
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper No. 153 September 1977

RATIONAL ARITHMETIC FOR MINI-COMPUTERS

Berthold K. P. Horn

A representation for numbers using two computer words is discussed, where
the value represented is the ratio of the corresponding integers. This
allows for better dynamic range and relative accuracy than single-precision
fixed point, yet is less costly than. floating point arithmetic. The scheme
is easy to implement and particularly well suited for mini-computer applica-
tions that call for a great deal of numerical. computation. The techniques
described have been used to implement a mathematical function subroutine
package for a mini-computer as well as a number of applications programs
in the machine vision and machine manipulation area.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory's
artificial intell;gence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-A-0643.

RATIONAL ARITHMETIC FOR MINI-COMPUTERS

1. INTRODUCTION:

Typically, mini-computers come equipped with arithmetic instructions that

operate on single words. Frequently double-word addition and subtraction

is also provided for. Unfortunately, integers are inconvenient for many

calculations and require the programmer (or at least the compiler) to re-

member scale factors relating the number represented to the integer actu-

ally stored. Even with scale factors one frequently runs out of dynamic

range or has difficulty because of the need to estimate the approximate

magnitude of variables ahead of time. Floating point representation is

the obvious, but costly answer. Software to perform the common floating

point operations requires substantial amounts of memory and is usually

very slow, while hardware that carries out the same operations -- if avai-

lable -- is expensive.

2. RATIONAL ARITHMETIC:

An oft overlooked alternative that lies between fixed point and floating

point arithmetic in complexity, cost and capability is rational arithmetic

(see Fig. 1). Variables are stored in two words and the number represen-

ted is the ratio of the integers in these words. This allows a fair dy-

namic range and possibly higher precision than single word integer arith-

metic, without the complexity of extracting exponents and mantissas as re-

quired for floating point arithmetic. It is also easy to provide software

that performs the usual arithmetic operations at relatively high speed.

Since the number of instructions required is relatively small, one may

elect to compile them in line instead of providing them as subroutine

calls. Similarly, it should be easy to micro-program a machine to pro-

vide these operations directly as part of its instruction repertoire.

Notice that we are not discussing exact rational arithmetic which re-

quires the ability to represent two integers of arbitrary size [1, 2].

Our two-word representations for numbers will be approximations in the

same way that floating point numbers are approximations to real numbers.

The minimal capabilities required to implement rational arithmetic in this

sense are single word multiplications (with double word results), double

word addition, subtraction and shifting. It is helpful to have four re-

gisters available to hold partial results. Addition, subtraction, mul-

tiplication, or division of rational numbers produces a pair of double

word results which have to be "compressed" into two single words before

they can be used in further calculations.

3. NORMALIZATION

The main decision to be made when implementing rational arithmetic

is the choice of an appropriate "normalization" precedure, which will

find a rational number that can be represented in the two-word format,

and which approximates the double-size (four-word) result of the elemen-

tary arithmetic operations. The fastest method is certainly one where

both double-word results are simply shifted right until each fits into

one word. It must be pointed out that this does not usually result in

the best approximation possible in the t.o-word format. In fact, it is

fairly easy to see that the relative accuracy of this method is no better

than that obtained in single-precision integer arithmetic. Its simplici-

ty however makes this scheme very attractive in situations where the ex-

tended dynamic range and not the higher accuracy is of most interest .

Next, we notice that one can divide both terms of the result by any com-

mon factors they might have (provided the computer has a divide instruc-

tion of course). With luck this will lead to sufficient reduction in the

size of the results so that they will now fit into the two-word format.

In this case the answer is exact, but a bit of work has to be done to

find the greatest common divisor in the first place (see Fig. 2). The

number of iterations in the GCD algorithm is approximately equal to the

logarithm of the numbers [2]. One certainly cannot rely on this method

alone to always provide the required compression of the two double-word

results. This is the appropriate method however for exact rational

arithmetic [1, 2].

-4-

The Eucledian algorithm for finding the greatest common divisor suggests

a related method for finding optimal approximants using number theoretic

ideas. The method is based on an algorithm for finding successive-con-

vergents of a continued fraction expansion (see Fig. 3). The method is

described in detail in [3] and reproduced in [4]. This technique involves

more computation, but since a result of the form p/q is accurate to with-

in l/q2, we are now dealing with a method that has similar relative ac-

curacy as one might expect from double precision integer arithmetic (see

Fig. 4). The largest approximant that fits into the two-word format has

been called the mediant conversion value [4]. Fortunately, the algorithm

produces the approximants in order of increasing size, and so one simply

keeps going until one of the two factors no longer fits into a single word.

See figure 5 for examples of small approximants for common mathematical

constants.

We have presented here two extreme case algorithms for the normalization,

the one exceedingly fast, but of limited accuracy, the other complicated,

but with exceptional accuracy. Other points on the spectrum of possibi-

lities can be explored. For example, a compromise acceptable for many

real applications, is a technique which involves simply dividing both

double-word result terms by the first (high order) word of the larger plus

one. This ensures that the two resulting numbers are as large as possible.

Clearly the method is vYot applied if the results already occupy

only a single word each.

-5-

All of the above methods involve a certain amount of bookkeeping to deal

properly with negative numbers and the idiosyncracies of the particular

scheme used to represent negative numbers.

4. ALGORITHMS:

Let n[a,b] stand for the normalization operation just discussed and let

us represent a pair of words containing the numbers a and b as (a/b).

Evidently, the four usual arithmetic operations produce the following

results:

(a/b) + (c/d) + n[ad + bc,bd]

(a/b) - (c/d) ÷ n[ad - bc,bd]

(a/b) x (c/d) + n[ac,bd]

(a/b) * (c/d) * n[ad,bc]

Curiously, with this representation, multiplication and division involve

a little less effort than addition and subtraction. Also notice that di-

vision by zero does not lead to immediate disaster.

For reasons of efficiency ou~e may want to retain integers represented by

single words. The conversion between such single words and the double

word rational representation is straightforward of course and may be used

to implement mixed arithmetic using a form of "rational contagion". That

is, integers about to enter into operations with rationals are converted to

rational form first. Alternatively one can easily code the mixed arithme-

tic operations separately in order to gain speed by avoiding futile multi-

plications by one. Conversion between an external decimal representation

and the internal rational format for input and output purposes requires

division, but is also simple.

-6-

5. MATHEMATICAL FUNCTION SUBROUTINES:

Most common methods for computing elementary transcendental functions in-

volve argument reduction and approximation by a polynomial or a ratio of

two low order polynomials in the independent variable. Such techniques

can easily be implemented for mini-computers using rational arithmetic.

This is sensible even when the rest of the program uses other representa-

tions since the resultant subroutines are comparatively fast and short.

In this case one can often simplify the normalization operation after

arithmetic steps since the magnitudes of the various coefficients and the

range reduced input are known.

An additional idea worth exploring when using trigonometric functions is

a representation for angles which lets 3600 correspond to the largest in-

teger that can be represented by a single word, plus one. This provides

for automatic wrap-around of angles larger than 3600 or less than zero on

most machines. It also makes for the best possible angular resolution for

a given word size. Further, it is a good idea to let arc-tangent be a

function of two variables. The result is the arc-tangent of the ratio,

with the quadrant picked according to the signs of the two arguments. This

avoids the usual two-way ambiguity in the result of inverse trigonometric

functions. Such a scheme also avoids difficulties with angles near 900

and 2700 for which the argument would otherwise become excessively large.

6. COMPARISON WITH OTHER REPRESENTATIONS:

The rational arithmetic method has already been compared with the usual

single precision fixed point and floating point methods. A comparison

with two other simple schemes, using two words to represent a number, may

be called for. The first is a double word representation with an imagi-

nary binary point between the two words. That is, the first word is the

integer part and the second the fractional part. This representation has

the same dynamic range and comparable accuracy, but while addition and

subtraction are simpler, the other operations, and particularly division,

are much more difficult to implement.

Secondly, we could consider a simple floating point form, with one word

used for the exponent, the other for the mantissa. While this avoids the

difficulty of extracting sub-strings from words inherent in the usual

floating point representations, it is also wasteful. The dynamic range of

course is larger than the rational representation, but the accuracy is less

and this technique is also more difficult to implement.

7. CASE STUDY AND SUMMARY

The techniques described here have been used to implement a mathematical

function package for a PDP11 mini-computer. The approximations shown in

Fig. 6,7 and 8 were used, the results are accurate up to the limitations

of the word-length of the machine and the execution times are short

(160 V sec for ATAN,,185 p sec for SIN/COS and 115 V sec for SQRT on a

PDP11/40). In this case, the normalization problem was simple since the

expected ranges of the numbers involved were known in advance. Similar

techniques have also been employed in a number of programs. involving ap-

plications of machine vision and machine manipulation techniques [5].

The "no-point" or rational representation for numbers has been shown to

make for easy-to implement arithmetic operations, yet is effective in

providing capabilities somewhere between those available with the more

traditional fixed- and floating-point schemes. The low complexity and

cost in terms of memory and execution time recomrend this method for ap-

plications involving mini-computers. Users of mini-computers need no

longer fear matrix arithmetic, coordinate transformations, evaluations

of polynomials or calculation of transcendental functions since rational

arithmetic will allow them to do a fair job of tackling these tasks,

while requiring only a modest effort. It is the rational choice!

BIBLIOGRAPHY

[1] P. Henrici, "A Subroutine for Computations with Rational Numbers,"

J. ACM., Vol 3, pp 10-15, .1956.

[2) D. E. Knuth, "The Art of Computer Programming, Vol. 2, Semi-numerical

Algorithms," Addison-Wesley, Reading MA, pp 290-292, 1969.

[3] D. W. Matula, "Fixed-Slash and Floating-Slash Rational Arithmetic,"

Proc. 3rd Sym. on Computer Arithmetic, IEEE, pp 90-91, Nov.1975

[4] G. H. Hardy & E. M. Wright, "An Introduction to the Theory of Numbers,"

Claredon Press, Oxford, London, pp 137-138, 1954

[5] B. K. P. Horn, "A Problem in Computer Vision: Orienting Integrated

Circuit Chips," Computer Graphics and Image Processing, Vol 4,

pp 294-303, Sep. 1975.

MATHEMATICAL ABSTRACTION

Analogy between mathematical number systems and computer

representations. The proposed "no point" representation

corresponds to the rational numbers.

FIXED POINT INTEGERS

"NO POINT" RATIONALS

FLOATING POINT REAL NUMBERS

FIGURE 1:

COMPUTER REPRESENTATION

A simple algorithm for finding the greatest common divisor

of two numbers. This algorithm is a slight modification of

Euclid's, and more elaborate, faster algorithms exist. The

function REMAINDER determines the remainder of the indicated

division. That is, REMAINDER(N, M) = N - (N/M)*M. The GCD

algorithm is useful for normalization after arithmetic operations

or for simplifying terms before they enter into arithmetic. The

tail-end recursion can of course be turned into a more efficient

iteration.

GCD(N, M): IF M = 0, THEN N

ELSE GCD(M, REMAINDER(N, M))

FIGURE 2:

FIGURE 3: A simple algorithm for determining good rational approximations

to a given number S. The succesive approximants (P2/Q2) are

alternately larger than S and smaller than S. The algorithm

terminates when either numerator or denominator exceeds the

given bound N, or when the ratio exactly equals the number S.

The algorithm is based on a method for finding continued

fraction expansions.

FRACT(S, N): LET P1 ÷ O0 Q1 0 1; P2 ÷2 0; I * 0

DO UNTIL P2 > N OR 02 N OR S = I

LET PO 1 P1; QO - Q1 1 ÷ P2; Q1 o Q2

LET I ÷ INTEGER-PART(S)

LET P2 PO + I * P1; Q2 QO + I * Q1

IF S 0 I, THEN LET S - 1/(S - I)

END

RETURN (P1/Q1)

END

0 0 0

N (S + e

N(S -.E)
o o

o a

Illustration of th.e theorem about convergents. The grid points

correspond to rational numbers. Those falling within the shaded

triangle represent approximations to the number S. These

rational numbers have a denominator less than N and lie

between S - c and S + E in value. If the area of the triangle,
E N2 exceeds one, we expect:to find one or more grid-points

within its boundaries, since there is one grid-point per unit

area. This suggests that a number S can be approximated with

accuracy 1/N2 with rational numbers that have denominator less

than or equal to N.

FIGURE 4:

MATHEMATICAL CONSTANT

FIGURE 5: Rational approximants for some common mathematical constants,

accurate to at least 16 bits or about 5 decimal digits.

355/113

1264/465 e

239/169 F2

228/395

192/277 LN 2

L

RATIONAL APPROXIMATION

1 + 4/15 X2
X

1 + 3/5 X2

1 + 10/9 X2 + 5/21 X4

FOR IXI < 1/2

FOR IXI < 1
1 + 7/9 X2 + 64/945 X4

Rational function approximations for ATAN(X) for range-reduced X.

The first approximation is obtained from an application of

Aitken series acceleration, the second from cnntiniued fraction

expansion. All coefficients are rational numbers and the results

have sufficient accuracy for 16-bit mini-computers. The results

are in radians, but can easily be converted into fractional

revolution representation by multiplying by 355/113.

FIGURE 6:

L- --

Truncated Taylor series approximations for sine and cosine

for range-reduced X (in radians). The results are of sufficient

accuracy for 16-bit computers. A single function producing both

values acts as a convenient inverse to the proposed arc-tangent

function which takes two arguments.

FIGURE 7:

Simple Newton-Raphson double-precision square-root algorithm

suitable for mini-computer use. Divisions are intended to produce

integer quotients. Division by two can obviously be implemented

using a right shift. Other initial guesses, such as Y, Y/2 or

(Y+l)/2 could be used instead of 1.

FIGURE 8:

