
WORKING PAPER Ill

September 1975

Garbage Collection

in a

Very Large Address Space

by

Peter B. Bishop

Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract

The address space is broken into areas that can be garbage collected separately. An
area is analogous to a file on current systems. Each process has a local computation area for
its stack and temporary storage that is roughly analogous to a job core image. A mechanism
is introduced for maintaining lists of inter-area links, the key to separate garbage collection.
This mechanism is designed to be placed in hardware and does not create much overhead.
It could be used in a practical computer system that uses the same address space for all users
for the life of the system. It is necessary for the hardware to implement a reference count
scheme that is adequate for handling stack frames. The hardware also facilitates
implementation of protection by capabilities without the use of unique codes. This is due to
elimination of dangling references. Areas can be deleted without creating dangling
references.

This research was done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology and was supported by the Office of Naval Research under contract
number N00014-75-C-0522.

Working Papers are informal papers intended for internal use.



Very Large Address Space

Experience with the Multics system indicates that a large virtual address space makes
the system easier to program. The virtual address space allows multiprogramming to occur
with greater efficiency and also allows a program to be used with a wider range of
hardware configurations. A remaining problem to ease of use on Multics is the fact that
each process has a different address space and therefore cannot communicate pointers from
one process to another. If the system had a single address space for the life of the system
that would contain all direct access storage on the system, then pointers could be stored in
files or in inter-process communication areas and could easily be used by any process on the
system. This would make the system easier to program and would also markedly increase
the speed of certain wide classes of computations.

Fabry [6] has discussed the advantages of using absolute addresses in data bases and
has compared such a scheme with many other addressing schemes. Fabry suggests that
paging should be eliminated in favor of segmentation. This results in the operating system
being forced to do jobs that could be performed better by the user and his subsystem, such
as keeping track of the size of an object, garbage collection, and increasing locality of
reference. The approach taken here is to eliminate segmentation in favor of paging. This
results in a very large virtual memory that is surprisingly similar to conventional computers
except that the problems of relocation, inputloutput to disk, and storage overlays have been
eliminated. The problems of storage management, and allocation and freeing of storage
remain as do their traditional solutions [121 All the work done on locality of reference is
applicable to this kind of virtual memory [18].

Current Techniques

Unfortunately, garbage collection in a very large address space is a very difficult job.
At the present time, if a garbage collection is done, it must include the entire address space.
If the address space includes all the users and Is very large, then all user computations must
be suspended while the garbage collection runs. Since the address space is very large, the
garbage collection will take a long time. In addition, the garbage collector will probably
have a large working set, causing it to thrash and thereby make a big job even bigger.
This is unacceptable on any time-sharing system or any other system that has even modest
real-time requirements.

Some people have been hoping that a technique of garbage collection could be
developed that could be run at the same time as normal computation [22] [4]. Knuth [12]
indicates this is Minsky's idea (exercise 2.3.5-12). Then a separate processor could be devoted
solely to garbage collection. The problem with this approach is that this separate processor
would still be touching memory that is not used in the other executing processor; it would
have a large working set which would use up a fair amount of the high speed memory. If
the garbage collector thrashed, It would also clog the disk channels. On top of these



problems, there would be memory interference with the other processor. Recently such a
garbage collection algorithm was proposed [221]. It has a fair amount of overhead for the
garbage collector and also for the computation that is running in parallel with the garbage
collector.

Overview of Proposed Technique

My approach to the problem is to decrease the amount of work done by the garbage
collector. I suggest it is possible to garbage collect a small piece of the address space without
looking at the rest of it. This approach has been tried with limited success by H.D. Baecker
1] [21 Greenblatt [8] uses "areas" and "invisible pointers" and claims to be able to garbage

collect these areas separately, but does not describe the technique. A. Rochefeld [20] also
used a technique that allowed a small piece of the address space to be garbage collected
separately. If the address space is broken into pieces called areas, and if each area is used
for one logical purpose, such as for a data base, as files are now used on most computer
systems, then lists of inter-area links can be maintained. Each area can then be garbage
collected separately from all other areas, since the list of links pointing into the area are
immediately available without searching the rest of the address space. Each process would
have a separate area, called the local computatlon area, for its stack and temporary storage.
Greenblatt has a similar area that he calls the working storage area. Areas used for data
bases that can be manipulated by many concurrent processes must have storage allocation
procedures that set locks before allocating storage. Since a local computation area is only
used by one process, it is not necessary for that process to set locks when allocating storage
from its local computation area. In PL/I, the term "area" is used to refer to a contiguous
block of storage 101 On many systems the object from which to allocate storage may consist
of many separate blocks. This is what is meant by an "area" here. It is similar to the "zone"
of the AED free storage package [21] and the "mutual" of LISP 2 [23] in this respect. This
is in contrast to the 'egment" on Multics which is only one block.

Since areas can be garbage collected separately, processes can also be garbage collected
separately by garbage collecting the local computation area for the process. Since the
garbage collection involves relatively small pieces of storage, a copying garbage collection
can be used. This will allow locality of reference to be increased by a garbage collection [7]
151. The technique of using an area for one logical purpose increases locality of reference
all by itself. Since the garbage collection takes place in a large virtual memory, the reason
for performing a garbage collection is mostly to increase locality of reference by eliminating
garbage and restructuring, not to prevent the system from running out of storage. This
means that there is no instant at which a garbage collection "must" occur. A time that is
convenient for the real-time aspects of the computation can be selected for garbage
collection. The time for garbage collection can also be chosen by finding a time at which
the amount of very short-lived temporary storage is very low. A process only need be
interrupted for garbage collection if one of the areas it is using is being garbage collected.
It may be possible to write real-time computations which will never be interrupted for



garbage collection.

Basic Garbage Collection Algorithm

Garbage collection of area A will proceed as follows. First a new area, A', will be
created. All the information in A will be copied into A'. Since a great deal of allocation will
occur in A' before any freeing occurs, free storage will always be one large block that
gradually diminishes in size. Objects are placed next to each other in A' if they are
sequentially allocated during the garbage collection. The mark and copy phase of the
garbage collection begins with the reference to the data base within the area. Each object,
P, when first encountered in this phase, is copied into A' producing P' (see Fig. 1). Each
object referenced from P is garbage collected. References to the new copies of these objects
are placed in P'. The garbage collection of P concludes by returning a reference to P.
The second time P is encountered in the mark and copy phase a reference to P' is
immediately returned. When an inter-area link is encountered, it is copied into A', but the
inter-area reference is copied directly into the new copy without garbage collecting it. After
the main data base has been garbage collected, all the inter-area links into A are garbage
collected and the links modified so they reference the new objects in A'. When this has
been completed, all the information pointed at by the main data base or an inter-area link
into the area has been copied into A'. All fragmentation of storage that may have occurred
in A has been eliminated and A' has been restructured to increase locality of reference. The
placement of objects within A' has nothing to do with the history of their creation, it is
determined by the structure of the data at the time of the garbage collection. When the
garbage collection is complete, nothing points into area A, so it may be deleted and its
address space reused. The problem of multi-area cycles will be covered later.

Similarity to Current Systems

A system with one address space which is broken into areas is analogous to current
systems, where the file system provides a single address space (file name and offset within
the file). Each file is used for a single purpose, just as an area is. Each file contains much
data, while only occasionally containing a single object. Computer systems whose hardware
handles a small address space (2,*20 or smaller) also have the fob core for a process that
contains the entire address space for that computation. Sometimes these are handled
specially, for example by residing on the drum, while files are all on disk. This job core is
analogous to the local computation area except the job core must contain all the machine
language programs it is using, while the local computation area does not. Usually garbage
collection is only done on the job core, but it can be done independently of garbage
collection in job cores of other processes. Both the local computation area and the job core
have the stack and the heap. Only temporary information is put in the local computation
area or the job core. Most information created by a computation is of this nature, however.
For a more accurate view of the local computation area, a look at the Multics system is
instructive [17. The local computation area corresponds to all Information in the process



AREA B AREA A'

Fig. 1
Garbage collection of area A.



directory on Multics except that the process directory contains some information that
supports the multiple address spaces. This information would not be needed on a single
address space system.

Systems that have small address spaces can only deal with files by copying them into
the job core in pieces and, if necessary, writing them out. This process of creating a new
file and then deleting the old one is very similar to a copying garbage collection of an area.
This means that some operating systems have prohibited making any changes in a file
without performing a copying garbage collection of the file. This fact has allowed many
files to be organized so they do not appear to be areas because the "free storage list" is non-
existent. Multics does allow the programmer to manipulate files by allowing the files to
appear in the address space. Some files on Multics do have free storage lists and can have
small changes made to them without too much work. Even here, however, garbage collection
of these files is usually done by completely regenerating the file, sometimes by first printing
it all out and then reading it all back in. We see, then, that use of copying garbage
collection is widespread and should not cause any problems. The fact that some of the
operations actually performed on files were hidden by the need to copy them into the job
core has obscured the area-like nature of files.

Reliable Maintenance of Lists

We have now seen that the suggestion of taking a very large, single address space and
breaking it into areas is similar to what is done on many operating systems that run LISP
subsystems. These systems do not allow references from one job core or file to another.
The single address space allows objects in different areas to be referenced while the inter-
area links allow the address space to be managed regardless of its size. The practicality of
the approach depends upon the ability to maintain the lists of inter-area links reliably and
quickly. There are basically two approaches that can be taken to this problem: a)force the
programmer to do it and b)design the machine language to do it automatically. The first
approach has severe reliability problems. It implies the programmer is able to write code
that does not maintain the lists of inter-area links properly. Errors in garbage collection are
typically non-reproducible intermittent errors that are only detected long after the real error
has occurred. In this case the real error would be maintaining lists of inter-area links
incorrectly. The error would have no effect until the next garbage collection, when an inter-
area reference would be handled incorrectly, resulting in a pointer somewhere that does not
point at the structure it is supposed to point at. This error would not be detected until that
pointer is used following the garbage collection, if then. By the time this error has been
detected, its cause is untraceable. These bugs would be almost impossible to find, resulting
in a very unreliable system.

The alternative to making the programmer responsible for the inter-area links is to
make the system designer responsible for them. The programmer can be given a machine
language that automatically maintains the lists of inter-area links. He is then largely



unaware of the maintenance of these lists, thereby making the job of programming easier
than above. There is no longer a possibility of error, especially if the machine language is
proven to maintain the lists correctly. The problem is to determine when an inter-area
reference is being created, and then updating the relevant lists. In order to do this, it is
necessary for the machine language to always correctly know when it is dealing with an
address and when it is dealing with other information. Most current machine languages do
not have this property.

Capabilities

Operating systems that implement protection by the use of capabilities do have this
property [6] [241 On such systems every capability contains information that identifies what
it points at and specifies what operations can be performed on it. Capabilities can only be
manipulated in restricted ways by the machine language and nothing else can be used as an
address. The fact that this mechanism implements protection tells us that every pointer is
controlled in this way. There are many high level languages that also use data that contain
type codes, suggesting that this technique may result in a system that is easier to program.
In high level languages the term capabtltty is not used. The type code and address of an
object should be called an object reference since it refers to the object. A word that contains
an object reference can contain a reference to any kind of object. Wulf [24] tells us that
"HYDRA supports references to obtects (called capabilities)."

The approach taken here is to use object references for all objects, including integers,
not just for large expensive objects such as files and directories. The fact that object
references are used for protection guarantees that all data is correctly identified and that the
programmer cannot write any code that will cause data to be incorrectly identified. All
machine instructions would take operands that are object references. Since this hardware
helps handle object references, it should be designed so it can be used for all purposes that
take advantage of object references.

SESAME Systems

A system that requires objects to be manipulated only by object references can be said
to have self-evident data. That is, the meaning and representation of an object can be
discovered merely by looking at the object.

The existence of a system of data types immediately raises the problem of how to add
new data types to the system. It must also be possible to add new operations on old data
types. A system is modularly extensible if both kinds of additions can be made merely by
adding a new module without rewriting any other modules.

A large class of computer systems can satisfy the requirements we have been
mentioning. These are Self-Evident data, Single Address space, Modularly Extensible



(SESAME) computer systems. SESAME systems may also have multiple processors and will
have several, perhaps many, users. SESAME systems will only be practical when they can
run fast enough to compete with conventional computer systems.

Data Types

The term "data type" means different things to different people. The high level
language designer sometimes uses this term to refer to the "kind" of object, e.g. integers.
The integers can be defined by a set of axioms similar to the Peano postulates which define
the natural numbers. These axioms define what an integer is by defining a few operations
that can be performed on integers and then specifying the properties of the answers
returned by these operations. Anything that satisfies these axioms is an integer. The
language implementor has a different view of a "data type", especially on a system with self-
evident data. In this case a data type includes not only the specification of the abstract
object that is being defined but also includes exactly how the operations are implemented so
they actually return answers that have the required properties. This is the information
specified in the data type field of an object reference: what operations are defined on the
object and exactly how they are implemented. Since this report is written from the point of
view of a system implementor, the term "data type" will be used in this second sense. The
first meaning will be referred to by the term "abstract data type". If each operation has a
specification of the properties of its operands and results, then an abstract data type can be
specified just by identifying the set of operations that can operate on objects of that abstract
type.

High Level and Low Level Abstractions

Some operations on objects can be defined completely in terms of other operations that
are already defined on the abstract data type. I will call these "non-primitive" operations.
For example, the factorial function can be defined in terms of multiplication, subtraction,
and comparison. "Primitive" operations are those that are not defined completely in terms
of other operations. These operations must be defined in terms of the implementation of
the object. This is done by converting the object reference to a new object with new
operations that can be performed on it. This is similar to the amplification of rights
described by A. Jones 0i] and the use of the rep description in CLU [13]. The new object is
the implementation of the object from which it was derived. The set of operations on this
object should allow the bits in its representation to be modified. The operations would be
loads and stores of bit-strings and object references within the object. The meaning of
these operations would be totally dependent on the implementation of the object. This new
object is the low level abstraction of the high level object from which it was derived. The
low level abstraction views the object as existing in a von Neumann machine, while the
high level object has only the operations defined on it that are valid on the abstract data
type of the object.



Protection

Since object references are used for protection on a SESAME system, the ability to
manipulate object references must be limited to meet some basic requirements of capability
systems. One basic requirement of a capability system is that object references cannot be
manipulated as bit strings to yield new object references, but object references must be
stored in memory, as are bit strings. If we can design the computer hardware, we could
reserve a bit in each word of memory which would specify whether that word contained an
object reference or not. Bit string operations could not be performed on a word that
contained an object reference without first turning off the object reference bit and putting
zeroes into the word. The object reference bit would be almost invisible to the machine
language, since it could not be manipulated directly. Object references could only be created
by copying existing object references and by performing legitimate operations on an object
reference. Fabry [6] calls this the tagged approach.

Another basic requirement of a capability system is that, given only an object reference
for one object, it must be impossible to access storage in another unrelated object. This can
be achieved if the low level object reference contains the size of the block of storage for
that object and if this size is checked on every memory access using that object reference.
Remember that high level object references cannot be used directly to access any storage;
they must first be converted to their related low level objects. The protection of this kind of
system is based on the fact that the only operations that can be performed on an object are
those that are defined. It is possible to create objects with arbitrary sets of operations
defined on them.

A third basic requirement of a capability system is that, given two object references for
which there is some storage overlap, it is essential that the two objects be related in some
way and the definition of each object must have knowledge of the possible overlap
procedurally embedded. Some procedural knowledge of a fact or property (relationship) is
embedded in a piece of code if the code must be rewritten (or at least checked over again)
when the fact or property changes. Once the precautions mentioned above have been taken
care of, there are still two ways in which the requirement of no unforseen overlap can be
violated. A storage allocator can allocate the same piece of storage twice. Any storage
allocator that obviously did this would be considered to have a bug, but the entire protection
system depends upon the absence of such bugs. This problem can always be solved by
writing all storage allocators in the protection kernel of the system.

If storage is re-used, there is a possibility of a piece of storage being freed while there
are still object references to the old object. The storage allocator would then re-allocate the
storage while an object reference to the old object still existed, thereby violating this basic
requirement. This second problem is due to the dangling reference problem.

Dangling Reference Problem



The dangling reference problem [14] occurs when an object reference exists after the
object has been destroyed (the storage freed). It violates protection if it cannot be detected
and especially if the storage for the object is reused. There are two ways to attack this
problem. The first way [24] [6] [14] is to never reuse addresses. In this scheme, object
references do not contain addresses, but "unique codes". The amount of storage associated
with a unique code can be adjusted, and is referenced by an offset that is used with the
unique code. The unique code is therefore a segment number. An address consists of a
segment number and an offset. Multics appears to be this kind of system but is not because
it allows the programmer to convert arbitrary bit strings into segment numbers and is able
to reuse segment numbers. Lomet does not reuse addresses, but does not use segments,
either. When his area identifier (AID) is considered to be part of the address it is easily
seen that his scheme does not reuse addresses. This approach is not taken here. Instead the
dangling reference problem is completely eliminated. The system can be designed so that
the storage for an object is only freed when there are no more references to the object.
Since the entire protection for the whole system depends on this, storage can only be freed
after a proof has been performed that there are no more references to it.

There are basically two different ways of performing such a proof. One way is to keep
a count of the number of references to the object and when this number reaches zero, free
its storage. This is the reference count method. Another way is to look at all the references
in the whole system and if none refer to this object, free it. This is called garbage
collection. We have already seen that we intend to break the address space into areas and
keep lists of all inter-area references in the system. This way the whole system can be
searched without actually looking at it all.

Note that use of a "free" statement (explicit freeing of storage) cannot be used since it
does not involve performing the proof that there are no remaining references to the object.
If such a statement did exist, it would have to find all references to the object and destroy
these references before freeing the storage.

Continuations

The high level language LISP is an example of a language with self-evident data.
Many LISP implementations, including MACLISP (161, have a particular kind of object that
is treated specially: stack frames [25] (3] [6]. This is the only kind of object in MACLISP
that is not destroyed by garbage collection, but may be destroyed by other means (such as
returning from a function). MACLISP does not really treat stack frames as objects. This
results in placing restrictions on the kinds of control structures that can easily be used in
MACLISP. This problem arises from a desire to use the standard subroutine call
instruction on the machine. This instruction usually places the address of the next
instruction in a register, thereby passing it as an argument, and ignores the stack frame
altogether. Of course this return location cannot be used without the correct stack frame, so
conventions are made, usually requiring this stack frame to be on the end of the stack.



These problems can be solved if the place to return to is made into an object that is referred
to with an object reference. The location of the next instruction and the stack frame to use
with it will both be contained in the object. Probably the object reference will point at the
stack frame which will contain the return location. Instead of having conventions about the
format of a stack frame, this will be an abstract data type on which several operations will
be defined. One of these operations will be "return". There may be other operations
primarily used by the debugger. This abstract type has come to be called a continuation in
the literature [91 It is related to the continuations of Reynolds [19]. When a module finishes
an operation, it returns the answer, if any, to the continuation passed in the argument list.
This also insures that the machine language is aware of the existence and meaning of
pointers to stack frames and instruction locations.

If a stack frame is an object, then its storage can only be freed if there are no
references to it. Fortunately, in most cases there are no references to a stack frame when it is
returned from. The stack algorithm, which allocates and frees storage very quickly, must be
able to free such stack frames. Using reference counts on stack frames would allow this to
happen. In order for the suggestions in this paper to be practical it must be practical to use
a spaghetti stack for the call-save-return stack. This would allow a stack frame to be
retained if its reference count is greater than zero when it is returned from. This paper will
assume that reference counts are used for stack frames and that a spaghetti stack algorithm
[5] is used. Describing these algorithms is beyond the scope of this paper.

Representation of Inter-area Links

Once we have a system on which all the data is identified, it is possible to consider
operations in the machine language that will automatically maintain lists of inter-area links.
One of the first problems encountered is how to represent an inter-area link. There are
basically two approaches. One is to have a special data type for inter-area link that contains
the inter-area object reference and some references for chaining the lists of inter-area links
together (see Fig. 2). When an inter-area link is created the inter-area object reference is
placed inside the link and the object reference for the inter-area link is used in the data.
The other approach does not interfere with the data at all, it merely maintains lists that
point at all the locations that contain inter-area object references (see Fig. 3). In either case,
each link must appear on two lists, 1) a list of links pointing out of the area the link points
out of and 2) a list of links pointing into the area the link points into (see Fig. 4). The
representation of an area includes: I) the data base contained in the area, 2) the list of inter-
area links leaving the area, 3) the list of inter-area links pointing into the area, 4) the
address space covered by the area, 5) the free storage list, and 6) locks (semaphores) to
prevent incorrect usage by parallel processes.

The disadvantage of the second method is that it requires that the hardware detect not
only the creation of an inter-area link, but also its destruction. The first method at least
makes it easier to detect the destruction of an inter-area reference. It is not essential that the



AREAA A AREA B

Fig. 2
Representation of an inter-area link - method 1.

destruction of the first kind of inter-area link be detected until the area is garbage collected.
A reference count could be used with the inter-area link. The first method is also superior
if the same inter-area reference is placed in many locations within an area since it is possible
to handle them all with a single inter-area link. It will be assumed that the first method is
used.

Maintaining Lists

In order to design the machine language to automatically maintain the lists of inter-
area links it is necessary for each instruction to create inter-area links for any inter-area
references that are created by the instruction. Machine instructions can be viewed as having
two pertinent sub-operations: load and store. Each of these operations has the possibility of
creating an inter-area reference. I propose that each load and store operation be checked to
see if it does create an inter-area reference and, if so, an inter-area link be created.

Place Area Identification in Page Map



AREA A AREA B

Fig. 3
Representation of an inter-area link - method 2.

Whenever an object reference is placed in a new location, it must be determined what
area the location resides in and what area the object resides in. If they are the same, no
inter-area link is needed. If they are different, an inter-area link must be constructed. This
requires that the operation of finding what area an address is part of be a very fast
hardware operation. This could be done by placing this information in the virtual memory
page map. Hardware already exists for accessing this very quickly. The only problem with
this would be the necessity for an area to contain a whole number of pages. This is. not a
severe penalty. Multics already requires that each segment contain a whole number of
pages. Many systems have similar requirements for files to make the job of allocation of
disk easier.



AREA C

Fig. 3
The lists of inter-area links and the representation of an area.

_ _ -- _



As described so far, the algorithm has a large overhead. This can be reduced
somewhat when we realize that the registers are considered to be part of the local
computation area and that moving an object reference from one location to another within
the same area cannot require the creation of another inter-area link. This means that loads
and stores to the local computation area need not be checked further. Since the page map
for the location is accessed during the load or store, the area in which the location resides
could easily have been retrieved at the same time, requiring no extra time to perform this
check. Computation that stays within the local computation area will run just as fast as on a
system that does not maintain lists of inter-area links.

Directly Referencing Links

We have already mentioned that the local computation area does not contain machine
code. This means that the instruction counter is an inter-area reference. Another source of
overhead with this scheme is the requirement that machine instructions be able to handle
inter-area links as if they did not exist, which adds complication to the hardware and/or
micro-code. Also, as soon as one thinks of computing on objects in another area, such as
searching a list in another area, it becomes immediately apparent that the number of inter-
area links from the local computation area to other areas could easily become huge, causing
much overhead in creating and destroying these links and in threading and unthreading
them from the lists of inter-area links. This could all be eliminated by allowing another
kind of link that allows any location in area A to directly reference any location in area B
without using an inter-area link. This will be called a directly referencing link from area A
to area B. If such a link exists from A to B, we will write Aw.B. We could eliminate inter-
area links from the local computation area altogether by requiring the local computation
area to directly reference all areas that It may have an object reference to.

Load and Store

Let us now summarize the load and store algorithms:
Load: Perform the memory access and find the area from which we are loading. If we are

loading from the local Computation area, nothing further need be done. If we are
loading from an area other than the local computation area, check to see if we have
loaded an inter-area link. If so, access the true object reference and continue with
this. If not, continue with the object reference loaded. Access the page map of the
address and find out what area is referenced. If it is the local computation area, we
are done. Check the list of areas that can be directly referenced from the local
computation area. If the area referenced is one of these, we are done. Otherwise
add the area to the list of areas that can be directly referenced from the local
computation area.

Store: Find the area in which the object reference is being stored. This is area A. If A is
the local computation area, we are done. If A is not the local computation area, find



the area referenced. This is area B. If area A directly references area 8, we are done.
Otherwise create an inter-area link in area A to area B, place the object reference in
it, thread it onto the lists of inter-area links, and store the object reference to the
inter-area link in the location being stored into.

There is one small improvement that can be made to this algorithm. If the local
computation area, L, contains no inter-area links because it directly references all areas that
it may have references to, and if we cause the directly referencing relation to be transitive,
then no check need be made on any load unless an inter-area link is loaded. Since L directly
references all areas it has object references to, the location loaded from, f, must reside in an
area, Af, that is directly referenced from L. If the object reference loaded is not an inter-
area link, it must reference an area that is directly referenced from Af. Let B be the set of
areas directly referenced from Af. Naturally, AfrB. Let M be the set of areas directly
referenced from L. If the directly referencing relation is transitive, then if LtAf and AfwX,
then LwX, and BsM. The object reference placed in L need not be checked to make sure it
references an area in M. This greatly simplifies the load operation.

Revised Load and Store

Load: Perform the memory access and look at the object reference loaded. If it is not an
inter-area link, complete the load immediately. If it is an inter-area link, get the
object reference out of it, and find out what area it is pointing into, call it area X. If
area X cannot be directly referenced from the local computation area, L, add area X
to the set of areas directly referenced from L. Also add all the areas directly
referenced by X to the areas directly referenced from L. Complete the load operation.

Store: The store operation is unchanged.

Note that there is no need to check loads from or stores to the local computation area.
Instructions that move object references from one register to another need not be checked.
The local computation area could be defined as that area containing the current stack
frame. If so, instructions that only load from or store to the current stack frame need not be
checked either.

Garbage Collection of One Area

The resultant load and store operations are not much more complicated than normal
load and store operations. Only rarely are things added to the various lists. There are now
two sets of lists. One lists individual inter-area links and the other lists the directly
referencing relation between areas. If AwB, then in order to garbage collect area B it is also
necessary to garbage collect area A, although area A can be garbage collected separately
from B. Consider what would happen in the case of a local computation area, L. It must be
remembered there is a strong analogy between the contents of the local computation area



and the contents of the process directory on Multics. On Multics, no user can read anything
in the process directory of another user. This suggests that one local computation area will
probably not reference another one. Computation will proceed, as on Multics, with the user
running the command processor in L, causing L to compute with one subsystem and then
another as the user moves between, say, the editor and the compiler. While editing,
everything associated with editing will be referenced and placed on the list of areas directly
referenced from L. While compiling, the same will happen with areas associated with
compilation. All during this time the vast majority of storage allocation has been done in L,
so it may become necessary to garbage collect L. L directly references many areas, but is not
directly referenced by any areas, so it may be garbage collected separately from everything
else. During the garbage collection, everything in area L is copied into a new area, L'. Any
references to objects in L by way of inter-area links are modified to reference the
corresponding objects in L'. The areas directly referenced by L' are only those areas in the
transitive closure of the directly referencing relation from those areas actually referenced by
L'. If the garbage collection did not occur during compilation, there would probably be no
references to the compiler left in L and therefore, although L has the compiler areas on its
list of areas directly referenced, L' would not. An area, A, will therefore only be directly
referenced by local computation areas that actually touched A since the last garbage
collection of the local computation area. In other words, when a data base is garbage
collected, it may be necessary to garbage collect some other processes as well, but only those
processes that are using the data base in question.

Implicit in the above analysis is the idea that when the garbage collection is complete,
area L is deleted. This does not cause problems because all inter-area links that referenced
L were modified during the garbage collection to reference L'. It was assumed that no areas
directly reference L, so the only references to L are within L. By destroying the entire area,
we destroy all remaining references to objects in L and may therefore reuse the address
space associated with L. Since all references in L are destroyed, the directly referencing
relation from L to other areas can be removed.

Deleting Areas

Areas are analogous to files on current systems. Deleting a file is a fundamental
operation that allows a user to control the amount of storage used. Arbitrary areas can be
deleted also. There are basically two ways the deletion could proceed. The first method will
be called a hard delete since it destroys all the information in the area.

Hard delete: To delete area A, first find all inter-area links into A and change them so they
reference the deleted object. Almost any computation with the deleted object causes a
fault. All the inter-area links to A are then removed since they are no longer inter-
area references. All the storage associated with the address space assigned to A is
then removed except for the part holding the directly referencing and inter-area link
lists. This destroys all references from A to other areas, allowing all the inter-area



links from A to other areas to be removed and all the directly referencing links from
A to other areas to be removed. The only remaining references to the address space
associated with A are from areas that directly reference A. The address space
associated with A cannot be reused until all the areas that directly reference A have
been destroyed and these directly referencing links removed. This can be speeded up
by causing these areas to be garbage collected. Any references to A In these areas
will be converted to references to the deleted object during a garbage collection.

The existence of the system of inter-area links allows another method of deleting an
area, called a soft delete. It only destroys information not referenced by other areas in the
system. The major task in deletion of an area is finding and modifying all references to the
area. The soft delete essentially does a garbage collection of the area and all areas that
directly reference it so that objects referenced by other areas are moved into those areas. All
information not saved in this manner is lost.

Soft Delete: To delete area A, initiate a garbage collection involving area A and all areas
that directly reference A. Do not create a new area A' for the information in A. Do
not mark from the data base in A to mark from. Instead, garbage collect the areas
that directly reference A. When a reference to A is found from area B, mark from
that reference placing new objects in B'. When the garbage collection of the areas
that directly reference A has been completed, mark from the inter-area links to A.
When a link from area C is processed any new objects found from that link are
placed in C. When this garbage collection is over, there will be no inter-area links to
A and no areas will directly reference A, so a hard delete may be performed on A.
This delete will probably be done as part of the clean-up of the garbage collection
that will also delete area B, leaving area B' in its place.

User's View of the System

Consider how this scheme of areas and inter-area links will appear to the user of the
computer system. The user will see a rather conventional-looking system with files (areas).
As on Multics, there may be files that contain compiled machine code that can be executed
directly by the machine without first performing a linkage edit to create a core image. None
of the files will be core Images. A data base will be a single file that can be used directly by
several parallel processes. The user will usually deal with files from his programs by merely
accessing their data structures. The programmer will not write I/O statements to deal with
his files.

Garbage collection is done by a program in the system libraries, and may be performed
on any area. Garbage collection of an area may be initiated by a program or by the user.
An area should only be garbage collected if it is likely to contain garbage. The amount of
storage allocated in the area since the last garbage collection will give some Indication of the
need for garbage collection.



The user will also be able to add directly referencing links between areas. This will
only be done very rarely, however, so the naive user can easily be ignorant of this
possibility. The subsystem designer will be aware of this and may write code that
automatically sets directly referencing links at appropriate times. This will eliminate the
need for the ordinary user to be aware of directly referencing links.

Perhaps the most annoying thing about this system is the necessity to specify in which
area each object is to be placed. This must already be done on Multics. PLIA has always
had the concept of areas and has an allocate statement that allows the programmer to specify
which area to allocate from. LISP is a widely used language that is much more useful than
PL/1 for most symbol manipulation problems [31 LISP does not have the concept of areas
nor does it require an area to be specified when allocating storage (CONS). On the other
hand, LISP systems run entirely in what corresponds to the local computation area. Since all
temporary storage should be allocated in the local computation area, an allocate statement
that is not given an area as an argument should allocate the object in the local computation
area.

Automatic Placement of Objects

Regardless of how carefully an object is placed in the most appropriate area, it is
always possible for the data structure to change so an object no longer resides in the most
appropriate area. Automatic detection and correction of such situations would relieve the
programmer of much work and would decrease the necessity of careful placement in the
first place, making the default proposed above very attractive. The soft delete algorithm
given above automatically relocates data into other, more appropriate areas. This same idea
can be used to move objects from one area to another.

An object is probably in the wrong area if it is not marked when the data structure in
that area is traced. A garbage collection of area A could proceed as follows: the data
structure inside the area could be traced and copied into the new area A'. The inter-area
references must now be found and updated. If any of these inter-area references find an
object in area A that has not been marked, this object is moved to the area from which it
was referenced, as described in the soft delete algorithm.

The effect of this technique of automatic placement is to leave an object in the area in
which it was initially placed until it is no longer referenced from the data base in that area,
then it is moved to another area that references the object. This will probably work
reasonably well in many instances, providing a good default for programmers who do not
want to put effort into placement of objects. This works well in conjunction with the
default that objects be placed in the local computation area when they are created, since if
the object really belongs in a data base somewhere, the local computation area will stop
referencing the object and it will then be moved to the appropriate data base.



Garbage Collecting Multi-Area Cycles

One often-cited advantage of garbage collection over reference count schemes is the
ability of garbage collection to handle cycles. If a cycle exists completely within one area, it
is easily handled by this scheme (see Fig. 5). If a cycle exists partly in one area, A, and
partly in another area, B, some problems arise. If the areas do not reference one another
directly, then there will be at least two inter-area links, one from A to B, and one from B to
A (see Fig. 6). If the cycle really is garbage, these are the only links holding onto the cycle.
If either area A or. area B has the automatic mover in effect, then half the cycle will be
moved to the other area where it will be eliminated by the next garbage collection. If
neither area has the automatic mover in effect, then the only way to eliminate the cycle is to
cause both areas to be involved in the same garbage collection. In this case, inter-area links
between the two areas are not marked from.

Since each area holds information that logically belongs together, it is expected that
most cycles will occur entirely in a single area. Most of the time all the objects in an area
will be referenced by the data structure in that area. A cycle that extends over many areas
should therefore be referenced by something in each area. As these references are
destroyed, one by one, for independent reasons, the cycle will restructure itself into fewer
areas until it is contained completely in the last area to reference any part of the cycle.

The existence of the automatic mover does cause some complication for the user.
Although in many cases it will relieve the burden of specifying where to place things, the
user will have to decide whether to use the automatic mover on an area. There are several
variants of the automatic mover that could be used as well. For example, a user might want
the automatic mover to only move things out of an area, but not move things into it. The
mover could be restricted to only move things into an area, but not out of it. The user may
want to do all placement manually.

Protection Implications

The ability to move data from one area to another has serious privacy and protection
implications that suggest that the individual reference may be a good source of advice as to
whether to move an object out of its original area into one that references it. Hopefully
some good defaults can be worked out along these lines that will minimize the amount of
work that needs to be done to control the automatic mover. On the other hand, the less the
automatic mover is allowed to function, the more necessary it will become for the user to
manually destroy inter-area links or to cause garbage collections involving several areas at
once.

Further Possibilities

In addition to the advantages already cited, the maintenance of inter-area links and the



Fig. 5
A cycle within one area.

feasibility of garbage collection means that it is possible to find all the references to an
object and modify these references. Algorithms of all kinds that make use of this operation
now become feasible. It becomes possible to replace objects with new, restructured versions.
For a very low cost, an object can restructure itself during a garbage collection so it will run
faster for the operations currently being performed on it. One of the problems with the
protection provided by capability systems is that once a highly privileged object reference



AREA A AREA B

Fig. 6
A cycle covering two areas.



has been given out, it cannot be retrieved. Since all object references to an object can be
found and modified, this is no longer true. The area in which the object reference resides
gives a strong clue as to whether it is an object reference that may be used improperly or
not. These possibilities cause a whole class of algorithms to be practical. Whether they are
useful in any particular case should be the subject of future research.

The maintenance of lists of inter-area links is dependent upon the ability to quickly
find what area an address is part of. This feature has many other uses as well. It makes it
possible to find what area an object resides in. The area could specify the garbage
collection algorithm that is to be used in it. The area can supply information that helps to
decode the representation for an object. For example, it would be possible to use different
formats of object references in different areas. The area would merely contain a procedure
that would convert the format of object reference in that area to the format of object
reference used by the local computation area. A restriction on this idea is to have certain
type codes whose meaning would be area dependent. MACLISP determines most of the
type information from the area containing the object. Any object could have some of its
information kept by the area it resides in. This could be a good place to find default values
for many purposes. These ideas are just some possibilities for the use of this mechanism.
Whether they have any merit must await further research.

Conclusion

There has been a tacit assumption by most workers in the field that the dangling
reference problem is Insoluble and must be lived with. This assumption has been accepted
most strongly by designers of operating systems. This paper challenges this assumption and
takes the first step in showing it to be false. The mechanisms introduced here do not
involve more complexity than the mechanism needed to implement virtual memory. As the
remaining steps to complete solution of the dangling reference problem emerge it will be
seen that these mechanisms can form the basis for a new computer system that is both fast
and easy to use.

Acknowledgements

I would like to thank David D. Redell for his encouragement and for the many
discussions I had with him.



References

I. Baecker,H.D. Garbage collection for virtual memory computer systems. Comm. ACM 15, II
(Nov. 1972), 981-986.

2. Baecker,H.D. On a missing mode in ALGOL 68. Stgplan Notices 7, 12 (Dec. 1972), 20-30.
S. Berkeley,E.C.,Bobrow,D.G.(Eds). The Programming Language LISP: Its Operation and

Applications. Information International, MIT Press, Cambridge, 1964.
4. Bobrow,D.G. Storage management in LISP. in Symbol Manipulation Languages and

Techniques, Bobrow,D.G.(ed), North-Holland Press, Amsterdam, 1968.
5. Bobrow,D.G.,Wegbreit,B. A model and stack implementation of multiple environments.

Comm. ACM 16, 10 (Oct. 1973), 591-603.
6. Fabry,R.S. Capability-based addressing. Comm. ACM 17, 7 (July, 1974), 403-412.
7. Fenichel,R.R.,Yochelson,J.C. A LISP garbage collector for virtual-memory computer

systems. Comm. ACM 12, 11 (Nov. 1969), 611-612
8. Greenblatt,R. The LISP machine. M.I.T. Artificial Intelligence Working Paper 79,

M.I.T., Cambridge, Mass., November 1974.
9. Hewitt,C., Bishop,P., Steiger,R. A universal modular ACTOR formalism for artificial

intelligence. Third International Joint Conf. on Artificial Intelligence, Aug. 1973,
235-245.

10. IBM,Corp. PLII Language Specifications. Form GY33-6003-2. International Business
Machines Corp., White Plains, N.Y., 1970.

11. Jones,A.K. Protection in programmed systems. PhD Thesis, Dept. of Computer Science,
Carnegie-Mellon Univ., Pittsburgh, June, 1973.

12. Knuth,D.E. The Art of Computer Programming, Volume 1: Fundamental Algorithms
Addison-Wesley, Reading, Mass. 1968.

13. Liskov,B.H. and Zllles,S. Programming with abstract data types. ACM SIGPLAN
Nottces 9, 4 (April, 1974) 50-60.

14. Lomet,D.B. Scheme for invalidating references to freed storage. IBM J. Res. Develop.
(Jan. 1975), 26-35.

15. Minsky,M.L. A LISP garbage collector using serial secondary storage. Artificial
Intelligence Memo No. 58(revised), MIT, Cambridge, Dec. 1963.

16. Moon,D.A. MACLISP Reference Manual. Project MAC, MIT, Cambridge, April, 1974.
17. Organick,E.I. The Multics System: An Examination of its Structure. MIT Press,

Cambridge, 1972.
18. Parmelee,R.P., Peterson,T.I., Tillman,C.C., Hatfield,D.J. Virtual storage and virtual

machine concepts. IBM Systems Journal 11, 2 (1972), 99-130.
19. Reynolds,J.C. Definitional interpreters for higher-order programming languages. Proc.

25th ACM Nartional Conf. Boston, Aug. 1972, 717-740.
20. Rochefeld,A. New LISP techniques for a paging environment. Comm. ACM 14, 12 (Dec.

1971), 791-795.
21. Ross,D.T. The AED free storage package. Comm. ACM 10, 8 (Aug. 1967), 481-492.
22. Steele,G.L.Jr. Multiprocessing compactifying garbage collection. Comm. ACM 18, 9



25

(Sept. 1975), 495-508.
23. Stygar,P. LISP 2 garbage collector specifications. TM-3417/500/00, System Development

Corp., 2500 Colorado Ave., Santa Monica, Calif., April 26, 1967.
24. Wulf,W.A.,et al. HYDRA: The kernel of a multiprocessor operating system. Comm.

ACM 17, 6 (June, 1974), 337-345.
25. Yochelson,J.C. Multics LISP. S.B. Thesis, MIT Dept. of Electrical Engineering, June,

1967.


