
An Algorithm Design Environment
for Signal Processing

RLE Technical Report No. 549

December 1989

Michele Mae Covell

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

This work was supported in part by the Defense Advanced Research Projects Agency
monitored by the Office of Naval Research under Grant No. N00014-89-J-1489,
in part by the National Science Foundation under Grant No. MIP 87-14969,
and in part by Sanders Associates, Incorporated.

r .---...

© Massachusetts Institute of Technology. 1989. All rights reserved.

A-

W.e

A-

An Algorithm Design Environment for Signal Processing
by

Michele Mae Covell

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The computer is used in signal processing primarily for numerical calculations. Re-
cently, a number of signal-processing environments have evolved which simplify the ini-
tial creation of a signal-processing algorithm from a series of low-level signal-processing
blocks. Despite this progress, the majority of the design process is generally completed
without computer support: the analyses of the properties of the selected algorithm are
generally completed by hand as is the manipulation of the algorithm to find efficient, in-
put/output equivalent implementations. This thesis explores some of the issues involved
providing software tools for the symbolic analysis and rearrangement of signal-processing
algorithms as well as for the initial algorithm selection.

A software environment is developed, supporting numeric signal-processing compu-
tations as well as symbolic analysis and manipulation of signal-processing expressions.
The areas in which this thesis contribute lie primarily in the symbolic manipulation
of signal-processing expressions. To allow for the efficient manipulation of a variety of
"regular" algorithms, such as polyphase and FFT structures, correspondence constraints
are introduced and used to guide the rearrangement of these structures. Detailed cost
descriptors are developed to allow the environment to accurately compare the costs of
the various equivalent implementations: these comparisons are used to reduce the num-
ber of implementations presented to the user by removing the uncomputable and the
computationally inefficient forms.

The potential of constrained algorithm manipulation is demonstrated using two ex-
amples. The problem of non-integer sampling rate conversion is briefly considered. The
more complex problem of detecting and discriminating FSK codes in sonar returns is
explored in detail. A third example, on the recovery of in-phase and quadrature samples
of an RF signal, is used to highlight some of the limitations of the design tools developed
in this thesis.

Thesis Supervisor: Alan V. Oppenheim
Title: Professor, Department of Electrical Engineering and Computer Science

or

a-

Dedication

Many of my colleagues have brightened my days with their friendship during the
course of this thesis. Jerry Roylance and Jean-Pierre Schott have helped me keep my
sanity as well as contributing to my insanity. Lori Lamel and Tae Joo have given me
their friendship and support. Roz Picard and Deborah Gage have provided me with
examples of personal generosity which I have tried to imitate. Cory Myers has been
a good friend as well as an advisor and a colleague. John Hardwick, Dan Cobra and
Jeff Rodriguez have been my friends as well as my office-mates. Joe Bondaryk has been
and will always be my "fellow TA." My friendship with Joe, with John Richardson and
with Steve Isabelle has had the added dimension of a shared enthusiasm for jazz. Greg
Wornell and Jim Preisig have brightened my days with both friendship and humor.

My days of graduate work have also been brightened by the love and the understanding
of my grandparents, my Dad, and Carole.

This thesis is dedicated to all these people and, most especially, it is dedicated to my
mother and my grandmother, who prompted my entrance into graduate school.

Wa

Ca

C·

�

Acknowledgments

Professor Alan Oppenheim has been a strong proponent of algorithm design en-
vironments for signal processing. I would like to thank him for his guidance, his encour-
agement and his support of this work. Over the course of the last five years, Al has
inspired my respect for his abilities as a teacher and as an advisor. I hope that both our
friendship and our professional interactions will continue beyond the end of this thesis.

My sincere thanks go to Professor Hal Abelson. His detailed and important comments
on the first draft are reflected in the current organization and emphasis of this thesis.

Professor Bruce Musicus has also given his time and his guidance to improving the
research reported here. The meetings which he organized with Cory Myers, Dennis Fogg
and Prasanna and his input at those meetings have had a direct impact on the direction
of my research. These meetings and his comments on the content of my thesis have
helped me complete this work and his friendliness and good humor have made the task
more enjoyable.

Cory Myers has provided both guidance and support throughout this thesis. Cory has
helped me with difficult technical problems through his willingness to listen and through
his enthusiasm and his talent for finding solutions. Just as important to me has been
Cory's friendship: this friendship has helped me through many difficulties as surely as
has Cory's technical advice.

My thanks also go to John Richardson and Gary Kopec. The match between John's
research and my research is surprising in its apparent perfection. Gary Kopec provided
both his time and his advice early in this research.

The National Science Foundation has generously provided support for part of this
research, through their graduate fellowship program, as have the Advanced Research
Projects Agency and Sanders Associates, Inc.

_ ___

C

I.-

r

Contents

1 Introduction
1.1 Digital Signal Processing Design Environment . . .
1.2 Primary Contributions
1.3 Notational Conventions
1.4 Dissertation Outline
1.5 An Index to the Signal-Processing Design Examples

2 Background
2.1 Numeric Signal-Processing Environments . . .

2.1.1 Array-based signal representations
2.1.2 Stream-based signal representations . .
2.1.3 Object-based signal representations . .

2.2 Signal-Expression Manipulation Environments
2.2.1 Extended SPLICE (E-SPLICE)
2.2.2 Automatic Build-Up (ABU)

2.3 Summary .

3 Introduction of an Algorithm Design Environment:
FSK-code detector

the design of an

3.1 Detection and Discrimination of FSK Codes for Multiple-beam Sonar
3.2 Algorithm Design Environment (ADE)
3.3 Derivation and Ranking of Equivalent Algorithms

3.3.1 Unconstrained search for equivalent algorithms
3.3.2 Constraints to avoid combinatorial growth of the algorithm design

space .
3.4 Application of ADE to the Design of the FSK-code Detector for Multiple-

beam Sonar
3.4.1 Matched filtering for the individual frequency chips using general

N-point windows
3.4.2 Matched filtering for the individual frequency chips using N-point

rectangular windows

9
10
12
15
16
17

19
. 22
. 22
........ 23
. 25
. 29
. 29
. 31

32

33
34
36
46
46

50

54

55

59

t-

OF

C

3.4.3 Matched filtering for the individual frequency chips using N-point
Hanning windows 64

3.4.4 Matched filtering for the individual frequency chips using 2N-point
Hanning windows 69

3.5 Summary 75
3.A The sequence of transformations used in going from the FFT of a product

involving the Hanning window to the sum of scaled and shifted versions
of the FFT of the product involving the rectangular window 78

3.B The sequence of transformations used in going from the 16-point short-
time Fourier transform using the 32-point Hanning window to the structure
shown in Figure 3.18 81

4 Signal and System Representation 89
4.1 Signal and System Representation in the Algorithm Design Environment

(ADE) 89
4.1.1 Signal and system manipulation 90
4.1.2 Signal and system definition 92
4.1.3 Summary 94

4.2 Representational Hierarchies for Signals, Systems and their Classes . . . 94
4.2.1 Object-oriented programming 94
4.2.2 Hierarchical organization of signal and system representations . . 96

4.3 Abstract Objects and Specific Objects with Dependencies on Abstract
Objects 98
4.3.1 Representation of abstract objects 99
4.3.2 Representation of specific objects with dependencies on an abstract

object 102
4.3.3 Summary 106

5 Determination of Property-Value Information 109
5.1 Rule-based Programming in the Algorithm Design Environment 110
5.2 The General Characterization of Properties 115
5.3 Efficiency in Property-Value Determination 119

5.3.1 Static hierarchical organization of the rule base 119
5.3.2 Efficient descriptions for backward-chaining rules in signal processing120

5.4 Summary 124

6 Regularity in Signal-Processing Algorithms 125
6.1 Growth of the Design Space for Signal-Processing Algorithms 126

6.1.1 Infinite expansion of the design space due to increasing complexity
introduced by simple transformations 126

6.1.2 Infinite expansion of the design space due to identity loops in re-
cursive subexpression decomposition 129

6.1.3 Combinatorial growth of the algorithm design space .. . 132

-- 1 -__ .

6.2 Regularity in Computation 133
6.3 Expressing and Maintaining Regularity 136

6.3.1 Propagating correspondence constraints through parallel expressionsl37
6.3.2 Propagating correspondence constraints to a modified structure . 141
6.3.3 Manipulation of a single constrained expression . . .

6.4 Summary
146
148

7 Cost Measures
7.1 External Characteristics of Signal-Processing Cost Me

7.1.1 Cost metric space
7.1.2 Time distribution of cost

7.2 Internal Behavior of Signal-Processing Cost Measures
7.2.1 Propagation of cost
7.2.2 Local assignment of cost

7.3 Summary

153
~asures 153

.154

.157

.160

.160

....... 167

.170

8 Contributions and Limitations
8.1 Contributions.
8.2 Limitations
8.3 Suggestions for Future Research

8.3.1 Signal and system representation . .
8.3.2 Noise and sensitivity analyses .
8.3.3 Cost measures
8.3.4 Regularity constraints.
8.3.5 Automatic extension of the rule-base

A The
A.1

173
174
176
181
181
182
183
184
185

Algorithm Design Environment (ADE): a user's guide
Functions for Creating and Manipulating Signals and Systems
A.1.1 Specific, inherent signal classes.
A.1.2 Specific system classes
A.1.3 Abstract, inherent signal classes
A.1.4 Abstract system classes
A.1.5 Retrieval of property values
A.1.6 Retrieval of sample values

189
.... 191
.... 191
.... 196
... . 212
.... 212
... . 214
.... 216

A.2 Functions for Creating and Manipulating Intervals, Symbolic Numbers and
Polynomials.
A.2.1 Interval representation and manipulation
A.2.2 Representation and manipulation of symbolic numbers
A.2.3 Polynomial representation and manipulation

A.3 Functions for Adding New Properties and New Control Strategies
A.3.1 Property declaration.
A.3.2 Control strategy definition

A.4 Functions for Adding New Signal and System Classes

217
217
221
222
224
224
225
227

_.___ ____1 _l__l__llil___lllLI�-_·I�·�^_--

r-

_·

C

L"

A.4.1 Definition of abstract signal and system classes 227
A.4.2 Definition of specific signal and system classes 230
A.4.3 Sample-value descriptions 233

B Caching Table Organization 239

C Pattern Matching in ADE 245

D Dominance relations between cost measures in ADE 249

___LIYI·____IIIIIII� 1�----_-91111----��1XIILI- __-·_IIIP1��-IIC-I�·--- �--·ll�-P _-- --. _ �--��-

A

4.

.A-

Contents

1 Introduction
1.1 Digital Signal Processing Design Environment . . .
1.2 Primary Contributions
1.3 Notational Conventions
1.4 Dissertation Outline
1.5 An Index to the Signal-Processing Design Examples

2 Background
2.1 Numeric Signal-Processing Environments

2.1.1 Array-based signal representations.
2.1.2 Stream-based signal representations
2.1.3 Object-based signal representations.

2.2 Signal-Expression Manipulation Environments . . .
2.2.1 Extended SPLICE (E-SPLICE)
2.2.2 Automatic Build-Up (ABU)

2.3 Summary

3 Introduction of an Algorithm Design Environment:
FSK-code detector

the design of an

3.1 Detection and Discrimination of FSK Codes for Multiple-beam Sonar . .
3.2 Algorithm Design Environment (ADE)
3.3 Derivation and Ranking of Equivalent Algorithms

3.3.1 Unconstrained search for equivalent algorithms
3.3.2 Constraints to avoid combinatorial growth of the algorithm design

space .
3.4 Application of ADE to the Design of the FSK-code Detector for Multiple-

beam Sonar
3.4.1 Matched filtering for the individual frequency chips using general

N-point windows
3.4.2 Matched filtering for the individual frequency chips using N-point

rectangular windows

9
............10
............12
..15
........... . .16
.17

19
.22
.22
.23
........... . .25
.29

29
. 31
.32

33
34
36
46
46

50

54

55

59

3.4.3 Matched filtering for the individual frequency chips using N-point
Hanning windows 64

3.4.4 Matched filtering for the individual frequency chips using 2N-point
Hanning windows 69

3.5 Summary 75
3.A The sequence of transformations used in going from the FFT of a product

involving the Hanning window to the sum of scaled and shifted versions
of the FFT of the product involving the rectangular window 78

3.B The sequence of transformations used in going from the 16-point short-
time Fourier transform using the 32-point Hanning window to the structure
shown in Figure 3.18 81

4 Signal and System Representation 89
4.1 Signal and System Representation in the Algorithm Design Environment

(ADE) 89
4.1.1 Signal and system manipulation 90
4.1.2 Signal and system definition 92
4.1.3 Summary 94

4.2 Representational Hierarchies for Signals, Systems and their Classes . . . 94
4.2.1 Object-oriented programming 94
4.2.2 Hierarchical organization of signal and system representations . . 96

4.3 Abstract Objects and Specific Objects with Dependencies on Abstract
Objects 98
4.3.1 Representation of abstract objects 99
4.3.2 Representation of specific objects with dependencies on an abstract

object . 102
4.3.3 Summary 106

5 Determination of Property-Value Information 109
5.1 Rule-based Programming in the Algorithm Design Environment 110
5.2 The General Characterization of Properties 115
5.3 Efficiency in Property-Value Determination 119

5.3.1 Static hierarchical organization of the rule base 119
5.3.2 Efficient descriptions for backward-chaining rules in signal processingl20

5.4 Summary 124

6 Regularity in Signal-Processing Algorithms 125
6.1 Growth of the Design Space for Signal-Processing Algorithms 126

6.1.1 Infinite expansion of the design space due to increasing complexity
introduced by simple transformations 126

6.1.2 Infinite expansion of the design space due to identity loops in re-
cursive subexpression decomposition 129

6.1.3 Combinatorial growth of the algorithm design space 132
I.

_��

6.2 Regularity in Computation 133
6.3 Expressing and Maintaining Regularity 136

6.3.1 Propagating correspondence constraints through parallel expressions137
6.3.2 Propagating correspondence constraints to a modified structure . 141
6.3.3 Manipulation of a single constrained expression . . .

6.4 Summary
146
148

7 Cost Measures 153
7.1 External Characteristics of Signal-Processing Cost Measures 153

7.1.1 Cost metric space 154
7.1.2 Time distribution of cost 157

7.2 Internal Behavior of Signal-Processing Cost Measures 160
7.2.1 Propagation of cost 160
7.2.2 Local assignment of cost 167

7.3 Summary 170

8 Contributions and Limitations 173
8.1 Contributions 174
8.2 Limitations 176
8.3 Suggestions for Future Research 181

8.3.1 Signal and system representation 181
8.3.2 Noise and sensitivity analyses 182
8.3.3 Cost measures 183
8.3.4 Regularity constraints 184
8.3.5 Automatic extension of the rule-base 185

A The Algorithm Design Environment (ADE): a user's guide 189
A.1 Functions for Creating and Manipulating Signals and Systems 191

A.1.1 Specific, inherent signal classes 191
A.1.2 Specific system classes . 196
A.1.3 Abstract, inherent signal classes 212
A.1.4 Abstract system classes 212
A.1.5 Retrieval of property values . 214
A.1.6 Retrieval of sample values 216

A.2 Functions for Creating and Manipulating Intervals, Symbolic Numbers and
Polynomials
A.2.1 Interval representation and manipulation.
A.2.2 Representation and manipulation of symbolic numbers .
A.2.3 Polynomial representation and manipulation .

A.3 Functions for Adding New Properties and New Control Strategies . .

A.3.1 Property declaration.
A.3.2 Control strategy definition .

A.4 Functions for Adding New Signal and System Classes .

217
217
221
222
224
224
225
227

__ ·^_-~_1--· -1 1

A.4.1 Definition of abstract signal and system classes 227
A.4.2 Definition of specific signal and system classes 230
A.4.3 Sample-value descriptions 233

B Caching Table Organization 239

C Pattern Matching in ADE 245

D Dominance relations between cost measures in ADE 249

____ � __

Chapter 1

Introduction

In carrying out signal-processing system design, there are some design tools currently

available (Morris, 1977; Geth6ffer, 1980; Dove et al., 1984; Johnson, 1984; Bentz, 1985;

Chefitz, 1987; Hicks, 1988; Nagy, 1988), but they primarily provide a convenient environ-

ment for writing programs. There is no environment generally available which remaps

signal-processing algorithms specified at a high level of abstraction to algorithmic descrip-

tions that are more computationally efficient. Accomplishing this requires non-trivial,

global transformations of the problem statement in order to work towards an efficient low-

level solution. The focus of this thesis is the symbolic manipulation of signal-processing

algorithms to find efficient implementations or, more accurately, a software environment

which supports and partially automates these manipulations. A successful design envi-

ronment could, in some cases, improve on designs generated by experienced engineers. A

more likely and also highly desirable outcome is an environment which quickly produces

reasonably efficient designs of signal-processing algorithms.

This chapter introduces the thesis topic, an environment for digital signal processing

algorithm design, by tracing out the long-term goal of research in this area and briefly

considering some of the previous and ongoing research in this and related fields.

9

�^L�1� --U�-lllll·lll �--��--�. -..L Y.C - I - - I I

1.1 Digital Signal Processing Design Environment

There are many examples in which reconfiguring an algorithm through a large number

of straightforward transformations can lead to major gains in performance. Multirate

techniques for signal processing which interchange various levels of downsampling and

filtering can vary by one to two orders of magnitude in computational requirements,

depending on the specific ordering of the successive stages (Crochiere and Rabiner, 1975).

Similarly, in many digital filtering applications with fixed-point arithmetic, the effects of

arithmetic roundoff errors in the resulting signal-to-noise ratios of the processor output

are highly dependent on the ordering of sections (Jackson, 1970; Chan and Rabiner,

1973a; Chan and Rabiner, 1973b; Jackson, 1986). Clearly this type of transformation

could and should be handled in a semi-automated design environment.

Other examples in which significant improvement can be expected through algorith-

mic transformation are the mapping of algorithms onto highly pipelined and parallel ar-

chitectures. For systolic or single-instruction, multiple-data (SIMD) arrays, for example,

it is well known that straightforward approaches to multiplying matrices or solving linear

equations lead to inefficient programs requiring the broadcast of data across the array

and resulting in the poor utilization of the processor resources. Techniques are known,

however, for using staggered sweeps of processors through the geometrically regular data

flow-graphs which define these problems, to achieve extremely efficient utilization of the

array (Barnwell et al., 1982; Barnwell and Schwartz, 1983; Schwartz, 1985). Unfortu-

nately, such sweeps require unusual patterns of data storage, data access, communication,

and operation timing. The success of such inexpensive, massively parallel architectures

might well depend on the development of high-level compilers capable of rearranging the

computation into forms suitable for such machines, and capable of choosing appropri-

ate data-sweep patterns through each step of the computation to maximize the storage,

computation and communication efficiency of the machine.

These examples illustrate the application area which digital signal processing design

environments may affect. Specifically, research in this field is ultimately aimed at sup-

10

_ �

porting the process of signal-processing design from the initial conception of the system

and analysis of its characteristics through the global rearrangement of the algorithm

down to the selection of a particular processor architecture and the scheduling onto that

hardware. Although this particular thesis addresses more modest goals, its contributions

in the area of algorithm design represent progress along a path toward this ultimate goal.

In deciding to attack the problem of signal-processing algorithm manipulation, there

are two motivations: the benefit to the field of digital signal processing and, as a possible

bonus, the further exploration of the AI paradigms and their interactions. The field of

DSP can benefit from semi-automatic algorithm manipulation both from the reduction

in detail that the system designer must consider and also from the discovery of novel

implementations of common signal-processing operations. One may argue that the second

benefit will seldom be seen, that very few new DSP implementations can be found using

rudimentary manipulations. A counter argument is that, even in the short time over

which research in this area has extended, novel implementations in well-developed areas

of signal processing have been found (Myers, 1986; this thesis). Even ignoring this

possible benefit, the field of signal processing can still benefit from environments like the

one researched here in much the same way that fields using integral calculus benefit from

MACSYMA (Rand, 1984). MACSYMA has not resulted in the discovery of new closed-

form solutions to integral equations.' Instead, the contribution of MACSYMA has been

to relieve the user of the burden of knowing about and completing the mathematical

transformations which are embedded in it. Similarly, a design environment like the one

proposed here can partially relieve the user of the burden of rearranging algorithms by

hand.

The field of digital signal processing also has a fairly unique combination of char-

acteristics which allows the exploration of interactions between AI paradigms. Since

the included signal-processing manipulations are exact as opposed to heuristic, algo-

rithm manipulation can avoid the issues of approximation and certainty measures. The

'It is interesting to note that MACSYMA has, indirectly, resulted in the derivation of new numerical
methods, due to a heightened interest in this field.

11

___ ^_I_�_� ·· _11 -�-·--_1.11�
·- ill-q·-- . IIC-· I--X-I^I1C-L- .� ··_- ---�-·I �- I -- ·- I -CI--- 1LIII--l

manipulation of signal-processing algorithms has a high branching factor, making the

use of higher-level rules, like control strategies and search-space reduction, an impor-

tant consideration. Another interesting characteristic of signal processing is its largely

object-oriented structure: signals and systems are the primary focus of signal-processing

manipulation; each signal and system has a separate identity; each can be classified ac-

cording to its properties; and the behavior of each is most easily described according to

this classification. Thus, the field of digital signal processing can be used as a natural

avenue for exploring interactions between object-oriented programming and rule-based

systems.

To determine our chance of success in this area of research, a goal must be agreed

upon. The goal that is being set for the short term is more modest than the long-

term goal described earlier. The goal of this dissertation is to further demonstrate the

potential of algorithm manipulation in digital signal processing, by exploiting some of the

characteristics of the field of DSP and by combining some of the current AI paradigms.

Although this goal is modest compared to our stated long-term goal, it is a necessary step

on the road to a practical implementation of a signal-processing design environment: the

tools that are appropriate for signal-processing algorithm manipulation must be found

before we can hope to further assess the practicality of semi-automatic algorithm design.

Some of the evidence that leads us to believe that success is possible in our long-term

goal is the previous success of E-SPLICE (Myers, 1986) which used only basic AI tools

and our own success with ADE, which is described in detail in this thesis.

1.2 Primary Contributions

The primary contributions of this thesis lie in the area of algorithm reconfiguration.

One of the stated goals of a signal-processing design environment is the provision of

semi-automated algorithm design. This capability is provided in the Algorithm Design

Environment (ADE) via the enumeration and partial ranking of input/output equivalent

12

I� � _ _ _ _ I _

implementations of an algorithm. At the user's request, the design environment searches

for implementations of a signal-processing expression. To obtain equivalent implemen-

tations, the environment applies algorithmic transformations to the signal-processing

expression and to all its component subexpressions. In addition, the transformed algo-

rithms are themselves used as seeds for further transformations. To avoid combinatorial

growth of the search space, due to the independent manipulation of component subexpres-

sions, this thesis introduces the concept of correspondence constraints. Correspondence

constraints are used to reflect and maintain the internal regularity of algorithms, such

as polyphase and FFT structures. By enforcing these constraints, the size of the search

space is reduced from O(MN) to O(M), where N is the number of parallel subexpres-

sions being constrained and M is the number of equivalent implementations which are

uncovered for each of these subexpressions.

To allow equivalent implementations to be compared, this thesis also develops a de-

tailed cost metric for describing the computational requirements of an implementation.

These cost metrics are not used in actually reducing the size of the search space, since the

costs of separate subexpressions can interact and since the recursive search used in finding

equivalent expressions allows a simple, local change to have a global effect on the imple-

mentation. Instead, the cost measures are used as a filter for removing uncomputable or

inefficient implementations of a signal-processing expression before the equivalent imple-

mentations are presented to the user. As such, the cost metric must provide an accurate

reflection of the cost of each implementation. Vectors of operation counts and memory

requirements provide the basis for describing the cost of each algorithm: vectors must be

used since the actual time and area cost of any algorithm is highly dependent not only on

the algorithm, but also on the selection for the hardware architecture and the scheduling

onto that hardware. Index dependencies are also explicitly included in the cost metrics:

thus, the difference between a signal adder and an FFT would be reflected in the size of

the computational block which each cost vector describes and in the indices over which

the costs are imposed. Using these index-dependent cost vectors, the actual cost of each

13

_____ 1_1 1._·_1·_111111�----_I---�---II ^^ -�·--r�·__-- II__L------ --PI�-��-·�-·----Y-_I�LILLUI-�O-

implementation can usually be accurately described.

Another important contribution of this work is the development of signal and system

representations which allow information to be easily and efficiently shared between related

objects. The idea of abstract objects, first introduced by Myers (1986), allows sets

of signals and systems to be manipulated simultaneously. For example, by using the

description "a real, symmetric discrete-time sequence" to characterize a signal, the set of

all real, symmetric discrete-time sequences can, in effect, be manipulated simultaneously.

Due to the generality of this description, the result of invoking the description "a real,

symmetric discrete-time sequence" is a distinct abstract sequence for each invocation.

If the result were identical on each invocation, two distinct abstract sequences, both

characterized by a single description, could not be considered simultaneously. This results

in the generation of multiple, distinct but closely related objects. In particular, all of the

information which is known and which can be determined about the instances of a single

abstract description is identical, to within a simple substitution. This thesis introduces

a two-level representation for abstract objects to allow this common information to be

shared. A similar two-level representation is developed for signals and systems which

depend on an abstract object. The advantage of these two-level representations is the

ease with which information derived for one instance can be reused in characterizing a

related instance.

In this thesis, the problem of FSK-code detection and discrimination is used to il-

lustrate many of the above issues. The detection and discrimination of FSK-codes in a

sonar environment is completed in two largely separate stages: matched filters are used

to detect the individual frequency chips which make up the FSK-code signals and inco-

herent summation is used to form the complete FSK-code detectors from these filtered

signals. The size of the unconstrained design space for this problem highlights the ne-

cessity for regularity constraints in algorithm manipulation. Innovative implementations

for the matched filters are uncovered for three alternate frequency-chip shapes. These

implementations and the paths by which they are obtained are discussed in detail in

14

_ __

Chapters 3.

The notational conventions used in this thesis are discussed in the next section of

this chapter. The chapter then closes with an outline of the thesis and an index to the

signal-processing design examples within the thesis.

1.3 Notational Conventions

Throughout this thesis, the notational conventions of Oppenheim and Schafer (1989)

are used. For example, x[n] is used to represent a discrete-time sequence; X(e jw)

represents its Fourier transform; and X(z) represents its z transform. Downsampling

x[n] by a factor of N, represented graphically in Figure 1-1-a, removes N - 1 of ev-

ery N samples, resulting in y[n] = x[Nn]. Upsampling x[n] by a factor of N, rep-

resented graphically in Figure 1-1-b, inserts N - 1 zeroes between samples, resulting

in y[n] = [n/N] n = kN Figure 1-1-c shows the graphical representation of
0 otherwise

the convolution of x[n] and h[n]. Figure 1-1-d through 1-1-f show alternate graphical

representations of shift operations. Figure 1-1-d shows a single-sample delay, so that

y[n] = x[n - 1]. Figure 1-1-e and 1-1-f both represent y[n] = x[n + k] graphically.

In addition, LISP descriptions and objects are represented within this thesis. Small

capital letters are used for LISP inputs and outputs. Thus, (OUTPUT-OF (SHIFT 5)

(IMPULSE-SEQUENCE)) represents a request for the sequence 6[n + 5]. As is customary,

LISP variables or symbols are represented using their names and LISP lists are repre-

sented by enclosing their components by parentheses. Object-based representations, such

as will be used for signals and systems, are generally represented by enclosing the LISP

expression which generated them in braces: thus, the actual sequence 6[n + 5] will be

represented as #<(OUTPUT-OF (SHIFT 5) (IMPULSE-SEQUENCE))>. Evaluating (NAMED-

SETQ var obj), when var is a symbol and obj gives an object-based representation, binds

the symbol var to obj and changes the printed representation of obj to be #<var>. For

example, evaluating (NAMED-SETQ X (OUTPUT-OF (SHIFT 5) (IMPULSE-SEQUENCE))) binds

15

_ I�L� I __CIIICI_·____YIIIII__ �.��-II�C ._ ��--···111111^11^·-1I_- -··1)·11^�----1__�11II^-·-- -l�i____·�I �·-111- 1^ Il--·ll�----L- - -

x -IN y

a. y[n] = x[Nn]

x -- _ delay y

d. y[n] = x[n-l]

x--- N y

x[n] n=kN

b. y[n] = n
0 otherwise

x k

e. y[n] = x[n+k]

x -- h[n] y

c. y[n] = h[n]* x[n]

-(shift k)- y

f. y[n] = x[n+k]

Figure 1-1: Graphical representations of some signal-processing operations

x to the object #<(OUTPUT-OF (SHIFT 5) (IMPULSE-SEQUENCE))> and changes the printed

representation of the shifted impulse to #<x>.

1.4 Dissertation Outline

The presentation of the material in this thesis can be separated into two interleaved

parts. Material of general interest in signal processing is presented in this chapter and

in Chapters 2, 3 and 8. Material on the underlying in an algorithm design environment

is presented in Chapters 4 through 7. This organization is the result of an effort to move

material of general interest to the beginning of the thesis without having to repeat the

discussion of the supporting representations: concrete examples of the use of a design

environment are presented before the representational intricacies are discussed.

Chapter 2 reviews some the previous and concurrent research into languages and

environments for signal processing. Chapter 3 introduces an FSK-code sonar detection

problem which will be used throughout this thesis to illustrate the issues under discussion.

Chapter 3 also introduces the Algorithm Design Environment (ADE). ADE is based on

16

� _� I

the representational and implementational choices which are advocated within this thesis.

Finally, Chapter 3 presents some of the algorithmic structures which were uncovered using

constrained search in ADE.

Chapter 4 explores the desired characteristics of the signal and system representations

within a design environment. Chapter 5 describes some aspects of a control structure

having both the flexibility required for general signal-processing design and the efficiency

made necessary by the size of the design spaces under consideration. Chapter 6 consid-

ers the search space for algorithm design and the use of regularity to limit that space.

Finally, Chapter 7 develops a cost measure for comparing alternate implementations of

an expression.

This thesis closes with Chapter 8 which highlights the strengths and weaknesses of

the design environment and offers suggestions for future research in the field of algorithm

design environments.

1.5 An Index to the Signal-Processing Design Ex-

amples

As mentioned before, the organization of this thesis attempts to present material of

general signal-processing interest in the early chapters. As a result, the examples of

signal-processing algorithm design are scattered throughout the thesis, instead of being

collected into a single chapter.

The problem of designing a bank of matched filters for the individual frequency chips

of the FSK-code signal is considered in section 3.4 of Chapter 3. This section includes

the design of matched filter banks for three alternate frequency-chip windows.

The implementation of a 4:5 non-integer sampling rate conversion is briefly discussed

in section 6.4 of Chapter 6.

Finally, the recovery of in-phase and quadrature samples of an RF signal is considered

in section 8.2 of Chapter 8.

17

__1_ - i_ I14~I__

__ _ ___ �_1� _1__�11�____1·_1_____IP-I(---_I^YI--.-^)

18

__ __

Chapter 2

Background

As stated in the previous chapter, the eventual goal of research in the field of signal-

processing design environments is to provide the engineer with an environment that will

support and expedite all stages of the signal-processing design: the initial selection of a

prototypical algorithm; the manipulation and analysis of the algorithm; the exploration

of input/output equivalent implementations; and the selection of and scheduling onto a

processor architecture.

Many languages and software tools have been suggested to support the first stage of

the design process, namely, the selection and numerical characterization of a prototypical

algorithm (Morris, 1977; Geth6ffer et al., 1979; Dove et al., 1984; Johnson, 1984; Bentz,

1985; Chefitz, 1987; Hicks, 1988). Most of these languages were developed to only support

the selection of a particular, computable implementation: as a result, they can only

represent a limited subset of the systems fundamental to digital signal processing. For

example, they can not represent the discrete-time Fourier transform or the z transform

of a general sequence. Furthermore, the majority of these languages can only represent

a limited subset of the signals fundamental to signal processing. For example, with the

exception of SPLICE (Dove et al., 1984; Myers, 1986) and D-PICT (Hicks, 1988), none

of the current languages can accurately represent a general exponential sequence, one of

the signals fundamental to transform analysis.

19

_I _ I C�_I_ ^_ II _ _ ___1_ �I·I--I-·-�^^I�-·I ·ICII.---.--.- ��111 11�-1^_1_-__----·LIl··I_·-��-I�� - -11-·1 -111111�------�-

A.

Research into the automatic or the semi-automatic exploration of input/output equiv-

alent implementations has been limited and recent. Myers (1986) developed a symbolic

signal representation and some symbolic manipulations of signals on top of a basic signal-

processing package. These symbolic manipulations include the capability to analyze sig-

nal properties such as non-zero support, period, sample type and symmetry; to rearrange

block diagrams of systems without affecting their input/output characteristics; and to

partially characterize the computational cost of alternate implementations. Fogg (1988)

proposes to explore the manipulation of irregular signal flow-graphs to generate custom

VLSI hardware implementations. While Fogg (1988) does not propose to analyze the

properties of the system being manipulated or those of the signals flowing through the

system, Fogg (1988) does provide suggestions on one of the issues central to this thesis:

namely, ways of limiting and guiding the search for "efficient" implementations.

The final stage of the design process which should be supported by the design envi-

ronment is the selection and scheduling onto a particular processor architecture. Many

compilers exist for mapping a fixed signal flow graph onto a fixed set of architectures

(Siskind et al., 1984; Traub, 1986; Lam, 1987; Smith, 1987; Zissman et al., 1987). All

of these avoid the issue of the architecture selection by assuming that this selection has

already been made. Prasanna (1988) proposes to study this joint selection and scheduling

process using simple, highly regular algorithms such as the matrix/vector multiply of a

discrete Fourier transform.

This chapter examines some of the previous and concurrent work in the areas of signal-

processing languages and environments. Environments without the ability to manipu-

late signals, their properties and their generating expressions are categorized as numeric

signal-processing environments, since all of these abilities are generally necessary for sym-

bolic manipulation of signal-processing expressions. Using this criteria, only the research

by Myers (1986) has previously resulted in an environment for signal-expression manip-

ulation. A description of the work proposed by Fogg (1988) is included in the section

on signal-expression manipulation environments, even though his proposed environment

20

_

does not meet all the criteria: in particular, no explicit signal or system representation

is proposed nor will property manipulation be supported. Instead, this categorization

of Fogg (1988) is meant to reflect its emphasis on symbolic manipulation of algorithmic

forms. In all these overviews, an effort will be made to summarize the contributions

and shortcomings of these pieces of work from the point of view of signal-expression ma-

nipulation. The remainder of this section provides an outline of the desired properties

of the signal representations, properties which are considered necessary for a complete

representation.

Signals in signal processing are express entities (Kopec, 1980): they are not just an

ordered collection of sample values, but instead have a distinct identity and inherent

properties of their own. Many of their properties, such as non-zero support, domain and

symmetry, are closely tied to the sample values, but others, like the cost of computing

the sample values between -oo and oo, can not be derived from the sample values.

Therefore, an explicit signal representation, distinct from a simple ordered set of sample

values, is required.

The domain of a signal determines where the signal is defined: discrete-time sequences

are defined on all integer time indices and undefined elsewhere; discrete-time Fourier-

transform signals are continuously defined on all real frequency indices; and z-transform

signals are defined on the annulus of complex indices inside its region of convergence and

undefined elsewhere. Any sample value within the defined domain of the signal should be

accessible. Accessing a signal inside its domain but outside its non-zero support should

return the sample value of the signal at that point, namely zero. This results in an

explicit separation of the domain and the non-zero support of a signal, as advocated by

Dove et al. (1984) and Myers (1986).

Mathematically, signals are immutable objects: their identity and their properties are

fixed and unchanging. For example, the sample values, symmetry and non-zero support of

the complex-exponential sequence, e ' n, are completely defined and immutable. Using

this sequence as input to a system, like an FIR filter, does not alter the sequence but

21

___ _11-· - -rml�--Z�II1IIII�LIIII^II1111--.I�-L-LII -�---L· _···llillllll�ill1ll-�-� ��

instead produces a new sequence. As pointed out by Kopec (1980), this immutability

in signals also simplifies and clarifies the signal-processing algorithms which use them:

immutability makes signals referentially transparent.

As demonstrated in Myers (1986), a final ability that is highly useful in signal-

processing algorithm design is the ability to generate and manipulate abstract signals, in

much the same way as specific signals. For example, various system characteristics can

be examined by passing through the system a signal representing some set of signals, like

an abstract discrete-time sequence.

In summary, the characteristics which will be considered essential to a complete sig-

nal representation include: a distinct signal identity; the ability to manipulate signal

properties; an explicit signal domain, distinct from its non-zero support; and immutabil-

ity. Another highly useful characteristic is the ability to generate and manipulate signal

representations corresponding to a class or set of signals.

2.1 Numeric Signal-Processing Environments

This section surveys some of the available signal-processing software used for numer-

ical manipulation of signals. This survey does not attempt to exhaustively catalogue

currently available software. Instead an attempt is made to examine the range of signal

and system representations.

2.1.1 Array-based signal representations

The most commonly used signal representation is an array-based signal represen-

tation. For example, an FIR filter would be represented by an array containing its

coefficients and a system to add two sequences would simply add corresponding entries

of the array representations. Using this representation, sample values are passed using

array storage. Notable examples of this approach include the IEEE programs for digital

signal processing (DSP Committee, 1979) and the Interactive Laboratory System (Signal

22

_

Technology, Inc).

Arrays have many problems as a signal representation. Arrays are finite in extent and

can only be used to model discrete-time sequences. The representation is not immutable:

the values of an array can be modified by any of the programs that reference it. In

most languages, arrays are indexed from a fixed starting index, either 0 or 1, restricting

the starting point of the non-zero support. Furthermore, indexing an array outside its

support generally results in an error: that is, the domain of the representation is restricted

to be identical to the non-zero support. Finally, in most languages, arrays do not have

any provisions for maintaining associated properties, such as the cost of determining a

sample value.

2.1.2 Stream-based signal representations

Stream-based signal representations are another common approach to signal represen-

tation, particularly in block-diagram programming languages (Kelly et al., 1961; Radar,

1965; Henke, 1975; Johnson, 1984). Within these languages, the user constructs a digital

signal processing system by selecting and connecting a set of processing blocks, after in-

stantiating their free parameters to specific values. The blocks represent signal-processing

systems and the signals connecting them are generally represented by streams. In this

usage, a stream is a data structure which behaves like a FIFO queue: values are read from

the receiving end of the stream in the same order as they are placed into the stream on

the transmitting end.1 Depending on the stream implementation, attempts to retrieve

sample values after the data in the stream has been exhausted can return either a unique

"empty" symbol or a zero. Figure 2-1 illustrates the use of streams, assuming zeroes are

transmitted once the data in the stream is exhausted.

Streams, while seemingly natural representations for one-dimensional discrete-time

'Streams, as they are described here, are different from the streams described in Abelson and Sussman
(1985). As used here, reading a value from the stream has the side-effect of removing that value from
the front of the stream. This corresponds more closely to queues as they are discussed in Abelson and
Sussman (1985).

23

_ _1·� 1_11____ _1_ ̂·_·111__�· _·(_____··_)I__LL*_I_^I^·�L·ICI···I ^11�-I1· III�III_-LI--�ll�-- �- �X- *- P - -I-

(DEFINE (IIR-STREAM A Y) ; create y[n] = anu[n]
(LET ((YN 1)) ; the saved state of the system

(PUT-STREAM Y
(PROG1 YN ; use the saved state as the next value

(SET! YEN (* A Y..N)))))) ; update the state

(DEFINE (STREAM-ADD X1 X2 Y) ; create y[n] = zl[n] + x2[n]
(PUT-STREAM Y

(+ (GET-STREAM Xl) (GET-STREAM X2))))

Figure 2-1: Stream-based signal model
A stream is a data structure which behaves like a FIFO queue. In this example, GET-STREAM

removes the next value from the receiving end of the stream. Values are removed in the same order as
they are placed into the stream on the transmitting end by PUT-STREAM. Stream representations are
shown for the IIR sequence class y[n] = anu[n] and for the system, y[n] = zl[n] + z2[n].

sequences, can not be used in a straightforward manner to represent multi-dimensional

sequences, discrete-time Fourier-transform signals or z-transform signals. Furthermore,

even within the field of one-dimensional discrete-time sequence representation, streams

have some basic difficulties. Streams have an implied origin: the first value put into and

taken out of the stream. This complicates the representation of left-sided sequences, like

an anti-causal IIR sequence, and two-sided sequences, like a discrete-time sinc sequence.

The non-zero support of the sequence is not explicitly available: to determine the support,

all- the sample values must be read from the stream and counted. Furthermore, the

support may not be determinable at all: if the stream transmits zeroes after its data is

exhausted, then in order to determine the non-zero support, an explicit function must

be available which, when applied to the stream, indicates whether or not the stream

is exhausted. Otherwise, there is ambiguity between a stream that has zero sample

values followed by one or more non-zero sample values and a stream which was actually

exhausted. Transmitting a unique "empty" signal to indicate an exhausted state avoids

this problem at the expense of a nonuniform signal representation: in this case, the

sample values outside the non-zero support on a stream will not be represented in the

24

__

same way as those within the non-zero support. Finally, the FIFO behavior of the stream

has the visible side-effects of queuing and dequeuing sample values and forces access to

be sequential.

2.1.3 Object-based signal representations

Signal Representation Language (SRL)

SRL (Kopec, 1980; Kopec, 1985) is the result of research by Kopec into data abstrac-

tions both to reflect the basic characteristics of signals and to support numeric manipula-

tions. In particular, Kopec (1980) advocated the immutability of signals and the explicit

availability of their non-zero supports as being essential for simplifying and clarifying

signal-processing programs. In SRL, sequences, being immutable, are not changed by

subsequent processing; instead, new sequences are created. Thus, a sequence is repre-

sented as a distinct object whose sample values are provided on request. SRL also explic-

itly maintains a record of the size of the non-zero support of each sequence. Knowledge

of the non-zero support of the sequence is used internally to simplify storage allocation,

relieving the user of this chore. Two examples of sequence definition in SRL are shown

in Figure 2-2.

As one of the first efforts in the field of signal representation, SRL (Kopec, 1985) was

a welcome abstraction away from the typical representation of sequences as an array of

values. Furthermore, by introducing the convention of immutability in sequences, signal-

expression manipulation as it later developed was greatly simplified: the identity of a

sequence was made context independent. The limitations of SRL in its applicability to

numeric signal processing led to the later development of SPLICE, as described below.

Among these limitations are the assumption that the non-zero support of a sequence

always extends upward from the origin and the limitation that the sample values of a

sequence can not be requested outside its non-zero support. Furthermore, since storage

is simultaneously allocated for all the sample values in the non-zero support, sequences

with an infinite non-zero support can not be represented.

25

_ _____ _·___I__IIII___·_�I__Pll(i----_---·-- LI�FCI--- ---�-·IIV-l-·-�· ^·II __ I _C

(DEFSIGTYPE IIR-SIGNAL ; the sequence class an(u[n] - u[n - M])
:A-KIND-OF BASIC-SIGNAL ; IIR-SIGNALs are also BASIC-SIGNALs

:FINDER IIR ; function for creating an IIR-SIGNAL

:PARAMETERS (A M) ; parameters for describing an IIR-SIGNAL

:INIT (SETQ-MY DIMENSIONS M) ; the sequence length
:FETCH ((INDEX)

(IF (= INDEX 0) 1 (* A (SIGNAL-FETCH SELF (- INDEX 1))))))

(DEFSIGTYPE SUM-SIGNAL ; the sequence class zl[n] + z2[n]
:A-KIND-OF BASIC-SIGNAL ; SUM-SIGNALS are also BASIC-SIGNALs

:FINDER SIGNAL-ADD ; function for creating a SUM-SIGNAL

:PARAMETERS (xl x2) ; parameters for describing a SUM-SIGNAL

:INIT (SETQ-MY DIMENSIONS ; the sequence length

(MIN (SIGNAL-DIMENSIONS xl) (SIGNAL-DIMENSIONS x2)))
:FETCH ((INDEX)

(+ (SIGNAL-FETCH X1 INDEX) (SIGNAL-FETCH X2 INDEX))))

Figure 2-2: Signal representation in SRL
SRL represents signals using abstract data objects, with an identity distinct from the sample values.

The length of the non-zero support is explicitly represented using the internal variable DIMENSIONS. The
non-zero support is then assumed to cover the interval, from 0 to DIMENSIONS - 1. Represented here are

the sequence classes a(u[n] - u[n - M]) and xl[n] + x2[n]

Signal Processing Language and Interactive Computer Environment (SPLICE)

SPLICE (Dove et al., 1984; Myers, 1986) was developed as a tool for numeric signal

processing. It resulted from an effort to improve the computer representation of signals

beyond the work that had already been done by Kopec (1980). In SPLICE, sequences

continue to be immutable data objects, as they are in SRL. To allow for the representa-

tion of infinite length sequences, the computation of each sample value is delayed until it

is explicitly needed. Like SRL, the non-zero support is explicitly represented but unlike

SRL, no assumptions are made about its location: instead, a representation is provided

for finite- and infinite-length intervals. Also, sample values outside the non-zero sup-

port can be accessed by the same operations that access the sample values inside the

non-zero support: as expected, the values outside the support are returned as zero. Fig-

ure 2-3 illustrates this behavior. Furthermore, some basic facilities are provided for the

26

--

1*

SPLICE: (HAMMING 255) ; create a centered, 255-point Hamming window
- #<(HAMMING 255)>

SPLICE: (SUPPORT (HAMMING 255)) ; find the non-zero support interval
==- (INTERVAL -127 128)
SPLICE: (FETCH (HAMMING 255) 0) ; get the sample value at n = 0

- 1.0
SPLICE: (FETCH (HAMMING 255) -130) ; get the sample value at n = -130

* 0.0
SPLICE: (LISTARRAY (FETCH-INTERVAL (HAMMING 255) (INTERVAL -130 -123)))

; list the sample values for -130 < n < -123
-= '(0.0 0.0 0.0 0.08 0.0801 0.0806 0.0813)

Figure 2-3: An example session in SPLICE
The token "SPLICE: " designates the user's input and the token "= " designates the output.

maintenance of sequence properties, such as periodicity.

The SPLICE environment explicitly decouples certain issues and operations that are

tied together in most software environments. Sequences, defined by the generating sys-

tem and its inputs, behave uniformly independent of the signal-processing model used

to define the system: for example, sample values of a sequence defined using a state-

machine model can be fetched at any index without explicitly determining the previous

states. This decouples the internal computational model from the calling convention for

referencing the sample values. Since the creation of a sequence is separated from the

computation of its sample values, sample values can be fetched at any index, from -oo

to +oo. Figure 2-4 provides examples of each of the computational models provided

in SPLICE: the point-operator model which generates one sample value at a time; the

array-operator model which generates multiple sample values simultaneously; the state-

machine model which generates sample values sequentially using an internal state vector;

and the composition model whose functionality is defined implicitly via the composition

of other operators.

These and other generalizations were incorporated into SPLICE. This signal-processing

package was integrated into the Lisp Machine environment and provides over 200 signal-

processing operations within a common framework. The utility of SPLICE as a numeric

27

___ _CI�__I___ I �^·�_�_1�1�_1� _yl�l IIIYILCIIII__1_I__I1___-I- �.- · II - _

a. The point-operator model (generates one sample value at a time)

(DEFINE-SYSTEM SEQUENCE-ADD (xl X2)
(NUMERIC-SEQUENCE) ; the output is a NUMERIC-SEQUENCE

(SUPPORT ()

(INTERVAL-COVER (SUPPORT xl) (SUPPORT X2)))
(SAMPLE-VALUE (INDEX) ; a definition for individual sample values within the support

(+ (FETCH xl INDEX) (FETCH X2 INDEX))))

b. The array-operator model (generates multiple sample values simultaneously)

(DEFINE-SYSTEM COMPLEX-FFT (INPUT N)

(NUMERIC-SEQUENCE) ; the output is a NUMERIC-SEQUENCE

"The N-point FFT of INPUT"

(SUPPORT () (INTERVAL 0 N))

(COMPUTE-INTERVAL (DESIRED-INTERVAL)

(INTERVAL 0 N)) ; the sample interval which should be computed simultaneously
(INTERVAL-VALUES-COMPLEX (INTERVAL REAL-OUTPUT-ARRAY IMAG-OUTPUT-ARRAY)

; a definition for group of sample values within the support
(ARRAY-COMPLEX-FFT

(FETCH-INTERVAL INPUT (INTERVAL 0 N))

(FETCH-IMAGINARY-INTERVAL INPUT (INTERVAL 0 N))

REAL-OUTPUT-ARRAY IMAG-OUTPUT-ARRAY)))

c. The state-machine model (generates sample values sequentially using an internal state
vector)

(DEFINE-SM-SYSTEM IIR-SEQUENCE (POLE-LOC)

(NUMERIC-SEQUENCE) ; the output is a NUMERIC-SEQUENCE

(STATE-MACHINE-START () 0)

(INITIAL-STATE (STARTING-INDEX) 1)

(CURRENT-VALUE (CURRENT-STATE INDEX)

; a definition for the sample values within the support of the state machine
CURRENT-STATE)

(NEXT-STATE (CURRENT-STATE INDEX)

(* POLE-LOC CURRENT-STATE)))

d. The composition model (an implicit definition via the composition of other operators)

(DEFINE-COMPOSITION SINE-SEQUENCE (FREQUENCY)

(SEQUENCE-SCALE 1/2 ; an implicit definition using the composition of other operations
(SEQUENCE-ADD (COMPLEX-EXPONENTIAL-SEQUENCE FREQUENCY)

(COMPLEX-EXPONENTIAL-SEQUENCE (- FREQUENCY))))

(ATOMIC-TYPE () :REAL)) ; information which is not available from the composition sequence

Figure 2-4: Signal representations in SPLICE

28

_� _

signal-processing environment is claimed to reduce program development times by factors

of two to seven times (Myers, 1986).

2.2 Signal-Expression Manipulation Environments

This section reviews two pieces of work, reported by Myers (1986) and by Fogg (1988).

Myers (1986) discusses an environment, E-SPLICE, which satisfies the criteria given ear-

lier for a signal-expression manipulation environment. While the environment proposed

by Fogg (1988) does not address many of these criteria, its focus on algorithm manipula-

tion makes it relevant to the discussion of signal-expression manipulation environments.

2.2.1 Extended SPLICE (E-SPLICE)

E-SPLICE (Myers, 1986) provides the only previous environment with signal representa-

tions which meets all the criteria mentioned above: immutable objects, with the creation

of signals being distinct from computation of their sample values; explicit signal proper-

ties, like non-zero support and bandwidth; distinct signal domain and non-zero support;

and the ability to manipulate abstract signal objects. E-SPLICE (Myers, 1986) was built

on the signal representation developed in SPLICE to allow for symbolic signal representa-

tion and manipulation. The main extensions provided by this addition are the ability to

represent continuous-variable signals, like continuous-time signals or discrete-time Fourier

transforms, and the ability to represent and manipulate abstract signals.

In representing discrete-time Fourier-transform signals, E-SPLICE opens an avenue

to the manipulation of signals in the discrete-time Fourier-transform domain. Spectral

characteristics, such as bandwidth and frequency support can be determined using infor-

mation included in the system definitions.

E-SPLICE also supports the manipulation of what is referred to by Myers (1986) as

abstract signals. Abstract signals are signals for which only a partial description has been

given. The ability to represent and manipulate abstract signals effectively provides E-

29

-·.__1^--1^·.1�--- -_.. �II--·* CI I^------���--·I_� �-�-- ·1�-----__*_1^11·_--·I�l-·�^----·IIIYLm�

SPLICE with the power to manipulate signal-processing systems instead of just signals,

even though neither SPLICE nor E-SPLICE has an explicit representation for signal-

processing systems. Abstract signals are used to represent a general signal description:

conceptually, it provides the environment with the ability to refer to "some discrete-

time sequence, x[n]" or "some discrete-time Fourier-transform signal, X(ejw)." By using

these abstract signals as the inputs to the system of interest, the output characteristics

of the system can be determined, without having to consider any compounding effects

introduced by the identity of the input signal.

The power of signal-expression manipulations was demonstrated by the success of E-

SPLICE in generating and ranking alternate implementations of a non-integer sampling

rate conversion (Figure 2-5-a). Using the numbers of required additions and multipli-

cations as a vector cost measure, a novel polyphase implementation of the non-integer

sampling rate conversion was autonomously derived and determined to be efficient (Fig-

ure 2-5-b). This demonstration is particularly provocative, since soon after the comple-

tion of Myers' thesis, an independent article was presented on the subject of this new

type of polyphase structure: not only did the example prove that automatic algorithm

processing is viable but it generated a structure that was the subject of current research

(Hsiao, 1987). This suggests that signal-expression manipulation may be useful not only

for relieving much of the burden imposed by implementational details but also for the

discovery of new, highly efficient implementations.

This work by Myers mapped out some of the possibilities in the area of signal-

expression manipulation and demonstrated the viability of semi-automatic algorithm

design. However, little effort was devoted to providing for the input of higher level

knowledge, such as useful approaches to a problem. Nor is all of the available informa-

tion exploited: the internal regularity of the system being manipulated was not used to

guide the design process. Finally, various minor inconsistencies between abstract signals

and completely specified signals remain.

30

13 o, h[n] - 2

a. b.

Figure 2-5: An example of signal manipulation in E-SPLICE
The power of signal-expression manipulation was demonstrated by E-SPLICE in its manipulation

of the non-integer sampling rate conversion shown in part (a). In a search for efficient implementations,
the polyphase structure shown in part (b) was autonomously derived. At the time E-SPLICE uncovered

this implementation, this approach to non-integer sampling rate conversion was not present in classic
multirate literature. An independent research effort has since presented this computational structure as
a new, efficient method for non-integer sampling rate conversion.

2.2.2 Automatic Build-Up (ABU)

Fogg (1988) proposes to investigate the design of custom, irregular, signal-processing

architectures. Building on the premise that every design must meet multiple perfor-

mance criteria which can not be reliably reflected in a single functional value, ABU is

a design environment aimed at exploring the tradeoffs between performance criteria or,

more accurately, it is aimed at investigating approaches to this exploration. An example

provided by Fogg (1988) of the proposed application area is the VLSI implementation of

the Householder transform which transforms a general matrix into an upper triangular

matrix: the competing performance criteria would be the area and throughput.

While the proposed application area of Fogg (1988), concentrating exclusively on low-

level, highly irregular signal flow graphs, is dissimilar from the area considered in this

thesis, his work is of interest for its proposed investigation of paradigms for controlling

31

�_l�y-ll�l -··I�------- __ -IIII- �-------s�C·--T-- III 11 C-- C· IC-·---·I·C---^I-�P�sr�---llr--�--_�-^- ----u-··--·lll*l-···-x·*-�-_l-rr�--�----

the search space. Among the techniques proposed are alteration strategies and decoupled

design. Alteration strategies correspond to the equivalent-form transformations used in

E-SPLICE (Myers, 1986) and in this thesis: they are a set of truth preserving rearrange-

ments to the signal-processing algorithm. Decoupled design separates a single design

problem into many subproblems which are treated independently. By exploring the sub-

problems independently, the size of the search space is reduced. This approach assumes

that the subproblems can be solved without considering their interactions.

2.3 Summary

This chapter has developed an initial set of criteria for evaluating signal-processing

representations and has examined some of the previous and concurrent work in the areas

of numeric signal-processing environments and signal-expression manipulation environ-

ments using these criteria. Many of the characteristics that expedite numeric signal-

processing were introduced by Kopec (1980): a distinct signal identity; an explicit non-

zero support; and signal immutability. SPLICE (Dove et al., 1984; Myers, 1986) intro-

duced the ability to manipulate signal properties and an explicit signal domain, distinct

from the non-zero support. Characteristics that were considered essential to signal-

expression manipulation include all these characteristics as well as the ability to generate

and manipulate signal representations corresponding to a class or set of signals. Using

this last set of capabilities to differentiate between numeric signal-processing environ-

ments and signal-expression manipulation environments, only E-SPLICE (Myers, 1986)

can be categorized as a prior example of a signal-expression manipulation environment.

The remainder of this thesis builds on the groundwork provided by Kopec (1980), Dove

et al. (1984) and Myers (1986).

32

_ I

Chapter 3

Introduction of an Algorithm

Design Environment: the design of

an FSK-code detector

The stated goal of this thesis is to address the issues involved in providing a design

environment. The desired environment would support the initial selection of a signal-

processing algorithm, the symbolic and numeric description of the selected algorithm,

and the manipulation of the algorithm to obtain alternate implementations. The power

of such an algorithm design environment is illustrated in this chapter and throughout

this thesis through the application of the Algorithm Design Environment (ADE) to the

design of an FSK-code detector: this combination is used to provide concrete examples of

the potential of design environments. These examples are presented at this point in the

thesis in order to motivate the remaining discussion of the representational issues: the

power of the concepts presented in later chapters will have already been demonstrated

through the examples within this chapter. This organization has the added advantage

that a casual reader can obtain an overview of the use of a signal-processing design

environment, without being forced to consider its conceptual details.

33

_ �CI _�_1 ��1�11 1__1_1__1__1·1_11__1_LIIIIIII_-·-·lll� ·.�.1-1-_.�

3.1 Detection and Discrimination of FSK Codes for

Multiple-beam Sonar

The problem of FSK-code detection and discrimination is used throughout this thesis

to illustrate the issues under discussion. This section introduces the sonar application

of FSK codes. A set of maximally separated codes are selected for transmission and a

model for the reflected signal energy is introduced. Finally, a digital approximation to

the optimal detectors for these signals is presented. It is this digital detection algorithm

which is used within this thesis to illustrate the issues which arise in algorithm design.

Conventional sonar imaging systems achieve resolution either through the use of a

single, swept beam or through the use of multi-element arrays. These techniques, while

highly successful, present some inherent difficulties. In the case of the single swept

beam, the time required to scan through the desired aperture can result in the failure

to detect transients. When multi-element arrays are used instead, the hardware require-

ments necessary to achieve high resolution can result in a large, costly system. Jaffe

and Richardson (Jaffe and Richardson, 1989; Richardson, 1989) propose an alternative

to these two techniques using the simultaneous transmission of a set of coded waveforms.

The transmitter in the proposed system is a set of N transducers, each illuminating a

different direction and each transmitting a distinct signal, Si for i = 1, ..., N. One wide-

beam hydrophone is used as a receiver. Multiple-hypothesis testing is then used to detect

and discriminate the returns from the separate beams. In order to achieve good spatial

resolution, the set of signals {S1 , ... , SN} must have good signal-to-signal rejection for all

possible time delays. In addition, to achieve good range resolution, each signal should

have a sharply peaked autocorrelation function. Jaffe and Richardson (1989) present a

mathematical derivation for a set of FSK codes with these properties:

N

s,(t) = E Re{Pi,k(t)} for i = 1...N
k=l

Pi,k(t) = C(t - kT)

34

where = p(i, k) provides a different permutation

of the numbers 1, ..., N versus k for each i

C,(t) = w(t)ej2T(fc+MTl))t

where w(t) = 0 for t < 0 and for t > T

From the way Pi,k(t) and Cl(t) are defined, each signal is made up of a sum of N individ-

ual, uniformly-spaced frequency bursts (commonly referred to as frequency chips). When

N + 1 is prime, f(i, k) can be selected such that the signals and all their circular shifts

achieve maximal Hamming distance separation.1 The window w(t) allows the frequency

chips to be shaped to adjust their side-lobe characteristics.

The received signal can be modeled as a superposition of the reflected energy from

each of the illuminated scattering centers:

N N

r(t) = Z Z . pm,iRe{eJ kPi,k(t - Tm)}
m i=1 k=l

The summation over m represents the superposition of the returns from multiple scatter-

ing centers. Pm,i is used to represent the strength of the return from the m'th scattering

center: if the scattering center lies in the i'th beam, Pm,i is a function of the scattering

cross-section of the target as well as its range; otherwise, Pm,i = 0. 7m is the propagation

delay for the combined forward and return paths. S'i,k represents a nonuniform phase

distortion introduced by the scattering characteristics of the object and the fluctuations

in the propagating medium. The possibility of a Doppler frequency shift is ignored in

this model.

From this model, the parameters Pm,i, fOi,k and rm are unknown parameters and must

be determined to invert the imaging process. Pm,i, once corrected for the variations due

to range, can be used as a gray-scale representation of the cross-section of an object, and

thus is not considered further. Using this model, the discrete-time approximation to the

optimal detectors for the N signal beams is shown in Figure 3-1. This algorithm uses

matched filters to detect the individual frequency chips. Since the model allows for an

1The Hamming separation distance is the number of elements that differ between any two code words.

35

__ - 1 -1_1 _ _ ___I - I ·1- 1111-----·---- �--�1-

r(t)

Figure 3-1: The discrete-time approximation to the optimal detectors for N FSK-coded
sonar signal beams

The structure shown here implements the discrete-time approximation to the optimal detector as-
suming an unknown phase history and an unknown time delay. Matched filters are used to detect the
individual frequency chips. Since there can be a nonuniform phase distortion between frequency chips,

the outputs from these subfilters are combined incoherently.

unknown, nonuniform phase distortion between frequency chips, incoherent summation

must be used across the matched frequency chips: this incoherent combination is com-

pleted in the last box in Figure 3-1. Finally, since there is an unknown time delay in the

return, the output from these detectors is desired at each point in time.

3.2 Algorithm Design Environment (ADE)

The stated goal of this thesis is to explore the issues involved in providing a design

environment supporting the initial selection of a signal-processing algorithm, the symbolic

and numeric description of the selected algorithm, and the manipulation of the algorithm

to uncover alternate implementations. The Algorithm Design Environment (ADE) is an

environment which has been implemented based on the ideas presented in this thesis and

which will be used to demonstrate these ideas. This section provides a brief description

of ADE. This description is guided by a discussion of two short sessions in ADE, one

illustrating the programming of the environment and the other, its interactive use.

ADE is a descendant of the SPLICE and E-SPLICE environments, described in Chap-

36

ter 2. ADE inherits its basic approach to signal definition and representation from

SPLICE (Dove et al., 1984; Myers, 1986). The influences of E-SPLICE (Myers, 1986)

and to a lesser extent PDA (Dove, 1986) are reflected in the structure of some parts of the

rule base. In particular, as in E-SPLICE, ADE uses backward-chaining rules to describe

the properties of signals. ADE, like E-SPLICE, supports multilevel matching within the

patterns of these rules. The approach used in ADE for matching forward-chaining rules

was introduced by Dove (1986). ADE also makes use of a subset of QM (Sacks, 1982) and

a limited number of functions from MACSYMA (Mathlab Group, 1983). QM (Sacks,

1982) is the product of research into qualitative mathematics. It represents, manipu-

lates and describes piecewise-continuous functions. A subset of QM is used to record

and propagate constraints on symbolic numbers. ADE includes an extension to QM to

support limited reasoning about symbolic integers as well as the continuously variable

numbers. ADE also makes limited use of MACSYMA (Mathlab Group, 1983) to simplify

and factor the polynomials used in the characterization of z-transform signals. ADE is

written in Symbolics Common Lisp (Symbolics, 1986). This choice of language provides

both the flexibility of a LISP dialect and support for object-oriented programming.

The remainder of this section provides examples of the use of ADE in the context of

the FSK-code problem introduced above. Examples are given of both programming and

using the environment.

In the sonar imaging problem, the actual problem is to find a way to achieve good

spatial resolution in a sonar system without paying for this resolution by either of the two

traditional penalties. The first step in solving this problem is to select a method by which

it will be solved. The majority of this selection is a matter of signal-processing experience

and creativity. However, this selection process can be accelerated by providing a support

environment in which the signal and system representations closely match the internal

models used by the system designer. These representations must change according to the

problem at hand, since different problems give rise to different signal models. To provide

this adaptation of representations, ADE allows the system designer to introduce his own

37

I 4 _ _ - S
- 1~- -1-- 1

I (DEFINE-SYSTEM-CLASS-ALIAS

2 (INCOHERENT-COMBINATION N-CODES@INTEGER PERMUTATION@FUNCTION)

3 ; accept an integer and a function as system parameters
4 (FILTER-OUTPUTS@2D-SEQUENCE) ; accept a 2D-SEQUENCE as an input
5 (SHIFT-INVARIANT-SYSTEM HOMOGENEOUS-SYSTEM 2D-SYSTEM)

6 ; a subclass of these classes

7 ("the system which incoherently combines shifted versions of the sequences in FILTER-OUTPUTS,

8 using PERMUTATION to determine the order in which they are combined"
9 SELF) ; the systems "alias" only themselves

10 NIL () ; generate a new output signal class, without any additional superior signal classes

11 ("the output sequences from the incoherent combination"
12 ; the output signals "alias" the composition of operations:

13 ; (BANK-OF-SEQUENCES S1 ... SN)

14 ; where Si = (SEQUENCE-ADD Pi,l ... PI,N)

15 ; where Pi,k = (OUTPUT-OF (SHIFT (* k N)) (MAGNITUDE Cp(N,i,k)))

16 (MAP-OVER 'BANK-OF-SEQUENCES I 1 (1+ N-CODES)

17 (MAP-OVER 'SEQUENCE-ADD K 1 (1+ N-CODES)

18 (OUTPUT-OF (SEQUENCE-SHIFT (* K N-CODES))

19 (SEQUENCE-MAGNITUDE

20 (FETCH-SEQUENCE FILTER-OUTPUTS

21 (- (PERMUTATION N-CODES I K) 1))))))))

Figure 3-2: An example of the programming of ADE
The new signal or system classes be added to ADE, as illustrated here. The lines of this definition

are numbered to the left, for ease of reference.

signal and system definitions. For example, in the FSK-code detector shown in Figure 3-1,

the incoherent combination of the matched filter outputs is modeled as a single processing

block which follows but is separate from the matched filtering itself. To support this

model of the detector, Figure 3-2 defines a new system class, INCOHERENT-COMBINATION.

This definition also creates a new signal class INCOHERENT-COMBINATION-OUTPUT, which

contains the output signals from INCOHERENT-COMBINATION systems. The definition relies

on the composition of other, previously defined signal-processing systems to provide the

output signals with their observable characteristics: lines 16-21 of Figure 3-2 describe

this composition.

To simplify the programming task, signal and system definitions closely mimic the

notational conventions used in signal processing. As illustrated in Figure 3-2, signal and

system definitions form new "classes" of signals and systems. Hierarchies of classes are

38

- -- --

1 (DEFINE-SIGNAL-CLASS

2 COMPLEX-EXPONENTIAL-SEQUENCE (FREQUENCY @REAL-NUMBER)

3 ; accept one real number as a parameter

4 (COMPLEX-EXPONENTIAL DISCRETE-TIME-SEQUENCE) ; a subclass of these classes

5 :CANONICALIZE-PARAMETERS (SETQ FREQUENCY ($- ($MOD ($+ FREQUENCY PI) 2PI) PI))

6 ; only use -r < FREQUENCY < r

7 :NON-ZERO-SUPPORT [MINF INF] ; a doubly infinite non-zero support

8 :FT NONE ; no Fourier transform: avoids DTFT impulses

9 :ZT NONE ; no z transform

10 (GOAL PERIODICITY ; the periodicity of dc is one sample

11 ; otherwise, it is the smallest integer which is a multiple of the basic periodicity

12 :NAME COMPLEX-EXPONENTIAL-PERIODICITY

13 :OBJECT ?SELF

14 :ANSWER (IF ($= FREQUENCY 0)

15 1 (DISCRETE-PERIODICITY ($ABS ($/ 2PI FREQUENCY))))

16 :DONE) ; explicitly terminate search

17 (GOAL SIMPLIFICATION ; simplify dc as a constant

18 :NAME ZERO-FREQUENCY-AS-CONSTANT

19 :OBJECT (SPECIFIC-MEMBER COMPLEX-EXPONENTIAL-SEQUENCE 0)

20 :ANSWER (CONSTANT-SEQUENCE 1)))

Figure 3-3: An example of an inherent signal class definition
Signal classes can be defined independently as inherent signal classes. The definition of the inherent

signal class COMPLEX-EXPONENTIAL-SEQUENCE is shown here. The lines of this definition are numbered

to the left, for ease of reference.

used to make similarities explicit and to reduce the amount of coding required. Signals are

formed by one of two paths: either as independent entities which are inherently defined,

like an impulse or a complex-exponential sequence, or as the output from a system which

has been applied to some inputs. An example of an inherent signal-class definition is

shown in Figure 3-3. Some of the 43 inherent signal classes currently defined in ADE are

listed in Table 3.1. Defining forms are also provided to allow for additional signal-class

definitions (see Appendix A).

In contrast with the definitions of inherent signal classes, the definition and character-

ization of system output signals is actually part of the definition of the system class and,

as such, is syntactically tied to the system-class definition. An example of a system-class

definition was provided in Figure 3-2. Some of the 169 system classes currently defined

39

Table 3.1: Some of the system and inherent signal classes currently defined in ADE

Inherent signal classes (43 hierarchical classes)

DISCRETE-TIME-SEQUENCE

FOURIER-DOMAIN-SIGNAL

Z-DOMAIN-SIGNAL

2D-SEQUENCE

RATIONAL-ZT

CONSTANT

POWER-SEQUENCE

IMPULSE

GENERAL-EXPONENTIAL

UNIT-STEP-SEQUENCE

COMPLEX-EXPONENTIAL

CAUSAL-RECTANGULAR-WINDOW

SINC

COSINE-SEQUENCE

SINE-SEQUENCE

FIR-SEQUENCE

IIR-SEQUENCE

CAUSAL-IIR-SEQUENCE

ANTICAUSAL-IIR-SEQUENCE

STABLE-IIR-SEQUENCE

CAUSAL-HAMMING-WINDOW-SEQUENCE :

System classes (169 hierarchical classes)

DISCRETE-TIME-SYSTEM

2D-SYSTEM

FOURIER-DOMAIN-SYSTEM

Z-DOMAIN-SYSTEM

SHIFT-INVARIANT-SYSTEM

GENERALIZED-SHIFT-INVARIANT-SYSTEM

MEMORYLESS-SYSTEM

ASSOCIATIVE-SYSTEM

ADDITIVE-SYSTEM

HOMOGENEOUS-SYSTEM

GENERALIZED-HOMOGENEOUS-SYSTEM

LINEAR-SYSTEM

GENERALIZED-LINEAR-SYSTEM

SEQUENCE-CIRCULAR-SHIFT

SEQUENCE-CIRCULAR-REVERSE

SEQUENCE-CIRCULAR-CONVOLVE

ADD

SUBTRACT

MULTIPLY

CONVOLVE

SHIFT

SCALE

RECIPROCAL

DIVIDE

REAL-PART

IMAG-PART

MAGNITUDE

INPUT-PHASE

ABSOLUTE-VALUE

SCALE-INDEX

UPSAMPLE

DOWNSAMPLE

BANK-OF-SEQUENCES

ROTATED-BANK-OF-SEQUENCES

SHORT-TIME-WINDOW

SHORT-TIME-FT

MAP OVER-SYSTEM

FIR-FILTER

CAUSAL-IIR-FILTER

ANTICAUSAL-IIR-FILTER

SIGNAL-ALIAS-IN-2PI

FOURIER-TRANSFORM

INVERSE-FOURIER-TRANSFORM

Z-TRANSFORM

INVERSE-Z-TRANSFORM

INVERSE-TRANSFORM

DISCRETE-FOURIER-TRANSFORM

COMPLEX-CONJUGATE

SEQUENCE-CONVOLVE-OVERLAP-SAVE INTERLEAVE

40

-

in ADE are listed in Table 3.1. Defining forms are again provided to allow for additional

system-class definitions.

Once all the appropriate signal and system classes have been defined, the process of

creating and analyzing the signals and systems involved in the design problem is greatly

simplified. Using the previous definition, the FSK-code detector is easily described, as

shown on line I-4 of Figure 3-4. Furthermore, as can be seen by comparing the input on

line I-4 with the model for the detector shown in Figure 3-1, the computer representation

and the designer's representation are closely matched. As is shown in the remainder of

this figure, ADE provides information about the properties of the output signals from

this detector.

In more detail, line I- of Figure 3-4 defines a function for generating the permutations

of the FSK-code frequency chips. Line 1-2 provides a partial description of a window

which will be used to shape the frequency chips: the window is a real-valued, discrete-

time sequence whose non-zero support extends from 0 to 15 (i.e. 16 - 1) and whose

values range between 0 and 1. This description is only a partial description of the

window since there are a large number of discrete-time sequences which satisfy all parts

of this description. The resulting object, printed on line 0-2, is an abstract signal.

Line 1-2 uses intervals to characterize the window sequence. Intervals are used in

ADE to describe sets of numbers. The examples of their use in line 1-2 are [16],

describing the non-zero support of the discrete-time sequence; {0 1 }, describing the range

for the real part of the sample values of the sequence; and {0 0}, describing the range

of the imaginary part of the sample values. These examples include two distinct types

of intervals: the non-zero support of the discrete-time sequence is an interval containing

only integers while the other two intervals contain all the numbers lying between their

end points. The discrete interval, [start end], represents the set of integers, n, such

that start < n < end. In discrete intervals, the starting and ending points must be

either integers or real numbers. If no integers lie in the interval, then a unique empty

interval is returned. For example, both [-0.5 r] and [4] will return the same interval

41

I-1 ADE: (DEFUN MOD-N+1 (N I K)

"provide different permutations of the numbers 1, ..., N versus k for each i"
(IF (PRIMEP (1+ N))

(MOD (* I K) (1+ N))
(ERROR "Can not get maximal separation unless N+1 is prime")))

0-1 == MOD-N+1
1-2 ADE: (NAMED-SETQ

WINDOW (REVERSE (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE &PROPERTIES

:NON-ZERO-SUPPORT [0 16]

:SAMPLE-TYPE 'EXTENDED-REAL-NUMBER

:RANGE (CREATE-RANGE {O 1} {0 0}))))
0-2 =- #<WINDOW>

1-3 ADE: (NAMED-SETQ MAX (A-MEMBER-OF 'REAL-NUMBER &PROPERTIES :> 0))
0-3 : #<MAX>

I-4 ADE: (NAMED-SETQ

DETECTOR-OUTPUT

(OUTPUT-OF (INCOHERENT-COMBINATION 16 'MOD-N+1)

(OUTPUT-OF (MODULATED-FILTER-BANK WINDOW 16)

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE &PROPERTIES

:RANGE (CREATE-RANGE {($- MAX) MAX} {($- MAX) MAX})))))

0-4 : #<FSK-DETECTOR-OUTPUT>
I-5 ADE: (RANGE FSK-DETECTOR-OUTPUT)

; determine the range of (BANK-OF-SEQUENCES S1 ... SN)
where Si = (SEQUENCE-ADD P, 1 ... PI,N)

where Pi,k = (OUTPUT-OF (SHIFT (k N)) (MAGNITUDE CF(N,i ,k)1-))

where C = Xl * (e-.3* n WINDOW)

where X1 is the abstract input sequence

;determine the range of Xi * (ei° WINDOW)

; determine the range of X1 * (e'j WINDOW)

0-5 = #<(RANGE {0 ($* 32 MAX)} {0 0})>
I-6 ADE: (NAMED-SETQ RECTANGULAR

(REVERSE (CAUSAL-RECTANGULAR-WINDOW-SEQUENCE 16)))
0-6 =- #<RECTANGULAR>

Figure 3-4: A sample of an interactive session in ADE
The I-lines with the token "ADE: " designate the user's inputs and the O-lines with the token "== "

designate the outputs. See the text for a detailed discussion.

42

I-7 ADE: (PERIODICITY (OUTPUT-OF (INCOHERENT-COMBINATION 16 'MOD-N+1)

(OUTPUT-OF (MODULATED-FILTER-BANK RECTANGULAR 16)

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE &PROPERTIES

:PERIODICITY 256))))
; determine the periodicity of (BANK-OF-SEQUENCES Si ... SN)

where si = (SEQUENCE-ADD P1 ,l ... Pl,N)

where Pi,, = (OUTPUT-OF (SHIFT (* k N)) (MAGNITUDE CF(N,i,k)-l))

where C = X2 * (e-j Ln RECTANGULAR)

where x2 is the abstract input sequence

determine the periodicity of x * (ejO RECTANGULAR)

; determine the periodicity of X2 * (e-j" RECTANGULAR)

0-7 . 256
I-8 ADE: (PERIODICITY (OUTPUT-OF (MODULATED-FILTER-BANK RECTANGULAR 16)

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE &PROPERTIES

:PERIODICITY 256)))
0-8 = 256

Figure 3-4 continued.

containing the integers 0, 1, 2 and 3 and both [r 4] and [O -4] will return the empty

interval. The continuous interval {start end} represents the set of numbers, z, such that

Im(z) = Im(start) = Im(end) and Re(start) z < Re(end). From this description of

continuous intervals, the starting and ending points can be complex numbers, as long as

their imaginary parts are equal. If Re(start) > Re(end), then no numbers will lie in the

interval and the unique empty interval is returned. Finally, the interval {point point} is

used to represent the continuous interval containing only the single number, point. As

shown in Appendix A, a wide variety of interval manipulation functions are provided in

ADE.

Line I-3 of Figure 3-4 creates a symbolic, positive, real-valued number. As will be

illustrated in line I-4, symbolic numbers can be used to describe abstract signals. Con-

straints can be imposed both on the type of the symbolic number and on the relative

43

or absolute magnitude of the symbolic number: a type constraint insures that the sym-

bolic number of line 0-3 is real-valued as opposed to complex-valued and a magnitude

constraint forces its value to be greater than zero.

Line 1-4 of Figure 3-4 creates an incoherent detector for the set of 16 FSK codes which

uses MOD-N+1 to determine the frequency-chip permutations and which uses WINDOW to

shape each frequency chip. The input to this detector is an abstract complex-valued,

discrete-time sequence whose real and imaginary ranges are bounded by the symbolic

numbers +MAX. Line I-5 of Figure 3-4 requests the range of the output from this appli-

cation. The range of the signal is one of its properties and, as illustrated on line 1-5 can

be explicitly requested. Signal properties, such as symmetry, sample type and non-zero

support, are explicitly available characteristics of every signal. Similarly, system proper-

ties, such as equivalent systems and invertibility, are explicitly available characteristics

of every system. Some of the signal and system properties which are currently included

in ADE are listed in Table 3.2.

Some of the intermediate range computations which ADE makes in determining the

range of the FSK-code detector output are noted between the input line I-5 and the

output line 0-5. To determine the result shown on line 0-5, a variety of extended

algebraic and trigonometric functions are used to manipulate the symbolic numbers which

describe the range. The majority of these extended algebraic and trigonometric functions

produce a symbolic number as their output given a symbolic input.

Lines I-7 and 1-8 request the periodicity of the output from the incoherent detector

and the periodicity of the output from the matched filter bank, respectively. The input

signals to both of these operations are abstract periodic, discrete-time sequences. This

characterization of the digitized FSK-code returns is an appropriate model for a static

field of scattering centers. Some of the intermediate periodicity determinations which

ADE makes in arriving at line 0-7 are noted between the input line I-7 and the output

line 0-7. None are noted between the input line 1-8 an'd the output line 0-8, since no

intermediate periodicity determinations are made. This immediate response to line 1-8

44

Table 3.2: Some of the signal and system properties currently supported by ADE

INVERTIBLE-P: T or NIL.

INVERSE-SYSTEM: a system or #<UNKNOWN>.

SAMPLE-TYPE: a data type.

RANGE: a range of values described by the ranges of the real and imaginary parts.

NON-ZERO-SUPPORT: any interval.

PERIODICITY: any non-negative number.

SYMMETRY: any symmetry descriptor.

COMPUTABLE-P: T or NIL.

SAMPLES-COMPUTABLE-P: T or NIL.

FT: any discrete-time Fourier-transform signal.

IFT: any discrete-time sequence.

ZT: any z-transform signal.

IZT: any discrete-time sequence.

ROC: any interval of radii covered by {O oo}, the null interval or #<UNKNOWN>.

POLES: any polynomial or #<UNKNOWN>.

ZEROES: any polynomial or #<UNKNOWN>.

COST: any cost descriptor.

EQUIVALENT-FORMS: a list of equivalent signals or systems.

EFFICIENT-IMPLEMENTATIONS: a list of equivalent signals or systems which are compu-
tationally efficient.

SIMPLIFICATION: the original or a simpler signal or system.

45

_ _

is due to information sharing between related abstract objects, as will be discussed in

Chapter 4.

This section has attempted to illustrate some of the manipulations supported by the

Algorithm Design Environment. In addition to allowing the manipulation of simple prop-

erties, like range and periodicity, the environment supports the autonomous search for

alternate descriptions of a signal-processing expression and for computationally efficient

implementations. Additional examples from ADE will be introduced later in this chapter.

3.3 Derivation and Ranking of Equivalent Algorithms

There are many examples in which reconfiguring an algorithm through a large number

of straightforward transformations can lead to major gains in performance. For example,

the computation of the Fourier transform is very rich in the variety of transformations

that can be applied to reconfigure the algorithm and, as the FFT clearly demonstrates,

the resulting efficiency can differ by orders of magnitude. In order to find the applica-

ble transformations and to explore the full design space, the environment must search

through the space of algorithms which are input/output equivalent to a given signal-

processing expression. This section describes the search for equivalent implementations

and then introduces constraints to limit that space.

3.3.1 Unconstrained search for equivalent algorithms

The task of finding alternate descriptions or implementations of a signal-processing

expression is the same as finding all the identity transformations which are applicable

to the signal-processing expression or one of its subexpressions. For example, to find

the equivalent implementations of the filter bank shown in Figure 3-1, all the applicable

identity transformations for the filter bank should be completed as should the transfor-

mations on the modulated window sequences and the input sequence. In addition, once

an alternate description is uncovered, all of the identity transformations which are appli-

46

cable to this new description or to one of its subexpressions must also be applied. Thus,

equivalent implementations of a signal-processing expression can be obtained in any of a

variety of ways: a transformation can be applied to the original signal-processing expres-

sion itself; a subexpression of the original expression can be replaced by an equivalent

implementation of the subexpression; or either of these approaches can be applied to one

of the newly uncovered equivalent implementations of the signal-processing expression.

To simplify this discussion, a graphical representation of the search process is pre-

sented in Figure 3-5. Using this representation, the problem of finding the equivalent

forms of a signal-processing expression, without consideration of its subexpressions, is

represented graphically as a net, as shown in Figure 3-5-a. One of the nodes of this

net represents the starting signal-processing expression. The remaining nodes of the net

represent equivalent implementations of the original expression. Some of these nodes are

connected directly to the original node via simple transformation rules. These newly

obtained nodes can themselves be used as seeds for other transformations: this recur-

sive search process is encoded by a control strategy RECURSIVE-EQUIVALENT-FORMS, which

will be shown in Figure 5-1-a. This search for additional nodes stops when no new nodes

remain to be considered.

Any of the nodes of this net can also be viewed as a combination of subexpressions.

The subexpressions of a generated signal are the generating system and its inputs and

the subexpressions of a system or an inherent signal are the parameters of the class. Each

of these subexpressions can also be manipulated. In particular, if the subexpression is

itself a signal or system, its equivalent implementations can be used to replace it in

an enclosing expression. Graphically, requesting the equivalent forms of a subexpression

drops the problem down to another net and again tries to find connected nodes (Figure 3-

5-b). The set of nodes found on this lower net is then projected back up into the

original net by replacing the subexpression in the enclosing expression with its equivalent

forms, as shown in Figure 3-5-c. This projection can generate new nodes in the original

net. The decomposition and recomposition process is encoded in the control strategy

47

CA

0

.)cro

c.)

I.-

1.0.)

4-'G

5:7s
O

Ct

0.)
0

._!5

(1)

ece
Cd '

tu

A
v
U)
;J-

ci0

a,

boCI

48

0
0h

3

5 p

.5 E

3 0
c

Y. * t3.

a).a

0# 0v 5

M

EcO

J 4:3 c)

ao) C TU

d: Q3 '-

.: cc U

g I, a Oij flC C Ez v
~

c d
O. ~4

r

I
I

x

49

_ I

.

EQUIVALENT-FORMS-BY-PARTS, which will be shown in Figure 5-1-b. These new nodes

are also used as seeds for finding additional nodes through recursive transformation and

through expression decomposition.

The same strategies for finding the equivalent implementations of an expression are

obviously also applicable to finding the equivalent implementations of any of the subex-

pressions. Thus, each of the searches for the equivalent forms of the subexpressions can

also give rise to subsearches, using some even lower net. The downward progression stops

when there are no more subexpressions which are signals or systems.

3.3.2 Constraints to avoid combinatorial growth of the algo-

rithm design space

As described above, the search for equivalent implementations of a signal-processing

expression must consider the equivalent implementations of the subexpressions as well

as the complete expression itself. Since each of the subexpressions are independently

manipulated and independently recombined to form new equivalent expressions, the size

of the search space under consideration grows combinatorially with the number of subex-

pressions. To illustrate, consider the problem of implementing the full FSK-code detector

for sixteen channels. Five independent descriptions of a simple, finite-length convolution

are embedded in ADE: the direct-form convolution; the overlap-save convolution; the

Fourier-domain representation of convolution; the z-domain representation of convolu-

tion; and the representation of convolution as the sum of scaled, shifted versions of the

input. Thus, using these subexpressions as inputs into the incoherent summation, there

will be 516 1011 equivalent forms to consider.2 Each of these implementations would

then be reconsidered to see if any additional equivalent forms could be found, due to in-

teractions between the implementations of the matched filters and the implementations

of the incoherent processing.

2 None of these implementations exploit the special structure of the modulated filter bank. The actual
number of equivalent implementations which have to be considered is more than 1019.

50

The approach to limiting the search space which is advocated in this thesis exploits

the internal regularity of signal-processing algorithms. Signal processing algorithms are

often described at different levels of detail: for example, the incoherent addition of

a two-dimensional input sequence can be described by #<(OUTPUT-OF (INCOHERENT-

COMBINATION 4 MOD-N+1) X)> or by the structure shown in Figure 3-6. From the

high-level description of the algorithm, the regularity in the low-level computational

structure can often be asserted: from the high-level description given by the INCOHERENT-

COMBINATION system, the underlying regularity inherent in Figure 3-6 can be asserted.

By enforcing these internal correspondences in the low-level descriptions, the space of

equivalent forms which is explored can be drastically reduced. This approach to pruning

the search is heuristic. However, the regularity of the computation suggests that the

efficient implementations will reflect the same regularity: if separate sections of an algo-

rithm are very similar, then the efficient implementations of these separate sections are

likely to coincide.

To illustrate what is meant by internal regularity within an algorithm, consider

the description of the incoherent combination given in Figure 3-2. The definition of

INCOHERENT-COMBINATION is provided implicitly through the alias to the composition of

operations shown in Figure 3-6. These operations exhibit a highly regular internal struc-

ture. In particular, the sequences feeding into the BANK-OF-SEQUENCES are similar: each

adds up the shifted magnitude of the input sequences. By placing a "correspondence

constraint" on the sequences feeding into the BANK-OF-SEQUENCES, the manipulation of

these expressions and their subexpressions are constrained to occur in synchrony. This

constraint results, at least conceptually, in the manipulation of

Y[nl, n2] = A(n,+l)[nl]

Ai[n] = Sl,i[n] + S2,i[n] +...

Sl,i[n] = Mli[n + N]

S2,i[n] = M 2,i[n + 2N]

51

.
C. * u 8 d

< .) .~ =- c)
0,

~..CD oa.o .~o';

- s 3

r. r'E:

00

= . E.a.)

U 8

C.

0 3

E E ,
co~boE .g

o;

bI 0'5 *s C C
* C2

52

Ml,i[n] = X[n,p(N,i, 1)- 1]

M 2,i[n] = IX[n,p(N,i,2)- 1l

That is, for i = 1, ..., N, the manipulation of Ai[n] occurs in synchrony; the manipulation

of Sl,i[n] occurs in synchrony, the manipulation of S2 ,i[n] occurs in synchrony, and so on

for the remaining shift-system outputs; the manipulation of Ml,i[n] occurs in synchrony,

the manipulation of M 2,i[n] occurs in synchrony, and so on for the remaining magnitude-

system outputs; and the manipulation of X[n,p(N,i, 1) - 1] occurs in synchrony, the

manipulation of X[n, p(N, i, 2) - 1] occurs in synchrony, and so on for the remaining

inputs. By enforcing this correspondence, the number of independently manipulated

subexpressions is reduced from O(N 2) to O(N).

In addition, the structure shown in Figure 3-6 shows another point of regularity,

originating at the addition operations. In particular, the sequences feeding into each of

the SEQUENCE-ADD systems are similar: the first addend into the i'th summation is similar

to the second addend into the i'th summation is similar to the N'th addend into the i'th

summation. Thus, a second set of correspondence constraints is placed on the inputs into

each of the SEQUENCE-ADD systems. These two levels of constraints conceptually result

in the manipulation of

Y[n, n 2] = A,,2+l[nl]
N

Ai[n] = Si,k[n]
k=l

Si,k[n] = Mi,k[n + kN]

Mi,k[n] = IX[n,p(N,i,k) - 1]l

That is, for i = 1, ... , N, the manipulation of Ai[n] occurs in synchrony and, for i = 1,..., N

and k = 1,..., N; the manipulation of Si,k[n] occurs in synchrony; the manipulation of

Mi,k[n] occurs in synchrony; and the manipulation of X[n, p(N, i, k) - 1] occurs in syn-

chrony. These two levels of constraints are imposed on the low-level signal-processing

53

description by the INCOHERENT-COMBINATION system definition. By enforcing these con-

straints, the number of independently manipulated subexpressions is reduced from O(N2)

to O(N °) = 0(1).

This approach of imposing correspondence constraints and manipulating the corre-

sponding expressions and subexpressions in synchrony is used in ADE to limit the search

space for algorithm design.

3.4 Application of ADE to the Design of the FSK-

code Detector for Multiple-beam Sonar

The FSK-code detector, described earlier in this chapter, separates naturally into

three subproblems: the recovery of the in-phase and quadrature samples of the sonar re-

turn; the modulated filter bank, for matched-filter detection of the individual frequency

chips; and the incoherent combinations of the filter-bank outputs, to create the detectors

for the full FSK code set. The problem of I- and Q-sample recovery will be consid-

ered in Chapter 8. When the incoherent combinations of the filter-bank outputs were

analyzed using ADE to find equivalent implementations, the only alternatives to the

original expression which were found was the master signal of the original expression

and a similar expression with the common shift pulled outside the SEQUENCE-ADD and

BANK-OF-SEQUENCES operations. This lack of alternatives is explained by examining the

computations used in the incoherent detectors. None of the detectors share a common

partial sum and no other, more efficient methods are available for taking the magnitude

of the input sequences.

This section examines the result of using the Algorithm Design Environment to find

alternate implementations of the modulated filter bank.

54

3.4.1 Matched filtering for the individual frequency chips us-

ing general N-point windows

The bank of matched filters in Figure 3-1 uses a general N-point window to shape

the individual frequency chips. Figure 3-7 shows the use of ADE to uncover alternate

implementations for a general 16-point FIR modulated filter bank.3

Line I-2 of Figure 3-7 requests a list of all the alternate implementations for the

modulated filter bank which can be uncovered using constrained manipulations. Line 0-

2 of Figure 3-7 shows some of the uncovered equivalent forms. Besides the given form of

the modulated filter bank, the Fourier- and z-domain representations of the modulated

filter bank were found as was the FFT-based structure shown in Figure 3-8.

Line 1-3 of Figure 3-7 requests the list of the alternate implementations, obtained

using constrained manipulations, which are computationally efficient.4 The most efficient

implementation which was found is shown in Figure 3-8.

The implementations which were found in this search span a wide range of structural

forms. The modulated filter bank is described in the discrete-time domain, the Fourier

domain and the z domain. A completely different implementation for the modulated filter

bank is provided in the use of the short-time Fourier transform. This implementation ex-

ploits the fact that the impulse responses in the filter bank are related by the modulation

factors of e-j2kn. In addition to describing the short-time Fourier transform explicitly,

using the SHORT-TIME-FT system, ADE also provides the expansion of this operation into

its component shifts, scales and additions.

Although these implementations span a wide range of structural forms, this result

is deceptive. The deceptive quality of this example arises from the fact that one of the

equivalence rules which was explicitly given to the environment provides the transfor-

mation from the modulated filter bank to the short-time Fourier transform: this rule

3Some of the expressions obtained in these and subsequent searches for equivalent forms and efficient
implementations are only described verbally or mathematically, due to the unwieldy size of the LISP
descriptions.

4 The way that ADE measures computational efficiency will be described in Chapter 7.

55

-1 ADE: (NAMED-SETQ W (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE

&PROPERTIES :NON-ZERO-SUPPORT [16])
X (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE))

0-1 =-- #<x>
I-2 ADE: (CONSTRAINED-EQUIVALENT-FORMS

(OUTPUT-OF (OUTPUT-OF (MODULATED-FILTER-BANK (REVERSE W) 16) X))
0-2 = (#<(OUTPUT-OF (MODULATED-FILTER-BANK (REVERSE W) 16) X)>

#< (BANK-OF-SEQUENCES (INVERSE-FOURIER-TRANSFORM ...) ...)>

; (BANK-OF-SEQUENCES IFTo ... IFT 15)

; where IFTk = -1 {f{X}FTW(e-j"W+Jk)}
; where FTW= f {W}

#<(BANK-OF-SEQUENCES (INVERSE-Z-TRANSFORM ...) ...)>
; (BANK-OF-SEQUENCES IZTo ... IZT1 5)

;where IZTk = Z-1{Z{X}ZTW(z-leik)}

;where ZTW= Z{ W}

#<(OUTPUT-OF (SHORT-TIME-FT W 16) X)>

#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...) ...)>
; (BANK-OF-SEQUENCES FT160 ... FT1615)

; where FTi6k = FT82 .k + e 216kFT82.k+l for k = 0,..., 7

; where FT1 6 k+8 = FT82 .k - e- 1kFT82k+ l for k = 0,..., 7

; where FT82 *k+L = FT44 .k+l + e-j'kFT44 .k+i+ 2 for k = 0,..., 3 and I = 0,1

; where FT8 2*k++8 = FT44.k+l - e-j2kFT4 4 .k+1+ 2 for k = 0,..., 3 and I = , 1
; where FT44 .k+1 = FT2sk+l + ei2 4 TFT2gsk+l+4 for k = 0,1 and I = 0,...,3

; where FT44 .k+l+s = FT2.k+l - e-j kFT28.k+l+ 4 for k = 0,1 and I = 0,...,3

; where FT21 = w[l]x[n +] + w([+ 8]x[n + I + 8] for I = 0,..., 7

; where FT21 + 8 = w[l]x[n + 1] - w[l + 8]x[n + 1 + 8] for I = 0,...,7

...) ; additional forms
I-3 ADE: (CONSTRAINED-EFFICIENT-IMPLEMENTATIONS

(OUTPUT-OF (MODULATED-FILTER-BANK W 16) X))
0-3 = (#<(OUTPUT-OF (SHORT-TIME-FT W 16) X)>

#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...) ...)>)

; general FFT structure, described mathematically above

Figure 3-7: Manipulation of the general N-point matched filter bank in ADE

56

I

0

-0

tw

oboc~o

*Lz

57

1 (DEFINE-SYSTEM-CLASS-ALIAS

2 (MODULATED-FILTER-BANK

3 IMPULSE-RESPONSE@DISCRETE-TIME-SEQUEN CE N@INTEGER

4 &OPTIONAL (DOWNSAMPLING-FACTOR@INTEGER 1))

5 ; accept a sequence and an integer as system parameters

6 (INPUT@DISCRETE-TIME-SEQUENCE) ; accept a sequence as an input

7 (SHIFT-INVARIANT-SYSTEM LINEAR-SYSTEM 2D-SYSTEM)

8 ; a subclass of these classes

9 ("a modulated filter bank"
10 SELF) ; the systems "alias" only themselves

11 NIL () ; generate a new output signal class, without any additional superior signal classes

12 ("the output from a modulated filter bank"
13 ; the output signals "alias" this composition of operations

14 (MAP-OVER 'BANK-OF-SEQUENCES I 0 N

15 (OUTPUT-OF (DOWNSAMPLE DOWNSAMPLING-FACTOR)

16 (SEQUENCE-CONVOLVE

1 7 (SEQUENCE-MULTIPLY

18 (COMPLEX-EXPONENTIAL-SEQUENCE (/ (* 2PI I) N))
19 IMPULSE-RESPONSE)

20 INPUT)))

21 (GOAL EQUIVALENT-FORM ; the short-time Fourier transform implementation

22 :NAME AS-STFT

23 :OBJECT ?SELF ; any modulated filter bank.

24 :ANSWER (OUTPUT-OF (SHORT-TIME-FT (REVERSE IMPULSE-RESPONSE) N

25 DOWNSAMPLING-FACTOR)

26 INPUT))))

Figure 3-9: The definition for the system class,. modulated-filter-bank

was included in the definition of the modulated filter bank, as shown on lines 21-26 of

Figure 3-9.

This example actually points out one of the important advantages of an algorithm

design environment: the design environment allows known transformations to be encoded

and, thereafter, the environment itself will to remember and apply these transformations.

It is exactly- this process of encoding and automatic application that has been seen in

this example.

In addition, this example illustrates the usefulness of regularity constraints in algo-

rithm manipulation. If correspondence constraints were not used to restrict the combina-

58

tions of subexpressions, the five alternate implementations of a finite-length convolution

would result in the consideration of more than 1011 equivalent forms, none of which are

significantly different in structure from the modulated filter bank itself. With the cor-

respondence constraints, these five alternate implementations result in the consideration

of only five equivalent forms, since the manipulation of the convolutions is constrained

to occur in synchrony. Similarly, without parallel manipulations, combinatorial growth

will also occur with the FFT-based structures.

3.4.2 Matched filtering for the individual frequency chips us-

ing N-point rectangular windows

The selection of the frequency-chip window affects both the range resolution and the

signal-to-signal rejection of the sonar system. The autocorrelation of the frequency-chip

window dictates the shape of the responses of the individual filters to the matched fre-

quency chips. The signal-to-signal rejection dictates the drop-off in the responses of the

matched filters as they travel across the FSK-code echo and encounter the mismatched

frequency chips. A simple choice for the frequency-chip window is the N-point rectan-

gular window. As seen in Figure 3-10, the rectangular window has a sharply peaked

autocorrelation and good signal-to-signal rejection.

Figure 3-11 shows use of ADE to uncover alternate implementations for the modulated

filter bank using a 16-point rectangular window. Line I-2 of Figure 3-11 requests a list

of all the alternate implementations for the modulated rectangular-window filter bank

which can be obtained using constrained manipulations. Line 0-2 of Figure 3-11 shows

some the uncovered equivalent forms. As with the general N-point modulated filter bank,

the Fourier- and z-domain representations of the modulated filter bank were found as was

the general FFT-based structure shown in Figure 3-8. In addition to these structures,

a variety of "pruned" FFT-based structures were uncovered: one of these structures is

shown in Figure 3-12. These implementations have the same underlying structure as the

general FFT implementation shown in Figure 3-8. The difference lies in the number of

59

_ I�_�I� II �II _____^11·14___1__1______^·11·11� Il�^.·.__·1IX_^-l·-l__ll·-L1_ __ 1 III �C�I--·llll�-� CII�·-^1IIII�II-._.l· ..

03
-o

CUC
.c

cCZ

0
"aUI-

CU
-0C"a0

41

C

I-

0

0

4ro

-
CC

CZ--0

c
.Y

3 CUo
0

U
2 -

C of

* 0

oCm

**bo o

-
._ C

c -3

30

e *

3

o :

,~ Cd

_~q

:t ^

*- C

L e

' F::.QE

"""(DO_o O

0

3g-

CiQ O *C

'"'o -o 0.o o.

'g .~ . 4

i -
% = . 04

o oDo

8 0
Mygu 1? 6

C Cd r i

o i cc C

Q.') ~

E p:'~&3.>._ 0

ob csa,

P _~ O :
t._ "

~EO.,

g O ¢

60

_ � _�

i,

II

I

I-I ADE: (NAMED-SETQ RECTANGULAR (REVERSE (CAUSAL-RECTANGULAR-SEQUENCE 16))

X (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE))

0-1 =- #<x>
I-2 ADE: (CONSTRAINED-EQUIVALENT-FORMS

(OUTPUT-OF (MODULATED-FILTER-BANK RECTANGULAR 16) x))
0-2 = (#<(OUTPUT-OF (MODULATED-FILTER-BANK RECTANGULAR 16) x)>

#< (BANK-OF-SEQUENCES (INVERSE-FOURIER-TRANSFORM ...) ...)>

; Fourier-domain implementation of filter bank
#<(BANK-OF-SEQUENCES (INVERSE-Z-TRANSFORM ...) ...)>

; z-domain implementation of filter bank
#<(OUTPUT-OF (SHORT-TIME-FT RECTANGULAR 16) x)>
#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...)...)>

; general FFT structure
#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...) ...)>

; (BANK-OF-SEQUENCES FT16o ... FT1615)

where FT1 6k[n] = FT8k[n] + e-j kFT8k[n + 1] for k = 0,..., 7

where FT16k+ 8[n] = FT8k [n] - e-J kFT8k[n + 1] for k = 0,..., 7

where FT8k[n] = FT4k[n] + e-I8 kFT4k[n + 2] for k = 0,...,3
where FT8k+4[n] = FT4k[n] - e-Ji'-kFT4k[n + 2] for k = 0,.. ,3

where FT4 [n] = FT2[n] + e-3 4 kFT2[n + 4] for k = 0,
where FT4k+2[n] = FT2[n] + -e-JkFT2[n + 4] for k = 0, 1

where FT2[n] = x[n] + x[n + 8]
where FT2[n] = xin] - x[n + 8]

...) ; additional forms
I-3 ADE: (CONSTRAINED-EFFICIENT-IMPLEMENTATIONS

(OUTPUT-OF (MODULATED-FILTER-BANK RECTANGULAR 16) X))

0-3 ==- (#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...) ...)>

; general FFT structure
#<(BANK-OF-SEQUENCES (SEQUENCE-ADD ...) ...)>

; pruned FFT structure, described mathematically above
...) ; additional forms

Figure 3-11: Manipulation of the modulated rectangular-window filter bank in ADE

61

q - Wr

butterflies that are computed at each stage. For example, the pruned FFT structure

shown in Figure 3-12 has only one butterfly in the first stage, two in the second, four in

the third and eight in the fourth while the general FFT structure shown in Figure 3-8

has eight butterflies in each stage.

Line I-3 of Figure 3-11 requests the list of the alternate implementations, obtained

using constrained manipulations, which are computationally efficient. Of the thirteen

equivalent implementations which were found using constrained manipulations, only the

general FFT structure (Figure 3-8 with w[n] constrained to be a 16-point rectangular

window) and the pruned FFT structures (like Figure 3-12) were found to be efficient. As

can be seen from the comparison of costs shown in Figure 3-12, a tradeoff exists between

minimum number of memory locations, achieved by the general FFT structure, and the

minimum number of operation counts, achieved by the pruned FFT structure.5

It is interesting to note that, with the pruned FFT, the order of the computational

complexity is actually reduced as well as the number of computations themselves. The

order is reduced from O(N2) for the direct-form implementation or from O(Nlog N)

for the general FFT implementation to O(N) for the pruned FFT implementation. The

amount of computation which is required for the pruned FFT is actually identical to that

of the recursive computation of the sliding Fourier transform:6

X[n, k] = eiJk(X[n - 1, k] + x[n + N - 1]- x[n - 1])

For reasons which will be discussed in Chapter 8, ADE is unable to represent this explic-

itly recursive formulation of the computation.

The pruned FFT structure shown in Figure 3-12 has not been found in the currently

published literature: the only reference with a similar structure is Regalia (1989) which

has been submitted for publication in SIAM Review. Although other pruned FFT struc-
5The memory counts do not include the registers necessary for storing the intermediate sequence

values. If these additional memory locations were included in the cost structures, the amount of memory
for the general FFT structure using the method given by Singleton (1969) and the pruned FFT structure
would be identical.

6 The pruned FFT structure has the advantage of being numerically stable while the recursive formu-
lation is unstable due to its reliance on pole/zero cancellation on the unit circle.

62

Computational costs
for N = 16

Approximate computational costs
for general N

Figure 3-12: One of the equivalent forms found using constrained manipulation on the
matched filters for the modulated rectangular windows

Some of the equivalent forms obtained for the modulated filter bank of the rectangular windows had a basic
FFT structure with some of the butterflies removed from the early stages. One of these "pruned" FFT structures
is shown here. A comparison of the costs of some of the alternate implementations is shown as well.

63

Structure complex complex memory complex complex memory
multiplies adds locations multiplies adds locations

modulated 256 240 512 N (N - 1) N 2 N2

filter bank

general FFT 17 64 64 Nlog2N log2 N 3 N - 1
structure 7 l l 3 2 2

pruned F T 11 30 86 2N N N log2 N + N
structure

.1-- ---- ----- ------ ~~ 1 1~~~~ 11 11- ~1

tures have been published (Markel, 1971; Skinner, 1976), these structures depend on the

characteristics of the inputs as opposed to the characteristics of the desired outputs.

The actual transformation rule which is crucial for obtaining this implementation is

surprisingly simple. As shown on lines 14-33 of Figure 3-13, the crucial transformation

rule simply pulls common shifts through a generalized shift-invariant system.7 By pulling

all the common shift operations through the butterfly and twiddle stages, the computa-

tional structure collapses from the general FFT structure, shown in Figure 3-8, to the

pruned FFT structure, shown in Figure 3-12.

This example also strongly supports the use of constrained manipulations on regular

algorithms. Using simple combinatoric analysis, the number of equivalent forms which

would be found by unconstrained manipulations can be estimated: this number is more

than 1019 as opposed to the thirteen found with constrained manipulations. These 1019

unconstrained equivalent forms simply use mismatched combinations of the subexpres-

sions used in the thirteen constrained equivalent forms. The severity of this combinatorial

growth is due to the branching of the FFT structure. Using unconstrained manipula-

tions, 720 subexpressions go into making up the general 16-point FFT structure shown

in Figure 3-8. Without regularity constraints to limit the combination of these expres-

sions and subexpressions, if M distinct, independent transformations are available for

each of these subexpressions, then there will be O(M72 0) distinct equivalent forms to be

considered.

3.4.3 Matched filtering for the individual frequency chips us-

ing N-point Hanning windows

Since the FSK-code signals are created from sequences of contiguous frequency chips,

the input signal to the sonar detector will include energy from these contiguous frequency

7The term "generalized" is used here to distinguish these systems from the classic shift-invariant
systems. In the classic shift-invariant system, H1 { }, if y1 (t) = Hi{z(t)} then y(t-T) = Hl{(t - T)}.
In a generalized shift-invariant system, H2 {), if y2(t) = H2 {x1(t), ...,X N(t) then y2 (t-T) = H2 {zx(t-
T), ..-, N (t - T)}.

64

_ __ __

1 (DEFINE-ABSTRACT-SYSTEM-CLASS (GENERALIZED-SHIFT-INVARIANT-SYSTEM *) *

2 ; accept any parameters or inputs

()0 ; no superclasses

4 ("H{ } s.t. if y[n] = H{xl[n] ... xL[n]} then y[n-N] = H{xl[n-N] ... xL[n-N]}")
5 NIL () ; generate a new output signal class, without any additional superior signal classes

6 ("the output from a generalized shift-invariant system"
7 (GOAL SIMPLIFICATION ; if all the inputs are shifted identically, pull shift system outside

8 :NAME SHIFTED-INPUT

9 :OBJECT (OUTPUT-OF ?SYSTEM@(NOT SHIFT-SYSTEM) &REST

10 ?INPUTS${ (OUTPUT-OF ?SHIFT ?[SHIFT-INPUTS])})

11 ; the inputs are all outputs from a single shift system.

12 ; ?SHIFT-INPUTS will be bound to the list of inputs to the shift system.

13 :ANSWER (OUTPUT-OF SHIFT (APPLY 'OUTPUT-OF SYSTEM SHIFT-INPUTS)))

14 (GOAL EQUIVALENT-FORM ; if all the inputs are shifted, pull one of the shifts outside

15 :NAME UNEQUALLY-SHIFTED-INPUT

16 :OBJECT (OUTPUT-OF ?SYSTEM@(NOT SHIFT-SYSTEM) &REST

17 ?INPUTS${(OUTPUT-OF (SPECIFIC-MEMBER SHIFT-SYSTEM

18 &REST ?[SHIFT-FACTORS])

19 ?[SHIFT-INPUTS]) })

20 ; the inputs are all outputs from shift systems.

21 ; ?SHIFT-FACTORS will be bound to the list of the amounts of the shifts.

22 ; ?SHIFT-INPUTS will be bound to the list of inputs to the shift system.

23 :ANSWER

24 (LET ((COMMON-SHIFT (FIRST SHIFT-FACTORS))) ; pullfirst shift outside

25 (OUTPUT-OF (APPLY 'SHIFT COMMON-SHIFT)

26 (APPLY 'OUTPUT-OF SYSTEM

27 (MAPCAR

28 '(LAMBDA (SHIFT-FACTOR SHIFT-INPUT)

29 (OUTPUT-OF (APPLY 'SHIFT

30 (MAPCAR '$- ; compensate for outside shift

31 SHIFT-FACTOR COMMON-SHIFT))

32 SHIFT-INPUT))

33 SHIFT-FACTORS SHIFT-INPUTS)))))

34 ...))

Figure 3-13: The definition for the system class, generalized-shift-invariant-system

65

I I ' Iw
-�-��U~I"---�-�-"�-I--- "I- --

chips. As shown in Figure 3-14, the 16-point Hanning window is actually preferable to

the 16-point rectangular window in terms of the worst-case responses of the matched

filters to a sequence of contiguous frequency chips: the worst-case side-lobe heights are

essentially identical and the worst-case main-lobe width of the Hanning-window filters is

approximately a third of that for the rectangular-window filters. ADE was again used

to find the constrained equivalent forms and the constrained efficient implementations

of the modulated filter bank using the 16-point Hanning window.s In response to the

request for constrained equivalent forms, the same set of structures which were found for

the general modulated filter bank were again obtained. In addition, structures like the

one shown in Figure 3-15 were uncovered. These algorithms are based on the pruned

FFT implementations of the rectangular window with the application of the Hanning

window occurring in the discrete Fourier domain. These pruned FFT implementations

for the Hanning window were among the efficient implementations of the modulated

Hanning-window filter bank.

As with the modulated rectangular-window filter bank, this example indicates the

potential of automated algorithm manipulation. This example also supports the use of

constrained search: again using simple combinatoric analysis, the number of equivalent

forms which would be found by unconstrained manipulations would be more than 1058

as opposed to the twenty found with constrained manipulations. 9 Furthermore, this

example is interesting for the path by which the structure shown in Figure 3-15 is found.

The new transformation step which must be completed to derive this structure goes

from the Hanning-window, short-time Fourier transform to the rectangular-window,

short-time Fourier transform followed by circular convolution. The other sections of

8 The actual input and output are not shown since the format is the same as was shown in Figures 3-7
and 3-11: this repetition was not considered useful.

9 This number of forms found using constrained manipulations is actually artificially low, since the
author interrupted the search and added a correspondence constraint to force coincidence between the
implementations of the rectangularly-windowed short-time Fourier transforms. If the environment had
been allowed to continue with the constrained search undisturbed, approximately two thousand equiva-
lent forms would have been found. This example presents a strong argument for having the environment
itself look for correspondences within signal-processing expressions, so that this artificial intervention
would not be necessary. This is one of the suggestions made in Chapter 8 for future research.

66

o0

cu

o
Co

3
O Q

90 O
o

Q C#

c o

"o
9,

'O :

a3 A

C _

O
:

D o

, r
Cu

.CI X _

-H
II
3

.0

.5
0

CdJ0
'i

-E

0.5'o
0

-5
9
0

E

67

·�___I __�_II II 1___1 �1_11_._ _ -----~---- - _~C-~---p ~·-L---~---·-- ------- ---

O

I=

Em

oOcz

43

4)oo s

- o
.
o -4

3

C a

.r Q

)C

Or b

L30C:
L O

B 3
30

i o
)a

8 i .(

9-

o*=
*j 'F $

cC)c: E .5LL .5 3

o3
oE B 5

co·r ¢6

68

__ � �I� �_ __ __ ___�

the path from the modulated filter bank to the structure shown in Figure 3-15 have

already been traveled. In particular, the transformation from the modulated filter bank

to the Hanning-window, short-time Fourier transform is achieved via the rule shown on

lines 21-26 of Figure 3-9 and the transformation from the rectangular-window, short-time

Fourier transform to the pruned FFT structure was discussed in the previous subsection.

The transformation from the Hanning-window, short-time Fourier transform to the

rectangular-window, short-time Fourier transform actually occurs by way of the FFT

system. One of the transformation rules included in the definition of the short-time

Fourier transform maps the problem of finding the equivalent forms of the short-time

Fourier transform into an associated problem using the FFT (lines 26-38 of Figure 3-16).

This mapping exploits the fact that the L-point short-time Fourier transform, Y[n, k] =

Em w[m]x[n + m]e-j i km, is the same as the two-dimensional sequence x[no, k] = X[,, k]

where X,0 is the L-point discrete Fourier transform of w[n]x[n + no]. Thus, the search for

the equivalent forms of the 16-point, Hanning-window, short-time Fourier transform also

attempts to find the equivalent forms of the 16-point FFT of the Hanning window mul-

tiplied by some abstract, discrete-time sequence. A new abstract discrete-time sequence

must be used in the product since it is not the input sequence, #<x>, which must be

represented but rather a whole range of shifted versions of #<x>. It is in the search

for the equivalent forms of this 16-point FFT that the transformation from time-domain

multiplication to discrete Fourier-domain circular convolution occurs. This transforma-

tion was uncovered through the interaction of a number of transformation rules, as shown

in Addendum 3.A.

3.4.4 Matched filtering for the individual frequency chips us-

ing 2N-point Hanning windows

Another alternative for a frequency-chip window is the 2N-point Hanning window. As

seen in Figure 3-17-b, for a 16-channel imaging system, an FSK-code signal using 32-point

69

_ 1 1 _ 1 _ 11 _- _~~
_____ _-~ -^* 1 11 I 11 ~ -

1 (DEFINE-SYSTEM-CLASS

2 (SHORT-TIME-FT WINDOW@DISCRETE-TIME-SEQUENCE FFT-SIZE@INTEGER

3 &OPTIONAL (DOWNSAMPLING-FACTOR@INTEGER 1))
4 ; accept a sequence and two integers as parameters. the second integer is optional.

5 (INPUT@DISCRETE-TIME-SEQUENCE) ; accept a sequence as an input.

6 (LINEAR-SYSTEM 2D-SYSTEM) ; a subclass of these classes

7 ("the short-time Fourier transform system"
8 (RECREATE-2D-SEQUENCE (1D-SEQUENCE TOKEN-INPUT REPLACED-INPUT)

9 ...)) ; the back-translation from the ID FFT to the 2D STFT

10 NIL () ; generate a new output signal class, without any additional superior signal classes

11 ("a short-time Fourier transform X[m,k] = FFTFFT-SIZE{[n + m]w[n]}"
12 (GOAL SIMPLIFICATION ; attempt to pull shifts outside

13 :NAME SHIFTED-INPUT

14 :OBJECT ; the input is shifted

15 (OUTPUT-OF ?SYSTEM$(SPECIFIC-MEMBER SHORT-TIME-FT ?WINDOW ?FT-SIZE

16 ?DOWNSAMPLING-FACTOR)

17 (OUTPUT-OF (SPECIFIC-MEMBER SHIFT-SYSTEM ?SHIFT) ?SHIFT-INPUT))

18 :WHEN ($>= ($ABS SHIFT) DOWNSAMPLING-FACTOR)

19 ; the shift on the input is greater than the output downsampling factor

20 :ANSWER (MULTIPLE-VALUE-BIND (PRE-SHIFT POST-SHIFT)

21 (SEPARATE-SHIFT-THRU-RATE-CONVERSION

22 SHIFT DOWNSAMPLING-FACTOR)

23 (OUTPUT-OF (2D-SEQUENCE-SHIFT POST-SHIFT)

24 (OUTPUT-OF SHORT-TIME-FT

25 (OUTPUT-OF (SEQUENCE-SHIFT PRE-SHIFT) INPUT)))))

26 (GOAL EQUIVALENT-FORMS ;use equivalent ID FFT problem

27 :NAME USING-1D-FFT

28 :OBJECT ?SELF ; any STFT.

29 :ANSWER ; find equivalent forms using the corresponding D FFT problem

30 (LET ((TOKEN-INPUT (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)))

31 (LET ((1D-EQUIVALENT-FORMS ; find the eq forms of the equivalent ID FFT problem

32 (EQUIVALENT-FORMS (OUTPUT-OF (FFT FFT-SIZE)

33 (SEQUENCE-MULTIPLY WINDOW TOKEN-INPUT)))))

34 (LOOP FOR 1D-FORM IN 1D-EQUIVALENT-FORMS

35 FOR 2D-FORM = (RECREATE-2D-SEQUENCE

36 (GENERATING-SYSTEM SELF)

37 1D-FORM TOKEN-INPUT INPUT)

38 WHEN 2D-FORM COLLECT 2D-FORM))))

39 ...))

Figure 3-16: The definition for the system class SHORT-TIME-FT

70

o -

0 .

E S

sLL 3:

U 2

8zE: .

Ua &

o
0

b 03 : 3i
o E-

o

o .
o U

sU) ~~Ub QQ

0

0y2 O~~~~~~ ,a

0

zZ

C*2

z
.5
0c
C

P

53:
0%

3
C

-

0

1UO

uo

- C

('f C)C:

=u. .=1co
CY L

3

oC

o d

P,

o Co
C; =~
Q) CE:

C

c 49

_1 -

_ Le

*La

_ ~ ~ ·

I I I I I I I ~ I

-I- -· - · F---_·__ _·_-I·I - ---. -- -- 1_-~~~~~~~~~~~~~~~~~~~~-1~~~1~~~ ------· ~~~~~~~ CII--~~~~~~lllll~~~~~l lll~~~~l~~lL~~----

Hanning windows is preferable to an FSK-code signal using 16-point rectangular windows

both in range resolution and in signal-to-signal rejection. The 32-point Hanning windows

will also be preferable to the 16-point Hanning windows in signal-to-signal rejection.

ADE was again used to find the constrained equivalent forms and the constrained

efficient implementations of the 16-channel, modulated filter bank using the 32-point

Hanning window. l° The same set of structures which were found for the general modu-

lated filter bank were again obtained. In addition to the structures for general modulated

filter bank implementations, structures like the one shown in Figure 3-18 were uncov-

ered. As with the N-point Hanning-window structures, these algorithms are based on

the pruned FFT implementations of the rectangular window with the application of the

Hanning window essentially occurring in the discrete Fourier domain. The striking dif-

ference between the structure shown in Figure 3-18 and the N-point Hanning-window

structures, is that the structure in Figure 3-18 essentially relies on a 2N-point FFT:

the environment itself obtains the 2N-point FFT structure from the N-point short-time

Fourier transform implementation of the modulated filter bank.

The rule which made this derivation possible is comparatively simple and general: it is

shown on lines 14-33 of Figure 3-19 within the definition of the generalized homogeneous

system class." The rule extracts common scaling factors and moves them to outside the

generalized homogeneous system. The actual sequence of transformations which were

traveled through to obtain the structure in Figure 3-18 is shown in Addendum 3.B.

As shown in this addendum, the original problem is eventually recast into a problem

of finding the equivalent forms of the sum of shifted versions of the short-time Fourier

transform using the 16-point rectangular window, r16[n], and of shifted, scaled versions

of the short-time Fourier transform using e-Jinrl6[n].'2 The problem of finding the

'°The actual input and output are not shown since the format is the same as was shown in Figures 3-7
and 3-11: this repetition was not considered useful.

"lAs with the generalized shift-invariant system class, the adjective "generalized" is meant to indicate
the extension from a single-input system to a multi-input system. So, with a generalized homogeneous
system H{}, if y[n] = H{zl[n],...,zN[n]} then ay[n] = H{azl[n],...,azN[n]}.

' 2 The reduction of the original problem to this intermediate problem also relies on the behavior of the
FFT-output equivalent-form rule MODULATED-INPUT. In particular, in ADE, this rule is written to reduce

72

_� __ �_ �

'e d

0 *0
q.c 4a 3 = = E

) 0 g64 u _ 8 ',L C a o . ,.=gc ~' ~ '~ ,':

73

itM-~~T-I-- I~I-"~-III-Y -Y - r
·�·__1�·11_ 11 �__··_I_� �C_ _C

74

_ _ ___ �_

equivalent forms of the short-time Fourier transform using the rectangular window has

already been solved. The problem of finding the equivalent forms of the short-time Fourier

transform using the modulated rectangular window uses the rule shown in Figure 3-19

repetitively, to move the common scaling factors of e-Ji k outward through the general

FFT structure shown in Figure 3-8. Once this modulation is moved through the general

structure, the same pruning as was seen for the rectangularly windowed, short-time

Fourier transform can be completed.

The rule shown in Figure 3-19 was included in ADE in hopes of making this very

derivation the 2N-point FFT structure from the N-point FFT structure. The targeted

inclusion of this particular transformation rule had an additional benefit. Specifically,

when this rule for pulling common scaling factors outside a generalized homogeneous

system was encoded into the environment, the corresponding rule for pulling common

shifting factors outside a generalized shift-invariant system was also included. This second

rule was envisioned and encoded simply to maintain the parallel in behavior between the

two "generalized" system classes. Thus, the derivation of the 2N-point FFT structure

relies on the use of a rule targeted specifically for this discovery. The formulation of this

targeted rule resulted in the formulation and inclusion of another, untargeted rule. It

was this untargeted rule which uncovered the pruned FFT structure.

3.5 Summary

To conclude this introduction of the Algorithm Design Environment, the general

characteristics of the environment have been outlined, using the sonar FSK-code detector

as an example. The signal and system representations which are used in ADE closely

mimic their mathematical characterization. In particular, the signal- and system-class

definitions are hierarchical, allowing common characteristics, such as shift invariance, to

all modulations of the input to an N-point FFT to modulations of the form e-j*awn with 0 < Aw < 1.
It is this rule that maps the modulation by e " into the circularly shifted FFT with a modulation
term of e-j an

75

��__� __� _111_ _1_1111�1_ 1_1__1 1�-----1.- ..-_. 1_ .111_ 1 1~~~~~~~~~~~~~--· . L~~~~~~ ----- - ll- C I ·- 1 1 I 1--- I- _ IC--- -

1 (DEFINE-ABSTRACT-SYSTEM-CLASS (GENERALIZED-HOMOGENEOUS-SYSTEM *) *

2 ; accept any parameters or inputs

3 ; no superclasses

4 ("H{ } s.t. if y[n] = H{xl[n] ... xL[n]} then a*y[n] = H{a*xl[n] ... a*xL[n]}")
5 NIL () ; generate a new output signal class, without any additional superior signal classes

6 ("the output from a generalized homogeneous system"
7 (GOAL SIMPLIFICATION ; if all the inputs are scaled identically, pull scale system outside

8 :NAME SCALED-INPUT

9 :OBJECT (OUTPUT-OF ?SYSTEM@(NOT (OR SCALE-SYSTEM SHIFT-SYSTEM))

10 &REST ?INPUTS${(OUTPUT-OF ?SCALE ?[SCALE-INPUTS])})

11 ; the inputs are all outputs from a single scale system.

12 ; ?SCALE-INPUTS will be bound to the list of inputs to the scale system.

13 :ANSWER (OUTPUT-OF SCALE (APPLY 'OUTPUT-OF SYSTEM SCALE-INPUTS)))

14 (GOAL EQUIVALENT-FORM ; if all the inputs are scaled, pull one of the scales outside

15 :NAME UNEQUALLY-SCALED-INPUT

16 :OBJECT (OUTPUT-OF ?SYSTEM@(NOT (OR SCALE-SYSTEM SHIFT-SYSTEM))

17 &REST ?INPUTS${(OUTPUT-OF (SPECIFIC-MEMBER SCALE-SYSTEM

18 ?[SCALE-FACTORS])

19 ?[SCALE-INPUTS])})

20 ; the inputs are all outputs from scale systems.

21 ; ?SCALE-FACTORS will be bound to the list of the amounts of the scales.

22 ; ?SCALE-INPUTS will be bound to the list of inputs to the scale system.

23 :ANSWER
24 (LET ((COMMON-SCALE (FIRST SCALE-FACTORS))) ; pull the first scale outside

25 (OUTPUT-OF (SCALE COMMON-SCALE)

26 (APPLY 'OUTPUT-OF SYSTEM

27 (MAPCAR
28 '(LAMBDA (SCALE-FACTOR SCALE-INPUT)

29 (OUTPUT-OF (APPLY 'SCALE

30 (MAPCAR '$- ; compensate for the outside scale

31 SCALE-FACTOR COMMON-SCALE))

32 SCALE-INPUT))

33 SCALE-FACTORS SCALE-INPUTS)))))))

34 ...))

Figure 3-19: The definition for the system class, generalized-homogeneous-system

76

_ __ _ _I_ _�

be highlighted. The representation and manipulation of abstract signals are supported:

this support allowed the manipulation of the general modulated filter bank in which no

specific choice had been made about the identity of the window.

The general process by which alternate implementations are obtained was discussed.

This involves not only finding identity transformations which are applicable to the given

signal-processing expression but also finding transformations which are applicable to its

subexpressions and to any of the newly uncovered equivalent implementations. The idea

of regularity constraints was introduced as one way to limit the combinatorial growth

which results from the independent manipulation of subexpressions. These regularity

constraints are used to reduce the design space which is explored in the search for equiv-

alent implementations.

The power of automatic algorithm manipulation was demonstrated using the modu-

lated filter bank within the FSK-code detector. Three innovative implementations of the

16-channel, modulated filter bank were developed using ADE, the first using a 16-point

rectangular window; the second, a 16-point Hanning window; and the third, a 32-point

Hanning window. None of these three structures have been found in the published lit-

erature on modulated filter banks or short-time Fourier transforms. All three of these

algorithms exhibit a high internal branching factor, making unconstrained manipulation

of the algorithms untenable due to the number of possible subexpression combinations.

Thus, this application area has shown that an algorithm design environment can have

a marked beneficial effect on the solution of signal-processing problems and that, at

least for this application, the use of regularity constraints is essential for solving these

problems.

The remainder of this thesis explores issues involved in providing a design environment

with capabilities such as those demonstrated here.

77

_I__� __ ____Lllll�_lI·___III--L__�-·-^L·II *--·--U--ll I -I_._�_�·�-·-·�t---··--·---�-(*111---- ------ I - -·-

Addendum 3.A The sequence of transformations used in going from the
FFT of the product involving the Hanning window to the sum of scaled
and shifted versions of the FFT of the product of involving the
rectangular window

let "token" represent the abstract discrete-time sequence generated by the
short-time Fourier transform output equivalent-form rule "using-ld-fft"

token -I

16
(causal-hanning-window-sequence 16)'

!__ -----___________ ------------------------

causal hanning-window sequence
equivalent-form rule "master-copy"

+ simplification

equivalent-form rule "self-application"

(causal -rectangular-win
(constant-se

(cosine-sequence 2)

cosine sequence equivalent-form rule "master-
+ simplification

r--

(causal-rectangt
(con

(complex-exponential-sequence 276)

I(complex-exponential-sequence -216)
L--- -------------------

additive-system output

equivalent-form rule "addesmpifctin d-input"

(c aus al -recttan gul ar- window- -se
(constant- sequence

i(cosine-sequence 2 r\i ~~16

---a-

I - -- -

-copy"

78

4
additive-system output
equivalent-form rule "added-input"

+ simplification

(causal-rectangular-win

(causal-rectangular-window-seqi

(complex-exponential-sequence 26)
16

(complex-exponential-sequence 2..)
16

additive-system output
equivalent-form rule "added-input"

(causal-rectangular-win

token
(causal-rectangular-window-sequence 16

(complex-exponential-sequence 21)
16

token
(causal-rectangular-window-sequence 16

(complex-exponential-sequence -2I)
1 A

additive-system output
equivalent-form rule "added-input"

+ simplification

(causal-rectangular-wi

token
(causal-rectangular-window-sequence 1

(complex-exponential-sequence 216

token
(causal-rectangular-window-sequence 1

(complex-exponential-sequence 1-21)16

equivalent-form rule "added-input"

79

*FFT c scale
16 1/

J

scale

-

I" -, 14-1 IS�--Y�XI__·. ·�--�9---I·ll�·PL1·-··lyl-l�� _--�- ._.._. , I . -- --~ a

I

. N

additive-system output
equivalent-form rule "added-input"

(causal-rectangular-w

token
(causal-rectangular-window-sequence 1

(complex-exponential-sequence 162

token
(causal-rectangular-window-sequence 1

(complex-exponential-sequence -2--

rule "modulated-input"

(causal-rectangular-window-sequence 16:

80

IU

FFT output equivalent-form
rule "modulated-input"

�� _I _ �_ __

Addendum 3.B The sequence of transformations used in going
from the 16-point short-time Fourier transform with a 32-point
Hanning window to the structure shown in Figure 3-18

x 16-point short-time FT
(causal-hanning-window-sequence 32)

short-time FT output equivalent-form rule using-lD-FFT"
(see development labelled "ID FFT transformations")

+ simplification

two applications of
2d-window output equivalent-form rule "shifted-input"

+ simplification

I l J r

X

X

I·s - I

I

TE

,- 1, = St3

- cj E

l

-2

.ole
tt

*Sfc

......E.
i ooo"o~

-'34!R:2Z,,
* UlE

USQ- I'sS.k .,E

,; : ll

00

o

C)
0

82

1_ �I _ _ I _ _� _ � _

Iiy
j

i
. .IS~ ?I.

z

I vv

-& .c. su

3 + > +C:
3835

l- '. 'R z I t.-+ :1-.B 6.z I

C) C

C))

E E
0 0

83

C...

.qoIE

't

R,
iP

v~POQS

cc

8-
a

~

0~d

#·-IIXI · -. - I·- _--·- 1-_11 --- - II --- XCI···-III-·-····III^^- -LILII�-··I�··-·IC·-X-·*�-----LL- --�·---·II--UL��I----·

.:

Q

:2

.l? X

. E
I _2. I .

1*.. : 0

cu u

: ,, a E

-) Q)

84

84

.

0C
o

c

eo

c

rc

c

E
To
._

*t!2:2

,k)

*

s i
I -E

3~3

_ �I� _��

4

:2

i4i.F

CJZ

': ,

.t 3t:3 s
Do

F X D-

85

Z-

1:

:2

I

:1
L.

e,

-2

Rasaaab

;'1

ct

cu

2
cd
(A

a6.
xy
x

oE
O
v

__·�___��·__II__C_·_·__ �I__ Il_�_ll__��_�g �III __1_ _III Llll�lllil_-�L^I· IIIYC^--�LCI�L--�·�-PLl�ltP�II�L-XI(·I· I-

0

0

Cu
E

w

0
tu

L

0r.

co

u
4.Ir

N

.)

c)

I ,- I

- C)
0

CA

'C

u
C.

cn

u

rl,Z)

-
.

:3

a

.>Mt;,I

2-.

So

.o X -

ol11R13,ci
aanlaa

N1114

* ,

oCI 0
I. ,

86

':i

ii

-it

a:e

4!
>

a:t
tr

8

.

E

:2.!
R

I I ·

F-·
Fxm

Q1

wo

BE

? ?

> Eo
uS. Fe-

+

- 0

'C 'e
i C

E=
0

p ax

a a

- o

_ _U. U

I.

-t

87

m-

c)

u)

U
I

a)

'e

c)su

�___�·�P· L�� I _�I _ _I_ I Ill_-i-�llll�·IIE ICII�·- IPI-I---_I--�-�II-L--L--_IIIIIl---

tt
·ZQ

'i
u

:3

1:3

.:a
·,z .

w

Q
Q

.) o- 3is
-

b.)

ICt
m
(A

Cld

= c .) O
=) C
&n = r_

4.) =

o = 4Qa)

c oIO 0

-' UI
C Z, X

C.)
ed '4-

=3 UhC.)

4.) I 3 c

a)
3 Oo m
ll) -

. o1 CXr_-

g '.- u

88

� ___ �___�__ ��_ __ �_

3

d

Y

r!
Y
a

3

r
a
,4·
J

g

·g
L

S,
k�.� .Q

�o�p

B

2-.
I

:3

12,
-V

Raoo

Chapter 4

Signal and System Representation

Chapter 1 described the central goal of this thesis, namely the exploration of auto-

matic signal-processing expression manipulation. The concepts central to this research

are explored through the definition and implementation of an environment embodying

these concepts. Areas involved in describing such an environment can be divided into

the representation of signals and systems and the behavior of the control structures used

to manipulate them and their properties. This chapter and the following chapter discuss

these issues: this chapter explores the characteristics needed in complete signal and sys-

tem representations and the next chapter explores the characteristics of an appropriate

control structure.

4.1 Signal and System Representation in the Algo-

rithm Design Environment (ADE)

The Algorithm Design Environment, described in Chapter 3, is used to demonstrate

the validity and the power of the ideas presented in this thesis. This section provides a

more detailed description of the signal and system representations used in ADE.

89

11_11�__1_11__�_______---�-� --1-��� -_ -I � ___ � �____ 1_-_1--_-·_11�14^

Table 4.1: Categories of signals and systems supported in ADE
Domain Information content Non-zero support Computability

Discrete-time domain Simple specific Finite-length Computable
Discrete-time, Symbolically constrained Left-sided Uncomputable

Fourier-transform domain Abstract Right-sided
Z-transform domain Doubly infinite

4.1.1 Signal and system manipulation

As shown in Table 4.1, many categories of signals and systems are represented in

ADE. Most of these categories are self-explanatory. The only categorization which will

be discussed in detail here is that of information content.

Simple, specific signals and systems are completely specified objects. Examples of

simple, specific signals include e-Jg3 n and r 16[n] * r16[n] where r 6[n] is the 16-point,

causal rectangular window. The objects are completely specified and all property values

and sample values can be explicitly described.

As discussed in Chapter 3, abstract signals and systems represent an incomplete

description of the signal or system. Examples of abstract signals and systems include

objects described solely by the signal class to which they belong, like #<(A-MEMBER-

OF 'DISCRETE-TIME-SEQUENCE)> or #<(A-MEMBER-OF 'LINEAR-SYSTEM)>. Descriptions

of abstract signals and systems can also include additional information, as illustrated on

line 1-2 of Figure 3-4. The difference between abstract and specific signals is that the

description given for the abstract signal can refer to any of a multitude of distinct signals

whereas the description given for the specific signal refers to a single, unique signal. The

same distinction holds for abstract and specific systems.

Symbolically constrained signals and systems are best described by example: the out-

put from the FSK-code detectors on line 0-4 of Figure 3-4 is a symbolically constrained

signal as are the sequences manipulated on lines I-7 and 1-8. They are not simple, specific

signals, in that no simple mapping from their indices to their sample values can be given.

On the other hand, symbolically constrained signals are specific signals, not abstract sig-

90

_ I

nals: their specification refers to a single, unique signal. Thus, they lie between simple,

specific signals and abstract signals in their information content: their identity can be

uniquely determined but no simple complete description can be given for their sample

values.

To simplify the user's task, a uniform interface is maintained that is as independent

of the identity of the particular signal or system as possible. As in SPLICE (Dove et al.,

1984; Myers, 1986), access to sample values is independent of the programming paradigm

used in defining the signal. Similarly, this access is independent of the domain of the

signal: sample-value retrieval from a discrete-time Fourier-transform signal or from a z-

transform signal is the same as from a discrete-time sequence. Furthermore, any sample

value can be retrieved, even if the signal is abstract or the actual, numeric value is

uncomputable. In these two cases, a "symbolic number" is used as an answer, in the

same way as x[5] is used mathematically as the sample value for an abstract, discrete-

time sequence, x[n]. Constraints are imposed on the type and the magnitude of the

symbolic number based on the sample type and range of the signal.

All signals and systems are apparently immutable, in that their observable property

and sample values are inalterable: the representation of the signal or system can not be

altered in an inconsistent manner by subsequent processing.

Referring to a signal or system returns its representation, without the overhead in-

volved in determining all the property and sample values. Instead, determination of each

of these quantities is deferred until the value is needed. Once a property or sample value

is determined, it is recorded so that subsequent references need not recompute the value.

Finally, each unique signal and system has a unique representation. If multiple objects

were allowed to represent a unique signal or system, the redundant representations would

consume additional resources.

91

I _ _ I ·-_-l_�·^--�1CII�--(LI-�^l�·*·-·P·l LII�- _II-�.-�IIII·-LI�L- ^ -I II^�-X�-LII_-II. ---.-�..��-�.I-. .�..�DI�--C·-· --_111 -1�111�-�-----

4.1.2 Signal and system definition

Some of the signal and system characteristics which simplify their definition coincide

with those already listed for their external manipulation. In particular, immutability,

unique representation, deferred evaluation and caching of property and sample values

are all behaviors which simplify the definition of signals and systems.

As was illustrated in Figure 3-3, signal-class definitions are collections of information

about the property and sample values of the signals. Similarly, system class definitions

are collections of information about the property values of the systems and the property

and sample values of their output signals. Separate descriptions of sample values can be

associated with each signal or system class. Another level of modularity is also available

for property value descriptions: these descriptions tend to rely on the details of the

signal or system as well as its class. For example, the Fourier transform of a product is

described using multiple independent forms (lines 20-27 and lines 28-40 of Figure 4-1).

Similarly, the description of the simplification of a product is given by multiple partial

descriptions, some of which are included in the definition of SEQUENCE-MULTIPLY (lines 7-

10 and lines 11-19 of Figure 4-1) and some of which are included in the definitions of its

superclasses.

The description of sample values is a major component of signal- and system-class

definitions. To simplify this programming task, modularity and a variety of programming

paradigms are supported. As in SPLICE (Dove et al., 1984; Myers, 1986), array-based

models, point-based models, state-machine and composition models are all supported

for describing sample values. The non-zero support is used to restrict the sample-value

requests to within this support: this can often be used to omit explicit bounds checking

from the sample-value functions. Similarly, the periodicity of a periodic signal is used to

shift all sample-value requests down to the period extending upward from zero, potentially

reducing the time and space required to compute the requested sample values.

92

1 (DEFINE-SYSTEM SEQUENCE-MULTIPLY (&REST INPUTS@(LIST-OF DISCRETE-TIME-SEQUENCE))

2 ; accept any number of discrete-time sequences as inputs

3 (MULTIPLY-SYSTEM DISCRETE-TIME-SYSTEM) ; a subclass of these classes

4 ("the system for multiplying sequences")
5 NIL () ; generate a new output signal class, without any additional superior signal classes

6 ("the product of sequences"
7 (GOAL SIMPLIFICATION ; if there are no inputs, the "product" is a unity-gain constant sequence

8 :NAME NO-INPUTS

9 :OBJECT (OUTPUT-OF ?MULTIPLY)

10 :ANSWER (CONSTANT-SEQUENCE 1))

11 (GOAL SIMPLIFICATION ; if all the inputs are IZT's, use the z-domain representation for the multiply

12 :NAME IZT-INPUTS

13 :OBJECT (OUTPUT-OF ?MULTIPLY &REST

14 ?INPUTS${(OUTPUT-OF (SPECIFIC-MEMBER IZT-SYSTEM) ?[ZT-SIGNALS])})

15 ; the inputs are all outputs from an inverse z transform.

16 ; ?ZT-SIGNALS will be bound to the list of inputs to the inverse z transforms.

17 :ANSWER (INVERSE-Z-TRANSFORM

18 (OUTPUT-OF (ZT-SCALE (/ 1 (MAX 1 (* (1- (LENGTH INPUTS)) 2PI))))

19 (APPLY 'ZT-CONVOLVE Z-TRANSFORMS))))

20 (GOAL FT ; if all the Fourier transforms for all the inputs exist,

21 ; the Fourier transform of the product is the convolution of the transforms of the inputs

22 :NAME AS-CONVOLUTION-INPUT-FT

23 :OBJECT ?SELF ; any product.

24 :WHEN (NEVER '(LAMBDA (INPUT) (SAMEP (FOURIER-TRANSFORM INPUT) NONE))

25 INPUTS) ; all the Fourier transforms of the inputs exist

26 :ANSWER (OUTPUT-OF (SIGNAL-SCALE (/ 1 (MAX 1 (* (1- (LENGTH INPUTS)) 2PI))))

27 (APPLY 'SIGNAL-CONVOLVE (MAPCAR 'FOURIER-TRANSFORM INPUTS))))

28 (GOAL FT ; if the product can be expressed as a complex exponential times a subproduct

29 ; and the Fourier transform of the subproduct exists, the Fourier

30 ; transform of the product is a shifted version of the Fourier transform of the subproduct

31 :NAME COMPLEX-EXPONENTIAL-MODULATED-INPUT

32 :OBJECT (OUTPUT-OF ?MULTIPLY

33 (SPECIFIC-MEMBER COMPLEX-EXPONENTIAL-SEQUENCE ?FREQ)

34 &REST ?OTHER-INPUTS)

35 ; one of the inputs is a complex-exponential sequence

36 :WHEN (NOT (SAMEP (FOURIER-TRANSFORM

37 (APPLY 'SEQUENCE-MULTIPLY OTHER-INPUTS))

38 NONE)) ; the Fourier transform of the subproduct exists

39 :ANSWER (OUTPUT-OF (SIGNAL-SHIFT ($MINUS FREQ))

40 (FOURIER-TRANSFORM (APPLY 'SEQUENCE-MULTIPLY OTHER-INPUTS))))

41))

Figure 4-1: An example of a system-class definition

93

4.1.3 Summary

This section has briefly discussed some of the characteristics which are important in

signal and system representations. Some of these characteristics will be considered in this

chapter and the next. Others, such as apparent immutability and unique representation,

are discussed by Kopec (1980), Dove et al. (1984) and Myers (1986). The remainder of

this chapter discusses the definition of hierarchies of signal and system classes. The basic

signal and system representations are also briefly considered. Finally, new representations

for abstract objects and for some symbolically constrained objects are developed.

4.2 Representational Hierarchies for Signals, Sys-

tems and their Classes

Since the primary focus of signal processing is the systems and signals involved, both

signals and systems are commonly dealt with and thought of as express entities. A

simple way to support this conceptualization is to represent signals and systems using

object-oriented programming. Since the signal and system representations in ADE rely

on object-oriented programming, the following subsection is devoted to the description of

this programming paradigm. Subsection 4.2.2 then describes the actual representations

used in ADE.

4.2.1 Object-oriented programming

The focus of object-oriented programming, appropriately, is objects. Objects are used

to combine the properties of procedures and data by both performing computations and

saving local state. Message passing between objects is used as an indirect procedure

call: the object receiving a message selects a method from its private procedures for

completing the indicated operation. The close association between the data objects

and the procedures supports both data abstraction and polymorphism, both essential

94

·_ _� __ I

prerequisites to program modularity. 1

Constructs in object-oriented programming fall in two major categories: classes and

instances. A class describes similar objects and instances are the individual objects in the

class. For example, using object-oriented programming, "number" would be a class and

"3 + j 4" would be an instance of the type "number". The class descriptions enumerate

the instance variables, the variables included in each instance, and define methods, the

local procedures used by the instances to respond to messages. Continuing the example

using numbers, "real-part" and "imag-part" would be two instance variables of objects

within the class "number" and "magnitude" and "phase" would be two methods available

to these objects.

Methods and instance variables can be provided either directly by the containing

class or indirectly by inheritance between classes. By defining hierarchies of classes, the

instances of a subclass will inherit the instance variables and the methods defined for

the superclass. This allows independent aspects of an object to be described separately

and allows similarities between classes to be made explicit. Again using numbers, "real-

number" and "imaginary-number" both would be subclasses of "number". Through

inheritance of instance variables and methods, real and imaginary numbers would contain

the instance variables, "real-part" and "imag-part" and would respond to the messages,

"magnitude" and "phase".

When multiple methods for a single message are available to a class through inher-

itance and local definition, then the method from a subclass will take precedence over

any corresponding method from any of its superclasses. Thus, another method could be

defined for real numbers, giving the phase as 0 or r, according to the sign of the real

number. This new method for phase would be used by all real numbers. In ADE, the

class hierarchy is actually a lattice, with the possibility of multiple direct superclasses

for a single class: for example, SEQUENCE-MULTIPLY is a direct subclass of both MULTIPLY-

SYSTEM and DISCRETE-TIME-SYSTEM. When there are multiple direct superclasses, multi-

'Polymorphism is the use of a single function name to index multiple procedures. It can be used to
emphasize the general unified purpose of the component procedures.

95

ple methods from these superclasses may still be inherited for a single message. Stefik

and Bobrow (1986) provide a detailed description of alternate approaches used to resolve

these contentions.

In summary, object-oriented programming provides a uniform interface for computing

and saving local state. Multiple methods can be defined using a single name, each method

being valid for a different class of objects. Class hierarchies and inheritance emphasize

similarities between object classes. These properties make object-oriented programming

an ideal basis on which to build signal and system representations.

4.2.2 Hierarchical organization of signal and system represen-

tations

The ability of object-oriented programming to branch according to the type of the sig-

nal or system provides modularity between classes. Thus, object-oriented methods are

used to describe sample-value functions. Signal and system properties require greater

modularity within their definitions. This requirement was illustrated in the previous sec-

tion using the determination of the Fourier transform of a product of signals (Figure 4-

1). This requirement for additional modularity is met using a rule-based representations:

property information is given in the form of rules which use pattern matching to determine

applicability. This approach will be discussed further in Chapter 5. While modularity

can be provided using object-oriented programming, some of the other representational

requirements described in section 4.1 can not be met without some extensions: in par-

ticular, unique representation, deferred evaluation and caching are not provided by this

paradigm. These extensions as well as the underlying use of object-oriented programming

are the subject of this subsection.

By recording the representations as they are created, unique representations of signals

and systems can be achieved. In particular, using this approach, a unique representation

of an output signal can be derived from the generating system and its inputs: the gen-

erating system would provide the caching table of signal objects and the list of inputs

96

__ _·

would provide a key. For example, for the sequence y[n] = x1[n]x 2[n]x 3[n], the system

MULTIPLY would provide the table and the list, (xi[n] x 2[n] x3 [n]) would act as the

key. The first time an output signal is referenced, no entry would be found and a new

signal object would be created and cached. All subsequent applications of that system to

those inputs return the same signal representation, simply by looking it up in the caching

table. A similar approach is taken for maintaining unique representations of systems and

inherent signals.

The example given above, namely y[n] = x1[n]x 2 [n]X3[n], raises an interesting is-

sue: to illustrate, consider the sequence s 2[n]x 3[n]x1[n]. Given the above description, a

distinct sequence will be created to represent x 2[n]X3[n]x1 [n]. Yet, due to the commuta-

tivity and associativity of multiplication, the distinction between these forms is blurred.

The generating systems, their inputs and, in fact, all the property and sample values of

x[n]X2[n]X3[n] will be identical to those of x 2[n]x 3 [n]xl[n]. Thus, these signals are essen-

tially identical. Maintaining separate representations for them has all the inefficiencies of

duplicating representations, both in repeated computation and in wasted space. To avoid

these inefficiencies, a single representation can be used for all permutations of the inputs

into commutative and associative systems. By reordering the caching keys canonically,

this single representation will be accessed, independent of the given permutation of the

inputs.

A similar issue arises in the representation of systems and of inherent signals. To

illustrate, consider the complex-exponential sequences e-jzn and ei 5"n, retrieved from

COMPLEX-EXPONENTIAL-SEQUENCE by the parameter values -s and 15, respectively. The

sequences are completely identical to one another and to any complex-exponential se-

quence of the form e-Ji(16k+i)n: they all belong to the same signal class and their sample

and property values are all identical. A unique representation is possible if provisions are

made for mapping the parameters to a canonical set of values. This mapping is included

in the signal and system class definitions where multiple, distinct descriptions of a single

signal or system are possible. Then, when a signal or system is required, the parameters

97

_ 1·____1_1�1________1__ 111111�-·----_.-1 ^^1111�·.·11 ^-·lll_·�-�Y·�·�ll���--*·lr�L�.�1---YI·I --- .. -I_·-_L-l�·l-� -- - -- _I

and thus the indexing key are mapped to a canonical value before any attempt is made

to retrieve the actual signal or system.

4.3 Abstract Objects and Specific Objects with De-

pendencies on Abstract Objects

The discussion up to this point has implied that all signal and system representations

are cached and reused by all subsequent references. This behavior is not appropriate for

abstract signals and systems: for example, two separate references to abstract discrete-

time sequences should not be forced to refer to the same abstract discrete-time sequence.

Otherwise, one could not talk about two distinct sequences, x 1[n] and x 2[n], both char-

acterized by the description (A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE).

One option in representing abstract objects is to avoid caching any information

and return completely separate objects for each invocation of an abstract description:

thus, the objects returned by two separate invocations of (A-MEMBER-OF 'DISCRETE-TIME-

SEQUENCE) would be completely separate and unrelated. This is certainly a valid approach

to the representation of abstract objects and it is the approach used in E-SPLICE (My-

ers, 1986). However, upon consideration, the abstract objects which share a common

description are not completely unrelated: all the information which is known about them

and all the information which is derivable about them is identical. For example, two

distinct instances of an abstract discrete-time sequence obviously have the same signal

domain. Since they share the same known properties and since they use the same rules to

determine the remaining property values, they will also share the same non-zero support,

sample type, bandwidth, symmetry characteristics and periodicity. More importantly,

if a system H{} is separately applied to two related abstract signals, xl and x2, the

output signals H{x l } and H{x 2} are also related.2 Since H{} is unchanged between the

2 This discussion assumes that the system H{} is independent of xl[n], 2[n] and all other abstract
objects.

98

_

two applications and since xz and x2 are indistinguishable in terms of property values,

H{zx} and H{x 2} will also be indistinguishable in terms of property values: that is,

H{xl} and H{x2 } will be distinct but they will share the same non-zero support, sample

type, bandwidth, symmetry characteristics and periodicity. Their simplifications and

equivalent forms will also be closely related: in particular, replacing xl with x2 in the

simplification of H{xi} will give the simplification of H{x 2} and the same replacement

in the equivalent forms of H{xi} will give the equivalent forms of H{x 2}. When H{} is

a complicated signal-processing algorithm, such as that used for FSK-code detection, the

computational resources used in determining the property values of the output is signifi-

cant. It was this sharing of information which allowed the periodicity of the signal shown

on line 1-8 of Figure 3-4 to be determined without any additional calculation. The signal

on line 1-8 is related to the output from the modulated filter bank, used on line I-7 of

Figure 3-4. As shown in the annotations between lines I-7 and 0-7, the periodicity of this

earlier modulated filter-bank output has already been determined. Since the modulated

filter bank in both applications is the same and since the abstract instances to which it is

applied are related, the information determined about the first output signal is reused to

answer the question about the second. As will be discussed later in this section, the use

of the one-dimensional Fourier transform to search for equivalent forms of the short-time

Fourier transform provides another example of information sharing. The remainder of

this section develops a representation for abstract objects which expedites the sharing of

information between related instances.

4.3.1 Representation of abstract objects

As mentioned above, distinct representations must be returned for each invocation

of an abstract description but the underlying information about the objects is either

identical or closely related. This suggests that, although the outermost shells which

are returned must be distinct, the underlying representation of the abstract description

can be unique. Figure 4-2 illustrates this idea pictorially. The outermost shell of the

99

__�I____�_C_� _ II I __�
_ _�I__ · _ll�r___ YII�1___/_^11__··�l_- 1_1.�--· ·IYL-LILLLP-·II^II·I^l�-l^.�_·I_11II�Y· -�-�-�

let xl[n] and x2[n] be related but

100

distinct instances of the abstract description
(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)

Figure 4-2: Two-level representation for abstract signals and systems
Distinct representations must be returned for each invocation of an abstract description but
the underlying information about the related abstract objects is either identical or closely related.
One way to reflect this relationship between abstract instances is to use a two-level representation
for abstract objects. The outermost shell of the representation forms a thin representational layer
covering the nucleus of the abstract object. The nucleus of the abstract object in many ways
behaves like a specific object: it is a unique representation for a particular signal or system
description which is returned whenever that description is invoked. This combination allows
related abstract objects to be distinguished by the shell object while still sharing a unique, central
representation.

nucleus for
(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)

periodicity: o
equivalent-forms: ((instance) (list instance))

let xl[n] and x2[n] be related but
distinct instances of the abstract description

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)

shell for
xi[n]

shell for
x2[n]

Figure 4-3: Centralization of knowledge determined about abstract objects

The property values of an abstract object are collected, after some modification, in the nucleus of
the representation. Property values which depend on the identity of the owner are recorded in a
functional form, with the owner as an argument. When an attempt is made to return one of these
modified property values, the result of applying the functional description to the particular instance
under consideration is returned instead.

I lr

representation will be referred to as the abstract shell, since it is simply used as a thin

representational layer covering the nucleus of the abstract object. The nucleus of the

abstract object in many ways behaves like a specific object: it is a unique representation

for a particular signal or system description which is returned whenever that description is

invoked. The difference lies in the fact that the abstract nucleus is never returned without

a covering shell and a different shell object is generated on each invocation of the abstract

description. This combination allows related abstract objects to be distinguished by the

shell object while still sharing a unique, central representation of the information which

is known or can be determined.

From the description of the abstract shells and the abstract nucleus, the shells need

not be cached but the nucleus must be. Shell objects do not need to be cached, since they

are never reused: a new shell is generated on each invocation of. the abstract description.

On the other hand, the abstract nucleus is expected to be shared between all the shells

and thus is cached in order to allow its reuse.

The property values of an abstract object are collected in the nucleus of the repre-

sentation. Modification is necessary on some property values. To illustrate, consider the

determination of the equivalent forms of some abstract discrete-time sequence, xzl[n]. No

alternate representations will be found for x[n], so the equivalent forms of x 1[n] will

be the list (xl[n]). This answer could be recorded directly in the nucleus but then the

information in the nucleus would end up being a conglomerate, some parts referring to

one instance of the abstract description and others, to another. Subsequent usage of the

information would need to determine the modifications necessary to give, for example,

the equivalent forms of x 2 [n]. A simple and attractive alternative is to complete this

examination once, when the property value is being recorded in the abstract nucleus. If

the property value does not include the identity of the owner, then the value is recorded

without modification. However, if the property value does include the identity of the

owner, as the equivalent forms did above, then the property is flagged and a functional

description of the property value recorded, with the abstract object as the argument (Fig-

101

__ _II� X I __ __

ure 4-3). This simplifies the task of returning property values: either the property value

is as recorded or its functional description will return the correct value when applied to

the particular instance under consideration.

Unlike property values, the records of sample values of abstract signals should not

be centralized. Two simultaneous constraints prevent the centralization of the sample-

value records. The first is that two distinct instances of an abstract signal description

should not be forced to have identical corresponding sample values: that is, if x[n]

and x 2[n] are two abstract discrete-time sequences, there is no reason to believe that

x1 [3] = x2 [3] or that any of the other sample values are identical. So, distinct symbolic

numbers must be used to represent the sample values of the distinct abstract instances.

The second constraint is that a unique sample value must be given for repeated requests

to a particular abstract signal: x 1[3] should return a unique value, no matter how many

times the request is made. Thus, each abstract shell must maintain its own records of its

sample values. The same arguments apply to abstract systems and their output signals:

for example, for two related abstract discrete-time systems, H1{} and H 2{}, H 1{6[n]}

is distinct from H 2{S[n]} and Hl{6[n]} should return a single unique signal no matter

how many times the description is invoked. Thus, the records of the output signals from

abstract systems must be maintained separately in each abstract system shell.

4.3.2 Representation of specific objects with dependencies on

an abstract object

As mentioned at the beginning of this section, if a simple, specific system H{} is

separately applied to two related abstract signals xl and x2 , the output signals H{xl}

and H{x 2} are also easily and accurately related. In particular, since all the available

information about xl and x2 is the same, to within a simple substitution, all the informa-

tion which can be determined about the output objects will also be the same, to within a

simple substitution. To prevent the possibility of interactions between abstract objects,

H{} has been restricted to be independent of all abstract objects. Although this restric-

102

___ _ I_ I

tion is actually stronger than is generally required, it avoids situations where an abstract

signal within the specification of the system can have non-general interactions with the

abstract input. For example, consider G{} such that G{x[n]} = x[n] * (w[-n]e-jik).

If the sequence G{ w[n]} is used in the determination of symmetry, then the output se-

quence will be found to be symmetric about zero, to within a linear-phase term. Using

this information for the symmetry of G{x[n]}, when x[n] is a distinct but related abstract

discrete-time sequence, is incorrect.

Assuming that H{} is a simple, specific system, information determined about the

output of H{} applied to an abstract signal can be used by any output of H {} applied to a

related abstract signal. A two-level representation is again used to allow this information

to be shared between related, symbolically constrained objects: Figure 4-4 shows the

proposed approach pictorially.

First, consider the creation of e-jnwl[n], where wl[n] is an abstract, discrete-time

sequence. The request for eJn wl[n] prompts the MULTIPLY system for an output repre-

sentation for its application to e-im and wl[n]. Assuming that this is the first reference

to a product of e-Jin with an abstract discrete-time sequence, no representation will be

available within the cache table of the system MULTIPLY. Thus, a new representation

must be generated. To do this, a decision must be made about how to represent the

output sequence. According to the previous discussion, if there is a single dependency

on an abstract object, the output sequence should be represented using a two-level rep-

resentation. If there are no dependencies or multiple dependencies on abstract objects,

a single-level, autonomous representation is used.3

To make this determination, the generating system and its inputs are examined to

determine the number of dependencies on abstract objects. MULTIPLY and e-isn are

simple specific objects, independent of all abstract objects, and wl[n] is an abstract se-

quence which can be said to be dependent on one abstract object, namely wl[n]. This

3Objects with dependencies on more than one abstract object are represented in the same way as
simple, specific objects. To simplify the counting of the abstract objects on which these representations
depend, objects with multiple dependencies on abstract objects are flagged internally in ADE.

103

let wl[n] and w2[n] be related but
distinct instances of the abstract description

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)

/
f -.. r -

shell tor
-e-j-7 w1 [n]

Figure 4-4: Examples of symbolically constrained objects with
one dependency path to an abstract instance

When a symbolically constrained object is dependent on only one abstract instance,
information can be shared between the symbolically constrained objects which have the
same form and are dependent on related abstract instances. This sharing of information
is supported by using shells and nuclear representations. The nucleus of the representation
is shared by all of the related symbolically constrained objects and the shells indicate the
actual identity of the abstract instance upon which the symbolically constrained object
depends. Since symbolically constrained objects are specific objects, these shells are also
recorded, so that a unique representation can be maintained.

104

system MULTIPLY
cache table:

I-

key (e-J-' (A-MEMBERK-UF 'ISCKRETIE-T'IME-SEQUENCE)) value

key (e-J n w2[n]) value\

key (e-i n wl[n]) val

I

nucleus for
(MULTIPLY

(COMPLEX-EXPONENTIAL-SEQUENCE f.)

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)).
I

I

-

i i~~~
I I

single dependence makes a two-level representation appropriate for e-Jnw [n]. The nu-

cleus of this representation corresponds to the application of MULTIPLY to e-J'n and the

nucleus for abstract, discrete-time sequences. A shell is wrapped around this nucleus,

with the shell recording the actual abstract instance, wl[n], upon which e-itw[n] de-

pends (Figure 4-4). Both the nucleus and the shell are cached in the output signal table

within the MULTIPLY system: the shell is cached under the list (e-j'n wl[n]) and the

nucleus is cached under the list containing e-J na and the nucleus for abstract, discrete-

time sequences (Figure 4-4). Any subsequent reference to e-s8w 1l[n] will have access

to the cached shell, simply by checking in the output signal table of MULTIPLY under

(e-jmn w [n]).

Thereafter, when a request is made for e-83 2[n] with w 2[n] being an abstract,

discrete-time sequence, the previously generated nucleus will be found and reused. In

more detail, in response to a request for ej w 2[n], the output signal table of MULTI-

PLY will be examined to see if a representation is cached under the list (e-ji n w 2[n]).

Assuming none is, the output signal table will next be checked to see if the nuclear

representation is available under the list containing e-ij{ and the nucleus for abstract,

discrete-time sequences and the previously generated nucleus for this product will be

found. A new shell will then be created and cached in the output signal table under the

list (e j8n w2 [n]). It is this new shell wrapped around the previously generated nucleus

which will be returned as the representation of e-jw 2[n] (Figure 4-4).

Symbolically constrained objects with dependencies to a single abstract object, like

e3ssnwl[n] and e-snw2[n], use the same approach to recording property and sample val-

ues as is used by abstract objects. The determined property values of these objects are

collected, after some modification, in the nucleus of the representation. Property values

which do not include the identity of the owner are recorded centrally in the nucleus with-

out modification. Property values which do include the identity of the owner are flagged

and a functional description of the property value is recorded, with a single functional

argument for the identity of the abstract object upon which the owner depends (Figure 4-

105

��_ __I ___
_ __III_____I__LI__II_---__-----�XII----

let wl[n] and w2[n] be related but
distinct instances of the abstract description

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE)

shell for
e wl[n]

shell for
e+' w2[n]

Figure 4-5: Centralization of the knowledge determined about symbolically constrained
objects with one dependency path to an abstract instance
The property values of objects with a single dependency on an abstract object are collected, after some
modification, in the nucleus. Property values which depend on the identity of the abstract instance

are recorded in a functional form, with the identity of the abstract instance as an argument. When an
attempt is made to return one of these modified property values, the result of applying the function to
the particular abstract instance in use is returned instead.

5). The retrieval of a property value returns either the value recorded in the nucleus or

the result of applying the functional description to the particular abstract instance. Sig-

nal sample values again must be recorded within the shell of the representation, for the

same reasons as were outlined in the previous subsection.

4.3.3 Summary

This section has introduced a two-level representation for abstract objects and for

symbolically constrained objects which depend on a single abstract object. Using this

representation, information determined for one instance of an abstract description is

reused by any instance of that abstract description. Furthermore, symbolically con-

106

nucleus for
(MULTIPLY

(COMPLEX-EXPONENTIAL-SEQUENCE -)
8

(A-MEMBER-OF 'DISCRETE-TIME-SEQUENCE))

periodicity: oo
equivalent-forms:
((INSTANCE)

(LIST (MULTIPLY e INSTANCE)
(INVERSE-FOURIER-TRANSFORM ...)
(INVERSE-Z-TRANSFORM ...)))

__I _ I I

strained objects with a single dependency on an abstract object share property-value

information as well.

One example of information sharing between related, symbolically constrained objects

was provided by lines I-7 and 1-8 of Figure 3-4: the information determined in answering

line I-7 was reused by the related object manipulated on line 1-8. Another example

of information sharing is provided through the consecutive designs of the rectangular-

window and the Hanning-window modulated filter banks, discussed in Chapter 3. In

particular, the rule encoded in lines 26-38 of Figure 3-16 maps the problem of finding the

equivalent forms of the two-dimensional short-time Fourier transform into the problem

of finding the equivalent forms of a one-dimensional, discrete Fourier transform. Due to

this mapping, the design of the rectangular-window modulated filter bank will have found

all of the equivalent forms of the DFT of the product of the rectangular window with

an abstract, discrete-time sequence. In the subsequent design of the Hanning-window

modulated filter bank, this same rule will result in a search for the equivalent forms of

the DFT of the product of the Hanning window with an abstract, discrete-time sequence.

This search will also involve a search for the equivalent forms of the FFT of the product

of the rectangular window with this second abstract sequence, since this is one of the

subexpressions which is eventually obtained. Since the rule USING-lD-FFT generates a new

abstract, discrete-time sequence on each application of the rule, the abstract sequence

seen in the rectangular-window design will be distinct from the one seen in the Hanning-

window design problem. It is only through the information sharing capabilities provided

by the two-level representation that this search problem need not be considered a second

time.

107

_ _ _ _ ___U _^I�___LI __·_ IIYILY^IY_*__YCIL1IIU___I1II I ^IP·I�-l--X-LLI-_III��

108

I

Chapter 5

Determination of Property-Value

Information

The previous chapter avoided the issue of modularity in the description of property

values. The desired level of modularity for property-value functions requires a finer

subdivision of the signals and systems to which they are applied than can be easily

provided using object-oriented programming. For example, as was seen in Figure 4-1, the

Fourier transform of a product is most simply stated as a set of independent rules, each

applicable to a subset of all the possible products of sequences. This gap in complexity

widens when the property value is most easily described using the combination of many

partial answers. For example, the set of equivalent signals is most easily enumerated

by combining the answers from all the applicable rules. A single, monolithic method

providing the equivalent signals would be unwieldy and extremely difficult to write.

This argument supports a finer modularity in property definitions than can be pro-

vided by methods in object-oriented programming, making rule-based definitions a nat-

ural choice. This chapter focuses on the definition and behavior of rules in a signal-

processing design environment. The first section provides a description of general rule-

based systems and of the specific approach used in ADE. The remainder of this chapter

then focuses on some of the innovations proposed to increase the reliability and efficiency

109

II �� Il ·_·_ -_L-L------_I XI__.^ _ - L1--LIII�-1�III�-_I(.---·- -� i. -L- I I - --

of the rule-based system used in the signal-processing environment.

5.1 Rule-based Programming in the Algorithm De-

sign Environment

Like methods in object-oriented programming, rules in rule-based programming pro-

vide discrete descriptions which, when combined, provide a specification of some func-

tional behavior. Rules can be defined and used in two alternate ways. Forward-chaining

rules use the current state of a data base to trigger the assertion of additional informa-

tion. As such, forward-chaining rules generally have one or more patterns which must

be matched to trigger them and an assertion which, once triggered, they may make. An

example of a forward-chaining rule is: "if the Fourier transform of a sequence exists and

is known, then the inverse Fourier transform of the Fourier transform is the sequence

itself." This type of behavior is particularly useful in maintaining a consistent data-base

of information.

One of the characteristics of forward-chaining reasoning is its lack of focus: the com-

putational resources are not focused on a single problem but rather are spread out in an

effort to maintain the completeness and consistency of the full data base. Behavior closer

to that of procedural functions is achieved using backward-chaining reasoning. Backward

chaining starts when some unavailable piece of information is requested, resulting in the

creation of a "goal." The backward-chaining rules are then indexed off the type of infor-

mation which they can provide: the possible conclusions of the rules are used to select the

rules which are appropriate for the current goal. If the conclusion matches the current

goal, the preconditions of the backward-chaining rule will be examined. If the precondi-

tions of the rule have already been met, its conclusion is asserted and the goal is achieved.

Often, the validity of the preconditions of the rule will depend on other information which

is unavailable and, thus, subgoals will be spawned. Examples of backward-chaining rules

are shown in Figure 3-3 with the descriptions of the periodicity of a complex-exponential

110

sequence and the simplification of the zero-frequency, complex-exponential sequence and

in Figure 4-1 with the descriptions of the Fourier transforms of various products.

Two advantages of rule-based programming are its modularity and the separation of

the control structure from the application-specific knowledge. Definitions are provided

using the combination of numerous discrete pieces of knowledge, namely individual rules.

Modularity often simplifies the description of a function: with modular definitions, inde-

pendent cases can be dealt with using independent descriptions. In addition, modularity

allows incremental addition to or modification of the descriptions. Finally, the modu-

larity of the descriptions separates much of the application-specific knowledge from the

control structure: the application-specific knowledge is given in the rules themselves and

the control structure determines the order in which the rules are considered. In many

rule-based systems, as in ADE, the behavior of the control structure can also be modified,

using control strategies.

The remainder of this section considers the approach to rule-based programming

taken in ADE. The majority of the signal-processing knowledge in ADE is in the form of

backward-chaining rules. Therefore, these rules are considered first. Another significant

part of the information within ADE is encoded using control strategies. Although ADE

includes forward-chaining rules, these have not been used extensively and therefore, will

be omitted from this discussion.

Backward-chaining rules in ADE commonly consist of between two and five distinct

portions: Table 5.1 describes the structure of these rules. Examples of backward-chaining

rule definitions are included in the signal- and system-class definitions shown in Figure 3-3

and 4-1. The definition for the COMPLEX-EXPONENTIAL-SEQUENCE class, shown in Figure 3-

3, includes a description of the signal periodicities and a description of a simplification:

both are translated internally into separate backward-chaining rules which are tagged

as applying only to complex-exponential sequences. Similarly, the descriptions of the

simplifications and Fourier transforms of sequence products shown in Figure 4-1 are

translated into backward-chaining rules. Each of these rules from the definition of the

111

I _ �_�·_ _· r·_ �jl�__W� II�_I�___ _IYLII·III1_LII1LI�L�·---- - - -

Table 5.1: Format of backward-chaining rules in ADE

Matching pattern: The rule pattern indicates the type of information which the rule
can provide. If the rule pattern does not match the current goal, the rule is not considered
further. If the pattern does match the current goal, the bindings from this match are
enforced in all the remaining parts of the rule.

Local variables (optional): Variables for use within the rule can be defined using
arbitrary functions to determine their values.

Test function (optional): An arbitrary test function can be defined. If this expression
returns a null value, the rule is disqualified and not considered further. Otherwise, the
rule is applicable to the current goal.

Result value: The result value given by the rule is the result of evaluating this
arbitrary expression. The rule is allowed to indicate if this answer should be considered
as the complete value for the current goal. Otherwise, this answer is used as a partial
value and is combined with the current value of the goal.

Search termination (optional): The rule may explicitly terminate the search. This
has the effect of bypassing consideration of the remaining rules and of removing any
subgoals of the current goal from the schedule.

SEQUENCE-MULTIPLY-OUTPUT class is tagged as applying only to sequences belonging to

that class. This type information is used along with the matching pattern and test

function to determine the applicability of the rule to the goal under consideration.

Since a large part of the expertise in signal processing, as in many other fields, is

knowing approaches to its problems which are fruitful, this type of information can be

encoded and utilized. ADE accommodates the addition and the use of control information

by providing for the definition of control strategies. The format used to represent these

strategies is described in Table 5.2. Figure 5-1 shows the definitions of the two equivalent-

form strategies which encode the equivalent-form behavior described in Chapter 3.

This paragraph attempts to clarify the strategy of recursively searching for the equiv-

alent forms of an expression. To review the described behavior of this strategy, each

newly uncovered equivalent form is used as a seed for another request for equivalent

112

__ __

Table 5.2: Format of control strategies in ADE

Matching pattern: The matching pattern indicates the type of search which the
strategy is encoded to affect. If the matching pattern does not match the current goal,
the strategy is not considered further. If the pattern does match the current goal, the
bindings from this match are enforced in all the remaining parts of the strategy.

Local variables (optional): Variables for use within the strategy can be defined using
arbitrary functions to determine their values.

Test function (optional): An arbitrary test function can be defined. If this expression
returns a null value, the strategy is disqualified and not considered further. Otherwise,
the strategy is taken to be applicable to the current goal.

Disallowed strategies (optional): A list of strategies which should not be considered
can be provided. The listed strategies are then bypassed by the current goal and by its
replacement, if a replacement goal is provided.

Replacement goal (optional): A replacement for the current goal can be provided.
Providing a replacement goal has the effect of removing the current goal from considera-
tion. Once the replacement goal is complete, the result of the replacement goal becomes
the binding for the result variable of the matching pattern.

Subgoals (optional): If no replacement goal has been provided, a set of subgoals can
be scheduled. Further processing of this particular strategy is suspended until all of its
subgoals are completed.

Result value (optional): If no replacement goal has been provided, a result value
can be given by the strategy. The strategy is allowed to indicate if this answer should be
considered as the complete value for the goal. Otherwise, this answer is used as a partial
value and is combined with the current value of the goal.

Search termination (optional): If no replacement goal has been provided, the strat-
egy may explicitly terminate the search. This has the effect of bypassing consideration
of the remaining strategies; of bypassing consideration of any property rules; and of
removing any subgoals of the current goal from the schedule.

·Access to the exhausted goal (optional): The strategy can request access to the
exhausted goal. A goal is described as exhausted when all rules have been considered
and all its subgoals are complete. If this access is requested, the result variable from
the matching pattern is bound to the current result value of the goal. Another test
function, another set of subgoals and another result value can be given for evaluation in
this post-search environment.

113

I -6 - MPI

a.

(DEFINE-STRATEGY RECURSIVE-EQUIVALENT-FORMS

:GOAL (VALUE-OF ?OBJ EQUIVALENT-FORMS ?SIMPLE-EQUIVALENT-FORMS)

:ANSWER (LIST OBJ) ; one of the equivalent forms of an object is the object itself

:WHEN-DONE ; after all simple transformations are done

:SUBGOALS ; search for the equivalent forms of the newly uncovered forms

((?RECURSIVE-EQUIVALENT-FORMS

(LET ((OLD-FORMS (GOAL-PROPERTY *GOAL* 'OLD-EQUIVALENT-FORMS)))

; the forms which have already been seen

(UNLESS OLD-FORMS

(SETQ OLD-FORMS (LIST OBJ))

(SETF (GOAL-PROPERTY *GOAL* 'OLD-EQUIVALENT-FORMS) OLD-FORMS))

(LET ((NEW-EQUIVALENT-FORMS ; the newly uncovered equivalent forms

(LOOP FOR EQUIVALENT-FORM IN SIMPLE-EQUIVALENT-FORMS

UNLESS (MEMBER EQUIVALENT-FORM OLD-FORMS :TEST 'SAMEP)

DO (PUSH EQUIVALENT-FORM (CDR OLD-FORMS))

; include the new equivalent forms in the list of seen equivalent forms

AND COLLECT EQUIVALENT-FORM)))

(CONS 'APPEND ; append the subgoals' answers to form a single answer

(LOOP FOR EQUIVALENT-FORM IN NEW-EQUIVALENT-FORMS

COLLECT

(SUBGOAL '(VALUE-OF ,EQUIVALENT-FORM EQUIVALENT-FORMS

?RECURSIVE-EQUIVALENT-FORMS)

:ADD-PROPERTIES (LIST 'OLD-EQUIVALENT-FORMS OLD-FORMS)

:RECORD-ANSWER-P NIL)))))))

:ANSWER RECURSIVE-EQUIVALENT-FORMS)

b.

(DEFINE-STRATEGY EQUIVALENT-FORMS-BY-PARTS

:GOAL (VALUE-OF (SPECIFIC-MEMBER ?TYPE &REST ?PARTS) EQUIVALENT-FORMS

?EQUIVALENT-FORMS-VALUE)

:SUBGOALS ; search for the equivalent forms of the components

((?EQUIVALENT-FORMS-BY-PARTS

(LIST* 'OUTER-PRODUCT-OF-LISTS ; take the outer product of the equivalent forms of the components

(IF (TYPEP TYPE SYSTEM)

(SUBGOAL '(VALUE-OF ,TYPE EQUIVALENT-FORMS

?EQUIVALENT-FORMS-BY-PARTS))

'(LIST ',TYPE))

(LOOP FOR PART IN PARTS

COLLECT (IF (TYPEP PARr '(OR SIGNAL SYSTEM))

(SUBGOAL '(VALUE-OF ,PART EQUIVALENT-FORMS

?EQUIVALENT-FORMS-BY-PARTS))

'(LIST ',PART))))))

:ANSWER (LOOP FOR EQUIVALENT-TYPE-PARTS IN EQUIVALENT-FORMS-BY-PARTS

COLLECT (APPLY 'SPECIFIC-MEMBER EQUIVALENT-TYPE-PARTS)))

Figure 5-1: Control strategies for recursively searching for equivalent forms and for search-
ing for equivalent forms of subexpressions

--- -- --- �__

forms. To be able to recursively start new equivalent-form searches, the control strat-

egy RECURSIVE-EQUIVALENT-FORMS must have access to the answer after all the known

simple transformations and subexpression substitutions have been completed. Thus, this

access must occur after the goal has allowed all of the transformation rules to trigger and

after all the subgoals of the goals are complete and have returned their answers. This

additional access to the goal by the control strategy is requested through the use of the

keyword :WHEN-DONE. The subgoals which are listed below this keyword in RECURSIVE-

EQUIVALENT-FORMS are based on the answer which has been obtained by the equivalent-

forms search to that point. Once these subgoals are completed, their answers are used

to provide an additional, partial answers to the original goal. RECURSIVE-EQUIVALENT-

FORMS will also trigger on these newly scheduled subgoals. Thus, the search continues

recursively until no new equivalent forms are uncovered.

This section has provided a general description of the rule and control constructs

which are available in ADE. The actual syntaxes which are used for encoding forward-

chaining rules, backward-chaining rules and control strategies are described in Appendix A.

The remainder of this chapter considers two areas of the inference structure which at-

tempt to provide the environment with both reliability and efficiency in its determina-

tions.

5.2 The General Characterization of Properties

For the reasons of modularity given above, explicit method-based definitions of prop-

erty values are abandoned in ADE. However, method-based definitions have a number

of benefits not seen with rule-based definitions. In particular, with method-based def-

initions, many invalid inquiries can be quickly detected: if a method is not defined for

any of the classes to which the receiving object belongs, the inquiry can immediately be

flagged as being invalid. In contrast, in most rule-based systems, such an inquiry would

be answered using a default response. Examples of this type of error include asking for

115

_ �·_ _1�_�_�1_ I__II III�LU*- IIII -lsr-� ·--��IIICII�I_·LIIII_1UI� -(-··---_1II----I�·�-·-I_-�I - ----------- ·1111111�---·II�

the Fourier transform of a z-transform signal or asking for the region of convergence of a

discrete-time sequence.

To avoid this form of error propagation, the types of objects to which a property is

applicable are enumerated and enforced. This is done by taking advantage of the object-

based representation of signals and systems: an appropriately named instance variable

is included in the signals and systems to which a property is applicable. The validity of

queries is then easily established, simply by establishing the presence of the appropri-

ate instance variable within the object under consideration. For example, the instance

variable, FOURIER-TRANSFORM, is incorporated into the representation of discrete-time

sequences and omitted from the representation of discrete-time Fourier-transform signals

and z-transform signals. Thus, the validity of requests for a Fourier transform is easily

checked by simply examining the object itself: the absence of the FOURIER-TRANSFORM

instance variable indicates an invalid request. This addition of an instance variable also

has the advantage that the instance variable can be used to record the property value,

once it is determined.'

This approach requires an explicit declaration for each signal or system property.

Table 3.2 listed the properties currently described in ADE. New property declarations

are also easily added using the form DECLARE-PROPERTY, described in Appendix A. In

addition to providing the list of the classes to which the property is applicable, the

declaration of a property is used to shape its general behavior. These declarations include

the classes of signals and systems to which the property is applicable; an initial value

for the property; a function for combining the partial values with the accumulated value;

and a default value to be used when no information is available about the property value.

Figure 5-2 shows three examples of property declarations.

The general declaration of a property includes a list of the signal and system classes to

1Due to memory requirement considerations, this approach of including an explicit instance variable
slot for each applicable property is only taken with the most frequently used properties in ADE. Thus,
properties in ADE are classified as being "basic," if they are frequently used, or "non-basic," if they
are not. "Non-basic" properties do not generate a corresponding instance variable slot. Instead, their
applicability is checked using type information and their values, when determined, are cached in a general
table within the owner object.

116

-

a. b.

(DECLARE-PROPERTY FT

(DISCRETE-TIME-SEQUENCE) (DECLARE-PROPERTY ROC
:SEED NIL

:SEED NULL-INTERVAL:COMBINING-FUNCTION
'ANSWER-AS-DONE :COMBINING-FUNCTION

'INTERVAL-COVER:DEFAULT-VALUE

(FOURIER-TRANSFORM-SYSTEM SELF)) :DEFAULT-VALUE UNKNOWN)

C.

(DECLARE-PROPERTY NON-ZERO-SUPPORT

(DISCRETE-TIME-SEQUENCE FOURIER-DOMAIN-SIGNAL Z-DOMAIN-SIGNAL 2D-SEQUENCE)
:SEED (INTERVAL -00 00 (CONTINUOUS-DOMAIN-P SELF))
:CONMBINING-FUNCTION 'INTERVAL-INTERSECT

:DEFAULT-VALUE (INTERVAL -00 oo (CONTINUOUS-DOMAIN-P SELF)))

Figure 5-2: Examples of the declaration of properties

which the property is applicable. This allows the environment to include an appropriate

instance variable in the signals and systems which fall within these classes.

Since the values of most properties are formed by combining information from multiple

sources, a function for combining the partial answers is provided. To illustrate the

necessity for an explicit description of the combination function, consider the region of

convergence of a z-transform signal and the non-zero support of a discrete-time sequence.

The region of convergence of a z-transform signal includes all the regions of the z-plane on

which the z transform converges. Thus, multiple assertions about regions of convergence

are combined using the smallest interval covering all the asserted regions (Figure 5-2-b).2

For the non-zero support of a discrete-time sequence, any asserted support must contain

the full non-zero support. Thus, multiple assertions about the support are combined

using the intersection of all the asserted non-zero supports (Figure 5-2-c). These two

examples illustrate the diversity of combination functions, even for two properties whose

2In ADE, the region of convergence is indicated either using a continuous interval, to represent the
radial extent of the ROC or using #<UNKNOWN>, to represent an unknown ROC.

117

1_11 11 ^-�(IIII�·Y·�I�·�-LI·�-C-IIIY--·1II__-�- _.--- .11-.�-·1111 ·1. I-·-I II-- 11 ·I -� 11

values are both intervals. The provision for an initial value allows all partial answers to

be treated identically, whether or not the partial answer is the first piece of information

to be received.

Functions for combining partial answers can also be used to terminate the search for

a property value. By having the combination function flag answers which can not be

further modified, the remaining available information is not considered. Some examples

of property values which can not be further modified include an empty interval for a

non-zero support; a region of convergence between 0 and oo; and a single point for the

range of a signal. For property values where any "partial answer" is actually the value

for the property, the combining function can flag every answer as being complete. An

example of this is the Fourier transform of a signal (Figure 5-2-a): any expression for the

transform is a complete description.

An explicit default value is provided, to be used when no information is available

about the property value. Often the default value is the same as the initial value but

occasionally their values are distinct. An example of distinct initial and default values

is the region of convergence of a z-transform signal. In determining the ROC of a z-

transform signal, initially, no region is known to converge. Since the ROC combining

function uses the covering interval, the initial value must be the empty interval. If the

search terminates without finding any information about the ROC, then the unique value

#<UNKNOWN> is returned to indicate this lack of knowledge (Figure 5-2-b). The empty

interval can not be used since there is a distinction between stating that a z-transform

signal does not converge and stating that the region of convergence is unknown. This

distinction is highlighted by considering the z transform of an abstract discrete-time

sequence. Obviously, in this case, no information can be given about the ROC of the

z-transform signal. Nor can it be said that the z transform does not converge, since this

statement also imposes certain constraints on the discrete-time sequence, constraints

which can not be imposed using the given information. So, #<UNKNOWN> is returned

to indicate this lack of information.

118

This section has discussed the explicit declaration of properties as a way to retain the

advantages of method-based definitions while still having the modularity of rule-based

definitions. The remainder of this chapter focuses on increasing the efficiency of the

determination of property values.

5.3 Efficiency in Property-Value Determination

Another important issue in property definitions is the efficiency with which the prop-

erty value can be determined. Unfortunately, the modularity of rule-based systems and

their separation of the control structure from the the application-specific knowledge often

result in reduced computational efficiency. Some of this inefficiency can be avoided by

allowing the combining function for partial answers to terminate a search, as described

above. The remainder of this chapter focuses on other ways of increasing the efficiency

of property-value determinations.

5.3.1 Static hierarchical organization of the rule base

To increase the efficiency of the rule-based system in a signal-processing design envi-

ronment, patterns in common queries can be exploited. In particular, the most commonly

derived type of information in signal processing is the value of a particular property of a

known signal or system. This trend is exploited in ADE to increase the efficiency of the

search for a property value by altering the static layout of the rule base.

The rule base in ADE is organized hierarchically. Rules for determining property

values are collected within the most restrictive signal or system class which contains all

the objects to which the rule may apply. For example, the rule shown on lines 14-33

of Figure 3-13, for pulling common shifts to the outside of a generalized shift-invariant

system, is associated with the signal class for the outputs of generalized shift-invariant

systems. In this way, the search to determine a property value need only consider those

rules associated with the classes and types to which the current object belongs.

119

The advantages of this approach are twofold: the number of rules considered is re-

duced and the number of explicit tests in the rules themselves may be reduced. The

number of rules considered is reduced since only the rules associated with the classes

of the current object are considered. The number of tests required in a given rule may

also be reduced. Since rules will only be tested against objects belonging to the class or

type with which the rule is associated, explicit tests for this membership can be omit-

ted. Again, using the example of the generalized shift-invariant system output, no test

is required to assert that the signal under consideration is the output of a generalized

shift-invariant system nor is a test required to assert that its generating system is a

generalized shift-invariant system. Removing some of the tests used in determining the

applicability of a rule obviously reduces the cost of testing the rule for applicability.

Continuing in the same vein, property-value rules are also sorted within a single class

according to the property. Thus, the rules for the non-zero support will not be indexed

in a search for the equivalent forms of a signal. Adding this second dimension to the rule

hierarchy also reduces the number of rules considered.

5.3.2 Efficient descriptions for backward-chaining rules in sig-

nal processing

Another area which is used in ADE to increase the efficiency of property-value deter-

mination lies in the internal layout of the rules themselves. Typically, the applicability

of a signal-processing rule will depend on the type of the object and on the components

making up that object. The efficiency of matching and firing a rule can be easily affected

by the location of these typing and component restrictions: assuming these restrictions

are included in the matching pattern, these constraints can be used to quickly reveal

mismatches between the rule and the goal.

By providing typing information directly in the matching variables, any mistyping

can be determined when the binding between the matching variable and an object is first

created and further consideration of that rule can be avoided. For example, consider the

120

___�

simplification rule shown in Figure 3-13. The rule pattern includes a test to insure that

the generating system is not itself a shift:3 otherwise, two cascaded shift systems could

be interchanged forever. Obviously, this type restriction could be included in the test

function of the rule. By instead associating the type test with the matching variable itself,

the test can be made when the match is first being attempted. In this way, mismatches

between the rule and the current goal can be detected before the full match is attempted

and before any of the values for the local variables are determined.

Similarly, subpattern matching can be used to quickly reveal mismatches between the

rule and a goal. Consider the rule for simplifying the product of inverse z transforms

(lines 11-19 of Figure 4-1). This rule will be tested in any attempt to simplify the

FSK-code frequency chip w[n]e-J n. By immediately attempting to match against the

components, a mismatch between the subpattern and the multiplicands can be used to

quickly abort consideration of that rule.

Subpattern matching raises another issue which can strongly affect the efficiency of

determining the the applicability of a rule: namely, matching against the inputs to op-

erators which are commutative and associative. To illustrate, consider the process of de-

termining the Fourier transform of the modulated Hanning-window FSK-code frequency

chip r16[n](1 - cos(n))e-j6 n. The search for applicable rules will eventually attempt

to match the frequency chip against the object pattern for the rule shown on line 28-40

of Figure 4-1. Given the topology of the two, the first attempt to match fails, as shown in

Figure 5-3, since r16[n] does not match the pattern for the complex-exponential sequence.

In order to achieve a match, the multiplicands in .the FSK-code frequency chip must be

permuted. As shown in Figure 5-3, the third permutation results in a match. Thus, when

systems are commutative and associative, all permutations of inputs must be eliminated

before a mismatch between the object and the pattern can be declared. The number

of permutations which potentially must be considered is the factorial of the number of

inputs. For example, in considering the summations within the incoherent combination

3 Shift-invariant systems of one input, such as a shift system, are also defined as generalized shift-
invariant systems in ADE.

121

I I_ -·�-·C�--LIII_-�-^··--·II - -C-P-�YII..�-.� �. __ -�1111111 -1 1_-1--- 1�-_-11 1111111__�_ ··-.-̂ �-_I I I - --

(FOURIER-TRANSFORM
(SEQUENCE-MULTIPLY

(CAUSAL-RECTANGULAR-WINDOW 16)
(SEQUENCE-SUBTRACT 1 (COSINE-SEQUENCE ($/ 2PI 16)))
(COMPLEX-EXPONENTIAL-SEQUENCE ($/ 2PI 16))))

;determine applicability of the sequence-multiply-output Fourier-transform rule
COMPLEX-EXPONENTIAL-MODULATED-INPUT

attempt to match the pattern
(OUTPUT-OF ?MULTIPLY (SPECIFIC-MEMBER COMPLEX-EXPONENTIAL-SEQUENCE ?FREQ) &REST ?OTHER-INPUTS)

against the object r16 [n](1 - cos(n))e- j n

bind ?MULTIPLY to #<SEQUENCE-MULTIPLY>

mismatch between (SPECIFIC-MEMBER COMPLEX-EXPONENTIAL-SEQUENCE ?FREQ) and r 6[n]
permute the multiplicands and attempt match against reordered multiplicands

mismatch between (SPECIFIC-MEMBER COMPLEX-EXPONENTIAL-SEQUENCE ?FREQ) and (1 - cos(2 n))

permute the multiplicands and attempt match against reordered multiplicands
bind ?FREQ to 0.39269908169872414dO

;match between pattern and r 16 [n](1 - cos(2 n))ej i

the sequence-multiply-output Fourier-transform rule COMPLEX-EXPONENTIAL-MODULATED-INPUT

is applicable to r16[n](1 - cos(n))e-ij n

Figure 5-3: Pattern matching against the inputs of a commutative, associative operator
Subpattern matching is used to quickly reveal mismatches between the rule and a goal. However,

when the object under consideration is the output of a commutative, associative operator, the com-

ponents matched against its inputs must consider the permutations of those inputs before declaring

a mismatch. This necessity is illustrated here. It is only on the third permutation of the FSK-code

frequency chip r 16 [n](1 - cos(5 n))e-i T that a match is achieved between the object and the pattern

for the Fourier-transform rule shown on lines 28-40 of Figure 4-1.

122

- -- --

of the 16-channel FSK-code detector, the number of permutations of the addends which

may need to be considered is over 2 x 1013. The possibility of matching against each of

these permutations must be eliminated before a mismatch may be declared.

The intuitive solution to this problem is to exploit the information provided by the

discovered mismatches, using a mismatch against one permutation to remove some of

the remaining permutations from consideration. For example, if a mismatch between the

pattern and the object is detected when attempting to match one of the inputs against the

first part of the subpattern, then all the other permutations with that input first can be

removed from consideration. Thus, since a mismatch between r1 6[n](1 -cos(n))e-j16

and the pattern shown in Figure 5-3 is detected on consideration of r 16[n] and the first

part of the subpattern, any permutation with r16[n] first is known to result in a mismatch,

so that the permutation r 16[n]e-jn(1 - cos(2j6n)) need not be considered.

Furthermore, when some or all of the parts of the subpattern impose identical con-

straints, then permutations within the inputs matching that part of the pattern need not

be considered. This uniformity in constraints often occurs through the use of &REST:

this keyword is used to match a single variable against the remaining subexpressions of

the object. Examples of this are provided on lines 7-13 and lines 14-33 of Figure 3-13

and on lines 11-19 and lines 28-40 of Figure 4-1. 4 Permuting the set of inputs which

are matched by this single variable without changing the members of the set has no

effect on the success or failure of the matching process. Thus, by exploiting this par-

tial insensitivity to order, the number of permutations which must be considered can be

reduced.

The preceding discussion has attempted to highlight ways of increasing the efficiency

of property-value determinations. The savings that are possible simply by modifying the

matching process are significant and, in the case of rules for the outputs from commutative

4Most of these examples include an "element subpattern" which is used to impose additional con-
straints on the elements of the lists to which the &REST variable is matched. "${" is used to start an
element subpattern and "}" then closes that subpattern. Matching variables within the subpattern must
be bound to a single instance across all the elements, unless the notation "?[variable]" is used to allow
diversity. Thus, ?INPUTSS(OUTPUT-OF ?SHIFT ?[SHIFT-INPUTS])} will match a list of outputs from a single shift
system applied to any combination of inputs.

123

--- __I· _I^ __· I·___L� ·-LYL III·11-�II.-�·----- ---�1__ -X. I-

and associative systems, the increase in efficiency is imperative if the consideration of

many signal-processing problems are to be in the realm of possibility.

5.4 Summary

This chapter has outlined a rule-based environment, tailored to the needs of symbolic

manipulation of signal-processing expressions. The rule-based paradigm is required to

provide the desired level of modularity to the property-value definitions. This chapter

has focused on increasing the reliability and efficiency of property-value determinations.

Reliability was improved by requiring explicit declarations of signal and system proper-

ties. These declarations are used both to enumerate the classes of the objects to which a

property is applicable and to describe the general characteristics of the property, such as

the function for combining partial answers and a default value. Efficiency was improved

by organizing the rule base hierarchically and by modifying the matching process. By

organizing the rule base hierarchically, according to the class of objects to which each

rule applies, the number of rules which will be considered for any given goal is reduced.

The class structure provided by object-oriented definitions provide a natural hierarchy

for this organization.

The remainder of the discussion in this chapter has centered on increasing the ef-

ficiency of rule testing. These efforts concentrated on the testing stage, since a large

percentage of the computational resources will be devoted to the testing of rules: all of

the indexed rules must be tested on a goal, but generally only a small fraction of them

are actually fired. Matching variables include both type constraints and subpattern con-

straints. Two approaches were described for improving the efficiency of matches against

the inputs to commutative, associative operators. In particular, the information pro-

vided by a mismatch using one permutation is used to remove other permutations from

consideration and permutations are not considered within the elements which match a

single, uniform set of constraints.

124

_ ____

Chapter 6

Regularity in Signal-Processing

Algorithms

One of the primary tasks of an algorithm design environment is to explore the space

of implementations of a given input/output mapping. In order to explore the full de-

sign space, the environment must search through the space of algorithms with the same

transfer characteristics. Chapter 3 described the process by which these transformations

are found. In particular, all of the transformations which are directly applicable to the

original signal-processing expression or to any of its subexpressions are completed to

generate alternate implementations. Any newly uncovered implementations and their

subexpressions are then themselves used as seeds to find further transformations. This

process repeats until no new implementations are found. Figure 5-1 showed the control

strategies which encode this extended search.

Two major difficulties with this search process become apparent after careful consid-

eration: the possibility of the infinite expansion of the search space and the finite but

combinatorial growth of the space due to the separate manipulation of subexpressions.

The search space can expand infinitely by two different paths. A simple transformation

or a combination of simple transformations can result in the introduction of identity

operations. Alternately, the decomposition of expressions into subexpressions can create

125

I- I

a processing loop. Both of these difficulties are considered briefly in this chapter. The

problem of limiting the combinatorial growth is then the subject of the remaining sections

of this chapter.

6.1 Growth of the Design Space for Signal-Processing

Algorithms

6.1.1 Infinite expansion of the design space due to increasing

complexity introduced by simple transformations

The transformations used in generating equivalent implementations often result in signal-

processing algorithms whose complexity is greater than the manipulated algorithm. For

example, consider the problem of finding equivalent implementations of the matched

filters for the frequency chips in the rectangularly windowed, FSK-code detector. One

of the rearrangements which is found is shown in Figure 6-1-a. From the description

of the search process given in Chapter 3, the subexpressions of this implementation

will be manipulated, as will the subexpressions of each new implementation. Using

this approach without modification will result in the formation of increasingly complex

expressions and, ultimately, an infinite expansion of the search space. The source of the

increasing complexity is the rule shown on lines 14-33 of Figure 3-19. This rule attempts

to pull common scaling factors through a generalized homogeneous system. The rule is

applicable to some of the subexpressions of the structure shown in Figure 6-1-a: Figure 6-

1-b shows the result of applying this rule to each of these subexpressions. In fact, the

rule is also applicable to the subexpressions of Figure 6-1-b. As a result of the recursive

search, these applications would also be completed. These recursive applications and the

fact that each of these applications increases the complexity of the algorithmic description

would then result in the infinite expansion of the search space.

As can be seen from this example, care must be taken to limit the complexity of

126

I

a.

b.

Figure 6-1: An example of increasing complexity resulting from equivalent-form manip-
ulations

Transformations used in generating equivalent implementations often result in signal-processing al-
gorithms whose complexity is greater than the manipulated algorithm. As an example, one of the trans-
formations completed in finding the equivalent forms of the matched filters for the 4-point rectangular-
window frequency chips in the FSK-code detector is shown here. The rule for pulling common scaling
operations through a generalized homogeneous system, shown in Figure 3-19, is applicable to some of
the subexpressions of the structure shown in part (a): part (b) shows the result of applying the rule to
each of these subexpressions. In fact, this rule is also applicable to some of the subexpressions of the

expression in part (b).

the manipulated algorithms before they are used as seeds to find additional equivalent

forms. Simplifications are used to control the complexity of the signal-processing ex-

pression. SIMPLIFICATION, when applied to a signal-processing expression, returns the

simplest direct description of the expression that the .environment can find. The simplest

description of a signal-processing expression is obtained both by simplifying its subex-

pressions, using the strategy shown in Figure 6-2-a,- and by recursively simplifying the

modified description, using the strategy shown in Figure 6-2-b. The actual simplifica-

tions are encoded using over 300 of the 850 rules currently included in ADE: examples

127

I 1_1 ^1_1 I__I1 �l�yl__ _··1�1_1_ _11--1 11 ·I---�-II_�-·LIII-^L�Y 11 --1111-_11_�--...��-�111_·^1·--^1 _l111_l IP I- 1 �

a.

(DEFINE-STRATEGY SIMPLIFICATION-BY-PARTS

:GOAL (VALUE-OF (SPECIFIC-MEMBER ?TYPE &REST ?PARTS) SIMPLIFICATION

?SIMPLIFICATION-VALUE)

:REMOVE-STRATEGIES ; only run this once on each goal/replacement goal pair

(SIMPLIFICATION-BY-PARTS) ; removes strategy from consideration on the replacement goal

:REPLACEMENT-GOAL ; simplify the expression using simplified components

(SUBGOAL '(VALUE-OF ,(APPLY 'SPECIFIC-MEMBER (SIMPLIFICATION TYPE)

(MAPCAR 'SIMPLIFICATION PARTS))

SIMPLIFICATION ?SIMPLIFICATION-VALUE)))

b.

(DEFINE-STRATEGY RECURSIVE-SIMPLIFICATION

:GOAL (VALUE-OF ?OBJ SIMPLIFICATION ?SINGLE-SIMPLIFICATION)

:WHEN-DONE ; after all "simple" simplifications are done

:WHEN (AND SINGLE-SIMPLIFICATION (NOT (EQ OBJ SINGLE-SIMPLIFICATION)))

; if a simplification has been found

:SUBGOALS ; try to find any further simplifications

((RECURSIVE-SIMPLIFICATION

(SUBGOAL '(VALUE-OF ?SINGLE-SIMPLIFICATION SIMPLIFICATION

?RECURSIVE-SIMPLIFICATION))))

:SET-ANSWER RECURSIVE-SIMPLIFICATION)

Figure 6-2: The control strategies for finding simplifications
The first strategy attempts to simplify an expression by first simplifying its subexpressions. The

second strategy provides recursive simplification of an object.

of SIMPLIFICATION rules can be found in Figures 3-3 and 4-1.

As stated above, the complexity of the manipulated algorithms must be limited,

through simplification, before the algorithms are used as seeds in the recursive search for

equivalent implementations. This intermediate step of simplification is neatly and eas-

ily included in the search process by including it in the combining function provided

for EQUIVALENT-FORMS, as shown in Figure 6-3. The combination function used by

EQUIVALENT-FORMS simplifies the equivalent implementations before including them in

the equivalent-forms answer. This simplification occurs before the strategy RECURSIVE-

EQUIVALENT-FORMS sorts the implementations to find new seeds for further searches and,

128

(DECLARE-PROPERTY EQUIVALENT-FORM

(SIGNAL SYSTEM) ; applicable to all signals & systems

:SEED (LIST (SIMPLIFICATION SELF)) ; one equivalentform is the simplified object itself
:COMBINING-FUNCTION 'SIMPLIFY-AND-INSERT ;see below

:DEFAULT-VALUE (LIST (SIMPLIFICATION SELF)))

(DEFUN SIMPLIFY-AND-INSERT (NEW-FORMS PREVIOUS-FORMS)

; NEW-FORMS are the forms which are being added f& PREVIOUS-FORMS are the previously uncovered forms

(LOOP FOR FORM IN NEW-FORMS

AS SIMPLIFIED-FORM = (SIMPLIFICATION FORM)

; simplify each of the new forms before considering it further

UNLESS (MEMBER SIMPLIFIED-FORM PREVIOUS-FORMS :TEST 'SAMEP)

; if this form has not been seen before, add it

DO (PUSH SIMPLIFIED-FORM PREVIOUS-FORMS)

FINALLY (RETURN PREVIOUS-FORMS)))

Figure 6-3: The property declaration for EQUIVALENT-FORM

thus, the explosive expansion of the search space due to arbitrarily complex algorithmic

descriptions is avoided.

6.1.2 Infinite expansion of the design space due to identity

loops in recursive subexpression decomposition

As described earlier, the search for the equivalent implementations of a signal-processing

expression explicitly searches for the equivalent implementations of the subexpressions

as well. Thus, as was illustrated in Figure 3-5 and Figure 5-1, subgoals are generated,

requesting the equivalent implementations of the inputs to the outer processing layer

of the expression. This process recursively decomposes the signal-processing expression

until the remaining inputs are can not be further decomposed. An infinite recursion

will occur if one of these subgoals, coincides with the original search space. Figure 6-4

provides an example of this difficulty.

This coincidence between the search space for the original signal-processing expression

129

CI�l�----- - --̂ -- -- ·-----�----·l-·rr�-�·-·rr�---�m�l-�.�- -�- -I -- -

0
O
:

.
cD

'FJ

C

p,

CD L

Figure 6-4: The occurrence of identity loops in the search for equivalent forms
due to the coincidence of a subexpression search with a superior search space

In searching for the equivalent forms of a signal, the equivalent forms of the inputs to the generating
function are used to give additional equivalent forms for the signal itself. Thus, the subordinate goals
will be generated, requesting the equivalent forms of the inputs signals. Occasionally, one of these
subordinate goals will coincide with the original goal: this occurs when the composite operation to go
from the coinciding subgoal space back to the original goal space is an identity transform. An example
of this is shown here.

130

66

(DEFINE-STRATEGY BREAK-EQUIVALENT-FORMS-IDENTITY-LOOPS

:GOAL (VALUE-OF ?OBJ EQUIVALENT-FORMS ?EQUIVALENT-FORMS-VALUE)

:WITH ; look up the goal tree to see if this same goal is a supergoal

((SUPERIOR-GOAL-WITH-SAME-FORM

(SUPERIOR-GOAL-FORM-P *GOAL* (GOAL-FORM *GOAL*))))

:WHEN SUPERIOR-GOAL-WITH-SAME-FORM ; if this same goal is a supergoal

:REMOVE-STRATEGIES ; disallow these strategies

(RECURSIVE-EQUIVALENT-FORMS EQUIVALENT-FORMS-BY-PARTS)

:DO ; prevent the goals in the loop from recording their answers

(LOOP FOR SUPERIOR IN (PATH-BETWEEN-TWO-GOALS

GOAL SUPERIOR-GOAL-WITH-SAME-FORM)

DO (SETF (GOAL-RECORD-ANSWER-P SUPERIOR) NIL)

FINALLY (SETF (GOAL-RECORD-ANSWER-P *GOAL*) NIL))

:SET-ANSWER (LIST OBJ) ; set the answer to simply the object under consideration

:DONE) ; terminate consideration of this goal

Figure 6-5: The control strategy for breaking identity loops
In searching for equivalent forms of a signal, identity loops are occasionally created by coincidence

between the search spaces of a subexpression and a superior expression. The strategy shown here detects
and breaks these identity loops, thus avoiding infinite recursions.

and the search space for the subexpression creates a loop. Unless these loops are broken

before the decomposition process continues, the recursive decomposition will result in

an infinite unwinding of the loop. This infinite expansion of the search can not be

avoided by simplification, since each of the subexpressions which are being considered

are themselves completely simplified. Therefore, an explicit control strategy, shown in

Figure 6-5, is provided to prevent this infinite recursion. This strategy prevents the goals

that lie within the loop from recording their answers, since the answers to these goals

are affected by the break in the loop, and it terminates the current goal. This breaks the

identity loop. Once the equivalent forms of the subexpressions are projected back into a

search space outside the loop, the answers are unaffected by the break in the loop and,

therefore, they are recorded.

131

111____11 · _��1 _I ·I·_· __�_III___XL_1__1_1_-----1·s�-�--· �YII�L-PIIIIP �---L_·.-Ill. _I _. ...-I_�� __. .· _I-II�I�I^P--^-^L- -_-- I s�·--·qlllllllll�---·l�---------L

6.1.3 Combinatorial growth of the algorithm design space

The search for equivalent implementations of a signal-processing expression must

consider the equivalent implementations of the subexpressions as well as the complete

expression itself. Since each of the subexpressions are manipulated independently and

independently recombined to form new equivalent expressions, the size of the search space

under consideration grows combinatorially with the number of subexpressions.

One possible strategy for limiting this combinatorial growth in searches for effi-

cient implementations relies on the cost measure of each subexpression to heuristically

prune the space. Instead of enumerating all the equivalent implementations of a signal-

processing expression and then filtering out the inefficient and uncomputable structures

using the overall cost measure, this strategy would immediately prune the number of

subexpression implementations, prior to their upward propagation, based on their rela-

tive costs. This approach relies on the assumption that, when propagating two subex-

pression implementations upward, the more expensive subexpression implementation will

not be incorporated into any of the efficient implementations. Unfortunately, this prun-

ing strategy suffers from the interaction of subexpression costs: the cost of using one

form of an input is often ameliorated by the use of the same form for other inputs. Thus,

the contribution of a subexpression to the overall cost of an enclosing expression is not

independent of the other parts of the enclosing expression. Furthermore, although each

individual transformation tends to be local, the recursive approach to finding equiva-

lent forms can result in extensive, global transformations: pruning out a particular form

before it is considered as an input to subsequent levels of processing may prevent the

derivation of another globally-altered, lower-cost implementation.

The approach to limiting the search space which is advocated in this thesis exploits

the internal regularity of signal-processing algorithms. By enforcing internal correspon-

dences, the space of equivalent forms which will be explored can be drastically reduced.

Furthermore, the structure of the resulting algorithms should be more appropriate for

parallel processing than the unstructured algorithms which result from a full search.

132

Figure 6-6: The short-time Fourier transform structure as an example of a signal-
processing algorithm with a regular internal structure

Many signal-processing algorithms have a highly regular internal structure. One example of internal
regularity was given in Figure 3-6, with the incoherent combination function. Another is shown here, with
the 4-point short-time Fourier transform. Other structures with internal regularity include the polyphase
implementation of a downsampled convolution and the polyphase implementation of a convolution with
an upsampled input.

6.2 Regularity in Computation

Many signal-processing algorithms have a highly regular internal structure. Most

parallel implementations of these algorithms rely on this internal regularity. For exam-

ple, the internal regularity of local, shift-invariant, image-processing operations, such as

morphological operations, can be easily exploited in mappings onto SIMD architectures:

the regularity of these operations, embodied in the self-similarity of the operations on

distinct samples, allows many of the operations to be described using a single instruc-

tion. Many other signal-processing algorithms exhibit a more general type of internal

regularity, which will be examined in this section.

In Chapter 3, Figure 3-6 was used to point out the regularity in the incoherent com-

bination function of the FSK-code detector. Figure 6-6 provides another example of a

signal-processing algorithm with a highly regular internal structure, namely the 4-point

short-time Fourier transform using a rectangular window. The signal flow graph shown

in Figure 6-6 itself implicitly uses the regularity of the algorithm: signals which are used

multiple times are only shown once, with their dependencies fanning out from a single

point. Visually, this suggests that the implementations of these multiple uses of the

133

__·_I�_ _1_1^ LI1--��-�-. �-- 1111 ·--�111�__1.11·�-1 .^* l^.l.C---- II__IIIIIII�--PIII----�-�·I -C-- �- -I- -CI I Iq�·IIIIICCXIIIP·�-sIIY�1--

signals will always be coincident. On the contrary, unless a correspondence constraint

imposes correspondence on the multiple uses, the implementations for the separate uses

will be selected separately. Conceptually, this breaks the implied coupling of the but-

terflies: these operations would no longer form butterflies since they would not use the

same inputs. Instead, the short-time Fourier transform would be computed using a tree

structure, like that shown in Figure 6-7.

In order to maintain the regularity of the short-time Fourier transform structure,

three sets of constraints are imposed on the low-level description shown in Figure 6-

7. The similarity of the sequences feeding into the BANK-OF-SEQUENCES is pointed out

using a "correspondence constraint": the manipulation of these expressions and their

subexpressions are constrained to occur in synchrony. In addition, the sequences feed-

ing into each of the outer SEQUENCE-ADD/SEQUENCE-SUBTRACT systems are similar: that

is, the first addend into the k'th system is similar to the second addend into the k'th

system. Thus, a second set of correspondence constraints is placed on the inputs into

each of the outer SEQUENCE-ADD/SEQUENCE-SUBTRACT systems. The final level of regu-

larity in this structure occurs at each of the inner SEQUENCE-ADD/SEQUENCE-SUBTRACT

systems: a third set of correspondence constraints is placed on the inputs into each of

these SEQUENCE-ADD/SEQUENCE-SUBTRACT systems. Through these correspondence con-

straints, the manipulation of the corresponding subexpressions of the short-time Fourier

transform is constrained to occur in synchrony, resulting conceptually in the manipulation

of

Y[ni,n 2] = S[nl]
1

Sk[n] = Z± -R(k mod 2),i[n] (using "+" on k = 0, 1 and "-" on k = 2,3)
i=O

Rli[n] = e-ix P,,i[n]

Pl,i[n] = I ±x[n + 2m + i] (using "+" on I= 0 and "-" on = 1)
m=O

Using constrained manipulations, the uncovered implementations will also have a

regular internal structure. Without the correspondence constraints, the regular internal

134

.. _ ___. _ I

Figure 6-7: The short-time Fourier transform structure without any implied
couplings between subexpressions

The signal flow graph shown in Figure 6-6 implicitly uses the coincident structure of the FFT
algorithm: signals which are used multiple times are only shown once, with their dependencies
fanning out from a signal point. Visually, this suggests that the implementations of these
multiple uses of the signals will always be coincident. On the contrary, unless a correspondence
constraint imposes correspondence on the multiple uses, the implementations for the separate
uses are selected separately. The signal flow graph for the transform structure is shown here without
these visual couplings. Without correspondence constraints, the butterflies of the FFT will not
generally be implemented as butterflies, since the implementations of their inputs are uncoupled.

135

_I I __1__1_ _·1_11__1__11__1__14__11_1*1� -XII I-�-LI�-C--h--� -Il-l--·.l_-l^-L-.-�.�-�I --- I� - I- ---

structure would be lost and the size of the design space would explode.

6.3 Expressing and Maintaining Regularity

In the previous section, the short-time Fourier transform structure was examined

to illustrate the type of internal regularity seen in many signal-processing algorithms.

Correspondence constraints are imposed by the operator MAP-OVER to maintain this

regularity: an example of the use of MAP-OVER has already been provided by the definition

of the INCOHERENT-COMBINATION, shown in Figure 3-2. The signal generated by MAP-OVER

is a composition operator: for example, the 4-channel incoherent combination of a two-

dimensional sequence FILTER-OUTPUTS relies on the signal shown in Figure 3-6 to provide

a description of its sample values and of many of its properties.

Once a correspondence constraint is imposed on a structure, ADE propagates the

correspondence inwards, through the inputs to systems and the parameters of classes.

Furthermore, ADE propagates the correspondence constraints to the Fourier and z trans-

forms of the constrained structure and to any of the equivalent expressions which are

generated in searches for CONSTRAINED-SIMPLIFICATION and CONSTRAINED-EQUIVALENT-

FORMS.

Searches for most property values, such as NON-ZERO-SUPPORT or SAMPLE-TYPE, are

unaffected by correspondence constraints: their manipulations of parallel expressions con-

tinue independently. The correspondence constraints only affect searches for transforms

and for equivalent expressions. Furthermore, searches for equivalent expressions can be

made to respect correspondence constraints or to ignore these constraints. CONSTRAINED-

SIMPLIFICATION and CONSTRAINED-EQUIVALENT-FORMS, which respect correspondence con-

straints, use the same rules as SIMPLIFICATION and EQUIVALENT-FORMS, which ignore them:

it is simply the combination of these manipulations on subexpressions which is distinct.

This distinction will be discussed in detail later in this section.

This section discusses the inward propagation of correspondence constraints; the prop-

136

agation of correspondence constraints to modified implementations; and the interactions

between the correspondence constraints and constrained searches.

6.3.1 Propagating correspondence constraints through paral-

lel expressions

Once a correspondence constraint is imposed, using MAP-OVER, that constraint prop-

agates inwards until a mismatch is detected, affecting the transform manipulations and

constrained equivalent-expression manipulations of all the intervening expressions. This

subsection examines the manipulations which must be done on parallel expressions to find

constrained equivalent expressions. A similar process occurs in searches for transforms

and for constrained simplifications on parallel expressions.

The approach used to find unconstrained equivalent forms was described in Chapter 3.

This approach was encoded in the two strategies shown in Figure 5-1. The first of these

strategies (Figure 5-1-a) used newly uncovered equivalent forms as seeds for recursive

requests for additional equivalent forms. This same strategy is used, without modifica-

tion, in searches for constrained equivalent forms. The second strategy used for obtaining

equivalent forms (Figure 5-1-b) finds equivalent forms of a signal by finding the equivalent

forms of each of the inputs separately and then using these forms to replace the original

set of inputs. A similar but modified strategy exists for finding constrained equivalent

forms. In particular, some of the constrained equivalent forms of a signal or system are

found by replacing the generating components by their constrained equivalent forms. If

no correspondence constraint is imposed, then the strategy for finding constrained equiv-

alent forms of the components is the same as that for finding unconstrained equivalent

forms: the constrained equivalent forms of the components are found separately and in-

dependently recombined. When a correspondence constraint is imposed, the constrained

equivalent forms of the components can not be generated separately. Instead, to find

additional equivalent forms of the original expression, the constrained equivalent forms

of the components are found by manipulating the components identically; the expres-

137

_·_IIII I___l__l�_ilyllllllII_ ... ���1�-1_·111-�·�··�.�.---··-·psllll�l -�^.-.1-_1111-�

sions resulting from these manipulations are then used to replace the components in the

generating expression.

To illustrate this process, consider the task of finding the constrained equivalent forms

of the 4-point, short-time Fourier transform structure shown.in Figure 6-8-a. Some of

these equivalent forms will be found by manipulating the input sequences to the system

BANK-OF-SEQUENCES in synchrony: thus, the set of sequences shown in Figure 6-8-b are

considered simultaneously. Under this parallel manipulation, each of the equivalent-form

transformations which could be applicable to the individual expressions is considered.

Only the equivalent-form transformations which are applicable to all these parallel se-

quences will be completed and these transformations will be done on all of the sequences,

simultaneously. The point of manipulation will progress inward by considering the inputs

to the constrained expressions. Thus, the set of sequences shown in Figure 6-8-c is exam-

ined in parallel: this set of parallel sequences is formed by combining the correspondence

constraint imposed on the inputs to the system BANK-OF-SEQUENCES with the correspon-

dence constraint imposed on the inputs to the SEQUENCE-ADD and SEQUENCE-SUBTRACT

systems. Without this second, additional constraint, two independent sets of parallel

sequences would be manipulated, separately composed of the first and the second inputs

to the addition/subtraction systems.

The point of manipulation progresses inward, so that the parallel sets of sequences

shown in Figure 6-8-d and 6-8-e are also examined in turn. Pushing the correspondence

constraint through the inner butterflies picks up another correspondence constraint, forc-

ing all the inputs to be manipulated in synchrony. When the correspondence constraints

are pushed inward from the position shown in Figure 6-8-e, all of the parallel sequences

are collapsed into a single sequence, #<x>.

The answers from the inner constrained manipulations are propagated outward by

combining the constrained equivalent forms with the operators which were dropped.

Thus, any equivalent forms found for #<x> will travel outward by composing these

forms with the dropped shift systems to create equivalent forms of the parallel expres-

138

_�__� ��

b. parallel expressions:

f
1. parallel expressions:

zo

x
z2

(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale -1)
(scale 1)
(scale -1)

equivalent forms of (d)

2. parallel expressions: 3. parallel expressions:

zo

zi
x

z2

z 3

(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale -1)
(scale -1)
(scale -1)

+ (scale e °)

+ ^ (scale e/)

x el jn

x

Figure 6-8: An example of parallel expressions and the effects of imposing regularity
constraints

By imposing a correspondence constraint on an expression, the constrained manipulations of
the inputs to that expression are forced to handle all the inputs in parallel. This correspondence
constraint propogates inward through the subexpressions of the parallel inputs until a mismatch
is detected. The effect of imposing correspondence constraints on the short-time Fourier transform
structure is shown here. Part (a) shows the original constrained expression for the short-time
Fourier transform. Parts (b) through (e) show the sets of subexpressions which must be manipulated
in parallel. Part (f) sketches the progress of one line of manipulation.

139

x

I

----- ��----- '-��
-- _-1-.' 1111141 ------ ·-- ·/1_·--gll�·(�-·-�-·----Y�-·�-- -_.

Ia.

:2-

4. parallel expressions:

x

7. parallel expressions:

6. parallel expressions:

a"O, x

8. parallel expressions: 9. parallel expressions:

x

10. Direct-form implementation

140

x

x

x

�� I

5. parallel expressions:

p

sions shown in Figure 6-8-e. Each new set of parallel, constrained equivalent expressions

is simplified using CONSTRAINED-SIMPLIFICATION and used to as a seed to find other con-

strained equivalent forms. This recursive process continues until no new, constrained

equivalent forms are found. All of these sets of parallel equivalent forms will then travel

outward by composing these parallel expressions with the addition and subtraction sys-

tems which were dropped in going from Figure 6-8-d to Figure 6-8-e. The cycle of

constrained simplification and seeding of additional searches is repeated. The outward

progress of constrained equivalent forms continues until all the equivalent forms of the

original short-time Fourier transform are found. Figure 6-8-f sketches the progress of one

line of manipulation.

As mentioned earlier, the actual transformation rules which are used to find con-

strained equivalent forms and constrained simplifications are the same rules as are used

to find unconstrained equivalent forms and unconstrained simplifications, respectively. It

is the manner in which these transformations are combined which provides the distinc-

tion between the constrained and unconstrained searches. In particular, in unconstrained

searches, all subexpressions are manipulated independently while in constrained searches,

parallel subexpressions are manipulated in synchrony.

6.3.2 Propagating correspondence constraints to a modified

structure

When constrained expressions are manipulated to find transforms, constrained equiv-

alent forms or constrained simplifications, new expressions are often generated on which

the same correspondence constraints should be imposed. To illustrate, consider the ma-

nipulations shown in Figure 6-8-f: the result of these manipulations is a direct-form im-

plementation of the short-time Fourier transform. In order to reflect the correspondence

constraints of the original structure, this new bank of sequences should also include two

correspondence constraints: the inputs to the bank of sequences should be constrained

to coincide as should the inputs to the addition systems. Unless these constraints are

141

I 4 3
I�__III _·I1UU� · � �11_1

imposed, this new form will introduce unconstrained structures into the constrained ma-

nipulations. ADE propagates structural constraints to new expressions automatically.

Figure 6-10 provides two examples of this process. When a constrained expression is

manipulated, the inputs which are constrained to be parallel are noted prior to manipu-

lation. After each manipulation of a constrained structure, ADE will attempt to reimpose

the noted correspondences on the modified structure.

To simplify this discussion of the propagation of constraints, Figure 6-9 introduces a

way to describe the locations of the subexpressions in a signal-processing structure. The

structure can be represented by a tree graph as shown in Figure 6-9-a: the parameters of

a signal or the inputs to a system are the branches while the signal class or the system

form the branch points. An occurrence of one of the original constrained inputs is found

when a matching subtree is found. A match or mismatch is easily determined by simply

comparing the two objects under consideration: since signals and systems have a unique

representation, the input and the subtree will match if and only if they are the same

object. Once a match is found, the location of that subtree can be represented by tracing

out the path from the top of the complete tree to the subtree, as shown in Figure 6-9-b.

Two or more subtrees in the modified structure can be forced to coincide only if they

occur at the same depth in the overall tree. In addition to occurring at the same depth,

the branch points along the paths to the two subtrees must all have the same branching

factors: Figure 6-9-c shows an example of subtrees which occur at the same depth but

which do not share corresponding branching factors on the paths leading to them. If

the depth and the branching factors of the paths leading to the subtrees all match, a

correspondence constraint can be imposed at the branch point where the paths part.

To reimpose the correspondence constraints from the original structure, coinciding

subtrees are found in the modified structure. ADE will first search through the modified

structure for coinciding subtrees, representing the original, parallel inputs. If subtrees

representing the original, parallel expressions are found and their paths match both in

depth and in branching factors, then a correspondence constraint is placed at the branch

142

a. Tree structure for direct
implementation of DFT

0- 2<-- 1

b. The descripton of
the path to a subtree

c. Two subtrees occuring at the same depth
with different branching factors in their paths

Figure 6-9: Tree graph representations of signals

A signal processing expression can be represented by a tree graph: the parameters of a signal
class or the inputs to a system are branches while the signal class or the system form the branch
points. The locations of subtrees can be represented by describing the paths from the top of the
complete tree to the subtrees. Two or more subtrees can be forced to coincide only if they occur
at the same depth in the overall tree. In addition to occuring at the same depth, the branch points
along the paths to the two subtrees must all have the same branching factors. If the depth and
the branching factors of the paths leading to the subtrees all match, the subtrees can be forced to
coincide by imposing a correspondence constraint at the branch point where the paths part.

143

_�· __1�1_111 _11� �_CI__II__II·l_·^··_I· III---·IYI-Y�-·LI�-·--· I�-·II1IIII1I I---ll�l--·--X-Ill� 111I.I 1----^ 111·-1_--�---·s�- �-�··^--^-� 11_1111111-___._. _. -

Propagation of constraints
from Figure 6.8 (8)

0
= correspondence constraint

whi correspondence constraint
which must be propagated

Search for:
(constrained inputs
in Figure 6.8 (8))

x

to Figure 6.8 (9)

Matches the same subexpressions in Figure 6.8 (9)

Newly constrained tree structure
for Figure 6.8 (9)

0o
6 = previous correspondence

constraint

= propagated correspondence
constraint

Figure 6-10: Propagating correspondence constraints to modified structures

144

I 5 , Ft

==F~~~~~~~~~~~hk~~~~~

~~~~~3~~~~~~~~~

-.00-00

�Ei�c�II
I

��

~~~aI~~~~~~


Propagation of constraints
from Figure 6.8 (4)

correspondence constraint
O = correspondence constraint

: = correspondence constraint
which must be propagated

Search for: x
(constrained inputs
in Figure 6.8 (4))

to Figure 6.8 (5)

zo

z2

(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale -1)

(scale e-JI[)
(scale e-J3 7/2)

I

1--

= :> i40
Z=>-409 ~q:

~~~~i~~~~~~
~- i

Doesn't match:
(subexpressions

of Figure 6.8 (5))

Matches:
(subexpressions

of Figure 6.8 (5))

x

(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale 1)
(scale -1)

(scale e-J )
(scale e- j 3r / 2)

tI T-

path

-~. 0-- : Eo

0_-, O :E3

I :

0_--*1: El

Newly constrained tree structure
for Figure 6.8 (5)

0o
6 = previous correspondence

constraint

= propagated correspondence
constraint

145

1 - I

x

path

I__ ~0:Eo
=_*~P~LLI 1: Eo

3 ft~-LL 0 : El
~- a'.. 1: E,

~0-By_ 0 :E2

0 : E2
I :E3

�tLr-
-�-�L��--- -- I

�i�t�
�i�L

=t~~~~~~~~~~~~~~~~~

=p~~~~~~~~~~~~l~~~~~~~~

I

:E�- rI I

:E



point where the paths part. Otherwise, the modified structure will be searched for

subtrees representing the components of the original set of parallel expressions. In this

case, one of two approaches is used: when the parallel expressions themselves impose

correspondence constraints on their inputs, all the component expressions are grouped

into one set of parallel expressions; otherwise, multiple sets of parallel expressions will

be created. By this process, ADE is able to propagate correspondence constraints from

an original, regular structure to a modified structure, with minimal sensitivity to the

addition or removal of uniform layers of processing.

6.3.3 Manipulation of a single constrained expression

This section has discussed the propagation of correspondence constraints to mod-

ified expressions generated in searches for transforms and in constrained searches for

equivalent expressions. The underlying assumption throughout this discussion has been

that the intervening manipulations have not destroyed the regularity of the expression.

The previous section outlined a process by which parallel expressions are manipulated

in synchrony to maintain the correspondence between these expressions. However, the

regularity of an expression can also be destroyed in manipulations of the signals or sys-

tems which represent the branch points originating the correspondence constraints. To

illustrate, consider the rule shown on lines 6-12 of Figure 6-11-a: this rule collapses two

cascaded applications of a commutative, associative operator into one application. In a

search for the constrained equivalent forms of the structure shown in Figure 6-11-b, this

pattern will match the outer constrained SEQUENCE-ADD output. If the rule were applied,

the resulting modified structure, shown in Figure 6-11-c, would not exhibit the same

internal regularity as the original structure: whereas the shifted inputs of the original

structure all coincided, these inputs do not to coincide in the modified structure due the

unilateral removal of one of the SEQUENCE-ADD systems. It is the manipulation of the

expression which imposes the regularity constraint which introduces the irregularity.

This source of irregularity is easily removed by simply flagging the rules which in-

146



a.

1 (DEFINE-ABSTRACT-SYSTEM-CLASS (COMMUTATIVE-ASSOCIATIVE-SYSTEM *) *

2 ; accept any parameters or inputs

3 (COMMUTATIVE-SYSTEM ASSOCIATIVE-SYSTEM) ; a subclass of these classes

4 ("a commutative, associative system")
5 ("a commutative, associative system output"
6 (GOAL EQUIVALENT-FORM ; collapse cascaded applications for an equivalent form

7 :NAME SELF-APPLICATION

8 :ALLOW-MAPOVER-MATCHES NIL ; don't used on constrained branch points

9 :GOAL-OBJECT (OUTPUT-OF ?SYSTEM (OUTPUT-OF ?SYSTEM &REST ?INPUTS)

10 &REST ?OTHER-INPUTS)

11 ; one of the inputs is an output from same system

12 :ANSWER (APPLY 'OUTPUT-OF SYSTEM (APPEND INPUTS OTHER-INPUTS)))

13 ... ))

° = correspondence constraint

b. c.

Figure 6-11: The introduction of irregularities within a single, constrained expression
due to dissimilar modification of the coinciding inputs

Irregularities can be introduced into a constrained structure by manipulations involving the actual
expressions which impose the constraint. The rule for collapsing two cascaded applications of a single

commutative, associative operator into one application, shown in part (a) provides an example of this

effect. When applied to the outer constrained SEQUENCE-ADD of the structure shown in part (b), it

introduces a mismatch between the operators inputs, as seen in part (c).

147

�· _ _ I __ _ ·II_ _LIII·lll·- LII--LIIII( ·-- 1·1I1II-·--I---(-L__l.·-a*-YIII.-·Y-· -1------- I



troduce irregularity when applied to the branch-point expression of a correspondence

constraint. The additional effort required when programming the transformation rules is

negligible compared to the processing which would be required to automate this process:

of the rules currently included in ADE, fewer than 20 in 850 are flagged as sources of

irregularity. With the provisions described in this section, the modified structures result-

ing from searches for transforms and searches for constrained equivalent expressions will

exhibit the same general internal regularity as the original expressions. As a result of

these provisions, ADE is able to propagate the given correspondence constraints to the

related modified structures.

6.4 Summary

This chapter has discussed the representation and propagation of correspondence

constraints. Correspondence constraints can either be explicitly pointed out by the user or

can be included in the description of the equivalent forms of a high-level signal processing

operation. For example, the regularity constraints described in section 6.2 would be

included in the description of this equivalent of the short-time Fourier transform.

In ADE, MAP-OVER is used to impose correspondence constraints. Once a correspon-

dence constraint is imposed, ADE propagates that constraint inward through the com-

putational structure until a mismatch is detected. Manipulations which may introduce

irregularities into a constrained expression are manually flagged, allowing these sources

of irregularity to be avoided.

Use of these constraints allows the space searched for equivalent forms and efficient

implementations to be drastically reduced. Using correspondence constraints, the size of

search space is reduced from O(MN) to O(M) where N is the number of the parallel

subexpressions and M is the number of equivalent forms which can be found for each of

these parallel subexpressions. This search space reduction was illustrated dramatically

with the FSK-code detector in Chapter 3: regularity constraints reduced the design space

148



of the 16-channel modulated filter bank by factors between 1018 and 1058, depending on

the impulse response used in the filter bank.

This approach is a heuristic pruning strategy: there can be no assurance that the un-

covered implementations actually include the most computationally efficient implementations.'

However, this approach exploits the internal structure of the expression being manipu-

lated to reduce the search space. The regularity of the algorithm is due to the similarity

between separate parts of the expression: correspondence constraints are imposed on

similar expressions which travel through similar processing layers. Forcing this regu-

larity to be maintained in the equivalent expressions is a reasonable way to avoid the

combinatorial growth of the design space: since the coinciding expressions are similar,

an implementation which is efficient for one expression will usually be efficient for the

other coinciding expressions.

This justification for regularity constraints is supported by revisiting the problem of

non-integer sampling rate conversion. One of the applications of non-integer sampling

rate conversion is in displaying a film sequence on television: film is shot at a rate of 24

frames per second while television displays at a rate of 60 fields per second, where adjacent

fields are interlaced to create a frame rate of 30 frames per second. This rate conversion

problem can be dealt with as a one-dimensional problem using a 4:5 temporal sampling

rate conversion.2 The results of a constrained search for the efficient implementations of

this rate conversion included the polyphase matrix structure shown in Figure 6-12. This

structure has the same structure as the implementation reported by Myers (1986) (see

Figure 2-5-b).

1In fact, often, there are a large number of computationally efficient implementations which will not be
found, when regularity constraints are enforced: if the equivalent subexpressions of two computationally
efficient implementations can be intermixed without reducing the overall efficiency, then the resulting
structure will be another computationally efficient implementation. One possible way of obtaining these
structures while still using regularity constraints to reduce the size of the search space is discussed in
Chapter 8.

2With this approach, each film frame would be digitized on the combined rasters of the interlaced
fields and then separated into two interlaced sequences of fields. These digitized film fields would then
be used as inputs to the two one-dimensional 4:5 sampling rate conversions, one creating the even fields
and the other, the odd fields. The final television sequence would then generated by interleaving these
two sets of fields.

149

____�_·__IIIII__I____111111 ---�I�-·-�-·--··IP�L--- -l----��--^·-U-· L�--·-U�I-I-I__II�__·�IC-�-L·.-I � __. II� ·I�---------···I�-·----(I�···I



delay I 

.I4
av I~ __

I - - I I

4-4

delay

4

h[20n]

h[20n+4]

h[20n+8]

h[20n+12]

h[20n+16]

h[20n+5]

h[20n+9]

h[20n+13]

h[20n+17]

h[20n+211

h[20n+10]

h[20n+14]

h[20n+18]

h[20n+221

hr20n+261

hr20n+311

Figure 6-12: The polyphase matrix structure for a 4:5 conversion ratio

Using parallel manipulations on a 4:5 non-integer sampling rate conversion, this polyphase matrix
structure was discovered. This implementation has the same structure as the 2:3 polyphase matrix
reported by Myers (1986).

150

_ 

N.

_ 0

h[20n+15]

h[20n+19]

h[20n+23]

h[20n+271

-- --

'k

---- a- �:_---I-

t:

FdeI

t:

I



The discovery by ADE of this polyphase matrix structure using constrained manip-

ulations suggests that maintaining correspondence constraints results in a reasonable

sampling of the full solution space: all the same general implementations are still uncov-

ered, even though the full solution space is not considered.

151



152

A.



Chapter 7

Cost Measures

This chapter develops a framework for ranking implementations using cost structures.

The two driving motivations throughout this development are to accurately reflect the

relative costs of alternate implementations and to remove as many of the superfluous

implementations as possible without removing any implementations which would actually

be of interest to the user. The first section describes the external characteristics and the

interactions of the cost measures. The second section discusses the internal propagation

of costs: this propagation is necessary to accurately estimate the relative cost of different

implementations.

7.1 External Characteristics of Signal-Processing Cost

Measures

This section examines both a metric space which seems appropriate for signal pro-

cessing and some of the common distributions of cost versus time that arise in signal

processing.

153



7.1.1 Cost metric space

The most obvious, and often the most appropriate, cost measure for signal-processing

algorithms is a measure of the computational requirements of the implementation.' The

way to measure the computational requirements of an algorithm is less obvious. Until

the architecture on which the algorithms are to be run is selected, no single number can

be used to compare the execution times of equivalent implementations: the relative cost

of real additions, complex multiplications and memory references, for example, will vary

depending on the identity and configuration of the host computer as well as the particular

low-level implementation chosen for the operations. Therefore, a vector of costs is neces-

sary to characterize each implementation. Operation counts and memory requirements

are included in this vector. By allowing the cost to remain in terms of its individual com-

ponents, other unrelated measures of cost, such as a rudimentary sensitivity analysis, can

be easily incorporated.

Using a vector of costs for each equivalent implementation, a set of "undominated"

implementations can be determined, where an "undominated" implementation is one for

which there is no other equivalent implementation with a strictly smaller cost measure.

In this context, a cost vector is said to be strictly less than another cost vector when the

first vector is always component-wise less than or equal to the second vector and when the

first vector has at least one component that is smaller than the corresponding component

of the second vector. To illustrate, consider three implementations: implementation a,

requiring 2 complex additions and 4 real additions; implementation b, requiring 5 complex

additions and 2 real additions; and implementation c, requiring 7 complex additions and

3 real additions. Implementations a and b would be undominated implementations.

Implementation c is dominated by implementation b but not by implementation a. For

two-dimensional vectors, removing dominated implementations is graphically equivalent

to removing all the implementations whose cost vectors are in the first quadrant of a

coordinate system referenced from the cost vector of another implementation (Figure 7-

1Another cost measure that would often be useful is a stability/sensitivity analysis.

154



1). By extending the boundary lines, it becomes obvious that, if an implementation is

undominated, then no other implementation can fall in the third quadrant in its cost

space: otherwise, the first implementation would not be undominated. Thus, all other

undominated implementations must lie in the second or fourth quadrants. This graphical

device will allow us to compare the efficiency of domination by partial ordering with the

efficiency of domination using added bounding constraints.

As discussed above, the relative costs of different operations can not be determined

until the hardware capabilities are known. However, upper and lower bounds on the rela-

tive costs of different operations can often be determined, independent of the architecture.

These bounding equations can be used to further reduce the number of implementations

presented to the user. Some limiting relations that ADE uses are: complex multipli-

cation costs at least as much as complex addition; real multiplication costs at least as

much as real addition; complex addition costs at least as much as real addition but no

more than two real additions; and complex multiplication costs at least as much as three

real multiplications but no more than six real multiplications. 2 Graphically, the addi-

tional constraints increase the percentage of the vector space which each implementation

removes from consideration. Continuing with the previous example, these additional

bounds on the relative costs of real and complex additions enlarge the dominated re-

gion from being the first quadrant to being the shape shown in Figure 7-2-a. Again, by

extending the boundary lines of the domination mask, the areas in which undominated

implementations can fall, given the location of one undominated implementation, is eas-

ily seen. Using these two simple constraints, the percentage of the cost plane in which a

second undominated implementation can fall is reduced from 50% to just over 10%.

Thus, by using a vector of operation counts for each implementation, the compu-

tational requirements of each implementation can be compared and a partial ordering

can be completed. Simple domination between implementations results directly from

2A complex multiplication of (a, + jai) and (b, + jbi) is comparable to three real multiplications
using (cl - C2) + j(c 3 - C - C 2) where cl = arb,, c2 = aibi and C3 = (a + ai)(br + bi) and ignoring the
cost of the additions. It is comparable to six real multiplications using (arbr - aibi) + j(a,bi + aibr) and
counting the cost of the real additions as the same as a real multiplication.

155

��1_1111111111111_11 1_



a) Using only a partial ordering of the cost
measures by component-wise comparison,
some implementations can be eliminated,
leaving only undominated implementations.
For a two-dimensional cost vector, given the
location of one undominated implementation,
any other undominated implementation must
lie in either the second or the fourth quadrant
of the coordinate system referenced from the
undominated cost vector.

b) Using only a partial ordering of the cost
measures of the example developed in the
text, implementation c is dominated by
implementation b and implementations a
and b are undominated.

Figure 7-1: Domination using partial orderings of computational requirements

a
add

real

con
C.lT

a) By adding limiting constraints on the relative costs
of related operations, the dominated area provided
by each implementation is increased. Given the
location of one undominated implementation, the area
in which any other undominated implementation
must lie is corresponding decreased. This idea is
illustrated here for cost vectors of real and complex
additions.

b) Adding two bounding constraints on the
relative costs of complex additions and real
additions to the example developed in the
text, implementations b and c are dominated
by implementation a.

Figure 7-2: Domination using limiting constraints on the relative costs of related
operations.

156

- ----

uuuluvl 



this partial ordering. Additional comparisons can be made between implementations by

including limiting relations between the various operations.

7.1.2 Time distribution of cost

In order to adequately characterize the computational costs of a signal, the distribu-

tion of cost versus the signal index must be described. To illustrate, consider the cost

of taking an N-point FFT of a discrete-time sequence: the cost of computing samples

outside the indexing interval [0 N] is zero, since these samples are known to be identically

zero, while the cost of computing samples inside the interval is the cost of computing the

samples of the input sequence plus the classic Nlog2 N complex additions and log2 ()

complex multiplications. Simply giving the O(N log 2 N) dependence does not adequately

characterize the cost.

The FFT example also illustrates another type of time dependence in computational

costs, namely the association of costs with blocks of samples. To be more explicit, a

request for a single sample of the FFT in the indexing interval [0 N] incurs the same

computational cost as requesting all the samples in that interval. Thus, the costs in

the interval [0 N] are associated with all N samples and requesting one sample in an

indexing block is computationally equivalent to requesting all the samples. This stands

in sharp contrast with the behavior of operations like sequence addition or multiplication.

With these operations, the computational costs of distinct samples are independent: the

indexing block size is one sample.

This development results in a cost structure being associated with each implemen-

tation. Each cost structure consists of "cost intervals", where a cost interval describes

an interval with uniform cost characteristics. Each cost interval indicates the indexing

interval which it describes; the computational block size within that interval; and the

cost vector incurred by each indexing block. As illustrated in Figure 7-3, these cost

structures are able to characterize many of the different time dependencies that arise in

signal processing in a simple, efficient manner.

157



a) Sequence multiplication (assuming the
input samples are cost-free): The cost of
sequence multiplication is uniform across
the non-zero support of the output sequence,
with the cost of each sample being indep-
endent of the costs for any other sample.
Therefore, in this example, there is only
one cost interval with an indexing block
size of one sample and a cost vector for
each block of one complex multiplication.

xl[n]

x2[n]

Cost structure:
cost interval: [ oo]
index grouping: 1
cost vector:

(:complex-multiplies 1)

16-point,
x[n] radix-2

FFT

b) 16-point FFT (assuming the input samples are
cost-free): Samples of the FFT that lie outside its
non-zero support are cost free. Within the non-
zero support, the FFT uses block processing to
achieve a cost for computing the full non-zero
support of N log N complex additions and
N/2 log (N/2) complex multiplications. Therefore,
there are three cost intervals. The cost intervals
covering below 0 and above 15 have an indexing
block size of 1 sample and a null cost vector for
each block. The cost interval covering [O 16] has
an indexing block size of 16 samples and a cost
vector for each block of 64 complex additions and
24 complex multiplications.

Figure 7-3: Examples of cost structures incorporating time dependencies

Unfortunately, domination of one implementation over another is greatly complicated

by this explicit distribution over time. Although the average cost per sample could be

used in determining dominance, a variety of situations arise where only some of the

sample values of the implementations are required, making this an invalid measure of

the actual cost. For example, if a convolution is followed by windowing, comparison of

the average costs of block convolution and direct-form convolution could lead to exactly

the opposite conclusion from that which is correct (Figure 7-4). Thus, dominance of

one implementation over another can only be asserted when the cost vector of every

interval of the dominating implementation dominates the corresponding cost vector for

158

Cost structure:
cost interval: [-oo 0]
index grouping: 1
cost vector: ()
cost interval: [0 16]
index grouping: 16
cost vector:

(:complex-adds 64
:complex-multiplies 24)

cost interval: [16 0]

index grouping: 1
cost vector: (

I

___



overlap-save
Y rnl _ rnnvnltitnn -
" LJ Vv vans VI·

(256-point FFT)

0 31
(hamming 32)

x [n] 
(hamming 3)

Cost structure: erval [A LU

cost interval: [ index grouping: 1
index grouping: 225 cost vector:cost vector:
cost vector: (:complex-adds 31

(:complex-adds 4096 :complex-multiplies 3
:complex-multiplies 2048)

Figure 7-4: Comparison of cost structures with unequal indexing block sizes
Dominance of one cost vector over another when the computational block sizes are unequal is difficult to

establish, since the number and distribution of samples that will be computed is not generally known.

Consider the two implementations of a convolution shown here. Using the average cost per sample,

the overlap-save requires about a third the number of complex multiplications and half the number of

complex additions. However, if the output of the convolution is subsequently windowed so that 64 or

fewer samples are retained, the direct-form implementation is more efficient than the overlap-save.

the dominated implementation and, if the indexing block sizes are unequal, when the

cost per block for the larger indexing block dominates the cost per block for the smaller

indexing block.

To summarize this discussion of signal-processing cost measures, basic operation

counts are used as a measure of the cost of an implementation. EFFICIENT-IMPLEMENTATIONS

and CONSTRAINED-EFFICIENT-IMPLEMENTATIONS, only present implementations which are

undominated. An implementation that dominates an alternate implementation must

have a cost structure which dominates the cost structure of the alternate implementation

over all cost intervals. Dominance on a cost interval can only be established in two cases:

if the indexing block sizes are the same, then dominance is established by dominance of

one cost vector over the other; if the indexing block sizes are unequal, then dominance

can only be established if the cost per block for the larger indexing block is smaller than

159



the cost per block for the smaller indexing block.

7.2 Internal Behavior of Signal-Processing Cost Mea-

sures

On all but the most trivial signal-processing systems, computation of the output signal

requires computation of some or all of the input signals, since the output sample values

depend on the sample values of the input signals. Thus, computation of the output signal

directly incurs the local cost of the system and indirectly incurs the cost of associated

with computing the required samples of the input signal. This section discusses some of

the issues that arise in reflecting these indirect costs.

7.2.1 Propagation of cost

To be able to reflect the cost of computing a system input in the output cost, the time

dependence of the output signal on the samples of each input signal and both the size

and the position of the computational blocking must be available. Some simple examples

to illustrate the necessity of this knowledge are provided in Figure 7-5. For the sake of

clarity, this figure only shows the propagated costs: the local costs of the systems are

omitted.

One approach to describing input/output relations is discussed here. Using this ap-

proach, the output dependence on each input is described by a set of "propagation

intervals". A propagation interval describes the propagation characteristics of the sys-

tem on a particular output indexing interval, thus allowing time-varying input/output

dependencies. In addition to the interval over which the dependence applies, the propa-

gation interval contains: an output interval representing one computational block;3 the

corresponding input interval on which the output interval depends; and the "sense" of

3 The prototypical output block is not forced to fall inside the extent of the propagation interval, but
rather simply to reflect the relative sizes and placements of corresponding input and output blocks.

160

~~~-----~~~~~~~~~I I


j; C s ;e ,
,)

K
>

Lr .~ *08 N Q S.B S6e S * .(poC(C c..C ·C) b. t C

___ .5 8

O
"

.5

CO
o

2i c. E;O 5-3 |

8

C-.5 g o B

Uo)o

8 ~'~o~ C 0o4- Q oC-C) ,._ C)*6 oi o

o·s COX

C0
.

I-L~

Lr 8

Ct

03

COE

UcO

a)

CO

a)CO

U(A
(AE

0

o
'-CU

CO00

U)'-toctto
·B*

C
tz
T: I
C.) WI
0,

aQ

C

x

-oittn as A

OR CutVO CO& ii

U n U-'a V.) b ,2 ... 5 -

8 ·5 8

U)w

M5 -0Cu

U i:o o. ..
4,h; 02 .

U) v

0 2 0U - U

U
C)

'-o

Cu >Y U)

U)
U

o . o

0C)
0

o

_ > N
O C)
Q l.

o
a
E

C

0

-

x

161

- ------ -·- --------- ·----------- ---- --- ------ ·---------·- ---------- · �-- .-·- ------- _-- -

m

the input/output relation which is described below. Using this input/output block pair,

the input dependency for a prototypical output block is given. Since each propagation

interval typically spans more than one block, the input/output relations of the remain-

ing blocks are determined by tessellating the output indexing interval using the output

computation block and tessellating the domain of the input signal using the input block.

Then, if the "sense" of the input/output relation is "normal", the output block imme-

diately to the left of the prototypical output block is associated with the input block

immediately to the left of the prototypical input block, and so on. If the "sense" of

the input/output relation is reversed, the output block immediately to the left of the

prototypical output block is associated with the input block immediately to the right of

the prototypical input block, and so on. Figure 7-6 illustrates this propagation for the

systems shown in Figure 7-5.

Obviously, this propagation is not as general as it could be. In particular, provisions

could be made for allowing non-contiguous or overlapping input blocks. Non-contiguous

input blocks would allow a more accurate representation of downsampling: this is an

unfortunate limitation of the chosen representation. Overlapping input blocks are de-

liberately disallowed to avoid cost inflation. To demonstrate this possibility, Figure 7-7

shows three possible ways of propagating the input cost to the output cost for a causal

IIR filter. The first two ways shown in Figure 7-7 do not require the use of overlapping

input blocks, only the last way does. Unfortunately, the last way also includes the cost of

computing the input sample at x[no] in the cost of the output sample at y[no] and in all

subsequent output samples as well. So, overall, the cost of computing each input sample

is included in the output cost an infinite number of times. Not allowing overlapping input

blocks avoids the possibility of this type of cost inflation.

Once the dependencies of a system output on each of the system inputs is described,

the input cost structures can be modified to conform with their time distribution as seen

from the output. The algorithm used to do this is included in the environment of ADE.

As a result of including the costs of system inputs in the output cost, cost structures

162

__ �I _ _

x-~~~.-,, 1 q--

~11 'U"
('1 a)~~~v-

N

. a 0 XYB
. .~

tn
t-L

V-4

ur

C:

0©COv)0

.
!)

Cu

VouE:To

la
.

.IrE:51

.4

._to4.

163

I � - II I. C-1IIIIS�-·III_�l·_I I·I11I1II1I --..I(_l-·L^III*C-·I11�11111·11.1·_�_11_ --- I - -- _

x n]

a b

C

Figure 7-7: Three alternate ways of propagating the input cost through an IIR filter

The proposed description of input/output relationships of systems is not as general as it could be.
In particular, no provisions are made for allowing overlapping input blocks. This restriction is
most noticeable in recursive computations, such as an IIR filter. If this restriction is removed,
there are three alternate ways of naturally propagating costs through an IIR system. Unfortunately,
the third, which in some ways reflects this cost most accurately, also results in cost inflation, by
including the cost of each input sample in the output cost an infinite number of times.

164

Owner: x
Propagation interval:

interval: (non-zero-support self)
output block: [O 1]
input block: [O 1]
output block shift: 1
input block shift: 1

Owner: x
Propagation interval:

interval: (non-zero-support self)
output block: (non-zero-support self)
input block: (non-zero-support x)

output block shift: oo

input block shift: o

Owner: x
Propagation interval:

interval: (non-zero-support self)
output block: [O 1]
input block: [- 1]

output block shift: 1
input block shift: 1

-- -- --

will eventually need to be added. If the corresponding cost intervals in the two cost

structures being added have the same indexing block size, the addition is straightforward:

the cost vectors are simply added. When corresponding cost intervals do not have equal

block sizes, the addition is more involved. One option in this case would be to use a block

size that is the least common multiple of the two block sizes and add the cost vectors,

after scaling appropriately (Figure 7-8-a). The primary difficulty with approach arises

when one of the cost vectors has an infinite block size.

To illustrate, consider problem of describing the cost of computing the output from

one of the modulated filters in the matched filter bank shown in Figure 3-1: that is

y[n] = x[n] * (e-JiknrN[n]) where rN[n] is an N-point causal, rectangular window. As-

suming that the sequences x[n], e-5jkn and rN[n] are all cost-free, the propagation

and addition of costs using least-common-multiple block sizes is shown in Figure 7-8-

b. The cost of computing y[n] is the sum of: N multiplications and N - 1 additions

per sample, for the local computations in the convolution and N multiplications per

oo samples, for the one-time cost of computing e-JiknrN[n] (Figure 7-8-b). If least-

common-multiple block sizes are used for adding up the costs, the cost of the output is

oo multiplications and oo additions per oo samples. To highlight the problem with this,

consider another way of getting the same output signal shown in Figure 7-8-c: that is,

y[n] = x[n] * h[n] - x[n] * h[n - N] where h[n] = e N-knu[n]. The cost of computing

y[n] in this manner is the sum of: 1 addition per sample, for the local computations in

the sequence subtraction; oo multiplications and oo additions per sample, for the local

computations in the convolution and oo multiplications per oo samples, for the one-time

cost of computing h[n] = e-i-knu[n] (Figure 7-8-c). Using least-common-multiple block

sizes for adding up the costs, the cost of the output is again oo multiplications and oo

additions per oo samples. Obviously, the number of multiplications required for this sec-

ond implementation is greater than the number of multiplications required for the first

but the cost structures for the outputs are the same. Thus, if least-common-multiple

block sizes are used in adding cost structures, the ability of the resultant cost structures

165

1 �_111 __�_ I____II··�_ ---------·Y1·Ill�-LI·IYICIL�--^^--- CI I -�-_I _ _

+

a) Since the computational costs of the system inputs are propagated to the system
output, cost structures will need to be added together. With this need arises the
possibility of having to add cost intervals of unequal block sizes. One possible
approach to this task, shown here, is to use the least-common-multiple block size
as the output block size and add the appropriately scaled cost vectors.

I Cost structure:
costinterval: [0 N]
index grouping: 1
cost vector:

(:complex-multiplies 1)

I I

Propagated costs: Local costs:
cost interval: [cost interval: [-a A]1

1 index grouping: 1
index grouping: c cost vector:
cost vectorI (:complex-adds N-1

(:complex-multiplies N) :complex-multiplies N)

Cost structure:
cost interval: [-a oo]

index grouping: cc

cost vector:
(:complex-adds oo
:complex-multiplies o)

Using least-common-multiple block sizes to add corresponding cost intervals the discrimination of
the cost structures is greatly reduced when one of the block sizes is infinite. For example, using
this approach to the addition, there is no discrimination between the costs of the implementation in
part (b), shown above, and that of the implementation in part (c), shown below.

u[n] x[n] o
0

I Cost structure:
cost interval 1 J

index grouping:
cost vector:

(:complex-multiplies 1)

tC

shift .
N

Figure 7-8: Addition of two cost structures using the least-common-multiple block size
to add corresponding cost intervals

166

Cost structure:
cost interval: [-6 0]
index grouping: I
tcot vrtnr

(:complex-adds 1)
cost interval: [0 18]
index grouping: 2
cost vector:

(:complex-multiplies 1)

Cost structure:
cost interval: [-6 6
index grouping: 3
cost vector. (:real-adds 1)
cost interval: [6 181
index grouping: 4
cost vector.

(:real-multiplies 1)

Cost structure:
cost interval: [-6 01
index grouping: 3
cost vector.

(:complex-adds 3
:real-adds 1)

cost interval: [0 6]
index grouping: 6
cost vector.

(:complex-multiplies 3
:real-adds 2)

cost interval: [6 18]
index grouping: 4
cost vector:

(:complex-multiplies 2
:real-multiplies 1)

rN[n]
0 N

Cost structure: Cost structure:
cost interval: [-ca oo]

index grouping: o
cost vector:

(:complex-adds oo
:complex-multiplies A)

cost interval: [-a]

index grouping: oo
cost vector

(:complex-adds oo
:complex-multiplies A)

--- .___

I

T

to reflect computational efficiency can be greatly reduced.

A more appropriate approach to adding cost structures which have unequal corre-

sponding block sizes is maintain separate cost intervals in the output cost structure

for each of the block sizes (Figure 7-9-a). Returning to the example used above, the

cost structures for the two alternate implementations would each have two cost inter-

vals. The implementation y[n] = x[n] * (e-J'knrN[n]) has a cost structure with N

multiplications and N- 1 additions per sample and with N multiplications per oo

samples, both covering the full indexing domain (Figure 7-9-b). The implementation

y[n] = x[n] * h[n] - x[n - N] * h[n - N] would have a cost structure with oo multipli-

cations and oo additions per sample and with oo multiplications per oo samples, both

covering the full indexing domain (Figure 7-9-c). Unfortunately, this approach further

complicates the determination of dominance between cost structures. The final approach

that is actually used in ADE in determining dominance is described in Appendix D.

7.2.2 Local assignment of cost

From the previous subsection, the computation of the output signal incurs both the

local cost of the system and the cost of associated with computing the required samples of

the input signal. The previous subsection assumed that, after appropriate modification of

the input cost structures, the additional cost incurred by the input signal computations

was incorporated directly into the cost structure of the output signal by simply adding

cost structures. The difficulty with this approach is that it results in artificially high

estimates of the computational cost for some implementations. For a simple example,

consider the computational cost of a 4-point short-time Fourier transform (Figure 7-10-

a). If the cost of computing the inputs to each of the systems is incorporated directly

into the cost of the output of the system, the costs of the first stage computations would

be incorporated into the STFT cost twice and the cost of computing the input sample

values would be counted sixteen times. This type of error can easily affect the dominance

relations between implementations: an implementation which is actually computationally

167

__·1_11_ _111111 .-- -- -I_- 1_1 I _ s ·III_1III�·----^�---^L·---�(-�I^·X�-�L-- --·�IIIIIIII�·IP-L---L--� 1--- �-1_11�

+

a) Another approach to adding cost structures is illustrated here: when any
two corresponding cost intervals have unequal block sizes, both cost intervals
are included in the output cost structure.

rN[n] I
o0

e-j:n

Cost s tructure:cos 'nevl . LOI U]A
cost interval: 1- (
index grouping: 1
cost vector: (:comlplex-adds 1)

18]

Ltiplies 1)
6]

-adds 1)
s 18]

es 1)

cost interval: [O 1
index grouping: 2
cost vector:

(:complex-mu
cost interval: -6
index grouping: 3
cost vector. (:real.
cost interval: [6 1
index grouping: 4
cost vector:

(:real-multipli,

This approach to adding cost intervals with unequal block sizes allows for discrimination between
the costs of the implementation in part (b), shown above, and that of the implementation in part (c),
shown below.

u[n] x[n]
0,Ex--I I

cost iteval
- Itx

[Cost structure:
cost interval [O]

index grouping: 1
cost vector.

(:complex-multiplies 1)

.T St t0
lechift I

Figure 7-9: Addition of two cost structures using explicit inclusion to add corresponding
cost intervals of unequal block sizes

168

Cost structure:
cost interval: [-6 0]
index grouping: 1
,,,t Wharto

Cost structure:
cost interval: [-6 6]
index grouping: 3

(:complex-adds 1)
cost interval: [O 18]
index grouping: 2
cost vector:

(:complex-multiplies 1)

cost vector: (.eal-adds 1)
cost interval: [6 18]
index grouping: 4
cost vector:

(:real-multiplies 1)

Cost structure:

Cost structure:
cost interval: [- *]

index grouping: 1
cost vector:

(:complex-adds o
:complex-multiplies !o)

cost interval: [-o oo]

index grouping: -
cost vector:

(:complex-multiplies co)

cost interval: [- O]
index grouping: 1
cost vector.

(:complex-adds -
:complex-multitlies oo)

cost interval: [-oo c]

index grouping: oo
cost vector:

(:complex-multiplies oo)

- ----

I
I I I ~

where Aa,Mm,Xx is a cost structure with
p e lrl--v,,^ AUU Yw, oall-v .- U Jr-. sVampl-e, alnULdlw'th 1X2a,2m,16x
per sample and with X times the input cost, x

a. If the computational requirements imposed by the inputs to a system are incorporated directly into the
cost structure of the output from the system, the cost of signals which are used more than once by a system
will be included multiple times. This effect is shown here for a 4-point short-time Fourier transform.

The columns of sequences are referred to as Bi and Ci 8a,lm,lx
Multiplications and sign inversions are not shown, to reduce the clutter

b) By maintaining separate cost structures for each of the inputs plus a cost structure for computations
local to the system itself, inputs which are encountered multiple times need not have their cost
structure included more than once in the overall cost. By this mechanism, the classic order N log N
cost for the FFT can be determined.

Figure 7-10: Multiply-used signals as a motivation for consignment of costs
to the signals or systems that incur them

169

_ ._- 1_1 · _I _ 111_1__1_·_____1__1^·_IL 1.111441·-·�-�·11·1·L1·l-�l··^-·�····ll- -�--� ----XI-C� ��1�--_---�-·II 11

efficient can easily be overshadowed by another implementation due to these errors.

To avoid this problem, computational costs are internally associated with the signal

or system which locally incurred them. Then, simply by cross-checking this information,

the costs of signals which are used more than once need not be included in the overall

cost multiple times. Only when the overall costs of the system output is required, either

to determine dominance or to respond to the user, are the cost structures summed.

An example of this is shown in Figure 7-10-b, for the same 4-point short-time Fourier

transform examined above.

Fortunately, since the cost structures of inputs and local costs are added together

prior to determination of dominance, this local assignment of costs does not affect the

procedure used to determine dominance. In this way, maintaining a local assignment

of costs provides additional accuracy in the combination of the cost structures without

increasing the complexity of their external behavior or their ranking.

7.3 Summary

This chapter has developed a framework for computing and comparing cost measures for

system implementations. Starting with a simple vector of operation counts and memory

requirements, modifications have been made to increase the accuracy of the cost measures.

In summary, each cost measure is a distribution over the indexing variable of these simple

cost vectors. In particular, a "cost interval" associates a cost vector with an indexing

interval and an indexing block size. The cost of computing a block of samples within

the indexing interval is given by the cost vector. Moreover, the cost of computing one

sample within the indexing interval is the same as the cost of computing the full block of

samples within the indexing interval: that is, the computation of the samples is "blocked"

together. Finally, there can be more than one cost interval covering a single indexing

interval, due to the possibility of differing block sizes within the interval. In this case,

the cost of computing a set of samples within the interval is the sum of the costs implied

170

���__ __

by the covering cost intervals. Internally, costs are propagated from the system inputs to

the system output by modifying the input cost structures according to the input/output

dependencies. After modifying the input cost structures to reflect the viewpoint of the

system output, these modified cost structures are associated with the signal that locally

incurred them. Only when system dominance is being determined or user queries are

being answered are the cost structures combined. The additional information provided

by this local assignment of costs allows the costs of systems which use a single input

multiple times to be correctly determined. The addition of cost structures is completed

by adding corresponding cost intervals that have equal block sizes and by explicitly

including all of the corresponding cost intervals that have unequal block sizes.

171

-- L I -- - I ~ Il-~--LIIIIIP-~IIII~Y~lllt--- .I^-~- ----- I-I~··-XM-_

172

�

Chapter 8

Contributions and Limitations

As stated at the beginning of this thesis, the long-term goal of research in the area

of signal-processing algorithm manipulation is to eventually provide the engineer with a

single, integrated computer environment which supports and expedites all stages of the

design process. This thesis has addressed some of the issues associated with providing

such a computer environment for signal-processing algorithm design. The foundations

used in this research were built in Kopec (1980), Dove et al. (1984) and Myers (1986).

Kopec (1980) reported one of the first efforts at providing a set of explicit representa-

tions for signal processing. This explicit representation of sequences as distinct objects is

one of the major contributions of Kopec (1980). Two other equally important contribu-

tions of Kopec (1980) are sequence immutability and the uniform external interface to the

sequences. Mathematically, sequences have an explicit identity which is immutable: the

identity and the sample values of any given sequence are completely fixed. In addition,

mathematically, any of the sample values of a sequence can be referenced independent

of the algorithm provided for computing the sample values. These were all characteris-

tics which Kopec (1980) advocated in signal representations. The research in Dove et

al. (1984) and Myers (1986) refined and extended this numeric representation of specific

discrete-time sequences.

Many of the contributions of Myers (1986) lie in the area of symbolic signal representa-

173

I _ __ _ �_ __ ·� _·___ICIII·__llllXIX---LL·LI--·l�sY·I �l�-i-LI�_11· -1-1-11_�.111·11_111----·�-- -11�-----_111--^ --- ·-- -I -- _-- -� . I��

tion. Myers (1986) introduced representations for discrete-time Fourier-transform signals,

allowing expression manipulations to occur both in the time and the frequency domains.

Myers (1986) also introduced representations for incomplete signal descriptions: abstract

signals could then be manipulated, providing the ability to manipulate whole classes

of signals simultaneously. Most importantly, using these representations, Myers (1986)

demonstrated the ability of the computer to symbolically manipulate signal-processing

expressions: an algorithm was autonomously uncovered which was subsequently, indepen-

dently presented as an efficient implementation for non-integer sampling rate conversion.

8.1 Contributions

This thesis has introduced a variety of refinements and extensions to the work in

Myers (1986). However, the major contribution of this research lies in its efforts to

limit the combinatorial growth of the search for efficient implementations. Two other

important contributions of this work are the development of accurate cost measures

including an accurate way of propagating and combining costs and the development of

signal and system representations which allow information to be easily and efficiently

shared between related objects.

The internal regularity of signal-processing algorithms was used to limit the size of

the search space for equivalent implementations. This regularity in the low-level signal-

processing descriptions is commonly pointed out using information provided by the high-

level description of the same operation. Without these constraints, many FFT-based

and polyphase-based algorithms would be beyond the scope of consideration, due to the

combinatorial expansion of these design spaces.

The time distribution of costs are described using "cost intervals": these descriptions

include information about the extent over which a cost applies; the blocking of samples

within that extent; and the vector of operation counts and memory requirements for each

block. The possibility of shared subexpressions allows the cost description of separate

174

_ � �

parts of a single algorithm to interact. These interactions are reflected in the final

addition of the component costs to determine the total cost of an implementation. Finally,

bounding constraints for comparing the relative costs of distinct operations, such as

complex and real multiplications, were added to increase the area of dominance of each

implementation.

The two-level representation of abstract objects allows information about property

values to be shared between related abstract instances. A similar two-level representation

was developed for symbolically constrained objects which depend on a single abstract

object. The advantage of these two-level representations is the ability to reuse information

derived for one instance in characterizing a related instance.

In addition to these primary contributions, this research effort also provides some

other contributions which are perhaps of lesser importance.

This thesis has developed a signal-processing environment which explicitly separates

the description of the control structure, the general description of the properties and the

description of the signals and systems.

The numeric classifications and representations of signals and systems were integrated

with their symbolic classifications and representations. A common class hierarchy for

both types of representations was developed.

The interfaces for properties and sample values were made uniform across all classi-

fications of signals and systems: simple specific, symbolically constrained, and abstract;

discrete-time domain, Fourier domain and z domain; and computable and uncomputable.

Symbolic numbers are used to represent the sample values of abstract signals, symboli-

cally constrained signals and uncomputable signals.

The class hierarchy of signals and systems was further exploited to provide a hier-

archical structure to the rule base and to potentially reduce the number of typing tests

performed within each rule. This hierarchical organization reduces the apparent size of

the rule base: the only rules which are considered in a search are those which apply to

the same class as or a superclass of the current object.

175

_ I I _ _ _I�_· I __ Ilg ____�_^�^�·11(_�111·-�-I 1 Is _I - -

8.2 Limitations

The FSK-code detector has been used in this thesis to illustrate the power both of

symbolic manipulation and of parallel constraints. In this section, a final design example

is considered primarily to illustrate some of the limitations of the described environment.

Additional limitations are pointed out in the next section on areas for future research.

This example considers the recovery of the in-phase and quadrature samples of an RF

signal, such as was used as the front end of the FSK-code detector shown in Figure 3-1.

The conventional structure for the recovery of in-phase and quadrature samples from

an RF signal is shown in Figure 8-1. Two base-band analog channels are created by

separately mixing the input channel with the in-phase and quadrature components of

the carrier frequency and then low-pass filtering. These base-band signals are sampled at

their Nyquist rate B to generate the I and Q samples. This approach requires matching

between the frequencies and phases of the two mixers; between the gains on the two

analog low-pass filters; and between the gains and the rates of the two A/D converters.

An alternative approach to this recovery was suggested by Rader (1984): the proposed

approach avoids the problem of matching analog components. As shown in Figure 8-2,

the use of two analog channels is avoided by not immediately beating the RF signal

down to base band. Instead, the signal is beat down to a center frequency of B where

B is the bandwidth of the RF band and this signal is sampled at a rate of 4B. The

resulting discrete-time sequence is passed through a 90°-phase splitter network, designed

to pass the positive frequency band and to remove the negative frequency band: thus,

using i4[n] and qT4[n] to represent the two outputs from the phase-splitter network, the

sequence i4[n] + j q4[n] will ideally only have energy in the frequency interval from

4 to 3. Since this remaining energy lies within an interval which is only wide, the4 4*2

sequence can be downsampled by four, resulting in the output sequences, i[n] = i4[4n]

and q[n] = q4[4n], at the same rate as the output sequences from the conventional

structure. When the digital portion of the structure shown in Figure 8-2 was given to

ADE to find an efficient implementation, the structure shown in Figure 8-3 was found as

176

__

�4D�

C.,rt

E
U o

o *;
o o

; .~

c.)0

o 5 U

C)l

177

1-0

0

u(U
v

1�1(· _11 11111111111111L-111� - e1_l_--11-·11_-_--·�^-L·�-PY---��_I�··lt I--�-__-·II-�Y-·�·Y-il�lll�-XII II I I ·---·I - - I

s:

I-,x1
1- : -
X

4-

I "

~q~A

C D
N

c..q

II

NI
C

-I

m

0

o

0
.o

.

';0 00

5C)o

W

C)o,

*= C

W

CLon

X ._

u,

E oQ

178

c0

'e-

l

Cu

o-

o1:4

C

C

0
u

vX11 -& I

�I

C C C

i[n]

q[n]

(all-ps-secti implemeonts
where a) implements (s a

(scale -l)~cldelay

Figure 8-3: An efficient implementation of the digital portion of the structure shown in
Figure 8-2

the most efficient implementation for this structure. This efficient implementation can

also be found in Rader (1984).

Part of the design process completed by Rader included the recognition of the dif-

ficulties inherent in the conventional structure shown in Figure 8-1: before the search

for a new implementation began, the limitations of the current implementation had to

be recognized. These limitations do not occur in terms of computational costs, which

have been used throughout this thesis for comparing alternate implementations. Instead,

the difficulty with the conventional implementation lies in the noise introduced by mis-

matches between the two analog channels. To model this source of noise, not only does

the noise inherent in individual mixers, analog filters and analog-to-digital converters

need to be modeled, but the signal distortion introduced by their mismatch must be

analyzed. This analysis requires models of the "reproducibility" of the parameter values

of the operators: for example, a model would be needed for the difficulty in matching

the frequencies of the two mixers and in matching their initial phases so that they run

in quadrature.

179

___�___1_111__1_1_11___YIII---�-XII· 1�---a1^l-^..-------��. .------� - �.·_l_·UI-ll_·�l-ll^-�^-�-^I_.I�L_�_--�- - �- M--.1-~1 I C

This points out two areas which could use further development in ADE. The first area

is in the representation of continuous-time operations: ADE does not include any rep-

resentation of analog operations. Although discrete-time Fourier-transform signals are

represented in ADE, distinctions should be made between these continuously-indexed sig-

nals and continuous-time signals. The relationships between continuous-time signals and

discrete-time sequences is fundamentally different than between discrete-time Fourier-

transform signals and discrete-time sequences: in particular, the first relationship is a

many-to-one mapping through A/D sampling and the second relationship is a one-to-one

function through the inverse Fourier transform.

The second area for development which this points out is in modeling the noise within

a system. The noise within the computation should be modeled to allow general analyses

of the sensitivity of different implementations. However, it is the reproducibility of the

system parameters which must be modeled for this particular problem. Both of these

modeling operations are difficult, since the type and the level of noise with the system is

often closely tied to the details of the hardware implementation.

The most impressive part of the design completed by Rader was his ability to consider

the problem as a whole, looking both at the original difficulties which he needed to avoid

and at the interactions between the choices of intermediate signals, sampling rates and

filter structures. The original difficulties in matching the analog channels constrained his

choices of intermediate analog signals: the signal needed to be real, since only one analog

channel was desired and since only real-valued analog signals and operations could be

used. Given this constraint, the intermediate analog signal could be given any carrier

frequency above and this analog signal could be sampled at any rate above its Nyquist

rate. Rader's choice of the center frequency and the sampling rate allowed him to use a

low-order, all-pass filter network to implement a phase splitter. This insight results both

from the global consideration of the problem at hand and from extensive knowledge of

the tools available.1

1The transformation from the conventional implementation to the structure proposed by Rader (1984)
also requires the use of an approximation. In particular, due to the phase characteristics of the digital

180

---· ------ I

Obviously, this type of insight is difficult to include in any environment. This type

of insight requires both extensive knowledge of the types of operations which can be

efficiently implemented and the ability to select from this store of knowledge without at-

tempting an exhaustive search. A large store of knowledge has been included in ADE and

more can always be added. Instead, the basic difficulty lies in encoding this knowledge

in a way that allows the environment to recognize opportunities like this and in creating

an environment which will modify the parameter selection on the various subproblems

to exploit these opportunities.

8.3 Suggestions for Future Research

Returning to the stated long-term goal of this research, a number of issues must be

addressed before an integrated signal-processing design environment supporting the full

design process can be realized. This section attempts to outline the areas in which further

research is required to achieve this goal.

8.3.1 Signal and system representation

The representations for multi-dimensional signals and systems is a largely unexplored

area of research. Some of the issues in representing multi-dimensional signals include the

description of their non-zero support, the description of their symmetry characteristics

and the description of their cost. Representing the non-zero support and the cost of a

multi-dimensional signal requires the description of a multi-dimensional region: rectan-

gular regions are often useful in describing image data while annular regions are used by

z-transform signals. In addition, irregularly shaped regions of support would be useful

in describing the segmentation of an image or the Nyquist volume of a high-definition

television signal.

filtering network, the output from the structure shown in Figure 8-2 has an added nominal time delay of
! samples and a frequency-dependent deviation from this nominal time delay of samples. Although
16 ay
no approximate transformations are currently included in ADE, their inclusion does not present any
immediate conceptual difficulties.

181

_ _� _^_II__LY·II__LII__·�·L··�_ �----Y1·lll�l I-C-l^·L·I�.----- .. �.-�� .-·II)-II-LLXII------· -�1 ·111�--1� 1

The representation of explicitly recursive definitions is another unexplored area of

research. To support the recursive definition of signals, provisions would need to be

made for deferring the evaluation of the system inputs: for example, in a simple feedback

loop, a representation of the output signal must be provided before the addends which

close the loop can be evaluated. The representation of recursive operations would be

simplified if the index parameter of the signal were explicitly represented. Furthermore,

the derivation of recursive forms is not possible without the explicit representation of the

index parameter. To illustrate, consider the design of the bank of matched filters for the

rectangularly windowed frequency chips. As was pointed out in section 3.4 of Chapter 3,

an alternate implementation of this filter bank uses a recursive formulation of each of the

matched filter computations. In particular, the computation

N-1

X[k, n] = >i x[n + m]e-j nkm

m=O

can be completed using the recursive formulation

X[k, n] = e- N k(X[k, n - 1] + x[n + N - 1]- x[n -1])

The derivation of this recursive formulation requires the manipulation of the index values

involved in the sample-value description. This type of manipulation is not supported by

the current signal representations, since there is no explicit representation of the index

parameter: informally, the current representation supports consideration of x but not of

x[n].

8.3.2 Noise and sensitivity analyses

The analysis of the sensitivity characteristics of an algorithm is not supported in either

E-SPLICE (Myers, 1986) or ADE. The noise within the computation of system should

be modeled to allow general analyses of the sensitivity of different implementations.

In addition, as pointed out in the previous section, the reproducibility of the system

parameters should also be modeled. Both of these modeling operations are difficult,

182

_ �

since the type and level of noise with the system is often closely tied to the details of

hardware implementation.

8.3.3 Cost measures

Another area of research lies in improving the cost measures still further. As shown

by the example in Figure 7-7, some comparatively simple cost dependencies can not be

adequately described using the current representation. One alternate approach to cost

propagation is suggested by analogy with the work by Zissman (1986). Zissman (1986)

describes software tools which convert block diagrams into assembly code for a MIMD

array. To distinguish between synchronous and asynchronous operations, Zissman (1986)

includes explicit operations for blocking and unblocking his streams of data. A similar

approach could be taken to the propagation of costs. In particular, instead of altering

the input cost structures according to the propagation characteristics of the system, the

input cost structure could be carried forward unchanged along with a description of

the propagation characteristics of the intervening systems. Thus, the blocking imposed

by the system would be an explicit part of the propagated cost description. This would

allow overlapping cost dependencies, such as those shown in Figure 7-7-c, to be described

without any undue "cost inflation."

Both E-SPLICE (Myers, 1986) and ADE have avoided all consideration of the se-

lection and scheduling onto a processor architecture. While Prasanna (1988) and Fogg

(1988) both propose to investigate this area, a significant amount of effort will still need

to be devoted to hardware selection and utilization. The most immediate area which

must be addressed to integrate this selection process with the algorithm selection is the

improved characterization of the cost of an implementation. The current cost metric

implicitly assumes serial implementations of the algorithms: comparisons of operation

counts and memory references are only valid when the evaluation is completely sequen-

tial. A cost metric should be developed for parallel architectures, giving some measure of

the internal regularity of the algorithm and the computational requirements along what

183

__1_11_ 1 ·_ �1�11_ �--·11�111-·1 ̂�.X--C-·L--II��-�·IIII-··-�L-P--�XI�-·I....._._l--_ --- �--��··II�C- - ii

is likely to be the critical path.

8.3.4 Regularity constraints

As pointed out in Chapter 6, often there are a large number of computationally effi-

cient implementations which will not be found when regularity constraints are enforced:

if the equivalent subexpressions of two computationally efficient implementations can be

intermixed without reducing the computational efficiency, then the resulting structure

will be another computationally efficient implementation. One possible way of obtaining

these structures while still using regularity constraints to reduce the size of the search

space is to enforce the regularity constraints throughout the search for efficient implemen-

tations and to then interchange subexpressions between the discovered implementations.

In particular, when two or more efficient implementations involve equivalent subexpres-

sions, the subexpression seen in one implementation can be used to replace the equivalent

subexpression in the other implementation, without regard to any previously enforced

regularity constraint. This will have the effect of giving the outer product of the im-

plementations of the subexpressions but will not cause a corresponding expansion of the

search space, since the search process will have already terminated. This effect of consid-

ering the outer product of implementations without going through a full search is highly

reminiscent of the decoupled design strategy proposed by Fogg (1988).

- Another area which could certainly be developed further is the automatic detection of

regularity constraints. In ADE, the regularity constraints which can be placed on a signal-

processing algorithm must be explicitly pointed out: propagation of these constraints,

both within the algorithm and to modified expressions, is supported by the environment

but the initial description of the constraints must be done manually. One of the drawbacks

of this approach was illustrated with the modulated Hanning-window filter bank: the

author was forced to intervene in the search for constrained equivalent forms, to point

out a new correspondence constraint. If the environment searched for and uncovered

these internal correspondences itself, this artificial intervention would not be necessary.

184

_ _ ��__

Another area associated with regularity constraints which could be developed further

is the manipulation of nearly regular expressions. If a signal-processing expression is

defined without consideration of internal regularity, the expression will often be nearly

but not completely regular. An example of this "near regularity" is provided by the

conventional short-time Fourier-transform structure. The short-time Fourier-transform

structure shown in Figure 6-6 includes scaling operations which would normally be omit-

ted: in particular, in the conventional FFT structure, scaling operations are only included

on half of the butterfly outputs. To provide a completely regular structure, Figure 6-

6 inserts identity scaling operations to balance the twiddles. The automatic detection

of this type of near regularity and the automatic insertion of the appropriate identity

operations is another area is another potential area for research.

8.3.5 Automatic extension of the rule-base

Another area which should be considered is the automatic extension of the rule-base.

In the normal course of processing, the design environment will reach a multitude of

conclusions about the signals and systems which it has been asked to manipulate: for

example, the simplifications, non-zero supports and sample types of various signals will

be determined. These conclusions will be arrived at in the course of answering the user's

queries: this is their primary motivation. These conclusions can be further exploited to

increase the efficiency of subsequent processing. In particular, if the sequence of rules

used in arriving at a conclusion is recorded, this information can be exploited.

The backtrace could be used in generating a new rule which is the composition of

the traced rule sequence. The basic process of generating new transformation rules by

generalizing a successfully applied series of transformations was first explored by Fikes

and Nilsson in STRIPS (Fikes and Nilsson, 1971). STRIPS is a problem-solving program

for a robot operating in a world of rooms, doors and boxes. A later edition of the

basic STRIPS system permitted plans to be generalized and reused. By analogy with

STRIPS, the desired approach is to generalize the numbers, signals and systems included

185

_ _I _I _ I_ _ 1_��1�_·__II I� I l�yl� _1_·1__·_11_1__11___·-- �·11__1_1- -I1 -_1-_-_111_�--------·11111.

in the backtrace of rules. The advantage of generating these composite rules is the

possible savings in both time and memory: time may be saved since multiple steps would

be completed simultaneously and memory may be saved since intermediate signals and

systems will not be generated.

In addition, if an identity loop is uncovered in the course of generating equivalent

forms, this new identity transformation can be used to generate a new simplification

rule. The possibility of identity loops in searches for equivalent forms was first dis-

cussed in Chapter 6. An identity loop occurs when the search space for the equivalent

forms of a subexpression coincides with the search space for the original signal-processing

expression. Given this coincidence, the composite transformation for traveling from the

subexpression to the original expression is an identity transformation. The strategy which

detects and breaks these identity loops can reconstruct this identity transformation and

this information can then be formulated as a simplification rule.

A preliminary exploration of these two possibilities has been completed. However

the potential of this part of the research remains to be demonstrated. One difficulty is

that, for the rules generated from the backtrace of a previous conclusion, the information

which is being encoded in the composite rule is actually already available in the rules

given in the backtrace. The use of identity loops has the potential for uncovering new

information: a completely new simplification may be generated, since the information

which is being used here is actually the composite of equivalent-form transformations as

opposed to simplification transformations. This possibility has yet to be demonstrated.

A slightly different approach to the generation of simplification rules from backtraces

could be fruitful. Some signal-processing descriptions which, to the engineer, are obvi-

ously simpler than the original description can be uncovered using a series of equivalent-

form transformation rules: Figure 8-4 shows one such example. If some reasonable mea-

sure were developed for what represents a simplification, the generation of a simplification

rule from this series of equivalent-form transformations would be possible. An example

of such a measure would be the number and identity of the input signals and the compo-

186

x[n]

- - -- - - - - - -equ- vwe -jorm ---

equlvaleni-Jorm
transformations

h nl

Figure 8-4: The results from a series of equivalent-form transformations which could be
used as a simplification

A slightly different approach to the generation of simplification rules from backtraces may also
be fruitful. Some signal-processing descriptions, like the one shown here, are to the signal processor
obviously simpler than the original description. These "simpler" descriptions can often be obtained
using a series of transformation rules. If some reasonable measure were developed for what represents
a simplification, the generation of a simplification rule from this series of transformations would be
possible.

nent systems used within the signal-processing expression. If the input signals and the

component systems used in the result of a series of equivalent-form transformations is a

strict subset of those used in the starting object, then the transformation could be made

into a simplification. The example in Figure 8-4 meets this criteria: all the input sig-

nals and the component systems which are used in the final signal-processing expression

are present in equal or greater numbers in the original expression and there is at least

one input signal or component system used in the original expression which either is not

present or is present in fewer numbers in the final expression. Unfortunately, this measure

of simplicity needs modification, since it would simplify all polyphase implementations

of downsampled convolutions to the direct implementation of the downsampled convolu-

tion. To avoid this type of error, the measure of simplicity should take the computational

requirements of the alternate implementations into account as well as the number and

identities of the input signals and the component systems.

187

1 _ I 1I11 I�CI�IIIC�--III� C-�-·ll�. I-1III-_1I_. .·-II1LC^III�-UI I�C�I ..P-L---I-___�l---___--·-.-^.I___.-�--^- -·l-_l-^-^IQII-·-C-· ---------· llp�--------··---_

- _. .
C_ ____

--L-'J

188

Appendix A

The Algorithm Design Environment

(ADE): a user's guide

ADE is a descendant of the SPLICE and E-SPLICE environments. ADE inherits

its basic approach to signal definition and representation from SPLICE (Dove et al.,

1984; Myers, 1986). The influences of E-SPLICE (Myers, 1986) and to a lesser extent

PDA (Dove, 1986) are reflected in parts of the rule base. In particular, E-SPLICE used

backward-chaining rules in describing some of the properties of signals and supported

subpattern matching within the patterns of these rules. The approach which is used in

ADE to testing forward-chaining rules with multiple matching patterns which is intro-

duced by Dove (1986).

ADE also makes use of a subset of QM (Sacks, 1982) and of a limited number of

functions from MACSYMA (Mathlab Group, 1983). QM (Sacks, 1982) is the prod-

uct of research into qualitative mathematics. It represents, manipulates and describes

piecewise-continuous functions. A subset of QM is used to record and propagate con-

straints on symbolic numbers. ADE includes an extension to QM to support limited

reasoning about symbolic integers as well as the continuously variable numbers. ADE

also makes limited use of MACSYMA (Mathlab Group, 1983) to simplify and factor

polynomials.

189

�� ________. �_� __ _II�III---- - - IP1I ---̂-1--_I-I ·-------- Illll�---LI-�-l.�····-PIIIIII__-�IYIlY-1I -

ADE is written in Symbolics Common Lisp (Symbolics, 1986). This choice of lan-

guage provides both the flexibility of a LISP dialect and support for object-oriented

programming. In its purest forms, LISP is distinguished from other languages in its uni-

form representation of data and functions. The basic data structure in LISP is the list,

an ordered collection of elements. By representing functions using lists, LISP facilitates

the manipulation of functional forms as data.

To provide some measure of size, ADE contains 26 properties, for characterizing sig-

nals and systems; 129 classes of systems, each with an associated output signal class; and

an additional 43 classes of inherent signals. The signal and system definitions alone are

encoded in ten files containing about 7800 lines of code. The remaining sixty files contain

functions for defining classes; functions describing the control structure of the environ-

ment; and functions for the manipulation of symbolic numbers, intervals, polynomials,

symmetry descriptors and costs.

Within this appendix, the functions currently available in ADE for the external de-

scription and manipulation of signals and systems are described first. These functions

include the functions for creating and retrieving signals and systems; the functions for

retrieving signal and system properties; the functions for retrieving sample values from

signals; and the functions for creating, and manipulating intervals, symbolic numbers and

polynomials. The functions available in ADE for extending or modifying the environ-

ment are described in the second half of this appendix. These functions include functions

for describing new properties; functions for describing new signal or system classes; and

functions for describing new control strategies.

The format used in describing these functions is:

FUNCTION-NAME input-list

with [] indicating one or more optional arguments.

The format used to describe a system and its output signal is:

(SYSTEM-CLASS-NAME parameterl ... parameterN) input-list

190

I _ _ _ _

where evaluating (SYSTEM-CLASS-NAME parameter, ... parameterN) would return the sys-

tem and where requesting the OUTPUT-OF the system applied to the input-list would

return the output signal from the system.

A.1 Functions for Creating and Manipulating Sig-

nals and Systems

Specific signals and systems can be created and retrieved using:

SPECIFIC-MEMBER (class [parameter, ... parameterN])
The system or inherent signal generated by applying class to parameter, ... parameters.
class must one of the system or inherent signal classes which can generate specific
systems or signals. These classes are listed in Tables A.1.1 and A.1.2.

OUTPUT-OF (system [inputi ... inputN])
The output signal generated by applying system to inputl ... inputN.

Abstract signals and systems can be created and retrieved using:

A-MEMBER-OF (class [properties property, valuel ... propertyN valueN])
An abstract instance of class with property1 being valuel, ..., propertyN being
valueN. class must one of the system or inherent signal classes which can gen-
erate abstract systems or signals. These classes are listed in Tables A.3 and A.4.

A.1.1 Specific, inherent signal classes

The inherent signal classes currently provided in ADE which can generate specific

signals are listed in Table A.1. These classes can not be used to generate abstract

signals. Instead, the generalization must occur in their parameter values.

The specific, inherent signals in these classes can be created using SPECIFIC-MEMBER

as described above. These specific, inherent signals.can also be created and retrieved

using the following functions.

191

1 111111 11_1__ 11l1 _CI�_ _�I �1_ �__·_lll__l·_II__Y____111_1^-�- ..�-11_-�.1·--111 1111·11�1 -----·--�-----·--·1��

Table A.1: Signal classes in ADE containing specific, inherent signals

RATIONAL-ZT

CONSTANT-SEQUENCE

CONSTANT-SIGNAL

CONSTANT-ZT

CONSTANT-2D

2D-CONSTANT- 1ST-D

2D-CONSTANT-2ND-D

POWER-SEQUENCE

IMPULSE-SEQUENCE

IMPULSE-2D

GENERAL-EXPON ENTIAL-SEQUENCE

GEN ERAL-EXPON ENTIAL-SIGNAL

COMPLEX-EXPONENTIAL-SEQUENCE

COM PLEX-EXPON ENTIAL-SIGNAL

UNIT-STEP-SEQUENCE

CAUSAL-HANNING-WINDOW-SEQU ENCE

CAUSAL- RECTANGU LAR-WIN DOW-SEQUENCE

CAUSAL-RECTANGU LAR-WIN DOW-SIGNAL

CAUSAL-RECTANGU LAR-WIN DOW-2D

RECTANGULAR-WINDOW-SEQUENCE

RECTANGULAR-WIN DOW-SIGNAL

RECTANGU LAR-WIN DOW-2D

SINC-SEQUENCE

SINC-SIGNAL

COSINE-SEQUENCE

SINE-SEQUENCE

CAUSAL-HAMMING-WINDOW-SEQUENCE

FIR-SEQUENCE

IIR-SEQUENCE

CAUSAL-IIR-SEQUENCE

ANTICAUSAL-IIR-SEQU ENCE

STABLE-IIR-SEQUENCE

RATIONAL-ZT (numerator denominator roc)
N(z)

A rational z-transform signal, X(z) = D(z)' where numerator gives the polynomial

N(z) and denominator gives the polynomial D(z), with convergence on lzl in the
interval roc. numerator and denominator must be polynomials and roc must be an
interval starting at or above zero.

CONSTANT-SEQUENCE (value)

A constant sequence, x[n] = v, where value gives v. value must be a number.

CONSTANT-SIGNAL (value)
A constant discrete-time Fourier-transform signal, X(ew) = v, where value gives
v. value must be a number.

CONSTANT-ZT (value)

A constant z-transform signal, X(z) = v, where value gives v. value must be a
number.

CONSTANT-2D (value)

A constant two-dimensional sequence, x[nl,n 2] = .v, where value gives v. value
must be a number.

192

�

2D-CONSTANT-lST-D (d-sequence)

A two-dimensional sequence which is constant in the first dimension, X2D[nl, n2] =
X1D[n2], where d-sequence gives XlD[n]. d-sequence must be a discrete-time se-
quence.

2D-CONSTANT-2ND-D (d-sequence)
A two-dimensional sequence which is constant in the second dimension, X2D[nl, n2] =
XlD[nl], where d-sequence gives XlD[n]. d-sequence must be a discrete-time se-
quence.

POWER-SEQUENCE (order)
A power sequence, x[n] = n k , where order gives k. order must be an integer.

IMPULSE-SEQUENCE 0

0 otherwiseThe impulse sequence, x n] = { 0 otherwise

IMPULSE-2D 0

The two-dimensional impulse sequence, x[nl,n2] = { 0 otherwise

GENERAL-EXPONENTIAL-SEQUENCE (base)
A general exponential sequence, x[n] = b, where base gives b. base must be a
number.

GENERAL-EXPONENTIAL-SIGNAL (base)
A general exponential discrete-time Fourier-transform signal, X(e j w) = b, where
base gives b. base must be a number.

COMPLEX-EXPONENTIAL-SEQUENCE (frequency)
A complex-exponential sequence, x[n] = e °n, where frequency gives wo. frequency
must be a real-valued number.

COMPLEX-EXPONENTIAL-SIGNAL (frequency)
A complex-exponential sequence, X(ejw) = ejt °ow, where frequency gives to. fre-
quency must be a real-valued number.

UNIT-STEP-SEQUENCE 0

The unit Usp seuenc, lnl = 1 e n_>0

CAUSAL-RECTANGULAR-WINDOW-SEQUENCE (length)
1 0 <n<Lher e

A causal, rectangular-window sequence, r[n] = 0 otherwise where length

gives L. length must be an integer.

193

_II � _CI_ ·I-^l-�C1�l I ·--·1·�.-�_··---i�.-. �LIIYII�-�-·LI I1�I__-�--·I- �Y·IIYII�IIII·I�L_�

CAUSAL-RECTANGULAR-WINDOW-SIGNAL (length)
A causal, discrete-time Fourier-transform, rectangular-window signal,

R(e = { 0 < (w mod 2r) < Lse where length gives L. length must be a real

number.

CAUSAL-RECTANGULAR-WINDOW-2D (st-d-length [2nd-d-length])
A causal, two-dimensional, rectangular-window sequence,

01 < nl <L1
r[ni,n 2] = & 0 < n2 < L 2 , where lst-d-length gives L 1 and 2nd-d-length

0 otherwise
gives L 2. st-d-length and 2nd-d-length must be integers. 2nd-d-length defaults to
1st-d-length.

RECTANGU LAR-WINDOW-SEQU ENCE (length [center-p])
A rectangular-window sequence, r[n]. If the window is centered,

r-1 << L- 1

n]2 2otherwise . If the window is not centered,
otherwise

r[n] = 0thewise n < L length gives L. length must be an integer. If the window

is centered, length must be an odd integer. center-p defaults to centered.

RECTANGULAR-WINDOW-SIGNAL (length [center-p])
A discrete-time Fourier-transform, rectangular-window signal, R(ejw). If the win-

1 0 < (w mod 27r) <
dow is centered, R(eji) = 1 2r L < (w mod 27r) < 27r . If the window is not

0 otherwise
eal numb 0er. (center mod 2rentered. <

centered R(eaw = 0 otherwise length gives L. length must be a

real number. center-p defaults to centered.

RECTANGULAR-WINDOW-2D (lst-d-length [2nd-d-length] [lst-d-center-p] [2nd-d-center-
p])
A two-dimensional, rectangular-window sequence r[nl, n2]. If the window is cen-

_L-1 < n < L-1
2 -n L--,

tered, r[ni, n 2 l]-g & _ L < n 2 < L- . If the window is not centered,
0 otherwise

1 0< n < L1
r[ni, n 2] = & 0 < n 2 < L 2 .· st-d-length gives L 1 and 2nd-d-length gives L 2.

0 otherwise
1st-d-length and 2nd-d-length must be integers. If lst-d-center-p is centered, 1st-
d-length must be an odd integer. If 2nd-d-center-p is centered, 2nd-d-length must
be an odd integer. 2nd-d-length defaults to st-d-length; lst-d-center-p defaults to
centered; and 2nd-d-center-p defaults to st-d-center-p.

194

_ __ ____ _ _�

SINC-SEQUENCE (length [shift])

A sinc sequence, x[n]= sin(n + s)) where length gives L and shift gives s. length

and shift must be real-valued numbers. shift defaults to zero.

SINC-SIGNAL (length)

A sinc signal, sinc(e ') =L sin() where length gives L. length must be a real-

valued number.

COSINE-SEQUENCE (frequency)
A cosine sequence, x[n] = cos(won) where frequency gives wo. frequency must be a
real-valued number.

SINE-SEQUENCE (frequency)
A sine sequence, x[n] = sin(won) where frequency gives wo. frequency must be a
real-valued number.

CAUSAL-HAMMING-WINDOW-SEQUENCE (length)
A causal, Hamming-window sequence, h[n] = rL[n](.54 - .46cos(l n)), where
rL[n] is a causal, rectangular-window sequence and where length gives L. length
must be an integer.

CAUSAL-HANNING-WINDOW-SEQUENCE (length)
A causal, Hanning-window sequence, h[n] = rL[n](1 -cos(n)), where rL[n] is a
causal, rectangular-window sequence and where length gives L. length must be an
integer.

FIR-SEQUENCE ([coeffo ... CoeffN_l])
N-i

A FIR sequence, h[n] = > ci6[n - i] where coeff gives c. coeffo ... coeffN-1l must
i=O

be numbers.

IIR-SEQUENCE (zt-roc [coeffi ... coeffNJ)
1

An IIR sequence, y[n], such that the z-transform Y(z) = N with a region

1 + -ciz - i

i=l
of convergence covering zl in the interval zt-roc where coeff gives ci. zt-roc must
be an interval starting at or above zero and coeff ... coeffN must be numbers.

CAUSAL-IIR-SEQUENCE ([coeff[... coeffN])
A causal IIR sequence, y[n], such that y[n] = 6[n] - E ciy[n - i] and y[n] = 0 for
n < 0 where coeff gives c. coeff ... coeffN must be numbers.

195

_ I P � __ _� II �I_

ANTICAUSAL-IIR-SEQUENCE ([coeffi ... coeffN])

A anticausal IIR sequence, y[n], such that y[n] = 6[n] - ciy[n + i] and yIn] = 0
for n > 0 where coeff gives c. coeffi ... coeffN must be numbers.

STABLE-IIR-SEQUENCE ([coeff ... coeffN]))

An IIR sequence, y[n], such that the z transform Y(z) = N with a

1 + ciz - i

i=l

region of convergence covering Izl = 1 where coeff gives c. coeff ... coeffN must
be numbers.

A.1.2 Specific system classes

The system classes currently provided in ADE which can generate specific systems are

listed in Table A.2. These classes can not be used to generate abstract systems. Instead,

the generalization must occur in their parameter values.

The specific systems in these classes can be created using SPECIFIC-MEMBER as de-

scribed above. These specific systems can also be created and retrieved using the follow-

ing functions.

(REAL-FFT length) (sequence)
Create the L-point discrete Fourier-transform sequence,

00

Rejx[nn]e-j L 0< n<Ly[k] = oo R e { x [n]} e using a radix-2 FFT for a real-valued

O otherwise
sequence. length gives L and sequence gives x[n]. length must be a positive integer
of the form 2 and sequence must be a discrete-time sequence.

(COMPLEX-FFT length) (sequence)
Create the L-point discrete Fourier-transform sequence,

y[k] = { = 0 x[n]e o using a radix-2 FFT. length gives L and
O otherwise

sequence gives x[n]. length must be a positive integer of the form 2 and sequence
must be a discrete-time sequence.

(FFT length) (sequence)
Create the L-point discrete Fourier-transform sequence of x[n], where length gives

196

� �_ � I L s

Table A.2: System classes in ADE containing specific systems

REAL-FFT

COMPLEX-FFT

FFT

COMPLEX-DFT

DFT

DISCRETE-FOU RIER-TRANSFORM

REAL-IFFT

COMPLEX-IFFT

IFFT

COM PLEX-IDFT

IDFT

INVERSE- DISCRETE-FOU RIER-TRANSFORM

SEQUENCE-ALIAS-AN D-WIN DOW

SEQUENCE-CIRCU LAR-SHIFT

SEQUENCE-CIRCULAR-REVERSE

SEQUENCE-CIRCULAR-CONVOLVE

SEQU ENCE-CONVOLVE-OVERLAP-SAVE

BAN K-OF-SEQU ENCES

ROTATED-BAN K-OF-SEQU ENCES

SHORT-TIM E-WIN DOW-SEQU ENCE

SHORT-TIME-FT

MODU LATED-FILTER-BAN K

SEQUENCE-FROM-FUNCTION

MAP-OVER

FIR-FILTER

CAUSAL-IIR-FILTER

ANTICAUSAL-IIR-FILTER

CAUSAL-ALL-PASS-SECTION

IDENTITY-SYSTEM

SEQUENCE-ADD

SIGNAL-ADD

ZT-ADD

2D-ADD

ADD

SEQUENCE-MULTIPLY

SIGNAL-MULTIPLY

ZT-MULTIPLY

2D-MULTIPLY

MULTIPLY

SEQUENCE-CONVOLVE

SIGNAL-CONVOLVE

ZT-CONVOLVE

2D-CONVOLVE

CONVOLVE

2D-CONVOLVE-lST-D

2D-CONVOLVE-2ND-D

SEQUENCE-SHIFT

SIGNAL-SHIFT

2D-SHIFT

SHIFT

SEQUENCE-SCALE

SIGNAL-SCALE

ZT-SCALE

2D-SCALE

SCALE

2D-SCALE- 1ST-D

2D-SCALE-2ND-D

SEQUENCE-RECIPROCAL

SIGNAL-RECIPROCAL

ZT-RECIPROCAL

2D-RECIPROCAL

RECIPROCAL

SEQUENCE-DIVIDE

SIGNAL-DIVIDE

ZT-DIVIDE

2D-DIVIDE

DIVIDE

ZT-CONJUGATE-INPUT

197

__

I____I �ll_-----l·X--�ll ---- �-1_I·_-II^ 11 �1I^_I.I^^II.. 1 11111 -111 11111�---�--1-�--1-·II�

Table A.2 continued

SEQU ENCE-SUBTRACT

SIGNAL-SUBTRACT

ZT-SU BTRACT

2D-SUBTRACT

SUBTRACT

SEQUENCE-REAL-PART

SIGNAL-REAL-PART

ZT-REAL-PART

2D-REAL-PART

REAL-PART

SEQUENCE-IMAG-PART

SIGNAL-IMAG-PART

ZT-IMAG-PART

2D-IMAG-PART

IMAG-PART

SEQUENCE-MAGNITUDE

SIGNAL-MAGNITUDE

ZT-MAGNITUDE

2D-MAGNITUDE

MAGNITUDE

SEQUENCE-PHASE

SIGNAL-PHASE

ZT-PHASE

2D-PHASE

INPUT-PHASE

SEQU ENCE-ABSOLUTE-VALU E

SIGNAL-ABSOLUTE-VALUE

ZT-ABSOLUTE-VALUE

2D-WINDOW

SEQUENCE-CONJUGATE

SIGNAL-CONJ UGATE

ZT-CONJ UGATE

2D-CONJUGATE

COMPLEX-CONJUGATE

2D-ABSOLUTE-VALUE

ABSOLUTE-VALUE

UPSAMPLE

INTERLEAVE

DOWNSAMPLE

SIGNAL-ALIAS-IN-2PI

SEQUENCE-SCALE-INDEX

SIGNAL-SCALE-IN DEX

ZT-SCALE-INDEX

SCALE-INDEX

SEQUENCE-REVERSE

SIGNAL-REVERSE

FOU RIER-TRANSFORM-SYSTEM

FOU RIER-TRANSFORM

INVERSE-FOU RIER-TRANSFORM-SYSTEM

INVERSE-FOURIER-TRANSFORM

Z-TRANSFORM-SYSTEM

Z-TRANSFORM

INVERSE-Z-TRANSFORM -SYSTEM

INVERSE-Z-TRANSFORM

INVERSE-TRANSFORM

ZT-CONTOUR

SEQUENCE-WINDOW

SIGNAL-WINDOW

198

L and sequence gives x[n]. length must be a positive integer of the form 2 and
sequence must be a discrete-time sequence. This uses REAL-FFT or COMPLEX-FFT,

as appropriate.

(COMPLEX-DFT length) (sequence)
Create the L-point discrete Fourier-transform sequence,

00

Z[n]-j O<n <L
y[k] = , where length gives L and sequence gives

0 otherwise
x[n]. length must be a positive integer and sequence must be a discrete-time se-
quence.

(DFT length) (sequence)
Create the L-point discrete Fourier-transform sequence of x[n], where length gives
L and sequence gives x[n]. length must be a positive integer and sequence must be
a discrete-time sequence. This uses COMPLEX-DFT and is included as a parallel to
FFT.

(DISCRETE-FOURIER-TRANSFORM length) (sequence)
Create the L-point discrete Fourier-transform sequence of x[n], where length gives
L and sequence gives x[n]. length must be a positive integer and sequence must be
a discrete-time sequence. This uses FFT or DFT, as appropriate.

(REAL-IFFT length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence,{l 7 LZ ReXl] e34 n} O<n<Ly[k] = e{X[n]eusing a radix-2 IFFT for a real-

0 otherwise
valued output sequence. length gives L and sequence gives X[n]. length must be a
positive integer of the form 2" and sequence must be a discrete-time sequence.

(COMPLEX-IFFT length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence,

y[k] = E X[n]e 0 n < L using a radix-2 FFT. length gives L and
0 otherwise

sequence gives X[n]. length must be a positive integer of the form 2 and sequence
must be a discrete-time sequence.

(IFFT length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence of x [n] using a radix-
2 FFT. length gives L and sequence gives X[n]. length must be a positive integer
of the form 2 and sequence must be a discrete-time sequence. This uses REAL-IFFT

or COMPLEX-IFFT, as appropriate.

199

_ _ I I_ I �_ _Ilr^__l__ _I_ 11_ �-_--··11_111111 �.�-1-�--. �I*i-�-^) 1_111111_-1I.._-1_ 1_ -··_ .--II�LI-·-�01111- -- I -1·I

(COMPLEX-IDFT length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence

y[k] = L -0 _ n < L where length gives L and sequence gives
0 otherwise

X[n]. length must be a positive integer and sequence must be a discrete-time
sequence.

(IDFT length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence of x[k], where length
gives L and sequence gives X[n]. length must be a positive integer and sequence
must be a discrete-time sequence. This uses COMPLEX-IDFT and is included as a
parallel to IFFT.

(INVERSE-DISCRETE-FOURIER-TRANSFORM length) (sequence)
Create the L-point inverse discrete Fourier-transform sequence of x[k], where length
gives L and sequence gives X[n]. length must be a positive integer and sequence
must be a discrete-time sequence. This uses IFFT or IDFT, as appropriate.

(SEQUENCE-ALIAS-AND-WINDOW period) (sequence)
00

Create the sequence y[n] = rp[n] x[n + Pk] with rp[n] as the P-point causal,
k=-oo

rectangular-window sequence, where period gives P and sequence gives x[n]. period
must be a positive integer and sequence must be a discrete-time sequence.

(SEQUENCE-CIRCULAR-SHIFT period shift) (sequence)
Create the sequence y[n] = rp[n]x[((n + s) mod P)] with rp[n] as the P-point
causal, rectangular-window sequence, where period gives P, shift gives s and se-
quence gives x[n]. period must be a positive integer, shift must be an integer and
sequence must be a discrete-time sequence.

(SEQUENCE-CIRCULAR-REVERSE period) (sequence)
Create the sequence y[n] = rp[n]x[((-n) mod P)] with rp[n] as the P-point causal,
rectangular-window sequence, where period gives P and sequence gives x[n]. period
must be a positive integer and sequence must be a discrete-time sequence.

(SEQUENCE-CIRCULAR-CONVOLVE period) ([seq ... seqN])
P

Create the sequence y[n] = rp[n](x1 [n] ()... (XN[n] with u[n] (v[n] = A u[k]v[((n-
k=o

k) mod P)], where period gives P and seq gives xi[n]. period must be a positive
integer and seq ... seqN must be discrete-time sequences.

(SEQUENCE-OVERLAP-SAVE-CONVOLVE impulse-response) (sequence)
Create the sequence y[n] = h[n] *x[n] using the overlap-save method, where impulse-

200

response gives h[n] and sequence gives x[n]. impulse-response and sequence must
be discrete-time sequences.

BANK-OF-SEQUENCES ([seqo ... seqN_l])

Create the two-dimensional sequence y[nj, n2] ={ 2[1] 0<i<N where seq{ otherwise wheeseq
gives xi[n]. seqo ... seqN-1 must be discrete-time sequences.

ROTATED-BANK-OF-SEQUENCES ([seqi ... seqN])
5 x*4[n2] 0< n <N Create the two-dimensional sequence y[nl,n 2] = 1 0 otherwise where

seqi gives xi[n]. seqo ... seqNl must be discrete-time sequences.

(SHORT-TIME-WINDOW-SEQUENCE window [downsampling-factorj) (sequence)
Create the two-dimensional sequence y[n, n 2] = w[n2]x[Dnl+n2] where downsampling-
factor gives D, window gives w[n] and sequence gives x[n]. downsampling-factor
must be a positive integer and window and sequence must be discrete-time se-
quences. downsampling-factor defaults to one.

(SHORT-TIME-FT window [ft-size] [downsampling-factor) (sequence)

Create the short-time Fourier transform y[nl,n 2] = E w[n]x[Dnl + n]e- jiNk2
n=--oo

where ft-size gives N, downsampling-factor gives D, window gives w[n] and sequence
gives x[n]. ft-size and downsampling-factor must be positive integers and window
and sequence must be discrete-time sequences. ft-size defaults to (INTERVAL-LENGTH

(NON-ZERO-SUPPORT window)). downsampling-factor defaults to one.

(MODULATED-FILTER-BANK impulse-response N [downsampling-factor) (sequence)
Create the two-dimensional sequence y[n, k] = ytD[Dn, k] with ytD[n, k] = (h[n]ej kn)*
x[n], where downsampling-factor gives D, impulse-response gives h[n] and sequence
gives x[n]. N and downsampling-factor must be positive integers and impulse-
response and sequence must be discrete-time sequences. downsampling-factor de-
faults to one.

SEQUENCE-FROM-FUNCTION (function [argl ... argN])
Create the sequence y[n] = f(n, argl,..., argN) where function gives f(). function
must a function.

MAP-OVER (system index start end pattern)
Create a signal with a correspondence constraint. The signal is generated by ap-
plying system to the inputs generated by evaluating pattern with index bound to
values from start below end (by increments of one). index is not evaluated and
must be a symbol. start and end must be real-valued numbers.

201

~~~~~~~~~~~ . --4--�-_-1-^1-�- _-PI--l IC -

(FIR-FILTER [coeffo ... coeffN-lh (sequence)
Create the sequence y[n] = h[n] * x[n] where (FIR-SEQUENCE coeffo ... coeffNv1) gives
h[n] and sequence gives x[n]. sequence must be a discrete-time sequence and coeffo
... coeffNl must be numbers.

(CAUSAL-IIR-FILTER [coeffi ... coeffNJ) (sequence)
N

Create the sequence y[n] = x[n] - ciy[n - i] with the recursion running causally,
i=1

where coeff gives ci and sequence gives x[n]. sequence must be a discrete-time
sequence and coeffl ... coeffN must be numbers.

(ANTICAUSAL-IIR-FILTER [coeff ... coevffN (sequence)
N

Create the sequence y[n] = x[n]- ciy[n - i] with the recursion running causally,
i=l

where coefi gives ci and sequence gives x[n]. sequence must be a discrete-time
sequence and coeffi ... coeffN must be numbers.

(CAUSAL-ALL-PASS-SECTION polel ... poleN]) (sequence)

Create the sequence y[n], such that Y(z) = X(z)7 'N= with a region of
li=l 1 - p z - 1

convergence on Iz > max{Ip ,..., IpNI}, where polei gives pi and sequence gives x[n].
sequence must be a discrete-time sequence and polel ... poleN must be numbers.

IDENTITY-SYSTEM (input)
Pass input unchanged.

SEQUENCE-ADD ([seq1 ... seqN])
N

Create the sequence y[n] = xi[n], where seqi gives xi[n]. seql ... seqN must be
i=l

discrete-time sequences.

SIGNAL-ADD ([ft-sigl ... ft-sigN])
N

Create the discrete-time Fourier-transform signal Y(e j) =- Xi(eJw), where ft-sigi
i=l

gives Xi(eJw). ft-sigl ... ft-sigN must be discrete-time Fourier-transform signals.

ZT-ADD ([Zt-Sigl ... Zt-SigN])
N

Create the z-transform signal Y(z) = E Xi(z), where zt-sigi gives Xi(z). zt-sigl ...
i=l

zt-sigN must be z-transform signals.

2D-ADD ([2d-seql ... 2d-seqN])
N

Create the two-dimensional sequence y[nl, n2] = xi[nl, n2], where 2d-seqi gives
i=l

xi[ni, n2]. 2d-seq ... 2d-seqN must be two-dimensional sequences.

202

_I� _ _ �_

ADD ([inputl ... inputN])

Create the sum of the inputs. This uses SEQUENCE-ADD, SIGNAL-ADD, ZT-ADD or
2D-ADD, as appropriate.

SEQUENCE-SUBTRACT (sequence [seq1 ... seqN])
N

Create the sequence y[n] = x[n] - x,[n], where sequence gives x[n] and seqi gives
i=l

xi[n]. sequence and seq ... seqN must be discrete-time sequences.

SIGNAL-SUBTRACT (ft-signal [ft-sigl ... ft-sigN])
N

Create the discrete-time Fourier-transform signal Y(edw) = X(e) - Xi(ejw),
i=l

where ft-signal gives X(ejW) and ft-sigi gives Xi(eJi). ft-signal and ft-sigl ... ft-sigN
must be discrete-time Fourier-transform signals.

ZT-SUBTRACT (zt-signal [zt-sig1 ... zt-sigN])
N

Create the z-transform signal Y(z) = X(z) - Xi(z), where zt-signal gives X(z)
i=l

and zt-sigi gives Xi(z). zt-signal and zt-sig ... zt-sigN must be z-transform signals.

2D-SUBTRACT (2d-sequence [2d-seq ... 2d-seqN])
N

Create the two-dimensional sequence y[n1, n2] = x[ni, n 2] - xi[n1 , n2], where
i=l

2d-sequence gives x[nl, n2] and 2d-seqi gives xi[nl, n2]. 2d-sequence and 2d-seq ...
2d-seqN must be two-dimensional sequences.

SUBTRACT (input [inputl ... inputN])

Create the difference of the inputs. This uses SEQUENCE-SUBTRACT, SIGNAL-SUBTRACT,

ZT-SUBTRACT or 2D-SUBTRACT, as appropriate.

SEQUENCE-MULTIPLY ([seq1 ... seqN])
N

Create the sequence y[n] = rl xi[n], where seqi gives xi [n]. seql ... seqN must be
i=l

discrete-time sequences.

SIGNAL-MULTIPLY ([ft-sigl ... ft-sigN])
N

Create the discrete-time Fourier-transform signal Y(ei3) = I Xi(ew), where ft-sigi
i=1

gives Xi(eJ). ft-sigl ... ft-sigN must be discrete-time Fourier-transform signals.

ZT-MULTIPLY ([Zt-Sigl ... Zt-SigN])
N

Create the z-transform signal Y(z) = i X,(z), where zt-sigi gives Xi(z). zt-sig, ...
i=l

zt-sigN must be z-transform signals.

203

______1__1111_�1__1 1 �__ _�^1 ··_11�·1_·

2D-MULTIPLY ([2d-seql ... 2d-seqN])
N

Create the two-dimensional sequence y[nl, n2] = I xi[nl, n2], where 2d-seqi gives
i=l

xi[nl, n2]. 2d-seql ... 2d-seqN must be two-dimensional sequences.

MULTIPLY ([inputl ... inpUtN])

Create the product of the inputs. This uses SEQUENCE-MULTIPLY, SIGNAL-MULTIPLY,

ZT-MULTIPLY or 2D-MULTIPLY, as appropriate.

(SEQUENCE-WINDOW interval) (sequence)

Create the sequence y[n] =n intervalCreate the sequence y[n] =] { Et inotherwvse where sequence gives xin]. se-
quence must be a discrete-time sequence and interval must be an interval.

(SIGNAL-WINDOW interval) (ft-signal)

Create the discrete-time Fourier-transform signal Y(e jw) = X(e) w E interval

where ft-signal gives X(eJw). ft-signal must be a discrete-time Fourier-transform
signal and interval must be an interval.

(2D-WINDOW lst-d-ivl [2nd-d-ivlJ) (2d-sequence)

x[nl,n 2] n E lst-d-ivl
Create the two-dimensional sequence yn l ,n 2] = & n2 E 2nd-d-ivl,

0 otherwise
where 2d-sequence gives x[nl, n2]. 2d-sequence must be a two-dimensional sequence
and lst-d-ivl and 2nd-d-ivl must be intervals. 2nd-d-ivl defaults to [-oo co].

(WINDOW-INPUT interval [2nd-d-ivlJ) (input)
Create the windowed version of the input. This uses SEQUENCE-WINDOW, SIGNAL-

WINDOW or 2D-WINDOW, as appropriate.

SEQUENCE-CONVOLVE ([seq1 ... seqN])

Create the sequence y[n] = x1[n] * ... * XN[n], where seqi gives xi[n]. seql ... seqN
must be discrete-time sequences.

SIGNAL-CONVOLVE ([ft-sigl ... ft-sigN])

Create the discrete-time Fourier-transform signal Y(e ji) = XI(ejw) * ... * XN(ej),
where ft-sigi gives Xi(eji). ft-sigl ... ft-sigN must be discrete-time Fourier-transform
signals.

ZT-CONVOLVE ([zt-sigl ... t-sigN])

Create the z-transform signal Y(z) = Xl(z) * ... * XN(Z), where zt-sigi gives Xi(z).
zt-sigl ... zt-sigN must be z-transform signals.

204

_ _

2D-CONVOLVE ([2d-seql ... 2d-seqN])

Create the two-dimensional sequence y[nl,n 2] = xl[nl,n2] *... * XN[fl,n2], where
2d-seqi gives xi[nl, n2]. 2d-seql ... 2d-seqN must be two-dimensional sequences.

CONVOLVE ([inputl ... inputN])

Create the convolution of the inputs. This uses SEQUENCE-CONVOLVE, SIGNAL-

CONVOLVE, ZT-CONVOLVE or 2D-CONVOLVE, as appropriate.

(SEQUENCE-SHIFT shift) (sequence)
Create the sequence y[n] = x[n + s], where sequence gives x[n] and shift gives s.
sequence must be a discrete-time sequence and shift must be an integer.

(SIGNAL-SHIFT shift) (ft-signal)
Create the discrete-time Fourier-transform signal Y(e ji) = X(e(w+)), where ft-
signal gives X(eij) and shift gives s. ft-signal must be a discrete-time Fourier-
transform signal and shift must be a real number.

(2D-SHIFT shifti [shift2J) (2d-sequence)
Create the two-dimensional sequence y[nI,n 2] = x[nl + sl,n 2 + s2], where 2d-
sequence gives x[nl, n2], shift1 gives sl and shift2 gives s2. 2d-sequence must be a
two-dimensional sequence and shift1 and shift2 must be integers. shift2 defaults to
zero.

(SHIFT shift [shift2J (input)
Create a shifted version of the input. This uses SEQUENCE-SHIFT, SIGNAL-SHIFT or
2D-SHIFT, as appropriate.

(SEQUENCE-SCALE scale) (sequence)
Create the sequence y[n] = ax[n], where sequence gives x[n] and scale gives a.
sequence must be a discrete-time sequence and scale must be a number.

(SIGNAL-SCALE scale) (ft-signal)
Create the discrete-time Fourier-transform signal Y(ej") = aX(ejw), where ft-signal
gives X(e jw) and scale gives a. ft-signal must be a discrete-time Fourier-transform
signal and scale must be a number.

(ZT-SCALE scale) (zt-signal)
Create the z-transform signal Y(z) = aX(z), where zt-signal gives X(z) and scale
gives a. zt-signal must be a z-transform signal and scale must be a number.

(2D-SCALE scale) (2d-sequence)
Create the two-dimensional sequence y[nl, n2] = axi[n, n2], where 2d-sequence gives
x[nl, n2] and scale gives a. 2d-sequence must be a two-dimensional sequence and
scale must be a number.

205

_�1_____1_ �_^__111__11__1_�1_1Ily^l�-----�l·l _. -· -- ---I_ I

(SCALE scale) (input)
Create a scaled version of the input. This uses SEQUENCE-SCALE, SIGNAL-SCALE,

ZT-SCALE or 2D-SCALE, as appropriate.

(2D-SCALE-1ST-D d-sequence) (2d-sequence)
Create the two-dimensional sequence y[nl, n2] = a[n2]x[n, n 2], where 2d-sequence
gives x[nl, n2] and d-sequence gives a[n]. 2d-sequence must be a two-dimensional
sequence and d-sequence must be a discrete-time sequence.

(2D-SCALE-2ND-D d-sequence) (2d-sequence)
Create the two-dimensional sequence y[ni, n2] = a[nl]x[ni, n2], where 2d-sequence
gives x[ni, n2] and d-sequence gives a[n]. 2d-sequence must be a two-dimensional
sequence and d-sequence must be a discrete-time sequence.

SEQUENCE-RECIPROCAL (sequence)

Create the sequence y[n] = 1 where sequence gives x[n]. sequence must be a

discrete-time sequence.

SIGNAL-RECIPROCAL (ft-signal)

Create the discrete-time Fourier-transform signal Y(e j) = X(where ft-signal

gives X(ej). ft-signal must be a discrete-time Fourier-transform signal.

ZT-RECIPROCAL (zt-signal)
1

Create the z-transform signal Y(z) = X(z)' where zt-signal gives X(z). zt-signal

must be a z-transform signal.

2D-RECIPROCAL (2d-sequence)

Create the two-dimensional sequence y[nl, n2] = , where 2d-sequence gives
x[n 1, n2]

x[nl, n 2]. 2d-sequence must be a two-dimensional sequence.

RECIPROCAL (input)
Create a reciprocal of the input. This uses SEQUENCE-RECIPROCAL, SIGNAL-RECIPROCAL,

ZT-RECIPROCAL or 2D-RECIPROCAL, as appropriate.

SEQUENCE-DIVIDE (sequence [seql seqN])

Create the sequence y[n] x[n] where sequence gives x[n] and seqi gives
Hi x[n]'

xi[n]. sequence and seql ... seqN must be discrete-time sequences.

SIGNAL-DIVIDE (ft-signal [ft-sigi ... ft-sigN])

Create the discrete-time Fourier-transform signal Y(e jw) r (ewhere
Inf X.(ejw)'

206

_ __�I _�___

ft-signal gives X(e jw) and ft-sigi gives Xi(eJw). ft-signal and ft-sigl ... ft-sigN must
be discrete-time Fourier-transform signals.

ZT-DIVIDE (zt-signal [zt-sigl ... zt-sigN])

Create the z-transform signal Y(z) = N where zt-signal gives X(z) and

zt-sigi gives Xi(z). zt-signal and zt-sig1 ... zt-sigN must be z-transform signals.

2D-DIVIDE (2d-sequence [2d-seql ... 2d-seqN])

Create the two-dimensional sequence y[nl, n2] = r- . n2] where 2d-sequence

gives x[nl, n2] and 2d-seqi gives xi[ni, n 2]. 2d-sequence and 2d-seql ... 2d-seqN must
be two-dimensional sequences.

DIVIDE (input [dividel ... divideN])
Create the difference of the inputs. This uses SEQUENCE-DIVIDE, SIGNAL-DIVIDE,

ZT-DIVIDE or 2D-DIVIDE, as appropriate.

SEQUENCE-CONJUGATE (sequence)
Create the sequence y[n] = x*[n], where sequence gives x[n]. sequence must be a
discrete-time sequence.

SIGNAL-CONJUGATE (ft-signal)
Create the discrete-time Fourier-transform signal Y(ej") = X*(eJw), where ft-signal
gives X(ejw). ft-signal must be a discrete-time Fourier-transform signal.

ZT-CONJUGATE (zt-signal)
Create the z-transform signal Y(z) = X*(z), where zt-signal gives X(z). zt-signal
must be a z-transform signal.

2D-CONJUGATE (2d-sequence)
Create the two-dimensional sequence y[nl, n2] = x*[nl, n2], where 2d-sequence gives
x[nl, n2]. 2d-sequence must be a two-dimensional sequence.

COMPLEX-CONJUGATE (input)
Create conjugate of the input. This uses SEQUENCE-CONJUGATE, SIGNAL-CONJUGATE,

ZT-CONJUGATE or 2D-CONJUGATE, as appropriate.

ZT-CONJUGATE-INPUT (zt-signal)
Create the z-transform signal Y(z) = X(z*), where zt-signal gives X(z). zt-signal
must be a z-transform signal.

SEQUENCE-REAL-PART (sequence)
Create the sequence y[n] = Re{x[n]}, where sequence gives x[n]. sequence must be
a discrete-time sequence.

207

-_~ I l^ __ _ __

SIGNAL-REAL-PART (ft-signal)
Create the discrete-time Fourier-transform signal Y(e jw) = Re{X(ejw)}, where ft-
signal gives X(ej"). ft-signal must be a discrete-time Fourier-transform signal.

ZT-REAL-PART (zt-signal)
Create the z-transform signal Y(z) = Re{X(z)}, where zt-signal gives X(z). zt-
signal must be a z-transform signal.

2D-REAL-PART (2d-sequence)
Create the two-dimensional sequence y[ni, n2] = Re{x[ni, n 2]}, where 2d-sequence
gives x[nl, n2]. 2d-sequence must be a two-dimensional sequence.

REAL-PART (input)
Take the real part of the input. This uses SEQUENCE-REAL-PART, SIGNAL-REAL-PART,

ZT-REAL-PART or 2D-REAL-PART, as appropriate.

SEQUENCE-IMAG-PART (sequence)
Create the sequence y[n] = Im{x[n]), where sequence gives x[n]. sequence must be
a discrete-time sequence.

SIGNAL-IMAG-PART (ft-signal)

Create the discrete-time Fourier-transform signal Y(ei ') = Im{X(ew)}, where
ft-signal gives X(eJw). ft-signal must be a discrete-time Fourier-transform signal.

ZT-IMAG-PART (zt-signal)
Create the z-transform signal Y(z) = Im{X(z)}, where zt-signal gives X(z). zt-
signal must be a z-transform signal.

2D-IMAG-PART (2d-sequence)
Create the two-dimensional sequence y[ni, n 2] = Im{x[nl, n2], where 2d-sequence
gives x[nl, n2]. 2d-sequence must be a two-dimensional sequence.

IMAG-PART (input)
Take the imaginary part of the input. This uses SEQUENCE-IMAG-PART, SIGNAL-

IMAG-PART, ZT-IMAG-PART or 2D-IMAG-PART, as appropriate.

SEQUENCE-MAGNITUDE (sequence)
Create the sequence y[n] = IIx[n]lj, where sequence gives x[n]. sequence must be a
discrete-time sequence.

SIGNAL-MAGNITUDE (ft-signal)
Create the discrete-time Fourier-transform signal Y(ejw) = IlX(eiw)l[, where ft-
signal gives X(eiw). ft-signal must be a discrete-time Fourier-transform signal.

ZT-MAGNITUDE (zt-signal)
Create the z-transform signal Y(z) = IIX(z)11, where zt-signal gives X(z). zt-signal
must be a z-transform signal.

208

__ �

2D-MAGNITUDE (2d-sequence)
Create the two-dimensional sequence y[nl,n2] = IIx[nl,n 2]11, where 2d-sequence
gives x[nl, n2]. 2d-sequence must be a two-dimensional sequence.

MAGNITUDE (input)
Take the magnitude of the input. This uses SEQUENCE-MAGNITUDE, SIGNAL-MAGNITUDE,

ZT-MAGNITUDE or 2D-MAGNITUDE, as appropriate.

SEQUENCE-PHASE (sequence)
Create the sequence y[n] = L{x[n]}, where sequence gives x[n]. sequence must be a
discrete-time sequence.

SIGNAL-PHASE (ft-signal)
Create the discrete-time Fourier-transform signal Y(e jw) = L(X(ej")}, where ft-
signal gives X(ejw). ft-signal must be a discrete-time Fourier-transform signal.

ZT-PHASE (zt-signal)
Create the z-transform signal Y(z) = L(X(z)}, where zt-signal gives X(z). zt-signal
must be a z-transform signal.

2D-PHASE (2d-sequence)
Create the two-dimensional sequence y[nl,n 2] = L{x[n, n2]}, where 2d-sequence
gives x[nl, n2]. 2d-sequence must be a two-dimensional sequence.

INPUT-PHASE (input)
Take the phase of the input. This uses SEQUENCE-PHASE, SIGNAL-PHASE, ZT-PHASE

or 2D-PHASE, as appropriate.

SEQUENCE-ABSOLUTE-VALUE (sequence)
Create the sequence y[n] = Ix[n]l, where sequence gives x[n]. sequence must be a
real-valued discrete-time sequence.

SIGNAL-ABSOLUTE-VALUE (ft-signal)
Create the discrete-time Fourier-transform signal Y(e j") = IX(ejw)l, where ft-signal
gives X(eJw). ft-signal must be a real-valued discrete-time Fourier-transform signal.

ZT-ABSOLUTE-VALUE (zt-signal)
Create the z-transform signal Y(z) = IX(z)l, where zt-signal gives X(z). zt-signal
must be a real-valued z-transform signal.

2D-ABSOLUTE-VALUE (2d-sequence)
Create the two-dimensional sequence y[nl, n 2] = [ni, n2] , where 2d-sequence gives
x[nl, n2]. 2d-sequence must be a real-valued two-dimensional sequence.

ABSOLUTE-VALUE (input)
Take the absolute value of the input. This uses SEQUENCE-ABSOLUTE-VALUE, SIGNAL-

ABSOLUTE-VALUE, ZT-ABSOLUTE-VALUE or 2D-ABSOLUTE-VALUE, as appropriate.

209

�_1�__11_1_--_-1 --~-- I -

(UPSAMPLE L) (sequence)

Create the sequence y~n] x[n/L] n =LCreate the sequence y[n] = O otherwise ' where sequence gives x[n]. se-
quence must be a discrete-time sequence and L must be a positive integer.

INTERLEAVE (seqo [seql ... seqN-l])

Create the sequence y[n] = X(mod N)[[LJ], where seqi gives xi[n]. seqo ... seqNl
must be discrete-time sequences.

(DOWNSAMPLE M) (sequence)
Create the sequence y[n] = x[Mn], where sequence gives x[n]. sequence must be a
discrete-time sequence and M must be a positive integer.

(SIGNAL-ALIAS-IN-2PI M) (ft-signal)
M-1

Create the discrete-time Fourier-transform signal Y(eiw) = E X(e(w+uk)), Where
k=O

ft-signal gives X(ejw). ft-signal must be a discrete-time Fourier-transform signal and
M must be a positive integer.

(SEQUENCE-SCALE-INDEX scale) (sequence)
Create the sequence y[n] = x[sn], where sequence gives x[n] and scale gives s.
sequence must be a discrete-time sequence and scale must be ±1.

(SIGNAL-SCALE-INDEX scale) (ft-signal)
Create the discrete-time Fourier-transform signal Y(e Ji) = X(eJsw), where ft-signal
gives X(e jw) and scale gives s. ft-signal must be a discrete-time Fourier-transform
signal and scale must be a real number.

(ZT-SCALE-INDEX scale) (zt-signal)
Create the z-transform signal Y(z) = X(sz), where zt-signal gives X(z) and scale
gives s. zt-signal must be a z-transform signal and scale must be a number.

(SCALE-INDEX scale) (input)
Create the version of the input with a scaled index. This uses SEQUENCE-SCALE-
INDEX, SIGNAL-SCALE-INDEX, ZT-SCALE-INDEX or 2D-SCALE-INDEX, as appropriate.

SEQUENCE-REVERSE (sequence)
Create the sequence y[n] = x[-n], where sequence gives x[n]. sequence must be a
discrete-time sequence.

SIGNAL-REVERSE (ft-signal)

Create the discrete-time Fourier-transform signal Y(ejw) = IIX(e-jw)ll, where ft-
signal gives X(eJw). ft-signal must be a discrete-time Fourier-transform signal.

210

I _ _� _

FOURIER-TRANSFORM-SYSTEM (sequence)
Create the discrete-time Fourier-transform signal Y(ejw) = F{x[n]} where sequence
gives x[n]. sequence must be a discrete-time sequence.

FOURIER-TRANSFORM (sequence)
Create the discrete-time Fourier-transform signal Y(e jw) = F{x[n]} where sequence
gives x[n]. This function uses the value of the property FT. If no closed-form
expression can be found, (FOURIER-TRANSFORM-SYSTEM sequence) is used. If the
Fourier transform is known to be non-existent, #<NONE> is used. sequence must
be a discrete-time sequence.

INVERSE-FOURIER-TRANSFORM-SYSTEM (ft-signal)
Create the discrete-time sequence y[k] = F- 1{X(eji)} where ft-signal gives X(ejw).
ft-signal must be a discrete-time Fourier-transform signal.

INVERSE-FOURIER-TRANSFORM (ft-signal)
Create the discrete-time sequence y[n] = J.-' {X(ejw)} where ft-signal gives X(eJw).
This function uses the value of the property IFT. If no closed-form expression can
be found, (INVERSE-FOURIER-TRANSFORM-SYSTEM ft-signal) is used. ft-signal must
be a discrete-time Fourier-transform signal.

Z-TRANSFORM-SYSTEM (sequence)
Create the z-transform signal Y(z) = Z{x[n]} where sequence gives x[n]. sequence
must be a discrete-time sequence.

Z-TRANSFORM (sequence)
Create the z-transform signal Y(z) = Z{x[n]} where sequence gives x[n]. This
function uses the value of the property ZT. If no closed-form expression can be
found, (Z-TRANSFORM-SYSTEM sequence) is used. If the z transform is known to be
non-existent, #<NONE> is used. sequence must be a discrete-time sequence.

INVERSE-Z-TRANSFORM-SYSTEM (zt-signal)
Create the discrete-time sequence y[k] = Z - '{X(z)} where zt-signal gives X(z).
zt-signal must be a z-transform signal.

INVERSE-Z-TRANSFORM (zt-signal)
Create the discrete-time sequence y[n] = Z-l{X(z)} where zt-signal gives X(z).
This function uses the value of the property IZT. If no closed-form expression can
be found, (INVERSE-Z-TRANSFORM-SYSTEM zt-signal) is used. zt-signal must be a
z-transform signal.

INVERSE-TRANSFORM (input)
Create the discrete-time sequence which is the inverse transform of the input signal.
This function uses INVERSE-FOURIER-TRANSFORM or INVERSE-Z-TRANSFORM, as ap-
propriate. input must be a discrete-time Fourier-transform signal or a z-transform
signal.

211

___��_ I�I _I__L______ ��·1_4_�_�_·11*_111·___I -·-�-----�- �-----�II.. -�I-�L1�-�L---P-I ·11 --�111 1 I I_ II ^I_�--_ ___ _

Table A.3: Signal classes in ADE containing abstract, inherent signals

DISCRETE-TIME-SEQUENCE CONSTANT

FOU RIER-DOMAIN-SIGNAL IMPULSE

Z-DOMAIN-SIGNAL GENERAL-EXPONENTIAL

2D-SEQUENCE COMPLEX-EXPONENTIAL

SINC CAUSAL-RECTANGU LAR-WIN DOW

(ZT-CONTOUR [initial-radius] [relative-2pi-radiusJ) (zt-signal)
Create the discrete-time Fourier-transform signal Y(ejw) = X(z)Iz=rorwejw where
zt-signal gives X(z), initial-radius gives ro and relative-2pi-radius gives r. zt-signal
must be a z-transform signal with explicitly known pole and zero polynomials.
initial-radius defaults to one. relative-2pi-radius defaults to one.

A.1.3 Abstract, inherent signal classes

The inherent signal classes currently provided in ADE which can generate abstract

signals are listed in Table A.3. Any of these classes can be used for the value of class when

using A-MEMBER-OF, as described above. None of these signal classes can be used to gen-

erate a specific signal, since their definition does not provide a unique signal description.

A.1.4 Abstract system classes

The system classes currently provided in ADE which can generate abstract systems

are listed in Table A.4. Any of these classes can be used for the value of class when using

A-MEMBER-OF, as described above. None of these system classes can be used to generate

a specific system, since their definition does not provide a unique system description.

212

- --

Table A.4: System classes in ADE containing abstract systems

DISCRETE-TIME-SYSTEM

2D-SYSTEM

FOURIER-DOMAIN-SYSTEM

Z-DOMAIN-SYSTEM

SHIFT-INVARIANT-SYSTEM

GEN ERALIZED-SHIFT-INVARIANT-SYSTEM

ROTATED-SHIFT-INVARIANT-SYSTEM

GEN ERA LIZED- ROTATED-SHIFT-INVARIANT-SYSTEM

COMM UTATIVE-ASSOCIATIVE-SYSTEM

MEMORYLESS-SYSTEM

ASSOCIATIVE-SYSTEM

ADDITIVE-SYSTEM

HOMOGENEOUS-SYSTEM

GENERALIZED-HOMOGENEOUS-SYSTEM

LINEAR-SYSTEM

LINEAR-SUPPORT-SENSITIVE-SYSTEM

GEN ERALIZED- LIN EAR-SYSTEM

DFT-SYSTEM

FFT-SYSTEM

IDFT-SYSTEM

IFFT-SYSTEM

2D-CONSTANT-IN- 1 D

ADD-SYSTEM

SUBTRACT-SYSTEM

MULTIPLY-SYSTEM

CONVOLVE-SYSTEM

SHIFT-SYSTEM

SCALE-SYSTEM

RECIPROCAL-SYSTEM

CONJ UGATE-SYSTEM

REAL-PART-SYSTEM

IMAG-PART-SYSTEM

MAGNITUDE-SYSTEM

PHASE-SYSTEM

ABSOLUTE-VALU E-SYSTEM

SCALE-INDEX-SYSTEM

REVERSE-INPUT

FT-SYSTEM

IFT-SYSTEM

ZT-SYSTEM

IZT-SYSTEM

213

___111 �_---_·-_���1-·111-_ C· - -· II

A.1.5 Retrieval of property values

Signals and systems are characterized by explicit, observable properties, such as sys-

tem linearity and signal support. Some of these properties, like signal domain and system

linearity, are defined by using the signal and system class hierarchy. The remainder of

the currently defined signal and system properties are listed here.

INVERTIBLE-P: T or NIL.

Whether or not the system is invertible.

INVERSE-SYSTEM: a system or #<UNKNOWN>

The inverse system, if it exists.

SAMPLE-TYPE: 'EXTENDED-NUMBER, 'EXTENDED-REAL-NUMBER, 'EXTENDED-IMAGINARY-

NUMBER or any non-numeric data type.
The type of the sample values of the signal.

RANGE: a range of values described by the ranges of real and imaginary parts of
the sample values.
The range of the sample values of the signal.

NON-ZERO-SUPPORT: any interval.
The interval on which the signal is not identically zero.

PERIODICITY: any non-negative number.
The periodicity of the signal.

SYMMETRY: any symmetry descriptor.
A detailed description of the symmetry characteristics of the signal.

COMPUTABLE-P: T or NIL.

Whether or not the sample values of the signal are all computable.

SAMPLES-COMPUTABLE-P: T or NIL.

Whether or not the sample values of the signal are computable individually.

FT: any discrete-time Fourier-transform signal.
The Fourier transform of the discrete-time sequence.

BANDWIDTH: any real number between 0 and 2r.
The bandwidth of the discrete-time sequence.

FREQUENCY-SUPPORT: any interval within {-7r 7r}.
The frequency support of the discrete-time sequence.

214

IFT: any discrete-time sequence.
The inverse Fourier transform of the discrete-time Fourier-transform signal.

ZT: any z-transform signal.
The z transform of the discrete-time sequence.

IZT: any discrete-time sequence.
The inverse z transform of the z-transform signal.

ROC: any interval of radii covered by {0 oo}, the null interval or #<UNKNOWN>.
The region of convergence of the z-transform signal.

POLES: any polynomial or #<UNKNOWN>.

The polynomial, D(z), such that with the zeroes polynomial, N(z), the z-transform
N(z)

signal is described by the ratio D(z)

ZEROES: any polynomial or #<UNKNOWN>. The polynomial, N(z), such that with
N(z)

the poles polynomial, D(z), the z-transform signal is described by the ratio D(z)

COST: any cost descriptor.
A detailed description of the cost of computing the sample values of the signal.

EQUIVALENT-FORMS: a list of equivalent signals or systems.
The expressions which are equivalent to the signal or system.

CONSTRAINED-EQUIVALENT-FORMS: a list of equivalent signals or systems.

The expressions which are equivalent to the signal or system and which maintain
all correspondence constraints.

EFFICIENT-IMPLEMENTATIONS: a list of equivalent signals or systems.

The equivalent forms of the signal or system which are not dominated by any of
the other equivalent forms.

CONSTRAINED-EFFICIENT-IMPLEMENTATIONS: a list of equivalent signals or systems.
The constrained equivalent forms of the signal or system which are not dominated
by any of the other constrained equivalent forms.

SIMPLIFICATION: the original or a simpler signal or system.
The simplest description of the signal or system which can be found directly.

CONSTRAINED-SIMPLIFICATION: the original or a simpler signal or system.
The simplest description of the signal or system which can be found directly and
which maintains all correspondence constraints.

EFFECTIVE-FORMS: the original signal or a signal independent of transform systems.
The description of the signal with all Fourier and z transform pairs removed.

215

A.1.6 Retrieval of sample values

ADE provides a uniform interface for retrieving sample values from signals, largely

independent of the identity of the signal and its programming model. As in SPLICE

(Dove et al., 1984; Myers, 1986), two distinct mechanisms are provided for retrieving

sample values from signals.

FETCH (signal index)
The sample value of the signal at index. signal must be a discrete-time sequence,
a discrete-time Fourier-transform signal, a z-transform signal or a two-dimensional
sequence. If signal is a discrete-time sequence, index must be an integer. If signal
is a discrete-time Fourier-transform signal, indez must be a real number. If signal
is a z-transform signal, index must be a number within the region of convergence.
If signal is a a two-dimensional sequence, index must be an integer. The "sam-
ple value" which is returned in this case is the two-dimensional sequence which
represents x[nl,n2]Inl=index.

FETCH-INTERVAL (signal interval [output-array] [sample-spacing])
An array of the sample values of the signal within interval with the sampling grid
size indicated by sample-spacing. interval must be an interval and, if given, output-
array must be a one-dimensional array with the correct number of elements to hold
the sample values. signal must be a discrete-time sequence, a discrete-time Fourier-
transform signal, a z-transform signal or a two-dimensional sequence. If signal is
a discrete-time sequence, interval must have an integer starting point and sample-
spacing must be an integer. If signal is a discrete-time Fourier-transform signal,
interval must have an real-valued starting point and sample-spacing must be a real
number. If signal is a z-transform signal, all the samples indicated by interval and
sample-spacing must be the region of convergence. If signal is a two-dimensional
sequence, interval must have an integer starting point and sample-spacing must be
an integer. The array of "sample values" which is returned in this case contains
the one-dimensional sequences, x[nl,n2][nl=index for each index. sample-spacing
defaults to one.

Four related functions are also provided for retrieving sample values:

FETCH-REAL (signal index)
The real part of the sample value of the signal at index.

216

___ __

FETCH-IMAG (signal index)
The imaginary part of the sample value of the signal at index.

FETCH-INTERVAL-REAL (signal interval [output-array] [sample-spacing])
An array of the real parts of the sample values of the signal at the indicated indices.

FETCH-INTERVAL-IMAG (signal interval [output-array] [sample-spacing])
An array of the imaginary parts of the sample values of the signal at the indicated
indices.

FETCH, FETCH-INTERVAL and the associated real- and imaginary-part functions can

be used to retrieve sample values from anywhere in the domain of a signal, indepen-

dent of the non-zero support. They can be applied indiscriminately to discrete-time

sequences, discrete-time Fourier-transform signals and z-transform signals; to abstract

signals, simple specific signals and symbolically constrained signals; to computable and

uncomputable signals. The only restriction which the identity of the signal places on

the use of FETCH and FETCH-INTERVAL is the restriction that the sample-value requests

truly lie within the domain of the signal. For discrete-time sequences, this translates into

the constraint that all the sample value requests fall on integer indices. For z-transform

signals, this translates into the constraint that all the sample value requests fall within

the region of convergence. As in SPLICE (Dove et al., 1984; Myers, 1986), the external

behavior of the interface is independent of the particular programming paradigm used in

calculating the sample values, allowing random access to the sample values.

A.2 Functions for Creating and Manipulating In-

tervals, Symbolic Numbers and Polynomials

A.2.1 Interval representation and manipulation

Intervals are used in ADE to describe sets of numbers. Examples of their use include

the description of the non-zero support of a discrete-time sequence, the non-zero support

of a discrete-time Fourier-transform signal and the range of a real-valued signal. These

217

___1___L· -_--1_1111�1� 1_1�.1 - ---_ I._.__I.I_�__IIIII_--I--·L-·II-LIIX·IYI- il_�llll -I_-·-·�---^·�11----·Ill�-·-�ILI-�--�

examples include two distinct types of intervals: the non-zero support of a discrete-time

sequence is an interval containing only integers while the other two intervals contain all

the numbers lying between the end points of the interval. The interval of integers [start

end] contains represents the set of integers, n, such that start < n < end. For discrete

intervals, the starting and ending points must be either integers or real numbers. If no in-

tegers lie in the interval, then a unique empty interval is returned. The continuous interval

{start end} represents the set of numbers, z, such that Im(z) = Im(start) = Im(end)

and Re(start) Re(z) < Re(end). From this description of continuous intervals, the

starting and ending points can be complex numbers, as long as their imaginary-parts are

equal. If Re(start) > Re(end), then no numbers will lie in the interval and the unique

empty interval is returned. Finally, the interval {point point} is used to represent the

continuous interval containing only the single number, point. Functions for accessing and

manipulating intervals are described here.

N U LL-INTERVAL

The variable bound to the unique empty interval.

INTERVAL (start end [continuous-p])
Creates an interval from the given specification. If continuous-p is NIL, the interval
is discrete; otherwise, the interval is continuous.

INTERVAL-P (object)
Whether or not object is an interval.

INTERVAL-START (interval)
The lowest point in the interval.

INTERVAL-REAL-START (interval)
The real-part of the lowest point in the interval.

INTERVAL-END (interval)
The point just beyond the end of the interval. If the interval is continuous, the end
point is the value which was given for end in creating the interval. If the interval
is discrete, the end point is the integer which is greater than or equal to the value
which was given for end in creating the interval.

INTERVAL-REAL-END (ivl)

The real-part of the end of the interval.

218

� �__

INTERVAL-LENGTH (interval)

The length of the interval.

INTERVAL-LAST (iv!)

The last point in the interval. If the interval is continuous, the last point is the
value which was given for end in creating the interval. If the interval is discrete,
the last point is the integer which is less than the value which was given for end in
creating the interval.

INTERVAL-REAL-LAST (ivl)

The real-part of the last point in the interval.

INTERVAL-IMAGPART (ivl)

The imaginary part of the numbers within the interval.

INTERVAL-CONTINUOUS-P (ivl)

Whether or not object is a continuous interval.

NON-EMPTY-INTERVAL-P (interval)
Whether or not interval has one or more points within it.

INFINITE-INTERVAL-P (interval)
Whether or not interval is an infinite-length interval.

FINITE-INTERVAL-P (interval)
Whether or not interval is a finite-length interval. This function assumes that the
empty interval is not a finite-length interval.

NULL-INTERVAL-P (interval)
Whether or not interval is the empty interval.

POINT-INTERVAL-P (interval)
Whether or not interval contains one single point.

INTERVAL-EQ (ivll ivl2)
Whether or not the intervals are the same.

WITH-STACK-INTERVAL ((var start end [continuous-p]) body)
Evaluates body with var bound to the interval (INTERVAL START END [CONTINUOUS-

PI)

INTERVAL-INTERSECT ([ivli ... ivlN])

The intersection of ivll ... ivlN

INTERVAL-ADJOINING-P ([ivl 1 ... ivlN])

Whether or not the intervals ivll ... ivlN jointly cover (INTERVAL-COVER ilI ... ivIN)

219

I ^ E

INTERVAL-COVER ([ivl ... ivIN])

The interval which covers of ivll ... ivlN.

INTERVAL-COVERS-P (ivlI ivl2)
Whether or not ivll covers ivl2.

INTERVAL-INTERSECT-P ([ivll ... ilN])

Whether or not the intervals ivll ... ivlN all intersect.

INTERVAL-ADVANCE (interval advance)
The interval with the starting and ending points of interval increased by advance.

INTERVAL-RETARD (interval retard)
The interval with the starting and ending points of interval decreased by retard.

INTERVAL-REVERSE (interval)
The interval which is interval flipped about zero.

INTERVAL-CONVOLVE (iVll [ivl2 ... ivlN])

The interval which represents the non-zero support of a convolution output when
the inputs have the non-zero supports ivll ... ivlN.

INTERVAL-CORRELATE (ivll ivl2)
The interval which represents the non-zero support of a correlation between two
signals with the supports ivll and ivl2.

INTERVAL-AUTOCORRELATE (interval)
The interval which represents the non-zero support of an autocorrelation of a signal
with the support interval.

INTERVAL-CONVOLUTION-SUPPORT (filter-ivl requested-ivl)
The interval over which a signal must be known to compute the requested convo-
lution interval using the given filter interval.

VALID-CONVOLUTION-INTERVAL (sequence-ivl filter-ivl)
The interval over which there is full overlap of the sequence-ivl and filter-ivl (no
edge effects).

ORIGINAL-SUPPORT (filtered-ivl filter-ivl)
The original non-zero support of the signal given the post-convolution support and
the support of the filter.

CENTERED-INTERVAL (length [continuous-p])
The interval of length length which is centered about zero. If the interval is discrete,
length must be an odd integer. continuous-p defaults to NIL.

220

____ I _�I �_

INTERVAL-ALIAS (from-ivl to-ivl)

The list of pairs of intervals which represent the result of circularly aliasing from-ivl
into to-ivl

WITH-INTERVAL-ALIAS ((from-var from-ivl to-var to-ivl) body)
Evaluates body once for each of the pairs of intervals representing the result of
circularly aliasing of from-ivl into to-ivl. During each evaluation, from-var is bound
to the current section of from-ivl and to-var is bound to the corresponding section
of to-ivl

$GET-INTERVAL (object)
An interval which in some way describes object.

INTERVAL-COMPLEMENT (interval universe)
The intervals which are the parts of universe and which are outside of interval

A.2.2 Representation and manipulation of symbolic numbers

Symbolic numbers are generally required to describe abstract signals and symbolically

constrained signals and systems. New symbolic numbers of a given type and range can

be generated by using the format:

A-MEMBER-OF (numeric-type [properties relationl valuel ... relations valueN])
A symbolic number, symbolic-number, of the type numeric-type which satisfies the
relations symbolic-number relationl valuel, ... , symbolic-number relationN valueN.

Constraints can also be imposed on a symbolic number indirectly by a constraint on a

related symbolic number. An example of this is provided by constraining the magnitude

of a symbolic, complex number to be less than one: no constraints are placed directly on

the symbolic, complex number yet the range of its possible values is constrained. ADE

attempts to propagate these constraints internally.

A variety of extended algebraic and trigonometric functions are provided in ADE

for manipulating numbers, symbolic numbers, -oo and oo uniformly. When confronted

with, symbolic numbers, the majority of these will produce another symbolic number to

represent their output. $<, $<, $=, $> and $> attempt to determine a boolean value by

221

_ __� _ 1_^_1__1^____1__^___I-� ·� I· _ll���----i----.----).-�--)--I- ·11_^111� .�---------_11 --. I� ---------L

Table A.5: Functions for manipulating symbolic numbers in ADE

INFINITE-NUMBER-P (number)
INFINITE-REAL-NUMBER-P (number)
INFINITE-IMAG-NUMBER-P (number)
$REALPART (number)
$IMAGPART (number)
$CONJUGATE (number)
$MAGNITUDE (number)
$PHASE (number)
$ABS (real-number)
$SIGNUM (real-number)
$NUMERATOR (real-number)
$DENOMINATOR (real-number)
$> (numl [num2 ... nurm])
$< (numl [num2 ... numn])
$>= (num [num2 ... numn])
$<= (numl [num2 ... num])
$MAX (numl [num2 ... num])
$MIN (um [num2 ... numa])

$MINUS (number)

$+ (numl [num 2 ... numn,)
$* (numl [num2 ... num)
$- (numl [num2 ... num,])
$/ (numl [num2 ... numrn)
$1/ (number)
$1- (number)
$1+ (number)
$LCM (numl [num2 ... num])

$GCD (numl [num 2 ... numn])
$MoD (y)
$FLOOR ([y])
$CEILING ([y])
$ROUND ([y])
$EXPT (base-number power-number)
$EXP (power)
$LOG (number)
$cos (number)
$SIN (number)

propagating the constraints on the symbolic numbers. Failing this, these functions will

query the user for the required information. The currently available functions for manip-

ulating symbolic numbers are listed in Table A.5. Each simply extends the corresponding

algebraic or trigonometric function.

A.2.3 Polynomial representation and manipulation

Polynomials are useful for the description of rational z-transform signals. In these
M L

cases, X(z) can be completely specified using N(z) = ajzi', D(z) = 3 bizi and a
i=O i=O

continuous interval representing the radial extent of the region of convergence. Once

such a description of X(z) is found, finding and manipulating the poles, zeroes and

region of convergence is greatly simplified. The functions for creating and manipulating

single-variable, finite-order polynomials in ADE are described here.

222

CREATE-POLYNOMIAL ([:COEFFICIENTS coefficients] [:GAIN gain] [:FACTORS factors])
The polynomial fitting the given specification.

POLYNOMIAL-COEFFICIENTS (polynomial)
The list of the coefficients of the polynomial.

POLYNOMIAL-NTH-COEFFICIENT (n polynomial)
The coefficient of the n'th power in polynomial.

POLYNOMIAL-GAIN (polynomial)
The gain of polynomial.

POLYNOMIAL-FACTORS (polynomial)
The list of pairs, containing the location of the polynomial zeroes and their multi-
plicity.

POLYNOMIAL-EXPRESSION (polynomial [variable])

The MACSYMA expression representing the given polynomial, in powers of vari-
able. variable defaults to $z.

POLYNOMIAL-DERIVATIVE (polynomial)

The polynomial which is the derivative of the given polynomial.

POLYNOMIAL-MULTIPLY (polyl poly2)

The product of these two polynomials.

POLYNOMIAL-DIVIDE (POLY1 POLY2)

The quotient polynomial and the remainder polynomial from this division. The
order of the remainder polynomial will be less than that of poly2.

POLYNOMIAL-REMOVE-ZEROES-AT-ZERO (polynomial)
The same polynomial with any zeroes at zero removed.

POLYNOMIAL-CONJUGATE (polynomial)
The polynomial with the conjugate coefficients.

POLYNOMIAL-REMOVE-COMMON-ZEROES (polyl poly2)

The two polynomials with common factors removed.

POLYNOMIAL-COMMON-ZEROES-P (polyl poly2)

If there are common factors, the polynomial formed from these common factors;
otherwise, NIL.

POLYNOMIAL-SUBTRACT (polyl poly2)

The difference polynomial.

223

- ------- ~ --·--- -· 11~~--·--- - · 111

POLYNOMIAL-ADD (polyl poly2)
The sum of these two polynomials.

EVAL-POLYNOMIAL-AT (location numerator-polynomial [denominator-polynomial]) The
value of the ratio of the numerator and denominator polynomials when evaluated
at location. denominator-polynomial defaults to one.

POLYNOMIAL-ORDER (polynomial)
The order of polynomial.

POLYNOMIAL-SCALE (scale polynomial)
The scaled polynomial.

POLYNOMIAL-SCALE-VARIABLE (scale polynomial)
The polynomial resulting from scaling the variable.

UNITY-GAIN-POLYNOMIAL (polynomial)
The polynomial with the same factors and unity gain.

POLYNOMIAL-DOWNSAMPLE (m zeroes poles)
The zeroes polynomial and poles polynomial representing the result of downsam-
pling the sequence described in the z domain by the polynomials zeroes and poles.

A.3 Functions for Adding New Properties and New

Control Strategies

A.3.1 Property declaration

Properties are used to explicitly characterize signals or systems. Often, this char-

acterization only makes sense for a particular set of signals or systems: for example,

the property describing the inverse Fourier transform should not be retrievable from a

discrete-time sequence. To allow for this type of object sensitive, ADE requires the ex-

plicit declaration of properties with the applicable signal and system classes included.

The currently declared properties were described in Section A.1.5. New properties can

be defined using DECLARE-PROPERTY, a described here.

224

��

(DEFINE-PROPERTY name
applicable-classes
[:BASIC-ASPECT basic-aspect]
:SEED seed
:COMBINING-FUNCTION combining-function
:DEFAULT-VALUE default-value)

applicable-classes provides a list of the types of signals and systems to which the
property is applicable.

basic-aspect indicates whether or not to include an instance variable in the repre-
sentations of these signals and systems, corresponding to this particular property:
basic-aspect defaults to including the instance variable.

seed provides the initial value in any search to determine the value of the property:
the expression given by seed is evaluated with SELF bound to the object under
consideration and the result of the evaluation is used as the initial value.

combining-function is used to combine partial values found in the course of this
search. The combining function can also be used to terminate the search. When
a new piece of information is found, combining-function will be applied two argu-
ments: the new information and the current value as determined by the search so
far. This application is expected to return two values: the first value should be
the result of combining the new information with the previous information and the
second value is used to indicate when the search can be prematurely terminated.

default-value gives a default for the searches in which no information about the
property is found. default-value is evaluated with SELF bound to the object under
consideration and the result will used as the value of the property.

A.3.2 Control strategy definition

Control strategies are useful for providing additional information about the search for

property values. They can encode information about effective approaches to the search

or they can also be used to increase the accuracy of the determined value. New strategies

can be defined using DEFINE-STRATEGY, as described here.

(DEFINE-STRATEGY name
:GOAL matching-pattern
[:WITH local-variable-forms]
[:WHEN requirements]

225

1 �_1_11 11_1 ____�^_yllllll__ll__l XXII. III---I�I� ---�-l_�_ll�-_ly�-rm111�---11_1_1_11_�1 1II_ --

[:REMOVE-STRATEGIES strategy-names]
[:REPLACEMENT-GOAL replacement-goal] or [:SUBGOALS subgoal-pairs]
[:DO actions]
[:ASSERT assertions]
[:ANSWER result] or [:SET-ANSWER result]

[:DONE]
[:WHEN-DONE]

[:WHEN additional-requirements]
[:SUBGOALS additional-subgoal-pairs]
[:DO additional-actions]
[:ASSERT additional-assertions]
[:ANSWER final-result] or [:SET-ANSWER final-result])

matching-pattern is of the form (VALUE-OF object property value). The matching
pattern indicates the type of search which the strategy is encoded to affect. This
pattern is used to restrict the properties and objects on which the strategy is
tested. If the matching pattern does not match the current goal, the strategy is
not considered further. If the pattern does match the current goal, the bindings
from this match are enforced in all the remaining parts of the strategy.

local-variable-forms is a list of local-variable-form's and a local-variable-form is ei-
ther (variable expression) to bind variable to the result of evaluating expression in
the binding environment or variable to include a variable in the binding environ-
ment for subsequent use, typically in subgoal-pairs. These variables are available
for use within the remainder of the strategy.

requirements can provide an arbitrary test expression. If this expression returns a
null value when evaluated, the strategy is disqualified and not considered further.
Otherwise, the strategy is taken to be applicable to the current goal.

strategy-names is a list of strategies which should not be considered by this goal.
The listed strategies are then bypassed by the current goal and by its replacement,
if a replacement goal is provided.

replacement-goal can provide a replacement for the current goal. Providing a re-
placement goal has the effect of removing the current goal from consideration; of
bypassing consideration of the remaining strategies by the current goal; of bypass-
ing consideration of any property rules by the current goal; and of removing any
subgoals of the current goal or its subordinates from the schedule. Once the re-
placement goal is complete, the result of the replacement goal becomes the binding
for the result variable.

subgoal-pairs is a list of subgoal-pair's and a subgoal-pairis (variable subgoal-description)
to bind variable to the result from the subgoal described by subgoal-description.

226

_� __

These can be used to compute values upon which the result depends. The re-
sults of the subgoals give rise to more variable bindings. Further processing of this
particular strategy is suspended until all of the subgoals are completed.

result can provide a result from the strategy. The strategy is allowed to indicate
if this answer should be considered as the complete value for the goal, by using
:SET-ANSWER. Otherwise, this answer is used as a partial value and is combined
with the current value of the goal.

:DONE can be used to explicitly terminate the search. This has the effect of by-
passing consideration of the remaining strategies; of bypassing consideration of any
property rules; and of removing any subgoals of the current goal or its subordinates
from the schedule.

:WHEN-DONE can be used to give the strategy access to the goal when it is exhausted.
A goal is described as exhausted when all rules have been considered and all its
subgoals are complete. If this access is requested, the result value of the goal is
bound to the result variable from the matching pattern of the strategy. The forms in
the strategy definition which follow :WHEN-DONE are evaluated in this environment
of the exhausted goal

A.4 Functions for Adding New Signal and System

Classes

A.4.1 Definition of abstract signal and system classes

Abstract signal and system classes are only able to create abstract objects. This is

due to the generality of their description: these classes do contain enough information

to provide unique descriptions of their elements. Examples of abstract signal and sys-

tem classes include DISCRETE-TIME-SEQUENCE and LINEAR-SYSTEM. The currently defined

abstract system and inherent signal classes were described in Sections A.1.3 and A.1.4.

New-abstract system and inherent signal classes can be defined using DEFINE-ABSTRACT-

SYSTEM-CLASS and DEFINE-ABSTRACT-SIGNAL-CLASS, as described here.

227

_ 1�1 �II I _____ ^� _C______ ___ II 1_1 _ _·

DEFINE-ABSTRACT-SIGNAL-CLASS

(DEFINE-ABSTRACT-SIGNAL-CLASS name parameter-list
superclasses

[documentation-string]
shared-definitions)

defines the abstract signal class name, with the parameters named in parameter-
list. This new signal class is a specialization of the signal classes listed in superclasses.
All the signals produced by the signal class name or by any of its subclasses can use
the information inherited from the superclasses as well as the information provided by
shared-definitions.

shared-definitions provide information about the signals in the class name and a
shared-definition is either

* a shared-method having the form (message-name parameter-list body),

* a shared-backward-rule having the form

(GOAL property
:NAME rule-name
:OBJECT object-pattern
[:WITH local-variable-forms]

[:WHEN requirements]
[:SUBGOALS subgoal-pairs]

[:DO actions]
[:ASSERT assertions]

r:ANSWER result] or [:SET-ANSWER result]
[:DONE])

where the matching pattern of the backward-chaining rule will have the form
(VALUE-OF object-pattern property ?VALUE) and where the remaining parts of the
backward-chaining rule are similar to those described for strategies.

* or a shared-forward-rule having the form

(ASSERTION property
:NAME rule-name

:OBJECT object-pattern
[:WITH local-variable-forms]
[:WHEN requirements]
[:DO actions]
[:ASSERT assertions])

228

�

where the matching pattern of the forward-chaining rule will have the form (VALUE-

OF object-pattern property ?VALUE) and where the remaining parts of the forward-
chaining rule are similar to those described for strategies.

DEFINE-ABSTRACT-SYSTEM-CLASS

(DEFIN E-ABSTRACT-SYSTEM -CLASS

(name system-parameters)
(DEFINE-ABSTRACT-SYSTEM-CLASS system-input-list

(name system-parameters) *
system-superclasses

system-superclasses ([documentation-string]

shared-system-definitions) shared-system-definitions)
NIL signal-superclasses

defined-signal-class) ([documentation-string]
shared-signal-definitions))

defines the abstract system class name, with the system parameters named in system-
parameter-list. This new system class is a specialization of the system classes listed in
system-superclasses. All the systems produced by the system class name or by any of
its subclasses can use the information inherited from these superclasses as well as the
information provided by shared-system-definitions. Each shared-system-definition can
be either a shared-method, a shared-backward-rule or a shared-forward-rule, as described
above.

The system class name can use a previously defined signal class defined-signal-class
as its output signal class. If a previously defined signal class is used as the output
signal class, no additional information is supplied about the output signal class in the
system-class definition.

More commonly, DEFINE-ABSTRACT-SYSTEM-CLASS defines a new signal class and uses
it as the output signal class. In this case, the second syntax shown above is used. In ad-
dition to the system class name, a signal class named by appending "-OUTPUT" to name

is defined. A signal in the output signal class is generated by applying a system from the
class name to a set of inputs corresponding to the arguments of system-input-list. This
new signal class is a specialization both of the signal classes listed in signal-superclasses
and of the output signal classes of the system classes system-superclasses. shared-signal-
definitions provide information about the output signals. Each shared-signal-definition
can be either a shared-method, a shared-backward-rule or a shared-forward-rule, as de-
scribed above.

229

�__�__II____I___·�_I_1.�-�lsll^ ·L·l 1I·1I --- -- .- -I

A.4.2 Definition of specific signal and system classes

Specific signal and system classes are only contain specific objects. This is due to the

specificity of their description: any generalization of a description within these classes

must occur within the parameters to which they are applied. The currently defined

specific system and inherent signal classes were described in Sections A.1.1 and A.1.2.

New specific system and inherent signal classes can be defined the forms described here.

DEFINE-SIGNAL-CLASS

(DEFINE-SIGNAL-CLASS name parameter-list
superclasses

[documentation-string]
shared-definitions)

defines the specific signal class name, with the parameters named in parameter-list.
This new signal class is a specialization of the signal classes listed in superclasses. All
the signals produced by the signal class name can use the information inherited from
the superclasses as well as the information provided by shared-definitions. Each shared-
definition can be either a shared-method, a shared-backward-rule or a shared-forward-rule,
as described above.

DEFINE-SYSTEM-CLASS

(DEFINE-SYSTEM-CLASS (name system-parameters) system-input-list
system-superclasses

([documentation-string]
shared-system-definitions)

NIL signal-superclasses
([documentation-string]

shared-signal-definitions))

defines the specific system class name, with the system parameters named in system-
parameter-list. This new system class is a specialization of the system classes listed in
system-superclasses. All the systems produced by the system class name can use the
information inherited from these superclasses as well as the information provided by
shared-system-definitions. Each shared-system-definition can be either a shared-method,
a shared-backward-rule or a shared-forward-rule, as described above.

A new signal class is also defined to act as the output signal class. The output
signal class name is derived from name by appending "-OUTPUT". This new signal class
is a subclass of the output signal classes of system-superclasses as well as of the classes

230

��_�

additional-output-signal-superclasses. shared-signal-definitions provide information about
the output signals in this class, each being either a shared-method, a shared-backward-rule
or a shared-forward-rule, as described above.

DEFINE-SIGNAL

(DEFINE-SIGNAL name
superclasses

[documentation-string]
definitions)

defines the specific signal name. This new signal is a member of the signal classes
listed in superclasses. The signal can use the information inherited from the superclasses
as well as the information provided by definitions. Each definition can be either a method,
a backward-rule or a forward-rule, as described above.

DEFINE-SYSTEM

(DEFINE-SYSTEM name system-input-list
system-superclasses

([documentation-string]
system-definitions)

NIL signal-superclasses
([documentation-string]

shared-signal-definitions))

defines the specific system name, with the system inputs named in system-input-list.
This new system is a member of the system classes listed in system-superclasses. The
system can use the information inherited from these superclasses as well as the informa-
tion provided by system-definitions. Each system-definition can be either a method, a
backward-rule or a forward-rule, as described above.

A new signal class is also defined to act as the output signal class. The output
signal class name is derived from name by appending "-OUTPUT". This new signal class
is a subclass of the output signal classes of system-superclasses as well as of the classes
additional-output-signal-superclasses. shared-signal-definitions provide information about
the output signals in this class, each being either a shared-method, a shared-backward-rule
or a shared-forward-rule, as described above.

DEFINE-SIGNAL-CLASS-ALIAS

(DEFINE-SIGNAL-CLASS-ALIAS name parameter-list
superclasses

[documentation-string]
master-signal
shared-definitions)

231

__�__�__ ___1 III_·I_ _·-_-I�IX·l���l --- -·- ·1. 11-·1_�1 --

defines the specific signal class name, with the parameters named in parameter-list.
The signals in this class are composition operators: that is, they depend on the signal
resulting from evaluating master-signal in the environment provided by the parameter
bindings to provide some or all of their observable characteristics. This new signal class
is a specialization of the signal classes listed in superclasses. All the signals produced by
the signal class name can use the information inherited from the superclasses as well as
the information provided by shared-definitions. Each shared-definition can be either a
shared-method, a shared-backward-rule or a shared-forward-rule, as described above.

DEFINE-SYSTEM-CLASS-ALIAS

(DEFIN E-SYSTEM -CLASS-ALIAS

(name system-parameters)
system-input-list

(DEFINE-SYSTEM-CLASS-ALIAS system-superclasses(name system-parameters) *
([system-supercdocumentation-string]system-superclasses

([documentation-string] SELF
sha red-system-defin itions)master-system

shared-system-definitions)) NIL signal-superclasses
([documentation-string]

master-signal
shared-signal-definitions))

defines the specific system class name, with the system parameters named in system-
parameter-list. This new system class is a specialization of the system classes listed in
system-superclasses. All the systems produced by the system class name can use the
information inherited from these superclasses as well as the information provided by
shared-system-definitions. Each shared-system-definition can be either a shared-method,
a shared-backward-rule or a shared-forward-rule, as described above.

The systems in the system class name can be composition operators: that is, they
may depend on the system resulting from evaluating master-system in the environment
provided by the parameter bindings to provide some or all of their observable character-
istics and to provide the output signals. In this case, no additional information can be
supplied about the output signals in the system-class definition.

More commonly, the output signals are composition operators: that is, they depend
on the signal resulting from evaluating master-signal in the environment provided by the
parameter and input bindings to provide some or all of their observable characteristics.
In this case, the second syntax shown above is used. In addition to the system class
name, a signal class named by appending "-OUTPUT" to name is defined. A signal in
the output signal class is generated by applying a system from the class name to a set
of inputs corresponding to the arguments of system-input-list. This new signal class is
a specialization both of the signal classes listed in signal-superclasses and of the output

232

_ __

signal classes of the system classes system-superclasses. shared-signal-definitions pro-
vide information about the output signals. Each shared-signal-definition can be either a
shared-method, a shared-backward-rule or a shared-forward-rule, as described above.

DEFINE-SYSTEM-ALIAS

(DEFINE-SYSTEM-ALIAS (name system-input-list
system-superclasses

([documentation-string]
system-definitions)

NIL signal-superclasses
([documentation-string]

master-signal
shared-signal-definitions))

defines the specific system name, with the system inputs named in system-input-list.
This new system is a member of the system classes listed in system-superclasses. The
system can use the information inherited from these superclasses as well as the informa-
tion provided by system-definitions. Each system-definition can be either a method, a
backward-rule or a forward-rule, as described above.

A new signal class is also defined to act as the output signal class. The output
signal class name is derived from name by appending "-OUTPUT". The output signals
in this class are composition operators: that is, they depend on the signal resulting
from evaluating master-signal in the environment provided by the parameter and input
bindings to provide some or all of their observable characteristics. This new signal class
is a subclass of the output signal classes of system-superclasses as well as of the classes
additional-output-signal-superclasses. shared-signal-definitions provide information about
the output signals in this class, each being either a shared-method, a shared-backward-rule
or a shared-forward-rule, as described above.

A.4.3 Sample-value descriptions

If any of the members of a signal class or an output signal class have computable

samples, then an algorithmic specification of the signals must either be among the func-

tional forms inherited from generalizations of the class or be among the functional forms

included in the class definition. The four programming paradigms developed in SPLICE

(Dove et al., 1984; Myers, 1986) are provided for these algorithmic specifications: the

point-operator model, the array-operator model, the state-machine model and the com-

position model. In the point-operator model, a signal is described by a function that

233

_I___�I�_1_CI··�^·�·_11�-__-·1_-1 -111_·1111l11 ·11�_1�--1-- __���..__� XII-·---l P· --

computes a single sample value at a time while in the array-operator model a signal is

described by a function that computes many sample values simultaneously. The state-

machine model describes discrete-time sequences by maintaining state variables and com-

puting the sample values at successive time indices from some given starting index and

starting state. In the composition model, a signal is described using a combination

of other systems. Signals and systems using the composition model are defined using

DEFINE-SIGNAL-CLASS-ALIAS, DEFINE-SYSTEM-CLASS-ALIAS or DEFINE-SYSTEM-ALIAS,

which were described in the previous section. The defining forms for the point-operator

model, the array-operator model and the state-machine model are described here. These

forms are to be included in the signal-class definitions provided for inherent signals or

output signals.

Point-operator model

In the point-operator model, a signal is described by a function that computes a

single sample value at a time. SAMPLE-VALUE or SAMPLE-VALUE-REAL and SAMPLE-VALUE-

IMAG can be used to encode this function. This programming model is appropriate for

discrete-time sequences, discrete-time Fourier-transform signals and z-transform signals.

(SAMPLE-VALUE (INDEX)

(applicable-interval- 1 sample-value-expression- I)

(applicable-interval-N sample-value-ezpression-N)
[(:DEFAULT sample-value-default-expression)])

(SAMPLE-VALUE-REAL (INDEX)

(applicable-interval-1 sample-value-expression-i)

(applicable-interval-N sample-value-expression-N)
[(:DEFAULT sample-value-default-expression)])

(SAMPLE-VALUE-IMAG (INDEX)

(applicable-interval-1 sample-value-expression- 1)

234

_____ _I

(applicable-interval-N sample-value-expression-N)
[(:DEFAULT sample-value-default-expression)])

sample-value-expression-i describes the sample values for the indices within the inter-
val applicable-interval-i. If a default is given, this expression will be used to compute the
sample values of indices within the non-zero support which do not fall within any of the
given intervals.

Array-operator model

In the array-operator model, a signal is described by a function that maps intervals

of indices into arrays of sample values. INTERVAL-VALUES or INTERVAL-VALUES-REAL and

INTERVAL-VALUES-IMAGINARY can be used to encode this function. COMPUTE-INTERVAL,

when passed an interval of indices on which the sample values are desired, is used to

expand the extent that interval to an interval appropriate for the array-operator encoded

by the INTERVAL-VALUES functions. This programming model is appropriate for discrete-

time sequences.

(COMPUTE-INTERVAL (DESIRED-INTERVAL) body)

returns the interval of sample values which should be requested simultaneously in
order both to accommodate the array-operator model and to retrieve the desired interval
of values

(INTERVAL-VALUES (INTERVAL OUTPUT-ARRAY)

(applicable-interval-1 sample-value-expression-)

(applicable-interval-N sample-value-expression-N)
[(:DEFAULT sample-value-default-expression)])

(INTERVAL-VALUES-REAL (INTERVAL OUTPUT-ARRAY)

(applicable-interval- sample-value-expression-1)

(applicable-interval-N sample-value-expression-N)
[(:DEFAULT sample-value-default-expression)])

(INTERVAL-VALUE-IMAG (INTERVAL OUTPUT-ARRAY)

(applicable-interval-1 sample-value-expression- 1)

235

�_LI* I_ _IX _I _�____II I__ __ __III · _II1IILI___��__LIUIIXII·-�-I ·- ·---al�i---·_·I_·1--�·11�------1� ·̂ _

(applicable-interval-N sample-value-expression-N)
[(:DEFAULT sample-value-default-expression)])

sample-value-expression-i places the sample values for the indices within the interval
applicable-interval-i in the output array given by the parameter OUTPUT-ARRAY. If a
default is given, this expression will be used to compute the sample values of indices
within the non-zero support which do not fall within any of the given intervals.

State-machine model

The state-machine model describes discrete-time sequences by maintaining state vari-

ables and computing the sample values at consecutive indices from the given bound-

ary conditions. The boundary conditions for the state machine are encoded using SM-

BOUNDARY and BOUNDARY-STATE: SM-BOUNDARY must determine the boundary index, no,

and BOUNDARY-STATE must determine s[no], the value of the state variable at the bound-

ary. CURRENT-VALUE, when provided with n and the state s[n], must determine y[n], the

output value of the state machine at that index. Either NEXT-STATE or PREVIOUS-STATE

can be used to complete the description the state-machine. If both NEXT-STATE and

PREVIOUS-STATE are included in the state-machine model, the non-zero support is not re-

stricted by the state-machine model. If only NEXT-STATE is included in the state-machine

model, the non-zero support is restricted to lie within the interval [no oo]. Alternately, if

only PREVIOUS-STATE is included in the state-machine model, the non-zero support is re-

stricted to lie within the interval [-oo no]. This programming model is only appropriate

for discrete-time sequences.

(SM-BOUNDARY () body)

the index of the boundary condition for the state machine

(BOUNDARY-STATE (BOUNDARY-INDEX) body)

the boundary condition for the state machine

(PREVIOUS-STATE (CURRENT-INDEX CURRENT-STATE) body)

236

the previous state, sn - 1], given the current index, n, and the current state, s[n].
This description will only be used to compute the state variables at indices below the
boundary index.

(NEXT-STATE (CURRENT-INDEX CU RRENT-STATE) body)

the next state, s[n + 1], given the current index, n, and the current state, s[n]. This
description will only be used to compute the state variables at indices above the boundary
index.

(CURRENT-VALUE (CURRENT-INDEX CURRENT-STATE) body)

describes the sample value at the current index, given that index and the current
state.

237

_ _ _C �__ _I _I_ ___1_I1IIU��j·_/�lI ...I�·--_^----il·�1·-··�IIY�-·l--�.___ll I II-·�-I I_ II II-

238

�i·

Appendix B

Caching Table Organization

The ideas of unique signal representation and caching were advocated by Kopec

(1980), Dove et al. (1984) and Myers (1986) as solutions to two distinct objectives:

unique representation was introduced to more closely simulate the mathematical behav-

ior of signals while caching of sample values was introduced to increase computational

efficiency. Following these recommendations, caching tables have been used for the out-

put values of signals and systems: systems and inherent signals are cached according to

their system or signal class and their parameter values; output signals are cached in their

generating system under the system inputs; and sample values are cached in their parent

signals under their index.

Caching tables should exploit any restrictions on the indexing keys to increase their

efficiency. For example, the indexing domain of a signal restricts the set of possible keys

and provides a natural organization to the sample values. Dove et al. (1984) and Myers

(1986) exploited this organization to replace general caching tables with arrays when

caching signal sample values. In SPLICE, the sample values of discrete-time sequences

are stored in arrays with an explicit interval support. The environment insures that

new requests for sample values and previously buffered sample values are contiguous by

extending the requested interval to cover any intervening regions. The environment also

insures that requests for previously computed sample values are serviced using the cached

239

_�·�II_1_ C__��__I· I I� L�IIIII--l� �II-.��-- L_ �-.1.�

values as opposed to passing these requests onto the function for computing sample values.

The exclusive use of arrays for caching sample values is not suited either for discrete-

time Fourier-transform signals or for z-transform signals. Nor can it support requests

for sample values at a symbolic index, such as z[N]. Finally, in some cases, the extra

computation involved in coercing the cache of sample values to be contiguous can be

excessive: for example, if a sequence is being downsampled by a large factor, requesting

the sample values of the downsampled sequence would incur the overhead of computing

not only the sample values which pass through the downsampler but all intervening

sample values of the original sequence as well.

To support the diverse requirements on the various caching tables without complicat-

ing the interface to the cache unduly, data abstraction is again be used: a uniform set of

creation, modification and accessor functions are defined across a variety of internal im-

plementations of the caching table. The cache is then selected to exploit the restrictions

on the set of valid keys. The remainder of this subsection is devoted to a description of

various caching tables used in ADE.

The most general caching table makes no assumptions about the form of the indexing

key. Tables for caching signals and systems are of this type, since there is no natural

ordering to these sets of objects. Examples of possible underlying implementations for a

general cache include hash tables and association lists.

The most restrictive caching table expects a countable, ordered set of keys. Tables for

caching sample values of discrete-time sequences are of this type. The general organiza-

tion of these caches is shown in Figure B-1. Internally, the cache is supported using two

distinct subtables: an internally separate subtable handles requests for sample values at

symbolic indices. By separating the cache into two subtables, one for symbolic indices

and one for non-symbolic indices, the subtable for non-symbolic indices can exploit both

the ordering and the countability of the integer indices. In particular, this subtable can be

implemented using: an explicit interval support and a single array completely filled with

a contiguous set of sample values (Figure B-2-a); a set of arrays, each with an explicit

240

Figure B-1: Proposed internal structure for caching tables designed for ordered sets of
keys

Tables for caching sample values can generally expect an ordered set of keys. However, additional
provisions need to be made to handle requests for sample values at symbolic indices. The organization

of the cache tables used in ADE is shown here. Internally, the cache uses two distinct subtables: one

general subtable to record the sample values at symbolic indices and another to record the sample
values at specific numeric indices. By separating the caching table, the subtable for sample values at

non-symbolic indices can exploit the ordering of the indices. The interface to the cache obscures these

implementational details.

interval support, covering non-overlapping, non-contiguous intervals (Figure B-2-b); or

an explicit interval support and a single array, partially filled with sample values with

the remaining locations flagged by a unique marker (Figure B-2-c).

Between these two extremes in caching tables lies one that expects an uncountable,

ordered set of keys. Tables for caching sample values of discrete-time Fourier-transform

signals are of this type. Tables for caching sample values of z-transform signals are

also of this type, using an ordering function which treats the imaginary part of the

complex number as being more significant than the real part. Provisions similar to those

described in the preceding paragraph have been made for symbolic indices: the layout of

the cache uses the same format illustrated in Figure B-1. The subtables used for caching

discrete-time Fourier-transform and z-transform sample values at non-symbolic indices

do not require countability but do exploit the ordering. Examples of such data structures

include binary trees and heaps.

241

Subtable for
symbolic indices Subtable for

non-symbolic
(a hash table or indices

an association list)

Caching table

- 1~~~1---~~~ - 1 I1-l1II .--"~--U II IIYL----~~~~~~~~~~~. ~ -· 1 ~ ~ ~ ~ -- - --

a. the subtable for non-symbolic indices can be implemented using an
explicit interval support and a single array, with the array being completely
filled with the contiguous set of sample values falling within the support

support: [-2 -1] support: [1 4] support: [5 7]

sample values: sample values: sample values:

2E~ [15.9 7.2 3.4 1 16.7 18.6 1
Subtable for non-symbolic indices

b. the subtable for non-symbolic indices can be implemented using multiple pairs of
an explicit interval support and an array, each pair behaving as described in part (a).

c. the subtable for non-symbolic indices can be implemented using an
explicit interval support and a single array, with the array being partially
filled with sample values and the remaining locations being flagged by
a unique marker.

Figure B-2: Alternate implementations of the subtables for the non-symbolic indices
in countable, ordered key sets.

242

support: [-2 7]

sample values:

2.5 I-1.1 4.3 5.9 7.2 3.4 9.8 6.7 8.6

Subtable for non-symbolic indices

support: [-2 7]

sample values:

2.5 1 1 5.9 7.2 3.4 1 6.7 8.6

Subtable for non-symbolic indices

-- -- -------- --

c

Using these representations of a cache, the structure of the indexing domain is ex-

ploited while still maintaining a uniform interface. The rewards of organizing the caching

tables as described are twofold. In general, the full caching table of entries need not be

considered: in the case of the array-based representations, simply examining the explicit

support or supports suffices to determine whether or not an entry is present;' in the case

of uncountable, ordered representations, a small number of comparisons can be used to

determine the same information. Furthermore, in array-based representations, the local-

ity of neighboring samples speeds up responses to requests for intervals of sample values:

the sample values that are present have already been grouped and ordered, so that these

operations need not be repeated.

'If a partially filled array is used as a cache, the value stored in a single location in the array will
also need to be checked to insure that the value has been computed.

243

I^- II-I ��" 11-1 1111�-���1-c�-� �^-`�^�-'���IIY^~I""I- -L. -·LLI1^L^·IP_--L----Il�--X-^.�-. --l·_-ll_�-_IX�--·--- -- _ - -

244

__._ I �__ ��

Appendix C

Pattern Matching in ADE

The first thing considered in testing any rule or strategy is the matching pattern or

patterns. Thus, the process of matching is pervasive and important. For a strategy or

rule to be applicable, the current goal must match the matching pattern of the strategy

or backward-chaining rule: that is, G C R where G is the current goal and R is the

matching pattern of the strategy or rule. For a forward-chaining rule to be applicable,

the assertion must match the matching pattern of the rule: that is, A C R where A is

the assertion and R is the matching pattern of the rule. The description of the matching

process given here centers on the components of the matching patterns of the rule: thus,

the matching behavior will be described from the viewpoint of B in the process A C B.

* *: "*" matches anything and generates no new bindings.

· a symbol: Any symbol other than "*" can only be matched by itself.

* a signal or system: A signal or system can only be matched by itself; by its master,
if it is a composition operator; or by a composition operator using it as a master.

* a number or a symbolic number: A number or a symbolic number can only be
matched by another number or symbolic number to which it is known to be equal,
using previously imposed constraints.

* ?name@type or nametype$subpattern or ?name$subpattern, a matching variable:

245

1�1� _I _··I_ _1_ 1_11_ ___ I____LI_�I___·UI_^___--�-·1_-1^1^1�--�-1 LIIIII__-- i^l_ .�1_·_1�.·1---·-- ·̂ ^� -·��---·--� I -I-

- A matching variable can be matched by another variable, if the other variable
does not have a subpattern; and any previous bindings for either variable
matches the other variable and, when both variables have previous bindings,
the previous bindings match one another.

- A matching variable can be matched by any object, if the object matches any
previous binding for the variable; and the object is of type type; and, when
the variable has a subpattern, the object matches the subpattern.

(mp l mp 2 ...), a simple list of matching subpatterns:

- A list can be matched by a matching variable, if the list matches any previous
binding for the variable; and the list conforms to the variable type; and, when
the variable has a subpattern, the list matches the subpattern.

- A list can be matched by another list of equal length, if all of the corresponding
elements of the lists match, while sharing a single set of bindings.

- A list can be matched by a specific, inherent signal or a specific system if the
list is at least two elements long; and, using a single set of bindings, SPECIFIC-

MEMBER or A-MEMBER-OF matches mpl; and mp 2 matches the type or a
supertype of the signal or system; and the list of parameters of the signal or
system matches the remaining sublist from the list.

- A list can be matched by an abstract signal or system if the list is at least
two elements long; and, using a single set of bindings, A-MEMBER-OF matches
mpl; and mp2 matches the type or a supertype of the signal or system; and
the list of parameters of the signal or system matches the remaining sublist
from the list.

- A list can be matched by a generated signal if the list is at least two ele-
ments long; and, using a single set of bindings, OUTPUT-OF matches mp1; and
mp 2 matches the type or a supertype of the signal or system; and the list of
parameters of the signal or system matches the remaining sublist from the list.

· (mp1 ... mpN-1 &REST mpN), a keyed list of matching subpatterns:

- A keyed list can be matched by a matching variable, if the keyed list matches
any previous binding for the variable; and the variable imposes no type re-
strictions other than an optional restriction to lists; and the variable does not
have a subpattern.

- A keyed list can be matched by a simple list if the simple list is of length
greater than or equal to N-l; and, using a single set of bindings, all of the first
N-I corresponding elements of the lists match; and the remaining sublist from
the simple list matches the matching pattern mpN.

246

- A keyed list can be matched by a specific, inherent signal or a specific system if
N > 2; and, using a single set of bindings, SPECIFIC-MEMBER or A-MEMBER-
OF matches mpl; and mp 2 matches the type or a supertype of the signal or
system; and the the list of parameters of the signal or system matches the
remaining sublist from the keyed list.

- A keyed list can be matched by an abstract signal or system if N > 2; and,
using a single set of bindings, A-MEMBER-OF matches mp1; and mp 2 matches
the type or a supertype of the signal or system; and the the list of parameters
of the signal or system matches the remaining sublist from the keyed list.

- A keyed list can be matched by a generated signal if N > 2; and, using a
single set of bindings, OUTPUT-OF matches mpl; and mp2 matches the type
or a supertype of the signal or system; and the the list of parameters of the
signal or system matches the remaining sublist from the keyed list.

P?name@type$f element-subpattern} or name${ element-subpattern}, a list-matching
variable with an element pattern:

- A list-matching variable with an element pattern can be matched by another
variable, if the other variable does not have a subpattern; and, when there
is a previous binding for the other variable, the bound value is a list; and
any previous bindings for either variable matches the other variable; and,
when both variables have previous bindings, the previous bindings match one
another.

- A list-matching variable with an element pattern can be matched by a list,
if the list matches any previous binding for the variable; and the list is of
type type; and the elements of the list can be matched the subpattern. When
the subpattern itself contains variables, the element matches can have distinct
bindings for the subpattern variables which are non-parallel component vari-
ables but they must share identical bindings for all other subpattern variables.

· ?[name] or ?[name@type], a non-parallel component variable: The matching be-
havior for a non-parallel component variable is the same as for a simple variable.
Non-parallel component variables are used within the subpatterns of parallel list-
matching variables to allow non-parallel bindings. The non-parallel component
variable is ultimately bound to the list of the bindings from the individual com-
ponent matches. The' type restriction is imposed on the individual component
matches, not on this final list.

247

__·__·_1 1I^_11I11-~~~I -- LIIII-I-- ^C-~~^I II-·~~·~-·1--

248

Appendix D

Dominance relations between cost

measures in ADE

As described in Chapter 7, the cost of computing the system inputs is included in

the cost of the output signal and, as a result, cost structures must at some point be

added. If corresponding cost intervals in two cost structures which are being added have

the same indexing block size, the addition is straightforward: corresponding cost vectors

are simply added. When corresponding cost intervals do not have equal block sizes,

the addition is more involved. The approach taken in ADE to adding corresponding cost

intervals with unequal block sizes is to maintain separate cost intervals in the output cost

structures for each of the block sizes. Unfortunately, this approach further complicates

the determination of dominance between cost structures. The approach that is actually

used in ADE in determining dominance is described here.

Dominance between cost structures is determined by comparing the cost intervals in

the two cost structures which have the same block sizes and cover the same intervals.

Given two cost structures, the cost intervals can be broken up in such a way that each

cost interval with a particular grouping in either cost structure is associated with a corre-

sponding cost interval with the same grouping in the other cost structure. In particular,

if the corresponding cost interval with the same grouping is not present in the second

249

I·_I� I� _ _ _·
I 1__�1_ �1__1_ _C· _�_IIIILILIIL_1_Y____IIIIIIIIIIYsl�·LI

cost structure, a zero-cost cost interval with the correct grouping can be created. Thus,

the pair of cost structures is made up of two sets of corresponding indexing intervals

where each indexing interval has associated with it a number of cost intervals with differ-

ent groupings. The pairs of indexing intervals also correspond on each of the groupings.

Within a single indexing interval, interval4, the groupings are numbered from the small-

est grouping, as groupingi,l up to the largest grouping, groupingi,N. Each grouping in

either cost structure has associated with it a cost vector: for groupingij, the cost vector

vectorlij will be the cost of groupingij on intervali in the first cost structure and the cost

vector vector2ij will be the cost of groupingi,j on intervali in the second cost structure.

Using these notations, dominance is determined using the following recipe:

* Set both 1-DOMINATED-BY-2 and 2-DOMINATED-BY-1 to false.

* For i indexing across all the indexing intervals, intervali

- Set both EXCESS-COST-IN-1 and EXCESS-COST-IN-2 to the zero-cost vector.

- For j indexing from 1 through Ni across all the groupings for intervali, groupingi,j

* If both EXCESS-COST-IN-1 and EXCESS-COST-IN-2 are the zero-cost vector,

If vectorlij dominates vector2i,j, set 1-DOMINATES-2 to true and set
EXCESS-COST-IN-2 to the difference between vector2i,j and vectorli,j.

Otherwise, if vector2ij dominates vectorlij, set 2-DOMINATES-1 to
true and set EXCESS-COST-IN-1 to the difference between vectorlij and
vector2ij.

Otherwise, if vectorli,j and vector2i,j are not equal, set both 1-DOMINATES-
2 and 2-DOMINATES-1 to true.

* Otherwise, if EXCESS-COST-IN-2 is the zero-cost vector

If vectorli,j dominates vector2i,j+ EXCESS-COST-IN-2, set 1-DOMINATES-
2 to true and set EXCESS-COST-IN-2 to the difference between vector2,,j+
EXCESS-COST-IN-2 and vectorli,j·.

Otherwise, set both 1-DOMINATES-2 and 2-DOMINATES-1 to true.

* Otherwise, if EXCESS-COST-IN-1 is the zero-cost vector

If vector2ij dominates vectorli,j+ EXCESS-COST-IN-1, set 2-DOMINATES-

1 to true and set EXCESS-COST-IN-1 to the difference between vectorli,j+
EXCESS-COST-IN-1 and vector2i,j.

Otherwise, set both 1-DOMINATES-2 and 2-DOMINATES-1 to true.

250

- U

* If both 1-DOMINATES-2 and 2-DOMINATES-1 are true, neither cost structure
can dominate, so terminate signalling this condition.

(end loop of j across all the groupings of interval;)

(end loop of i across all the intervals)

* If both 1-DOMINATES-2 and 2-DOMINATES-1 are true, neither cost structure domi-
nates.

* Otherwise, if 1-DOMINATES-2 is true, the first cost structure dominates.

* Otherwise, if 2-DOMINATES-1 is true, the second cost structure dominates.

* Otherwise, neither cost structure dominates.

251

__1111__1_1·__ 11 ___ 1 1__1_1 __ _ __I_� �·ILI __LII^_�___^_1_11�1II_·-X-P-YIII^�--·� -�.

252

Bibliography

Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer Programs,
MIT Press, Cambridge, MA, 1985.

Barnwell, T. P., Hodges, C. J. M., and Randolf, M., "Optimal Implementation of Single
Time Index Flow Graphs on Synchronous Multiprocessor Machines," In Proceedings
ICASSP '82, pp. 679-682, 1982.

Barnwell, T. P. and Schwartz, D. A., "Optimal Implementation of Flow Graphs on
Synchronous Multiprocessors," In Proceedings Asilomar Conference on Circuits and
Systems, pp. 188-194, 1983.

Bentz, B., "An Automatic Programming System for Signal Processing Applications,"
Pattern Recognition, 18(6):491-495, 1985.

Chan, D. S. K. and Rabiner, L., "Theory of Roundoff Noise in Cascade Realizations of
Finite Impulse Response Digital Filters," Bell System Technical Journal, 50(3):329-
345, March 1973a.

Chan, D. S. K. and Rabiner, L., "An Algorithm for Minimizing Roundoff Noise in Cas-
cade Realizations of Finite Impulse Response Digital Filters," Bell System Technical
Journal, 50(3):347-385, March 1973b.

Chefitz, E. L., Automated Design of Signal-Processing Systems based on Qualitative Sig-
nal Descriptions, Master's thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1987.

Crochiere, R. E. and Rabiner, L. R., "Optimum FIR Digital Filter Implementations
for Decimation, Interpolation, and Narrow-Band Filtering," IEEE Trans. Acoustics,
Speech, and Signal Processing, 23(5):444-456, October 1975.

Dove, W. P., Myers, C. S., and Milios, E. E., An Object-Oriented Signal Processing
Environment: The Knowledge-Based Signal Processing Package, R.L.E. Technical
Report 502, Massachusetts Institute of Technology, Cambridge, MA, 1984.

Dove, W. P., Knowledge-based Pitch Detection, PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1986.

253

-~~ ~ ~ II _ - ·-__ I I.-_ -_..- -- C----·II�··II-P--I_-��YII�--l-�-_-.lg·ll ·

DSP Committee, IEEE Acoustics, Speech and Signal Processing Society, Programs for
Digital Signal Processing, IEEE Press, New York, NY, 1979.

Fikes, R. E. and Nilsson, N. J., "STRIPS: A New Approach to the Application of The-
orem Proving to Problem Solving," Artificial Intelligence, 2(3/4):189-208, Winter
1971.

Fogg, D. C., Assisting Design Given Performance Specifications Involving Multiple Crite-
ria, PhD proposal, Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, MA, 1988.

Gethbffer, H., Hoffman, K., Lenzer, A., Roethe, N., and Waldschmidt, H., "A Design
and Computing System for Signal Processing Applications," In Proceedings ICASSP
'79, pp. 688-691, 1979.

Geth6ffer, H., "SIPROL: A High Level Language for Digital Signal Processing," In
Proceedings ICASSP '80, pp. 1056-1059, 1980.

Henke, W., MITSYN - An Interactive Dialogue Language for Time Signal Processing,
R.L.E. Technical Report TM-1, Massachusetts Institute of Technology, Cambridge,
MA, 1975.

Hicks, J. E., Jr., A High-Level Signal Processing Programming Language, L.C.S. Tech-
nical Report 414, Massachusetts Institute of Technology, Cambridge, MA, 1988.

Hsiao, C.-C., "Polyphase Filter Matrix for Rational Sampling Rate Conversions," In
Proceedings ICASSP '87, pp. 50.4.1-50.4.4, 1987.

Jackson, L. B., "On the Interaction of Roundoff Noise and Dynamic Range in Digital
Filters," Bell System Technical Journal, 49(2):159-184, February 1970.

Jackson, L. B., Digital Filters and Signal Processing, Kluwer Academic Publishers,
Hingham, MA, 1986.

Jaffe, J. S., and Richardson, J. M., "A Code-Division Multiple Beam Imaging System,"
OCEANS '89, to be published 1989.

Johnson, D. H., "Signal Processing Software Tools," In Proceedings ICASSP '84,
pp. 8.6.1-8.6.3, 1984.

Kelly, J. L., Jr., Lochbaum, C., and Vyssotsky, V. A., "A Block Diagram Compiler,"
Bell System Technical Journal, 40(3):669-676, May 1961.

Kopec, G. E., The Representation of Discrete-Time Signals and Systems in Programs,
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1980.

254

I)

Kopec, G. E., "The Signal Representation Language SRL," IEEE Trans. Acoustics,
Speech, and Signal Processing, ASSP-33(4):921-932, August 1985.

Lam, M. S. L., A Systolic Array Optimizing Compiler, PhD thesis, Carnegie-Mellon
University, Pittsburgh, PA, 1987.

The Mathlab Group, MACSYMA Reference Manual, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, 1983.

Markel, J. D., "FFT Pruning," IEEE Trans. Audio and Electroacoustics, AU-19(4):305-
311, December 1971.

Morris, L., "Automatic Generation of Time-Efficient Digital Signal Processing Software,"
IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-25(1):74-79, February
1977.

Myers, C. S., Signal Representation for Symbolic and Numerical Processing, PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1986.

Nagy, P. A. J., MaMiS: A Programming Environment for Numeric / Symbolic Data
Processing, Master's thesis, Link6ping University, Linkoping, Sweden, 1988.

Oppenheim, A. V., and Schafer, R. W., Discrete-Time Signal Processing, Prentice-Hall,
Inc., Englewood Cliffs, NY, 1989.

Prasanna, G. N. S., Structure Driven Scheduling of Linear Algebra and Digital Signal
Processing Problems, PhD proposal, Massachusetts Institute of Technology, Research
Laboratory of Electronics, Cambridge, MA, 1988.

Rader, C. M., "Speech Compression Simulation Compiler," Journal of the Acoustical
Society of America, 37(6):1199, June 1965.

Rader, C. M., "A Simple Method for Sampling In-phase and Quadrature Components,"
IEEE Trans. Aerospace and Electronic Systems, AES-20(6):821-824, November 1984.

Rand, R. H., "Computer Algebra in Applied Mathematics: an Introduction to MAC-
SYMA," Volume 94 of Research Notes in Mathematics, Pittman Advanced Publish-
ing Program, Aulander, NC, 1984.

Regalia, P. A., and Mitra, S. K., "Kroenecker Products, Unitary Matrices, and Signal
Processing Applications," SIAM Review, to be published 1989.

Richardson, J. M., A Code-Division Multiple Beam Sonar Imaging System, Engineer's
thesis, Massachusetts Institute of Technology, Cambridge, MA, 1989.

Sacks, E., Qualitative Mathematical Reasoning. Master's thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1982.

255

___ I ·I � I _I_II _· p~l l I_ 1_ ~ 1_1_· 1 _____1_ 1~__~~___l___ll_- ----- _I_~-

Schwartz, D. A., Synchronous Multiprocessor Realizations of Shift-Invariant Flow
Graphs, PhD thesis, Georgia Institute of Technology, Atlanta, GA, 1985.

Signal Technology, Inc, ILS: Interactive Laboratory System, Goleta, CA 93117.

Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier Trans-
form," IEEE Trans. Audio and Electroacoustics, AU-17(2):93-103, June 1969.

Siskind, J. M., Southard, J. R., and Crouch, K. W., "Generating Custom High Per-
formance VLSI Designs from Succinct Algorithmic Descriptions," in Proceedings,
Conference on Advanced Research in VLSI, pp. 28-40, 1982.

Skinner, D. P., "Pruning the Decimation in Time FFT Algorithm," IEEE Trans. Acous-
tics, Speech, and Signal Processing, ASSP-34(2):305-311, April 1976.

Smith, S. G., "Full Span Compilation of DSP Hardware," In Proceedings ICASSP '87,
pp. 13.6.1-13.6.4, 1987.

Stefik, M. and Bobrow, D. G., "Object-Oriented Programming: Themes and Variations,"
The AI Magazine, 6(4):40-62, Winter 1986.

Symbolics, Inc., Symbolics Common Lisp: Language Concepts, Symbolics, Inc., Cam-
bridge, MA, 1986.

Traub, K. R., A Compiler for the MIT Tagged-Token Dataflow Architecture, L.C.S.
Technical Report 370, Massachusetts Institute of Technology, Cambridge, MA, 1986.

Zissman, M. A., An Array Computer for Digital Signal Processing, Master's thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1986.

Zissman, M. A., O'Leary, G. C., and Johnson, D. H., "A Block Diagram Compiler
for a Digital Signal Processing MIMD Computer," In Proceedings ICASSP '87,
pp. 43.1.1-43.1.4, 1987.

256

_ U

