
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper No. 116 December 1975

THE FUNDAMENTAL EEL EQUATIONS

by

Berthold K. P. Horn

ABSTRACT. Details of the kinematics, statics, and dynamics of a particularly

simple form of locomotory system are developed to demonstrate the importance of

understanding the behavior of the mechanical system interposed between the com-

mands to the actuators and the generation of displacements in manipulation and

locomotion systems, both natural and artificial.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory's
artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0643.



INTRODUCTION

When one studies manipulation and locomotion in artificial or biological systems

one often forgets that something comes between the actuator and the displacement,

between the command to move and the actual motion. One may be tempted further

to ignore the interactions between parts of the mechanism. It is therefore of

the utmost importance to have a clear picture of the kinematics, statics, and

dynamics of the mechanical system that lies between actuator and motion. For

articulated linkages this is quite hard, but some important work has been done

in this area [1].

In this paper, we explore a particularly simple system capable of propelling

itself through a fluid by means of waves travelling along its.length, in a

direction opposite to the desired motion. The continuous nature of such a

system allows one to apply differential equation methods; and a complete solution

for propulsion forces, actuator torques, and body accelerations is developed.

The gulf between actuator inputs and displacements of body segments will be-

come apparent, since the one lags behind the other by 7/2 in phase. The in-

teraction of the body segments will also be seen to be of importance, since it

is only indirectly, through the interaction of different segments, that the pro-

pulsive forces are generated from the actuator torques.

As an added bonus we discover that this mode of locomotion is remarkably effi-

cient. We also show that an'optimum amplitude to wavelength ratio exists that

minimizes power expenditure. This ratio depends on the drag-lift ratio and is

independent of velocity. In steady motion the rearward slippage of the wave-

form relative to the fluid balances the drag due to the forward motion of the
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body. The results have additional application in the design of fish-like

vehicles, in understanding the locomotion of a wide variety of species, and

possibly in the design of elephant trunk-like manipulator devices.

The fundamental eel equations are:

dF
Apy dF ft

dx

and

Ip6 = - d- + F
dx

Here F is the shear force in a body cross-section, while T is the torque trans-

mitted across such a body cross-section. The rest of the notation will be ex-

plained later. The analysis starts with an assumed travelling wave of body

displacement. Initially the mass of the body is ignored and only actuator

torques required to overcome the forces generated by motion through the fluid

are considered. The effect of the masses and inertias of body segments is intro-

duced subsequently.



SUMMARY

The following will be shown:

Propulsion by this means is very efficient. Not much more power is required
than that needed to push a stick of equal dimensions and shape through the
fluid.

The velocity at which the travelling wave propagates rearward along the body is
a bit larger than the velocity at which the body moves forward through the fluid.

In steady motion, the force generated by the rearward slip of the waveform rela-
tive to the fluid balances the drag force due to the forward motion of the body
through the fluid.

It is advantageous for the wavelength of the travelling wave to be a sub-multiple
of the length of the body. This ensures steady motion.

The internally generated torque function needed to support this motion is also
a travelling wave and lags the displacement waveform by w/2.

There is a value of amplitude to wavelength ratio that minimizes power. It
does not depend on velocity and is proportional to the fourth root of the drag-
lift ratio.

The relative slip-rate for minimum power approximately equals the square root
of the drag-lift ratio.

Small bodies in viscous fluids need large amplitude to wavelength ratios, com-
pared to large bodies in fluids of low viscosity, which can move most efficiently
with relatively small amplitude to wavelength ratios.

A second component of internally generated torque is required to accelerate
body segment masses during the motion. This torque is in phase with the body
displacement and can be generated by passive elastic means.

A good method for controlling forward velocity is to vary only the rearward
velocity of the travelling wave. The wave length is kept equal to some sub-
multiple of the body length, while the amplitude-wavelength ratio is kept at
the optimal value for least power.

Equivalently, one varies the frequency of undulation to control forward velocity,
keeping amplitude and wavelength fixed.
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WAVEFORM OF THE UNDULATION

Consider a travelling wave of body displacement as in Figure 1. Let Y be the

amplitude of this wave, w its angular frequency and u the velocity at which

the wave propagates backwards along the body. If we let x and y be the coordin-

ates of points in the body measured in a system fixed in the body and moving

with it, we have

y = Y cos{w(t + x/u)1

x lies between -L and 0, where L is the length of the body. It is convenient

to use the abbreviation 0 = w(t + x/u).

y = Y cos 0

Clearly the wavelength X = 2w(u/w). We will assume that the amplitude is much

smaller than the wavelength in order to make analysis feasible. Later we may

discuss what happens when this condition is' violated. A convenient dimensionless

parameter is a =Y(w/u). From the previous assumption it follows that a is small.

DESCRIPTION IN TERMS OF MOTION RELATIVE TO FLUID

Let x' and y' be coordinates measured in a system fixed in the fluid, but

aligned with the coordinate system moving with the body. If the body is moving'-

with velocity v in the x' direction we have
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' =x + vt

and

y, =y

For forward propulsion we will find that u is a bit larger than v. Expressing

the waveform in terms of the new coordinate system we get,

y' = Y cos{W[(l - v/u)t + x'/u]}

so w(l-v/u) is the angular frequency as observed at a fixed point in the fluid

and (u-v) is the velocity at which points of fixed phase slip rearward with

respect to the fluid.

INCLINATION, CURVATURE, AND RATE OF FLEXURE OF BODY SEGMENTS

The inclination of a body segment as shown in Figure 2 can be found by differ-

entiation.

tan 0 =d = -a sin *
dx

Since a is small we will be able to use the approximations sin 0 = 0 and

cos 8 z 1 when needed. Next we calculate curvature as the rate of change of

inclination along the body.

de- - (W/u) (a cos #)
dx

Later we will need the rate of change of curvature with time in order to cal-

culate power.



d (e) = w(w/u)(ca sin *)
dt dx

MOVEMENT OF BODY SEGMENTS RELATIVE TO FLUID

The two components of motion relative to the coordinate system fixed in the

fluid are:

-'- = v and dy' = -au sin
dt dt

Let us call these vx and v . Next we decompose the velocity into components

along and across the body segment as in Figure 3. Let the longitudinal and

transverse components be v1 and vt respectively.

V1 = vx cos 6 + v sin 6

vt = -v sin 0 + v cos e

Or,
vI = Iv + (a sin 0)2 u] cos 0

vt = -(u - v)(a sin .) cos e



FORCES GENERATED IN RESPONSE TO MOVEMENT OF BODY 3EGMENTS

Motion along the axis of a body segment is not greatly impeded, while motion

in a tranpverse direction generates a large force. One can think of these as

"drag" and "lift" components of the force generated by motion through the fluid.

Let the force generated per unit body length have a longitudinal component

fl and:a transverse component ft'

fl = dvl and ft = Ivt

where d is a "drag" factor while I is a "lift" factor. Normally d will be

much smaller than 1. These quantities will depend on the shape, area, and

surface properties of the skin covering the body as well as the properties of

the fluid, such as its density and viscosity. The above analysis assumes move-

ment is slow enough to guarantee laminar flow.

FORCES GENERATED IN DIRECTION OF MOTION AND ACROSS IT

At this point we wilil return to the coordinate system moving with the body as

in Figure 4. Let the components of force produced per unit length in the

negative x and y directions be fx and f respectively, thenx y

f = fl cos 0 - ft sin 0



f = f sin e + f cos 0
y I t

Or,

fx = {d[v + (a sin *) 2 u] - l(u - v)(c sin 0) 2 )Cos 2 0

f = {d[v + (a sin 0) 2 u] - l(u - v)Xa• sin 0) cos 2G
y

Simplifying,

fx = {dv + [du - l(u - v)](a sin 0) 2 })Cs 26

f = {[dv - l(u - v)] + du(C sin *)21(a sin C) cos 2 6

We will use cos 6 = 1 to simplify further calculations.

AVERAGE FORCES OVER ONE CYCLE OR ONE WAVELENGTH

If we use the relation sin 20 = ;(1 + sin 26), we can easily obtain the average

forces in the x and y directions per unit length.

f ='dv + j½2[du - l(u - v)] and f = 0x y

There is a clear advantage in choosing a wavelength that is a sub-multiple of

the length of the body. If the length of the body is an integer multiple of

the wavelength, the force in the x-direction is constant with respect to time

and the forces in the y-direc!tioh cancel out at all times as well. This can

be shown by integrating the expressions for f and f with respect to x fromx y

-L to 0. If the wavelength does not divide evenly the body length, there are

sideway oscillations of the body and periodic oscillations in forward velocity.

This effect is of less importance if the body is many wavelengths long.
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BALANCE OF FORCES DURING STEADY MOTION

During steady motion, the acceleration is zero and so the overall force must

be zero.

dv + ½c2[du - 1(u - v)] = 0

Or,
I + (2/a 2 )d d 2

u = v = [1 + (1 + -- )]v
1 - d -d a2

This confirms that u will be greater than v. One can think of the forces pro-

duced by the rearward slip of the waveform relative to the fluid as having to

balance the drag forces due to forward motion of the body. If a is not too

small and d is much smaller than 1, it is clear that the slip-rate need not be

very big, that is, (u- v) can be small relative to v.

u-v d 2
(1 + -)

v I - d a2

RELATIVE SLIP-RATE.

Evidently the minimum relative slip-rate is fixed by the drag-lift ratio. That

is, if a becomes large,

u-v d

v l -d

One comes within a factor of two of this minimal value, for a = Vi.

Since Y/A = a/2w, this corresponds to an amplitude of about a quarter of the

wavelength. Since cos 20 = 1/(1 + a2sin 2e), one easily can see that this also
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corresponds to a maximum inclination of 55". One should be cautious when

using these formulae for values of a larger than this, since we have ignored

various deleterious effects of large angles of body segment inclination, such

as body shortening. Fortunately, we show later that the mininmum power required

for propulsion tends to occur for smaller values of a anyway.

If I is much larger than d and a is small one can further approximate the

relative slip-rate

u - v d 2 2d 2 1 1 d A 2

v Ic 1 y2  2w2  1 y

The relative slip-rate is'approximately proportional to the drag-lift ratio and

the square of the wavelength-amplitude ratio.

GENERATION OF REQUIRED INTERNAL TORQUES

A short section of the body can be modelled discretely as in Figure 5. The

pin-jointed links in the center represent the flexible, but incompressible

spine. Each joint of course can transmit longitudinal and transverse forces,

but no torques. The "muscles" attached to the rigid plates generate the

torques required to drive the undulating motion. This model may not correspond

to a practical way of doing things, but captures the basic idea. In particular,

with fixed wavelength, one can come up with arrangements that make more efficient

use of a smaller number of muscles that extend over longer segments of the

body.

This discrete model can now be related to a slice of a continuous model shown

in Figure 6. If we let r be the distance from the body center-line to the
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points of attachment of the "muscles", then T(x) corresponds to (fl - f2 )r, while

T(x + 6) corresponds to (f3 - f4 )r. We prefer to work with the continuous model

since it is mathematically more tractable.

BALANCING DRAG AND LIFT FORCES WITH INTERNAL TORQUES

Initially we will assume that the body :is massless and no forces or torques

are required to accelerate body segments. Later we calculate separately the

additional torques required to accelerate the body segments. Consider

a short segment of our continuous model. We find forces 6fl and ft in the

longitudinal and transverse direction respectively.

Balance of forces: F(x + 6) - F(x) - 6ft = 0

Balance of torques: T(x + 6) - T(x) - (6/2) [F(x + 6) + F(x)] = 0

That i.s: dF dr
d- = f and d-= Fdx t dx

Here we have once again assumed small inclinations of body segments.

INTERNAL TORQUES REQUIRED TO DRIVE UNDULATING BODY MOTION

Now ft = Ivt = -l(u - v)i(a sin .),

so F = l(u - v)(u/w)(a cos .) and __ T = i(u - v)(u/w) 2 (a sin ).

Here we have ignored the end conditions, namely that the torque has to drop to

zero at both ends of the body. This is easily taken care of by adding a linear

term of the form (ax + b). If T = T sin {C(t + x/u)},

b = -T sin wt

a = (T/L) [sin{w(t - L/u)} - sin wt]
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The term a becomes 0 if the wavelength divides the body-length evenly. We will

ignore this additional torque term for now.

POWER REQUIRED TO SUPPORT THIS MOTION

Work is force times distance or torque times angle. Power then can be calculated

from the product of torque times the rate of change of angle with time. Applying

this to our model, we have, per unit body length:

p d d
p = T (-)

dt dx

p = l(u - v)(u/w)2 (a sin 4)(w/u)Mw( sin 0)

p = I(u - v)u(C sin 0)2

Averaged over one cycle or one wavelength this becomes:

p = (C2 /2)1(u - v)u

Now for steady forward motion we found (u - v) = (d/l)(2/a2 )v. So,

p = duv

This remarkable result shows that the power required to propel this body is

little more than the power required to push a stick of the same dimensions

through the fluid at the same speed.- This latter quantity is of course dv2 .

CONDITIONS FOR MINIMUM POWER

Let us calculate the power more precisely using
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p= (M2/2)l(u - v)u

I + (2/a2 )d

S- d

and d
u - v = - [1 + (2/c2 )]v

1 -dI - d

Then - = Id [1 + (d2/2)][l + (2/a2)d]v2

(1 - d)

This is minimal for (Wo2/2) = "r17T, that is, Y/A = (1/ier) //Vrd7i.

This suggests that a typically will be a lot less than 1 since d will usually

be small compared to 1. The maximum is very broad and a range of amplitude to

wavelength ratios will produce near minimum power comsumption. We also see

that smaller bodies in hgh viscosity fluids require larger amplitude to wave-

length ratios for least power compared to larger bodies in low viscosity fluids.

The minimal power is,

dv
2

S = dv2  =du 2

Pmin

This occurs for a relative slip-rate of

V 1 - F/I

u - v id/-1
u

So the optimal slip-rate as far as power consumption is concerned is approximately

the square root of the drag-lift ratio.



-15-

PHASE RELATIONSHIPS OF VARIOUS WAVEFORMS

The body displacement is y = Y cos 4, while the driving torque generated by the

actuators is T = (u - v)(u/w) 2 (a sin 4). The torque waveform thus lags w/2

on the displacement. This illustrates the ind,irect nature of the generation

of propulsive force and the importance of interactions of body segments to

transmit the motion. This is illustrated in Figure 7.

The curvature equals -(w/u)(a cos 0) and is thus exactly v out of phase with

the displacement. The propulsive force and the power used by the actuators

vary as (a sin *)2 and thus fluctuate at twice the frequency of the body dis-

placements and torques, being maximal at the zero crossings of the displacement

waveform.

MASS OF BODY SEGMENTS

Forces are required to accelerate the finite mass of the body segments. This

is an important factor limiting the amplitude and speed of propagation of the

travelling wave. Since the internal torques required will have a different

phase relationship to the body displacement than the torques required for pro-

pulsion, we might expect that no average power will be needed to support this

torque and that it could therefore be generated by elastic means.

Let a cross section through the body as in Figure 8 have area A, then the

mass of a thin slice will be Ap6. Here p is the density of the body, while

6 is the thickness of the slice.
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TORQUES REQUIRED TO ACCELERATE BODY PARTS

Referring to the'bod' segment of Figure 6and ignoring now the forces and torques

related to propulsion we have:

Balance of forces:

Balance of torques:

That is:

Now Y

Hence F =

dx

dx

-YW2 co

(Ap6)Y = F(x + 6) - F(x)

0 = -T(x + 6) + T(x) + (6/2)[F(x + 6) + F(x)]

Apy =  and 0 T= + F
dx dx

sb

-ApYwu sin 0

-pY(w/u) (Au2 ) sin o

=T pY(Au2 ) cos *

Here once again we have ignored integration constants reflecting the conditions

on F and T at the ends of the body.

POWER NEEDED TO SUPPORT ACCELERATION OF BODY PARTS

Since this torque component is out of phase with the rate of change of curvature

we expect no average power.

d (-d) AY,2 pw2 sin € cos *
dt dx

Since sin * cos 1 = ½sin 2ý, the average is indeed zero. Energy does have to

be pumped in and out of this system however and this limits maximum amplitude,

travelling wave velocity and angular frequency of oscillation.

This component of torque is exactly w out of phase with curvature. It is thus

possible to generate it with passive springs. The necessary spring constant



-17-

per unit length is:

T/( •x ) = p(u/) 2 Au2

While this is independent of amplitude, as expected, it does vary with angular

frequency and travelling wave velocity. In effect, the body has to stiffen up

for higher speeds.

PHASE RELATIONSHIPS BETWEEN TORQUE AND DISPLACEMENT WAVEFORMS

If the torque required to accelerate body segment masses is generated by actuators

and not passive elastic means, it will introduce a component that is in phase

with the displacement waveform. The overall torque waveform now can lag on dis-

placement anywhere from 0 to n/2, depending on the relative magnitudes of the

two components. If the body is light, moving slowly in a viscous fluid for

example, the lag will be near r/2, since most of the actuator torque will be

needed to exert forces on the fluid. On the other hand if the body is moving

rapidly through a fluid of low viscosity, the phase lag will be near 0, since

most of the torque balances body segment accelerations.

If the body cross-section varies along the length of the body, one can be

faced with a situation where the phase-shift between torque and displacement

waveforms varies along the body. This has been observed in a natural system [2].
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EFFECT OF INERTIA OF BODY SEGMENTS

In addition to lateral accelerations of body segments we also have to consider

their angular acceleration. We will show that the torque required for this is

small and in phase with the torque required to linearly accelerate body segments.

Again consider a cross-section of the body as in Figure 8 having movement

about the y-axis. The moment of inertia of a thin slice of thickness 6 and

density p will be Ip6. The equations become, ignoring the other components

now:

dF dr
0 = -F and Ip = - - + F

dx dx

since 4 = Y(w/u)w2 sine we get:

t = pY(Im 2) cost

This is clearly in phase with the torque required for lateral acceleration of

body segments and can be accounted for by adding Iw2 to the Au2 term appearing

in the equations for that torque, the power, as well as the equation for the

required spring constant.

RELATIVE IMPORTANCE OF INERTIAL AND MASS TERMS

The relative importance of the inertial and mass terms depends on the magnitude

of 1w2 compared to Au2 . Since A = 2n(u/w), we see that the mass component

dominates if

I/A < (A/21)2

Roughly, if the wavelength is much larger than the radius of gyration, we can

ignore the inertial term.
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FUNDAMENTAL EEL EQUATIONS -- SUMMARY

If we consider all contributions to the balance of forces and torques we get

the equations:

Ap; = dF - ft
dx

IpU e T + F

dx

We then assumed a travelling wave displacement of the form

y = Y cos 0 where W = w(t + x/u)

This produces an average propulsive force.

fx = dv + Y2 (w/u) 2.[du - t(u - v)]

The lateral force on the body is:

ft = -Z(u - v)Y(w/v)siný

Finally we found three torque components that must be generated internally:

T = £(u - v)Y(u/w) sin *

T2 = pYAu
2 Cos #

T3 = pYIm2 cos *
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DISCUSSION

We have developed details of the mechanical aspects of a form of swimming

locomotion. This discussion applies perhaps most directly to animals such

as sea-serpents and moray eels, but also to some extent to fish and various

kinds of worms and microscopic organisms. The vertical undulations of the

wings of rays and mantas are clearly also included.

John Purbrick has proposed another form of swimming locomotion utilizing un-

dulating waves of body cross-section instead of side-way displacement. One

might call this exterior peristalsis. We conjecture that this may be an

equally efficient method, but depends on compressibility of body segments.

Observations suggest that sea worms utilize this mode of locomotion. These

creatures are essentially fluid-filled tubes with musculature arranged to

allow contraction of selected body-segments. Waves of contraction propagate

rearward along their bodies.

An interesting question is the preference for drop-shapes and ancilliary fins

and other appendages amongst certain species. Are these forms of advantage

for anatomical or fluid-mechanical reasons? In fact, what importance is

there to varying body cross-section and amount of musculature along the length

of the bodies of some animals? Do such characteristics help or hinder the

locomotory process?

Several other issues remain to be explored. We have treated the end-conditions

on lateral force and torque somewhat cavalierely for example. Neither have

we discussed the longitudinal force in the "spine" or alternate ways of ar-

ranging the musculature. We have not explored the relative efficiency of
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of short bursts of high frequency undulatiohs fbllowed by free coasting versus

that of steady forward motion. It is possible of course that such maneuvers

are adopted by certain animals to avoid predators instead of savings in

energy expenditure. We have concentrated largely on the case of steady forward

motion, ignoring acceleration, deceleration, and turning or changing the direc-

tion of motion.

Some readers may have noticed a direct analogy between the generation of pro-

pulsive force here as a. result of rearward slippage of the body undulations

relative to the fluid with the generation of torque in an induction motor as

a result of slippage of the rotor relative to the rotating magnetic field.

Many such issues remain to be explored. Perhaps the most interesting is the

possibility of building a mechanical "eel", with the potential for very efficient

rapid propulsion with relatively little generation of noise.
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FIGURE 1. Travelling wave of body motion. The amplitude of the wave is

Y, the length of the body is L. The wave, of angular frequency w, travels

backward along the body at velocity u, while the body is propelled forward

at velocity v relative to the fluid. u is somewhat larger than v.
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FIGURE 2. Inclination of Body Segment.
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FIGURE 3. Determination of velocity along direction of body segment
and velocity at right angles to body segment.
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FIGURE 4. Determination of forces per unit length in direction of
coordinate axes.



PIN-JOINTS
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FIGURE 5. Discrete Model of Body Section. The "muscles" generate

torques around the pin-jointed "spine". The rigid plates are 2r long

and the separation between successive pin-joints is 6.



FIGURE 6. Slice of Continuous Model of Body. F is the shear force

across the body, while T is the torque.
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FIGURE 7. Phase relationship between driving torque
and displacement for the massless body model.
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FIGURE 8. Thin slice of body for mass and inertia calculation.


