
Working Paper No. 140

R BIRTT1DRY PRRTY FRIME UYSTEM

by Gregory D. Clemenson
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Febuary 1977

ABSTRACT

This paper is an experimental investigation of the utility of the MIT-AI frames
system. Using this system, a birthday party planning system was written, representing the
basic decisions that comprise such a plan as frames. The planning problem is presented in
the user in a way conforming to his natural planning procedures. The system is able to
check the consistency of the plan parts, and finally produces a completed plan for the party,
and can supply the user with some valuable summaries, such as a shopping list.

I This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's artificial, intelligence
research is provided in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-75-C-0643.

S.D.G.

CORTERTS

1. Introduction I

2. Problem Analysis 1

3. At the Terminal 5

4. How the System Does It

5. Relation to Other Work 16

6. Conslusion 19

7. Bibliography 21

SB1TIRTTIDRY PWRETY FKTITE MYETEfIT

The purpose of this paper is evaluate the utility of "frame" systems in facilitat .- g the
task of planning a birthday party. This particular context has been chosen because it is
one of the settings to which frames were originally applied [Minsky 1975). The birthday
party setting was originally used to introduce frames because it contained cer. :n problems
that the frames idea could handle in an elegant fashion. The questions the.. are how
elegantly the frames concept is capable of handling problems in an implementec ;kystem,
and why frames perform at that level.

PROBLEM RRT!LYSr1

Planning birthday parties is basically the same as planning anything else. While ihb.
details of plans differ, there are identifiable, common techniques and orga ,izational
principles that are used in all successful planning. We shall attempt to idenlt these a 1
apply them in a carefully executed example, birthday party planning, using a frame based
implementation. There are actually three issues here. First there is the frames system itself,
built with an eye towards this kind of planning. Then there is our analysis of the planning
process, and of the birthday party planning in particular, and last there is the actual
implementation. Here we shall briefly discuss these issues.

Fundamentally, frames are packets of data that conveniently organize all of the
knowledge about a specific item. They are concise statements about the essen:.e of a
particular item. Most of the lower level details are pushed off into other frames, .hich
then can be referenced as sub-frames. They serve to organize all of the pertinent pa. 'and
relationships, without the details necessarily being there. They facilitate focussing o. one
particular principle or thought. Each such nexus is intended to be more Lnan just :.n
organizational, component, or a convenient data template. Its parts, viz. slots. :ontain r
just values or pointers to other frames, but also information and p :.cedur: that tell
explicitly how to deal with the associated values, e.g. how to make new ones, what -.. do if
one should be changed or deleted, etc. The MIT-AI frames system is discussed in deta•l in
Goldstein and Roberts [1977]. Below is an example of a frame in this system. I- will be
discussed later.

(frame SEND-INVITATIONS

(ako ($value (giving)))

(recipients ($if-needed ((get-guest-list))))

(donor ($1f-needed ((get-party-host))))

(medium ($default (send-by-mail)))

(gift ($require ((ako? :value 'card))))

(message (Sif-needed ((get-invite-message)))

($if-added ((write-on-cards)))))

Frames are the tool, but here they are useful only in that they are capab>e *.f

embodying the planning process. So we must see what this process actually en: 's befor
is cast in the form of a working frame system. We will look at planning in tht ntext of
planning an activity, such as a birthday party. There is a standard approach to p . -ing a
birthday party, so we will not be involved in selecting basic apF .,achý and
implementations, an aspect of planning more fully developed in Miller and ..ir stei. 76].
The fact that the planner has decided to have a "birthday party" means th. h- .-as - iy
agreed to a basic kind of plan. Even a little variation may be enough o, m- - thý me
"birthday party" inappropiate. What variations there are in birthday parties :.prese: !11
known decisions and alternatives at various points in the plan. For ampli, e
refreshments can vary widely, as can the decor and extent of the decorating Thus -,ou
main concern is the organization and taxonomy of these standard sorts of pla and the
manner in which the planner wishes to encounter their parts.

The goal of such planning is to ultimately produce some sort of procedur : ,r a ::•ially
having a birthday party. We want an exact plan th.t would tell exactly w" o w: to do
what at what time, as well as possibly outlining sorr . sort of alternatives thý may e to
be put into use if the need arises. It is not convenient for any user to crea:e a pla the

serial sort of manner in which it is to be executed. The problem is taking care of ,he
preconditions and results of each part of the plan. An example is shopping. Ir - : r to

prepare a shopping list, the user must know everything that each part of his -lan * .ht
need from the store. This includes various decorations, food, invitatir carr: 1ispo -

eating utensils, cleaning fluids, and what ever else might be required. Shoppai one -
the first things done, but planners must first know most of the rest of Lhe plan. :e they
know what to buy. Thus it might be said that all plans are not equal. Users w...i , ref to
work on what they consider to be the major items first, and the details and interaction, of
these later.

PrGE 3

Our taxonomy of plans is primarily molded by these considerations. We are going .
characterize a plan as being a representation of one particular collection of decisionsr to be
presented to the user. The decisions consist of specifying the particular details "f the
standard plan, such as the name of the person who is having a birthday, anc specify .-he
choices. that are a part of the standard plan, such as what kind of decorations to use.
There are both subjective and objective criteria for these groupings. Subjectively, these
groupings are chosen with regard to what a planner might think are the major decisions
that occur at a given level of planning. For example, choosing the renu, that is ýhe snacks
and refreshments to be served at the party, seems to be a coherent group c related
decisions. But this does not seem to be on quite the same level as specif'-ing a punch ecipe.
The recipe is a sub-part. Concepts such as part-whole relationships, and supe, ior-ir -ior
procedures are the objective criteria for choosing groupings. The impor! nt thing : is
how aspects of one plan affect another. If the plan is altered at some point, the parts t
are affected most are likely to be the sub-parts. On the next page is a picture of how -•we
have organized the birthday party plan, along such a line of sub-plans and b -xher-pla...

In our implementation each on of these nodes is represented as a frame. -ach of the
sub-parts has a particular relationship to its superior. These relationships arm .~e slotc
The interactions between the various nodes are captured by procedure: attacho-, to
frames. These can be regarded as information that describes what the.ef. is on th, t
of the plan if their particular' slot is created, altered, or removed. T; proc.
specifying the plan parts, and dynamically checking these interactions, ks v:. at fir,
creates the finished birthday party plan. While in this form, it is easy to show the .er
what the effects of choices are, and to explain the interactions to the user in a lucid
manner. When all of the choices have been specified, and the interactions have been
established, we have a structure that can be easily turned into a sequential program.

The system as outlined so far, cannot handle all of the interactions. The problem is
that there may be global effects that purely local information cannot solve, much like the
classic three block problem that Sussman's Hacker program attacked [Sussman 1975). Our
mechanisms can only handle what he calls a linear plan. Since the user is really in ccntrol
of the planning, it is not necessary to have such a global planning solver. The or.ý v place.
where such problems occur is with time. For example, if one has three activities, A, 3, and
C. Suppose that B must be after A, and before C. We may not know expliLc.y th:.: this
means that A must precede C. In fact, we can schedule A after C, and only get into troble
when we try to schedule B. What would be nice is some system awareness of chi probl•r,
so that the user can be told what is going on.

BIRT iH lDA'

crepe Pyteer

entertairnImen +

birthdAy
-able.cAke-

Size

borthdaqy
MeSS45es

res

reA41

"fappy
BIrthday

cA~TNs pe4Ciots

c ards

tme-ssag
fe55

rerdove

st1

if fs

f

~

a,
E

LL~

3-

4-.

1;

3

r:

3

O

&a4

I

A

N
records

P. .iE5

RT TIE TEng mliIL

In this section we will look at a session with an implemented framr baseQd irthda.

party system. "C" prefaces the computer's typed messages and output. Everything that the

user types is prefaced with a "U". Other remarks that merely present further information

or explanation, but which are not part of the actual user-computer dialogue, are not

prefaced.

U: (schedule birthday-party)

The system requires that the user use the actual frame names to identify the frarrm, to be

used. At times the system may present the user with a list of lettered possibil •,-s to Aill in a

frame slot. In such cases it is only necessary to specify the letter that cooresponds o the

desired choice. It is hoped that such a frames system might eventually be abl. to ha: .le

natural language input. At this time the system has created an "instance" of the oirth

party frame. That is Birthday-party already exists as a frame that cor.ains inforr .,n

about how to set up and plan a birthday party. An instance of this is m t to be L;

of this, only with all of the plan parts specified, and the planning decis. s m:i ..

course, as this represents a particular party, and not birthday parties .n genm it may

contain all of the options that the general one may have. Also, the user ma .ant t Cac

things that are not in the general plan, so in this sense it is not an exact zopy. 6.. since the

user may not want to specify all of the details at once, everything need not be _-:cified.

These parts and details of birthday parties are represented by slots in the .frames. .lling

in the details coresponds to specifying values for these slots. So far, this ..:.rhda : .ty

instance has no details specified, so most of its slots are empty. In the abseri, of f .er
information, the details default to specifications included in the gerne: i plan. Th. re
represented as special information attached to the slots and are called "-i:z ults".

C: Who is the birthday party for?

In order to set up a birthday party frame, the first thing that the system o do is tc
determine the birthday-person. What has actually happened is thea: the • hday partr.
frame has started to fill in the birthday-person slot, which in turn has askeC. tre user fc,:

some reference to this person's frame. This question is recited by th. comp%.;. 1o pror .-

the user, and let him know what the system wants. There are two possiý e outcc .es: e..ner

PFTGE 6

the name given by the user is already known by the system, in which case the computer
assumes that it can get relevant information, such as the person's age from his f. mne;. or
the person is not known by the system (i.e. there is no person frame by that name In the
system's data base), in which case the system will make a frame for him, and p•oceed . fill
it out. Let's assume that this latter case occurs.

U: Larry

C: How old is Larry?

The system did not know of a person named Larry, so it instantiated a person a i- with
Larry as the person's name. The next step is to fill in the slots oi the person ..-e for
Larry, such as his age. Like the previous case, the computer is using a canne -. ý:ence,
except that it does a kind of fill in the blank with the person's name. The sy I ha. sy
this time already defined a frame by the name Larry, and is just filling t the der i-.

Using these kinds of questions, with possibly more elaborate fill in th : nk s(:Jf

operations is the common way that such details get filled in these frames. R.g. tow t, s
all of the information that is needed about Larry. So the system goes on i; nila:-
of way, finding out about things such as the party-place, anc :he pL:/y's cost.

U: 16

C: Where will the party be held?

U: Roger's residence

The system understands this to be a reference to the residence slot in the Roger frame. It

finds the Roger frame, and the residence slot has the value house37, the frame name for

Roger's house. So the system adds house37 to the place slot of the birthday-party frame.

C: How many people will be at birthday-party4?

U: 40

C: Do you want. a budget for birthday-party4?

U: Yes

PRGE 7

C: How much money do you want to spend on birthday-party4?

U: 40.00

The system has now set up a special budget frame to keep track of expenses, <,., will

interrupt the user if the specified limit is exceeded.

C: These are necessary sub-parts of birthday-party4.

You may choose any of these to work on,

or Snext to stop work on this slot,

or nil to add a new one.

A Decorate-bdpartyl2

B send-invitationsl3

C party-entertainl4

D bdparty-menul5

E party-cleanup16

F bdparty-ceremony5

U: D

Since all of these choices are necessary, they have been automatically instantiated, wi;h only

a minimal filling in of their slots. The user is asked which one he wants to work on no'-,

that is fill in further. He chooses birthday-party eating, whose main concern i, "'e men.

C: Do you want to have a birthday-cake?

U: Yes

In a similar sort of way the system instantiates a birthday-cake frame and proceeds to f ill in
the details, by asking the user leading questions.

C: What flavor should the cake be? The usual choices are:
A Vanilla-cake

B Chocolate-cake

C Banana-cake

U: C

C: What flavor should the icing be? The usual choices are:

A White-icing

8 Chocolate-icing
C Pineapple-icing

U: Mocha-icing

C: What is the source for

A Grocery-store

B Recipe

mocha-icing

U: $quit

When the system saw mocha-icing, and realized that it did not know any fr, e by thca,

name, it decided to make it.a frame. The system was expecting a kind o: icing. Sc, moch.

icing was created as an instance of the frame icing. With any food item, l .s nec.: .ary on.,
to specify either where to get it (e.g. meat at the butcher's), or its recipe. - uset -ides to

not bother with mocha-icing for the moment.

C: What should birthday-cake6 say? The usual is
A "Happy Birthday Larry".

.U: Yes

The user could have written in any message here, but decided to use the system's choice.

C: What kind of cake should it be?

A Sheet-cake

B Layer-cake

U: B

C: How many layers should it be

U: 3

PRGCE 9

C: How big should the cake be in inches?

U: 12

The user has completely specified the cake frame, so the system returns to decidin. on

menu items for bdparty-eatingl5.

C: What else do you want for bdparty-eating?

A Soda

B Punch

C Ice-cream

D Cookies

U: C

C: What flavor ice-cream do you want?

A Chocolate-icecream

B Vanilla-icecream

C Fudge-brownie-icecream

U: C

C: How many half-gallons do you want?

U: 10

Having completed this ice-cream frame, the system returns to the menu until the user
specifies that he is done.

C: What else do. you want for bdparty-eatingl5?

A soda

B Punch

C Ice cream

D Cookies

U: No

PlGE 10

Since the menu is completed, the system has completed bdparty-eatingl5. The user may acia
to it later, and will be given the opportunity to do so whenever the system again presents
the sub-plans of birthday-party4., The computer now returns to this sub-plan level, and the
user indicates that he is done, so this session terminates. He can come back at any time to
finish specifying the plan for the birthday party.

Several things have been happening that the user may be totally unaware of. The system
has started a shopping frame that contains a shopping list of things that must be bought.
It realizes that ice cream requires dishes and spoons, as well as refrigeration. So it has
checked to see if house37 has these. Even though the user has not yet said anything about
cleaning up, the system has already instantiated the cleanup frame, and tolr. it to get
sponges necessary to clean up the ice cream. It was necessary to do all of this in order to
put some of the information that the system generated, in the form of implications for
other parts of the plan, into their proper places. Also the budget frame has been quietly
keeping track of all of the expenses

Later the user returns to continue specifying what he will do in birthday-party4. The
function frame-update will allow the user to further specify or redefine any slot. It
particular, the user still has much to do in specifying the details of the ario ;ub-p!
He chooses to work on entertainment for the party, known to the system as the f dme:
party-entertainl4.

C: What kind of entertainment do you want?

A Records

B Live
C Games

U: B

The system now instantiates a live-entertainment frame, and proceeds to fill it in.

C: Which group do you want?

A Local-yokals

B Crummy-mummies

U: B

Pi`E 11

C: You have exceeded your budget.

The budget limit for birthday-party4 is $40.00.

Below are the budget items.

You may choose to modify one of these,

or nil if the limit is to be ignored for now.

A (birthday-cake20 $10.00)

B (fudge-brown ie-icecream2l $20.00)

C (crummy-mummies $20.00)

The computer has been aware all along of the cost limitations of the party. The .rummy-

mummies was known to the system as a singing group that costs $20.00. Now the, the

budget has been exceeded, the user is given the choice of modifying the costly items With

some items, like ice-cream, cost can be reduced by reducing quantity. With others, the cost

is fixed. The user can either update one of the slots in the item selected, or delete the

references to the item. The system is slightly clever in deleting references to a frame that is

currently being instantiated, as in the present case, and also stops the instantiation.

U: C

C: You may do either of these with crummy-mummies:

A Frame-Update

B Delete

U: B

C: What kind of entertainment do you want?

A Records

B Live

C Games

U: A

...the session continues.

Finally, the user asks to see the budget, and the shopping list.

C: Here are the budget items:

Birthday-cake20 $10.00

Fudge-brownie-icecream21 $20.00

Peanuts24 $1.00

Punch25 $3.00

Pretzels27 $1.00

Cards30 $5.00

You have spent: $40.00

The budget limit was: $40.00

Here is your shopping list:

Birthday-cake2O Bakery

Fudge-brownie-icecream21 Baskin-Robbins

Peanuts24 Grocery-store

Orange-Juice26 Grocery-store

Ginger-ale27 Grocery-store

Pretzels28 Grocery-store

Cards30 Stationer

Stamps31 Post-office

Cake

Pints

Pound

Can

quarts

Package

Cards

$.09 stamps

TiOW TTIE MYTE M OEE IT

Frames are more than just templates that can be used to store data in a *anrhardize-..
format. Each slot of a frame can contain not only a value of some sort 6ut speci.,

programs and information that. specifies how the values of that slot are to . chosen,

handled, and interpreted, etc. In fact, any kind of action or information that . s: with
these values can be put in the pertinent slot. This system uses the MIT-AI fra. system

[Goldstein and Roberts 19771. In this birthday party system, every activity, and entr.. that

the system uses is represented as a frame. The basic process of planning for a -pecific

birthday party consists of specifying the precise objects and activities that each slot of the

birthday party frame refers to. This specified copy of the general birthday party fral-,e is

given its own name, and refers to the specific birthday party being planned.
The slots of frames can also specify such information as how to get a value for the

slot, and for supplying suggestions, defaults,. and preferences. The to-add part of a slot is a

program that is to be run to get a value for the slot. Information that can guide the user

can either be stored in this program directly, or the program can get it from the

preferrences, suggestions, or defaults. Suggestions can include things that the system may

not know about explicitly, such reference books, people, or magazines that could provide the

user with useful information for filling this slot. At times it will be necessary to 1place a

value in a slot even if the user declines or has no opportunity to specify the value. This

system will usually use defaults for this purpose.
Generally, the system uses requirements (found under the $require key of the slot) to

filter bad choices for slot fillers. For example, when asking for the number of guests a. the

party, only a number is acceptable. However, requirements can also supply information

about the kinds of fillers that a slot can expect. In the case of the mocha icing, the icing

slot of the cake frame has a requirement (ako? icing). When the user typec mc:- i-icing,

the system did not know any frames by that name, and proceeded to cre. e onw This

simple kind of slot restriction can be used to supply information about the new frame, such

as the fact that it should be a kind of icing. So a frame by the name of mocna-icing was

created, with (ako ($val (icing))) as its ako slot. I suspect that this system .s a bi; too

presumptious in trying to forge ahead with creating this new frame. The actions here

would probably make a good default kind of action, but the user should be as -ed for

confirmation, since he may have made a mistake.

Here is a specific example of some frames in the birthday party system.

(frame GIVING

(ako ($value (activity)))

(gift ($if-needed ((ask [IWhat is being given?l]))))

(recipients ($if-needed ((ask [IWho shouldl @!gift Ibe given to?l]))).

(donor ($if-needed ((ask [IWho is givingi @!gift I?I]))))
(medium ($if-needed ((ask [IHow isl @!gift Ibeing given?l]))~)

Giving is a kind of activity. In general, one can only tell what is being gil•en, anao to

whom, etc. by asking the user. Ask is a program that does this. The strange "@!g' ,"

notation is just the fill in the blank mechanism, that will put the name of the filler •i the

gift slot into the question that is typed as a prompt to the user. Send-invitations ,s just a
kind of giving.

(frame SEND-INVITATIONS

(ako ($value (giving)))

(recipients (S!f-needed ((get-guest-list))))

(donor (Sif-needed ((get-party-host))))

(medium ($default (send-by-mail)))

(gift ($require ((ako? :value 'card))))

(message (Sif-needed ((get-invite-message)))

(Sif-added ((write-on-cards)))))

Here we know a little bit more about what is being given, and to whom, etc. The to-adds
are more specific, and make use of the fact that the values of these slots refer .C, other
frames in the system.

The system should present the user with only the choices that bear on the plannin-: of
a birthday party, and it should do it in an order more or less according to the user's wji1 ;es.
To accomplish this, there are certain ways in which the frames system, as it existe.c, was

changed. For one, the system too frequently presented the user with many d-jailed -:c ,ces

that he was not prepared to make, and which might have been very irreleJant. i: ,as
necessary to create a more flexible kind of frame-filling procedures. The .).e• : is tc e

able to follow the user in as natural a way as possible, as outlined in the introducw• c . The
user would generally tend to want to specify all of the related general cr., ices, •.- fore

plunging too much off into specifics. If the user were selecting the menu, it.. concei ale

that he would not desire to specify the punch ingredients, and then return cc the menu

selection process, but would rather decide on the complete menu, and then fill in the :details.

Utilities, such as the frame-update and slot-update were created to give the user as r .i

control as possible in ordering the way in which things are planned. He can postpo:

choice presented to him by the system, or may, at his own choice plunge into th-, detail- of

some plan. The sort of control over the planning process that the utility functi, . enab. .s

outlined below. It is quite similar to the controllable search process created ,. Golc. :.n

and Miller in their structured planning editor [1976].

We also wanted to create the possibility of a limited sort 3f instantiation, .. .Jhich or,.

a selected subset of the usually filled-in slots are filled. Ordinarily whe:. fram, :s

instantiated, its self slot tells which slots to fill and in what order. Thus wh persoi.

frame is instantiated, the system ordinarily wants to know where he lives, ..is x,, 'x, etc.

These may be quite irrelevant in a given context. For example, the user would pr .'ably

not really want to give all of the birthday person's vital statistics when planning a bir-:-iday

party. The person's age and possibly sex are all that are really necessary. This makes a

PRtE 15

i

5

r

Possible Pth of a User in Specify rj a Plan

good system default that does not present the user with irrelevant choices. If the user wants
to fill in further, he can use frame-update to do so.

If a particular slot in a frame is to be filled in with another frame, that slca might
want to fill in a different set of slots from the slots indicated in the self slot of the
Instantiated frame. Slots can do this using special to-adds that tell which slots ar. Lo be
filled. Some slots, like the ako slot, must always be filled in. Whatever planning rnm,_od
that seems natural at a given point can be constructed in the to-adds.

Frame-update and slot-update can also be controlled with the commands rn(ext) ar I
Sq(uit). The first one causes work to cease on the current slot, and sti'-, the --cess 'f
selecting a new slot to work on. Sq causes work to cease on the current frine. Coný ol tI
reverts to the program that called frame-update, so the effect, as far .L wher %i the

planning scheme you were in, is the same as if the frame had been completed.
With this sort of flexibility, rescheduling is really not too different fro.%; Che standard

frame filling process. Again, the user is presented with the unfilled slots, and , -rhen .. ,en

the opportunity to further specify some slot. He may add to it or whateve,-. He also can
continue to fill in one of the frames referred to in the slot. In this way, the use. can t.ork
his way down the tree of frames, and work on any desired node.

The system has to be smart about some of the difficulties that can be cau•ed by the
user skipping around in his planning. For example, the user might not want to tell he
system the birthday person's age when he is asked for it. But if the user later asks for a
selection of games to choose, the program that generates the suggestions will gene;'ate
different ones depending on what age the birthday person is. Rather than just not
suggesting anything, or suggesting everything possible, the system can try to fill in this
needed slot, .and run the to-add for the person's age, fill in the slot with the returned ... ue

(if the user is cooperative), and use it to complete the suggesting task.
The cost monitoring feature is instituted by Sif-added procedures. Any fra that

costs money has a price slot. An if-added in the price slot will then find the budg.- .lot in
the birthday-party frame and tell its budget frame the name of the frame that just .'.n the
if-added. Then a program is run that checks to see if the budget limit has been exceded.
If so, the budget items and their cost are presented to the user, along with some p.os:•ole

courses of action. A selected item can be deleted, in which case the system merely e.
that item from the birthday party frame tree. Another possible action is mc: i.icatic of
the choosen frame. This is not always possible. For example, the crumrr: nurvn 's ihave a
fixed price, $20.00. Some items, like ice-cream, can alter their price by a!terin. 1uantit,
The last course, is to just ignore the price limit altogether.

KELETORL TO OTTIER WORK

Marvin Minsky

Marvin Minsky's original frames paper [1975] provided much of the orignral dir.c- .on

in this paper. His original ideas of what a frame should be were vague, but r"e stru. ire

he desired was one that conveniently represented a "stereotyped situatic,." .:ong .rh

information telling how to use the frame, what to expect next, and wha if tt..

expectations do not occur. The frames that are used in this paper know a am, :.at

about how various frames are used (through such things as what kind of f . they arl
the kinds of slots that they have, etc.). We don't do very much about expec. sns. W.
would claim that the information about the plan structure is what is really want .. in orcd.

to make the standard sort of shifts from one frame to another.
Minsky's original application for frames, was to represent visual scenes. F - exa-

a frame might represent a view of a block. But an important feature was not only :iat lhe
frame captured the relationships between the faces, both visible and invisible, but that each
frame also "understood" its relationship to other viewpoint frames. Thus given a set of
external relationships or conditions, such as moving the viewpoint to the left, the frari-
would know what new frame applied to the new context. Minsky's intent was that thiS
same mechanism would carry over into the conceptual realm, where externals, like spacial
transformation were replaced by externals like temporal or causal succession.

Minsky claimed that one of the advantages to frames, is that such a mechanism, could
solve reference problems like a birthday party where Jane intends to buy Jack a kite, but
her friend says, "He already has a kite. He will make you take it back." Minsky claims that
the key to understanding what "it" refers to, is recognizing that "taking it back" rep•r- sents a
possible thing to happen next, and should be present in the gift frame. Then the)roblem
of linking these actions is merely one of recognizing which slot of the frame is being
refered to. This is precisely the position of this paper, except that instead of this being an
expectation, this is really a plan branch. We are representing a birthday party s % set o.
interconnected frames, one of whose major organizational principles iý det- nag phi

choices, relationships, and parts. In this case, discourse is merely providing t. external
conditions that are responsible for selecting one branch of the hiearchy of actior

Eugene Charniak

Charniak [1972] also highlighted many of the problems in knowledge repi1: Itation.
His main technique, was to represent common sense knowledge as expectations in fori-
of demons. The idea was that a particular semantic concept activated a collection of
demons. Each of these demons was expecting a particular consequence from its semantic
concept. In a sense this is a frame structure with these demons representing the plan
branches. Perhaps this is the aspect of behavior that Minsky was thinking about when he
said that frames included expectation, and what to do about them. This more dirL.c: link
between the semantic concepts and their consequences was not fully realized. Instead,
demons worked through a sort of indirect action. Particular actions would chani some
state in the data base, which would then fire the demons. The explicit relation :..ween
succesive semantic concepts was sometimes clouded by requiring the links -0 be rmade
through intervening states. One example, due to Minsky, is that of returnin-g a birth,,ay
present, mentioned before. Charniak's solution was to postulate that Jack did not like the
present, this being made a state in the data base, which caused a demon to be .,red that
expected the gift to be returned. In fact, Jack might love to have two kites, but would just
prefer have something else. It seems to be more just the conventional thing to do, .eturn a

M 6 E 18

present if the recipient already has one. No doubt, feelings and emotions may be inr ~lved
in the choice of one branch in a plan over another, but the issue is that there eems .:, be
only a reasonably small number of things to do at a given junction. That is the quwstion
that people always ask, "what are the options?" The issue that is present with this .. ames
approach, is recognizing when when a move is being made to a particular slot.

Roger Shank

Shank [19751 has ideas about how his individual semantic concepts are formed together
to represent a typical sequence of events, viz. scripts. In fact, he states that scripts desc•-be
"non-planful" behavior. Rather they are predetermined sequences of actions that define a
situation. They have entering conditions (how you know that you are in one), reasons (why
you got into one), and crucial conceptualizations. They are associated as the definition of a
situational noun (such as a birthday party). They are represented as sequences of
conceptual dependencies that represent the temporal ordering of ACTS. There are also
extra actions that are conditionally inserted in the sequence, which he loosly refers so as
"what-ifs". We presume that by "non-planful" behavior, he means that these scripts ::-,F to
be taken more in the vein of predicting future actions, based on the specific cone'~ions
(through the "what-ifs"). What he refers to as plans are definite sequenc. sub. itines
that are to be handled as units.

Shank uses different terminology, but his views are not too different. His ocus is jutt
predicting a temporal sequence, possibly modified according to world conditions. He is -tot
interested in embedding scripts in a structural hierarchy. These are perhaps just ..rtifacts

of his using these in language understanding, where it is more important to know about the
temporal ordering.

Earl Sacerdoti

Sacerdoti [1975) takes a much different viewpoint than the rest of the people ' iscus :.d
so far. He is very much concerned about the transition from a plan description, ,much like

our birthday party description, to a temporal plan. His focus is one of ordering the plan
parts efficiently, and in a non-interfering way. He uses the concept of proce .1ral ne His
idea of a node in a procedural net, is quite like our notion of a frame, althot.. , his ..•.. es
only represent actions. According to. him, planning consists of succesively ex, -:nding :he
nodes level by level, critizing the plan at each level. The expansion is iery mu-.h like r.e

idea of frame instantiation in our system. A particular plan node is expand:, into its
immediate constituent actions, with their respective links. The main purpose of h. ...•tics is

to constrain the possible temporal orderings, and eliminate some redundancies that might

arise. When we instantiate a new frame to fill in a slot, there are no critics as such. There

are requirements, that may for example require one activity to occur after another. If 411 of

the requirements that the user wants are in the frame, the frame system can inform the user

when there is a problem. We do not attempt to provide an optimal solution to scheduling

difficulties as does Sacerdoti.

Our basic organization is so similar that his techniques could be used to resolve

conflicts resulting from a poor choice of temporal ordering. In fact, a good planning

service should offer the user the option of scheduling things for him. Sacerdoti's system

outputs the temporal ordering not as a necessarily linear string, but as a net that indicates

what things do not strictly have to follow one another. This information would then ýell

the user what options he had with regard to his scheduling, or could be used to present the

user with a sequence, based on the user's preferences. Sacerdoti only attempts the- Problem

of temporal ordering. He still does not help us with the problem of living within a budget.

Usually the biggest problem that we have found, is not that there is some sort of difficult

time sequencing problem, but that there may not be enough time to everythilrg, tha is

limited utilities.

Using this frames system, many thing could be easily done, but the imp ementati of

several desirable tasks requires a more mature system. Certainly it is straight forward .3 be

able to attach special data handling procedures to every slot. It was easy to teli ,:%hat should

be a frame, but not always so easy to decide how to organize the overall frarle ctructure.
Different versions of the birthday party system tried different organizations of frames to

try to reflect what was really going on. Sometimes, the system was changed every timr,, 'hat
a new aspect of the data was seen. One of the most useful aspects of the frame system, ,ras
that data, and such things as requirement criteria, and actually any.sort of information tinat
affected the performance of a given slot, could be put out in the open where it was eaý. to

access and evaluate. This makes it easy for programs to look at what is going nn -4nd r- -e
simple decisions about how to satisfy and possibly change some of these criteria. Too of.,

data is unnecessarily placed in programs in such a way that a very sophis icateG
understanding of the language, and of programming techniques is needed to decide what
the desired effect of the data is. Even so, I suspect that some more careful thought ha , to
be given to the whole concept of putting critical program performance criteria in a wroýre

1 IGE 20

lucid format. In some sense, there is an analytical problem here of deciding just what the
critical points are, and how to represent them. One of the first approaches to :his problem
was the idea of subproceduralizing each point and controlling them independently through
their inputs. This was certainly part of the problem, but people have also felt tht need to
annotate these. Just putting a subprocedure there does not automatically explarin i w use.
The need is for clarity in representing what really happens with this function with these
inputs. The slot idea in frames helps a lot. Because now, not only are the aciual
proceedures defined, and their inputs defined, but the input data is also in ef: .ct
commented. That is the data's uses are specified.

It seems that there might also be some extensions of the system that could add
desirable features, and make it behave a little more in line with the sorts of goals presented
in the introduction. We noted earlier how the price function works. It would be quite

simple to extend this feature to other kinds of limited resources, such as time. A mo:e

difficult problem is what to do about utilities in general. There are very poorly uncderstood
trade-offs between utility (e.g. usefulness, novelty, tradition, etc.) and cost (in money, time,

privacy, pride, etc.). It is one thing to calculate these, but quite another to perform

bargaining among entities possesing these in various quantities. Several years ago, people

learned that the tradition value of Thanksgiving turkey was enough to ove.;corrn great

monetary cost. The present presents the user with the list of budget items and .: him

choose which to change. A system that properly understood these utilities might be ,ible to

present real suggestions. There is also the possibility of developing a s-, tem -tat.

understood better what sorts of things form a good sub-unit for budgeting. In the pres..ý.:

system, any frame can set up a cost limit that would in effect not allow the total cost of th~:

frame and the ones below it to exceed the limit. Now all of this is left up to the users

discretion, with no advice or suggestions at all.

There have been several other items that would make for a more responsive sc-rt of

birthday party system. The existing frames system should be modified to be able to follow

a more flexible mode of frame instantiation and filling, as suggested. Some more attention

must be given to frame organization and documentation. It is not clear exactly how frames

should be organized on a larger scale. As far as mechanism goes, it is certainly true tha.

one can just keep on linking frames into other frames, but there seems to be .sp-:rs of

overall frame organization that must be made clear. This is, I suppose, why ore c.oes

exercises like designing a birthday party system. The things that others have callec. plans

and scripts, etc. are not very well understood. In the introduction, there was some hand-

waving about subjective and objective criteria for organizing frames. This ieeds .- be

made much more explicit.

P'IGE 21

[Charniak, E. 19721
"Toward a Model of Children's Story Comprehension", Technical Report 266, MIT
Artificial Intelligence Laboratory, Dec. 1972.

[Goldstein, I. P. and Roberts, R. B. 1977]
"Nudge, a Knowledge-based Scheduling Program", AI Memo 405, MIT Artificial

Intelligence Laboratory, 1977.

[Miller, M. and Goldstein, I. P. 1976]
"Overview of a Linguistic Theory of Design", AI Memo 383, MIT Artificial Intelligence

Laboratory, 1976.

[Minsky, M. 1975]
"A Framework for Representing Knowledge", in P. H. Winston (ed.), "'!e ýchol y c'

Computer Vision, New York, McGraw-Hill, 1975.

[Sacerdoti, E. D. 1975)
"The Nonlinear Nature of Plans", Advance Papers of the Fourth Inter, iona Joint
Conference on Artificial Intelligence, 1975

[Shank, R. C. 1975]
"The Structure of Episodes in Memory", in Bobrow, D. G. and Collins, A. (ed?
Representation and Understanding. New York: Academic Press, 1975

[Sussman, G. J. 1975]
A Computational Model of Skill Acquisition. New York, American Elsevier, 1975.

