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ABSTRACT |

i’l.:‘ASMA (for PLAnner-like System Modeled on Actors) is a message-passing
computér. language base_d; on actﬁr semantics. Since every event in the system is the feceipt
of a m"essage actor by a target actor, a complete history of a computation can be kept by
recording. these events. The facility to search th-rough and examine such a hlsto'ri.
combined with the 'faclllty to pre-set breakpoints or stopping points, and the ability to
restore side effects, proﬁc:les a powerful way to debug programs written in PL:;\MSA. The
kinds of history-manipulation and breakpoint setting commands needed, and the wayg théy_

can be used, particularly on recursive programs without side effects, are presented. |

Dr. Carl E. Hewitt, Thesis Supervisor
Associate Professor of Computer Science and Engineering
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology



i

\
4

3

DEDICATION

This thesis is dedicated to the Institute, which has the finest professors.



TABLE OF CONTENTS

ABSTRACT
DEDICATION
BACKGROUND
A SMALL PROGRAM
KEEPING A HISTORY
LOOKING AT THE HISTORY
AN EXAMPLE
DEBUGGING RECURSIVE PROGRAMS
INTERPRETATION ERRORS
NON-TERMINATION
INCéRRECT RESULT
DEBUGGING CO-ROUTINES
CONCLUSIONS
SUGGESTIONS FOR FUTURE WORK
REFERENCES ’

n

12

13

15

19

20

21

22

32
33

35



[ 5

‘ BACKGROUND

'PLASMA is a messagepissing computer fanguage based on actor semantics. For
completianess, a partial description of PLASMA syntax and semantics is given below, enough
to undérstgnd all !the examples in this thesis. | |
rl’L’ASMA is an applicative language, like i.lSP. but has sever_al basic differences.
All pro%n;ln elements in PLASMA are actors. An actor is defined to "do something™ when
it recehlles‘a message, which is also an actor. Each and evéry event in a computation i; the
receipt of a message.
Every actor "knows about” certain other actors, its acquaintances. In terms of
tree-machine implementations of LISP, these correspond to the needed variable bindings in
closures. An ENVIRONMENT is a set of identifier bindings, extendable by paft‘ern
matching (explained below) and by the LET function (not explained here). |
-il'he basic data structure in PLASMA is the SEQUENCE,' which is a generalization
~ of the l‘ist, except they are pure. An example of a sequence is:
[16'20 (30) 40)
When 2 séquehce is evaluated (i.e, sent an EVALUATE message) the result is a new
sequenée. containing the results of evaluating each of the elements. Since numbers evaluate
to ther}:mselves. evaluating the above sequence would produce an equivalent one. An
UNPACK evaluated within a sequence (UNPACK is a prefix symSoI which. looks Iike !);
will "o;;)en up” an inner sequence. For example, if s is bound to the above sequerice,
evaluat'(ing: .

[l 21!s 3

lv .7
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would yield:

0 2 10 28 [30] 4 3

i’L*ASMA syntax is a bit more readable than LISP. One place this difference
o) . '

: ap.pear§ iT in the evaluation of FORMS. A form is a structured object much like a
SEQUENCE. eki:ept it is written with parentheses. Some example forms:

o ‘ .

(+ 168 1)

(f )

(F (£ (f x)))

(message => target)

Since forms are used for functional application, they evaluate in an analagous
fashion to LISP, eg., prefix notation is generally t,h_é rule. However, there are five special
symbols which, if one of them is the second element of some form, determine how to

evaluat'e that form. These are: =>, <=, ->, <-, and ==. The semantics of these infix

symbols will be explained later.
]

There are several prefix symbols in PLASMA (like QUOTE in LISP), some of
which |wi|l be explained later: quote °, quasi-quote ", unpack !, binder .-. and
variab.l“e-bijnder @=, |

Receivers are actors that employ pattern-matching to bind their incoming messages
to lntex;’r__nal_ identifiers. If the pattern does not match some incoming message, the receipt of
. that me!ssage causes a NOT-APPLICABLE error. A receiver looks like this:
(§'>l pattern body)

!
where pattern is the pattern to match against each incoming message, and body is one or

i
more expressions to evaluate in the new environment. The new environment is the
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environment the receiver is defined in, extended by the matching of pattern against the
E'

incomir?g message.
;Fh: common patterns are:

i

| 2, which matches any ob ject actor.

|
?‘ A quoted identifier, which matches the same identifier.

| An identifier, which matches an object if the identifier’s value is equivalent to
that ob ject.

. =identifier, which matches any object, and binds identifier to that object.

'. A sequence, which matches-an object that is also a sequence, if the elements of
the pattern sequence match those of the object. Inside a sequence pattern,
the pattern !=identifier will match against any number of elements
from the object (including zero), and bind identifier to a sequence of
those elements. Also; 12 will match against any number of elements from

the ob ject, with no binding.

i e=identifier, which matches any ob ject actor and binds identifier asa

variable, initially set to that object. This is explained below.

Messages are commonly sequences, so the receiver:
(=> [=x) =xp ... =x] body)
is analigous to the LISP form:
(LAMBDA (xq x5 ... x.) body)
'

since, if the incoming message is a sequence of n elements, it will bind the identifiers x;
] i



through x, to those elements.

CASES implements conditionals using pattern matching. A CASES contains several
recei-vefs; iwhen CASES receives a message, it tries to send it to each of them in turn. The
first receiver that will accept the message gets it. An example of CASES is:

(CASES (=> 1 body,)
' (=> [=first larest]l body,)
(else body;))

This Slmpiy evaluates body; if the incoming message is an empty sequence, evaluates
- body, if i.t is a non-empty sequence, and evaluates body 3 otherwise. Note that 'bodyz. if
evaluated, will be evaluated in an environment where the identifier first is bound to the
first element of this sequence, and the identifier rest is bound to the rest of this sequence
(ie, a sequence of the rest of the elements). In the third receiver, "else” is just a nice
abbreviatlon for "=> ?".
'i'ﬁe message m can be TRANSMITTED to the target actor t simplf by evaluating:
(m => t) | .
or, equivalently:
(t <= m)
Alt'ernatlvd:aly, functional application:
(ifulction argy argy e argn)
means trarjsmit:
(function <= larg; argy ... argy))
If the second element of a form is not one of the special symbols =>, <=, =>, <=, Or ==, then

evaluating that form means "apply the first element as a function”, i.e, send a sequence of

r



the rest of the form's elements to the first elem‘ent. Note that a unctioﬁ does not have to
have it} "arguments” evaluated (receiver (=> pattern body) is a case in point), although
the medhanism for defining such a function is not described here.

We can define a function in two basic ways, illustrated here by defining ADU-B and
MULTIPLY:‘

(ADD-3 <~ (=> [=x] (+ x 3)))
and: '
(define (MULTIPLY =x =y} (x x y))
which is ei]uivalent to:

GHU;TIPLY <= (=> [=x =y}l (x x y}))
The arrow <~ simply does an assignment in the top-level environment here. Assignments in
generat‘wiil be described shortly. Now we can use them:

(ADD-3 5)  yields 8

(ADD-3 <= [18))  yields 13

(MULTIPLY 3 B)  yields 18

(14'7) => MULTIPLY)  gields 28

Primitive side effects (assignments) are implemented with variables. Assignments
can be done on all identifiers in the top level environment, and on identifiers bound as
variabl‘es in local environments. Oné way to make an identifier a variable in some
enviror;ment is by binding it using the pattern e=identifier. If an identifier (say, X) is hard

bound to some ob ject (by one of the patterns =X or !=X), then it is just a local name for that

]
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ob ject, !anc‘l cannot be altered. If an identifier i.s bound as a variable to some ob ject, then it
refers to a‘:cell whose contents can .be changed.

?:'.véitluatlng an identifier gets the object it is bound to, whether it is hard bound or
variably Ebund. In the top level environment, all variables can be variably bound. We can |
polliely'as:l; a variable (say, C) to change its value to that of expression by evaluating:

(b <- expression) |
- Of, equi:ralently:

(fxgr'ession -> C) |
which returns the value of eépression. Note that <~ doesn’t evaluate its first argument (to
the left of the arrow), and -> doesn’t evaluate its second argument (to the right of the
arrow). ,

:}t is often necessary to refer to an entire actor within itself (recursive reference).
Functions defined at top level can do this easily since the assignment of a definition to an
ldentiﬁfer- in the top-level environment provides a general handle on that definition. For
local er:’vlronments, == {s used:

(%‘tame -;- expression)

This evaliates expression in an environment in which the identifier name is bound to the
results of this very evaluation. It is an error if the value of name is actually needed before

the evaiuahon is complete.
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A SMALL PROGRAM
For an example of the use of variables and ==, we can implement an "impure”
CONS zonie- whose first and rest elements can change) in this way:

(define (CONS e=first-cell e=rest-cell) -
‘{cons~cell == _
f(CASES (=> "first. first-cell)
* (=> *rest rest-cell)
{=> ["replace-first =nen-first]
. {first-cell <- neu-first) cons-cell)
(> ['replace-rest =neu-rest)
( | ~ (rest-cell <- neu-rest) cons-cell) )))
‘(Weﬁ now can CONS two things x and y together by evaluating (CONS x y); the

{
Ao

result if a "cons-cell”. We can get x (the first) back by sending this cons-cell a * first
message. We can replace x with z as the first element by sending the cons-cell the message
[’replace-first zl; the result being the cons-cell itself, now changed. If this cons-cell is

again sent the message ’first, the answer will now be z.

e
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KEEP-ING A HISTORY

When a message Is TRANSMITTED, an EVENT occurs, where the MESSAGE is
sent to ith-e TARGET, along with a CONTINUATION. This event is called a REQUEST.
Eventu;lly, there should be a métching REPLY event, in which this CONTINUATION is |

the TA}{GET. This is where the sender "gets its answer™. There is no CONTINUA’fION
| in a REPLY event. | | | |

There are three tasks involved in keeping a histor.y during a running compﬁtation.
First, all events must be recorded. This means remembering, for eachi event, the M_ESSAGE,
the TARGET, whether the event is a REQUEST or a REPLY, and the CONTINUATION .
(if the event is a REQUEST).

The second task is to record the primitive side effects that occur. When a variable is
asked to change its value, the history-keeper must make special note of this, and remember
the vargiable and its old value. With this information, the old -value can be restoredl when
Iookingé back through the history. This also means that part or all of a computation can be
‘undone. | .

The third task of the history-keeper is to monitor the events as they occur, and match
each against the user-specified patterns for breakpoints (if any). Whgn such an event is
about to occur, the history-keeper causes a BREAK, which starts the debuggér‘s READ-
EVAL-PRINT loop (see the next section). The possible specifications for such break
cond_itiqns could be arbitrarily complex; however, since these conditions must be tested for
each and every event, overly-complicated break conditions will slow down the primary

computation excessively.

!
;
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LOOKING AT THE HISTORY

Thé user, debugging his programs, talks to the debugging system lt#elf through a
READ-TEV'AL-PRINT loop. A READ-EVAL-P.RINT loop reads an ob ject from the console,
evalua%es it, prints the answer, and then does it all ovl-er again. The debugger’s
REAb-‘E\.IAL-PRINT loop responds fo commands to manipuiate. the history also. Unfil the
user runs into an error or asks for the debugger, it remains unseen and unheard; albeit
uslng uPP some processor time and memory space recording the history.

The debugger loop can be shmmﬁned by a direct request from the terminal, by the
expllci't evaluation of (BREAK) in a program, by hitting a breakpoint, and by an
lnter-préitaéion error.

For any significant computation, the history will be quite long and detailed. One
must tHerefore be able to extract the desired inf ormation from the history. Fundamentally,
the u;eli' wants to find and display events, environments, and actor acquaintances. A special
case of this is scanning a chain of continuations. Since one of the acqualntﬁnces of a
continuation actor is the previous continuation, they form a chain of computational steps.

There is a pointer associated with history observation that indicates the “current”
event. '.The EVENT DISPLAY functions allow the user to examine the current event:
display the type of event, the message, the target, the continuation, and each of their .
acqualr{tances. Other functions just retrieve pointers to these ob jects, so they can be used as
argumehts‘ to the search functions (described below). In addition, it is very useful to be able
to display function definitions, with an imbedded cursor in each active one showing at what

point the current evaluation of that function is.
]
!
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The basic MOVE commands move the history pointer, changlrig the conceptually

"curren{_-" event. These include:
' move forward or backward one event;
" move forward to this REQUEST’s matching REPLY;

move backward to this REPLY’s latest or earliest matching REQUEST (note
that one REPLY event can serve for several REQUEST events, which is'
what happens for iteration and buck-passing; see [Hewitt, December 1976]);
" move forward or.backwar.d to the next call to any user-defined functlons;- -
" move forward or backward to the next top-level READ-EVAL-PRINT loop

{
Lb ! event [the normal command/expression loop’s stopping peints}; and

b
" move to the beginning or the end of the history.

,i;

: 'Mo_re powerful motion is accomplished with the SEARCH coﬁmands, which search
the history .forw'ards or backwards for events referencing certain actors in certain ways.
These ipclude searching for an event:

with a specific function as the TARGET;
with TARGET, MESSAGE, or CONTINUATION a sﬁeclflq actor or a specific
type of actor (eg., any number); |

where a particular variable’s value is changed; or

. where a particular actor first appeared in a REPLY ("where it originated”).

In addition to jumping around through the history looking at selected events, the

user m;y wish to look at a structured subset of the history. The HISTORY DISPLAY
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f unctloLs ;arlnt a trace of messagés to and f: ro;n specif-ic-ally_ named actdr(s). or to and from
all uset—DEFINEd functions, x;:ith or without the recursed calls. In addition to the
REQ_U%-ZS:B to these actors and their respective REPLYS, the history display functions. ca.ri_
include;a ;complet_e trace of the computations Iexiélly scoped within these actors. These
events are Just those between an initial REQUEST and its respective REPLY, excepting all
‘those bétween any REQ_UESTG) to some actor outside the given actor and the answering
REPLY(s).

A BREAKPOINT isa stopping point in a brdgram. set by the user through the
debugger. While the program is executing, the history-keeper checks each event to see if it
matches any of the user-defined patterns for breakpoints. If so, it causes a BREAK; that
is, it stops execution of the program and starts the debugger’s READ-EVAL-PRINT loop.
Thé si};'npl;est patterns for breakpoints look for events with specifically named acfors_ or
f l,ll'lCtiOlg_'lS %ts the TARGET. Also available during execution are commands to stop at and
: dlsplayithe next event and to stop at and display a REQUEST’s matching REPLY.

: :l"wo other commands to the debugger's READ-EV.AL-PRINT loop allow the

. suspended computation to be continued or discontinued.

AN EXAMPLE
For an example of the history in action, we have below a simple substitution
function. It will substitute a new item x for every occurence of an item y, at every level of

depth \!‘vlthin some sequence z.
oo

i
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_'
ede!fine ('su'bstitute uX =Yy =2)
{z =
" (CASES (=> y x)
i {=> [«first l=restl

[(substitute x y first) !(substitute x y rest)])
(else z)) )) _

r
'
Thﬁs routine is fairly straightforward. lf z is equivalent to y, then the answer .ls-x.-
Otherwgse; if z is a non-empty sequence, then the answer is a new sequence, obtained by
recursi‘{el}; calling eubsti.tute on both the first and the rest of the sequence z. Otherwise,
the answer is ju.ét z itself. Note that the empty sequence [ is included in this last case.
We might use substi tute like this:
(supstitute @ 100 10 [18013)
In othe'r words, substitute 8 for 180 in the given sequence. This. will return:
te l[9]]
Or like thés:
{substitute *hello "hi ’[hi thgre])
which returns:
[_;'te'l lo there]
or: |
(substitute 8 "zero ’[no zeros herel)
which answers:
[po zeros herel
Now we can switch into debug mode and have a look at the history just generated.by

! . :
those threL calls. First, search backwards for the last call to substitute. The debugger
]

|



prints:

REQUEST: substitute <= [8 zero [no zeros herell
CONTINUATION: ¢

|
|
The conti}_l_uation is abbreviated ‘as c here. Now, skip forwards to the matching REPLY
(where c gets its answer):

RFP%Y: c <= [no zeros hers]

Let us look at a complete trace of calls to substi tute from the first invocation. For
brevity, the continuations have been named cl; €2, €3 eoe; numbered as they are
encountered. The subscript numbers have no significance other than uniquely naming the

contlnuiations. Now, here’s the trace:
!
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REQUEST. substitute <= [9 188 [0 1120111
CONTINUAT!ON ¢,

_REOUEST: substitute <» [0 180 8]
f_CQNTINUATlON: cz

REPLY: cp <= 8

' REQUEST: substitute <= [8 108 [[10811)
CONTINUATION: cg

|REQUEST: substitute <= [0 188 [1088])
CONTINUATION: ¢,

REQUEST: substitute <= [0 188 108]
CONTINUATION: cg

REPLY: cg <= ")

REQUEST: substitute <= [8 180 (1]
CONTINUATION: g

REPLY: cg <= [

| REPLY: cj <= 0]

'REQUEST: substitute <= [8 108 [ll
CUNT]NUATION. cy7

REPLY: cy <= [l
iREPLY: cg <= (e}l

REPLY: c; <= 18 [8)]

H
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DEBUGGING RECURSIVE PROGRAMS
The history provides us with a general paradlgm.for debugging recursive and
iterative programs that have no side effects; the requirement is that you must be able to tell
if the results are correct. It is also assumed here that the program is reasonably close to |
embodying a correct algorithm. Iteration control structures in PLASMA are discu;sed at

length in [Hewitt, December 1976] Suffice it to say here that to iterate, an actor simply

sends itself a message. If the result of that message will simply be handed back to the

_ current!cohtlnuatlon, no new continuation is generated (as would be in recursion), but the

current continuation is used again in the new REQUEST, so that it will directly receive the
REPLY.
To debug a program, the first step is to load in the program definition, turn on the
history-itak!er. and start executing the program. There are four things that c;n happen:
| . Correct Execution - the program can execute properly and return the correct
result (in which case you didn't need the debugger);
L Interpretation Error -- the program can hit an interpretation error (illegal
operation) and halt immediately;
Non-Termination - the execution might never terminate (endless loop); or
Incorrect Result — an incorrect result rﬁay be returned.
-Notlce that the debugger will not recognize if an answer is correct (that is, the dif ference
between the first and last possibilities, above), and is of no help if the user cannot.

Remember also that the goal of test-case debugging is to locate the bugs so they can be

corrected, niot to attempt to prove program correctness.



INTERPRETATION ERRORS

If the interpreter catches an error (an illegal operation such as division by zero), the
prograt}' will immediately halt, and the debugger’s READ-EVAL-PRINT loop will start. It
isa stralghtforwérd matter from this point to scan backwards through the history from th?

termination of the computation to the cause of the error.

Back to our example, we can rewrite the substi tute function so that it gets an
interpretation error. We simply leave out the last clause in the CASES (space underlined

" below):

(define (substitute =x =y =z)
(z =>
(CASES (=> y x)
(=> [=first l=rest)
[(substitute x y first) !(substitute x y rest)])
1)) '

t
toi
|
and type:
YRE: |
(substitute 121221
which, pretty quickly, comes back with:
ERROR:  NOT-APPLICABLE:
# => (CASES (=> y x)
: . (=> [=first !=rest]
' [(substitute x y first) !{substitute x y rest)l))
All of which goes to say that the message [) did not match the patterns of any of the
receivers in the CASES statement shown. If there is any doubt about what function this
CASES appeared in, the answer could be obtained by moving backwards through the
history _f‘or the last call to a user-defined function.

The problem is now obvious, a condition must be added to handle the empty

i
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sequence in the CASES. What isn't quite as obvious is that there is no case for everything
r .

that isn't supposed to be substituted for. If the case (=> [] [1) is inserted, substitute

i

will work on the previous test, but will still fail on many others, for example

(substitute 1 2 [1 21).
o

I
NON-TERMINATION

Ifa comp:utation takes a long time (a possible infinite loop), it is only necessary to
interrupt the computation and search through the history for a repeating pattern of
messagés (a lack of convergence). If the program is converging on an answer, then simply
continue the computation. If the program is diverging from an answer, the bug is either in
a condi.tiolnal that failed to terminate the iteration or recursion, or in the code that breaks
the problem into subproblems. Otherwise, the computation is repeating itself, and the bug
must be in the code that breaks the problem into subproblems.

An easy way to make the substitute function compute forever is to change the
recursive invocation case. Again, the bug introduced is underlined:

(define (substitute =x =y =z)
iz =>
' (CASES (=> y x)
(=> [=first !=rest] :
[(substitute x y first) I(substitute x y z}1)
{else 2)) ))

Let us test it on some data:

(substitute [1) 1 (1 B 11)

. ‘ ‘

Now, this thing may compute for a while before we decide to interrupt it. When we do, the
' -

R,
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debuggﬁex" will display the current event, eg:

R‘EP;’.Y: c1g <= (1) |
This looks reasonable enough. Back up a few REQUESTSs and trace the rest of the

messages. sent to substitute:

- REQUEST: substitute <= [[1) 1 1 @ 11}
CONTINUATION: c)y

. i
‘R§QUEST: substitute <= 1] 1 1]
1 CQNTINUAT'!ON: 12

REPLY: 612 <= [1}

REQUEST: substitute <= [[1] 1 [1 @ 11)
CONTINUATION: i3

! REQUEST: substitute <= [[1] 1 1)

lCDNTINUATlDN: ¢18
REPLY: cpp <= (1]
It is pretty obvious, in this simple case, that the-p'rbgram is looping indefinitely. In more

' compleit cases, the same ideas apply.

INCORRECT RESULT

If h c-omputation returned an incorrect answer, we have a complete history of an
erroneous computation, and we want to locate the bug(s). The basic idea is to find the
d’eepest.g recursive call to the function that yields an incox}rect answer, and look at all the
recursive calls within that call. This is easily done by inveking a history seart;h function to
scan for calls to the routine in question, and then moving to the matching REPLY events to
check the matching resuits. From the end of the history; searching backwards for a call to a
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routiné will find the deepest invocation of that routine in the last branch of the
computation tree.
By the nature of recursive programs, there are four possible kinds of errors that can

have been committed at this point:

P I. Error in testing the recursion termination condition(s). If there are no

recursed calls where there should bg, or if there are recursed calls where

there shouldn't be, the bug lies in testing the termination condition(s).

? 2. Error in handling a termination condition. If in this call the routine

(correctly) did not call itself recursively, then the bug lies in the code tﬁat’
‘handles a recursion termination condition.

8. Error in decomposing the problem. If the next level down of recursed calls
a;re made incorrectly (ie, given the wrong ariguments), the bug is in decom-
posing the problem into subproblems. |

4. Error in combining the subanswers. By hypothesis the subpmblém§ are the
correct ones and their results are correct. Therefore the subrésults are

: : incorrectly synthesized into a total answer. |

Of, course, finding the breakdown from the history may not always be so simple,
since rllcu sive programs are not always structured so deanly. If a program imandles a sub-
problem '%inline", it will be a little harder to scan the history for the subproblem's'

REQUEST and REPLY messages, since they will not be as distinctly marked as function

calls are.

Let us put a synthesis bug into our substitute function. If we "forget” the

1

3
e
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UNPACK operator from the second sequence (the place is underliried below):

{define (substitute =x =y =z)

{z =>
(CASES (=> y x)
b (=> [=first l=rest]
[(substitute x y first) _(substitute x y rest)l])
(else 2)) ))

the program will incorrectly simtheslze thé two subproblems (substitute x y first) and
(aubstitute x y rest) intoacomplete answer. Now, if we type: |

(substltute 20 10 {S 18))
we will;geﬁl the result:

[t fza (111
rather tiha? the desired:

[‘_::': 28)

..Wl?en this unexpected answer pops out, we simply switch into debug-mode, and have
a look a{_.lt t_t_nat last computation. If we search backwards (from the end of the history) for a
call to substi tute, we find the innermost call, namely:

REQUEST: substitute <= [20 19 (]]
CONTINUATION: ¢

and we jump forwards to the matching REPLY to see:
F;EPLY': cy <= (1

So this Zinnermost call is ok. If we back up to the previous call to substi tute, we see:
REQUEST: substitute <= [20 18 10]

CONTINUATION: 2
t v
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and the m; tching:
yf R ¢
REPLY: cp <= 28

which !s good. These two calls are at the lowest level of recursion, since neither has a
non-empty sequence as the third argument. Back up one call, and up a level of recursion, to-

find: _
REQUEST: substitute <= (28 18 (18]
CONTINUATION: cq

with its co‘x'fesponding REPLY:

REPLY: cg <= 128 0]

Aha! We now know that substitute fails to combine its (correct) subanswers
properl'y. :We_. can either look at the code or single-step through the e§ents of this call to
find the bug - the missing "!". If there is some confusion about the temporal relatlons.
between the REQ_UESTs and REPLYs shown above, just make a trace of that part _o_f the
computation: | |

REQUEST: substitute <= 120 18 [10]] -
CONTINUATION: cq '

"REQUEST: substitute <= [26 18 18]
CONTINUATION: c,

R_EPLY: Cp <= 20

REQUEST: substitute <= (20 18 (1]
CONTINUATION: ¢y

'REPLY: ¢; <= 1)

REPLY: cq <= (28 [1]
1



DEBI'JGGING CO-ROUTINES

One can éasi-ly dream up énalagom bugs exemplifying recursion termination errors
and prfa.blem subdivision errors. More interesting here is the use of the history With;
co-routine structured programs. Scanning th-rouéh' the f\lstory with the appropriate
commands separates out messages for the different co-routines. |

: %:‘.oigslder the following program, implemented with DELAYs, that computes prime
numbers by a sieve algorithm:

(de!f ine (integers-above =i)
4 C 1)5 I{delay (integera-above (+ i 1)))])

(define (delete-multiples =n [=first l=restl)
|({remainder first n) =>
(CASES (=> 8
_ (delete-multiples n rest))
(else ,
‘ [first !(delay (delete-multiples n rest))1)) })

4

(;de'flne (sieve [=first l=restl)
][f!rst I{delay (sieve (delete-multiples first rest)))])

: (‘;pr}mes <- (sieve (integers-above 1}})

The sequence primes is an infinite sequence, but it doesn’t take long to do the
asslgnrr;)ent on the last line! This is due to the DELAY féature. DELAY delays the
comput;gatit!m within it until the result is actually needed. This means the infinite sequences.
‘(integers-above 1) aﬁd primes are computed incrementally (and memoized). The
functiorjts 'integers—above. delete-mul tiples, and sieve are co-routines.

The function integers-above generates an infinite sequencé_of ihtegers. starting

1 _
with th{e s;xccessor of its argument. For example:

(
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('in; egers-above -1)
when evaluated, will print as:

61 2345 ...]
The soiun;:e of the ellipsis (*...") is the PLASMA pretty-printer. The pretty-prinfer |
' abbrevi:ate;s structured objects in this way when they get longer than a preset length. Thi#'is
to allov: large expressions to fit oﬁ the screen, e#peclally infinite ones (see [Downey, 1976]).

' In any case, it is important to realize that the sequence above did not get computed
ou.t_ fuéth#r thaﬁ its first element until the printer started to print it. Because of this
Interaction between the printer and delays, it is important that the printing of events from
the hisﬁory| or from steéping through a computation not cause any delays to be expanded
("undelayed"). Sintce the first unexpanded dela;1y in such a sequence has been evaluated (i.e,
an envi:rogilmer;t has been instantiated), the printer prints it as it appears in the source code,
except free identif i'e'll:s within are replaced with their values in that environment.

, bne way to watch the expansion of the delayed sequence above is to set a breakpoint
on infegers-abové, and evaluate {integers-above -1). After a REQUEST to

integers-above comes, skip forward (computing) to the matching REPLY. A partial trace

made ll‘!i this fashion would look like this:
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REQUEST: integers~above <= [-1]
CONTINUATION: ¢y

3

F(FPLY: c) <~ [8 !(delay (integers-above (+ -1 1))

Rl QUEST: integers-above <= [8])
ONTINUATION: ¢,
i
REPLY: cp <= [1 !{delay (integers-above (+ 0 1)))]

REQUEST: integers-above <= {11
CONTINUATION: cq

REPLY: cq <= [2 !(delay (integers-above (+ 1 8)))]

Now we can see why integers-above is a co-routine: it returns an answer before
completing its full task.

The functions delete-multiples and sieve are slightly more complex. The
(remainder first n) is just the remainder of dividing first by n. The result of
(delet_e-lpulti-ples int seq) for integer fnt and sequence seq is a new sequence like
: ééq-._ wi;h all the multiples of int deleted. Since this is incrementally computed, the only
remainders computed are fhose that are actually needed. Finally, the co-routine sieve keeps
the firstt element of a sequence (declares it prime), removes all the multiples of-the_ first
element from the rest, and sieves that resuit.

' l’\low, set breakpoints on all three of the above functions, evaluate primes, and

follow part of the computation in the same way as above:



REQUEST: integers-above <= [1]
CUNTINUATIDN' c,

REPLY: ¢4 <= [2 l(delay (integers-above {+ 1 1]})]

REQUEST: sieve <= [2 !(delay (integers-above (+ 1 1)))]
CONTINUATION: cg

REPLY. cg <= [2 1{delay (sieve (delete-multlples 2

% [!(delay (integers-above (+ 1 1)))1)))]

REQUEST: delete-nultiples <= [2 [i(delay (integers-above {+ 1 1))}1]
CONTINUATION: cg

REQUEST: integers-above <= [2]
" CONTINUATION: cz

PREPLY: ¢y <= I3 I(delay (integers-above (+ 2 11))]

REPLY: cg <= [3 !(delay (delete-multiples 2
{!(delay (integers-above (+ 2 1)})1))]

| REQUEST: sleve <= [3 !(delay (delete-multiples 2
[!(delay (integers-above. (+ 2 1)))1))]
CpNTlNUATION: cg

REPLY: cg <= [3 !ldelay lsieve (delete-multiples 3
. [!(delay (delete-multiples 2
(! (delay (integers-above (+ 2 1)})1)}1}))]

All that just to get the first two prime numberss UNPACKed DELAYS are not exactly

pellucid, so let’s take advantage of hindsight and look at the same computation from the '

point of view of the history, after the delays have been expanded out several times: |



REQUEST: integers-above <= [1}
- CONTINUATION: ¢,

R‘EPLYS C4 <= [2 3 4 5 E 7 o.n]

il

REQUEST: sieve <= 234567 ...]
CONTINUATION: cg

REPLY: cg <= (2357 11 13 ...]

REQUEST: delete-multiples <= [2 34567 8 ...])
CPNTINUATION: g :

REQUEST: integers-above <= [2]
! CONTINUATION:

PREPLY: ¢; <= 345678 ...
REPLY: cg <= 1357 81113 ...

REQUEST: sleve <= {357 911 13 ...]
CONTINUATION: cg

REPLY: cg <= [357 111317 ...)
WA!Ie this trace may seem strange in its order of computation, it is easier to see that .
each coi-rt;ptine is executing correctly. A trace of a single routine in this hindsight fashion,

say, of !93 1ete-mu| tiples, should be most illuminating:



N !

REQUEST: delete-nultiples <= [2 [3'4 6 6 78...1]
CONTINUATION: cg

i I’,

REP!.}Y: g <= B5791113...)

R"EQ‘!#EST: delete-mul tiples <= (3 (579111315...1)
CPN,‘INUATIUN: cg

‘ REQUEST: delete-nultiples <= 2 4567889 ...]]
 CONTINUATION: cyp’

i
| REQUEST: delete-nultiples <= [2 [567 8 9 18 ...1]

CONTINUATION: c;q
‘REPLY: cjp <= [57 811 1315 ,..)
REPLY: cg <= 5711131719 ...]
Now that we can follow the execution of a co-routine in an understandable manner,

most of the previousty mentioned methods for finding bugs can be applied.

—
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b CONCLUSIONS

iHis‘toricaHy, debugging todls in programming languages have varied in power from
nearly .i;seless (eg., core dumps) to reasonably useful (eg., stack examining features and
single-steppers); the practical ones being confined iargely to interpreted languages. Since
PLASMA is a message-passing language, a recorded history of the events of a computation,
togethe;' with a large number of useful ways to examine this history, provides the user with

an exceptionally flexible and powerful means of debugging his PLASMA programs.
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SUGGESTIONS FOR FUTfJBE WORK

There is a need in 'PLASMA and other 'languages for a general method of
structu;ing error messages. It is necessary to distinguish between different kinds of
execution errors, and, depending upon the context, handle them in different ways. One
kind of exlror should never_happen®; for example, a syntax error. Usually this kind of
error must be handled manually. However, there are times (eg. when reading in a flle of
function definitions) that this kind of error should be handled automatically.
| Another kind of error is sometimes anticipated, it signal; the failure of some
algorithm looking for an answer. A failure message should bypass intermediate levels of
program structure and reach the routine that knows what to do next in the situation.

| 'fhe problem is not the number or meaning of error messages, but determining how

to hancﬁe iFhem. Since the handling of different kinds of errors should be dynamic, and is
just as ile;;endent upon the context of the error as on the source of the error, the structure
of error messages and the algorithm for deciding how to handle them are very important
issues. ' i

Another area with room for future work fs debugging programs with side-effects.
Although the history-keeper remembers side-effects, and the history-motion commands
restore side-effects, it is not clear how, in general, to use these features to good advantage:
There is a sligﬁtly fuzzy but important conceptual difference during debugging between
routines _that directly use side-effects (e.g., CONS as defined earlier), and routines that just
make use of such subroutines. In the former case, all of the concerns loeal to the side-effects
must be debugged. In the latter case, the issue is programs that run in .an environment with

C
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