
WORKING PAPER 148 '

May 1977

A History Keeping Debugging System for PLASMA

Jerry Morrison

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Working papers are informal papers intended for internal use.
This report describes research conducted at the Artificial
Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for this research was provided by the
Office of Naval Research under contract N00014-75-C-0522.

2

A History-Keeping Debugging System

For Plasma

by

Jerry Howard Morrison

Submitted to the Department of Electrical Engineering and Computer Science

on May 27, 1977 in partial fulfillment of the requirements

for the Degree of Bachelor of Science.

ABSTRACT

PLASMA (for PLAnner-like System Modeled on Actors) is a message-passing

computer language based, on actor semantics. Since every event in the system is the receipt

of a message actor by a target actor, a complete history of a computation can be kept by

recording these events. The facility to search through and examine such a history,

combined with the facility to pre-set breakpoints or stopping points, and the ability to

restore side effects, provides a powerful way to debug programs written in PLAMSA. The

kinds of history-manipulation and breakpoint setting commands needed, and the ways they

can be used, particularly on recursive programs without side effects, are presented.

Dr. Carl E. Hewitt, Thesis Supervisor

Associate Professor of Computer Science and Engineering

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

S

DEDICATION

This thesis is dedicated to the Institute, which has the finest professors.

TABLE OF CONTENTS

ABSTRACT 2

DEDICATION 3

BACKGROUND 5

A SMALL PROGRAM 11

KEEPING A HISTORY 12

LOOKING AT THE HISTORY Is

AN EXAMPLE 15

DEBUGGING RECURSIVE PROGRAMS 19

INTERPRETATION ERRORS 20

NON-TERMINATION 21

INCORRECT RESULT 22

DEBUGGING CO-ROUTINES 26

CONCLUSIONS 32

SUGGESTIONS FOR FUTURE WORK ss

REFERENCES 35

4 4

BACKGROUND

PLASMA is a message-passing computer language based on actor semantics. For

completeness, a partial description of PLASMA syntax and semantics is given below, enough

to understand all the examples in this thesis.

rLASMA is an applicative language, like LISP, but has several basic differences.

All program elements in PLASMA are actors. An actor is defined to "do something" when

it receives a message, which is also an actor. Each and every event in a computation is the

receipt of a message.

Every actor "knows about" certain other actors, its acquaintances. In terms of

tree-machine implementations of LISP, these correspond to the needed variable bindings in

closures. An ENVIRONMENT is a set of identifier bindings, extendable by pattern

matching (explained below) and by the LET function (not explained here).

Yhe basic data structure in PLASMA is the SEQUENCE, which is a generalization

I
of the list, except they are pure. An example of a sequence is:

[18 28 [308 48]

When a sequence is evaluated (i.e., sent an EVALUATE message) the result is a new

sequence, containing the results of evaluating each of the elements. Since numbers evaluate

to themselves, evaluating the above sequence would produce an equivalent one. An

UNPACK evaluated within a sequence (UNPACK is a prefix symbol which looks like !),

will "o en up" an inner sequence. For example, if a is bound to the above sequence,

evaluating:

it 2 !s 31

1 6

would yield:

[1 2 le 2e t30] 48 3]

LkASMA syntax is a bit more readable than LISP. One place this difference

appears i in the evaluation of FORMS. A form is a structured object much like a

SEQkU NCE, except it is written with parentheses. Some example forms:

(+ lee 1)

(f (f (f x)))
(message => target)

Since forms are used for functional application, they evaluate in an analagous

fashion to LISP, e.g., prefix notation is generally the rule. However, there are five special

symbols which, if one of them is the second element of some form, determine how to

evaluate that form. These are: i,, <c, ->, <-, and -u. The semantics of these infix

symbols will be explained later.

There are several prefix symbols in PLASMA (like QUOTE in LISP), some of

which will be explained later: quote ', quasi-quote ", unpack i, binder =, and

variable-bjnder e-.

Receivers are actors that employ pattern-matching to bind their incoming messages

to internal identifiers. If the pattern does not match some incoming message, the receipt of

that messa e causes a NOT-APPLICABLE error. A receiver looks like this:

(> pattern body)

where pattern is the pattern to match against each incoming message, and body is one or

more expressions to evaluate in the new environment. The new environment is the

7

environment the receiver is defined in, extended by the matching of pattern against the

incoming message.

The common patterns are:

, which matches any object actor.

A quoted identifier, which matches the same identifier.

An identifier, which matches an object if the identifier's value is equivalent to

that object.

S-i dent i f i er, which matches any object, and binds i dent i f i er to that object.

A sequence, which matches an object that is also a sequence, if the elements of

the pattern sequence match those of the object. Inside a sequence pattern,

the pattern !-identifier will match against any number of elements

from the object (including zero), and bind identi fier to a sequence of

those elements. Also, I? will match against any number of elements from

the object, with no binding.

ae i dent i f i er, which matches any object actor and binds i dent i f i er as a

variable, initially set to that object. This is explained below.

Messages are commonly sequences, so the receiver.

(i > E-x1 -x2 ... Xn] body)

Is analagous to the LISP form:

(LAMBDA (xI x2 ... xn) body)

since, if the incoming message is a sequence of n elements, it will bind the identifiers x,

8

through xn to those elements.

CASES implements conditionals using pattern matching. A CASES contains several

receivers; iwhen CASES receives a message, it tries to send it to each of them in turn. The

first receiver that will accept the message gets it. An example of CASES is:

(CASES (i> 1] bodyl)
(-> [-first !-rest] bod72)
(else body•))

This simply evaluates body, if the incoming message is an empty sequence, evaluates

body2 if it is a non-empty sequence, and evaluates bod• 3 otherwise. Note that bodY2 , if

evaluated, will be evaluated in an environment where the identifier first is bound to the

first element of this sequence, and the identifier rest is bound to the rest of this sequence

(i.e., a ýequence of the rest of the elements). In the third receiver, "el se" is Just a nice

abbreviation for "-> ?".

The message i can be TRANSMITTED to the target actor t simply by evaluating:

(n -> t)

or, equivalently:

cIt <- m)

Alternatively, functional application:

tfujction arg1 arg2 ... arg n)

means traismit:

(function <- (argI arg2 ... argn,)

If the siecond element of a form is not one of the special symbols i>, <c, ->, <-, or -- , then

evaluating that form means "apply the first element as a function", i.e., send a sequence of

r

4

9

the rest of the form's elements to the first element. Note that a function does not have to

have lta "arguments" evaluated (receiver (-> pattern body) is a case in point), although

the medhanism for defining such a function is not described here.

We can define a function in two basic ways, Illustrated here by defining ADD-3 and

MULTIPLY:

(ADD-3 <- (-> -x]) (+ x 3)))

and:

(befine (MULTIPLY -x -y) (* x y))

which is e uivalent to:

h(MULTIPLY <- (=> [=x =y] (* x y)))

The arto] <- simply does an assignment in the top-level environment here. Assignments in

generaltwill be described shortly. Now we can use them:

(~00-3 5) yields 8

(ADD-3 <= [181) yields 13

(MULTIPLY 3 6) yields 18

(14 i7 => MULTIPLY) yields 28

Primitive side effects (assignments) are implemented with variables. Assignments

can be done on all identifiers in the top level environment, and on identifiers bound as

variables in local environments. One way to make an identifier a variable in some

environment is by binding it using the pattern e=identifler. If an identifier (say, X) is hard

bound to some object (by one of the patterns -X or !-X), then it is just a local name for that

5' i

object, and cannot be altered. If an identifier is bound as a variable to some object, then it

refers to a cell whose contents can be changed.

Evaluating an identifier gets the object it is bound to, whether it is hard bound or

variably bound. In the top level environment, all variables can be variably bound. We can

politely ask a variable (say, C). to change its value to that of expression by evaluating:

b - expression)

or, equivalently:

(QxPression -> C)

which returns the value of expression. Note that <- doesn't evaluate its first argument (to

the left of the arrow), and -> doesn't evaluate its second argument (to the right of the

arrow).

it is often necessary to refer to an entire actor within itself (recursive reference).

Functions defined at top level can do this easily since the assignment of a definition to an

identifier in the top-level environment provides a general handle on that definition. For

local environments, -= is used:

(hame -- expression)

This evaluates expression in an environment in which the identifier name is bound to the

results of this very evaluation. It is an error if the value of name is actually needed before

the evaluailon is complete.

Ji

A SM4 LL PROGRAM

or an example of the use of variables and ,=, we can implement an "impure"

CONS lone whosefirst and rest elements can change) in this way:

(def ine (CONS e-first-cell I erest-cell)
(cone-ce II --
(CASES (i> 'first.first-cell)

(=> 'rest rest-cel l)
(-> ['replace-first -new-first]

(first-cell <- new-first) cons-cell)
(-> ['replace-rest -new-rest]

(rest-cell <- neu-rest) cons-cell))))

We now can CONS two things x and v together by evaluating (CONS x y); the

result l~ a; "cons-cell". We can get x (the first) back by sending this cons-cell a ' firet

message. We can replace x with z as the first element by sending the cons-cell the message

('replace-first z]; the result being the cons-cell itself, now changed. If this cons-cell is

again sent the message 'first, the answer will now be z.

!I i

KEEPING A HISTORY

When a message is TRANSMITTED, an EVENT occurs, where the MESSAGE is

sent to the TARGET, along with a CONTINUATION. This event is called a REQUEST.

Eventually, there should be a matching REPLY event, in which this CONTINUATION is

the TARGET. This is where the sender "gets its answer". There is no CONTINUATION

in a REPLY event.

There are three tasks involved in keeping a history during a running computation.

First, all events must be recorded. This means remembering, for each event, the MESSAGE,

the TARGET, whether the event is a REQUEST or a REPLY, and the CONTINUATION

(if the event is a REQUEST).

The second task is to record the primitive side effects that occur. When a variable is

asked to change its value, the history-keeper must make special note of this, and remember

the variable and its old value. With this information, the old value can be restored when

looking back through the history. This also means that part or all of a computation can be

undone.

The third task of the history-keeper is to monitor the events as they occur, and match

each against the user-specified patterns for breakpoints (if any). When such an event is

about to occur, the history-keeper causes a BREAK, which starts the debugger's READ-

EVAL-PRINT loop (see the next section). The possible specifications for such break

conditions could be arbitrarily complex; however, since these conditions must be tested for

each and every event, overly-complicated break conditions will slow down the primary

computktion excessively.

LOOKING AT THE HISTORY

The user, debugging his programs, talks to the debugging system itself through a

READ-EVAL-PRINT loop. A READ-EVAL-PRINT loop reads an object from the console,

evaluates it, prints the answer, and then does It all over again. The debugger's

READ-EVAL-PRINT loop responds to commands to manipulate the history also. Until the

user runs into an error or asks for the debugger, it remains unseen and unheard; albeit

using up some processor time and memory space recording the history.

The debugger loop can be summoned by a direct request from the terminal, by the

explicit evaluation of (BREAK) in a program, by hitting a breakpoint, and by an

interpretation error.

For any significant computation, the history will be quite long and detailed. One

must tl~erefore be able to extract the desired information from the history. Fundamentally,

the user wants to find and display events, environments, and actor acquaintances. A special

case of this is scanning a chain of continuations. Since one of the acquaintances of a

continuation actor is the previous continuation, they form a chain of computational steps.

There is a pointer associated with history observation that indicates the "current"

event. The EVENT DISPLAY functions allow the user to examine the current event:

display the type of event, the message, the target, the continuation, and each of their

acqualrtances. Other functions just retrieve pointers to these objects, so they can be used as

arguments to the search functions (described below). In addition, it is very useful to be able

to display function definitions, with an imbedded cursor in each active one showing at what

point the current evaluation of that function is.

14

The basic MOVE commands move the history pointer, changing the conceptually

"currenir event These include:

move forward or backward one event;

move forward to this REQUEST's matching REPLY;

move backward to this REPLY's latest or earliest matching REQUEST (note

that one REPLY event can serve for several REQUEST events, which is

what happens for iteration and buck-passing; see [Hewitt, December 1976);

move forward or backward to the next call to any user-defined functions;

move forward or backward to the next top-level READ-EVAL-PRINT loop

event [the normal commandlexpression loop's stopping points;, and

move to the beginning or the end of the history.

Fore powerful motion is accomplished with the SEARCH commands, which search

the history forwards or backwards for events referencing certain actors in certain ways.

These include searching for an event:

with a specific function as the TARGET;

with TARGET, MESSAGE, or CONTINUATION a specific actor or a specific

type of actor (e.g, any number);

where a particular variable's value is changed; or

where a particular actor first appeared in a REPLY ("where it originated").

In addition to jumping around through the history looking at selected events, the

user may wish to look at a structured subset of the history. The HISTORY DISPLAY

functiols print a trace of messages to and from specifically named actor(s), or to and from

all user-DEFINEd functions, with or without the recursed calls. In addition to the

REQUESTs to these actors and their respective REPLYs, the history display functions can

include a complete trace of the computations lexically scoped within these actors. These

events are just those between an initial REQUEST and its respective REPLY, excepting all

those between any REQUEST(s) to some actor outside the given actor and the answering

REPLY(s).

A BREAKPOINT is a stopping point In a program, set by the user through the

debugger. While the program is executing, the history-keeper checks each event to see if it

matches any of the user-defined patterns for breakpoints. If so, it causes a BREAK; that

is, it stops execution of the program and starts the debugger's READ-EVAL-PRINT loop.

The simplest patterns for breakpoints look for events with specifically named actors or

A
functions as the TARGET. Also available during execution are commands to stop at and

display the next event and to stop at and display a REQUEST's matching REPLY.

Two other commands to the debugger's READ-EVAL-PRINT loop allow the

suspended computation to be continued or discontinued.

AN EXAMPLE

For an example of the history in action, we have below a simple substitution

function. It will substitute a new item x for every occurence of an item y, at every level of

depth Witlin some sequence z.

16

(define (substitute =x -y =z)
(Z ->

(CASES (I> y x)
(-> [=first !-rest]

[(substitute x g first) !(substltute x U rest)])
(else z))))

This routine is fairly straightforward. If z is equivalent to u, then the answer is x.

Otherwise, if z is a non-empty sequence, then the answer is a new sequence, obtained by

recurstiely calling subst I tute on both the first and the rest of the sequence z. Otherwise,

the answet Is just z itself. Note that the empty sequence [U is included in this last case.

We might use subst i tute like this:

(Yu stitute 8 18B [B [188]))

In other words, substitute 8 for 188 in the given sequence. This will return:

e [0]].

Or like this:

(substitute 'hello 'hi '[hi therel)

which returns:

[hello there]

or:

(substitute 8 'zero '[no zeros here])

which answers:

[no zeros here]

Now we can switch into debug mode and have a look at the history just generated by

those threý calls. First, search backwards for the last call to substitute. The debugger

prints:,

ROQUEST: substitute.<- [8 zero (no zeros here]]
CONTINUATION: c

The continuation is abbreviated as c here. Now, skip forwards to the matching REPLY

(where c gets its answer):

RfPLY: c <- [no zeros here]

Let us look at a complete trace of calls to subst i tute from the first invocation. For

brevity, the continuations have been named c1 , c2 , c3 ... ; numbered as they are

encountered. The subscript numbers have no significance other than uniquely naming the

continuations. Now, here's the trace:

!

18

REQUEST: substitute <- [8 188 [1 [188]]]
CONTINUATION: cl

REQUEST: substitute <- [8 188 8]
CONTINUATION: c2

REPLY: c2 8

REQUEST: substitute <= [8 188 [[188]]]
CQNTINUATION: c3

IREQUEST: substitute <= [8 188 [18811]
CONTINUATION: c4

REQUEST: substitute <= [8 188 188]
CONTINUATION: c5

REPLY: cs <- 8

REQUEST: substitute <- [8 188 []1
CONTINUATION: cs

REPLY: cG <-]1

REPLY: c4 " [81

REQUEST: substitute <- [8 188 [11
CONTINUATION: c7

REPLY: c7 <[

REPLY: c3 " [[8]]

REPLY: cl <-[8 [8]]

DEBUGGING RECURSIVE PROGRAMS

The history provides us with a general paradigm for debugging recursive and

iterative programs that have no side effects; the requirement is that you must be able to tell

if the results are correct. It is also assumed here that the program is reasonably close to

embodying a correct algorithm. Iteration control structures in PLASMA are discussed at

length in [Hewitt, December 19761 Suffice it to say here that to iterate, an actor simply

sends itself a message. If the result of that message will simply be handed back to the

current continuation, no new continuation is generated (as would be in recursion), but the

current continuation is used again in the new REQUEST, so that it will directly receive the

REPLY.

To debug a program, the first step is to load in the program definition, turn on the

history-taker, and start executing the program. There are four things that can happen:

Correct Execution - the program can execute properly and return the correct

result (in which case you didn't need the debugger);,

Interpretation Error -- the program can hit an interpretation error (illegal

operation) and halt immediately;

Non-Termination - the execution might never terminate (endless loop);, or

Incorrect Result - an incorrect result may be returned.

Notice that the debugger will not recognize If an answer is correct (that is, the difference

between the first and last possibilities, above), and is of no help if the user cannot.

Remember also that the goal of test-case debugging is to locate the bugs so they can be

corrected, not to attempt to prove program correctness.

r ,

20

INTERPRETATION ERRORS

If the interpreter catches an error (an illegal operation such as division by zero), the

program will immediately halt, and the debugger's READ-EVAL-PRINT loop will start. It

is a straightforward matter from this point to scan backwards through the history from the

termination of the computation to the cause of the error.

Back to our example, we can rewrite the subst i tute function so that it gets an

interpretation error. We simply leave out the last clause in the CASES (space underlined

below):

(define (substitute =x gy -z)
(z.->
(CASES (i> y x)

(-s> [-first !-rest]
[(substitute x y first) !(substitute x y rest)])

It "

and tyre:

(substitute 1 2 [2 21)

which, pretty quickly, comes back with:

ERROR: NOT-APPLICABLE:
] s> (CASES (-> y x)

(*> [-first !-rest]
[(substitute x U first) !(substitute x U rest)]))

All of which goes to say that the message [] did not match the patterns of any of the

receivers in the CASES statement shown. If there is any doubt about what function this

CASES appeared in, the answer could be obtained by moving backwards through the

history for the last call to a user-defined function.

The problem is now obvious, a condition must be added to handle the empty

-i

sequence in the CASES. What isn't quite as obvious is that there is no case for everything

that isn't supposed to be substituted for. If the case (I> [1 [1) is inserted, substitute

will work on the previous test, but will still fail on many others, for example

(substitute 1 2 [1 21).

I

NON-TIERMINATION

If a computation takes a long time (a possible infinite loop), it is only necessary to

interrupt the computation and search through the history for a repeating pattern of

messages (a lack of convergence). If the program is converging on an answer, then simply

continue the computation. If the program is diverging from an answer, the bug is either in

a conditional that failed to terminate the iteration or recursion, or in the code that breaks

the problem into subproblems. Otherwise, the computation Is repeating itself, and the bug

must be in the code that breaks the problem into subproblems.

An easy way to make the substitute function compute forever is to change the

recursive invocation case. Again, the bug Introduced is underlined:

4,define (substitute =x -= =z)
.(z ->

'(CASES (-> y x)
(-> [-first !-rest]

[(substitute x y first) !(substitute x U z)])
(else z))))

Let us test it on some data:

(substitute (111 (8 11)

Now, this thing may compute for a while before we decide to interrupt it. When we do, the

1 ,'

debugger will display the current event, e.g-

RIEPLY: c1 8 <- [1]

This looks reasonable enough. Back up a few REQUESTs and trace the rest of the

messages sent to substitute:

REQUEST: substitute <- [[1 1 1 8 1ll
CONTINUATION: cll

REQUEST: substitute <- [tll 1 11
SCtNTINUATION: c12
REPLY: cl2 <- [11

REQUEST: substitute <- [[11 1 [1 8 111
CONTINUATION: ci3

REQUEST: substitute <- [[1 1 11
CONTINUATION: cis

REPLY: c18 <- [1]

It is pretty obvious, in this simple case, that the program is looping indefinitely. In more

complex cases, the same ideas apply.

INCORRECT RESULT

If • computation returned an incorrect answer, we have a complete history of an

erroneous computation, and we want to locate the bug(s). The basic idea is to find the

deepest' recursive call to the function that yields an incorrect answer, and look at all the

recursive calls within that call. This is easily done by invoking a history search function to

scan for calls to the routine in question, and then moving to the matching REPLY events to

check the matching results. From the end of the history, searching backwards for a call to a

I

routine will find the deepest invocation of that routine in the last branch of the

computation tree.

By the nature of recursive programs, there are four possible kinds of errors that can

have been committed at this point-

1. Error in testing the recursion termination condition(s). If there are no

recursed calls where there should be, or if there are recursed calls where

there shouldn't be, the bug lies in testing the termination condition(s).

2. Error in handling a termination condition. If in this call the routine

(correctly) did not call itself recursively, then the bug lies in the code that

handles a recursion termination condition.

3. Error in decomposing the problem. If the next level down of recursed calls

are made incorrectly (i.e, given the wrong arguments), the bug is in decom-

posing the problem into subproblems.

4. Error in combining the subanswers. By hypothesis the subproblems are the

correct ones and their results are correct. Therefore the subresults are

incorrectly synthesized into a total answer.

since

probl

rse, finding the breakdown from the history may not always be so simple,

programs are not always structured so cleanly. If a program handles a sub-

ne", it will be a little harder to scan the history for the subproblem's

REQ.UEST and REPLY messages, since they will not be as distinctly marked as function

calls are.

Let us put a synthesis bug into our subst I tute function. If we "forget" the

24

UNPACK operator from the second sequence (the place is underlined below):

(define (substitute -x -y =z)

(CASES (U> y x)
(=> ([first !=rest]

[(substitute x y first) _(substitute x y rest)])
(else z)) })

the program will incorrectly synthesize the two subproblems (subst tute x y f irst) and

(subst'i tute x U rest) Into a complete answer. Now, if we type:

(pubstitute 28 18 15 181)

we will,geI the result:

[S 28 Dl]]

rather tha7 the desired:

15 281

When this unexpected answer pops out, we simply switch into debug-mode, and have

a look at that last computation. If we search backwards (from the end of the history) for a

call to subst i tute, we find the innermost call, namely:

REQUESTs substitute <- [28 18 [D1
CONTINUATION& cl

and we jump forwards to the matching REPLY to see:.

REPLYV cl <- [1

So this innermost call is ok. If we back up to the previous call to subst I tute, we see.

REQUEST: substitute <- [28 18 181
CONTINUATION: c2

, ,

S25

and the matching:

REPLY: c2 <- 20

which Is good. These two calls are at the lowest level of recursion, since neither has a

non-empty sequence as the third argument. Back up one call, and up a level of recursion, to

find:

RfQUEST: substitute <= [28 18 [1811
CONflTINUATION: c3

with Its corresponding REPLY:

REPLY: c3 <- [208 U

Aha! We now know that substitute falls to combine Its (correct) subanswers

properly. :We can either look at the code or single-step through the events of this call to

find the bug - the missing "!". If there is some confusion about the temporal relations

betweer the REQUESTs and REPLYs shown above, just make a trace of that part of the

computation:

REQUEST: substitute <- [28 18 (1811
CONTINUATION: c3

'REQUEST: substitute <= [28 18 181
CONTINUATION: c2

REPLY: c2 <- 28

REQUEST: substitute <= [28 18 [11
CONTINUATION: cl

REPLY: cl <- l1

REPLY. c3 <- [28 [11

I 26

DEBUGGING CO-ROUTINES

One can easily dream up analagous bugs exemplifying recursion termination errors

and problem subdivision errors. More interesting here is the use of the history with

co-routine structured programs. Scanning through the history with the appropriate

commands separates out messages for the different co-routines.

opnsider the following program, Implemented with DELAYs, that computes prime

numbers by a sieve algorithm:

(define (integers-above =1)
[(, I 1) l(delay (Integers--above (+ 1 1)))])

(define (delete-multiples -n [-first I-rest])
((Mremainder first n) =>

(CASES (=> 8
(delete-multiples n rest))

(else
[first !(delay (delete-multiples n rest))])) }i

(define (sieve [-first 1-rest])
[first I(delay (sieve (delete-multiples first rest)))])

(primes <- (sieve (integers-above 1)))

The sequence primes is an infinite sequence, but it doesn't take long to do the

assignment on the last line! This is due to the DELAY feature. DELAY delays the

computation within it until the result is actually needed. This means the infinite sequences

(integer's-above 1) and primes are computed incrementally (and memoized). The

functions integers-above, delete-mul tiples, and sieve are co-routines.

The function integers-above generates an infinite sequence of integers, starting

with the successor of its argument. For example-
i,

I 27

(iniegers-above -1)

when evaluated, will print as:

[0 1 2 3 4 5 ...]

The source of the ellipsis ("...") is the PLASMA pretty-printer. The pretty-printer

abbreviates structured objects in this way when they get longer than a preset length. This is

to allow large expressions to fit on the screen, especially infinite ones (see [Downey, 1976]).

fn pny case, it is important to realize that the sequence above did not get computed

out furth r than its first element until the printer started to print it. Because of this

Interaction between the printer and delays, it is important that the printing of events from

the history or from stepping through a computation not cause any delays to be expanded

("undelayed"). Since the first unexpanded delay in such a sequence has been evaluated (i.e.,

an environment has been instantiated), the printer prints it as it appears in the source code,

except free identifiers within are replaced with their values in that environment.

One way to watch the expansion of the delayed sequence above is to set a breakpoint

on integers-above, and evaluate (Integers-above -1). After a REQUEST to

integers-above comes, skip forward (computing) to the matching REPLY. A partial trace

made in this fashion would look like this:

pt

28

R4EQIEST: integers-above <c [-1]
CONTINUATION: c1

REPLY: cl <- [8 !(delay (integers-above (+ -1 1)))]

9R QUEST: integers-above <- [8)
CONTINUATION: c2

REPLY: c2 <- [1 ! (delay (integers-above (+ 0 1)))]

RIEQOJEST: integers-above <- [1)
CpNTINUATION: c3

RfPLY: c3 <- [2 I(delag (integers-above (+ 1 8)))]

Now we can see why integers-above is a co-routine: it returns an answer before

completing its full task.

The functions delete-multiples and sieve are slightly more complex. The

(remainder first n) is just the remainder of dividing first by n. The result of

(delete-multiples int seq) for integer int and sequence seq is a new sequence like

seq, with all the multiples of int deleted. Since this is incrementally computed, the only

remainders computed are those that are actually needed. Finally, the co-routine sieve keeps

the first element of a sequence (declares it prime), removes all the multiples of the first

element from the rest, and sieves that result

Now, set breakpoints on all three of the above functions, evaluate pr rmes, and

follow part of the computation in the same way as above:

f

29

REQUEST: ,integers-above <= [11
CONTINUATION: c4

REPiLY: c4 <= (2 !(delay (integers-above (+ 1 1)1)

R1Qi2EST: sieve <- [2 !(delay (integers-above (+ 1 1)))]
CONTINUATION: c5

REPLY: c <=- [2 !(delay (sieve (delete-multiples 2
[!(delay (integers-above (+ 1 1))))))]

R QUESTs delete-multiples <= [2 [I(delay (integers-above (+ 1 1)))]]
CONTINUATION: cG

SREQUEST: integers-above <- [21
CONTINUATION: c7

F rRPLY: c7 <- [3 i(delay (integers-above (+ 2 1)))l

REPLY: c m <= [3 !(delay (delete-multiples 2
[!(delay (integers-above (+ 2 1)))]))]

REQUEST: sieve <= [3 !(delay (delete-multiples 2
[I (delay (integers-above. (+ 2 1)))]))1

CPNTINUATION: c8

REPLY: c8 <= [3 !(delay (sieve (delete-multiples 3
[I(delay (delete-multiples 2

[i(delay (integers-above (+ 2 1)))]))])))]

All that Just to get the first two prime numbers! UNPACKed DELAYS are not exactly

pellucid, so let's take advantage of hindsight and look at the same computation from the

point of view of the history, after the delays have been expanded out several times:

jI

SO

RQUEST: integers-above <- [1]
CONTINUATION: c4

REPLY: c4 <- [2 3 4 5 6 7 ...1

REQUEST: sieve <- [2 3 4 5 6 7 ...
CbNtINUATION: cs

REPLY: c5 <. [2 3 5 7 11 13 ...1

REQUEST: delete-multiples <- [2 [3 4 5 6 7 8 ..,J
CONTINUATION: cg

REQUEST: integers-above <- [21
CONTINUATION: c7

IREPLY: c7 <- [3 4 5 6 7 8 ...I

REPLY: cg <- [3 S 7 9 11 13 ...1

REQUEST: sieve <- [3 5 7 9 11 13 ...1
CONTINUATION: c8

REPLY: c8 <- [3 S 7 11 13 17 ,...

While this trace may seem strange In its order of computation, it is easier to see that

each co-routine is executing correctly. A trace of a single routine in this hindsight fashion,

say, of de ete-mul tip les, should be most illuminating:

REQUEST: delete-multiples -< [2 [3'4 5 6 7 8...11
CpNTINUATION: c6

REP Y: c6 <- [3 5 7 9 1113 ... I

R Q EST: delete-multiples <= [3 [5 7 9 11 13 15 ...11
CpNTINUATION: cS

REQUEST: delete-multiples <= [2 [4 5 6 7 8 9 ...]
SCNTINUATION: c1 8

I

REQUEST: delete-multiples <= [2 15 6 7 8 9 18 ...11
CONTINUATION: c18

IR PLY c18 <= 5 79 11 13 15 ,..1

REPLY: c9 <- 15 7 11 13 17 19 ... 1

Now that we can follow the execution of a co-routine in an understandable manner,

most of the previously mentioned methods for finding bugs can be applied.

i i

1.i

32

CONCLUSIONS

Historically, debugging tools in programming languages have varied in power from

nearly useless (e.g., core dumps) to reasonably useful (eg., stack examining features and

single-steppers); the practical ones being confined largely to interpreted languages. Since

PLASMA is a message-passing language, a recorded history of the events of a computation,

together with a large number of useful ways to examine this history, provides the user with

an exceptionally flexible and powerful means of debugging his PLASMA programs.

I

SUGGESTIONS FOR FUTURE WORK

There is a need in PLASMA and other languages for a general method of

structuring error messages. It is necessary to distinguish between different kinds of

execution errors, and, depending upon the context, handle them in different ways. One

kind of e ror "should never happen'; for example, a syntax error. Usually this kind of

error must be handled manually. However, there are times (e.g., when reading in a file of

function definitions) that this kind of error should be handled automatically.

Another kind of error is sometimes anticipated, it signals the failure of some

algorithm looking for an answer. A failure message should bypass intermediate levels of

program structure and reach the routine that knows what to do next in the situation.

The problem is not the number or meaning of error messages, but determining how

to handle them. Since the handling of different kinds of errors should be dynamic, and is

just as dependent upon the context of the error as on the source of the error, the structure

of erroi messages and the algorithm for deciding how to handle them are very important

Issues.

Another area with room for future work is debugging programs with side-effects.

Although the history-keeper remembers side-effects, and the history-motion commands

restore side-effects, it is not clear how, in general, to use these features to good advantage.

There is a slightly fuzzy but important conceptual. difference during debugging between

routines that directly use side-effects (e.g., CONS as defined earlier), and routines that just

make use of such subroutines. In the former case, all of the concerns local to the side-effects

must be debugged. In the latter case, the issue is programs that run in an environment with

34

side-effects.

Si

i -

S5

REFERENCES

Downey, Thomas S. "A Pretty-Printer for PLASMA".

Unpublished bachelor's thesis, Dept. of Electrical Engineering and Computer Science,

M.I.T., Cambridge, Mass. May, 1976

Grief, I. and Hewitt, C. "Actor Semantics of PLANNER-73".

Proceedings of ACM SIGPLAN-SIGACT Conference,

Palo Alto, California. January, 1975

Hewitt, Carl "Viewing Control Structures as Patterns of Passing Messages".

A.I. Memo 410, M.I.T. Artificial Intelligence Laboratory,

M.I.T., Cambridge, Mass. December 19786

Hewitt, Carl "A PLASMA Primer".

Draft paper, M.I.T. Artificial Intelligence Laboratory,

M.LT., Cambridge, Mass. 1974

I

