MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLICENCE LABORATORY

Working Paper No. 163 _' May 1978

APPLICATION OF DATA FLOW COMPUTATION
TO THE SHADED IMAGE PROBLEM

Thomas M. Strat

Abstract. This paper presents a method of producing shaded images of terrain at an
extremely [ast rate by exploiting parallelism. The architecture of the Data Flow Computer
is explained along with an appropriate "program” to compute the images. It is shown how
shaded images of terrain can be. computed in less than one-tenth of a second using a
moderate-sized Data Flow Computer. '

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N09014-75-C-0643. ’

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1973
¥

PACE 2

TABLE OF CONTENTS
I. INTRODUCTION
{l. DETAILS OF THE PROBLEM
lil. HICH-LEVEL IMPLEMENTATION
" IV. THE DATA FLOW COMPUTER
V. THE STRUCTURE'PROCESSQR
VL. THE DATA FLOW GRAPH
Vil PERFORMANCE ANALYSIS
VI CONCLUSION

IX. .BIBLIOGRAPHY

LIST OF FIGURES
1. MODULAR ORGANIZATION OF THE ALGORITHM
2. HEIRARCHICAL DECOMPOSITION
3. THE DATA FLOW COMPUTER
4. THE STRUCTURE PROCESSOR
5. THE GET MODULE
6. THE PUT MODULE
7. THE PROJECT MODULE
8. THE ﬁEFﬁECT MODULE

9. THE COMPOSE MODULE

14
16
18
23
26

28

12
13
15

17

19

19

20

a1

22

- PACE 3

I. INTRODUCTION

The system. presentéd iﬁ this paper iS'capabie of producing sHade_d, orthographic :
prbj.ections ol terrain using :'a Data Flow Co_m.puter.. Its purpose is to provide video input |
to a flight si.mula"t_or. This requires that pictures be produced in real time (i.e. less 'thal;
0.5 ;econ.ds per [rame, anyway). Current implementatioﬁs ijn LISP on a conventio.'nal'
computer require ‘at least one minute her.frame. Thu;s‘t'here is a genuine n_eed' .té
overcome this time Barrier.- N |

The paper [irst describes the structure of the.a[gbrithm. This is followed by a brief
description of the structure of the Data Flow Computer o'r.\ whicﬁ the prograin is f.o run.
Finé‘lly, the actual Data Flow Progr:.;m'is presented along wuh an analysis of its

performance.

II. DETAILS OF THE PROBLEM

INPUT

The input to the algorithm is a two-dimensional array of elevations of 'teirairi (called -
a ngi"ta_l 'l;e_rr'ain _Modél,'gbbréviated DTM). These are obtained a priori by ihterpolat'ion.'q.f- .
an ordinary contour map. Each:DTM'co,ntain_s ahout 256 x 2':5'6' grid' points. The

conventional algorithm uses this data in the_ form of a two-dimensional LISP array. For a

‘PAGE 4
- Data Flow implementaion, the DTM would ‘be stored as a list of lists where each list is

. converted to a stream corresponding to a single column in the DTM. This repi'e.s'ent-ation :

- will permit us to exploit some of the inherent parallelism as will be seen later.

OUTPUT

In the conventional algorithm the 'outputuis a Mo—dimen'sional LISP array of in’t_ensity '
values at each point (pixel) in the image. These values can be displayed by a CRT or other
means to gerierate 1he'pi_ctqre. The Data Flow Machine \;/oula'generate a set of streams
where each stream is the sequence of inténsity 'yalues for -ea_ch pixel in 'a'give_n cd_lumn of

- the image 'array; The streams are then converted to .a.n;ay' form for iﬁsplay. .

'THE ALGORITHM

' For purposes of sirﬁpli’city in explanation, we will restrict attention to viewpoints
with only qn‘e. deg-ljee of freedom--namely, fixing the rotation angle andl varying the angle
of elevation.. If the coordin;t.es of the DTM are x and y, the view direction will be
perpendi_cuiar to"the X axis and in the direction of 'y.

" The mapping from input to output is accomplished by two. i‘ndepende'nt calculations:

1) Each surface point (x, y, z) is mapped into a unique .-image point (i; j) using

PAGCE 5
the appropriate tr'ansfor'maf.ion and projection. Details are omitted here in
order to focus attention on data flow issues [Strat, 1978].

2) The intensity:that should be displayed at that point is caleulated. It can '

be shown that the intensity is a function of the view direction, the sun’s
direction, and the surface normal at the point. :

COMPLICATIONS

The algorithm is c_omplicatéd by the age~old'Hidde-n Line Problem. That is, some terrain
poi__nté_do not affect any image point. since they are obscured by mountains or hills closer to the
-.viewe.»r. Hi_dden-h‘n,e elimination is accompli#hed_ essentially for free by a sneaky trick. We
simply..generate the picture from the foregrounq toward the horizon. Whenever we encounter a
surface point that wants to be displayed at an image point t.hat_ has already been displayed, we
-'c_onélude (correctly) that it is a point on the surface \;vhich is blocked from view by a hiil c\oser.
to the viewer and ignore it. |

Another complication is the fact that proie.ct'in'g all points in the DTM into.points in the
image does not guar.ar'\tee that all i_magé poinis- will be found. Thus we will have a _pi'c'ture with
--holég". - The remedy is to interpolate in_tensity'values for the missed points. The interpolation
ptépose'ﬂ .for the data flow implementation is §imple but by no ﬁeam optimal (no-r'.-.correct).' The
holes are §imp|y filled by repetition of: the intensity value directly above each hole. In practice,

the results are close enough to the correct values so that the resulting picture appears correct.

PAGE 6

- IIl. HIGH-LEVEL IMPLEMENTATION

~ PARALLELISM
Exactly whatlpar,allelism is there?
1) Processing of each column in the DTM can be performed independently.

2) Calculation of the projection of the surface point onto the image plane is
-independent of the calculation of the intensity to be displayed there.

3) Calculation of the projection and intensity of each indiViduai point is
independent of every other projection and intensity calculation.

' T‘ype 3 parallelism is not exploited in the data flow implementation presented here because the

'speédu‘p afforded by 1 and 2 alone is sufficient fof ._the problem at hand. (See Section VI -

Performance Analysis). Adding type 3 parallelism wou_ld put storage r__equirements out of reach.

THE COMPUTATION

Let us focus attention on the processing of each col'umn_._. Thus we have 'th'é xth column of
the bTM which, when transformed, will yield the ith column of the i'énag'e. Note that the lengths
of tﬁesé two columns are not equal in g(;n_eral. We will ;epres.ent the xth colﬁmn-of_ the DTM as
a stream 'called'.TERR-_l.\lN. Then the projection is accomplished by a fupctional. m_a|.:ping' of the
elements of TERRA-I‘N into a stream ca“ed J such that the kth element of] is the value of j at

which the ktlrelement of TERRAIN is to be displayed.

PACE 1

Simultaneously, the intensity can be calculated for each element in TERRAIN. To simplify
this calculation we will assume the surface normal to have se;n precomputéd for every point in
. the DTM The s.urfgc'e normal at a point can be represer;t'ed. as an ordered pair (p, q) where p is

._ the partial derivative of z with respect to x and q is the partial derivative of z with l;e.spe(:t to
y. Then the 'surf;ce ﬁormals of the points in a column of ';he DTM can be reﬁresented by two
streams P and Q. The intensities can be represented as a-stream -called lN..TENSlTY célculated'as
~ a lunction of .P, Q, and the sun and eye locations. fo-furthgr simplify things, we will assume the
surface. to have a special reflectance property known as 'lamberti;n, Lambertian surfaces reflect .
lig'ht:_ in a \'ovay' that.is independent of the v-ié;wihg direction. Thus we can eliminate the eye

“location from our calculation of the intensity to be displayed.

" PAGE 8

THE P._ROC'RAM |

This sectlion |;resents the algorithm in an ung_locuﬁented language that was: developed fpr
data flow systems, The main procedure is called SHADE. XHI and YHI are the dimensions of the
- DTM. SINEYE and COSEYE define the view angle, such that if'Gvis_the angle of elevation,

SINEYE=sin(©) and COSEYE=cos(0).

SHADE: procedure (DTM, P, Q:arraylarray{real]], XHI, YHL:int,

XSUN, YSUN, ZSUN, SINEYE, COSEYE:real

returns array[array[int]]);

return forall X:int in (1, XHI)

construct IMAGE:M[M[L@_]]

where IMACELX] := COMPOSE(|
PROJECT(DTMIX], YH), SINEYE COSEYE),
REFLECT(PLX], QIX], Y_lir,__ XSUN, YSUN, '.ZSUN)); ‘

end SHADE;

PACE 9

' COMPOSEI is designed to handle hidden line (point) elimination' and iriterpolation. Thé array,
“ INTENSITY, supplies the candidate values to be placed in the image. COMPOSE eliminates hidden
_pt.iints; by skipping values from INTENSITY and interpolates (fills the holes) by repeating

INTENSITY values according to the information in J.

- COMPOSE: procedure (J:arrayfint], INTENSITY:arrayfint] returns larray['i_lt_]);

for Y:int := 1, T:int := 0, lMAGE:a-rray[i_n_t‘._]:=éme . %T is threshold
| i JIY] > T then iter Y, T+1, appendIMAGE, INTENSITY[Y)
- else iter Y+1, T, IMACE; %Skip hidden point
return IMACE;

end COMPOSE;

PACE 10
The procedures PROJECT and REFLECT accomplish what their names imply. PROJECT

provides the pixel'in' the image to which each point in thé DTM map_S. REFLECT gives the

intensity value to be displayed at that pixel based on the lambertian reflectance function.

PROJECT: procedure (TERRAIN: array [reall, YHint, SINEYE, COSEYE:real
returns array[int]);
return forall Yiint in (1, YHI)

construci Jaarraylint]

where J[Y] := fix(COSEYE % TERRAIN[Y] + SINEYE x float(Y));

end PROJECT;

REFLECT: procedure (P, Q:ar'l;a){[rea-l]_, YHIint, XSUN, YSUN, ZSUN: real
| returns arrayfint]);
return foralt Y:int in (1, YHI) -
co_nstrluct INTENSITY:arraylint] o
M INTENSITY(Y] := fix(256.8 % DOT(XSUN, YSUN, ZSUN
| : NORMA-LIZE(P.[Y], Qly], 1.05));

- end REFLECT;

PACE 11

XSUN, YSUN, and ZSUN define the direction to the sun and are assumed to be.normalized. DOT
and NORMALIZE are functions which compute the dot product and normalization of ordered

triples.

. DOT: procedure (A, B, G, D, E, F:real returns real);

return (AXD-+ BXE + CxF);

end DOT;

NORMALIZE; procedure (A, B:real returns real,real,real);
D:real = sqri(AXA + BxB + 19); |
"rét_urn (A/D), (B/D), (Lo/ D);:

end NORMALIZE;

Figures 1 and 2 contain a schematic of the organization of'ihe Data Flow algorli_th_m. They

illustrate the concurrency that is being used in the proposed implementation.

PACGE 12

MODULAR ORGANIZATION OF THE ALGORITHM

ZSUN ererffomimmentiin

: SIN
6t EYE

DR e %9%

P . Q Z
REFLECT PROJECT
INTENSITY J
COMPOSE

IMAGE

Figure 1

HEIRARCHICAL DECOMPOSITION | PACE 13

P Q 2
I e —
NORNRLTER | counTER b—mge| FROJEC= .
| T - | TION SIN
{1 N | <1 EYE
N ; PROJECT
YSUN -} DOT
ZSUN odogd |
J
| REFLECT
1

INTENSITY _ - ‘
HIDDEN LINE REMOVER'

praw KJ—— &

INTERPOLATOR

- COMPOSE

IMAGE

Figure 2

PAGE 14

IV. THE DATA FLOW COMPUTER

The Dat,'a_ Flow Prograﬁ\ described in the previoys section is designed to run 6n a Leirei Il
DQ}’a FI_QW Compu-tler. T.his machine, which appears in Figure 3, provide; support for data
s_tlju'c;u_re operations in addition to the basic_-scalay operations and control mechanisms.

Each Instruction Cell in the lnstructipn Memory holds one inStruction cérreép,@n._ding to
one actor in a datg fk.»w program. Oncl:e' an Instruction Cell has. :gceiv‘e\df all 'reéui'red_operanil
valuéﬁ and acknowledge siénals' from the Distribution Network, tl.m'ei Cell is con§id§red:t6 be
enabled and sends its contents in the form of an operation pack_eg through the. A:rbitr;atis-o'n_
Net\vo-rk to the a_pp'-r'op.riate Processor. The resuit packet’ ﬁrodu‘céd by the 'P-roc_es.sorl is
~ transmitted ‘through the Distribution Network to the Instruction Cells whi'c.h_ require it as an
' operand, and acknowledgé sigﬁals.a're s'ent.t'o.control t’h; enabling of cells... Even ihﬁugﬁ rﬁu_ghly
.20"micr_os,ec<_>nd_s may be requjred-,for an instruction _tc; be engbl’e_d, sent to the Processing-S.et':t;io'n,.
'éXecuted', and the results transmitted béck lo.other Instruction éells, the computer is capable of
high performance because a large npmbér ‘of instructions may be in various ls'tag.es ol"executi_o"n

simultaneously [Dennis and Weng, 1977},

Processing Section , ’_ - PAGE 15

{ Y
S— Processin —
[Unit h
_ R ,
A
.
Processin
r- Unit ’)
.)
result opetation
packets packets
, , Instruction
i Memory :
_ Instructi
5 ' - Cell »
i
Pistribution . Arbitration
[~ '~ Network . Network ‘]
Co Tnstructidn '
A - ™ Cell > |
") :

result » operation
packets _ Co packets

. . 1 ’ . .
Structure ' J

L Processor na

Fiqure 3. The Data.Flow Computer

from Dennis, Misunas and Leung
- page 19

- PACE 16

V. THE STRUCTURE PROCESSOR

The Structure Procéssor_ is the unit that separates the Level I from the Level Il Data Flow
Computer. Figure 4 show.s the organization .of the Stl;uctur.e. Procgssqr that is assumed in thi§ |
p.aper.- _lt cIOnsis_ts,ol' 3 Paqkei Memory System..and three units—-the Interpret, Queu-;, and
Transmit units. |

lT'he lPack,et N_Iemory'- holds repre'sentati;njs of data str}ictures and is'res-ponsislé for
p_row)idin_g the means for 'storing and accessing their components, and for garbage collection. It
associates a unique identifier wiih' each structure thatlserves to fepreéent that structure in all
units outside the Structure Processor. |

Thg function of the Structure Controller is to impl_emént the data structure,opefatiéns. |
Thére are three legal _operation'packets-that it ma.y receive-~create, select, and .append; Thg
_ln"terpr'et unit interprets these packets prod'ucing sequences of commands that it sends to t‘_hé
Packet Memory System. The Queue is u;.e_d to sto-re select pa"c_kets' whiie they await their
values to ‘be retrieved from memory. Result and ;ck-n_owledge packets are generated by _tﬁe
Transmit Unit from entries containing 'r.etrieved values as they _ne;ch the end of the Quéué. _
These packets are routed through the Distribution Network to Instruction Cells as called for by
the instructions in operation packets. The Queue is necessa'r-'y to assure that result p.ack_et-s' éfe
lse-h_'t out in the same order in which their associa_té'd operation packets arrived. Otherwise the
_ c.omp‘one’ht's of the arrays would be incorrectly inde.xed,-and the. program woqld not be

determinate [Dennis and Weng, 1977].

operation

packets

;

Ihterpret'

-déstination packets

Transmit

result
—% packets

W—— Queue e =
x §
uid command retrieval
packets packets packets
|
ara cmd rtr

Packet Memory System

Figure 4. The Structure Processor

from Dennis and Weng, page 8

LT 30Vd

PACE 18

- VI. THE DATA FLOW GRAPH

In order to run on a Data Flow Computer, a high-level program such as the one presented

(in Sectlon lll must be translated to a machine-executable data ﬂow program. ln _practlce, a

translation | prog_ram [Dennis, Mlsunae and Leung, p- 3] would do_ this automatically but such a

nrogram has not yet been written. This seetion shows the dat_a flon(version of _the 'aIgorithm as
a Data Flow Graph. Although this graph is unsafe; it is Ie'ft that way in the__ interest of clarity.

| Tne dET module is used to convert the arrays stored in memory to streams which can be

‘operated upon. CET is easily implemented since all values in the arrays are used in order. ‘Its.
bata. Flow Graph appears in Figure 5. Figure 6 is ‘the PUT ‘module .wnich_receives elements from

' COMPOSE in the form of a stream and stores them in an array in the Structure Memory Note

that each column requures three GET’s (for DTM, P and Q) and one PUT (for IMAGE).

The Data Flow Graphs for PROJECT and -BEFLECT are shown in Figures 7 and .8
respeetively: C_OMPOS'E appears in Figure 9. The stream J is used to decide which values of
intensity to pass on to _IM'AC,'E'andﬁ whicn to gebble up b)‘r comparing J to the internally s‘_tored
thresnold, T. At any point in the computation, T is the highest value of] received so far.

" The entire program consists of a copy of each of tliese. modules for every column to be

processed.. Th’_e outputs of IMAGE from each column form the picture when displayed tog_ether'.

IMAGE: stream

stream of reals

Figure 5. THE GET MODULE -

-

Figure 6. THE PUT MODULE

- 6T A0Vd

PAGE 20

DATA_FLOW_GRAPH OF THE PROJECT MODULE

J

dots indicate initial token placements.

Fiqure 7.

‘ ‘ PAGE 21

sle

DATA FLOW_GRAPH_OF

THE REFLECT MODULE °@
: Figure 8

INTENSITY

INTENSITY

IMAGE

false

TO ALL
CONTROL
INPUTS

DATA FLOW GRAPH OF THE COMPOSE MODULE

FIGURE 9.

%% A0Vd

PACE 23

VII PERFORMANCE ANALYSIS

The goal of this sect.ion is to determine how much stora-ge'is f_equil"ed and at what rate
~ pictures can be drawn. For purposes of discussion, we will assume that. the dﬁnensi'ons of the

Digital Te_r_rain Model are 500 x 500. Thus 25,000 words must be stored for the DTM |n the
Str;Jcl.ure_l Mémory. The arrays P and .Q which give the surface normal at each point are the
" same size as the DTM and require sto.ragé of another 50,000_ u‘r‘crds. Th__e‘ IMAG_E array has the
same width as the DTM but the h‘eight is dependent on the view angle. The largest picture is
"pr,oduced ‘when the view angle is perpendicular to the surface and has_ dimensions equil to the
N DTM. -Ther;f oré; the Structure Memory must hold .a total of 100,000 words. |

The éhart in Figure 10 shows the number of actors in each module of the comphta’tioh.

Since the columns of-t.he DTM are proce;sed concurrently, the're. mu'si be a copy of -eai:_h i'nodulé
_for each of t.he 500 coiumns. These are analogous to the' 'but,t.erfli_es of the FFT Coﬁpputatibn '
[Dennis, Misunas and Le-u-ng, 1977). Since 42 lnstruc;tion Cells. are reﬁuired for each cbl'umn,' 21,000_.
. Instruction C'eils are required overall. | | |
NoQ consider execution time. For each colump, the: computation requires pro;essinﬁ 6000
" multiplications or-. divisions; 4500 addition§ or subtractions; 8500 miscellangous bperations; and
- 2000 data ,strubtbre operations. For the entire image then, 3 miHion‘multipli'cation_s or 'd!visiqns;'
2.25 additions or subtractions;. 4.25 mi:llion miscellaneous operations; and 1 mill.i§n data structure .

. operations are needed. If the Data Flow -Cc':mﬁuter'is to'complete this pr’oi:eséing_ in 0.1 seconds,

PAGE 24

t_h,el's_calar processors must be able to handle operation packets at thg- rate of 130 MHz and the
Structure Processor.must. be capable of handling data structure operations at 10 MHz. These
-ra.te's may 'b'e.achieved by using many processors ;md's_tructuring_ the Arbitration and Distrif,utiqn
Networks for concurrent transmis.sion of many packets. ‘For i'ns'_tance, if a multiplier can process.
packets at a throughput of 400 ns [Dennis and Weng 7;7], then I can pro_cess-‘ my 3 r'n'illior.\'
mgltiplicationé in 0.1 seconds using 12 multipliers, assuming I can keep ail the mult_ipliei’é busy all
the time. While this may in fact not be the case, the structure of the algbrilhm leads me to
believe tHa@ I can come pretiy clolSe.. At any réte, the addition of a few more multipliers ought
to relieve any temporary backlogs of demand for multipliers. With nine 400 ns adders and a
cbmp_'os'iti'on_of about sixteen of the 200 ns miscellaneous .pr'ocessérs_,- l-shoﬁld be ahle to produce
a picture in 0.1 seconds. |
Switching attention to the Structﬁre Processor, we see that the memory access time for
retri_ev.a_l requests must not be so Iarge'that.the values _[rc;_m-th,e ar.rays are not available wﬁen
(hey’ are needed. Since a picture is o iJ'e -completed only once in 0.1 seconds, this requirement is
easliy ﬁe_t. However, the Queue .module éf the Structure._'Controller musi. be large enough to
.hqld all retrieval requests which have not been completed by th-el"Pack:et Me'mory..l For the
.arfival rate of 10 MHz, even a one millisecond retrieval délay-ngcessitates a capacity of l10,0:60'
entries in the dueue. Implementing the Packet Memory, usi;ng-'storage devices which have ér.| .
access time under a millisecond would decrease the required size of the Queue propbrtiqhally. B

- To summarize, a 500 x 500 pixel image can be computed from a 500 x 500 Digital Terrain

PACE 25

- Model in 0.1 seconds using 28,000 Instruction Gells, about 40 Scilar Processors, and a 100K WOfd

St_i'ucture Memory.

TYPES OF ACTORS

w/: +/- MISC_ _ DATA | INSTR|

" sCALAR STRUCTURE | CELLS
GET P e 1 2 1 4
GET O e 1 2 I
GET DM 8 1 2 1 4

PROJECT 2 .2 1 8 s |

| reriect | 18 2 1 9 13
cowose .| e 1 7 8 8
PUT IMAGE e 1 2 1 4
TOTAL 1z 8 o 4 | e

Figure 10

PAGE 26

VIII, CONCLUSION

. In this paper | have explainéd ‘the details‘ of an algorithm for producing shaded éblique
viewls of terrain using a Data Flow Computer. Reca_lll' that thé'se'images are to be used as visual
input to 5 flight si'mulator which is why they have t§ be produced quickly. As shown in the
'prev.ious section, the images. could 'be produced within 0.1 seconds on a re;songbly sized Level Il
Datg Flow Computer.. ‘However, several issues were glosseéd over in that discussion.

Is it reasonable to assume that the processors could be k'ep_t.busy? Any idle time in any
pro_(:essor.é'an directly cause the entire alg§rithm ta run much more sfowly due to the data
-dependgncies between actors. In order to keep the: processors ﬁus_y, there must be. ehou_gh
lhstructio_n Cells gnable’d at any given time to co‘ntinuall_y feed the -proc-essor_s.. B.ecause. there are
500 computations being performed independently (there is no-‘da'ta dependency between columns)
and only 12 multipliers in the proposed system, it seems reasonable to assume that there will
| a.lwa_ys. be enough Multip_l.y Instructions enabled assuming the program is live and there '_a_re' no
backlogs elsewhere. .

Can the program execuf,iOn. ever become deadlocked? In o‘rt!er for an Instruction Cell ‘to
become enabled, it must receive all its _oper;nds from resuit packets-thr_ough the _Distrib'uﬁ_on
Network. If the Distribution Network ever becomes ciéggéd, the enabling,of Cells will be
inhibited and the entire operation might grind to a halt. T‘hus.i.t is necessary to ‘e.llim'inate this

potential bottleneck .by designing the Distribution Network appropriately.

PACE 27

Is the Struet'ure Pro.‘;essor fast enough? The power of the Structure Proc_éssor lies in its
a_bili(y to retrieve data concurrently .yet. return results.--.in. the correct sequence. Thus even a
Structure Processor with a sl§w memory can have a high throughput because of concurrent .
operations on th.at memory. | |

To be used as input to a flight simulator, pictuf,es must be produced every 0.1 seconds, not
:jUst one picture in 0.1 seconds. Is this possible? Thankfully, it is .n'ot necessary to reload the
l.nst._ruc'tio'n' Cells since- the prbéram never changes. However, one must be careful to design the
s'ys.'t'em such that consecutive executions are possible. (This was not done in this paper.) |

Baﬁed on all evident.:e. l’ve'.encounte_red, I conclude that producing shaded i_maée'{_'ol' _t'errain.
QSing a Data Flow Computer is feasible for providing visual input to a flight sim,ulatdr..

In an actual implementation, I visualize using a huge DTM (maybe 10,000 x 10,0007) and
pfodt:cing an image based on a small portion of it (say, 200 X 200). Then any image would be
speciflied by the view angle (kEYE, YEYE, ZEYE) and t.he.r_egion' (XLO, XHI, YLO, YHD) to be
displayed according to the position and course of the sirﬁulated aircraft. Addi.tionally, there.

~would be a special procedure w_h'ich "p.aints" on the irﬁage features such as run'ways,‘ rivers’f, and

highways. The end product would be a motion picture of a some’what-natu-ral~looking scene.

PACE 28

IX. BIBLIOGRAPHY

Ackerman, W.B,, "Interconnections of Determinate Systems") Computation Structures Note 31
Laboratory for Computer Science, MIT July 1971.

Ackerman, WB "A Structure Memory l'or Data Flow Computers" MIT/LCS/TR-186, August
1977.

Dennis, J.B., "First Version of a Data Flow Procedure Language", MIT/LCS/TM-61, May 1975.

Dennis, J.B., "A Language Design for Structured Concurrency", Computation Structures Note 28-
1, Laboratory for Computer Science, M.LT., February 1977.

Dennis, J.B., Misunas, D.P,, Leung, KC., "A Highly Parallel Processor Based on the Data Flow
Concept"”, Computation Structures Croup Memo 134, Laboratory for -Computer Science, MIT,
January 1977 :

Dennis, J.B., Weng, K.S., "Application of Data Flow Computation to the Weather Problem”,
Computatlon Structures Croup Memo 147, Laboratory for Comput.er Sclence, MIT, May 1971..

Misunas, D.P., "A Computer Architecture for Data Flow Processor”, S.M. Thesis, M.LT.
Department of Electrical Engineering and Computer Science. :

Strat, T.M., "Shaded Perspective lmages of Terrain", MIT Artificial lntelllgence Memo 463, March, '
1978.

Weng, KS.; "Stream Oriented Computatlon in Recursive Data Flow Schemas", MlT/ LCS/ TM-68,
October 19'75

