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I. INTRODUCTION

The system presented in this paper is capable of producing shaded, orthographic

projections of terrain using a Data Flow Computer. Its purpose is to provide video input

to a flight simulator. This requires that pictures be produced in real time (i.e. less than

0.5 seconds per frame, anyway). Current implementations in LISP on a conventional

computer require at least one minute per frame. Thus there is a genuine need to

overcome this time barrier.

The paper first describes the structure of the.algorithm. This is followed by a brief

description of the structure of the Data Flow Computer on which the program is to run.

Finally, the actual Data Flow Program'is presented along with an analysis of its

performance.

II. DETAILS OF THE PROBLEM

INPUT

The input to the algorithm is a two-dimensional array of elevations of terrain (called

a Digital Terrain Model, abbreviated DTM). These.are obtained a priori by interpolation of

an ordinary contour map. Each DTM'contains about 256 x 256 grid points. The

conventional algorithm uses this data in the form of a two-dimensional LISP array. For a
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Data Flow implementaion, the DTM would'be stored as a list of lists where each list is

converted to a stream corresponding to a single column in. the DTM. This representation

will permit us to exploit some of the inherent parallelism as will be seen later.

OUTPUT

In the conventional algorithm the outputis a two-dimensional LISP array of intensity

values at each point (pixel) in the image. These values can be displayed by a CRT or other

means to generate the picture. The Data Flow Machine would generate a set of streams

where each stream is the sequence of intensity values for each pixel in a given column of

the image array. The streams are then converted to array form for display.

THE ALGORITHM

For purposes of simplicity in explanation, we. will restrict attention to viewpoints

with only one degree of freedom--namely, fixing the rotation angle and varying the angle

of elevation.. If the coordinates of the DTM are x and y, the view direction will be

perpendicular to the x axis and in the direction of y.

The mapping from input to output is accomplished by two.independent calculations:

1) Each surface point (x, y, z) is mapped into a unique image point (i, j) using
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the appropriate transformation and projection. Details .are omitted. here in
order to focus attention on data flow issues [Strat,'19781.

2) The intensity that should be displayed at that point is calculated. It can
be shown that the intensity is a function of the view direction, the sun's
direction, and the surface normal at the point.

COMPLICATIONS

The algorithm is complicated by the age-old Hidden Line Problem. That is, some terrain

points do not affect any image point, since they are- obscured by mountains or hills closer to the

viewer. Hidden-line elimination is accomplished essentially for free by a sneaky trick. We

simply generate the picture from the foreground toward the horizon. Whenever we encounter a

surface point that wants to be displayed at an image point that has already been displayed, we

conclude (correctly) that it is a point on the surface which is blocked from view by a hill closer

to -the viewer and ignore it.

Another complication is the fact that projecting all points in the DTM into points in'the

image does not guarantee that all image points will be found. Thus we will have a picture with

"holes". The remedy is to interpolate intensity values for the missed points. The interpolation

proposed for the data flow implementation is simple but by no means optimal (nor correct). The

holes are simply filled by repetition of the intensity value directly above each hole. In practice,

the results are close enough to the correct values so that the resulting picture appears correct.
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III. HIGH-LEVEL IMPLEMENTATION

PARALLELISM

Exactly what parallelism is there?

1) Processing of each column in the DTM can be performed independently.

2) Calculation of the projection of the surface point onto the image plane is
independent of the calculation of the intensity to be displayed there.

3) Calculation of the projection and intensity of each individual point is
independent of every other projection and intensity calculation.

Type 3 parallelism is not exploited in. the data flow implementation presented here because the

speedup afforded by 1 and 2 alone is sufficient fof the problem at hand. (See Section VI-

Performance Analysis). Adding type 3 parallelism would put storage requirements out of reach.

THE COMPUTATION

Let us focus attention on the processing of each column. Thus we have the xth column of

:the DTM which, when transformed, will yield the ith column of the image. Note that the lengths

of these two columns are not equal in general. We will represent the xth column of the DTM as

a stream called TERRAIN. Then the projection is accomplished by a functional mapping of the

elements of TERRAIN into a stream called J such that the kth element of J is the value .of j at

which the kth-element of TERRAIN is to be displayed.
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Simultaneously, the intensity can be calculated for each element in TERRAIN. To simplify

this calculation we will assume the surface normal to have been precomputed for every point in

the DTM. The surface normal at a point can be represented as an ordered pair (p, q) where p is

the partial derivative of z with respect to x and q is the' partial.derivative of z with respect to

y. Then the surface normals of the points in a column of the DTM can be represented by two

streams P and Q. The intensities can be represented as a stream called INTENSITY calculated as

a function of P, Q, and the sun and eye locations. To further.simplify things, we will assume the

surfaceto have a special reflectance property known as lambertian. Lambertian surfaces reflect

light in a way that is independent of the viewing direction. Thus we can eliminate the eye

location from our calculation of the intensity to be'displayed.
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THE PROGRAM

This section presents the algorithm in an undocumented language that was developed for

data flow systems, The main procedure is called SHADE. XHI and YHI are the dimensions of the

DTM. SINEYE and COSEYE define the view angle, such that if 0 is the angle of elevation,

SINEYE=sin(e) and COSEYE=cos(0).

SHADE: procedure (DTM, P, Q:array[arrayreal]], XHI, YHI:int,

XSUN, YSUN, ZSUN, SINEYE, COSEYE:real

returns array[array[int]]);

return forall X:int in (1, XHI)

construct IMAGE:array[array[int]]

where IMAGE[X] :- COMPOSE(

PROJECT(DTM[X], YHI, SINEYE COSEYE),

REFLECT(P[X], Q[X], YHI, XSUN, YSUN, ZSUN));

end SHADE;
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COMPOSE is designed to handle hidden line (point) elimination and in'terpolation. The array,

INTENSITY, supplies the candidate values to be placed in the image. COMPOSE eliminates hidden

points by skipping values from INTENSITY and interp.oltes (fills the holes) by repeating

INTENSITY values according to the information in J.

COMPOSE: procedure (J:array[int), INTENSITY:array[int ] returns array[int]);

for Y:int := 1, T:int :0 , IMACE:arra [int]:iempty %T is threshold

if J[Y] > T then iter Y, T+1, append(IMAGE, INTENSITY(Y])

else iter Y+1, T, IMAGE; %Skip hidden point

return IMAGE;

end COMPOSE;
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The procedures PROJECT and REFLECT .accomplish what their names imply. PROJECT

provides the pixel in the image to which each point in the DTM maps. REFLECT gives the

intensity value to be displayed at that pixel based on the lambertian reflectance function.

PROJECT: procedure (TERRAIN: array [real], YHljnt, SINEYE, COSEYE:real

returns array[int]);

return forall Y:int in (1, YHI)

construct J:array[int]

where J[Y] : fix(COSEYE * TERRAIN[Y] + SINEYE x float(Y));

end PROJECT;

REFLECT: procedure (P, Q:array[real), YHI:int, XSUN, Y5UN, ZSUN: real

returns array[int]);

return forall Y:int in (1, YHI) '

construct INTENSITY:array[int]

where INTENSITY[Y] := fix(256.0 . DOT(XSUN, YSUN, ZSUN

NORMALIZE(P[YI, Q[Y], 1.0)));

end REFLECT;
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XSUN, YSUN, and ZSUN define the direction to the sun and are assumed to be normalized. DOT

and NORMALIZE are functions which compute the dot product and normalization of ordered

triples.

DOT: procedure (A, B, C, D, E, F:real returns real);

return (A*D + B*E + C*F);

end DOT;

NORMALIZE; procedure (A, B:real returns realrealreal);

D:real :* sqrt(A*A + B*B + 1.0);

return (A/D), (B/D), (1.0/D);:

end NORMALIZE;

Figures 1 and 2 contain a schematic of the organization of the Data Flow algorithm. They

illustrate the concurrency that is being used in the proposed implementation.
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MODULAR ORGANIZATION OF THE ALGORITHM
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IV. THE DATA .FLOW COMPUTER

The Data Flow Program described in the previous section is designed to run on a Level 11

Data Flow Computer. This machine, which appears in Figure 3, provides support for data

structure operations in addition to the basic scalar operations and control mechanisms.

Each Instruction Cell in the Instruction Memory holds one instruction corresponding to

one actor in a data flow program. Once an Instruction Cell has received, all required operand

values and acknowledge signals from the Distribution Network, the Cell is considered to be

enabled and sends its contents in the form of. an operation packet through the. Arbitration

Network to the appropriate Processor. The result packet' produced by the Processor is

transmitted through the Distribution Network to the Instruction Cells which require it as an

operand, and acknowledge signals are sent to control the enabling of cells. Even though roughly

20 microseconds may be required for an instruction to be enabled, sent to the Processing Section,

executed, and the results transmitted back to other Instruction Cells, the computer is capable of

high performance because a large number of instructions may be in various stages of execution

simultaneously [Dennis and Weng, 19771].
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V. THE STRUCTURE PROCESSOR

The Structure Processor is the unit that separates the Level I. from the Level II Data Flow

Computer. Figure 4 shows the organization of the Structure. Processor that is assumed in this

paper. It consists of a Packet Memory System and three units--the Interpret, Queue, and

Transmit units.

The Packet Memory holds representations of data structures and is responsible for

providing the means for storing and accessing their components, and for garbage collection. It

associates a unique identifier with each structure that serves to represent that structure in all

units outside the Structure Processor.

The function of the Structure Controller is to implement the data structure operations.

There are three legal operation packets that it may receive--create, select, and append. The

Interpret unit interprets these packets producing sequences of commands that it sends to the

Packet Memory System. The Queue is used to store select packets while they await their

values to be retrieved from memory. Result and acknowledge packets.are generated by the

Transmit Unit from entries containing retrieved values as they reach the end of the Queue.

These packets are routed through the Distribution Network to.lnstruction Cells as called for by

the instructions in operation packets. The Queue is necessary t9 assure. that result packets are

sent out in the same order in which their associated operation packets arrived. Otherwise the

components of the arrays would be incorrectly indexed, and the. program would not be

determinate [Dennis and Weng, 19771
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VI. THE DATA FLOW GRAPH

In order to run on a Data Flow Computer, a high-level program such as the one presented

in Section II must be translated to a machine-executable data flow program. In practice, a

translation program [Dennis, Misunas and Leung, p. 3] would do. this automatically but such a

program has not yet been written. This section shows the data flow version of the algorithm as

a Data Flow Graph. Although this graph is unsafe, it is left that way in the interest of clarity.

The GET module is used to convert the arrays stored in memory to streams which can be

operated upon. GET is easily implemented since all values in the arrays are used in order. Its

Data Flow Graph appears in Figure S. Figure 6 is'the PUT module which. receives elements from

COMPOSE in the form of a stream and stores them in an' array in.the Structure Memory. Note

that each column requires three GET's (for DTM, P, and Q) and one PUT (for IMAGE).

The Data Flow Graphs for PROJECT and -REFLECT are shown in Figures 7 and 8

respectively. COMPOSE appears in Figure 9. The stream J is used to decide which values of

intensity to pass on to IMAGE and which to gobble up by comparing J to the internally stored

threshold, T. At any point in the computation, T is the highest value of J received so far.

The entire program consists of a copy of each of these modules for every column 'to be

processed. The outputs of IMAGE from each column form the pi.cture when displayed together.



IMAGE: stream

stream of reals

Fiqure 5 . THE GET MODULE Fiqure 6e THE PUT MODULE

I------~----- ---- ---- ·



PAGE 20

DATA FLOW GRAPH OF THE PROJECT MODULE

dots indicate initial token placements.

Figure 7.
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VII PERFORMANCE ANALYSIS

The goal of this section is to determine how much storage is required and at what rate

pictures can be drawn. For purposes of discussion, we will assume that the dimensions of the

Digital Terrain Model are 500 x 500. Thus 25,080 words must be stored for the DTM in the

Structure Memory. The arrays P and Q which give the surface normal at each point are the

same size as the DTM and require storage of another 50,000 words. The IMAGE array has the

same width as 'the DTM but the height is dependent on the view angle. The largest picture is

produced 'when the view angle is perpendicular to the surface and has dimensions equal to the

DTM. Therefore, the Structure Memory must hold a total of 180,800 words.

The chart in Figure 10 shows the number. of actors in each module of the computation.

Since the columns of the .DTM are processed concurrently, there must be a copy of each module

for each of the 500 columns. These are analogous to the 'butterflies of the FFT Computation

.[Dennis, Misunas and Leung, 19771 Since 42 Instruction Cells. are required for each column, 21,000

Instruction Cells are required overall.

Now consider execution time. For each colump, the computation requires processing 6880

multiplications or divisions; 4500 additions or subtractions; 8500 miscellaneous operations; and

2000 data structure operations. For the entire image then, 3 million multiplications or divisions;

2.25 additions or subtractions; 4.25 million miscellaneous operations; and I million data structure'

operations are needed. If the Data Flow Computer is to'complete this processing in 0.1 seconds,
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the scalar processors must be able to handle operation packets at the rate of 130 MHz and the

Structure Processor.must be capable of h.andling data structure operations at 10 MHz. These

-rates may lie achieved by using many processors and structuring the Arbitration and Distribution

Networks for concurrent transmission of many packets. 'For instance, if a multiplier can process

packets at a throughput of 400 ns [Dennis and Weng 77], then I can process my 3 million

multiplications in 0.1 seconds using 12 multipliers, assuming I can keep all the multipliers busy all

the time. While this may in fact not be the case, the structure of the algorithm leads me to

believe that I can come pretty close. At any rate, the addition of a .few more multipliers ought

to relieve any temporary backlogs of demand for multipliers. With nine 400 ns adders and a

composition of about sixteen of the 200 ns miscellaneous processors, I-should be able to produce

a picture in 0.1 seconds.

Switching attention to the Structure Processor, we see that the memory access time for

retrieval requests must not be so large that the values from-the arrays are not available when

they are needed. Since a picture is to be completed only once in 0.1 seconds, this requirement is

easliy met. However, the Queue module of the Structure Controller must be large enough .to

hold all retrieval requests which have not been completed by the Packet Memory. For the

arrival rate of 10 MHz, even a one millisecond retrieval delay necessitates a capacity of 10,000

entries in the Queue. Implementing the Packet Memory using'storage devices which have an

access time under a millisecond would decrease the required size of the Queue proportionally.

To summarize, a 500 x 500 pixel image can be computed from a 500 x 580 Digital Terrain
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Model in 0,1 seconds using 28,000 Instruction Cells, about 40 Scalar Processors, and a 100K word

Structure Memory.

TYPES OF ACTORS

,/" +/- MISC DATA INSTR
SCALAR STRUCTURE CELLS

GET P 0 1 2 1 4

GET Q 1 2 1 4

GET' DTM 0 1 2 1 4

PROJECT 2 2 1 0 5

REFLECT 10 -2 1 0 13

COMPOSE . 0. 1 7 0 8

PUT IMAGE 0 1 2 1 4

TOTAL 12 9 17 4 42

Figure 10
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VIII, CONCLUSION

In this paper I have explained the details of an algorithm for producing shaded oblique

views of terrain using a Data Flow Computer. Recall that these'images are to be used as visual

input to a flight simulator which is why they have to le produced quickly. As shown in the

previous section, the images could be produced within 0.1 seconds on a reasonably sized Level II

Data Flow Computer.. However, several issues were glossed over in that discussion.

Is it reasonable to assume that the processors could be kept busy? Any idle time in any

processor can directly cause the entire algorithm to run much more slowly due to the data

dependencies between actors. In order to keep the'processors busy, there must be. enough

Instruction Cells enabled at any given time to continually feed the processors. Because there are

500 computations being performed independently' (there is no data -dependency between columns)

and only 12 multipliers in the proposed system, it seems reasonable to assume that there will

always be enough Multiply Instructions enabled assuming the program is live and there are no

backlogs elsewhere..

Can the program execution ever become deadlocked? In order for an Instruction Cell to

become enabled, it must receive all its operands from result packets through the Distribution

Network. If the Distribution Network ever becomes clogged, the enabling,of Cells will be

inhibited and the entire operation might grind to a halt. Thus i.t is necessary to elimninate this

potential bottleneck by designing the Distribution Network appropriately.
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Is the Structure Processor fast enough? The power of the Structure Processor lies in its

ability to retrieve data concurrently yet return results-.in the correct sequence. Thus even a

Structure Processor with a slow memory can have a high throughput because of concurrent

operations on that memory.

To be used as input to a flight simulator, pictures must be produced every 0.1 seconds, not

just one picture in. 0.1 seconds. Is this possible? Thankfully, it is not necessary to reload the

Instruction Cells since the. program never changes. However, one must be careful to design the

system such that consecutive executions are possible. (This was not done in this paper.)

Based on all evidence I've encountered, I conclude that producing shaded images of terrain

using a Data FJow Computer is feasible for providing visual input to a flight simulator.

In an actual implementation, I visualize using' a huge DTM (maybe 10,000 x 10,000?) and

producing an image based on a small portion of it (say, 200 x 200). Then any image would be

specified by the view angle (XEYE, YEYE, ZEYE) and the region (XLO, XHI, YLO, YHI) to be

displayed according to the position and course of the simulated aircraft. Additionally, there

would be a special procedure which "paints" on the image features such as runways, rivers, and

highways. The end product would be a motion picture of a somewhat natural-looking scene.
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