each cell a count of the number of pointers which

point (refer) to that cell; i.e. its in-degree. This reference count (refcount) is continually updated as

pointers to the cell are created and destroyed, and when it drops to zero, the cell is reclairned. When

reclaimed, the refcounts of any daughter cells it points to are decremented, and are also reclaimed if zero, in

a recursive manner.

Reference counting appears to be unsuitable for real-time applications because a potentially unbhounded

amount of work must he done when a cell is let go. However, if a free stack is used to keep track of freed

objects instead of a free list, the newly freed cell is simply pushed onto the free stack. When a cell is

needed, it. is popped off thie stack, the. refcounts of its daughters are decremented, and if zero, the daughters

are pushed back onto the stack. Then the cell which was popped is returned. In this way, only a bounded

amount of work needs to be done on each allocation.
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We now consider the storage requirements of a reference counting (RC) system. In addition to the

mermiory for N cells, we also need room for N refcounts and a stack. Since the refcounts can go as high as

N, they require approximately the same space as a pointer. So we have:

Maximuni RC Space Required < 1.SN + the size of the "free stack"

The worst case stack depth is N. However, whenever a cell is on the stack, its refcount is 7.cro, so we

can thread the stack through the unused refcounts! So we now have:

Maximum RC Space Required < 1.5N

Reference count systems have the drawback that directed cycles of pointers cannot he reclaimed. It

has been suggested [22,15] that refcounts be used as the. "primary" method of reclamation, using garbage

collection (GC) as a fallback method when that fails. Since RC will not have to reclaim everything and since

the average refcount is often very small, it has also been suggested that a truncated refcount (a bounded

counter which sticks at-its highest value if it overflows) be used to save space.

We say that garbage in a combination RC and GC system is ref-degradable if and only if it can be

reclaimed by refcounts alone. Cells whose truncated refcounts are stuck are therefore non-ref-degradabhle.

Whal. is the effect, of a dual system in terms of performance? Whatever the RC system is able to

recycle puts off flipping that much longer. By the time a flip happens in such a two level system, there is

no ref--dgradable garbage left in tospace. Therefore, the turnover of the semispaces is slowed.

How nmich memory does the dual system require? If truncated refcounts are used, the free stack

canno!t be threaded through a cell's refcount because it is not big enough to hold a pointer. Therefore,

using Ihis method and assuming only a few bits worth of truncated refcount per cell, we have:

MaximuMn SRT+RC Space Required 5 N(2+2m) + RC free stack 5 N(2.5+2m)

So it appears that we have lost something by adding refcounts (even tiny ones), because we still need

room for tlie free stack.

Let ai• now examine more closely the average timing of CONS under a pure RC versus a pure SRT

syltem. lThie average time for CONS under the RC system is the same as the maximum time since there is

no frcedomn in the algorithm. The time for CONS in SRT is ck+c2 , where cl and c 2 are constants. Now c 2

is simnply the time to allocate space from a contiguous block of free storage. Certainly incrementing a
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pointer is much less 'complex than popping a cell from a stack, following its pointers, decrementing their

refcounts, and if zero, pushing them onto the stack. Therefore, we can choose k small enoughl so that the

average time to perform CONS with our SRT method is smaller than the average time to perform CONS in

an RC systemn. 2  This analysis does not even count the additional time needed to keep the refcounts

updated. Of course, the storage required for our "pure" SRT system may be many times the storage of the

RC systcem, but SRT will have a smaller average CONS time.

Since this scoms counterintuitive, or at least reactionary (given the current penchant for recycling), we

give a rationale for why it is so. Reference counting traces the garbage cells, while normal garbage

collection traces the accessible cells. Once the number of garbage cells exceeds, the number of accessible

cells in an region of storage, it is faster to copy the accessible cells out of the region and recycle 'it whole.

When n)>l, reference counting cannot compete timewise with garbage collection because HC must trace a cell

for every cell allocated while GC traces on the average only a fraction (1/m) of a cell for every cell allocated.

On tLhe other hand, if we wish to minimize storage by making m<l, a dual scheme with truncated

rcfcouints should reduce the average CONS time over that in the pure scheme. However, CI)R-coded lists

and other variable sized objects cannot be easily managed with reference counting because the object at the

top of the free stack is not necessarily the right size. for the current allocation. Thus,. Ci)R-coding can

reduce the storage requirement of. a "pure" scheme below that of a "dual" system with the same m. But

even on a system with objects of uniform size, we are skeptical whether the increased average efficiency of

CONS in the "dual" system will offset the increase in k needed to keep the storage requirements the same as

the "pure" system. We conclude that, at least on a real memory computer, reference cournting is probably

not a good storage management technique unless one a) has uniformly sized objects; b) uses full

counts; and c) guarantees no cycles.

This is not to say that reference counts are not useful. If the LISP Janguage. were extended with a

function to return the current refcount of an object, and suitably clean semantics were associated witi this

1: Section 3 deals with non-integral k's.

2: We can discount the additional time occasionally required by CAR and CDR in our metliod because any
relociation and pointer updating done by them is work that we have already charged to CONS, and does not
have to be repeated.
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function, then one might be able to make use of this information within the user program to speed up

certain algorithmis, such as structure tracing or backtracking, a la Bobrow and Wegbreit [8]. This author

is not aware of any language which makes this information available; if it were available, good programmers

would certainly find a use for it.

9. The Costs of Real-Time List Processing

The amount of storage and time used by a real-time list processing system can be compared with that

used by a classical list processing system using garbage collection on tasks not requiring bounded response

times. The .storage required by a classical non-compacting garbage collector is N(1+p.), if the system uses

the 1)eutsch-Schorr-Waite (DSW) [22, p. 417-418] marking algorithm, and N(I.S+p) if it uses a normal stack,

for some positive p. If CDR-coding is used, copying must be done; the storage requirement is then

Ne(2+21i), where c is the efficiency of the coding. Since e is near .5 [12], the requirement is about N(l+÷#),

so that CI)R-coding requires approximately the same space as DSW. Comparing these expressions with

those derived earlier for our real-time algorithms, we find that processing LISP lists in real-time requires

no more space than a non-real-time system using DSW. If larger non-uniformly-sized objects like arrays

must he managed, real-time capability requires no more space than the MFYCA system, since a copying

collector is alrcadly assumed.

The average time requirement for CONS in our real-time system is virtually identical to that in a

classical M VYCA system using the same cell representation and the same amount of storage. 'IIhis is because

1) a classical system can do AN CONS'es after doing a garbage collection which marks N nodes--thus giving

art average CONS/mark ratio of g and allowing us to identify /L with m--and 2) garbage collection in our

real-lime system is almost. identical to that in the MFYCA system, except that it is done incrementally

during calls to CONS. In other words, the user program pays for the cost of a cell's reclamation at the

time the cell is created by tracing some other cell.

CAR arid CI)R are a bit slower, because they must test whether the value to be returned is in

froinspace. lowevcr, as noted above, any cell movement done inside CAR or CDR should not be charged to

CAR or CD)R because it is work which the collector would otherwise have to do and therefore has already
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been ai-counted for in our analysis of CONS. Therefore, CAR and CDR are only slower by the time required

for the semnispace test.

Since RPLACA, RPLACD, EQ, and ATOM are unchanged from their classical versions, their timin-gs

are also unchanged.

The overhead calculated for our serial system can be compared to that in Wadler's parallel system [33].

According to his calculations, a parallel garbage collector requires significantly more total time than a

non-parallel tollector. But this contradiction disappears when it is realized that his parallel collector

continues tiacing even in the absence of any cell creation activity. Since our system keys collector activity

to cell creation, the collector effort is about the same as on a non-real-time system.

10. Applications

1) A fixed size, real memory computer.

This application covers the classical '090 LISP [25) as well as a LISP for a microcomputer. We

conceive of even 16-bit microcomputers utilizing this algorithm for real-time process control or simulation

tasks. Each of the -list processing primitives is intended to run with interrupts inhibited, so that all

interrupt processing can make use of list storage for its buffers and other needs. Multiple processes may

also use these primitives so. long as CONS, CAR, and CDR are used by one process at a time; i.e. they are

protected by one system-wide lock. Of course, the system must be aware of the registers of every process.

For these real memory applications, we want to put as much of the available storage under the

rnanagemnent of the- algorithm as possible. Thus, both atoms (here we mean the whole LISP atom-complex,

mnotL just thle print-name) and list nodes are stored in the semispaces. CDR-coding is usually a good idea to

save memory, .hut unless the bit-testing is done in microcode, it may be faster to use normal cells and

increase the parameter .kto keep the storage size small.

The average CONS time is reduced by putting off flipping until all of the free space in iospace is

exhau sted, i.e. B=T. Thus, after all moving and tracing is done, i.e. S=B, allocation is trivial until B=T. As a

result, the average CONS time in our real-time system is approximately the same as that in a classical

systerm. Of course, with a memory size of 2M, the maximum number of cells that can be safely managed is

still Mk/(k+l).

2) A virtual memory computer.
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The current opit.ome of this application is Multics LISP with an address space of 236 (: 1011) 36-bit

words, rootm for billions of list cells. The problem here is not in reclaiming cells that are let go, but

keeping accessible cells compact so that they occupy as few pages of real memory as possible. The M YCA

algorithm docs this admirably and ours does almost as well.

Our scheme is still real-time on a virtual memory computer, but the bounds on the elementary list

operat ions now have the order of magnitude of secondary storage operations.

There are some problems, however. Unlike MFYCA, wherein both semispaces were used only during

garbage collection, our method requires that they both be active (i.e. partially in real memory) at all times.

T'his may increase the average working set size. A careful analysis needs to be made of our algorithm in

order to estimate the additional cost of incremental garbage collection. Brief consideration tells us that the

active alddress space varies from a minimum of N(l+m) just before a flip to N(2+2m) just after. Since at a flip

the user program registers are updated in numerical order, relatively constant pointers should be placed in

the lower numbered registers to keep the trace order of constant list structure similar between flips. If the

average size of an object is much larger than the size of a pointer, the working set may also be reduced by

storing the forwarding addresses in a separate table instead of in the old objects in fromspace [7].

In a virtual memory environment, the active address space will automatically expand and contract in

response to changes in the number of accessible cells if 1) FIIP re-adjusts the size of fromspace to

(] +m)[cclls in tospace] just before interchanging the semispaces; and 2) flipping occurs when tracing finishcs

rather than when B meets T. This policy, plus a smaller k than a real memory computer would use, should

give both a fast CONS and a tolerable working set size. The parameter k can also be dynamically adjusted

to optiimie either running time (including paging) or cost according to some pricing policy by following an

a,alys.is similar to that of Hoare and others [21,10,2].

3) A database management system.

We conceive of a huge database having millions of records, which may contain pointers to olher

records, being managed by our algorithm. Examples of such databases are a bill of materials database for

the Apollo Project, or a complete semantic dictionary and thesaurus of English for a language understanding

programn. Performing a classical garbage collection on such a databank would be out of the question, sivnce

it miniht require days or weeks to complete, given current disk technology.

REAl.LP

Henry G,. Baker, Jr. Novemberr 29, 19)77



List Processing in Real Time on a Serial Computer

Some of these large database systems currently depend on reference counts for storage reclamation,

and so do not, allow directed cycles of pointers. Since our method performs general garbage collection, this

restriction could be dropped. Moreover, given enough space, our algorithm can take even less time than a

reference count system. When compared with a classical garbage collection system, our method would not

save any total time in processing transactions against such a data base, but it would avoid the catastrophic

consequences of a garbage collection during a period of heavy demand.

This case is very much like case 1, the real memory computer, because we assume that the database is

orders of magnitude too big to fit into primary memory and thus that there is little hope for a speedup

from the locality of reference. effect. "Read memory" and "store memory" instructions here apply to

secondary storage; the constant bounds for the elementary operations are now on the order of milliseconds

rather than microseconds. Therefore, almost everything that we say about real memory implenentations

also applies to large database implementations, except that space is cheaper and time is more dear.

4) A totally new computer architecture.

We conceive of an architecture in which a CPU is connected to a list memory instead of a random

access memory. Machines of this architecture are similar to "linking automata" described by Knuth [*22, p.

462-463] and "storage modification machines" described by Schonhage [29]. At the interface Ietwcen the

CPU and the memory sits a bank of pointer registers, which point at particular cells in the list memory.

Inlstead of a bus which communicates both addresses and values, with read and write commands, the memory

would have 'only a data bius and commands like CAR, CDR, CONS, RPLACA, RPLACD, and ATOM, whose

arguments and returned values would be in the pointer registers. The CPU would not have access to tihe bit

strings stored in tile pointer registers, except those which pointed to atoms (objects outside both fromspace

and los.pacc). This restriction is necessary to keep the CPU from depending upon memory addresses which

might bhe changed by the management algorithm without the CPU's knowledge.

An advantage of such a system over random access memory is the elimination of the huge addre.ss bus

that is normally needed between the CPU and the memory, since addresses are not dealt with directly by the

CPU. *As the nu'mber of bits on a chip increases, the number of address lines and supporting logic becomes

a critical factor.
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Our method of garbage collection can also be used with a random access write-once memory by

appending an extra word to each cell which holds the forwarding address when that cell is eventually moved.

UIsing such a system, the cells in tospace cannot be updated until they are moved to the new tospace after

the next flip. In other words, three semispaces need to be active at all times. In addition to these changes,

RPI,ACA arid RPLACI) must actually perform a CONS, just like RPLACD occasionally does in our

CiDR-codling system. Perhaps the write-once property can eliminate the need for transaction journals and

backup tapes.

11. Conclusions and Future Work

We have exhibited a method for doing list processing on a serial computer in a real-time environment'

where the t mine required by all of the elementary list operations must he bounded by a constant which is

indiependent of the number of list cells in use. This algorithm was made possible through: 1) a new proof of

correctnenss of parallel garbage collection based on the assertion that the user program sees only marked

cells; 2) Ithe realization that collection effort must be proportional to new cell creation; and 3) the belief that

the complex interaction required by these policies makes parallel collection unwieldy. We have also

exhibited extensions of this algorithm to handle a user program stack, "CDR-coding", vectors of contiguous

words, and hash linking. Therefore, we consider our system to be an attractive alternative to reference

counting for real-time storage management and have shown that, given enough storage, our method will

outperform a reference ýount system, without requiring the topological restrictions of that system.

Our real-time scheme is strikingly similar to the incremental garbage collector proposed independently

by Barbacci for a microcoded LISP machine [3]. However, his non-real-time proposal differs in the key

points above. Our system may itself appear in microcoded form in Greenblatt's LISP machine [19].

There is still some freedom in our algorithm which has not been explored. The order in which the

cells are traced is not important for the algorithm's correctness or real-time properties. The average

properties of the algorithm whlien run on a virtual memory machine need to be extensively investigated.

The space required by our algorithm may be excessive for some applications. Perhaps a synthesis of

Bishop's rarea concept [6,73 with our method could reduce the memory requirements of a list processing

syst(em while preserving the bounded-time properties of the elementary operations.
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A garbage collection algorithm can be viewed as a means for converting a Von Neumann-style random

access memory (with "side-effects" [25]) into a list memory (without "side-effects"). Perhaps a list memory

can be implemented directly in hardware which uses considerably less energy by taking advantage of the

lack of si(ldc-ffects in list operations [4).
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