MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. wak-i.-ng Paper 139 ' April 1, 1977

List Processing in Real Time on a Serial Computer
by |
Henry G. Baker, Jr.

: A real-time list processing sysiem is one in which the time required by cach clementary list operation
(CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is bounded by a (small) constant. Classical
list processing systems such as LISP do not have this property because a call to CONS may invoke the
garbage collector which requires time proportional to the number of accessible cells to finish. The space -
requirement of a classical LISP system with N accessible cells under equilibrium conditions is (1.5+u)N or
(1+2)N; depending upon whether a stack is required for the garbage collector, where 130 is typically less
" than 2.

A list processing system is presented which:
1) is real-time—-i.c. T(CONS) is bounded by a constant independent of the number of cells in use;
2) requires space (2+2p)N, i.e. not more than twice that of a classical system;
3) runs on a serial computer without a time-sharing clock;
4) handles directed cycles in the data structures;
5) is fast—-the average time for cach operation is about the same as with normal garbage collection;
6) compacn--mlmmlzes the working set;
T) kecps the free pool in one contiguous block--ob;ects of nonuniform size pose no problem;
8) uscs one phase incremental collection--no separate mark, sweep, relocate phascs;
9) requires no garbage collector stack;
10) requircs no "mark bits", per sc;
11) ig simple--suitable for microcoded implementation.

Extensions of ‘the system to handle a user program stack, compact list representation ("CDR-coding™),
arrays of non-uniform size, and hash linking are discussed. CDR-coding is shown to’reduce memory
requirements for N LISP cells to =(1+u)N. Our system is also compared with another appmach to the
real-time storage management problem, reference counting, and refcrence counting is shown to be ncither
competitive with our system when speed of allocation is critical, nor compatible, in_ the sense that a system
with both forms of garbage eollecuon is worse than our pure onc.

Key Words and Phrases real-ume, oompacung, garbage collection, list processing, virtual memory, file
- or database management, storage management, storage allocation, LISP, CDR-coding, reference rountmp

CR Categories: 3.50, 3.60, 3.73, 3.80, 4.13, 4.22, 4.32, 4.33, 4.35, 4.49
This report describes research done at the Artificial Intelligence Lahoratory of the Massachusectis
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided in part by

the Advanced Research Projects Agency of the Department of Defcnse under Office of Naval Rescarch
contract N00014-75-C-0522.

Working Papers are informal papers intended for internal use.

‘November 29, 1977 - List Processing in Real Time on a Serial Computer Henry G. Baker, Jr.,

1. Int'rolduétion- and Previous Work

List processing systems such as LISP [25] have slowly gaincd popularity over -th.e years in spite of some
rather _sevc;e handicaps. First, they usually interpreted their programs instead of compi_ling them, thus
increasing their runniﬁg time by several orde_rs of magnitude. Sccqnd, the storage structures used in such
systems were inefficient in the use of storage; for example, compiling a i)rég'ram'somelimcs' halved the
ameunt of storage it occupied. Third, processing had to be halted periodically to ret;laim storage hy a long
;;rocé.ss k'nc.;;m as g.garbagc.collection', which lahoriously traced and marked every accessible cell so that those
inacccssihle”cé.}ls could be recycled. |

“That such- ineff icicncies ;ﬁvere tolerated l_';;i 0, loﬁg is a tribute to the elegance aﬁd productivity gainqd
lhy 'programminlg in these languages. These languages freed the programmer fram a primary c.o'_nccrn:
storage -mmmgcmént. The _progrémme; had only to call CONS (or its équivalent) to obtain a pointer to a
ff-nsh storage block; even h'et.ter, the programmer had only to relinquish all éopies of the pointer and the
" storage hlock would automatically he reclaimed by the tircless garbage c§ilegtor. Thc_ programmer no
lor;gcl- had to worry aboutlprematurely freeing a block of storage which was still in use by another part of
the system. |

The first |>r(;blc|n was sblved with the advent of good compilers [27,32] and new languages such as
SIMULA espécially designed for efficient compilation [14,5,1]. The second was also solved to some extent by
~those rame com.;;_il'crs hcecause the user programs could be removed {rom the list storage area and freed from

' Other techniques such as compact list representation

Cits iv;cf ficient coh;tra-ihts on representation.
("CDR —_t.:()l]il\‘g") tl‘),l 2] have been prop-oséd which also offer partial solutions to this problem.

This paper presents a soluiion 1o the third‘problem of classical list processing té(l:hniqucs and removes’
that roadblock to their more general usc. .Using the method given here, a computer could have list
processing primitives built in as machine instructions and the programmer would still be assured that each
" .instruction would finish in ‘a reasonable amount of time. For example, thé intcrr.;rpt handler for a l_ccyboard

“could store its characters on the same kinds of lists--and: in the same storage arca--as the lists of the main -

program. Since there would be no long wait for a garbage collection, response time could be guaranteed to

1: In many cascs, a rarcly used program is compiled not to save time in its execution, but to save
garbage-collected storage space.

REALLP | ' | -

Henry G. "]"mk_i;r, Jr. List Proccssing in Real Time on a Serial Computer November 29, 1977

be small. .}i‘,fv_é):\-‘.'_z_\n_t;pcrati'ng system could use these primitives to manipulate its burgeoning databascs.
Business dat.g.\lva.‘sc”dcsigners‘ no longer nced shy away from pointer-based systems, for fear that their
systoms will hc impacted by a week-long garbage collection! - As memory is becoming chcapcr] , even
micr_ocomp_ixlcrz; ‘could be built haviné these primitives, so that the prospect of controlling one’s kitchen
.st’o%rc with LISP is not so fm_'-fetchcd.

A 'rcal-limé list processing system has the property that the time required by each of the clementary
opcrations is hounded by a constant independent of the number of cells in use. This property does not
guarantee, that Lhc_ constant will be small enough for a particular application on a particular computer, and
_hence has heen called "_pseudo-.rcal-time" by some. However, since we are presenting th system independent
of a particular ¢omputer and application; it is the most that can be said. in all but the most demanding
' a|J;)]ic'ai.jon:<,-'l.I|e'proper choice of hardware can reduce the constants to acceptable values.

. E;ccpl where explicitly stated, we will assume the classical Von Neumann serial computer architecture

with rcal memory in this paper. This model consists of a memory, i.e. a one~dimensional array of words,
each of which is 'lar"gé enough to hold (at lcast) the representation of a non-negative integer which is an
'i'ndp'x into that array; and a central processing unit, or CPU, which has a small fixed number of registers
the size of a word. l‘ he CPU can perform most operations on a word in a fixed; bounded amount of time.
The o'.nl}.r.opc'r_-at'iOn's we require are load, store, add, subtract, test if zero,'_and perhaps some.bit—téslihg. IL s
hard (o find a éo.mputcr today without these opcrations. |

As _simpl’é‘as these requiréments are, they do exclude virtual memory computers. These machines are
interesting bécau_;c they take advantage of the locality of reference ef fect,. i.e. the non-zero serial
'cmjrclalion of accesses to. memory,-to reduce the amount of fast memory in a system without greatly
irik:r:nzlsing the average access time. However, the time required to load a particular word from virtual
memory into a CPU. register is not bounded because the primary memory may have to fetch it from a lower
ln;vcl memory. Since we are more intcrested in Light upper bounds, rather than average performance, this

class. of machines is excluded.

1: Work is progressing on 109 bit chips.

n : DAY D

November 29, 1977 . . List Processing in Real Time on a Serial Computer _ Henry G. Baker, Jr.

Since the priﬁ;ary_'lisjt processing language in use today is LISP, and since most of the litcrature uses
the LISP- paradigm when discussing these probléms, we will continug this tradition and center our discussion
e_\rou.n,:l it. Dﬁc to: its small cells, which consist of 2 pointers apiece, LISP is also a_-kind of worst ca;:c for
garbage collection overhead.

There are two fund'ar_neﬁlal kinds of data in LISP: list cells and atoms. List cells are ordered pairs
consisting of a car and a cdr, while atoms are indecomposable. ATOM(x) is a prcdi-cate'w'h;ich is true if ami
only if x is an atoni (i.e. if and 0nl-y if x is not a list cell); EQ(x,y) is a predicél.e ‘whic-h is true if and only if
' x and’ y'. are the same ol;jéct_; CAR(x) and CDR(x) return the car and cdr components of the list cell X,
respectively; CONS(_x,‘y) returns a new (n't;t EQ to any other accessible list cell) list cell whose car is initially
x and whose cdr is initially y; RPLACA(x,y) and RPLACD(x,y) store y into the car and cdr of x, respectively.
We assumc-hcrg’ that these seven primitives are the only oncs which can access or change the representation
of a list cell. |

There have been 'se..v"eral' aitempts‘ to tackle the problem of real time list processing. Knuth [22, p. 122] .
credits _Minl:kiy as the first to consider the problem, and sketches a hultiprogrémming solution in which the
galrbagc:collcél.or shares. l'im-e _wibh the main list processing program. Stecle’s [30] was the first in a flurry
of papers about ﬁ;ulliprocessing' gérbage collection which included contributions by Dijkstra [16,17] and
Lamport [23,24] Mullerl[ZB] independently detailed the Minsky-Knuth-Steele mecthod, and both he and
Wadlelr {33] analyzed lthc time and storage required to. make it work. \

The Minskyél(nuth-Stec'le:-l\‘[uller-\va_dler (MKSMW) method for real-time éarbage collection hag two
procecsses running in paraliel.'The liét Processor process is called the mutator while the garbage collector is
qal|e§ the c'ollc_ctor‘ (these terms are due to Dijkstra [16)). The_- mutator exccutes the user’s program while
the collector performs garbage collection, over and over again. The collector has three phases: mark, sweep,
and relocate.. During the mar‘kI phase, all accessible sto.rage is markcd as such, and any Iinacccssiblc storage
is picked up during the sweep phase. The rcl.ocate phase relocates accessible cells in such a way as 10
minimize the address space required. Since the mutator continues ru.nning- while the mark and reclocate
phases proceed, the free list must be long enough to keep the mutator from starvétiou.' Puring the sweep
_ l])hi.ls'e, cells mu#l be added to the free list faster than they can be taken off, on the average, clse the net

gain in cells from that garbage collection cycle would be negative.

REALLP - SR n

Henry G. Baker, Jr.’ List Processing in Real Time on a Serial Computer _ ‘November 29, 1971

Muller [28] and Wédler‘ [33] have st-udied the behavior of this algorithm under cquilibrium conditions
(when a cell is let go for every cell CONS’ed, and when the rates of cell use b_y the mutator, and of marking,
sweeping, and relocating by thécollcctor, aro all constant). If we let m be the ratio of the rate of CONS'ing
to that of markir_..g,- s. be '.t_he r'atic; of the rate of CONS'ing to that of sweeping, and r'. be the rat.io of the
rate. of CONS’ihg_-to. that of relocating, then we can derive estimates of the size of storaéc needed Lo support
an accessible population of N cells under equilibrium coﬁdii;ions.l Using these assumptions, we derive:

..l. - m+ (m+1) (r+1)
Maximum MKSMW Storage Required € N -~---=w———-- 4 size of collector stack

W(; note that r=0 if there is no relocation (i.e. it happens instantaneously), in which case we have the
simpler expression: |

1+2m
Maximum MKSMW Storage Required s N ---- + gize of collector stack
1-s

~ The collector .st.ack.seems to require depth N to handle the worst case lists that can arise, but cach
position on the stack necd only hold one pointer.. Since a LISP cell is two pointers, the collector stack space
requirement is .5N.- Thus, we arrive at the incquality:

- i.5+2m—.55
Maximum MKSMW Storage-Required SN e

" These _csliln;tcs become bounds for non-equilibrium situations so long as the: ratios of the rate of
CONI-S'ing- to the rates of mar‘king,. sweeping, énd rclocating are constant. In other words, we rclativizc_ the
ralc;ﬂ.ﬂf r'ngrking, éwecpiné, and relocating with respect to a cons-counter rather than a clock.

- The Dijkstra=Lamport (DL) method [16,17,23,24] also has the mutator and t':.ol,lector running in parallel,
bhut the cnl"lccl.o.r uscs no .stack. It marks by scannihg all of storage for a mark bit it can propagate to the
rn;\fkc_ul ccll‘fs offspring. This simple method of garbage collection was considered because their main concern
was proving that the collect.or actually collected only and all garbage. Due to it; inefficiency, we will not

consider the storage requirements of this method.

1: Of course s(i, or clse the storage required is infinite.

A) : - RFALLP

Novemher 2_9, 1977 LisL_ Processing in Real Time on a Scrial Computer _ Henry G. Baker, Jr.

Both the MKSMW and the DL methods have the drawback that they are parailel algorithms and as a
result are .inc'rc'd'ibly hard to analyze and prove correct. By contrast, thc methed we present is serial,

making analyses and proofs easy.

2. The Method

Qur method is hased on 1;he Minsky garbage collection algorithm [26], used by Fenichel and Yochelson
in an carly Multics LISP [18], clegantly refiﬁed by Cheney [11], and applied. by Arnborg to SIMULA 11
. This .melhod divides the list space into two semispaces. During the execution of .the user program, all list
cells are .locatcd in onc of the semispaces. When g.arbage collection is invoked, all accessible cglls are traced,
and instcad of simply being marked, they are moved to the other semispace. A forwafding _addr"ess. is left
-at_the old location, apd whenever aﬁ edge is traced which points.to a cell c(;nlaining a forw.érding address,
the edge is updaled to reflect the move. The end of ‘tracing occurs when ali accessible cc“s: have bheen
moved into the "to" semispace (tospace) and all edges have. been updated. Since the tospace now contains all
accessible cells and the "from" semispace (fromspace) contains only garbage, the collection is done and the
cmnp_t.nalion‘ can pr.ocec_d with CQNS now a"ocating cells in the former fromspace.

;l'lmis m‘ct_hpd is simple and élegant because 1) it requires only one pass instead of three (o both collect
and compaéi, and. 2) it requires no collector stack. The stack is avoided through the use of two pointers,B
and S. B points to the Tirst free word (the bottom) of the frec area, which is al\-vays. in the tospace. B is -
incrcmcnl..cd }»)"C()PY, which. transfers old cells from the fromspace to the bottom of the frec arca, and by
CONS, which'.allqcat_es new cells. S secans the cells in tospace which have been moved; and updal_es them hy
mo.ving the cells. they point te. S is initialized to point to the beginning of tospace at every flip of the
semispaces and is' ini:r;emcnted when. the cell it points to has been updated. At all times, then, the cells
hetween S and B have been moved, but their cars and cdrs have not been updated. Thus when S=B all
accessible cé]ls have been moved into tospace and their outgoing pointers have bheen updated. This methad
of pointer updating is cquivalent to using a qdeue instead of a stack for marking, and therefore traces a
spanning tree of the accessible cells in breadth-first order. |

| Besides - . solving the compaction problem for classical LISP, the

M.insky—Fc_njchel-;Yochelson-Cheney-Arnborg (MFYCA) method allows simp]e. extensions to handle

REALLP : - ' - e

Henry G. Baker, Jr. Jiist Processing in Real Time on a Serial Computer - ‘November 29, 1977

non-uniformly-sizcd arrays and CDR-coding because free storage is kept in one large block. Allocativon is
therefore trivial; one simply adds n.to the "free space pointer” to allocate a block of size n.

Copying garbage collectors have been dismissed by many as requiring too much storage for practical
use {(because they 'appcar to use twice as much as classical LISP), but we shall see that perhaps this
judgement was premature.

We present the MFYCA algorithm here in pseudo-Algol-BCPL notation. The notation "«£[/2]" means
the contents of the wﬁr,d \;'lnose address is the value of of plus the value of £, i.e. the contents of ot+/3. If
it appears on the left hand side of ":=", those contents are to bé changed. Thus, pli] refers to the i-th
component of the veclor peinted to by p.” The function size(p) returns the size of the array pointed to by
‘p. The notation "ot &ﬂ" is similar to the notation "oz;8" in that o and A are executed in order; howcever,
"ot & A" veturns the ya]he of o rather than the value of 8. Thus, ";" and "&" are the duals of one another:
"o./,l;c’.’,zg...;c/_.n" rdurns-ihc last value (that of o) whereas "06]&062&...&0(“" returns the first value (that of
oLy)

Our convcntioﬁs are these: the uscr program has a bank of registers R[1]),..,RINR]. The user program
may not "squirrel away" pointers outside of the bank R during a call to CQNS because such pointers
would hecome obsolete if garbage collection were to occur. (We will show later how to deal with a user
' progi-am stack in such a way that the real-time properties of our system are not violated.) Pointers cither
are atoms or refer to cons cells in fromspace or tospace. A cons cell.c is represented by a 2-vector of
pointers: car(c)=c[0], cdr(c)=c[1]. FLIP, FROMSPACE and T’OSPHCE are implementation dependent
routines. FLIP interchanges the roles of fromspace and tospace by causing CONS and COPY to allocate in
the other semispace and the predicates FROMSPACE and TOSPACE to exchange roles. FLIP also has the
responsibility of determining when the new tospace is too small to hold everything from the fromspace plus
the n(;,w'l,v CONScd cells. Before {lipping, it checks if size({fromspace) is less than (1+m)[size{tospace)-(T-B}],
where T is the top of tospace, and if fromspace {the new tospace) is too small, either it must be extended, or

the system may later stop with a "memory overflow” indication.

f REALLP

November 29, 1977

List Processing in Real Time on a Serial Computer

Hc;lry 'G. Baker, Jr.

% The MNMinsky-Fenichel-Yochelson-Cheney-Arnborg [26,18,11,1) Garbage Collector %

pointer B:
pointer S;
pointer Tj.

pointer'procedure CONS(x,g))

begin
if B=T
then
begin
S flipQg
for i =1 to NR
do Rli}:=move(R[il);
x:=move (x) s y:=movely);
uhile S<B
do begin
' S{B]:=move(S(B]};
S{1]1:=move(S{11);
S 1= 5+2
end
end; :

if B2T then error;
BIB) := x; BI1] := y;
B & (B := B+2)

end; -
pb?nter procedure CAR(x) = x[0];
pointer pfocédure CDﬁ(x) = Q[l];
procedure RPLACA(x.g) E-x[ai 1=y
) procedure.RPLACD(x,g) e x[1] := y;
booiean.brocedurg EQ(x,y) = x=y;

boolean procedure ATOM(x)
not tospace(x);

pointer procedure MOVE (p)

if not fromspacel(p)
then p
else begin
, if nat tospace(p(dl)

p (8]
end;

pointer procedure COPY(p) =
begin
if B2T then error:
B(O] := plR): BI1] := plll;
. B & (B := B+2)
end:

then pi@) := copylp);

% Bottom: points to bottom of free area. %
% Scan; points to first untraced cell. %
% Top; points to top of tospace. %

% Assertions: S <B < T and T-B is even. %

% Allocate the list celt (x . y). %

% 1f there is no more free space, %
% coliect all the garbage. %
% This block is the “"garbage collector”., %

% Interchange semispaces. %

% Update all user registers. %

% Update our arguments. %
% Trace all accessible cells. %

% Update the car and cdr. %
% Point to next untraced cell. %
% Memory is full, %
% Create new cell at bottom of free area.%
% Return the current value of B %
% after stepping it to next ceill. %
% A cell consists of 2 words; %
% car is lst; cdr is 2nd. %
% carix) 1=y %
% cdr{x) :=y %
% Are x,y are the same object? %
% Is x an atom? % -
% Move p if not get moved;
return neu address. % :
% We only need to move old ones. %

% This happens a lot. %

% We must move p. %
% Copy it into the bottom of free area. %

‘% Leave and return foruarding address. %

% Create a copy of a cell. %

% Allocate space at bottom of free area. %
% Memory full? %

% Each cell requires 2 words %

% Return the current value of B % -

% after moving it to next celi. %

. % TOSPACE. FROMSPACE test whether a pointer -is in that semispace. %

REALLP

Henry G. Baker, Jr.. “List Processing in Real Time on a Serial Computer November 29, 1977

In order to convert MFYCA into a real-time algorithm, we forjce the mark ratio m to be constant hy
changing. CONS so that i_t docs k iterations of the garbage collcction loop before performing each allocation.
But. this means that both semispacés contain accessible cells at almost all times. In order to simplify the
algorithm and the proof, we irick the user program into- believing that garbage collection ran and
[inislmd at the time qf the las; flip; i.c. we assert that, as before, the user program sces addresses only in
fospace.

Some slight effort must he made to kéep up this appearance. When the semi_sp#ccs are interchanged, all
the user program registers must be upd‘ated immediately to.point to to'space.- This gives the collector a
head sl.a.rt..(in the mutator. Since the only operations that might violate our assertion are CAR and CDR, we
make surc that CAR and 'CDk cause forwarding addresses to be followed, and ceﬂs to he moved, when
-ncct-zsslary. This ensures that the mutator cannot pass ihe collector. It turns out that preserving our
assertion is much simpler than preserving the corresponding assertions of DL [16,17,23,24). In particular,
RPLACA and RPLACD cannot cause any trouble at all!

There is another problem caused by interle.aving garbage collection with normal list processing: the
n(;.w cells that CONS creates will be interleaved with _th.ose moved, thereby dilﬁting the moved cells which
must be traced by CONS. Of course, new cells have their cars and cdrs already in iospace and therefore do
not need 1o he traced. We avoid this waste of trace effort through the use of the pointer T, which points to

" the top of the frec area, and éllocating all new cells there.

B - REALLP

‘November 29, 1977 Tist Processing in Real Time on a Serial Computer Henry G. Baker, Jr. -

% ' ‘Serial Real-Time System (SRT) %

integer ki % Global trace ratio parameter:

‘ : the number of cells to trace per cons. %
pointer T: % Top; Points to top of free area. %
pointer procedure CONS(x,y) = . % Do some coilection,

) then allocate (x . yl. %
begin :
if B=T % Check if free area is empty. %
then hegin % Suitch semispaces. HMewory is full %
if S<B then error; % if tracing is not finished. %
flipO; % Flip semispaces, %
for i =1 to NR _ o
do Rlil:=move(R{il); % Update user registers %
s=move{x); y:=movely) % and our arguments. %
~end; .) :
for i =1 to k while S<B % Do k iterations of gc. %
do begin : : _ :
SiB]:=move(S1(81); % Update car and cdr. %
S(11:=move(S{l1]1);
S 1= 542 % Go on to next untraced celi. ¥%
~ end; ' :
if B=T then errors '
T 1= T2 : : % Actual ly create the cell. %.
T 1= x; T{1) = y; % Move in car and cdr. %
T ' ' % Return address of neuw cell. %
end; :

pointer procedure CAR(x)
% (B8] 1= wmove(x(8));

" % Move, update and return x[8). %

pointer procedure COR(x) % Hove.'update'and return x[1). %

x[1] := move(x{ll};

% Procedures not redefined here are as before. _ : %

" The time rc(juircd by all of the elementary list operations in this algorithm, with the exception of
CONS,; can casily bc seen to b;:' bounded By a constant hccause they are.straight-lfne_programs composcd
from .pr'im_i_ti('cs which are bounded by constants. CONS is also bounded by a constant because the number
of mutator registers is a (small) fixed nuﬁber (c.g. 16), and the parameter k is fixed. In principle, given the
number of registers and the parameter Kk, the two loops in CONS could be expanded into siraight-line code;
hence the time it requires is also bounded by a constant.

The prﬁ_of_ that the incremental collector eventually moves all accessible cells to tospace is an cary
" induction. Uﬁon system initialization there .are no accessible cells, hence none in tospace, a.nd §0 we have a

corrcct hasis. Suppose that at some point in the computation we have just switched semispaces so that

REALLP ' ' ' 9

Henry G. Baker, Jr. List Proccssing in Real Time on a Serial Computer November 29, 1977

tospace is cmpty. Suppose further that there are N accessible cells in fromspace which must be moved to
tospace. Now, every cell which was accessible at Lhé time of flipping eventually gets moved when it is
traced, uniess lost through RPLACA and RPLACD, and as a result appears between S and B. Furthermore, a
cell is moved only once, hecause when it is moved it leaves hchind a forwarding address which prevents it
from being moved again.. When the pointer S reaches a cell, its edges are traced--i.e. the cells they point to
are moved, if necessary. Finally, only cells which have been moved appear between S and B, Therefore, the
nuinher of t(hose acccssib]c, unmoved cells in fromspace decreases monotonically, eventually resulting in no.
accessible, un.movcd cells in fromspace. At this point, the collector is done and can interchange the two
SeImispaces,

It should he casy to sec why the other list operations cannot adversely affect the progress of the
collector. A CAR or CDR can move a cell before the collector has traced it, but since moving n increases B
but not S, it - will b-c traced later. RPLACA and RPLACD can affect connectivity, but since all of their
arguments are already in tospace, they have alrcady been moved and may or may not have br;rn traced.
Consider RPLACA(pq). S\n-ppose't.lrat p has been traced and g has not. But since q has been moved butrnol
traced, it must he between S and B and will not he missed. Suppose, on the other hand, that ¢ has heen
‘t'rzm(:d and p has not. Thcr.n when p is traced, the qld CAR of p will not be traced. But this is all 'ri.uhl,
because it may no longer be accessible. If it still is the target of an edge from some accessible cell, then it
either already has, or will l;c, traced through that edge. Finally, if cither both p and g have been traced or
both have not been, there is obviously no problem.

This algorithm ‘can also he proved correct hy the methods of DL [16,17,23,24]; hecause this particular
sequence of interleaving collection with mutation is only one of the legal exccution sequences of the DL
algorithm on a scrial machine. Therefore, if the DI algorithm is correct, then so is this one. The
correspondence is this: white nodes are those which reside in fromspace, i.e. those which have not yet heen
moved; grey nodes are those which have been moved but have not yet been traced, i.e. those between S and
B; and black nodes are those which have bheen moved and traced, and those which have heen allocated
directly in tospace (cells below S or above T). Then the assertions are:

A) cach node will only darken monotonically;

B) no cdge will cver point from a black node to a white one; and
C) the uscr program sees only grey or black nodes.

10 ’ RIALLP

~ November 29, 1977 List Processing in Real Time on a Scrial Computer Henry G. Baker, Jr.

We can now sec why the burden is on CAR and CDk rathe_r than RPLACA and RPLACD--the latter
will not- violate B so long as thé former do not violate C. Using theselasscrtions_, we sce that the mutator
and the: n:mrk phase of the collector are essentially doing thé same thing: tracing accessible cells. The
(liffcv-;'rncc is that the collector goes about it systematically whereas the mutator wanders. Thus, o'n_ly the
collector knows for sure whén all the cells in fromspace have been traced so that the two scmispaces can be
interchanged. Assertion C also allows CAR and CDR to update a cell in which a pdimcr‘ to fromspace is
found, thus reducing pointer-chasing for cells which are accessed more than ong:'e.

We must now analyze the storage required by this algorithm. Suppose that at some flip of the
semispaces there are N accessible nodes. Then the collector will not have to move or trace any more than N
cells. If it traces (makes black) exactly k cells per CONS, then when thé collector has finished, the new
semispace will contain £ N+N/k = N{1+m) cells. If only N of these aI-’e aﬁcessible, as in cquilibrium
(:(.md‘itinns, then. the next cycle of the collector will copy th.ose N cells back to the first semispace, while
performing Nm (l,‘.ONS’cs. ‘Hence, we. Have the inequality:

Maximum SRT Sforage Required < N(2+2m) = N(2+27k)

Therefore, for a program which has a maximum cell requirement. of N cells oper.ating on a'fixcd-sizc.
real memory of 2M cells, the parameter k must be greater than N/(M-N) to guarantee l_.h_al tracing is
finished l;éfo:-c' t:w._"(:ry flip. |

If we compare the bound for our algorithm with the bound for MKSMW, using the unlikely
assumplion that sweeping and rélocation take no time (s3=r=0), we find that they are.qui_te similar in storage
- regquircments, |

Maximum MKSMW Storage Required < N{1.5+2m)
~Maximum SRT Storage Required < N{(2+42m)

If m=1 {which cprrqsponds to one collector iteration pcr CONS), the two algorithms differ by only 1
_part in 8, which is insignificant giV§n the gross aséumpt‘ions we have made about MKSMW’s sweeping and
refdcmion speeds. 1t is not likely that the storage requirecments of a MKSMW-type algorithm can be
signi'ficam.ly. imﬁroved because it cannot take advantage ol“tcchniqucs like stack threading or CDDR-coding.

Stack threading cannot ‘he done, because accessible cells have both their car and cdr in use.l CDR-coding

“1: The Deutsch-Schorr-Waite collector [22,p. 417-418] "threads” the stack but temporarily reverses the
list structure, thus locking out the mutator for the duration.

REALLP 1

Henrv G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1977

using MKSMW i< very awkward because CONS must search for a free cell of the proper size and location
_before allocating a cell, since the free space is fragmented. On the other hand, our algorithm can be casily

modified to use CDR~coding and therchy reduce storage requirements to approximately N{1+m).

3. The Parameter m (= 1/k)

If k is a positive integer, then the parameter m {=1/k) will lie in the interval 0<m<1. Therelore, the
factor of t+m in our bounds must lie between 1 and 2. This means that the storage requircments for our
method can be adjusted by varying k, but they will not vary by more than a factor of 2 (so long as K is
integral). Now, the time to execute CONS is proportional to k+c, for some'suitablc'conslant c. Thercfore,
one can trade of { storage for CONS speed, but only within this limited range. Furthermore, as K rises abhove
4 the storage savings become insignificant; c.g. doubling k to 8 yiclds a storage savings of only 10%, yet
almost doubles CONS time. Of course, if storage is limited and response time ﬁeed not be fast, larger k’s
might be a'cccy;Lal)lc.

If the method is uscd for the management of a large database residing on secondary storage, k could .
be made a positive rational number less than 1, on the average. For example, to achicve an average k=1/3
{m=3), onc could have CONS perform an iteration of the collector only every third time it was called. The
result of this would double the storage required (m+l=4), but would reduce the average CONS time by
almost 2/3. Of course, the worst case time 'pcrformanéc for CONS would still be the same as if k were 1.

This improvement is significant because each itcration of the collector traces all the pointers of one
record. This requires retrieving that record, updating all of its pointers by moving records if nccessary, and
then rewriting the recorﬂ. If therc are t pointers to be updated, then t+1 records must be read and written.
* This eounds like a lot of work, but this much work is done only when a record is created; if there are no
record creations, then wit}n the cxception of the first access of a record via a pointer stored in another
record, the accessing and updating functions will be as fast as on any other file management scheme.
Therefore, sincc.sncondary storage is usually cheap but slow, choosing k<1 in a file management system
allows us to trade off storage space against average record creation time.

With a little more effort, k can cven be madc variable in our method, thus allowing a program to

dynamically optimize its space-time tradeoff. For example, in a database management system a program

12 REALLP

November 29, 1977 | List Processing in Real Time on a Serial Computer Henry G. Baker, Jr.

-n.-lijz_h.l sel k=0. during an %nitial lodd of the database because it knows ihat even though there are many
records heing created, none are being let go, and therefore the continual copying of the collector will achieve
~no.compaction. The function READ in LISP mighlt want to exercise the game prerogative, for the saine
rcason. Of .coﬁrsc, anyl ifcductiOn_ of k should not take effect until the next flip, to avoid running out of

storage hefore then.

4. A User Program Stack
lf (-‘h.n user program util-izes its own stack as well as a bank of registers, the stack may (in theory)
grow Lo an unbhounded size and therefore cannot be wholly updated when the semispaces arc [lipped and still
preserve a constant hound on the time for CONS. This problem may be 'trivially solved hy simulating the
stack in the_ heap ,(;.e. PUSH(x) = CONS(x,stack) and POP() = CDR(stack)); thfs simulation will satisfy the
bounded-time constraints of claésical stack manipulation. However, this simulation has the unfortunate
;yropérl._;z that acccssi;_-g items on the stack requires time proportional to thcif distance from the top.

In order to maintain constant access time to elements deep in the stack, we icecp stack-like allocation
and deallocation sl.ra_legies1but perform the tracing of the stack in an incremental manner. We first fix the
stack accessing roul.incs- so that the user program ncver sces pointers in fromspace. This change rcquircs, :
that lhc.MOVI‘.’. routine must be applied to any pointers which are picked up from the user stack. We must
then change CONS to save the user §Lack pointer when the semispaces are flipped.so that it knows which
stack loacations m-ust be traced. Finally, the uscr stack POP routine must keep this saved pointer current to
avoid tracing locations which are no longer on the vser stack [28]

The enly remaining question is how many stack locations are to be traced at cvcrly CONS. To
guarantee that stack tracing will be fini;hed before the next flip, we- must allocate the stack tracing ratio.
k’. (the number of stack iocations traced per CONS) so that the ratio Kk’ Ik.is' the same as the ratio of stack
locations in use ;6 .cor_xs cells in use. We recompute k' at cach flip, because the "in usc” statistics are
évailal\lc then. Due .to this computation, a constant bound on the time for CONS exists only if the ratio of
stack size to heap éize is bounded, aﬁd is proportional to that ratio.

The following code exhibits these changes.

REALLP - o . , . 13

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1977

% Serial Real-Time System with User Stack %

% The user stack resides in the array "ustk" and grous upuward from
"ustk [B]1", The global variable "SP" is the user stack pointer and
points to the current top of the user stack. The global variable "5S"
scans .the user stack and points to the highest stack level which
has not yet been traced by the collector. %

integer SP init(8); % User stack pointer., %
integer SS init(8); % User stack scanner. %
procedure USER_PUSH(x) = % Push x onto user stack. %
begin % Note: x will not be in fromspace. %
SP = SP+1;
ustk [SP} 1= x
end: .
pointer procedure USER_POP() = % Pop top value from user stack. %
move (ustk [SP]) & . ' % Move value if necessary; %
begin
SP := SP-1: % then update stack pointer. %
SS 1= mini{SS,SP) % Keep stack scanner current. %
end;
pointer procedure USER_GET(n) = % Get n'th element from top of stack. %
ustk [SP-n] := move(ustk [SP-nl}; % Move and update if necessary. %
pointer procedure CONS{x,y) = % Collect some, then allocate (x . y). %
begin
if B=T % Check if free area is empty. %
then begin % Interchange semispaces. %
~if SS>8.0r S<B % Check for memory overfiou. %
then error; .
N = fiip(}; % Set N to number of cells in use. %
SS 1= SP; % Start stack scan at top of stack. %
k' 1= ceil (kxG5/N}; % Calculate stack trace effort. %
for i =1 to NR
do RliJ:=move(R{il}; % Update user registers %
x:=move (x); y:=move (y) % and our arguments. %
end;
for i =1 to k' uhile 55>8 % Move k' user stack elements and %
do begin % wupdate scan pointer., %
- ustk [SS) :=move (ustk [SS]);
SS 1= 55-1
end:
for i = 1 to k while S<B % Do k iterations of gc. %
do begin
S[B] := move(SIB]); % Trace & update car, cdr. %
S{1] := move(S{ll):
S := S4+2 :
. end:
if B=T then error;
T := T-2s % Actually create the cell. %
TIB) = x; TM1 1= y; % Install car and cdr. %
T % Return address of copied cell. %
end;

14 ’ REALLP

" November 29, 19717 List Processing in Real Time on a Serial Computer ' :chry G. Baker, Jr.

The complexity involved in .this conversion is essentially that necessary to make the serial rcal-time
m.r;ljhod work for v-s.everal different spaces [27). In_éuch a system, cach space is a éontiguous arca in ll.m
address space dis;ioint from the othcr_spaee‘s, and has its own representation conventions and allocation (and
deallocation) strategies. Th.c system of this section thus has two spaces, the heap and the user stack, which

must be managed by cooperating routines.

5. CDR-Coding (Compact List Representation)

.l.n this section, we discuss the interaction of our algorithm with a parlia_l solution to the sccond big
problem with list siructures: 'Lhcir inefficiént use of storage. Whereas a list of 5 clements in a language
like Fortran or APL .\-vould' rcquire only a 5 clement array, such a list in LISP requires.5 cells having wwo

pointers apicce.: So-called "CDR-coding” [19,12] can reduc?a the storage cost of. LISi’ lists by as much as
50%. The idea is simple: memory is.diyidéd up jnto equal-sized chunks called Q’s. Fach Q is big enough to

hold 2 bits plus a pointer p to another Q. The 2 bits are decoded via the.followi'ng table: .

00 - NORMAL; CAR of this node is p; CDR is in the following Q.

01 - NITL; CAR of this node is p; CDR is NIL.

10 - NFXT; CAR of this node is p; CDR is the following Q.

11 - EXTENDED; ' The cell extension located at p holds the car and cdr for this nade.]

CDR—codin_g can reduce by 50% the storage requirements of a group of cells for which CDR is a 1-1
funcl.ion. whose range excludes non-ni-i atoms. This is a non-trivial saving, as all "dot-less” s-expressions
read - in by .the LISP rcader have these properties. In fact, Clark and Green [12] f(;und that after
lincarization 98% of the non-NIL cdll's in several large LISP programs referred to. the following cell. These
savinﬁs are duc to the fact that CDR.-coding takes advantage of the implicit lincar ordering of .addresscs in
ad ti ress .spac_c. |

What implications does this coding scheme have for the elementary list operations of LISP? Most
npcral,ions. must dispatch on the CDR-code to compute their results, apd RPLACD needs special handl‘huz.
Consider RPLACD(n,ﬁ)- If p has & CDR code of NIL or NEXT, then it must be changed to .l'“.X'l'ENDF.D,

and the result of CONS(CAR(p)q) placed in p.2

1: These conventions are slightly different from those of [19].

2: We notc in -this context .that if RPLACD is commonly used to destructively reverse a list--c.g. by LISP’s

"NREVFRSE"--the system could also have a "PREVIOUS" CDR-code so that RPLACD nced not call CONS
so often, ' , :

REALLP ‘e

L o

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1977

The number of memory references in the elementary operations has bec;\ minimized by making the

following policires [207:
1) every EXTENDED cell has a NORMAL extension;
2) the user program will never sce a pointer to the extension of an EXTENDED cell; and
3) when COPY copies an EXTENDED cell, it reconstitutes it without an extension.

CONS, CAR, CDR, RPLACA and RPLACD must be changed to preserve these asscrtions, but JQ and
ATOM require no changes from their non-CDR-coded versions. Since an EXTENDED cell cannot point to
another KXTENDED cell, the forwarding of KEXTENDED peinters nced not bhe iterated. These policies
seem (o minimize memory references hecause each cell has a constant (between flips) canonical address,
thereby avoiding normalization [30] by every primitive list operation.

CPDR-coding requires a compacting, lincarizing garbage collector if it is to keep allocation simple
(becanse it uses two different cell sizes) and take full advantage of the scqucntial. coding efficiency. The
MEYCA aigorilhm 'prcsentcd above compacts, but docs not linearize cdrs due to its breadth-first trace
order. Howcver, the trace order of a MFYCA collector can be easily modified at the cost of an additional
pointer, PB. PB keeps track of the previous value of B (i.e. PB points to the last ccll copied), so that tracing
the cdr of the cell at PB will copy its successor into the next consccutive location (B), thus copying whole
lists into successive contiguous locations,

The meaning of the scan pointer S is then changed slightly se that it points to the next word which
must be updated rather than the next cell. Finally, the trace routine is modified so that tracing the cdr of
PB has priority over l.raciv{g the edge at S and thc‘condition on the trace loop is modified to amortize hoth

“the capying cffort (measurcd by movements of B) and the tracing effort (mcasured by movements of S) over

all the CONS’cs. These modifications do not result in a depth-first trace order, but they do result in

ecdy-chaing being traced to the end, with few interruptions. Thus an MFYCA collector can minimize the
amount of memory needed by CDR-coded lists.

The size of the tospace nceded for CDR-coding is (1+m) times the amount of space actually used in
{romspace. Wil.h a coding cfficiency improvement of e over the classical storage of L].SP\ceHs, and under
equilibrivin conditions, we have the incquality:

Maximum SRTC Storage Required s Nel(Z2+2m)

16 - REALLP

© November 29, 1977 List Processing in Real Time on a Serial Computer Henry G. Baker, Jr.

Since we have claimed that ex.5, we get the following cstimate:
SRTC Storage Required =~ N{l+m) (1)

But this latter expression is less than the bound computed for MKSMW. Thus, CDR-coding has given
us hack the factor of 2 that the copying garbage collect(;r took away.

The rcal;binnc prépcrlics of our algorithm have not been affected in the least by CDR-coding; in fact,
good microcode might he able to process CDR-coded lists faster than normal lists since fewer referénces to
main memory are necdcd.

- CDR—coding i$ not t-hc final answer to the coding efficiency problems of list storage, hccause far more
compacl codes can be devised to store LISP’s s-expressions. For cxample, both the car and cdr of a.ccll
could he coded by relative offsets rather than full pointers [12]. However, a more compact code would
rcpréscgt somc- cells in 50 few bits that the pointer we need for a I'orward'ing_ address would not f{it,
rcndmji'ng our sci:cmc unworkable. Part of the problem is inherent in LISP’s small cell size; small arrays can

perform much better.

REALLP | | ' | BY

Henry G. Baker, Jr.

List Processing in Real Time on a Serial Computer

November 29, 1977

% Serial Real-Time System with CDR-Coding | . %

pointer S
pointer PB;
pointer L,H;
pointer procedure CONS(x,y) =
begin :
i f T-B<2
then begin
. if G<B then error;
flip();
for i =1 to NR

do RLi):=moved{RIil};
x:=move (x); y:=move (y)

end;
uhile (S+B)/2-L < kx(H-T) and S<B
da i f PB<B
then PB := (B & COR(PB));

else begin
SiB]:=move(S(0]);

S 1= G541
ends
if B=T then error;
T := T-1;
i f oy=ni

then code(T)
else i f y=T+1
then code(T)

else begin
' if B=T then error;

= “NILII

1= "NEXT"

T = T-1:
code(T) := "NORMAL";
TM1] =y
end;
TIB) 1= x3
T
end:

pointer procedure CAR(x) =
brplaca{x, movel(bcari{x)));

procedure RPLACA(x,y) =
brplacaix,y);

pointer procedure BCAR(x) =
i f code(x)="EXTENDED"
then (x{B1) (8]
else x[B);

pointer procedure BRPLACA(p,q) =
if codelp)="EXTENDED"
then (pIB1}YIB] := q
else plB) := q;

18

%
%
%
o/o.
%

%
%
%
%

%
%

%
%
%

%
%

%
%

%
%
%
%
%
%
%

%
%

%
%

%

%
%
%
%

Next cell whose car needs tracing. %
Pointer to previous value of B. %
Low and high limits of tospace. %
Assertion: L €« S < PB<B<T <H, %
Create a new cell in tospace uwith %

Flip when free area is exhausted. %
This part is the same as usual. %
Copying is not done; memory overflou! %
Interchange semispaces. %

Update user registers. %
Update our arguments. %

Trace and copy a measured amount. %
Extend current list, if possible. %
COR will trace this edge for us. %

Update this edge. %
Step S over this cell. %

Check for memory overflow. %
Create neuw cell at top of free area. %

[f y is special case, %

then create a short cell %

Wwith appropriate cdr-code. %
Otheruise, create a normal cell. %
Need more space for the cdr. %

Set
Set

in "NORMAL" cdr-code. %
in the cdr. %

Set the car in the new cell. %
Return the new cell. %

CAR must move cell it uncovered. %
Update this edge. %

x[@)] := y. May require subtlety. %

Basic car; dispatch on COR-code. %
Type "EXTENDED" means %

indirect car. %
All other types have normal cars. %

Basic rplaca; dispatch on COR-code. %
If extended cell, clobber indirectly. %

All others have normal car. %

REEALLP

November 29, 1971

pointer procedure COR(x) =
brplacd{x, move (bcdr{x)));

procedure RPLACD(x,y) =
begin
if codel{x)="NIL" or
code(x)="NEXT"
then
" begin pointer p;
= CONS(CAR{x), "DUMMY");

% t= move(x)s y 1= movely);

x[B] := p;
code{x} := "EXTENDED"
end;
brplacd(x, y¥

' ends -

pointer procedure BCDR(x) =

. if code(x)="NORMAL" then xI(1]
else if code{x)="NIL" then nil
else if code(x)="NEXT" then x+l
else (x[@1)(1];

pointer procedure BRPLACO(p,q) =
if code(p)="EXTENDED"
then (plBl)(I1l] := ¢
else if code(p)="NORMAL"
then pll] :=
else. q; '

integer procedure SIZE({p)
if code(p)="NORMAL"
then 2 else 1;

pointer procedure CarPY (p}

begin
if PB=B-2 and bcdr(PB)—p
then begin -
code (PB) - s=-"NEXT";
8.:=B-1
end;
if bedr(p)=nil
then code(B) := "NIL";
else code(B) := "NORMAL";
BIB] = bcarip); '

brplacd (B, bedr {(p));
PB ;= By
B := B+size(B);
if B>T then error;
PB

end:

List Processing in Real Time on a Serial Computer:

: H_cnry G. Baker, Jr.

% COR moves uncovered cell, but updates %
% only if still possible after move. %

% x[1] =y, May require brute force. %

% Test for screu cases. %
% Cannot have code({x)="EXTENDED". %

% Extend the cell x. %

% Construct guaranteed NORMAL cell. %

% Update arguments in case CONS flipped. %
% Leave forwarding address in old cell. %

% The old celllhas now been extended. %

% Finally replace the cdr. %

% Basic cdr; dispatch on COR-code. %

% NORMAL cells have a second word. %

% Interpret NIL CDR-code. %

% Interpret NEXT COR-code. %

% EXTENDED cells point to NORMAL cells. %

% Handie easy cases of RPLACD. %
% We have extended celi; %

% clobber the NORMAL indirect. %
% The easiest case of all. %

% In all cases, return q as value. %

% Find the size of p from its COR-code. %
% "NIL", "NEXT", and "EXTENDED" all have %
% sizelp)l=l. %

% Copy the cell p; append to current %
% train if possibie. %
% See if we can hop this NEXT train. %

% Convert NORMAL cell to NEXT celi. %
% Reuse extra space nou available. %
% Create a NIL cell, if_appropriate. %
% Otherwise, all cells are NORMAL. %

% Copy over car; % '
% and cdr too, if necessary. %

% PB is end of current NEXT train. %

% Step B over neuly copied celt, %

% check for memory overfliouw, %

% and return pointer to neu copy. %

% Procedures not redefined here are as before. %

REALLP

19

Henry G. Baker, Jr. List Processing in Real Time on a Scrial Computer November 29, 1977

6. Vectors and Arrays

z‘\rravs can be included quite easily into our framework of incremental garbage collection by simply
enclosing certain]mris of the collector program in loops which iterate through all the pointers in the array,
not just the first and second. The convergence of the method with regard to storage space can also he
proved. and bounds derived. Howcver., Llhe method can no longer claim to be real-time hecause neither the
time taken by the array allocation function (ARRAY-CONS) nor the time taken by the array element
Aacccssing function is bounded by a constant. This unbounded behavier has two sources: copying an array
and tracing ;\H its pointers hoth require time proportional to the length of the array. Therefore, if these
operations are included in a computer as non-interruptable primitive instructions, hard interrupt reponse
time hounds for.t,hat gomputcr will not exist. However, an arbitrary bound (say 10) placed on the sine of all
arrays by either the system or the programmer, allows such bounds to be derived.

Guy Steele [31] has devised a scheme which overcomes some of these problems. He givés cach vector a
special link word which holds either a forwarding pointer (for vectors in fromspace which have been
partially moved), a backward link (for incomplete vectors in tospace), or NIL (for complete vectors). MOV
no l()l‘l[!.()l' copins. the whole array, but only allocates space and installs the forward and backward links. Any
reference (0 an element of a moved but incompletely updated vector will follow the backward link to the
frpmspacc and access the corresponding element there. When the scan poinicr in the tospacc encounters
such a vector, its elements are incrementally updated by applying MOVE to the corresponding elements of
its old‘ self; after the new one is complete, its link is set to NIL. Element accesses to incomplete vectors
compare the scan pointer to the element address; access is made to fhe old (new) vector if the scan pointer is
less (grr?at.‘cr or‘ cqua.]). Tracing and updating exactly kn vector clements (not necessarily all from the same
vector) upon cvery allocation of a vector of length n guarantees convergence.

Steele’s schcme has the following propertics: the time for referencing an element of any cell or vector
is bounded by a constant while the time to >a\]ocate a new object of size n is bounded by c¢jkn+cy, for some

constants ¢) and cg. Hence, a scquence of list and vector operations can be given tight time bounds.

50 : REALLP

November 29, 1977 ' 1ist Proccssing in Real Time on a Serial Computer Henry G. Baker, Ji.

7. Hash Tables and Hash Links

Some recent artificial intelligence programs written in LISP have found it convenient to associate
property lists with Hst célls as well as symbolic atoms. Since few cells actually have property lists, it is a
waste of storage to alloca.t'e to every cell a pointer which points to ﬂm cell’s property list. Therefore, it has
been m‘rggcs(od {9] that ‘onc bit he set aside in every cell to indicate whether the cell 'l.nas a property list, If
80, the property-list cé\n be found by looking in a hash table, using the address of the list cell as the key.

Such a table requires special handling in systems having a relocating garbage collector. Our copying
: scl_mr;m gives cach semispace its own:hash table, and when a cell is copied over into tospacc,'it_s property list
pointer is entered in the "to” table under the cell’s new address. Then when the copicd cell is encountered
by the "scan” llsoinlcr,. its property list pointer is updated along with its norm_al components. A
"CDR-‘codiné" system with two "scan” pointers should also keep a third for tracing properly list poin't:crs to

prevent praperty lists from destroying chains of "next"-type cells.

8. Reference C‘ounting

Tn this 'scc(.i:on ‘\;c consider whether reference counting can be used as a method of storage reclamation
tol process lists in real time; i.e. we Lry to answer the question, at least for the rcal-time context, is
refcrcncé counting worth .thc cffort, and if so, under what conditions?

A classical reference '.c_ount system [13,34] kécps for each ccll a count of the number of pointers which
point (refer) to that coll; ic. its.in—dc'gree'. This reference count {(refcount) is coﬁinuaﬂy updated as
pointers to thé cell. are created and dcstroyca, and when it drops to zero, the cgll is reclaimed. When
rccl-a‘imcﬂ, the refcounts of any daughter cells it points to are decremented, and are also rcclaimed if zero, in
a recursive manner.

R_nfcrcncb counting appears to be unsuitable for real-time applications because a potentially unbounded
gmnum .of work must be done when a (;cll is let go. However, if a free stack is uséd to kccl; track of frecd
ohjects instead of a free list, the newly freed cell is simply pushed onto the frec stack. When a cell is
necded, it is popped off thie stack, the refcounts of its daughters are decremented, and if zcro., the daughters
arc pushed liac-k'onto the stack. Then the cell which was popped is returned. In this u;"ay, only a boundéd

amount of work needs to be done on each allocation.

REALLP ' | . | 23

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer ' November 29, 1977

We now consider the storage requirements of a reference counting (RC) system. In addition to the
memory for N cells, we also nced room for N refcounts and a stack. Since the refcounts can go as high as
N, they require approximately the same space as a pointer. So we have:

Maximum RC Space Required £ 1.5N + the size of the "free stack”

The warst case stack depth is N. However, whenever a cell is on the stack, its refcount is zero, so we
can thread the stack through the ur‘mscd refcounts! So we now have:
Max imum F’C Space Required < 1.5N

Reference count systems have the drawback that directed cycles of pointers cannot be r'cclaimcrl. It
has heen supgested [22,15] that refcounts he used as the "primary” method of reclamation, using garbage
collection (GC) as a fallback method when that fails. Since RC will not have to reclaim everything and since
the average refcount is often very small, it has also been suggested that a truncated refcount (a bounded
counter which sticks at-its highest value if it overflows) be used to save space.

We say that garbage in a combination RC and GC system is ref-degradable if and only if it can be
reclaimed by refcounts alone. Cells whose truncated refcounts arc stuck are therefore non-ref-degradable.

What is the effect of a dual system in terms of performance? Whatever the RC system is able to
recycle puts off flipping that much longer. . By the time a flip happens in such a two level systen, there is
no ref-degradable garbage left in tospace. Therefore, the turnover of the semispaces is slowed,

.Hmv mnuch memory docs the dual system require? If truncated refcounts are used, the free stack
cannot be threaded through a cell’s refcount because it is not big enough te hold a pointer. Therefore,
nsing this method and assuming only a few bits worth of truncated refcount ﬁcr cell, we have:

Maximum SRT4+RC Space Required < N{2+2m) + RC free stack < N(2.5+2m)

So it appears that we have lost something by adding refcounts (even tiny oncs), because we still need
room for the free stack.

.t us now examine morc closcly the average timing of CONS under a pure RC versus a pure SRT
system. Fhe av'r::-agn time for CONS under the RC system is the same as the maximum time since there is
no {rcedom in the algorithm. The time for CONS in SRT is Ac,k#cz, where ¢} and ¢y arc constants. Now g

is simply the time to allocate space from a contiguous block of free storage. Certainly incrementing a

to

REALLP

November 29, 1977 List Processing in Real Time on a Serial Computer _ Henry G. Baker, Jr.

pointer is. much less 'compléx than popping a cell from a stack, following its pointers, decrementing their
refconnts, and lif zero, pushing them onto the stack. Therefore, we can choose k small cno,u_ﬂnl so that the
average ti_m'c to perform CONS with our SRT method is smaller than the average time to perform CONS in
'an_'R'C- syslem.z This analysis docs not even count the additional time nceded to keep the refcounts
updated. Of course, the storage required for our "pure” SRT system may be many timcé the storage of the
RG systom, hut SRT will have a smaller average CONS time.

‘Since this scoms c,ounlcrint.'uitive, or at least reactionary (given the current pcnchapt for recyeling), we
'givc‘ a l-ali:onalc for why it is so. Refercnce counting traces the garb;ge cells;, while normal garhage
collection traces the accessible cells. Once the number of garbage cells exceeds: the muﬁbcr of accessible
cells in an region of sterage, it is l’astér to cﬁpy the aéccséihle cells out of the region a_nd reeycle it whole,
When m1, reference counting cannot compete timewise with garbage collection hecause RC must trace a cell
“for every cel] allocated while GC traces on the average only a {raction (1/m) of a cell for every cell allocated.

On. the other hand, if .we wish Lo minimize storage by making.mﬂ, a dual scheme with truncated
rc.fcm.ml.s: should reducc the average CONS time o’vc;‘ that in the pure scheme. However, CDR-co«_lcd lists
and othcr'variabl-c sined ohjects cannot he easily managed with reference counting because the ehject at the
top of the free stack is hot nccéssar.ily the right size [or the current allocation. Thus, CDR-cm_ling can
reduce the storage requirement of a "purq" scheme below that of a "dual® system wi.Lh the same m. But
even on a system with objccts of uniform size, ‘we are skeptical whether the increased avcr,ag'c. elficiency of
CONS in the "dual” system will offset the increase in k nceded to keep the storage rcquirerr;crits the same as
t.._he “pure” .systcm. We conclude that, at least on a rcal memory computer, reference counting is probably
'vfot a good storage management technique unless one a) has uniformly ‘sized objects; b) uses j;ull
coa-znl.c; and ¢) guarantees no gycles.
This i; nat to say that rcfcr'ence.counts are not uscful. If the LISP Janguagenwcre'cxtcndcd with a

functlion to return the current refcount of an object, and suitably clean semantics were associated with this

1: Section 3 deals with non-integral K’s.
2: We can discount the additional time occasionally required by CAR and CDR in our method because any
rclocation and pointer updating done by them is work that we have already charged to CONS, and doecs not

have 10 he repeated. .

REALLP ' ' 01

Henry G. Baker, Jr. }ist Processing in Real Time on a Serial Computer November 29, 1977

{function, then one might be able to make use of this information within the user program to speed up
certain algoritlims, such as structure tracing or backtracking, a la Bobrow and Weghreit [8).. This author
is not aware of any language which makes this information available; if it were available, good programmers

would certainly find a use for it.

9. The Costs of Real-Time List Processin‘g

The amount of storage and timc used by a real-time list processing system can be éomparnd with that
used by a classical list processing system using garbage collection on tasks not requiring hounded response
times. The storage required by a classical non-compacting garbage collector is N{1+4), if the system uses
the Deutsch-Schorr-Waite (DSW) [22, p. 4i7—4~18] marking algorithm, and N(1.5+4) if it uses a normal stack,
for some pnsil,iv.c JIA T CDR—coding is used, copying must be done; the storage requircment is then
Ne(2+211), where ¢ is the efficiency of the. coding. Since e is near .5 [12], the requirement is about N{1+u),
sn that CDR-coding requires approximately the same space as DSW. Comparing these expressions with
those derived earlier for our rcal-time algorithms, we find that processing LISP lists in real-time requires
no more space than a non-real-time system using DSW. If larger non-uniformly—sizcd objccts like arrays
must be managed, real-time capability requires no more space than the MFYCA system, since a copying
collector is alrcady assumed.

The average time requirement for CONS in our real-time system is virtually identical to that in a
classical MFYCA systém using the same cell representation ;xnd the same amount of storage. This is because
1) a classical system can do tN CONS’es after doing a garbage collection which marks N nodes--thus giving
an average CONS/mark ratio of it and aliowing us to identify L with m--and 2) garbage collection in our
real~time system is almost identical to that in the MFYCA system, except that it is done incrementally
during calls to CONS. In other wo;-ds, the user program pays for the cost of a ccll’s reclamation at the
time the eell is crcatéd by tracing some other cell.

CAR and GCDR arc a bit slower, because they must test whether the value to be rcturned is in
fromspace. However, as noted above, any cell movement done inside CAR or CDR should not be charged to

CAR ar CDR because it is work which the collector would otherwise have to do and therefore has already

24 REALLP

November 29, 1977 List Processing in Real Time on a Serial Computer : Henry G. Baker, Jr.

been a'c;counltcd _fo-r in our analysis of.CONS. Therefore, CAR and CDR are only slower by the time required
for the scmispa'cc test.

Since RPLACA, RPLACD, EQ, and ATOM are unchanged from their classical versions, their timings
arc also unchanged.

The ovcrh.ead calculated for our serial system can be compared to tilat in Wadler’s parallel system [33].
According to his calculations, a parallel garbage collector requires éignificantly more total time than .a
" non-parallel collector. But' this contradiciion disappears when it is realized that his parallel collector
continues tracing even in the absence of any cell creation activity. Since our system keys collector activity

to ccll ercation, the collector effort is about the same as on a non-real-time system. -

10. Applications
l). A fixed size, real memory computer.

“This application covers the classical 7090 LISP [25] as well as a LISP for la microcomputer. We
conceive of even 16-bit microcomputers utilizing this algorithm for real-time process control or simulation
tasks. Fach of the Jist processing primitives is intended to run \a;ith interrﬁpts inhibilc(.l, so that all
inl.crrupi. processing can make use ol list storage for its buffers and other nceds. Multiple processes may
also nsé these primitives so long as CONS, CAR, and CDR are used by one process at a time; i.c. they are
protected by one system-wide loz;k. Of course, the system must be aware of the registers of every process.

" For these real memory applications, we want to put as much of the available storage under the
managcmon'l._of the aigorithm as possible. Thus, Bol.h atoms (here we mean the whole LISP atom-complex,
not jv-nst t.-l;e print-na_rhc) and list nodes are ston;ed in the semispaces. CDR-coding is usually a good 'idca to
save momory, but unless the bit-testing is done in micfocodc, it may be faster to use normal ccjlls and
increase the parameter K to keep the storage size small.

The average CONS time is reduced by putting ol_'f flipping until all of the free spacc in lospace is
cxh'au.stod, i.e. B=T.. _Th_us, after all moving and tracing is done, i.c. 5=B, allocation is trivial until B=T. As a
rcsullt, the average CONS time iﬁ our rcal-time system is approximately the same as that in a classical
system. Of course, with a rﬁcmory_ size of 2M, the maximum number of cells that can be safcly managed is
still Mk /(k+1).

2) A virtu.al memeory computer.

REALLP - _ 25

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1971

The current cpit.(;mc' of this application is Multics LISP with an address space of 236 (= 10”) 36-bit
words, room for biilions of list cells. The problem here is not in reclaiming cells that are let go, but
keeping. accessible cells compact so that they occupy as few pages of real memory as possible. The MFYCA
algorithm‘docs this atvlmirab]y and ours does almost as well.

Our scheme is still real-time on a virtual memory computer, but the bounds on the clementary list
operat icﬁ:s now-have the order of magnitude of secondary storage operations.

There arc some problems, however. Unlike MFYCA, wherein both semispaces were used only during
garbage collection, our method requires that they both be active (i.c. partially in real memory) at all times.
“This may incrcase the average working sct size. A careful analysis needs to be made of our algorithm in
order to estimate the additional cost of incremental garbage collection. Brief consideration tells us that the
active address space varies fron; a minimum of N(1+m) just before a flip to N{2+42m) just after. Since at a flip
the user program registers are updated in numerical order, relatively constant pointers should be placed in
the Ims;or numbered registers to keep the trace order of constant list structure similar between flips. 1 the
average size of an object is much larger than the size of a pointer, the working sct may also be reduced by
storing the forwarding addrcsécs in a scparate table instead of in the old objects in fromspace [7].

In a virtual vmcm‘ory environment, the active address space will automatically expand and contract in
response to changes in the number of accessible cells if 1) FLIP re-adjusts the sizne of f[romspace to
(1+m)[eells in tospace] just before interchanging the semispaces; and 2) {lipping occurs whcnl tracing finishes
rather than when B meets T. This policy, plus a smalier k than a r;:al memory computer would use, should
;:ivé both a fast CONS and a tolerable working sct size. The parameter k can also be dynamically adjusted
to optimize cither running time (including paging) or cost according to some pricing policy by following an
analysis similar to that of Hoare and others [21,10,2].

3) A database management system.

Wc conceive of' a huge database having millions of records, which’ may contain pointers to other
records, being managed by our algorithm. Examples of such databases are a bill of materials database for
the Apolle Project, or a complete semantic dictionary and thesaurus of English for a language understanding
program. FPerforming a classical garbagé collection on such a databank would be out of the question, since

it might require days or weeks to complete, given current disk technology.

26 REALLP

Novcmlvﬁ 29, 1977 List Processing in Real Time on a Serial Computer Henry G. Baker, Jr.

. -
.

Some of these large dat_abasc systems currently depend on reference counts for sterage reclamation,
and =0 do not allow directed cycles- of pointers. Since our method pcrforms écncral garbage colloctit;n, this
restriction could be d.r_'oppcd. Morcover, given cnough space, our algorithm can take even less time than a
reference count system. When compared with a classical garbage collection sysiem, our method would not
save any total time in processing transactions against such a data base, but it would avoid the catastrophic
consequences (;f a.ga_rbagc collection during a period of heavy demand.

This c'asé is very much like case 1, thé'real memory computcer, hecause we assume that the database is
orders of rhag'nilude too bhig to fit into primary memory and tBu‘s that there is little hope for a specdup
from the locality of reference. effect. "Read memory" and "store rﬁemory" instrucgions here apply to
!;ccon;]ar.-y storage; __the constant -bounds for the elementary operations are now on the 6rdcr of milliseconls
rather l.h.n;v microscconds. Tl'lerefbre, almost everything that we say about real memory implementations
also applics Lo Jarge database implementations, except that space is qheaper and time is more dear.

1) A totally new computer architecture,

We conceive of an architecture in which a CPU is connected to a ligt memory instead of a randomn
ACCOSS’ HICMOory. 'Machines of this architecture are similar to "linking automata” described by Knuth [22, p.
462-463] and “storage modification wachines” described by Schonhage [29]). At the interface hetween the
CPU’ and the vneun(;ry #its a bank ﬁf pointer registers, which point at particular cells in the list memory.
Instead of a bus which communicates both addreéscs and values, with read and write commahd;.c, the memory
would have only -a data bus and commands like CAR, CDR, CONS, RPLACA, 'Ri’LACD, and ATOM, whose
arguments and returned 'val.ues would be in the pointer registers. The CPU would not have access to the hil
strings stored in thc_ pointer registers, except those which pointed to atoms (objects outside hoth fromspace
and tospace). This rcsl.riétion is necessary to keep the CPU from depending upon memory addresses which
mjght hﬁ changed by the management algorithm without the CPU’s knowledge.

An_ advantage of such a system over random access memory is the climination of the huge address bus
that is normally nceded between the GPU and the memory, since addresses arelnot dealt with directly hy the

CPU. "As the number of bits on a chip increases, the number of address lines and supporting logic becomes

a critical factor.

REALLP . | o

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1977

Our method of garbage collection can also be used with a random access write-once memory by
appending an extra word to cach cell which holds the forwarding address when that cell is eventually moved.
Using such a system, the cells in tospace cannot be updated until they are moved to the new tospace after
the next {lip. In other words, three semispaces need to be active at all limeg. In addition to these chan,':cs,
RPLACA and RPLACD must actuall§ perform a CONS, just like RPLACD occasionally docs in our

CDR-coding system. Perhaps the writc-once property can eliminate the need for transaction journals and

backup tapes.

11. Conclusions and Future Work

Wo have exhibited a method for doing list processing on a scrial computer in a real-time environment’
where the time required by all of the elementary list dpcrations must he bounded by a constant which is
independent of the number of list cells in use. This algorithm was made possible through: 1‘) a new proof of
correctness of parallel garbage collection bhased on the asscrtion that the user program seces only marked
cells; 2) the realization that collection effort must be proportional to new cell creation; and 3) the belief that
the complex i.nl,c.raction required by these policies makes parallel collection unwicldy. We have also
exhibited extensions of this algorithm to handle a user program stack, "CDR-coding”, vectors of contiguous
words, and hash linking. Therefore, we consider our system to be an attractive alternative to reference
counting for rcal—l,im.c storage management and have shown that, given enough storage, our meihod will
outperform a reference count system, without requiring the topological restrictions of that system.

Our real-time scheme is strikingly similar to the incremental garbage collector proposcd indcpendently
by Barbacei for a microcoded LISP machine [3]. Howevér, his non-real-time probosal differs in the key
points above. Our ;c,s'slc:n may itsclf appear in microcoded form in Greenblatt’s LISP machine [19].

There is still some freecdom in our algorithm which has not been explored. The order in which the
cells are traced is not important for the algorithm’s -correciness or real-time ‘propcrtics. The average
properties of the algoriﬁl\m when run on a virtual memory machine need to be extensively investipated.

The space required by our algorithm may be excessive for some applications. Perhaps a synthesis of
Bvish.op’s area concept [6,7] with our moethod could reduce the memory requircments of a list processing

gystem while preserving the bounded-time propertics of the clementary operations.

28 REALLP

Novewmber .29,. 1977 List Processing in Real Time on a Serial Compulc:_- Henry G. Baker, Jr.

A garbage collection algorithm can be viewed as a means for converting a Yon Neumann-siyle random.
access memory (with "side-effects™ [25)) into a list memory, (without "side-effects”). Perhaps a list memory.
can be imp];':mcnicd directly in hardﬁvare which uses considerably less energy by taking advantage of the
lack ol; side-cffects in list operations [4]).

Acknowledgements

[wich o thank the people at M.I.T.’s Artificial Intelligence Laboratory and Laboratory for Computer
Science {formerly Project MAC) for their time discussing these idcas, and especially Peter Bishop, John
I-)eTrm'iHe,_ Richard Greenblatt, Carl_He’wiu, Guy Stecle, and the referces for their copious comments and:
helpful suggestions after reading carly versions of this paper. I_ also wish to thank John McCarthy for
ignoring David Hilbert’s advice about "leaving elegance to the tailors” when he created the l;ISP language.
References
1. Arnborg, S. “Storagé Administration in a Virtual Memory SIMULA System”". BIT 12.(1972), 125-141.

2. Arnborg, S. "Optimal Memory Management in a System with Garbage Collection”. BIT 14 (1974),
379-381.

3. Barbacci, M. "A LISP Processor for C.ai". Memo CMU-CS-71-103, Computer Science Dept.,
Carnegic-Mecllon University, 1971 '

4. Bennett, C. H. '.'Logical Reversibility of Computation™. IBM J. Res. Develop. 17 (1973), 525.

@

Birtwistle; G. M., Dahl, 0.-]., Myhrhaug, B, and Nygaard, K. Simula Begin. Aucrbach, Phil., Pa,, 1973.

6. Bishop, P. B. "Garbage Collection in a Very Large Address Space”™. Working Paper 111, M.IT. A.L. Lab.,
Sept. 1975. C

. 1. Bishop, P. B. "Computer Systems with a Very Large Address Space and Garbage Collection”. Ph.D.
: Thesis, M.LT. Department of Electrical Engineering and Computer Scicnce, forthcoming.

8. Bohrow, I). G. and Weghreit, B. "A Model and Stack Implementation of Muitiple Environments". C/ICM
16,10 (Oct. 1973), 591-603. ‘ -

9. Babrow,). G. "A Note on Hash Linking”". C/ACM 18,7 (July 1975), 413—415.

10. (,amplwll LA "Optimal Use of Storagc in a Simple Model of Garbage Collecuon Info. Proc. Letters
3, No. 2, Nov., 1974, 37-38.

1l. Clmncv, €. J. "A Nonrecursive List Compacting Algorithm". CACM 13,11 (Nov. 1970), 677-676.

12. Clark, D. W. and Green, C. C. "An Empirical Study of List Structure in Lisp". C/ICM 20,2 (Fch, 1977),
78-87.

13. Collins, G. K. "A Mcthod for Overlapping and Erasure of Lists". CACM 3,12 (Dec. 1960), 655-6517.

RIALLP . 29

Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer November 29, 1977

14.

16.

17,

18.

24,

30.

3.

32

33

0

Dahl, O.-J. and Nygaard, K. "SIMULA--an ALGOL-Based Simulation Language”. C/ACAM 99 (Sept.
1066}, 671-678.

Deutsch, L. P. and Bobrow, D. G. "An Efficient, Incremental, Automatic Garbage Collector”. C/ACM
19,9 (Sept. 1976), 522-526.

Dijkstra, oK W., Lamport, L, Martin, A. J,, Scholten, C. S, Steffens, F. F. M. "On-the-fly Garbagc
Collection: An Exercise in Cooperation”. F. W. Dijkstra note EWD496, June 1975.

Dijkstra, . W. "After Many a Sobering Experience”. E. W. Dijkstra note EWD500.

Fenichel, R. R, and Yochelson, J. C. "A LISP Garbage-Collector for Virtual-Memory Computer
Systems". GACM 12,11 {(Nov. 1969), 611-612.

Greenblatt, R. "The LISP Machine”. Al Working Paper 79, M.LT. A.L Lab., Nov. 1974.
Greenblatt, R. Private communication, Feb. 1977,

Hoare, C. A. R. "Opl.imiiati-on of ‘Store Size for Garbage Colicction”. Info. Proc. Letters 2 (1974),
165-160.

Knul.l\,. D. K. The /Art of Computer Programming, Vol. I, Fundamental Mgorithmas.
Addison-Wesley, Reading, Mass. 1968. :

Lamport, l. V"Carbagc Collection with Multiple Processes: An Exercise in Parallelism”. Mass. Computer
Assnciates, CA-7602-2511, Feb. 1976.

Lampart, L. "On-the-fly Garbage Collection: Once More with Rigor”. Mass. Computer Associates,
CA-7508-1611, Aug. 1975.

NMeCarthy, John, ct al. LISP 1.5 Programmer’'s Manual. MIT Press, Cambridge, Mass., 1965.

Mingky, M. 1. "A LISP Garbage Collector Algorithm Using Serial Sccondary Storage”. A.l. Memo 58,
M.LT. AL Lab., Oct. 1963.

Maon, David A. MACLISP Reference Manual. Project MAC, MIT Cambridge, Mass., December 1975.

Muller, K. G. "On the Feasibility of Concurrent Garbage Collection”. Ph.D. Thesis, Technische
Hageschaal Delft, The Netherlands, March 1976, (In English). :

Sehonhage, A. "Real-Time Simulation of Multidimensional Turing Machines by Storage Modification
Machines”. MAC TM-37, Project MAC, M.I.T., Dec. 1973.

Stecle, G. T. Jr. "Multiprocessing Compactifying Garbage Collection™ CACM 18, 9 (Scpt. 1975),
495-508.

Steele, G. 1. Jr. Private communication, March 1977,
Teitchnan, W. ct. al. INTERLISP Reference Manual, Xerox PARC, Palo Alto, Cal., 1974,

Wadler, P. 1.. "Analysis of an Algorithm for Recal-Time Garbage Collection”. C/ICM 19, 9 (Scpt. 1976),
491-500.

Weizenhaum, J. "Symmetric List Processor™. CACM 6,9 (Sept. 1963), 524-544.

REALLP

