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Abstract  

 
The ability to switch between tasks reflects a fundamental part of our intelligence.  A 

foundation of this ability lies in perceiving and processing information pertinent to the situation 
at hand.  It is our capacity to attend to specific objects and, more importantly, our ability to 
switch our attention from object to object, that supports complex cognitive behavior.  
Therefore, by understanding the neural mechanisms involved in directing attention we hope to 
better understand cognition.  Previous work investigating the ability to control attention has 
suggested that attention is influenced from two sources – attention can either be driven from 
external sources in an bottom-up, exogenous manner or directed internally in an top-down, 
endogenous manner.   This project will utilize two different forms of visual search in order to 
emphasize these two different types of attentional control.  Both the prefrontal and parietal 
regions are implicated as the source of this control.  In order to investigate their relative roles 
we recorded simultaneously from both parietal cortex (specifically, the lateral intraparietal 
cortex) and prefrontal cortex (specifically, the frontal eye fields and dorsolateral prefrontal 
cortex). 

 
We address four main questions.  First, we contrast the respective roles of frontal and 

parietal cortex in the direction of attention when it is under either top-down or bottom-up 
control.  We use the timing of attention signals between frontal and parietal cortex to establish 
that frontal cortex directs top-down attention back into parietal cortex, while bottom-up 
attention is reflected first in parietal cortex, flowing forward to frontal cortex.  Secondly, we 
investigated the role of synchrony and the inter-areal relationships underlying top-down and 
bottom-up control of attention.  Our results suggest synchrony between areas shifts as the task 
shifts, likely aiding in the selection of the network best suited to the current task.  Third, we 
compare the neural mechanisms between internal and external control of attention.  Finally, 
we investigate the neural correlates of the putative parallel and serial mechanisms underlying 
visual search, finding support for the existence of a serial search and for the role of the frontal 
eye fields in the direction of spatial attention. 

 
Thesis Supervisor: Earl K. Miller 
Title: Picower Professor of Neuroscience  
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Chapter 1: General Introduction  
 

The Balance of Cognition 

Cognition is the balance between external stimulation and internal motivation.  It is important 

to quickly perceive important (salient) changes in our environment so that we can respond to them 

when necessary.  However, it is also necessary to avoid becoming locked to external stimuli – only being 

able to represent and respond to the brightest, loudest, flashiest thing would result in simple, boring 

behaviors.  Much of intelligent behavior relies on internal motivations such as goals and rules.  If our 

behavior is only dictated by the most salient object in the environment it is difficult to maintain the 

consistent representations necessary for long-term, directed actions that are fundamental to intelligent 

behavior. 

 

Understanding how the brain balances these competing interests will provide a basis for gaining 

insight into cognition.  One manner in which to approach this more general question is through the 

study of attention.  Attention is the ability to select specific neural representations, either externally or 

internally generated, and focus upon them.  Importantly, for the current study, there is psychophysical, 

imaging, and electrophysiological evidence that attention can be driven both internally (endogenously) 

or externally (exogenously), making it an ideal platform from which to investigate our ability to balance 

these competing influences.   

 

An additional advantage of studying attention is that there is an expansive and rich literature, 

with most of it devoted to visual attention, providing a strong foundation on which to build the current 

study.  Many of the major results will be highlighted below.  Furthermore, attention is involved in many 

cognitive behaviors, including possibly playing a role in the binding of features within an object 

(Treisman and Gelade, 1980; Friedman-Hill et al., 1995; Treisman, 1996, 1998; Treisman and Kanwisher, 

1998), in working memory (Smith and Jonides, 1997; Cabeza and Nyberg, 2000; Mayer et al., 2007; van 

Swinderen, 2007),  and even as a possible gateway into the study of consciousness (Crick and Koch, 

1998, 2003).  Therefore, in addition to furthering our understanding of cognitive control of behavior, 

deeper insight into attention will continue to expand our understanding of many other parts of 

cognition. 
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The Advantage of Attention 

Paralleling the cognitive advantages of attention, visual attention provides a similar advantage 

to our visual perception.  In order to perceive an object with greater resolution we naturally focus on it, 

drawing our attention to it, usually immediately followed by a saccade.  One reason that attention plays 

a central role in visual perception is the incredibly rich nature of our visual environments.  Although a 

natural visual scene has some structure, there are still a large variety of scenes, each with a large 

amount of data which needs to be processed.  The retina itself does a fairly good job of capturing this 

information, as it is estimated to send 10 million bits of information into the thalamus every second 

(Koch et al., 2004; Koch et al., 2006).  The computational power to process and analyze such complex 

scenes is tremendous; this is one of the many problems facing computer vision.  The visual system 

appears to approach the problem through a hierarchical (although heavily interconnected) network of 

visual areas (Felleman and Van Essen, 1991).  Areas lower in the hierarchy respond to simple visual 

parameters such as orientation(Hubel and Wiesel, 1968), while areas farther along in the hierarchy 

usually respond to more complex stimuli.  For example, visual categorization seems to exist only at the 

highest levels of the visual system, after several stages of visual processing (Freedman et al., 2001; 

Freedman and Assad, 2006).  Additionally, neurons in higher level regions respond to stimuli presented 

over a much larger visual area – neurons in V1 have receptive fields 0.2o in diameter while neurons in TE 

and TEO have receptive fields spanning 10o or more (Hubel and Wiesel, 1968; Gross et al., 1969; Gattass 

et al., 1981; Gattass et al., 1988).  Although this is costly in terms of resolution, it allows for the 

computational load to be reduced by paring down the visual scene to something more manageable.  

Visual attention compensates for this reduced resolution by allowing specific portions of the visual 

scene to be processed to a greater degree.  This spatial enhancement is often referred to as the 

‘spotlight’ of attention (Posner et al., 1980).  This can compensate for the loss of acuity of higher visual 

areas by collapsing the receptive field of a neuron to the attended region (Reynolds et al., 1999; 

Womelsdorf et al., 2006a).  These perceptual advantages of directing visual attention can be measured 

psychophysically.  For example, focusing visual attention to a particular stimulus can increase acuity for 

simple, low-level parameters such as orientation, color, and spatial frequency as well as complex visual 

features such as form and categorization (Corbetta et al., 1990; Solomon et al., 1997).  Directing 

attention to a location also speeds up the reaction time to a stimulus appearing at that location, even 

across modalities (Posner et al., 1980; Lange and Roder, 2006). 
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Psychophysical Evidence for Endogenous and Exogenous Control of Attention 

Visual attention is believed to be under both endogenous (internal) and exogenous (external) 

control.  The majority of evidence for this disassociation comes from visual search experiments.  Visual 

search experiments ask the subject to find a particular stimulus amongst a display that is cluttered with 

distractors.  Experimental evidence has shown that the speed at which subjects can detect and find the 

target stimulus is determined by the number and type of distractors.  For example, under most 

conditions, if the distractors are visually consistent across the entire visual array - differing from the 

target in a single, simple dimension (such as color, orientation, or spatial frequency) - reaction times are 

fast and do not depend on the number of items in the display (Treisman and Gelade, 1980).  So, there 

are no costs, in either reaction time or performance, to adding another distractor to the visual array 

(Treisman and Gelade, 1980).  Under these conditions the target is said to “pop-out” from the 

distractors.  Objects that suddenly appear, are brighter, or faster moving can also automatically draw 

attention to themselves (Jonides and Yantis, 1988; Treisman and Gormican, 1988). 

 

In contrast, if the distractors are not visually uniform, reaction time to find the target increases 

linearly with the number of distractors in the display (Treisman and Gelade, 1980; Treisman and 

Gormican, 1988).  In the classic example, if the target is a conjunction of two features (e.g., colored red 

and orientated vertically) and the distractors consist of stimuli that share one or the other dimension 

(e.g., a red horizontal bar, or a blue vertical bar), then adding another distractor will increase the 

reaction time linearly.  Under these conditions, the target no longer pops out and therefore the subject 

must exert effort in searching for it. 

 

The neural mechanisms underlying these two types of search have been the subject of intense 

debate.   Two major theories have been put forth.  The work of Ann Treisman and colleagues has 

suggested that these two forms of visual search are due to two distinct mechanisms with the brain.  

They propose that the visual system is able to process large portions of the visual field in parallel up to a 

certain point, after which attention must be used to select a particular portion for further analysis 

(Treisman and Gelade, 1980; Treisman and Gormican, 1988).  Under this model the initial, more basic 
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analysis, which is carried out in parallel, forms the basis for pop-out search.  More difficult search 

requires top-down selection of specific stimuli, necessitating a serial approach as the spotlight of 

attention is shifted from object to object.  This model predicts the empirically observed reaction time 

differences and suggests that there exists a specific level of complexity after which subjects can no 

longer perform searches in a parallel, pop-out manner. 

 

An alternative model championed by John Duncan, Jeremy Wolfe, and colleagues, suggests that 

true serial search is a rarity, limited to very specific circumstances not common in everyday scenes.  

Instead, they suggest a gradation of parallel search – as in Treisman’s model, easy search is done quickly 

in early visual areas, however, more complicated search does not require serial mechanisms but rather 

still occurs in parallel with internal, top-down influences guiding the parallel search towards items 

related to the target (Duncan and Humphreys, 1989; Wolfe et al., 1989; Cave and Wolfe, 1990; Duncan 

et al., 1997; Wolfe and Horowitz, 2004).  Evidence for Duncan’s model comes from experimental results 

showing the reaction time cost of an added distractor does not fall into two limited categories (parallel 

or serial) but falls along a continuum from fast, efficient search to slower, costly search (McLeod et al., 

1988; Duncan and Humphreys, 1989; Wolfe and Horowitz, 2004). 

 

Although these two models differ in many important ways, there are several commonalities that 

provide the basis for the current set of experiments.  First, both models predict a parallel component 

that allows for the selection of the target stimulus under pop-out conditions.  Computational modeling 

has suggested that this parallel search can be done via a saliency map (Itti and Koch, 2000, 2001).  The 

saliency map charts the degree of salience of each object within the entire visual field.  Salience can be 

thought of as the degree of ‘pop-out-ness’ of an object in the visual field and can be computed for each 

object from its features such as its relative brightness or movement (Itti and Koch, 2000, 2001).  These 

models have even been extended to spiking networks (Niebur and Koch, 1994; de Brecht and Saiki, 

2006) and several brain regions have been proposed as the anatomical instantiation of the saliency map 

including visual cortex (Li, 2002),  parietal cortex (Gottlieb et al., 1998; Colby and Goldberg, 1999; 

Kusunoki et al., 2000; Bisley and Goldberg, 2003) and FEF (Thompson et al., 1997; Schall and Bichot, 

1998).  These areas are discussed in greater detail below.  Since salience is purely defined by the 
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features of the objects in the visual field, it is a bottom-up process.  In other words, salience is defined 

externally, with attention automatically drawn to the most salient stimulus. 

 

A second commonality between the two models is the requirement for internal direction of 

attentional selection under difficult search conditions.  The selection process uses goal directed 

information about the identity of the target to either guide the parallel search under Duncan’s model or 

to direct the attentional spotlight and compare a putative object with the target under Treisman’s 

model.  This selection relies on the memory of the target during search.  Therefore attention must arise 

internally, from within the brain, not the external world. 

 

This dichotomy of internal and external control of visual attention forms the basis for the 

current study – both models suggest that visual search results from the interaction between a bottom-

up, externally, driven process and a top-down, internally, driven process.  Leveraging this for the current 

study allows us to use a comparison of pop-out search with conjunctive, difficult, search in order to 

contrast how the brain implements bottom-up and top-down control of behavior. 

 

Loss of Attentional Control 

Deficits in attentional control lead to diverse behavioral issues.  The most common disease 

directly effecting visual attention is often the result of a stroke affecting the parietal cortex.  These 

patients typically exhibit hemi-spatial neglect (Pouget and Driver, 2000; Hillis, 2006; Nachev and Husain, 

2006).  Initially, they are unable to perceive any objects in the affected hemisphere, but over time their 

visual perception slowly recovers to near-normal levels.  However, even after recovery, while the patient 

is able to perceive objects presented to affected hemisphere when presented alone, if a competing 

stimulus is put into the unaffected hemisphere the patients are no longer able to perceive the original 

object in the affected hemisphere.  This has been suggested to reflect the patients’ inability to select 

objects within the affected hemisphere. 
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A more common disease involving the loss of attentional control is Attention Deficiency-

Hyperactivity Disorder (ADHD) or Attention Deficit Disorder (ADD).  An estimated 8 to 10% of school-age 

children are diagnosed as having ADHD/ADD in the United States, making it one of the most prevalent 

diseases among children (Committee on Quality Improvement, 2000).  The deficits underlying ADHD are 

not well understood, but psychophysical studies of children with ADHD suggests they have trouble 

disassociating attention from one location to in order to shift to a new location (McDonald et al., 1999).  

Current theories about the cause of ADHD have focused on differential activation in prefrontal cortex 

and basal ganglia, possibly leading to deficits in cognitive control (Rubia et al., 1999; Zang et al., 2005). 

 

The Effect of Attention on Neural Representations 

Many of the psychophysical advantages conveyed by directing attention to a particular stimulus 

have parallel benefits on neural selectivity when attention is directed towards a neuron’s receptive field.  

Typically neurons in the visual cortex respond in a varied manner across stimulus space – they have a 

tuning curve for some stimulus dimension.  When attention is directed into a neuron’s receptive field, 

the gain of its tuning curve is increased.  In other words, the neuron becomes better able to discriminate 

between stimuli across its preferred dimension.  This is true for selectivity in V2 and V4 (Motter, 1993; 

Luck et al., 1997), IT (Chelazzi et al., 1993; Miller et al., 1993; Chelazzi et al., 1998), and MT and MST 

(Treue and Maunsell, 1996; Treue and Trujillo, 1999; Martinez-Trujillo and Treue, 2002).  Attentional 

effects in striate cortex are under debate, with some evidence that they exist (Motter, 1993; Sharma et 

al., 2003) and some evidence they do not exist (Moran and Desimone, 1985).  The exact mechanism of 

attentional modulation on neural firing rates is not clear.  For orientation and direction selectivity there 

is evidence for a multiplicative effect – the tuning curve of a single neuron is amplified when attention is 

directed towards its receptive field (McAdams and Maunsell, 1999; Treue and Trujillo, 1999).  In 

contrast, the gain in contrast sensitivity seen when attention is directed towards a stimulus appears to 

be the result of an additive effect, such that the tuning curve is boosted by a constant (Reynolds et al., 

2000).  However, some have argued for a multiplicative effect in contrast gain as well (Martinez-Trujillo 

and Treue, 2002; Carrasco, 2006; Williford and Maunsell, 2006).  Attentional effects can also be 

described as ‘shrinking’ of the receptive field of a neuron such that the neuron only responds to the 

selected stimulus (Reynolds et al., 1999; Womelsdorf et al., 2006a).  Finally, the effect of attention has 

also been suggested to be equivalent to the addition of contrast to the attended stimulus (Reynolds et 

al., 2000; Martinez-Trujillo and Treue, 2002).  However, this analogy does not appear to fully explain the 



16 | I n t r o d u c t i o n  
 

effect of attention on neural activity as contrast is known to be directly correlated with earlier response 

latency, while direction of attention to a stimulus does not appear to decrease the response latency of a 

neuron (Lee et al., 2007). 

 

Biased Competition Model 

The biased competition model is currently the most accepted theory on how attentional control 

is implemented in the visual stream.  The model, proposed by Desimone and Duncan, suggests that 

selection occurs at every level of the visual system through lateral competition (Desimone and Duncan, 

1995).  These competitive interactions are able to select the object most strongly represented, whether 

due to the physical nature of the stimulus or due to a top-down biasing signal selecting a specific object. 

 

For example, when a single stimulus is presented it drives selective neurons strongly, which pass 

information on to the next layer.  This process continues throughout the visual stream, resulting in 

representation of that stimulus throughout the entire brain.  Similarly, when two or more stimuli are 

presented alongside one another, they are all represented early on.  However, as multiple sets of 

neurons respond, each selective for one of the visual stimuli, lateral inhibition between these groups of 

neurons causes competition for representation.  Similar to the psychophysical models, this competition 

can be biased from one of two different sources: either externally driven or internally motivated.  A 

more salient stimulus in the visual field leads to a stronger neural representation (Allman et al., 1985; 

Desimone et al., 1985; Reynolds and Desimone, 2003), allowing that stimulus to win the competition for 

representation in downstream cortical regions.  Alternatively, if attention is directed to a stimulus then 

top-down signals can bias competition towards the selected stimulus by giving the representation a 

boost.  The model allows for the top-down influence to be either through an attentional spotlight, 

through boosting a particular stimulus parameter (such as color), or even a combination of both 

methods. 

 

Electrophysiological evidence for the biased competition model comes from experiments done 

by Desimone’s group (Reynolds et al., 1999).  In this study, single neurons in V2 and V4 were recorded 

while either one or two stimuli were presented in the neuron’s receptive field.  When either stimulus 
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was presented alone, the neuron responded preferentially to one or the other stimulus.  When both 

were presented simultaneously and attention was directed away from the receptive field, the neural 

response was in between the response to each stimulus alone – as if the two stimuli were competing 

with one another, resulting in an average response.  However, when attention was directed to either 

stimulus within the receptive field, the response was as if only the attended stimulus was presented.  In 

this case, the competition has been biased through top-down selection towards one of the stimuli, 

allowing for that stimulus to win representation.  Further support for the model has come in the form of 

computational studies (Szabo et al., 2004; Deco and Rolls, 2005) and anatomical evidence suggesting a 

canonical cortical circuit that may support similar computation (Moldakarimov et al., 2005). 

 

Although the biased competition model captures much of the electrophysiological and 

behavioral effects of attention, neither the source nor the manner of the biasing signal is currently fully 

understood.  Although this question is the focus of this thesis, previous work has provided evidence for 

the role of synchronous activity as a mechanism for biasing signals, and for the fronto-parietal network’s 

involvement in the direction of attention.  These results are reviewed below. 

 

Synchronous Activity as a Biasing Signal 

Synchronous firing has been proposed to be the manner through which the representation of a 

selected object can be increased (Aertsen et al., 1989; Engel et al., 2001; Salinas and Sejnowski, 2001; 

Fries, 2005; Womelsdorf and Fries, 2007).  As the postsynaptic potential associated with an incoming 

action potential has limited duration, coincident inputs will have increased efficacy compared to non-

coincident inputs.  Therefore, if a population of neurons representing a single stimulus synchronizes 

their firing activity, that stimulus will be more strongly represented in downstream areas.  This has been 

proposed to be the manner through which specific representations are biased (Aertsen et al., 1989; 

Engel et al., 2001; Salinas and Sejnowski, 2001; Fries, 2005; Womelsdorf and Fries, 2007). 

 

Electrophysiological evidence for a role of synchrony in attention comes from Desimone’s lab 

(Fries et al., 2001; Womelsdorf et al., 2006b).  Monkeys were directed to either attend to an object 

inside or outside the receptive field of a V4 neuron.  They were required to monitor the stimulus for a 
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slight color change, to which they responded as quickly as possible.  Both the spiking activity of multi-

units (which is spiking activity not sorted into specific neurons) and local field potentials (oscillatory 

neural activity at low frequencies) were recorded.  The authors found that when attention was directed 

into the receptive field of a V4 neuron the combined spiking activity of multiple neurons became 

increasingly synchronized with the underlying local field potential in an upper frequency band (30 – 70 

Hz), while becoming less synchronized to low frequency band (5 – 12 Hz).  Further analysis suggested 

that when the synchrony between spikes and LFPs was highest in the upper frequency band, the 

animals’ reaction time was faster, suggesting that synchrony affects the ability of the animal to perceive 

and respond to changes.  A more recent experiment from Bichot, Rossi and Desimone (Bichot et al., 

2005) using free-viewing visual search found similar effects in V4 during free search – when searching 

for objects synchrony between local field potentials increased significantly in the upper frequency band 

for objects sharing a feature of the target.  Taken together, these results suggest that the gain in 

response with attention could be implemented as an increase in the synchronous firing of neurons.  

Theoretical work has suggested that this gain modulation is optimal within the upper frequency band 

(Salinas and Sejnowski, 2000, 2001; Tiesinga et al., 2002; Tiesinga and Sejnowski, 2004; Mishra et al., 

2006). 

  

Synchrony may also play a more generalized role in regulating the flow of information (Bressler, 

1996; Engel et al., 2001; Salinas and Sejnowski, 2001).  Similar to its role in attention, synchronous 

activity may help to strengthen different pathways, acting as a way to dynamically shift the effective 

connectivity between regions as needed for a particular task.  Support for this model is sparse, but 

experiment evidence from cats suggests that lower frequencies tend to be more strongly synchronized 

when cats are purposefully controlling their behavior, while higher frequencies are more strongly 

synchronized when the animal is passively viewing the same stimulus (von Stein et al., 2000).  Further 

experimental evidence has suggested that different frequency bands can lock to one another (Schanze 

and Eckhorn, 1997; von Stein et al., 2000; Palva et al., 2005).  Finally, synchrony has also been shown to 

increase between neurons with similar selectivity, suggesting a mechanism for selecting specific sub-

networks of neurons (Womelsdorf et al., 2007).  Overall, these results not only point to a role for 

synchrony in providing the biasing signal underlying attention, but also as a more general mechanism for 

dynamically modulating the effective connectivity between areas.  
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Brain Regions Involved in the Control of Attention 

While electrophysiological recordings are very well suited for understanding how single neurons 

from a particular region is involved in specific behaviors, until recently, there has been difficulty in 

recording from multiple neurons simultaneously.  However, with the introduction of functional MRI 

(fMRI), it is now possible to image activity across the entire brain simultaneously, albeit at a much lower 

resolution. 

 

Several groups have used fMRI to determine what brain regions are involved in the control of 

attention.  Almost all studies have isolated regions in the parietal cortex (specifically within the 

intraparietal sulcus) as well as regions in prefrontal cortex, including the human analogue of the frontal 

eye fields in the precentral sulcus (Corbetta and Shulman, 2002).  When human subjects were asked to 

attend to a location in order to wait for the presentation of a stimulus (Corbetta et al., 1993; Coull and 

Nobre, 1998), or were instructed to attend to either motion or color, regions in the precentral sulcus 

(human FEF) and intraparietal sulcus were activated (Liu et al., 2003).  This pattern of results were true 

for several other studies attempting to isolate the control of attention, leading to the suggestion of the 

existence of a fronto-parietal network involved in the control of attention (Corbetta et al., 1993; 

Corbetta et al., 1998; Coull et al., 1998).  Furthermore, these results have been used to suggest a 

common framework within the brain for different modes of attentional selection (i.e. attending to 

location, color, motion, etc) (Liu et al., 2003; Yantis and Serences, 2003). 

 

The fMRI literature provides us with a good idea of which brain regions are involved in 

controlling attention.  However, due to the long timecourse of fMRI, it is impossible to establish the 

relative timing of selectivity during the allocation of attention.  Without the time-course, it is difficult to 

determine the flow of information, and therefore impossible to ascertain which brain regions are in 

control of behavior under different circumstances.  In order to determine the flow of information, one 

must record neural activity simultaneously from all of the brain regions potentially involved in the 

control of attention.  In primates, the analogous regions seem to be the lateral intraparietal area (LIP), 

the lateral prefrontal cortex (specifically dorsolateral prefrontal cortex, dlPFC), and the frontal eye fields 

(FEF).  Electrophysiological findings from these regions are reviewed below. 
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Neural Responses in Lateral Intraparietal (LIP) Region 

The lateral intraparietal (LIP) region lies along the lateral bank of the intraparietal sulcus and has 

been found to be involved in a large variety of visual and visuo-motor tasks.  The parietal cortex lies 

between visual cortex and frontal cortex and is believed to be one of the first areas to begin the 

transformation of sensory input from purely reflective in nature into more complex, goal, and 

movement directed representations.  LIP lies along the dorsal stream of the visual system in the monkey 

and receives feed-forward inputs from V3, V3A, V4, MT, MST, and TEO as well as being reciprocally 

connected with other parietal regions and frontal regions FEF and dlPFC (Schwartz and Goldman-Rakic, 

1984; Andersen et al., 1990; Blatt et al., 1990; Stanton et al., 1995; Lewis and Van Essen, 2000; Ferraina 

et al., 2002).  When LIP is stimulated the monkey will make a saccade to the response field of the 

neuron, suggesting a possible role in saccadic eye movements (Schiller and Tehovnik, 2001).  Projections 

to the superior colliculus are believed to underlie the microstimulation effects found in LIP (Schiller and 

Tehovnik, 2001; Ferraina et al., 2002).  In addition, LIP neurons have also been found to be selective for 

smooth pursuit eye movements (Bremmer et al., 1997). 

 

Electrophysiological evidence from LIP has shown the area to play several roles.  Early work 

demonstrated that the area shows delay activity during a delayed spatial memory task.  During this task 

a monkey is required to fixate, during which a brief stimulus is flashed in their periphery.  The animal 

must maintain fixation during a delay until instructed to release, at which point it makes a single saccade 

to the remembered flashed location.  LIP neurons show high activity throughout the entire delay when 

the stimulus is flashed in the neuron’s receptive field (Barash et al., 1991).  This delay activity is unique 

to LIP amongst other regions in the parietal cortex, making it an effective way to isolate LIP. 

  

Recent experiments have found LIP to also show activation with the direction of attention.  LIP 

neurons respond transiently to a flashed stimulus in the periphery, an occurrence that is known to 

temporarily draw attention to it (Bisley and Goldberg, 2006).  LIP neurons will also reflect the current 

location of attention, regardless of whether the animal makes a saccade to that location or not (Bisley 

and Goldberg, 2006).  In visual search tasks, LIP neurons have largely been studied under pop-out 

conditions, and have been shown to reflect the target location fairly early (at approximately 90 ms) 
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(Ipata et al., 2006; Thomas and Pare, 2007).  Finally, LIP neurons have been shown to reflect attentional 

priority of the represented location (Bisley and Goldberg, 2003). 

 

LIP also shows flexibility in its representations, morphing to represent task-related information.   

For example, LIP neurons have been found to carry color information when it is a task-relevant 

parameter, but not when it is irrelevant to the current task (Toth and Assad, 2002).  Furthermore, LIP 

neurons have been shown to encode shape information (Sereno and Maunsell, 1998) and correlate 

strongly with the perceived direction of motion of a random-dot stimulus (Williams et al., 2003).  They 

have even shown category related information for random-dot stimuli (Freedman and Assad, 2006).  LIP 

activity has also been related to more cognitive variables such as time (Leon and Shadlen, 2003), 

decision making (Platt and Glimcher, 1999; Shadlen and Newsome, 2001), reasoning (Yang and Shadlen, 

2007) and reward (Bendiksby and Platt, 2006) when the animal’s behavior is reported with a saccade.  

These results suggest that LIP is a very flexible region and, taken along with its suggested role in the 

allocation of attention, have led to it being proposed to be the anatomical instantiation of the saliency 

map (Gottlieb et al., 1998; Colby and Goldberg, 1999; Kusunoki et al., 2000; Bisley and Goldberg, 2003).  

This role for LIP fits well with previous results, and, we believe, fits well with the results of this thesis. 

 

Neural Responses in Dorsolateral Prefrontal Cortex (dlPFC) 

The prefrontal cortex sits at the anterior pole of the brain and reaches its greatest elaboration 

and relative size in the primate, especially human, brain (Fuster, 1995), suggesting it plays a role in our 

ability for advanced cognition and goal-directed behaviors.  Recent imaging work has also shown the 

size of prefrontal cortex is directly correlated with intelligence in adult humans (Haier et al., 2004).  The 

PFC seems anatomically well situated to play a role in cognitive control.  It is in the position to be a 

microcosm of cortical processing, able to synthesize a wide range of external and internal information 

and also exert control over much of the cortex.  The PFC receives and sends projections to most of the 

cerebral cortex (with the exception of primary sensory and motor cortices) as well as all of the major 

subcortical systems such as the hippocampus, amygdala, cerebellum, and the basal ganglia (Porrino et 

al., 1981; Amaral and Price, 1984; Amaral, 1986; Selemon and Goldman-Rakic, 1988; Barbas and De 

Olmos, 1990; Eblen and Graybiel, 1995; Croxson et al., 2005).  Different PFC subdivisions have distinct 

patterns of interconnections with other brain systems (e.g., lateral PFC – sensory and motor cortex, 
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orbital PFC – limbic), but there are prodigious connections both within and between PFC subdivisions 

(Pandya and Barnes, 1987; Barbas and Pandya, 1989; Pandya and Yeterian, 1990; Barbas et al., 1991; 

Petrides and Pandya, 1999).  The anatomical architecture suggests an infrastructure ideal for learning, 

one that can act as a large associative network for detecting and storing patterns between diverse 

events, experiences, internal states, etc.  This anatomical structure makes it ideal to act as a center of 

control. 

 

Indeed, neurophysiological studies in animals and imaging studies in humans have shown that 

the PFC is highly multimodal.  Neurons from within PFC are responsive to a wide range of information 

and have other properties useful for cognitive control (Miller, 2000).  Furthermore, PFC neurons sustain 

their activity to maintain information across short, multi-second, memory delays (Pribram et al., 1952; 

Fuster and Alexander, 1971; Fuster, 1973; Funahashi et al., 1989; Miller et al., 1996).  This property is 

crucial for goal-directed behavior, which unlike “ballistic” reflexes, typically extend over time.  After 

training on a wide range of operant tasks many PFC neurons (from ⅓ to ½ of the population) reflect the 

learned task contingencies: the logic or rules of the task (White and Wise, 1999; Asaad et al., 2000; 

Wallis et al., 2000; Mansouri et al., 2006).  For example, a neuron might be selectively activated by a 

given cue (e.g., a green light) whereas another neuron might be activated when that cue means 

something different (like “stop”).  Some neurons might activate in anticipation of a forthcoming 

expected reward or a relevant cue (Watanabe, 1996; G et al., 1999; Wallis and Miller, 2003; Padoa-

Schioppa and Assad, 2006), and neurons have even been found to reflect whether a monkey is currently 

following the abstract principles “same” or “different” (White and Wise, 1999; Wallis et al., 2000).  In 

short, the PFC does indeed act like a brain area that absorbs and reflects the rules needed to guide goal-

directed, volitional behavior. 

 

There is strong experimental evidence that the prefrontal cortex is involved in the direction of 

attention.  Human patients with lesions to the PFC not only have difficulty controlling their behavior but 

show deficits in visual search tasks (Eglin et al., 1991b; Knight et al., 1995; Knight, 1997).  Inactivating 

dlPFC with muscimol in primates reduces their ability to do visual search tasks, but not detection tasks 

(Iba and Sawaguchi, 2003).  This deficit was present for both pop-out and conjunction search task 

conditions, and the reaction time difference observed between the two tasks was lost after inactivation.  
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This suggests the dlPFC plays a role in both forms of search (an implication that fits well with our 

results).  Electrophysiological recordings within the dlPFC during a visual pop-out task shows selectivity 

for the target location at approximately 130 ms after the onset of the search array (Hasegawa et al., 

2000).  These results suggest a role of PFC in the control of visual attention, possibly through the 

provision of the top-down signals. 

 

Miller and Cohen (2001) argued that all this indicates that the cardinal PFC function is to acquire 

and actively maintain patterns of activity that represent goals and the means to achieve them (rules) 

and the cortical pathways needed to perform the task (“maps”, hence “rulemaps”).  Under this model, 

activation of a PFC rulemap sets up bias signals the propagate throughout much of the rest of the 

cortex, affecting sensory systems (visual attention) as well as the systems responsible for response 

execution, memory retrieval, emotional evaluation, etc.  The aggregate effect is to guide the flow of 

neural activity along pathways that establish the proper mapping between inputs, internal states, and 

outputs to best perform the task.  Establishing the proper mapping is especially important whenever 

stimuli are ambiguous (i.e. they suggest more than one behavioral response), or when multiple 

responses are possible and the task-appropriate response must compete with stronger, more habitual, 

alternatives.  In short, task information is acquired by the PFC, which provides support to related 

information in posterior brain systems, effectively acting as a global attentional controller. 

 

Under the Miller and Cohen model, the prefrontal cortex provides a biasing signal to posterior 

cortex, not only for attentional selection, but also acts to direct all cognitive functions.  Although there is 

good circumstantial evidence that the PFC is the ‘top’ in top-down biasing signals, in order to 

demonstrate that PFC directs internal control, it is important to measure the flow of information during 

internally controlled behavior compared to externally controlled behavior (Miller and D'Esposito, 2005). 

 

Neural Responses in Frontal Eye Fields (FEF) 

The frontal eye fields (FEF) lie on the anterior bank of the arcuate sulcus.  This area is involved in 

the production of eye movements and is typically defined as the region of prefrontal cortex that when 

stimulated with currents < 50 μA will elicit a saccade (Bruce and Goldberg, 1985).  FEF is 
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intereconnected with the eye plant in the brainstem (which gives it direct control over eye movements) 

as well as other eye movement related areas, such as the superior colliculus, LIP, and the supplementary 

eye fields (Stanton et al., 1988; Stanton et al., 1993, 1995).  Additionally, FEF sends projections to visual 

areas V2, V3, V4, MT, MST, and TEO (Stanton et al., 1995).  While ablating the FEF does not cause the 

complete loss of saccades, there is evidence that lesioned animals have difficulty making purposeful 

saccades (Bruce and Goldberg, 1985; Gaymard et al., 1998; Tehovnik et al., 2000).   

 

Recent research has suggested that FEF plays a role in the control of visual attention.  Work 

from Schall’s group has shown that FEF neurons respond to the location of the target stimulus in a pop-

out task approximately 50 ms before saccade onset (Schall and Hanes, 1993; Schall et al., 1995; Bichot et 

al., 2001; Sato et al., 2001).  FEF neurons will respond to the target location regardless of whether the 

animal makes a saccade to the target’s location (Thompson et al., 1997; Murthy et al., 2001; Sato et al., 

2003; Thompson et al., 2005c).  Furthermore, neurons in FEF will show target selectivity under both easy 

and difficult search conditions (Bichot et al., 2001; Sato et al., 2001).  These results have led to Schall’s 

group suggesting that FEF carries a saliency map that integrates both top-down and bottom-up 

information (Thompson and Bichot, 2005a; Thompson et al., 2005a).  This model of FEF functionality is 

very similar to the saliency map suggested by the guided search model of visual search; it allows for the 

combination of bottom-up, physical attributes of stimuli with the top-down selection parameters used 

for search. 

 

The role of FEF in the control of attention has also been supported by the experiments by T. 

Moore’s laboratory.  Moore and colleagues stimulated in FEF at subthreshold levels (i.e. levels that 

would not elicit a saccadic response) while recording from V4 neurons.  The selected V4 neurons had 

receptive fields which overlapped with the motor field of the FEF stimulation site.  The response of V4 

neurons to visual stimuli were enhanced when FEF was stimulated, as if attention was being driven to 

that location (Moore and Armstrong, 2003).  Further studies have shown that when directing attention 

to subparts of the receptive field the response of the V4 neuron will collapse around the selected region, 

in the same manner as found by Reynolds, Chellazi, and Desimone (Reynolds et al., 1999; Armstrong et 

al., 2006).  Microstimulation in FEF will also boost the animal’s behavioral discriminability at the target 

location (Moore and Fallah, 2001, 2004).  Finally, recent experiments have shown that when stimulating 
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in FEF, neurons with overlapping receptive fields in V4 will show an increase in gain of their tuning curve, 

similar to when the animal attends to that location (Armstrong and Moore, 2007).  These results suggest 

that FEF may play a direct role in directing attention to specific portions of the receptive field and that 

this direction may come from the same regions that actually induce the eye to move.  Naturally, these 

results have lent strong support to the pre-motor theory of attention, discussed below. 

 

Pre-Motor Theory of Attention 

Humans make several saccades a second in order to focus objects onto their fovea.  As the fovea 

is dense with photoreceptors, this allows for fine discrimination of the stimuli.  Since the eye movement 

is explicit, this type of orientation is also known as overt attention.  However, as outlined above, we are 

also able to covertly direct our attention to specific objects or locations allowing for deeper, finer 

analysis without having to move our eyes.  Psychophysical experiments have found strong evidence that 

saccades cannot be made without first covertly allocating attention to the intended target location – 

shifts in attention always precede saccades (Rayner et al., 1978; Deubel and Schneider, 1996a; Peterson 

et al., 2004).  This result has led to the pre-motor theory of attention which proposes that covert shifts 

of attention are due to a sub-threshold activation of the saccadic system (Rizzolatti et al., 1987).  As 

noted above, recent experiments in FEF have supported this model – sub-threshold stimulation in FEF 

appears to bias posterior cortex in a manner similar to attention.  Furthermore, all three regions found 

to be involved in the control of saccadic eye movements are also found to be activated by the covert 

direction of attention. 

 

A recent electrophysiological study  attempted to disassociate motor related activity from visual 

(or visuo-motor) activity in the frontal eye fields of monkeys by training them respond manually to a 

pop-out search task, as compared to the more common eye movement response (Thompson et al., 

2005c).  Thompson et al found that when no saccadic response was required, the neurons that 

responded in a manner that was purely motor (i.e. they did not respond to visual stimuli in their motor 

fields) were not activated by the visual search task.  In contrast, visuo-motor neurons, which were 

activated both by the onset of visual stimuli and by saccadic movements, showed a strong selectivity for 

the pop-out target stimulus.  In fact, the authors found that the purely movement related neurons were 
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suppressed during search.  Based on these results, and previous results, the FEF is a possible region 

underlying the pre-motor signals involved in directing covert attention. 

 

Simultaneous Recording 

As we are interested in the relative roles of the three cortical regions putatively involved in the 

control of attention (LIP, dlPFC, and FEF), it is important that we expand upon typical 

electrophysiological techniques by recording simultaneously from all three regions of interest.  This is 

necessary for several reasons.  Absolute timing of neural activity can vary with further 

training/experience, between tasks, and with the statistical criterion used.  Therefore, in order to 

accurately measure the flow of information between regions, our main interest was in the relative 

timing differences between areas.  Simultaneous recording from multiple electrodes aids in detecting 

them because it reduces the influence of extraneous variables such as differences in performance across 

sessions.  This is especially true in our case as the effects we are interested in contrasting are possibly 

subtle (such as timing differences between populations), and therefore simultaneously recording from 

all three regions will allow for improved discrimination.  It is crucial to resolve the flow of information 

between different brain regions as it is the only way to truly determine which brain regions seem to be 

in control of different behaviors (Miller and D'Esposito, 2005).  Simultaneous recordings also allow for 

relational timing effects, such as synchrony, to be investigated. 

 

Goals of the Current Study 

The first goal of this study, and the focus of the first part of the thesis, will be to determine the 

relative role of prefrontal and parietal cortices in the endogenous and exogenous control of attention.  

Animals were trained to perform both a covert visual search and covert visual pop-out task, utilizing 

internal and external control of attention, respectively.   Simultaneously recorded neurons in LIP, FEF, 

and dlPFC will then be compared in order to determine when each region find the location of the target 

stimulus.  The ordering of this latency will give insight into the direction of information flow between the 

two tasks and illuminate which region(s) is involved in the control of attention. 
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The second goal of the study will be to investigate the differences in the synchronous 

relationship between/with-in each region(s) during the tasks.  As noted in the Introduction, there is 

extensive evidence that local synchrony plays a role in attention, and theoretical work suggesting 

synchrony could provide a mechanism for the dynamic change in effective connectivity between brain 

regions.  Therefore, we aim to investigate the relationship between the local field potential of different 

regions and within regions, as well as the relationship between spiking activity and LFPs. 

 

Our third aim is to resolve the similarities and differences in the neural networks underlying 

exogenous and endogenous control of attention.  While there is considerable evidence from fMRI 

experimentation that both parietal and frontal regions are involved in both types of attentional control, 

due to the low spatial resolution of fMRI it is not possible to determine at the network level whether 

these two functions are separate or combined.  We hope to investigate the commonalities and 

differences in the networks supporting behavior in each task. 

 

Our fourth goal is to investigate the relative role of serial and parallel search mechanisms 

supporting endogenous and exogenous control of attention.  Furthermore, we hope to determine which 

brain regions underlie these differing neural computations. 
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Chapter 2: Role of Parietal and Frontal Cortex in the Control of Attention 
 

Introduction 

Visual attention is thought to be controlled from both endogenous (internal) and exogenous 

(external) sources.  Experiments with visual search paradigms provide the majority of evidence for the 

existence of these two forms of attentional control.  For example, under most conditions, when a visual 

scene is presented attention will be automatically drawn to the most salient object in the scene, where 

saliency is defined by a variety of parameters, including relative brightness and movement (Jonides and 

Yantis, 1988; Treisman and Gormican, 1988).  However, when a visual scene is presented that does not 

have any stimulus of particularly high saliency, in order to select a visual object for greater scrutiny, one 

must internally direct attention to the stimulus (this is classically shown in a conjunction search, 

Treisman and Gelade, 1980; Treisman and Gormican, 1988).  

 

The best working model of both the psychophysical and neural effects of attention is the biased 

competition model (Desimone and Duncan, 1995).  The model proposes that lateral inhibition between 

the neural representation of visual stimuli leads to competition between stimuli for representation in 

the cortex.  Under this model the stimulus with the highest saliency will have the strongest 

representation (or even possibly the earliest representation), allowing it to win this competition.  

However, internal direction of attention can select specific stimuli and bias those representations to win 

the competition.  While physiological support exists for the model’s representation of competing stimuli 

(Reynolds et al., 1999), two important points remain with little to no experimental evidence: whether 

the competition proceeds in a bottom-up, feed-forward manner and the origin of the biasing signal.  We 

hope to answer these questions by utilizing the exogenous and endogenous nature of visual pop-out 

and visual search in order to investigate the relative roles of parietal and prefrontal cortex in the control 

of visual attention.  Most of this chapter has  previously appeared in print (Buschman and Miller, 2007). 

 

Visual Pop-out and Visual Search 

In order to determine the respective roles of prefrontal and parietal cortices in the endogenous 

and exogenous control of attention, we recorded from multiple electrodes simultaneously implanted in 

frontal and parietal cortices as monkeys found a visual target under two conditions (Figure 1).  Under 
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both conditions the target was randomly located in an array of four stimuli, and only differed in how the 

distractors related to the target.  As with the classic human studies overviewed above, the ‘pop-out’ 

condition was designed to rely on exogenous, external, bottom-up control of attention.  Under this 

condition the distractors were all identical and differed from the target along two dimensions (color and 

orientation), so the target’s salience automatically draws attention (Treisman and Gelade, 1980).  In 

contrast, during the ‘search’ condition, each distractor independently differed from the target.  Because 

the target matched some of the distractors in each dimension, it was not salient and had to be sought 

just using the memory of the sample stimulus.   As noted above, this form of visual search requires 

endogenous, internal, top-down control of attention. 

 

The monkeys showed the behavioral hallmarks of bottom-up versus top-down attention.  As 

with humans, under these two conditions, we can measure the cost of an added distractor by varying 

the number of distractors in the search array.  There was a shallower increase in reaction time (RT) with 

more distractors during pop-out than search (6 ms/item for pop-out; 22 ms/item for search; p < 0.001, t-

test of least-squares linear regression, Figure 2).  This difference suggests a mechanistic difference 

underlying the two types of search.  Furthermore, under recording conditions, when there were always 

four items in the search array (three distractors, one target), the monkeys’ reaction time was 

significantly longer and more variable for search than pop-out (Figure 3).  Average RTs for search (272 

ms) and pop-out (233 ms) differed significantly (p < 10-5, t-test).  The variance in RT also differed 

significantly (standard deviations of 43 ms for search and 33 ms for pop-out, p < 10-5, χ2 test).  This 

difference is also typical for visual search and pop-out in humans (Treisman and Gelade, 1980; Duncan 

and Humphreys, 1989; Wolfe et al., 1989) and further reflects different mechanisms underlying the 

behavior. 

 

Flow of Information about the Locus of Attention 

We were interested in the respective roles of prefrontal and parietal cortex in the direction of 

attention under these two tasks.  In order to determine these roles, we leveraged the behavioral design: 

the animal always made its choice with a saccade to the target location and previous psycophysical work 

has shown saccades are preceded by shifts in attention.  Therefore, in order to establish when each 

anatomical area directs attention to the target location, we can determine the time-point at which  
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Figure 1 

  

 

 

 

Figure 1.  Schematic of Task Design.  Red circle indicates eye position throughout the task.  Both Search 
and Pop-out required the animal to begin the task fixating, followed by the sample stimulus, which was 
the target to be found in the visual array.  After a short delay, the visual array was presented and the 
animal was required to make a single, direct, saccade to the target location in order to receive a reward.  
Visual Search and Pop-out tasks only differed in how the distractors related to the target in the search 
array. 
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neurons in each area signaled the target location.  This activity reflects both the pre-saccadic shift in 

attention to the target as well as the eye movement itself.  Since the saccade acts as a behavioral 

marker which informs us of when the animal knew the target location, we can look backwards in time, 

relative to the saccade, in order to find the neural correlates of directing attention. 

 

We determined when each neuron first “found” (reflected) the target location by computing 

when the amount of information in its firing rate about target location first reached significance.  

Significance was determined via the mutual information statistic (see Methods).  We were interested in 

the amount of information about the target location carried by the firing rate of an individual cell.  Trials 

were broken down into groups by condition (pop-out or search) and by target location.  This grouped 

across differences in target identity (color and orientation) as well as distractor identity, controlling for 

any selectivity for these parameters.  As attention is known to precede a saccade (Rayner et al., 1978; 

Deubel and Schneider, 1996b; Peterson et al., 2004), measuring selectivity in this manner ensures any 

selectivity observed is only related to the allocation of attention or to the eye movement itself.  

 

The degree of selectivity was calculated across the entire timecourse of the trial in non-

overlapping windows of 25 ms, where the amount of information about the target location contained in 

the firing activity of each cell was determined within each bin.  Significance was determined within each 

bin independently by comparing the observed amount of information against a null distribution created 

through randomization tests (see Method).  The amount of observed information was denoted as 

significant only if it exceeded 95% of the null distribution (p < 0.05 in each bin).  The point at which an 

individual neuron began to significantly reflect the target location was defined as the time point at 

which significant information was found for two consecutive bins (chance level = 0.052 or 2.5*10-3).  This 

is known as the time to first significance for each neuron.  Figure 4, top and bottom, show the firing 

rates (for pop-out only) as well as the mutual information over time (for both pop-out and search) for an 

example dlPFC and LIP neuron, respectively.  The starred position shows the time to first significance for 

each cell.  As will be seen on the population level, the LIP neuron shows selectivity for the target 

location well before dlPFC  during pop-out, while dlPFC shows earlier selectivity than LIP during search. 
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Figure 2 

 

 

 

Figure 2.  Reaction Time Increase with Increased Distractors.  Psychophysical testing with variable 
number of distractors in the search array showed differences between search (in red) and pop-out (in 
blue).  The average reaction time for the animal to find the target is plotted as a circle for visual arrays 
with 1, 2, and 3 distractors.  Black lines show standard deviation.  The solid colored lines show the linear 
fit for both search (red) and pop-out (blue).  Shaded regions show 95% confidence interval about these 
fits.  There was a shallower increase in reaction time (RT) with more distractors during pop-out than 
search (6 ms/item for pop-out; 22 ms/item for search; p < 0.001, t-test of least-squares linear 
regression). 
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Figure 3 

 

  

 

 

 

 

Figure 3. Overall reaction time distributions for Search and Pop-out.  Reaction time distributions for 
Search (left) and Pop-out (right) from both animals during recording sessions (with 4 items in visual 
array).  Visual search showed both an average increase in reaction time as well as a more variable 
reaction time.  Average RTs for search (272 ms) and pop-out (233 ms) differed significantly (p < 10-5, t-
test).  The variance in RT also differed significantly (standard deviations of 43 ms for search and 33 ms 
for pop-out, p < 10-5, χ2 test). 
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The time to first significance was determined for each neuron recorded, generating a 

distribution of when neurons from each anatomical region first found the target location relative to the 

start of the saccade.  These distributions are shown in Figure 5.  During pop-out, there was a bimodal 

distribution for all three regions (Figure 5, left).  For each area there was a population of neurons that 

first found the target well before the saccade (i.e., shortly after visual array onset) and a separate 

population that found the target after the saccade.  The early population consisted of 35% of all target 

location selective neurons in LIP (24/68), 51% in dlPFC (40/78), and 31% in FEF (17/54).  During pop-out 

there were clear differences in timing across these early populations: LIP neurons found the target first, 

followed by dlPFC neurons, and then FEF neurons.   

 

In contrast, during the search task, neurons began finding the target later than in pop-out, just 

before the saccade, and in the reverse order: the frontal areas (dlPFC and FEF) showed selectivity first, 

followed by LIP (Figure 4B).  About 1/3 of all selective neurons in FEF and dlPFC began to reflect the 

target location before the saccade (19/60 and 21/70, respectively), while only 14% (8/58) of selective LIP 

cells did so.  This is greater than expected by chance for FEF and dlPFC but not for LIP (p = 8*10-5, p = 

4*10-5, and p = 0.41, respectively, tested against binomial distribution). 

 

The distribution of when individual neurons in each area first showed significant information for 

the target location appeared to be multimodal.  In order to quantify the number and location of modes 

we fit models with a mixture of one, two, or three Gaussians to the data.  We used the Bayesian 

Information Criterion (BIC, Schwarz, 1978) to determine how well each model fit the observed data.  The 

BIC is a combination of the residuals between the model and data and the number of free parameters in 

the model, correcting for the advantage of more complex models.  The model with the lowest BIC is the 

model that has the best fit to the data without over-parameterization.  As is shown in Table 1 we found 

that a bimodal distribution fit the best for the observed data in all three anatomical regions during both 

search and pop-out.  The resultant R2 of the fits (Table 2) all show a large proportion of the variance in 

the observed data was captured by the mixture of Gaussians.  The bimodal fit estimated both the mean 

and variance of the distributions.  The deviation about each parameter was estimated using the Fisher 

Information and was used to both calculate a confidence interval for each parameter and to test for 

significant differences between areas (similar to a t-test). 
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Figure 4 

 

 

 

 

Figure 4.  The firing rate of example LIP and LPFC neurons during the visual pop-out task (left column, 
top and bottom, respectively).  Trials were aligned on saccade in order to capture the shift of attention 
before the saccade.  Selectivity for target location, regardless of the identity of the target, can be clearly 
seen in the firing rate histograms and was captured in the mutual information statistic.  Panels in the 
right column show the amount of information about the target location carried in the firing rate for the 
example LIP and LPFC neurons, respectively.  The amount of information over time is shown for both 
the visual search and pop-out tasks.  The asterisk indicates the time-point at which the observed 
amount of  information was significant for two consecutive bins at p < 0.05.  This marks the time to first 
significance.  The population effects shown in the main text are reflected in these example neurons: 
during pop-out, selectivity in LIP precedes LPFC, while during search, LPFC precedes LIP. 
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Figure 5 

  

 

 

 

 

 

Figure 5.  Distribution of time to first show significant target information during pop-out (left) and 
search (right) relative to the saccade.  Vertical black line indicates saccade, grey shaded regions indicate 
mean and +/- one standard deviation of distribution of visual array onset. 
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For pop-out, fits of bimodal Gaussians (Figure 6, left column) indicated that the early population 

of LIP neurons was centered at 162 ms before the saccade (bottom row; 95% confidence interval or CI: 

200 ms – 124 ms), followed by the early populations in dlPFC and FEF, 77 ms (middle row; 95% CI: 84 ms 

– 70 ms) and 40 ms (top row; 95% CI: 56 ms – 23 ms) before the saccade, respectively (LIP < PFC, p < 10-

25; LIP < FEF, p = 6*10-8; PFC < FEF, p = 6*10-5; t-test).  The distribution of the neurons that found the 

target after the saccade was overlapping in all three areas and centered about 100 ms after saccade 

(Figure 6, left column). 

 

Curves were also fit to the distributions from the search condition (Figure 6,right column) and 

showed the reverse ordering.  Estimates of the early populations showed that FEF and dlPFC preceded 

LIP: FEF and dlPFC had early modes at 46 ms (top row; 95% confidence interval: 75 – 17 ms) and 19 ms 

(middle row; 25 - 13 ms) before the saccade, respectively, followed by LIP at 19 ms (bottom row; 8 – 30 

ms) after the saccade (FEF < LIP, p = 8*10-13; dlPFC < LIP, p = 6*10-8; all comparisons by t-test).  The 

distributions of neurons that found the target after the saccade were overlapping and centered at 

approximately 100 ms after saccade (Figure 6, right column). 

 

In order to determine when a neural population as a whole began to represent the target 

location, we compared the observed cumulative distribution to the distribution that is expected by 

chance (see Figure 7 for raw cumulative histograms and chance distribution).  Given our significance 

criterion of two consecutive bins of p < 0.05, we calculated the average number of neurons expected to 

reflect the target location by chance in each 25 ms time bin, along with the standard deviation about 

that mean.  As each comparison was conducted independently for each 25 ms step, the number of 

comparisons increases with time.  But as a neuron can only ‘first’ show selectivity once, the chance level 

does not increase linearly.  Therefore, a Monte-Carlo analysis was used to estimate the number of 

significant neurons in each time bin by chance.  Use of a binomial distribution yielded similar results to 

the Monte-Carlo analysis (although the binomial distribution allows for an analytical estimate of 

significance levels, it does not correct for the absence of multiple ‘firsts’, and therefore provides a 

theoretical upper-bound to the significance criterion).   By subtracting the average number of neurons 

expected by chance from the observed distribution, and normalizing by the standard deviation, we 

constructed a z-score for the entire population (Figure 8).  This corrected for multiple comparisons  
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Table 1 & 2 

  

 SINGLE MODE DOUBLE MODE TRIPLE MODE 
LIP Pop-out -563.9 -596.2 -583.5 
 Search -518.0 -569.2 -493.6 
LPFC Pop-out -651.5 -794.7 -781.7 
 Search -641.7 -713.2 -616.2 
FEF Pop-out -424.1 -439.3 -427.3 
 Search -562.2 -572.5 -537.7 

 

 
Table 1.  Table of Bayesian Information Criterion (BIC) values of model fit to distribution of time to first 
significance for each area and task (Figures 5 and 6).  The BIC describes the goodness of fit for varying 
models while correcting for model complexity.  The best fitting model is the one with the lowest BIC 
value, which we found to be a mix of two Gaussians for all three regions on both tasks. 

 POP-OUT SEARCH 
LIP 0.92 0.98 
LPFC 0.94 0.97 
FEF 0.88 0.94 

 

 
 

Table 2.  Table of r2 values for fit of mixture of two Gaussians on distributions of time to first significance 
for each area and task (Figures 5 and 6).  The r2 provides a measure of how much of the variance in the 
data is captured by the model fit. 
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Figure 6 

  

 
 

Figure 6.  Fits of bimodal gaussians to distribution of time to first find target location, relative to 
saccade.  Vertical black line indicates saccade.  Black lines show the distribution of time to first find the 
target in each of the three recorded areas (corrected for chance).  Data is shown for pop-out (left 
column) and search (right column) and for FEF, LPFC, and LIP (top row, middle row, and bottom row, 
respectively).  As shown in Tables 1 and 2, the bimodal gaussian distributions fit the observed data well. 
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across time bins and gave us a specific latency at which the entire observed population carried 

significant information about the target location.  Differences between anatomical areas were tested for 

significance through a randomization method:  we randomly assigned neurons to different anatomical 

areas and re-calculated the difference in the time for each population to reach significance.  This 

allowed us to construct a null distribution and determine the p-value of the observed difference in 

latency between anatomical areas. 

 

The same ordering as seen in the fits of bimodal distributions was seen in the cumulative 

distributions of the time to first significance data (Figure 8) .  During pop-out, LIP, dlPFC and FEF neurons 

began finding the target 170 ms, 120 ms, and 35 ms before saccade, respectively (Figure 6, left column; 

LIP < PFC, p < 0.05; LIP < FEF, p = 0.009; PFC < FEF, p = 0.002, randomization test).  A quarter of the 

selective LIP neurons (17/68) began encoding the target location before the dlPFC population first 

carried significant information.  This is more than expected by chance (p = 2*10-5, tested against 

binomial distribution).  When aligning trials on visual array onset instead of saccade, we found similar 

results (see below). 

 

For search, the cumulative distributions in Figure 8, right column, show that target location 

information reached significance in the FEF and dlPFC at 50 and 40 ms before the saccade, respectively, 

followed by LIP (dlPFC and FEF were earlier than LIP, p = 0.027 and p = 0.006, respectively; 

randomization test).  In fact, although during pop-out, LIP neurons found the target first, and well before 

the saccade, during search target location information in LIP did not reach significance until 32 ms after 

the saccade.  As with pop-out, similar results were observed when trials were aligned on visual array 

onset (see below). 
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Figure 7 

  

 
 
 

Figure 7.  Raw cumulative sum of time to first significance histogram for LIP, LPFC, and FEF in both the 
search and pop-out conditions are shown in colors.  The black solid (dashed) lines show the mean 
(standard deviation) of the number of significant cells expected by chance. 
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Figure 8 

  

 
 
 

Figure 8.  Timing of selectivity for each area aligned on saccade.  Normalized cumulative sum of the 
histogram shown in Figure 5.  A z-score for the observed distribution was calculated through 
randomization tests and was corrected for multiple comparisons.  The same ordering as seen in the fits 
of bimodal distributions was seen in the cumulative distributions of the time to first significance data 
(Figure 5 and 6) .   
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Aligning Data on Array Onset versus Saccade Initiation 

Although aligning trials on saccade initiation allows us to look at the process of attending to and 

selecting a target location relative to the key behavioral response, it is also possible to investigate the 

ordering of selectivity for each area when trials are aligned on visual array onset.  Array onset marks the 

onset of the search and therefore any deterministic process involved in processing the visual array and 

finding the target location must proceed from this point.  It is not entirely clear which parts of visual 

search are locked to visual array onset or precede the target selection (i.e. are locked to the saccade).  

For example, the pop-out task, since it seems to be parallel in nature and rely mostly on bottom-up 

signals, might show a greater locking to the onset of the visual array (as reflected by the tighter reaction 

time distribution).  In contrast, a completely serial search task will only show attention selection relative 

to the saccade since it takes a variable, unknown, amount of time to find the target.  Since it is not clear 

whether search tasks are deterministically determined by visual array onset or by a generative process 

leading to a saccade, we investigated the timecourse of selectivity for each area when aligning trials on 

both markers. 

 

Selectivity relative to visual array onset was determined in exactly the same manner as relative 

to saccade, with the obvious exception that trials were aligned on array onset.  Mutual information was 

calculated in independent 25 ms bins and significance was determined in each bin alone through 

randomization tests.  The time to first significance for individual neurons was again denoted as the time 

at which a neuron carried significant information about the target location in two consecutive bins.  The 

distribution of times to first significance for all three areas with trials aligned on onset are relatively 

similar to trials aligned on saccade.  Most importantly, when trials were aligned on visual array onset for 

both the pop-out and search conditions, the ordering of selectivity across areas was the same as when 

trials were aligned on saccade.  Furthermore, bimodal distributions are again suggested, although both 

modes for each area’s distribution appear to have greater variance (possibly indicated aligning on 

saccade is the more appropriate choice). 

 

Cumulative histrograms were again used to determine when an entire area began to carry 

significant information (or alternatively, when an area had a significant number of cells indicating the 

target location).  Results were similar to those found when aligned on saccade (Figure 9).  For the pop- 
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Figure 9 

  

 
 
 

Figure 9.  Timing of selectivity for each area aligned on array onset.  Cumulative histogram of times to 
first showing significant selectivity when trials are aligned on visual array onset for pop-out (left) and 
search (right).  Vertical black line indicates visual array onset, grey shaded regions indicate mean and +/- 
one standard deviation of distribution of saccade. 
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out condition (Figure 9, left), while the distribution was more variable due to the variability in reaction 

time (as indicated by a shallower slope), LIP showed selectivity for the target location approximately 50 

ms after array onset, followed by dlPFC and then FEF (after 120 and 220 ms, respectively).  All these 

differences were also significant (LIP < PFC, p = 0.038; LIP < FEF, p = 0.013; PFC < FEF, p = 0.001; 

randomization tests, see Methods).  When aligning visual search trials on visual array onset, dlPFC and 

FEF carried significant information at 250 ms after array onset, significantly preceding selectivity in LIP, 

which began at 320 ms after onset (Figure 9, right; p = 0.044 and p = 0.047, respectively, by 

randomization test).  The overall longer neural latency to find the target during search (approximately 

250 ms after array onset) compared to pop-out (between 50 and 100 ms after array onset) parallels the 

differences in RT for the two conditions (Figure 3). 

 

Controlling for Visual Array Response and Target Selectivity 

 One concern might be that the observed differences between visual search and pop-out are due 

to different response rates to the visual array during the two tasks.  In order to ensure that this is not 

the case, Figure 10, left column, shows the normalized response of location-selective neurons during 

both tasks.  There are no significant differences in response between the two tasks for any of the three 

anatomical areas of interest.  This suggests that the difference in location information is not due to a 

difference in the overall responsiveness of neurons to the visual array, but rather in how the responses 

differentiate between targets and distractors.  An alternative way to compare the response to the visual 

array during search and pop-out is to compare the difference in firing rate of individual neurons in each 

task to zero.  The difference in response to the visual array during visual search and pop-out did not 

differ from zero in any of the three areas (until late in the trial, again due to differences in reaction 

time). 

 

The overall average response of location-selective LIP neurons shows a modest increase 

overtime, without a large visual array onset response.  This is due to the variable nature of LIP 

responses, as shown in Figure 10, right column.  All three of these example LIP neurons have very similar 

responses to the visual array onset (although they do tend to differentiate to a greater degree later in 

the trial as the reaction time to the tasks differs).  The dynamics of single units are also further discussed 

below. 
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 Although we do not observe a difference in response to the visual array between the two tasks, 

the existence of such a difference does not necessarily lead to a difference in location selectivity.  As the 

location selectivity is measured between conditions within a task, a generalized increase in response 

would not necessarily lead to information about the target location.  One advantage of using the mutual 

information technique is that it does not suffer from the boundary condition issues of other tests that 

assume an underlying distribution not well suited for spiking activity (such as t-tests, ANOVAs, etc).  

Furthermore, since significance is determined using a randomization procedure, it is not the specific 

values of neural activity that are being tested, but rather whether their distribution is more informative 

about the target location than random chance. 

 

 Another important question is how much the location selectivity of individual neurons in each of 

our three areas were also selective for target identity.  In order to determine the degree of target 

identity selectivity we examined the activity of all location selective neurons from each area and for 

both tasks when the target lay in its preferred direction (as defined as the target location to elicit the 

greatest response from the neuron).  As can be seen in Figure 11, very few neurons carried information 

about the target identity; rather they only indicated the location of the target.  While Figure 11 only 

tests for target identity information in the same time bin as the location information, we can also test 

for target identity information proceeding or following the location selective information and over the 

entire trial, relative to the saccade.  For no time bin relative to when an individual neuron carried 

significant information about the target location, nor for any time bin relative to the saccade, were there 

a significant number of neurons carrying target identity information.  These results support the model 

that these neurons are involved in the spatial direction of attention, not in the comparison of currently 

selected objects with the memory of the target stimulus.  However, as will be shown later in this thesis, 

there are many neurons in all three regions that are involved in maintaining information about the 

target stimulus, likely for this purpose.  The number of neurons showing an interaction between the 

target location and its identity is very small – perhaps unexpectedly so.  An interaction effect would not 

necessarily change the interpretation of our results (as the neuron’s response would still carry 

significant information about the target location, all that is needed to follow the location of attention), it 

is nonetheless interesting that the brain appears to completely differentiate the neural populations 

support these two functions.  
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Figure 10 

 
 

Figure 10.  Left column: Normalized firing rate across time (relative to visual array onset) for all location-
selective neurons in FEF (top), LIP (middle), and dlPFC (bottom).  Average normalized firing rate is shown 
for both visual search (blue line) and pop-out (green line).  95% CI for mean is shown with dashed line.  
Right column: Normalized firing rate of three example LIP neurons.  Response to visual search is shown 
in blue, pop-out in green.  These examples show the variety of responses in LIP (more-so than either 
dlPFC or FEF). 
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Figure 11 

 

  

 
 

Figure 11.  Information about target identity in location-selective neurons from FEF (top row), dlPFC 
(middle row), and LIP (bottom row) for both pop-out (left column) and visual search (right column).  
Selectivity for the target orientation (red) and color (green) are shown overlapping location selectivity.  
Very few location selective neurons show target identity information, suggesting the process of directing 
attention to a spatial location is separate from the identity of the target at that location.   
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Dynamics of Selectivity for Single Units 

The previous analysis focused on when each individual neuron, and then when the population of 

neurons from a given area, first carried significant information about the target location (and therefore 

the direction of attention to it).  Figures 12, 13, and 14 show the selectivity for target location for every 

neuron recorded in LIP, dlPFC, and FEF, respectively.  The top plot in each figure shows the selectivity 

over time for individual cells during visual pop-out, while the bottom plot shows the same for visual 

search.  As previously described, the neural activity from each cell was binned into 25 ms independent 

bins across time, relative to saccade.  The color of each point indicates the observed information about 

the target location relative to the 95% level of the null distribution (which, as described above, was 

derived from a randomization procedure).  The neurons have been sorted by their time to first 

significance (determined, as above, as the point in time where the observed information about the 

target location exceeded 95% of the null distribution for two consecutive time bins).  Non-significant 

cells are randomly ordered above the selective ones.  The heavy blue line follows the time to first 

significance for all selective cells. 

 

As was seen previously, selectivity in prefrontal and parietal cortex was doubly dissociated 

between the pop-out and search tasks.  Parietal cortex found the target early in bottom-up, exogenous 

attention and prefrontal cortex driving target selection in top-down, endogenous attention.  Again, 

although it is more difficult to see in this format, all three regions also show a bimodal distribution of 

times to first significance.   

 

The dynamics of target related information not only varied with time across the entire 

anatomical area but also for each cell alone.  Although a variety of temporal responses exists for 

neurons in all three regions across both tasks, it is interesting to note the relative temporal-sparseness 

of LIP responses in both tasks when compared to the other two regions.  Although there are a few 

neurons that show sustained information, LIP neurons appear to transiently represent the target 

location.  Once one neuron’s response becomes reduced another neurons response starts.  This effect is 

reflected in the relatively sparse color underneath the blue line in the LIP plots.  In contrast, for both 

dlPFC and FEF, neurons appear to represent maintain their representation across the behavioral 

response. 
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These differences may be reflective of the nature of the information each area is maintaining – 

LIP appears to be representing the most salient object in the visual field, likely enhancing its 

representation and passing it forward.  However, while it is important to represent a salient object in 

the visual field, it is also important to remain flexible to responding to newer, more salient objects.  In 

fact, over-representing a particular stimulus would lead to it becoming more difficult to later disengage 

when a newer, more salient, stimulus is presented.  An area which is representing the saliency of the 

visual field should maintain a balance, possibly reflected in the staccato representation observed in LIP.  

In contrast, dlPFC and FEF are regions involved in making and executing the decision, and therefore the 

response to the target location should be strongly maintained through the behavioral response. 
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Figure 12 

 
 

Figure 12.  Normalized mutual information (MI) across time for all recorded neurons in LIP for both pop-
out (top) and search (bottom).  Neurons are sorted by their time to first significance, with the blue line 
following trend over time.  MI was calculated in independent 25 ms time bins and neurons were only 
taken to carry significant information when above chance for two consecutive bins. 
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Figure 13 

 
 

Figure 13.  Normalized mutual information (MI) across time for all recorded neurons in dlPFC for both 
pop-out (top) and search (bottom).  Neurons are sorted by their time to first significance, with the blue 
line following trend over time.  MI was calculated in independent 25 ms time bins and neurons were 
only taken to carry significant information when above chance for two consecutive bins. 
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Figure 14 

 
 

Figure 14.  Normalized mutual information (MI) across time for all recorded neurons in FEF for both pop-
out (top) and search (bottom).  Neurons are sorted by their time to first significance, with the blue line 
following trend over time.  MI was calculated in independent 25 ms time bins and neurons were only 
taken to carry significant information when above chance for two consecutive bins. 
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Correlation of Neural Activity with Behavior 

All three regions show neural selectivity for the target location at some point during both the 

pop-out and search tasks.  However, selectivity measures can be passive in nature – while they show 

neural activity is related to a variable of interest (target/attention location in this case), it is not 

necessary that the observed selectivity is actively used in the behavior.  Although previous research has 

shown activity in these regions across a large spectrum of visual attention tasks (reviewed above), we 

can bolster these arguments by showing that neural activity is directly correlated with behavior.  A 

number of prior studies have shown a relationship between neural activity in the frontal and parietal 

cortices and behavior during focal attention tasks (Moore and Fallah, 2001; Sato et al., 2001; Schall, 

2002b; Schall, 2002a; Bisley and Goldberg, 2003; Moore and Fallah, 2004).  Here, we also found that 

single neuron activity within each area correlated with how quickly the animal found the target.   

 

In order to determine whether there was a direct relationship between firing activity of single 

neurons recorded in all three regions and the behavioral response of the animal we computed the 

correlation between firing rate and reaction time.  This was done in a sliding window manner similar to 

neural selectivity for target location.  Each recorded neuron that met the requirements to be included in 

the selectivity analysis was tested for significant correlation (p < 0.05) in 25 ms windows, stepped 25 ms 

over the trial.  A total of 6 steps were used, limiting the analysis to the first 150 ms after visual array 

onset.  This was done to avoid any potential contamination from signals directly moving the eyes – this 

is well before the reaction time distribution for both tasks (in fact, it is at least 50 ms faster than at least 

90% of both distributions).  Additionally, correlation between the level of neural activity and the 

reaction time was only done on trials where the target location was in the neuron’s preferred direction.  

For this analysis preferred direction was taken to be the target location which showed the greatest firing 

rate over a 200 ms peri-saccadic window (starting 150 ms prior to saccade, ending 50 ms post-saccade).  

This was done in order to control for saccade metrics and any location-reaction time correlations (which 

were strong, as discussed below, and will become important for later analyses). 

 

During the pop-out task all three areas had a significant number of neurons with significant 

correlation between neural activity and reaction time in at least one of the 6 windows.  LIP had 23 

significantly correlated neurons (9%, p = 0.01), dlPFC had 35 (14%, p = 7*10-8), and FEF had 31 (14%, p = 
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7*10-7).  However, during the search condition, while both dlPFC and FEF still had a significant number of 

selective neurons (25, p = 2.4*10-3, and 37, p = 3.3*10-10, respectively) there was not a significant 

number of selective neurons in LIP (only 16, p > 0.5).  This parallels our findings on when these areas 

found the target location: while all 3 regions showed selectivity for the target before the saccade during 

pop-out, only dlPFC and FEF carried target information before the saccade in the search task.  

Furthermore, by demonstrating a correlation between single unit activity and the speed of the 

behavioral response this confirms that our regions of interest were directly involved in the task and 

supports the results on their roles in attention. 

 

Conclusion 

The source of top-down signals has largely been inferred from indirect evidence such as patterns 

of anatomical connections (Miller and D'Esposito, 2005).  In the case of visual attention, previous 

research has shown its neural correlates throughout the cortex, with control attributed to parieto-

frontal networks (Desimone and Duncan, 1995; Kastner et al., 1999; Reynolds and Chelazzi, 2004).  Our 

results suggest that within this network, fast, bottom-up target selection occurs first in LIP, whereas 

longer latency top-down selection occurs first in the frontal cortex.  This supports the hypothesis that 

parietal neurons form “saliency maps” for bottom-up selection (Itti and Koch, 2001; Bisley and Goldberg, 

2003; Constantinidis and Steinmetz, 2005) as well as studies showing that stimulation of the frontal 

cortex causes attention-like effects in the extrastriate cortex (Moore and Fallah, 2001).  It also fits with 

attenuation of top-down effects in the posterior cortex after PFC damage (Eglin et al., 1991a; Chao and 

Knight, 1997; Tomita et al., 1999).  Although both the frontal and parietal cortex are involved in 

attention, our results illustrate that bottom-up signals appear first in LIP and top-down signals appear 

first in the frontal cortex. 

 

The issue of the control of directing attention is a subset of the greater problem of cognitive 

control.  Our results suggest that the top-down influences crucial for many complex behaviors likely 

originate from the prefrontal cortex and are imposed on posterior cortex.  There are a plethora of 

results demonstrating that neurons in lateral prefrontal cortex carry information important to 

maintaining the rules and structure of the current task, as well as the most abstract information 

necessary for decision making associated with the behavior.  As suggested by Miller and Cohen (2001) 
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the lateral PFC is in a good position anatomically to provide top-down direction necessary for behavior.  

However, our results are the first direct neural evidence that these top-down biasing signals do appear 

to originate within the prefrontal cortex.  We believe that these results provide an important piece of 

information supporting current models of cognitive control.
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Chapter 3: The Role of Synchrony in the Control of Attention 
 

Introduction 

As noted in the Introduction, synchrony of neural activity may be useful for dynamically shifting 

neural networks by increasing the effectiveness of connections between brain areas (Aertsen et al., 

1989; Engel et al., 2001; Salinas and Sejnowski, 2001; Fries, 2005; Womelsdorf and Fries, 2007).  This 

might aid in direction of top-down signals as well to enhance the representation of attended stimuli 

(Aertsen et al., 1989; Engel et al., 2001; Salinas and Sejnowski, 2001; Fries, 2005; Womelsdorf and Fries, 

2007).  In order to investigate the role of synchrony in the internal and external control of attention, we 

compared the inter- and intra-areal synchrony between local field potentials (LFPs) as well as the 

synchrony between frequency bands within the LFP and the degree of synchronization between spiking 

activity and the LFP at different frequency bands.  Some of this chapter has previously appeared in print 

(Buschman and Miller, 2007). 

 

Synchrony between Parietal and Frontal Cortex 

Based on the relative timing of selectivity across areas for visual pop-out and visual search, we 

have proposed that the prefrontal cortex (dlPFC and FEF) provide the top-down signal during 

endogenous attention, while activity flows ‘up’ from posterior parietal cortex into prefrontal cortex 

during exogenous attention.  Therefore, the relationship between the prefrontal cortex and parietal 

cortex changes between endogenous visual search and exogenous visual pop-out.  

 

To investigate the relationship between synchrony of the parietal and prefrontal cortices and 

this shifting relationship, we quantified the degree of synchrony between local field potentials (LFPs) in 

the parietal and frontal cortices during both visual search and visual pop-out.  The local field potential is 

a more spatially generalized neural signal, thought to be related to the average input or activity of a 

region around the tip of the electrode (Legatt et al., 1980).  Therefore, by measuring synchrony between 

these signals we are able to get a more general view of coupling amongst these regions and how this 

coherence might vary with the task at hand (and therefore with attentional control).  Synchrony was 

measured between all pairs of simultaneously recorded LIP and frontal electrodes.  Only electrodes that 

had at least one neuron selective for target location were used (resulting in 282 LIP-frontal pairs).  The  
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Figure 15 

  

 
 
 
 

Figure 15.  Local field potential (LFP) coherence between LIP and frontal cortex (LPFC and FEF) across 
frequencies for both Pop-out (top) and Search (bottom) tasks.  Coherence was calculated around the 
time of the attention shift (in a peri-saccadic period, beginning 150 ms before saccade to 50 ms 
afterwards) and compared to a baseline, an inter-trial interval (ITI) epoch (a 200 ms window starting 500 
ms before trial onset).  Shaded regions are 95% confidence intervals around average coherence.  
Frequencies below 10 Hz are not meaningful (thus, not shown) because of the relatively short time  
epochs used.  
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degree of synchrony was captured in the coherence statistic, a measure of the co-spectrum between 

two signals, normalized for the power (Jarvis and Mitra, 2001).  Significance was determined by 

randomization tests (see Methods for more information).  Because similar results were found between 

LIP and dlPFC and between LIP and FEF, we combined data from the dlPFC and FEF. 

 

In order to capture the process of attending to the target, coherence was estimated over a 200 

ms peri-saccadic window starting 150 ms before the saccade and continuing until 50 ms after the 

saccade.  The baseline period was taken from the inter-trial interval (a 200 ms window starting 500 ms 

before fixation spot display).  The inter-trial interval was chosen to be the baseline specifically because it 

is a completely uncontrolled period of time, minimizing the amount of structure in the signal.  

Coherence during the fixation period was similar to that of the ITI and could also have been used as a 

baseline.  In order to determine the evolution of coherence over the trial, we also estimated the 

coherence between LIP and frontal cortex during the “sample” period (taken to be a 400 ms window 

beginning 200 ms after sample onset) and the memory delay (a 450 ms window beginning 50 ms after 

sample offset). 

 

During both search and pop-out, there was an increase in coherence between LIP and frontal 

cortex in a middle (22 – 34 Hz) and upper (35 -55 Hz) frequency band (Figure 15) that peaked during the 

peri-saccadic period, i.e. around the time of the attention shift (Figure 16A).  However, the relative 

increase in coherence for each frequency band differed between bottom-up and top-down control of 

attention.  This difference in coherence between task conditions can be highlighted by subtracting the 

coherence during pop-out from search.  Figure 16B shows the z-score of this difference.  We found a 

greater increase in middle frequency coherence (22 -34 Hz) between LIP and frontal cortex during top-

down search than during bottom-up pop-out.  By contrast, the increase in upper frequency (35 – 55 Hz) 

coherence was greater during pop-out than search.  Thus, bottom-up and top-down attention may rely 

on different frequency bands of coherence between the frontal and parietal cortex. 

 

As noted in the Introduction, localized synchrony of activity within a brain area may help resolve 

competition for attentional selection and inter-areal synchrony may aid in long-range communication  



60 | S y n c h r o n y  
 

Figure 16  

 

 

Figure 16.  (A) Level of coherence for pop-out and search during the middle (left, 22 – 34 Hz) and upper 
(right, 35 – 55 Hz) frequency bands in different trial epochs.  Significant differences of p < 0.05 are 
marked with *; p < 0.01 as **, as determined by t-test.  (B)  Differences in LFP coherence between LIP 
and frontal cortex during pop-out and search for the peri-saccadic period (green) and ITI (black).  Pop-
out coherence was subtracted from search coherence (Fig. 3).  Dashed lines indicate significance levels 
(p < 0.05, corrected for multiple comparisons).  Differences above the upper dashed line indicate 
significantly more coherence during search than pop-out, and below the lower dashed line significantly 
more coherence during pop-out than search. 
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between areas.  Our results suggest that the flow of top-down and bottom-up information is aided by 

coherence emphasizing different frequency bands.  Lower frequency bands are more robust to spike 

timing delays and thus may be better suited for longer-range coupling between multiple, distant areas 

(Kopell et al., 2000; von Stein and Sarnthein, 2000; Engel et al., 2001).  The increase in low frequency 

synchrony during search could reflect a ‘broadcast’ of top-down signals on a larger anatomical scale.  

Synchrony at higher frequency bands might support the local interactions needed to enhance stimulus 

representations (Kopell et al., 2000; von Stein and Sarnthein, 2000; Engel et al., 2001).  The emphasis of 

higher-frequency synchrony during pop-out could reflect local enhancement of stimulus representations 

that are passed forward from parietal to frontal cortex.  This suggests that the brain may emphasize 

coherence at different frequency bands for the dynamic modulation of inter-areal connections that 

engages the network suited for the current task. 

 

Correcting for a Common Ground 

In order to ensure that the coherence results observed were not due to task dependent 

fluctuations in the ground potential, but rather due to true task-related differences in synchrony 

amongst these regions, we corrected for a common ground amongst the electrodes.  Since during 

recording all electrodes were differentiated to a common ground, this induces a shared, synchronous 

signal in all electrodes.  Therefore, if the ground signal fluctuated significantly from task to task then this 

might induce a spurious shift in the coherence statistic.  To remove this potential confound, we re-

referenced all of the electrodes within an area to the average potential for that area (minus the 

electrode under consideration).  This subtracts any common signal across all electrodes, including the 

common-referenced ground potential.  After this subtraction was made, we re-calculated the coherence 

signal between LIP and frontal cortex.  Figure 17 shows the results.  The pattern of coherence between 

LIP and frontal cortex between the search and pop-out tasks was virtually the same pattern as the 

original results.  Coherence was greater for the middle frequency band during search over pop-out (p = 

3.5*10-8, by paired t-test) and greater for pop-out over search in the upper frequency band (p = 3.5*10-8, 

by paired t-test). 

 

Furthermore, as Figure 18 shows, the raw power of the local field potentials within the LIP and 

within the frontal cortex did not significantly vary between the search and pop-out task conditions.  Any  
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Figure 17 

  

 
 
 

Figure 17.  Coherence between LIP and both Frontal regions is different based on task condition for re-
referenced field potentials.  (A) Shows the same normalized difference in LIP-frontal coherence during 
search and pop-out as Fig 11B, but with the field potentials from each area re-referenced to the area’s 
average potential.  This was done in order to remove any possible role of a common ground in driving 
the coherence effects.  (B) Raw difference in LIP-frontal coherence between search and pop-out.  The 
coherence between each pair of LIP and Frontal electrodes was determined for both search and pop-out 
and the difference within each pair of electrodes is shown.  Error bars indicate 95% confidence interval 
around the mean difference.   During search LIP-frontal coherence was significantly greater than during 
pop-out (p = 3.5*10-8 by paired t-test), while the coherence in the upper frequency band was 
significantly greater during pop-out than search (p = 3.5*10-8, by paired t-test). 
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fluctuations in the ground potential possibly underlying the coherence differences would also be 

reflected as differences in the average power between task conditions.  As no differences in power were 

observed, this indicates that increases in power per se did not underlie the changes in inter-area 

coherence.  Taken together, these corrections demonstrate that the observed differences in coherence 

are not due to a common ground or due to fluctuations in the raw power of the field potentials but 

reflect true changes in coherence between areas. 

 

Correcting for Reaction Time Differences between Tasks 

The monkeys showed differing reaction times (RTs) during search versus pop-out and, because 

we calculated coherence over a fixed time interval, in principle, this might cause the differences in 

coherence that we observed.  To confirm that this was not the case we performed two control analyses.  

First, we recalculated coherence between LIP and frontal areas over a variable window starting 75 ms 

after visual array onset and ending 50 ms after saccade (the window thus varied with the animal’s 

reaction time).  This time period was chosen to avoid any initial visual response and to capture as much 

of the process of attending and selecting the target as possible.  As shown in Figure 19, we obtained the 

same results as with a fixed time interval.  In the middle frequency band search was significantly greater 

than pop-out (p = 5.9*10-3, by paired t-test), while in the upper frequency band pop-out was significantly 

greater than search (p = 9.0*10-6, by paired t-test). 

 

As a further test to ensure that RT differences between task conditions did not induce our 

coherence differences, we used a stratification procedure to match the RTs trials between task 

conditions.  This approach has been used in similar situations to help normalize reaction time effects 

between tasks (Tallon-Baudry et al., 1998).  Stratification was done by pairing trials from each task 

condition together if they had reaction times close to one another (within 7 ms).  If no trial from the 

other task was within this buffer then that trial was discarded.  The result of this procedure was RT 

distributions between task conditions that were 93% overlapping (compared to 60% overlapping for the 

original data) and no longer were significantly different (p > 0.05 for corrected compared to p = 5*10-4 

uncorrected; by mutual information, see Figure 20).  While this procedure reduced the total number of 

trials, the pattern of coherence results was the same (Figure 21).  Similar to the original data, coherence  
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Figure 18 

 
 

Figure 18.  Spectral power over frequency during search and pop-out for LIP (top), FEF (middle) and 
dlPFC (bottom).  The power spectrum was multiplied by frequency in order to make the data easier to 
visualize.  Shaded regions indicate 95% confidence interval about the mean power for each area.  As all 
three regions show overlapping power spectrum between the two task conditions, there is no 
significant difference in power between the two conditions. 
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Figure 19 

  

 
 
 
 

Figure 19. Coherence between LIP and both Frontal regions is different based on task condition in 
variable time window.  (A) Shows the same normalized difference in LIP-frontal coherence during search 
and pop-out as Fig 14B, but over a variable time window beginning 75 ms after visual array onset and 
ending 50 ms after saccade.  (B) Raw difference in LIP-frontal coherence between search and pop-out 
for same variable window.  The coherence between each pair of LIP and Frontal electrodes was 
determined for both search and pop-out and the difference within each pair of electrodes is shown.  
Error bars indicate 95% confidence interval around the mean difference.   During search LIP-frontal 
coherence was significantly greater than during pop-out (p = 5.9*10-3 by paired t-test), while the 
coherence in the upper frequency band was significantly greater during pop-out than search (p = 9.0*10-

6, by paired t-test). 
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Figure 20 

  

 
 
 
 

Figure 20.  Reaction time distributions before and after stratification procedure.  In order to remove any 
reaction time effects on the observed coherence, the reaction time distributions were stratified.  Trials 
were paired across tasks (to within 7 ms of one another) in order to equalize the reaction time 
distributions.  The result of this procedure was RT distributions between task conditions that were 93% 
overlapping (compared to 60% overlapping for the original data) and no longer were significantly 
different (p > 0.05 for corrected compared to p = 5*10-4 uncorrected; by mutual information). 
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Figure 21 

  

 
 
 

Figure 21.  Coherence between LIP and both Frontal regions is different based on task condition after 
task stratification.  (A) Shows the same normalized difference in LIP-frontal coherence during search and 
pop-out as Fig 14B, but with trials stratified by reaction time.  The stratification process corrects for 
reaction time differences by creating overlapping distributions for search and pop-out  (B) Raw 
difference in LIP-frontal coherence between search and pop-out.  The coherence between each pair of 
LIP and Frontal electrodes was determined for both search and pop-out and the difference within each 
pair of electrodes is shown.  Error bars indicate 95% confidence interval around the mean difference.   
During search LIP-frontal coherence was significantly greater than during pop-out (p = 4.5*10-5 by paired 
t-test), while the coherence in the upper frequency band was significantly greater during pop-out than 
search (p = 7.1*10-4, by paired t-test). 
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between LIP and frontal cortex was significantly greater in the middle frequency band during search (p = 

4.5*10-5, by paired t-test) and significantly greater in the upper frequency band during pop-out (p = 

7.1*10-4, by paired t-test).  These results confirm the differences in coherence between search and 

popout while controlling for differences in reaction time. 

 

Inter- and Intra-Areal Coherence 

The previous sections have analyzed the synchrony between parietal and frontal cortex during 

both visual search and pop-out.  This focus has been due to the timing differences observed between 

tasks, motivating an analysis of how this change in relative relationship might be reflected in changes in 

the degree of synchrony.  Here we present a more complete view of the degree of coherence between 

and within all of the studied anatomical regions. 

 

Coherence was calculated in the same manner as above (with a detailed description available in 

Methods).  A randomization procedure was used in order to determine a null distribution.  Confidence 

intervals about the mean coherence were calculated from the standard error of the mean.  Figure 22 

shows the raw coherence between all possible pairings of anatomical regions (including both intra- and 

inter-areal coherence).  The coherence between LIP and both dlPFC and FEF alone show very similar 

patterns to one another, which prompted us to combine the results, as previously described.  Figure 23 

shows the difference in coherence during search and pop-out for each pair of areas.  As was done 

previously, the null distribution was used to determine significance levels for both an increased 

coherence during search (in which the difference is positive) or increased coherence during pop-out (for 

which the difference is negative).  Again, the task-difference in coherence between LIP and both dlPFC 

and FEF show very similar results. 

 

While synchrony between the frontal and parietal regions showed differences in two distinct 

bands, coherence between and within other regions was not always as clear-cut.  Synchrony within 

dlPFC electrodes showed a very similar effect as LIP-dlPFC (Figure 23) – coherence was found to be 

increased during visual search in a middle band of approximately 20 to 35 Hz and increased during visual 

pop-out for an upper frequency band of 35-60 Hz.  Coherence within FEF is much noisier due to a lower  
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Figure 22 

 
 

Figure 22.  The raw coherence measured between areas (left column) and within areas (right column).  
The coherence is shown for both search (red) and pop-out (blue) with the shaded region indicating the 
standard deviation.  Asterisks indicate a significant difference between search and pop-out (p < 0.05, t-
test).  The randomization procedure used in Figure 23 is a more valid test, but the t-test does provide 
similar results. 
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Figure 23 

 
 

Figure 23.  The difference in coherence during visual search and pop-out.  Coherence is measured 
between areas (left column) and within areas (right column).  Significance was determined by a 
randomization test (see main text).  Differences above the upper dotted line indicate significantly more 
coherence during visual search; below the lower dotted line indicates more coherence during pop-out. 
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number of simultaneously recorded pairs, but shows a generally similar pattern.  Coherence within FEF 

was relatively higher during visual search for a lower-middle band from approximately 10 to 25 Hz and 

trended towards an increase in coherence during visual pop-out for higher frequencies.  Coherence 

between the two frontal regions (FEF-dlPFC) again shows an increase in middle frequency range 

coherence during visual search relative to visual pop-out, but shows a muddle difference in the upper 

frequency range.  Later analysis will show a possible upward trend during visual search of FEF-dlPFC in a 

frequency band of 35-65 Hz (see LFP to LFP phase-locking section). 

 

One possible concern is that these effects within and between frontal regions might reflect 

intrinsic changes within frontal cortex or they may also reflect the second-order synchronization of 

frontal electrodes in response to a first-order synchronization between frontal and parietal regions 

(although dlPFC electrodes show a pattern of coherence differences much more similar to LIP-Frontal 

than FEF electrodes do).  However, LIP-LIP coherence did not show the same pattern of results, rather 

not showing a significant increase in either band between tasks.  Although this argues against the 

strength of second-order effects, it is difficult to tease apart the sources of these changes in synchrony.  

It is important to note that the synchrony observed between LIP and the frontal regions cannot be result 

of a second-order for effect. 

 

In order to provide a more complete picture of the distribution of coherence, Figure 24 shows 

the raw coherence between pairs of LIP and Frontal electrodes, as well as the raw distribution with 

standard deviation instead of 95% C.I. as shown in Figure 15.  Although the effects across the population 

were highly significant, there is a good deal of variation in the degree of coherence between pairs of 

electrodes.  Part of this variance is due to differences in synchrony with respect to the receptive fields of 

electrodes, as discussed in the following section.  Figure 24 shows the standard deviation in coherence 

across individual trials for both visual search and pop-out (along with the 95% C.I. of that standard 

deviation).  The technique for estimating single trial coherence is discussed in Chapter 8.  With respect 

to the average coherence effects (> 0.1), the standard deviation across trials was relatively small.  This 

suggests that the observed synchrony between pairs of electrodes in parietal and frontal cortex is fairly 

consistent from trial to trial.  Later sections will attempt to explain some of this variance across trials 

with behavioral parameters.  
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Figure 24 

 
 

Figure 24.  Raw coherence traces for pairs of LIP and Frontal electrodes during visual search (top row, 
left) and pop-out (top row, right).  The average coherence is shown in the middle row, along with the 
standard deviation of the distribution.  There difference in coherence between visual search and pop-
out is shown in the bottom row, now showing both the corrected 95% CI and the standard deviation.  All 
three plots show a large spread of values, but with highly significant differences due to the large number 
of pairs.  Part of the variance in coherence across pairs is explained through receptive field effects as 
explained in the next section. 
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Figure 25 

 

  

 
 

Figure 25.  Standard deviation in coherence across single trials over frequency.  The variance in 
coherence across trials was roughly the same for both visual search and pop-out and was fairly small 
relative to the overall coherence.  This suggests that the observed effects were not strongly driven by a 
few outlying trials, but were fairly consistent. 
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Synchrony Varies with Location Preference 

So far we have demonstrated large scale interactions between entire anatomical areas, but an 

important question is whether synchrony between regions happens on a finer scale.  If synchrony 

between two brain regions does facilitate communication then it might be advantageous for the 

interactions to happen between subregions sharing similar properties.  In our task the main variable of 

interest is the target location.  Therefore, in order to test this hypothesis we investigated whether the 

observed coherence between two brain regions is modulated by the difference in location preferences 

for each electrode pair. 

 

The location preference was determined for each individual electrode by defining a vector by 

the average response of all single neurons isolated from that electrode (the average response of isolated 

single neurons was taken over the same window as the coherence measurement – a 200 ms window 

starting 150 ms before the saccade).  The difference in preferred direction for a pair of electrodes was 

then taken to be the difference in the angle of these two vectors.  The first area listed in each pair acts 

as the reference vector, with the second area either rotated clockwise or counter-clockwise from that 

direction.  Clockwise rotations were defined as negative angle values, while counter-clockwise rotations 

were positive.  Angle differences were binned into 4 equally sized bins of 90o as only four target 

locations were used during recording.  Coherence was calculated in the same manner as reported 

above.  We examined both the middle frequency band (22-34 Hz) and the upper frequency band (35-55 

Hz) found to be task related in the previous analysis.  The average coherence across all pairs is reported 

for both search trials (shown in red) and pop-out trials (shown in blue).  An unpaired t-test was used to 

determine whether the observed differences in coherence between tasks was significant. 

 

Figure 26 shows the influence of location preference on coherence between all possible pairings 

of anatomical areas for the middle frequency band (22-34 Hz).  Inter-areal coherence is shown in the left 

column, while intra-areal coherence is shown in the right column.  Coherence between FEF and LIP was 

strongest during visual search for electrodes that were offset by -90o (this response was significantly 

greater than that observed in visual pop-out (p = 0.015, by t-test).  As the angle is negative, electrodes in 

FEF with a location preference 90o clockwise of those in LIP showed the greatest coherence.  If the role 

of synchrony is to enhance communication, then this would suggest that sub-regions within FEF are  
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Figure 26 

 

 
 

Figure 26.  22 – 34 Hz coherence between pairs of electrodes based on the difference in their preferred 
target locations during the peri-saccade time period.  The coherence is compared between areas (left 
column) and within areas (right column) for both search (red) and pop-out (blue).  The number of pairs 
of electrodes for each location preference offset is given for both search (red) and pop-out (blue).  
Errorbars indicate the 95% confidence interval about the mean.    Significant differences between search 
and pop-out were determined using an unpaired t-test, with the p-value indicated. 
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receiving the most information from regions within LIP that are 90o counter-clockwise.  Interestingly, 

this effect is not true for coherence between LIP and dlPFC in the 22-34 Hz band.  Instead, coherence 

between these two regions was highest for electrodes within each area that shared the same location 

preference – as if the greatest communication occurred between sub-regions carrying common 

information. 

 

While coherence between LIP and FEF was greatest in the 22-34 Hz frequency range when 

electrodes were offset by on target stimulus, coherence in the upper frequency range (35-55 Hz) was 

greatest for visual pop-out when the electrodes shared the same preferred direction (Figure 27).  This 

dichotomy in the dependency of synchrony on location preferences between the middle and upper 

frequency bands further supports the differential role they play in visual search and pop-out.  Coherence 

between LIP and dlPFC in the 35-55 Hz range was also maximal when the electrodes shared a preferred 

direction, although there was no significant difference between search and pop-out.  However, a 

significant difference in 35-55 Hz coherence was observed for pairs of electrodes within dlPFC that share 

a preferred location.  No such intra-areal increase in coherence was observed for the middle frequency 

band, bolstering the suggestion that higher frequency synchronization may play a larger role in the 

localized facilitation of communication.  Although similar trends are observed for coherence during the 

inter-trial interval, there was no significant difference between tasks at any frequency band or location 

preference offset (Figure 28 for the middle, 22-34 Hz, frequency band; Figure 29 fort the upper, 35-

55Hz, band).  This suggests that the brain may begin to establish these synchronous relationships early 

in the trial in anticipation of performing the search task, however the effective connectivity between 

brain regions is maximally different during the execution of the task. 
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Figure 27 

 

 

 
 

Figure 27.  35 – 55 Hz coherence between pairs of electrodes based on the difference in their preferred 
target locations during the peri-saccade time period.  The coherence is compared between areas (left 
column) and within areas (right column) for both search (red) and pop-out (blue).  The number of pairs 
of electrodes for each location preference offset is given for both search (red) and pop-out (blue).  
Errorbars indicate the 95% confidence interval about the mean.    Significant differences between search 
and pop-out were determined using an unpaired t-test, with the p-value indicated. 
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Figure 28 

  

 
 

Figure 28.  22 – 34 Hz coherence between pairs of electrodes based on the difference in their preferred 
target locations during the inter-trial interval.  The coherence is compared between areas (left column) 
and within areas (right column) for both search (red) and pop-out (blue).  The number of pairs of 
electrodes for each location preference offset is given for both search (red) and pop-out (blue).  
Errorbars indicate the 95% confidence interval about the mean.    Significant differences between search 
and pop-out were determined using an unpaired t-test, with the p-value indicated. 
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Figure 29 

 

 

 
 

Figure 29.  35 – 55 Hz coherence between pairs of electrodes based on the difference in their preferred 
target locations during the inter-trial interval.  The coherence is compared between areas (left column) 
and within areas (right column) for both search (red) and pop-out (blue).  The number of pairs of 
electrodes for each location preference offset is given for both search (red) and pop-out (blue).  
Errorbars indicate the 95% confidence interval about the mean.    Significant differences between search 
and pop-out were determined using an unpaired t-test, with the p-value indicated. 
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Correlation of Synchrony with Reaction Time 

Although we have described the relative strength of coherence across visual search and pop-

out, it is also interesting to ask whether the strength of the coherence on a trial-by-trial basis is 

correlated with how well the animal is able to perform the task.  In order to determine the trial-by-trial 

coherence we used a jackknife method as described in the methods.  We then used the estimated 

coherence from a single trial to attempt to predict whether the reaction time from that trial would be 

high or low.  Trials were binned into 10 separate groups based on their reaction times.  A linear 

correlation was then computed between the coherence of a given pair of electrodes and the reaction 

time.  This was done for all possible pairings of areas in our two frequency bands of interest (the middle 

frequency band, 18-34 Hz, and the upper frequency band 35-55 Hz).  Trials from visual search and visual 

pop-out were analyzed separately in order to avoid task-related correlations in reaction time and 

coherence. 

 

There was a negative correlation between reaction time and coherence in the 18-34 Hz 

frequency band for FEF-FEF, FEF-dlPFC, dlPFC-dlPFC, and LIP-LIP (Figure 30).  Since the correlation is 

negative, an increase in coherence on a single trial leads to a decrease in the reaction time.  Therefore, 

when synchrony within frontal cortex and within parietal cortex is increased in the middle frequency 

band the animal is able to respond more quickly.  This finding supports the importance of the middle 

frequency band to the search task.  Interestingly, the largest difference in coherence observed between 

search and pop-out was in the middle frequency between the frontal regions and LIP, however an 

increased level of coherence between these areas does not cause a significant improvement in reaction 

time.  This may be due to a saturation of the coherence between these regions during search. 

 

During visual pop-out there were negative correlations between the FEF-FEF coherence in the 

18-34 Hz range as well as LIP-LIP coherence in the 35-55 Hz range (Figure 31).  As the FEF-FEF, 18-34 Hz 

range also showed a significant negative correlation with reaction time during search it may play a more 

general role in speeding up eye movements regardless of the task.  Coherence within LIP was the only 

pairing that showed a significant correlation in the upper frequency band, demonstrating a very strong 

effect – over 20% of all electrode pairs within LIP were negatively correlated with reaction time.  As the 

correlation is negative, increased coherence within LIP in the upper frequency band leads to a faster  
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Figure 30 

 
 

Figure 30.  The distribution of correlation coefficient’s between coherence and reaction time during 
visual search.  The distribution is shown for all possible area pairs in both the middle (18-34 Hz) and 
upper (35-55 Hz) frequency bands.  The left sub-figure for each area pair shows the distribution of 
correlation coefficients for each pair of electrodes.  Significant correlations are indicated with a red 
square (p < 0.05).  The right sub-figure shows the percent of all pairs demonstrating a significant 
correlation in either the Up (blue) or Down (red) direction.  The proportion of pairs of electrodes with 
significant reaction time correlations was tested against the binomial distribution.  A single asterisk 
indicates p < 0.05, a double asterisk indicates p < 0.01.  
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reaction.  Similar effects were previously shown in earlier visual areas (Womelsdorf et al., 2006b).  These 

results suggest that when local synchrony is enhanced the animal is able to respond more quickly. 

 

Neither of the tested frequency ranges was positively correlated with reaction time for either 

task, suggesting that while increases in synchronization at a particular band may aid in the task 

performance, increasing synchrony does not hinder behavior.  Whether this is a general truth is an open 

question and warrants further investigation. 
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Figure 31 

 
 

Figure 31.  The distribution of correlation coefficient’s between coherence and reaction time during 
visual pop-out.  The distribution is shown for all possible area pairs in both the middle (18-34 Hz) and 
upper (35-55 Hz) frequency bands.  The left sub-figure for each area pair shows the distribution of 
correlation coefficients for each pair of electrodes.  Significant correlations are indicated with a red 
square (p < 0.05).  The right sub-figure shows the percent of all pairs demonstrating a significant 
correlation in either the Up (blue) or Down (red) direction.  The proportion of pairs of electrodes with 
significant reaction time correlations was tested against the binomial distribution.  A single asterisk 
indicates p < 0.05, a double asterisk indicates p < 0.01.  
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Phase Relationships between Local Field Potentials 

Synchrony between the local field potentials can also be computed using relative phase 

relationships.  Once frequency bands of interest are known, we can filter the LFP signal from each 

electrode into those bands.  After locating the peaks and valleys of the filtered oscillation it is possible to 

determine the relative phase of another signal.  For all of the results shown here the transitive property 

was maintained, so only one pair is shown (e.g. LIP-dlPFC is the same as dlPFC-LIP, but with reversed 

phase relationships).  Although this method does require one to previously identify the frequency bands 

of interest, it does confer two major advantages.  First, the signals can be filtered across the entire 

recording time, allowing for the estimation of synchrony in limited time windows for frequency bands 

much lower than is possible using the spectral method.  Second, since the signal is no longer assumed to 

be stationary within our window (as is required of the spectral method) the relative phase between our 

filtered reference signal and a probe signal can be more accurately determined.  This is vitally important 

when the reference signal contains phase-jumps – a common occurence in neural signals, especially 

around stimulus presentations and behavioral responses. 

 

For this analysis we will use phase-locking between two LFP signals as a measure of their degree 

of synchrony.  Circular statistics were used to determine whether the observed phase distribution was 

significantly different from the null distribution (see Methods for detailed description of these analyses).  

We used 4 different frequency bands of interest – a low frequency band of 4-8 Hz, a low-middle band of 

8-16 Hz, a middle band of 18-34 Hz, and an upper frequency band of 35-65 Hz.  All filtering was done in a 

phase-conserving manner with high order Butterworth filter applied across the entire signal from each 

trial (all filters had a minimum -10 db attenuate within 1 Hz outside the filter range).  These frequency 

bands were chosen to match well with existing literature, as well as our previous results from the 

coherence analysis. 

 

Figures 32 and 33 show the difference in observed phase-locking between visual search and 

visual pop-out for inter- and intra-areal pairings, respectively.  Each figure shows the difference in 

phase-locking between LFPs recorded from all possible pairs of areas.  Differences in synchrony are 

plotted across time for 4-8Hz (left-most column), 8-16 Hz (middle-left column), 18-34 Hz (middle-right 
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column), and 35-65 Hz (rightmost column).  All possible pairings are shown for completeness and 

because all 4 frequency ranges will be important for later analysis.   

 

Generally, the phase-locking statistic follows the pattern of results found using the coherence 

statistic when comparisons are possible.  Inter-areal effects (Figure 32) appear to be very consistent with 

the coherence statistic, while intra-areal effects (Figure 33) appear to show a stronger second-order 

effect then the coherence measure.  For example, synchrony in the 18-34 Hz band was increased during 

search for all pairing groups, an effect that was also seen in the coherence statistic with the exception of 

LIP-LIP which previously showed no significant effect.  The phase-locking in the upper frequency band 

(35-65 Hz) showed an increase during pop-out for FEF-LIP and LIP-dlPFC as did the coherence statistic, as 

well as additional increases in FEF-dlPFC synchrony during visual search.  Again, intra-areal synchrony 

was slightly different than the coherence statistic as LIP-LIP showed a significant increase in phase-

locking during pop-out, FEF-FEF showed an increase in synchrony for search, and dlPFC-dlPFC showed no 

significant change between tasks (coherence was increased for pop-out). 

 

Both of the lower frequency bands (4-8 Hz and 8-16 Hz) showed a temporal pattern of 

increasing their overall synchrony from the fixation onward for both visual search and pop-out (data not 

shown).  The 4-8 Hz band tended to peak around the memory delay, while 8-16 Hz synchrony tended to 

show a flat or slight upwards trend as the trial proceeded.  These effects existed across all 6 pairs of 

areas.  The difference in synchrony between search and pop-out showed that for the lower frequency 

band (4-8 Hz) visual pop-out was generally more synchronous across most of the trial.  However, during  
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Figure 32 

 

  

 
 

Figure 32.  Difference in inter-areal synchronization between visual search and pop-out.  The difference 
is plotted across time (x-axis), for each inter-areal pairing (across rows), and for our 4 frequency bands 
of interest: 4-8 Hz (leftmost column), 8-16 Hz (middle-left column), 18-34 Hz (middle-right column), and 
for 35-65 Hz (rightmost column).  The degree of synchronization is measured with the Rayleigh statistic, 
R.  If a circular distribution is farther away from being uniform, then R will increase.  Since a non-uniform 
distribution suggests synchronization through phase-locking, a high R means more synchronization.  The 
mean difference in R between search and pop-out is plotted with the errorbars indicating a 95% 
confidence interval.  Therefore, a mean below, and not overlapping with, zero indicates increased 
phase-locking during pop-out.  Conversely, a R significantly above zero indicates increased phase-locking 
during visual search. 



87 | S y n c h r o n y  
 

Figure 33 

 

  

 
 

Figure 33.  Difference in intra-areal synchronization between visual search and pop-out.  The difference 
is plotted across time (x-axis), for each intra-areal pairing (across rows), and for our 4 frequency bands 
of interest: 4-8 Hz (leftmost column), 8-16 Hz (middle-left column), 18-34 Hz (middle-right column), and 
for 35-65 Hz (rightmost column).  The degree of synchronization is measured with the Rayleigh statistic, 
R.  If a circular distribution is farther away from being uniform, then R will increase.  Since a non-uniform 
distribution suggests synchronization through phase-locking, a high R means more synchronization.  The 
mean difference in R between search and pop-out is plotted with the errorbars indicating a 95% 
confidence interval.  Therefore, a mean below, and not overlapping with, zero indicates increased 
phase-locking during pop-out.  Conversely, a R significantly above zero indicates increased phase-locking 
during visual search. 



88 | S y n c h r o n y  
 

the peri-saccadic period, for which the differences in task are maximal, interactions between dlPFC and 

any other region show no difference in synchrony, while interactions within and between LIP and FEF 

show a continued increase in synchrony for visual pop-out. 

 

Measuring the degree of synchrony through phase-locking also allows us to determine the 

phase offset of the LFP signals.  For this analysis all of the phases are relative to the peak of the 

reference electrode (which is always listed first in a grouping).  The phase difference between the signals 

is determined by the phase of the reference signal at the peak of the probe signal (which is listed 

second).  The phase relationships for X-Y are symmetric to Y-X, so only X-Y are plotted for succinctness.  

Due to this fact, all relationships between signals within an area (X-X) showed no phase differences.  The 

phase relationships between areas are plotted on concentric circles.  The two semicircles plotted for 

each area pair represent the 95% confidence interval of the mean phase difference during search (red) 

and pop-out (blue).  The phase difference is plotted over time for each frequency band (for this analysis 

the response in fixation is omitted as it showed similar effects to the ITI, which serves as a good 

baseline).  Average phases that lie in the upper half of the circle suggest that the reference electrode is 

leading the probe electrode (for X-Y, X would be leading Y).  Phases in the bottom half suggest the probe 

leads the reference (Y leads X). 

 

Figure 34 shows the inter-areal LFP phase differences for the lowest frequency band, 4-8 Hz, 

across the trial.   Initially, all three regions show a phase lag around zero – the two areas are oscillating 

in phase.  However, once the visual array is presented the relationship between these regions changes 

dramatically – both LIP-dlPFC and LIP-FEF show a significant negative phase shift, suggesting the frontal 

regions are leading the parietal region.  Later in the trial, during the peri-saccade time period, this large 

shift disappears and instead we have a double dissociation between the current task and which area is 

leading.  During pop-out, parietal regions lead frontal regions but during search frontal regions are 

leading parietal regions in this band.  This difference mirrors the difference in our flow of information 

about the target location and suggests a role for the 4-8 Hz band in controlling the overall flow of 

information between brain regions. 
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Figure 34 

 

 
 

Figure 34.  Phase difference in the LFP signals of different brain regions for the 4 – 8 Hz frequency band.  
The phase difference is plotted across time for the inter-trial interval (upper left), the memory delay 
(upper right), after the onset of the visual array (lower left), and in the peri-saccade period around the 
animal’s decision (lower right).  The relative phase is measured with respect to the first, reference, signal 
(e.g. for the outermost right, LIP).  Therefore a positive angle suggests the reference signal proceeded 
that of the probe signal, while a negative angle suggests the probe signal proceeded the reference 
signal.  The average angle was determined for both search (red) and pop-out (blue) trials.  The spread of 
the semi-circle indicates the 95% confidence interval around the average angle. 
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Figure 35 

 

 
 

Figure 35.  Phase difference in the LFP signals of different brain regions for the 8 – 16 Hz frequency 
band.  The phase difference is plotted across time for the inter-trial interval (upper left), the memory 
delay (upper right), after the onset of the visual array (lower left), and in the peri-saccade period around 
the animal’s decision (lower right).  The relative phase is measured with respect to the first, reference, 
signal (e.g. for the outermost right, LIP).  Therefore a positive angle suggests the reference signal 
proceeded that of the probe signal, while a negative angle suggests the probe signal proceeded the 
reference signal.  The average angle was determined for both search (red) and pop-out (blue) trials.  The 
spread of the semi-circle indicates the 95% confidence interval around the average angle. 
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Figure 36 

 
 
Figure 36.  Phase difference in the LFP signals of different brain regions for the 18 - 34 Hz 

frequency band.  The phase difference is plotted across time for the inter-trial interval (upper left), the 
memory delay (upper right), after the onset of the visual array (lower left), and in the peri-saccade 
period around the animal’s decision (lower right).  The relative phase is measured with respect to the 
first, reference, signal (e.g. for the outermost right, LIP).  Therefore a positive angle suggests the 
reference signal proceeded that of the probe signal, while a negative angle suggests the probe signal 
proceeded the reference signal.  The average angle was determined for both search (red) and pop-out 
(blue) trials.  The spread of the semi-circle indicates the 95% confidence interval around the average 
angle. 
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Figure 37 

 

  

 
 

Figure 37.  Phase difference in the LFP signals of different brain regions for the 35 - 65 Hz frequency 
band.  The phase difference is plotted across time for the inter-trial interval (upper left), the memory 
delay (upper right), after the onset of the visual array (lower left), and in the peri-saccade period around 
the animal’s decision (lower right).  The relative phase is measured with respect to the first, reference, 
signal (e.g. for the outermost right, LIP).  Therefore a positive angle suggests the reference signal 
proceeded that of the probe signal, while a negative angle suggests the probe signal proceeded the 
reference signal.  The average angle was determined for both search (red) and pop-out (blue) trials.  The 
spread of the semi-circle indicates the 95% confidence interval around the average angle. 
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The inter-areal phase relationship of the 8-16 Hz filtered LFP signal is shown Figure 35.  Similar 

to the lowest frequency band, the signals are initially in phase until the presentation of the visual array.  

After array onset the parietal LFP begins to proceed the frontal signals.  This trend continues into the 

peri-saccade time period.  Interestingly, in contrast to the lowest frequency band, the 8-16 Hz band 

shows a larger phase offset between LIP and the frontal regions during visual search than visual pop-out.  

As this frequency band shows a general synchrony increase during pop-out, and the observed phase 

relationship suggests parietal leading frontal cortex, one possible role for the 8-16 Hz band may be the 

forward flow of information. 

 

Figure 36 presents the phase relationships over time for inter-areal phase-locking in the 18-34 

Hz, middle, band.  Unlike the two lower bands, there is a consistent phase relationship between parietal 

and dlPFC during the ITI and memory delay – the LFP from dlPFC proceeds that of LIP, suggesting a 

downward flow of information.  However, after the visual array onset and during the peri-saccade 

period, this ordering reverses with dlPFC and FEF LFPs following those of LIP.  We have demonstrated 

that the degree of synchrony between the frontal and parietal regions increases in a middle frequency 

band of approximately 18-34 Hz during visual search over pop-out.  As the visual search paradigm 

requires a more integrated approach, we suggest this lower frequency band allows for integration over 

much large temporal differences, allowing the brain to gather all of the information necessary to find 

the target and complete the task.  The phase differences between parietal and frontal regions suggest 

that although this frequency band may be emphasized when top-down influences are maximized, the 

signal originates in posterior cortex flowing into frontal regions. 

 

The local field potentials of all three regions are in phase throughout the entire task for the 

highest frequency band, 35-65 Hz (Figure 37).  This is different than the other frequency band in that the 

relationship appears to be fairly stationary across time.  Synchrony between parietal and frontal cortex 

was shown to be enhanced in this frequency band during visual pop-out when compared to search.  

This, along with previous work, suggests a role for high-frequency oscillations in the local enhancement 

of attended stimuli, with this information being ‘passed’ along to downstream areas.  The lack of phase 

differences between LFP signals in parietal and frontal cortex suggests that while information is passed 

from one region to the next, the high frequency oscillations are very local and are themselves not 
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propagated forward, but rather phase-lock to one another, possibly through cross-frequency phase 

locking. 

 

Synchrony between Frequency Bands 

Up to this point we have discussed the relative phase-locking of different anatomical areas 

across different frequency bands.  We have suggested that communication between regions is 

facilitated through this synchronization and that task-specific enhancement of particular frequencies 

may aid in the flow of pertinent information.  However, if one were to hypothesize that different types 

of information are carried on different frequency bands it becomes important to integrate across these 

frequencies.  Here we investigate the possibility that the different frequency bands within a signal may 

phase-lock between themselves in order to facilitate cross-band communication. 

 

As with the comparison of phase relationships between LFP signals, each LFP signal was filtered 

into four bands of interest.  However, instead of comparing the relative phase between electrode pairs, 

we are now comparing the relative phase of different filtered signals within a single electrode.  Due to 

the inherent multi-modal nature of casting higher frequencies onto lower frequencies, all circular 

analysis were done with a non-parametric test (see Methods). 

 

The only observed phase-locking to occur between any frequency ranges from any of the three 

areas were between the lowest frequency band (4-8 Hz) and the other three bands.  Furthermore, the 

cross-band synchronization only occurred after the visual array onset in all three regions (Figure 38, the 

8-16 Hz band is not plotted in order to save space).  Although all three regions showed similar increases 

in locking across the trial, they did vary in their relative increase for visual search and pop-out.  Within 

LIP both the middle and upper frequency band showed significantly more synchronization with the 4-8 

Hz band during pop-out, whereas for both dlPFC and FEF the opposite was true – cross-band 

synchronization was increased during search (Figure 38, top two rows).  These results suggest a possible 

mechanism for brain regions to integrate across frequency bands – maybe allowing for the collection of 

different information carried on each stream.  This hypothesis is supported by the differences in cross-

band synchronization by task – LIP is more directly involved in finding the target during visual pop-out 
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and therefore is more likely to need increased cross-modal interactions to support the integration of 

information.  In contrast, during visual search, a task requiring prefrontal control, both prefrontal 

regions show an increase in cross-band synchronization, as if to facilitate the increased need for 

integration. 
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Figure 38 

 
 

Figure 38.  Degree of cross-band synchronization over time.  A non-parametric test for uniformity (V) 
was used to determine significant phase-locking between the 4-8 Hz band and both the 18-34 Hz band 
(left column) and the 35-65 Hz band (right column).  The degree of synchronization is shown for all three 
areas.  The distribution of our synchronization statistic is shown over time for both visual search (red) 
and pop-out (blue).  The solid colored line indicates the average V value and values above 1.747 (black 
line) are significant at p < 0.05.  Significant differences between tasks are indicated as search greater 
than pop-out (S>P) or vice versa (P>S). 
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Synchrony between Spikes and Local Field Potentials 

Although we have extensively investigated the synchronization of local field potentials, the brain 

ultimately communicates via spiking activity.  Therefore, in order to ensure that the synchronization of 

local field potentials is relevant to the information currency of the brain we investigated the 

synchronization of spiking activity to the local field potential.   

 

The phase of each spike was determined by interpolating the phase along the filtered LFP signal.  

Synchronization between the neuron and LFP was assessed by comparing the resultant distribution of 

phases from all spikes from a single neuron to the null distribution (see Methods for more information).  

Spiking activity and the LFP signal were both taken from a peri-saccade period of 200 ms, starting 150 

ms before the saccade.  As with all of the coherence measurements only electrodes that had at least 

one neuron with target location information were used.  Spiking activity was drawn from isolated 

neurons that showed selectivity for the target location in either task.  All possible neuron-electrode 

pairings were used with the exception of the neuron to its own electrode.  This was avoided in order to 

prevent any contamination of the LFP signal with low-frequency components of the spike waveform. 

 

The proportion of neuron-electrode pairs that showed a significant phase-locking is plotted in 

Figure 39 for all four frequency bands of interest.  There are a significant proportion of neurons that 

synchronize with all four frequency bands and do so in a fairly diverse manner (within areas and across 

areas).  This is not surprising as all three areas are heavily interconnected.  Furthermore, as has been 

thoroughly demonstrated, there are high degrees of synchronization between LFP signals (and even 

between different frequency bands).  Therefore, many of the effects we see across anatomical areas 

may be second-order effects due to LFP-LFP synchronization. 



98 | S y n c h r o n y  
 

Figure 39 

 
 

Figure 39.  The proportion of single neurons within each area [denoted by (s)] phase-locked to the LFP 
signal from either the same, or another, area [denoted by (l)].  The asterisk (*) indicates a significant 
proportion of neurons were phase-locked (p < 0.05, tested against binomial).  A small ‘b’ marks a 
significant intersection of neurons selective in both search and pop-out (p < 0.05, binomial test). 
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The strongest spike-field synchronization occurs within the 4-8 Hz range (although this is true for 

the peri-saccade time period, it is not always the case earlier in the trial – for example, during the 

memory delay, the 35-65 Hz frequency band is emphasized).  Interestingly, for both the middle and 

upper frequency bands, the strongest synchronization between spiking activity and the local field 

potential occurs within the same region.  This is especially true for the upper frequency band (Figure 39, 

bottom row), supporting the hypothesis that this high frequency oscillation is mostly a local one.   

 

All spike-field pairings that have a population of neurons that are synchronized in both visual 

search and pop-out show a large proportion of overlap between the two populations (all p < 0.05, with 

populations showing 30-60% overlap).  This suggests that there when there is significant synchronization 

between a neuron and a particular neuron then they tend to maintain that synchrony across tasks.  This 

may allow for the same neuron to consistently represent its information on particular frequency bands. 

 

Conclusion 

As noted in the Introduction, localized synchrony of activity within a brain area may help resolve 

competition for attentional selection while inter-areal synchrony may aid in long-range communication 

between areas.  Our results suggest that the flow of top-down and bottom-up information is aided by 

coherence emphasizing different frequency bands.  Lower frequency bands are more robust to spike 

timing delays and thus may be better suited for longer-range coupling between multiple, distant areas 

(Kopell et al., 2000; von Stein and Sarnthein, 2000; Engel et al., 2001).  The increase in middle frequency 

synchrony during search could reflect a ‘broadcast’ of signals on a larger anatomical scale.  Synchrony at 

higher frequency bands might support the local interactions needed to enhance stimulus 

representations (Kopell et al., 2000; von Stein and Sarnthein, 2000; Engel et al., 2001).  The emphasis of 

higher-frequency synchrony during pop-out could reflect local enhancement of stimulus representations 

that are passed forward from parietal to frontal cortex.  Our results suggest that the brain may 

emphasize coherence at different frequency bands in order to dynamically modulate inter-areal 

connections such that the network best suited for the current task is always engaged. 
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Chapter 4: Neural Coding for Task Parameters 
 

Introduction 

This thesis is focused on the relative relationship between parietal and frontal cortex in the 

control of attention and therefore our behavioral paradigm was designed in order to compare and 

contrast exogenous attention in visual pop-out and endogenous attention in visual search.  However, 

despite the main variable of manipulation being whether or not attention is being directed in an 

external or internal manner, there are several other pieces of information necessary to complete the 

task.  It is clear from the first chapter that while a good proportion of neurons in each area reflect the 

allocation of attention to, and subsequent selection of, the target, approximately 2/3 of recorded 

neurons from each area are not involved in carrying information about the target location.  This chapter 

is focused on the other parameters involved in completing the task, and the neural representations of 

these parameters over time. 

 

Information about Task Parameters over Time 

Although we used information about the target location as a window into the allocation of 

attention, the main manipulation was to investigate differences in how this information is represented 

across parietal and frontal cortex under two different tasks – visual pop-out and visual search.  We 

needed to block the two tasks (into blocks of ~35) in order to get the reaction time differences 

necessary to make a psychophysical argument about the type of attentional control employed by each 

task.  Because the tasks were presented in blocks of contiguous trials, the animal was able to fully 

expect the type of task that would be used on the next trial – information that is likely useful to the 

animal in order to prepare for handling the two different types of task.  As can be seen in Figure 40, 

information about the type of task used during the trial is strongly represented in all three areas 

throughout the entire task.  The number of selective neurons from each area are shown for several time 

periods across the trial: the Inter-trial Interval (ITI, 1000 ms window starting 500 ms before the 

presentation of the fixation point); the fixation period (300 ms window, starting 300 ms before the 

presentation of the sample stimulus in order to avoid saccade artifacts); the sample presentation (1000 

ms window across the entire time the sample was presented); the memory delay (500 ms window of the 

entire memory delay between sample stimulus and visual array onset); the onset epoch (the first 200 ms  
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Figure 40 

 
 

Figure 40.  Percent of recorded neurons that carried significant information about the task type (either 
search or pop-out) over the length of the trial.  Data is shown from LIP (red), dlPFC (green) and FEF 
(blue).   All three regions carried significant information about the task type during all time periods of 
the task (p < 0.05, tested against binomial).  
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of the visual array presentation); and a peri-saccade period (a 300 ms window starting 200 ms before 

the saccade – this was chosen to encompass as much of the process of finding the target as possible).   

 

As the animal is searching for a particular target stimulus matching that of a sample stimulus 

presented earlier in the trial, information about sample stimulus is also vitally important to correctly 

completing the task.  Figures 41, 42, and 43 show the percent of neurons in dlPFC, FEF, and LIP, 

respectively, selective for stimulus parameters (and target location for comparison) across time during 

both visual pop-out (top) and visual search (bottom).  The same time windows are used as for the 

analysis of task selectivity.  Information was test for the color of the target, the orientation of the target, 

and the identity of the target (the conjunction of both color and orientation that makes up each unique 

stimulus). 

 

All three regions carry significant information about the target stimulus in at least one time 

period, emphasizing the integrative role of all three brain regions.  No region is devoted to a single task 

alone, whether it is directing attention, providing working memory, or moving the eyes.  However, the 

temporal characteristics of the selectivity does vary between areas.  Neurons in dlPFC carry complete 

information to uniquely identify the target in both tasks and do so from the sample stimulus 

presentation.  In contrast, FEF neurons do not encode sample information until later in the trial, as the 

animal is finding the target and LIP neurons do not carry sufficient information to uniquely identify the 

target stimulus, but rather are only selective for the target orientation in both tasks. 

 

It is in interesting to note that, in general, neurons in all three areas tended to carry information 

about the target orientation and the target identity, but were relatively unresponsive  to information 

about the target color.  In fact, only the dlPFC carried significant information about the target color and 

only during visual search, not during pop-out.  It is possible that as the target stimulus was unique in 

both color and orientation during visual pop-out, both animals tended to focus on a single parameter in 

order to make their judgment (in this case orientation).  As the two parameters were not explicitly 

controlled for difficulty, it might be that the animals preferred to use orientation because it was the 

easier of the two parameters to perceive.  This dichotomy may also be represented in the responses of  
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Figure 41 

 
 

Figure 41.  Percentage of recorded neurons in dlPFC that show selectivity for several task parameters 
over the length of the trial.  Selectivity for target location, color, orientation and identity were tested.  
Highlighted bars indicate a significant percentage of cells were selective for that parameter during that 
time window (p < 0.05, tested against binomial distribution). 
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Figure 42 

 
 

Figure 42.  Percentage of recorded neurons in FEF that show selectivity for several task parameters over 
the length of the trial.  Selectivity for target location, color, orientation and identity were tested.  
Highlighted bars indicate a significant percentage of cells were selective for that parameter during that 
time window (p < 0.05, tested against binomial distribution). 
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Figure 43 

 
 

Figure 43.  Percentage of recorded neurons in LIP that show selectivity for several task parameters 
over the length of the trial.  Selectivity for target location, color, orientation and identity were tested.  
Highlighted bars indicate a significant percentage of cells were selective for that parameter during 
that time window (p < 0.05, tested against binomial distribution). 
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dlPFC neurons between the two tasks – while dlPFC neurons carry information about the target color 

during visual search, they do not carry the same information during visual pop-out, possibly because 

that information does not convey any further advantage to the animal (above orientation alone). 

 

dlPFC was the only area of the three sampled to show significant information about the sample 

stimulus in both search and pop-out during the memory delay.  This is not unexpected as the working 

memory capabilities of lateral PFC are well documented (Miller and Cohen, 2001).  Interestingly, in the 

visual search task LIP neurons do continue to carry information about the target orientation throughout 

the memory delay.  This may play a role in establishing pre-attentive ‘filters’ along the visual stream in 

order to emphasize stimuli in the visual search array with orientation matching the target stimulus.  

However, further experiments are necessary to directly test this issue. 

 

Conclusion 

Based on the flow of information about the allocation of attention across LIP, FEF, and dlPFC we 

have proposed that during conditions requiring endogenous control of attention, the two frontal regions 

provide top-down direction, while during conditions emphasizing exogenous control of attention, 

parietal cortex appears to feed information into frontal cortex.  Our analysis of other task parameters 

supports this basic model while filling out the more general role each of these three regions play in 

behavior. 

 

All three regions showed selectivity for the target stimulus itself, not just its location.  This 

emphasizes the fact that these regions play complex roles, both directing attention to specific 

stimuli/locations as well as representing the information needed to identify the target.  The strongest 

representation of stimulus identity was found in the dlPFC.  This results fits well with the role of dlPFC 

acting to gather and integrate information across the rest of the brain in order to direct behavior.  

Importantly, dlPFC was the only area to contain neurons with enough information to uniquely identify 

the target stimulus throughout the entire task.  Conversely, neurons in FEF carried the least information 

about the target stimulus, suggesting a more active role in the direction of spatial attention and eye 

movements than stimulus processing per-se.  LIP did carry information about the target stimulus, but 
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not enough to completely identify the target.  Instead, it appears to focus on a single dimension of the 

two-dimensional stimuli.  This result fits well with our own work as well as previous work suggesting that 

LIP acts as a saliency map (Gottlieb et al., 1998; Colby and Goldberg, 1999; Kusunoki et al., 2000; Bisley 

and Goldberg, 2003).  This made aid in the visual search process by providing a one-dimensional filtering 

of the visual field.
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Chapter 5: Common & Disparate Mechanisms Underlying Control of Attention 
 

Introduction 

Previous chapters of the thesis have focused on the role of neurons in visual pop-out and visual 

search separately with comparisons between the two tasks made at the population level.  For example, 

we determined the relative roles of parietal and frontal cortex in directing attention during bottom-up, 

externally-guided pop-out and compared that to top-down, internally driven search and we have shown 

that these three regions (LIP, dlPFC, and FEF) are all involved in both forms of attentional control, but 

with shifts in relative timing.  However, the neural networks within each region involved in both tasks 

has not been described -- a fundamental question is the degree to which these two forms of control 

have overlapping mechanisms.  To try to answer this question we will investigate whether neurons 

within each area are active in one or both tasks, and if active in both tasks, whether or not the 

information represented by a single neuron is consistent across tasks.  This is an important question as it 

may offer evidence towards the two task types being independent, as might be argued by Triesman and 

colleagues, or whether the two tasks lie along a continuum of possibilities, with each individual instance 

of visual search utilizing underlying mechanisms to different degrees. 

 

For our analysis we will denote the observed proportion of neurons selective in both tasks as 

significant if it meets two requirements:  first, the proportion of selective neurons in each task alone 

must be significant; second, the observed percentage of neurons responsive in both tasks must be 

above chance level when chance probability is defined as the product of the observed proportion of 

selective neurons in search and pop-out alone.  This ensures the existence of a population of selective 

neurons in each task and then determines whether these two populations are significantly overlapping. 

 

Attention Signals Across Tasks 

Neurons in all three regions show selectivity for the target location in both tasks, although with 

different latencies.  Based on the differences in timing we have suggested that the flow of information 

between frontal and parietal cortex shifts between the two tasks.  However, it is not clear from these 

results how the neural mechanisms underlying behavior varies between tasks.  One possibility is that the 

two tasks utilize similar neural mechanisms but with different regions taking the lead.  Alternatively, the 
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neural substrate underlying each behavior may be different.  In order to determine the degree of 

overlap in the neural substrate for each task, we performed several analyses comparing the groups of 

neurons active in each task. 

 

Figures 44, 45, and 46 show the time to first significance of individual neurons in LIP, dlPFC, and 

FEF, respectively, during both visual pop-out (y-axis) and visual search (x-axis).  Neurons that were 

selective for the location of the target in both tasks are plotted in black, while individual neurons 

responsive in only a single task are plotted in blue (pop-out) and red (search) along the respective axis.  

Cumulative sums are shown outside each axis.  These figures highlight the degree of overlap in early 

(pre-saccadic) and late (post-saccadic) responses in each area.  Both LIP and FEF showed disparate pre-

saccadic (early) populations between the two tasks (see Figure 47 for summary), suggesting that the 

neural mechanisms underlying these two tasks differed.  In contrast, there are a significant number of 

neurons in dlPFC that were selective for both tasks before the saccade (4% of overall selective neurons, 

p = 2.1*10-4, corrected for multiple comparisons across regions and tested against binomial distribution 

as described above).   While the populations do show an overlap, there is no significant linear 

correlation between the time neurons selective in both task first reached significance (ρ = -0.52, p = 0.1,  

Figure 45).  Although there is no correlation in the time neurons find the target between the two tasks, 

the location preference of early-responding neurons is conserved across visual search and pop-out 

(Figure 48).   

 

Neurons that responded after the saccade (late) showed significant overlap for all three areas 

(see Figure 47 for summary; LIP, p < 10-5; FEF, p < 10-5; dlPFC, p < 10-5; all tested by binomial, corrected 

for multiple comparisons across area).  Additionally, the time to first significance of late responding 

neurons is significantly correlated for both LIP and FEF (LIP, ρ = 0.437, p = 0.01; FEF, ρ = 0.489, p = 0.02) 

but not for dlPFC (ρ = 0.260, p = 0.31).  We can also determine the preferred direction of each neuron 

selective late in the trial using the neuron’s activity to when the target lay in each of the four possible 

directions.  The difference between the preferred direction for significantly selective neurons is shown 

in Figure 49 for dlPFC (top), LIP (middle), and FEF (bottom).  It is clear from this analysis that the 

population of neurons responding late in the task conserved their selectivity between visual search and 
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pop-out, suggesting that the common framework supporting the behavior late in the trial is consistent 

across tasks. 

 

These results fit well with our understanding of the role of LIP and FEF in the production of 

saccades.  It is likely that the late neurons are reflective of the motor movement itself and not the 

direction of attention.  However, the neurons responsive early in the trial likely play a large role in 

directing attention.   Interestingly, this population of neurons appears to be disparate in FEF and LIP for 

the two tasks while overlapping for dlPFC. 
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Figure 44 

 
 

Figure 44.  Comparison of the time for LIP neurons to first carry significant information about the target 
location in visual search (x-axis) and visual pop-out (y-axis).  Each dot represents a neuron from LIP 
selective for target location.  Black dots indicate neurons selective during both tasks, while neurons only 
selective during search and pop-out are red and blue dots respectively.  As these neurons do not have 
timing information available for both tasks they are plotted along the axis.  Selectivity was determined 
by testing the observed mutual information against a null distribution created through a randomization 
procedure (see Methods).  The histogram of when neurons found the target during search and pop-out 
are plotted outside the x- and y-axis, respectively. 
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Figure 45 

 

 

Figure 45.  Comparison of the time for dlPFC neurons to first carry significant information about the 
target location in visual search (x-axis) and visual pop-out (y-axis).  Each dot represents a neuron from 
dlPFC selective for target location.  Black dots indicate neurons selective during both tasks, while 
neurons only selective during search and pop-out are red and blue dots respectively.  As these neurons 
do not have timing information available for both tasks they are plotted along the axis.  Selectivity was 
determined by testing the observed mutual information against a null distribution created through a 
randomization procedure (see Methods).  The histogram of when neurons found the target during 
search and pop-out are plotted outside the x- and y-axis, respectively. 
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Figure 46 

 
 

Figure 46.  Comparison of the time for FEF neurons to first carry significant information about the target 
location in visual search (x-axis) and visual pop-out (y-axis).  Each dot represents a neuron from FEF 
selective for target location.  Black dots indicate neurons selective during both tasks, while neurons only 
selective during search and pop-out are red and blue dots respectively.  As these neurons do not have 
timing information available for both tasks they are plotted along the axis.  Selectivity was determined 
by testing the observed mutual information against a null distribution created through a randomization 
procedure (see Methods).  The histogram of when neurons found the target during search and pop-out 
are plotted outside the x- and y-axis, respectively. 
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Figure 47 

 
 

Figure 47.  Magnitude and intersection of neural populations carrying information about the target 
location.  Diamond size indicates the percentage of neurons selective for target identity during visual 
search (red) and pop-out (blue).  The size of the overlap measures the intersection between the search 
and pop-out populations of selective neurons.  The asterisk denotes a significant proportion of cells 
carrying sample information in each task or if the intersection of these populations was significant (p < 
0.05, tested against binomial). 
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Figure 48 

 

  

 
 

Figure 48.  Circular histogram of the difference in preferred target location between visual search and 
pop-out for pre-saccadic neurons in dlPFC.  Only neurons that were selective during both visual search 
and pop-out before the initiation of the saccade are included.   The pre-saccadic response was used to 
determine a vector for each neuron during both tasks and the angle between these vectors is plotted 
here.  Only dlPFC is shown since it is the only area to have a significant number of neurons active before 
the saccade in both tasks. 
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Figure 49 

 
 

Figure 49.  Circular histogram of the difference in preferred target location between visual search and 
pop-out for post-saccadic neurons for dlPFC (top), LIP (middle) and FEF (bottom).  Only neurons that 
were selective during both visual search and pop-out after the initiation of the saccade are included.   
Their post-saccadic response was used to determine a vector for each neuron during both tasks and the 
angle between these vectors is plotted here. 



117 | C o m m o n  M e c h a n i s m s  
 

Information about the Stimulus Parameters 

As was shown in the previous chapter, all three regions carried information relating to the 

identity of the target stimulus at some point during the trial.   As the stimuli and stimulus presentation 

were conserved across both tasks, one might expect the underlying neural framework to be conserved.  

Alternatively, as the relative importance of the exact target identity differs between the two tasks it may 

be that different neural substrates support the representations in each task.  In order to determine 

which was the case we employed a very similar analysis to that used above for the signals relating to 

target location. 

 

Orientation was the most strongly represented stimulus parameter across all three regions and 

as seen in Figure 50 when it was significantly encoded during each task alone, it tended to do so in an 

overlapping manner between tasks.  During the sample epoch, both LIP and dlPFC show an overlapping 

representation of target orientation, dlPFC neurons during the memory delay are also overlapping, and 

when FEF neurons begin to represent the target orientation during the onset and peri-saccade periods, 

it does so with a common framework between tasks.  Only LIP neurons representing the target 

orientation during the peri-saccade epoch do not show a significant overlap. 

  

The overlap of populations of neurons representing the identity of the stimulus (the conjunction 

of both color and orientation) is shown in Figure 51.  dlPFC is the only region to show a significant 

population of neurons encoding the target identity in both visual search and pop-out early in the task.  

As can be seen in the middle column of Figure 51 the neural substrate encoding target identity during 

the sample presentation and memory epoch are both significantly overlapping, suggesting a common 

framework between the two tasks.  Similarly, neurons in FEF encoding the target identity in the peri-

saccade period also show a significant overlap.  However, during this same time period LIP neurons do 

not show an overlap in the population of neurons encoding the stimulus (and although dlPFC neurons 

encode the identity during the search task, they do not do so during pop-out). 

 

Color information was only sparsely encoded by the three regions of interest, with only dlPFC 

showing a significant number of neurons encoding the color of the stimulus and only during visual  
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Figure 50 

 
 

Figure 50.  Magnitude and intersection of neural populations carrying information about the target 
orientation.  Diamond size indicates the percentage of neurons selective for target orientation during 
visual search (red) and pop-out (blue).  The size of the overlap measures the intersection between the 
search and pop-out populations of selective neurons.  The asterisk denotes a significant proportion of 
cells carrying sample information in each task or if the intersection of these populations was significant 
(p < 0.05, tested against binomial).  
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search.  Although the total number of neurons encoding color in dlPFC during pop-out is not significant, 

a significant proportion of the neurons active in visual search are also responsive during pop-out (see 

Figure 52; this effect is not plotted as significant as it fails our earlier definition).   

 

In general it appears that stimulus information is represented in a fairly consistent manner 

across tasks.  This is in spite of the fact that the manner in which the information about the target 

stimulus must be used differs between visual search (where the conjunction of both orientation and 

color information is necessary) and visual pop-out (where the stimulus identity is not needed at all since 

the array itself selects the target).  However, it is important to note that despite the fact that many of 

the populations of neurons are overlapping between the tasks, the majority of selective neurons are 

not.  This leaves plenty of room for different neural representations to be best utilized for each task. 
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Figure 51 

 
 

Figure 51.  Magnitude and intersection of neural populations carrying information about the target 
identity – the conjunction of color and orientation.  Diamond size indicates the percentage of neurons 
selective for target identity during visual search (red) and pop-out (blue).  The size of the overlap 
measures the intersection between the search and pop-out populations of selective neurons.  The 
asterisk denotes a significant proportion of cells carrying sample information in each task or if the 
intersection of these populations was significant (p < 0.05, tested against binomial). 
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Figure 52 

 
 

Figure 52.  Magnitude and intersection of neural populations carrying information about the target 
color.  Diamond size indicates the percentage of neurons selective for target color during visual search 
(red) and pop-out (blue).  The size of the overlap measures the intersection between the search and 
pop-out populations of selective neurons.  The asterisk denotes a significant proportion of cells carrying 
sample information in each task or if the intersection of these populations was significant (p < 0.05, 
tested against binomial).  
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Intersection of Attention & Stimulus Information 

Up to this point we have demonstrated the existence of neurons that represent the stimulus 

itself, as well as neurons that carry information about the allocation of attention to the target location.  

We have also demonstrated that stimulus parameters appear to have a common neural framework 

supporting their representation, while the allocation of attention between the two tasks is more 

complex.  One final comparison that can be made is to compare the neural substrates representing the 

allocation of attention with those carrying information about the sample stimulus.  As can be seen in 

Figure 53, no significant overlap was found between the networks carrying information about these two 

components.  This finding suggests that the mechanisms underlying target location are separate from 

those carrying stimulus information.  This result helps to confirm that the target location information 

found is not a reflection of neurons responding to the specific stimulus parameters of the target.  

Instead, the target location is likely to be encoded in a more general fashion. 
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Figure 53 

 
 

Figure 53.  Magnitude and intersection of neural populations carrying information about the target 
location (in green) and the sample stimulus (in blue; this included information about color, 
orientation, or identity).  Diamond size indicates the percentage of neuron falling into each group 
across time (forward through the trial from bottom row towards top) and across areas and task.  
Asterisks denote a significant proportion of cells carrying sample information, target location, or if the 
intersection of these populations was significant (p < 0.05, tested against binomial).  
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Conclusion 

This chapter has investigated the degree of overlap between neural networks representing 

various parameters related to both tasks.  We have shown evidence that neurons selective early in 

search task are disparate in both FEF and LIP, while dlPFC neurons show a significant overlap.  In 

contrast, late responding, post-saccadic, neurons show a significant overlap between tasks with 

common direction preferences and response times.  The networks representing the stimulus parameters 

are, for the most part, overlapping, suggesting that the representation of the target stimulus has a 

common component between tasks.  Finally, there was no significant overlap in the networks 

representing each of these task parameters. 

 

These results provide several important insights into the roles each of these areas plays in 

performing the behavioral task and how these roles may be represented by the neural network.  

Neurons in dlPFC are the only ones to show a significant overlap in their representation of the allocation 

of attention prior to the saccade.  This suggests the dlPFC plays a conserved role across both tasks.  One 

possible purpose might be to determine when the correct target has been ‘found’.  As it is also the area 

to show the highest degree of sample stimulus selectivity, it is also well suited to make comparisons 

between the currently selected target and the remember sample stimulus.  In contrast, both FEF and LIP 

appear to be serving different roles between the two tasks.  This is not to say that the underlying 

computations provided by each region differs between tasks (although it might), rather these 

computations serve a different purpose within each task.  For example, LIP may play a consistent role in 

the maintenance of a saliency map of the visual field, but show differing effects  – during visual pop-out 

this essentially ‘solves’ the task, while during visual search it might only provide information about how 

array stimuli relate to the target.  All three anatomical areas showed well conserved responses during 

the post-saccadic period, likely due to the fact that the post-saccadic responses are largely influenced by 

the eye movement itself.  As we attempted to behaviorally restrict eye movements to be equal across 

tasks to avoid confounds, it is heartening to see this overlap. 

 

The overlap in the representation of the target stimulus suggests a commonality across tasks in 

the maintenance and use of this information.  As the stimuli used as the target were the same across 

both tasks, it is not surprising to see some representation of that stimulus alone.  However, as noted 
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above, the majority of stimulus selective neurons were only active during a single task.  This dichotomy 

may allow the brain to both maintain a common representation and a disparate one, allowing the brain 

to manipulate and utilize part of the representation while conserving a basic, common representation.  

For example, changes in network connectivity during learning can improve visual search behavior 

without disrupting visual pop-out. 
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Chapter 6: Parallel and Serial Mechanisms for the Direction of Attention 
 

Introduction 

Current models of visual attention agree that attention is under the influence of both internal 

and external forces, however it is currently unclear what form these influences take.  As noted in the 

Introduction, there are currently two models of attention favored in the field – one that suggests 

bottom-up and top-down interactions occur within a single map, while the other suggests the existence 

of exogenous parallel mechanisms and endogenous serial mechanisms.  Although both models predict 

that the pop-out task is controlled by external, bottom-up factors, they make very different predictions 

for the pattern of visual search.  We hope to investigate the neural correlates of shifting attention 

during the visual search task in order to determine whether we can find support for either model.  It is 

important to note that these two models are not mutually exclusive, and in all likelihood the brain uses 

a combination of the two models to direct attention. 

 

By definition, one prediction of a truly serial search would be that the animal must visit each 

possible target location in turn during the search.  Theoretically, it might be possible to follow this 

process of serial search by recording from single neurons in an area that directs attention.  However, in 

order to determine whether the deduced location of attention was correct would require some 

knowledge of where the animal’s attention was throughout the task.  Fortunately for this analysis, both 

animals showed a consistent pattern when searching the visual array – both animals searched the array 

in a clockwise manner.  When searching a visual array repeatedly for a target that requires effort to find, 

it is likely the most efficient approach to adopt a specific search pattern.  This not only creates a 

consistent behavior but also ensures that the animal does not accidentally visit the same location twice, 

slowing the search process.  This consistency not only aids the animal in performing difficult visual 

searches, but allows us to reliably predict the location of attention.  In this chapter we hope to utilize 

this fact in order to investigate the serial nature of top-down attention. 

 

The premotor theory of attention states that a covert shift of attention to a specific location 

utilizes the same neural mechanisms as an overt saccadic movement to that location and has gained 

support from both psychophysical and electrophysiology studies (see Introduction).  Here we hope to 
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test this model by defining the direction of selectivity for each individual neuron in a post-saccadic 

window and then attempting to decode the locus of attention before the target was found (i.e. pre-

saccadic).  Since we know the location of attention preceding the saccade (it is at the selected location) 

we can test our decoding procedure by predicting the location of attention just prior to the saccade.  

Additionally, we can predict the locus of attention earlier in the trial during both the pop-out and search 

tasks for each of the three regions.  Using this type of analysis, in combination with the clockwise 

tendency of both animals, we will demonstrate a serial component to visual search evident in the firing 

activity of FEF neurons that is absent in the other two regions and is absent from pop-out. 

 

Behavioral Evidence for Parallel and Serial Search Mechanisms 

Based on the observed reaction times both animals demonstrate a proclivity to search from a 

preferred target location.  Monkey S showed the quickest reaction time to the bottom-right (location 2) 

for 8 out of the 10 days of recording (p = 3.0 * 10-5), while Monkey W appeared to prefer upper right 

(location 1, 8 out of 15, p = 0.0042).  However, even without making the assumption that the animal 

always initiated search in the same location, there may still be a tendency to start at one position or in 

one hemifield, which would be reflected in an ordering of reaction times to different target locations.  

Figure 54 shows an example day from Monkey S demonstrating this effect.  Monkey S was quickest to 

respond when the target was at location 2 (lower right), next quickest at the lower left, and so-on.  

Overall 8 out of 25 days showed a rank order of location preference that suggested a clockwise search 

order.  This is significantly more than expected by chance (p = 0.016, by binomial test where chance is 

4/24 possible orderings).  In contrast, there were not a significant number of days showing a counter-

clockwise rank order for search (N = 2/25, p = 0.81, by binomial) nor were there a significant number of 

days showing clockwise or counter- clockwise rank order during pop-out (N = 4/25, p = 0.40 for both, by 

binomial). 

 

In order to determine whether the observed ordering was more clockwise in nature or more 

counter-clockwise in nature we performed a cost analysis.  Each observed rank-order pattern of target 

locations was ‘mutated’ into the closest clockwise and counter-clockwise pattern through a series of 

swaps between pairs of locations in the order.  The cost of such a swap was defined as the reaction time 

difference between the locations.  Therefore, if two target locations showed very similar reaction times  



128 | P a r a l l e l  &  S e r i a l  S e a r c h  
 

Figure 54 

  

 
 
 

Figure 54.  Example reaction times to target at each of the four locations.  The mean time to find the 
target at each of the four possible locations is plotted as a red circle (black lines indicate 95% confidence 
interval) for a single day of recording from Monkey S (day 4 in Table 3).  Monkey S was quickest to 
respond when the target was at location 2 (lower right), next quickest at the lower left, and so-on in a 
clockwise manner.  This effect is also true for the entire population, as shown in Table 3. 
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it would cost very little to switch their ordering.  In contrast, two locations with disparate reaction times 

would be very costly to switch.  The closest pattern for both clockwise and counter-clockwise search was 

determined.  Table 3 shows the original reaction times for each target location and the rank-ordered 

location preference, as well as the cost to convert that order into a clockwise pattern or counter-

clockwise pattern.  As can be seen from the table, a large majority of days show a pattern that more 

closely resembles clockwise search than counter-clockwise search (16 out of 22 days, with 3 days having 

equal distances to clockwise and counter-clockwise).  This is significantly greater than chance (p = 

0.0085, by binomial test where chance is 50/50 for clockwise/counter-clockwise patterns).  

Alternatively, by shuffling the reaction time/location pairings of trials and re-calculating the distance to 

CW/CCW ordering as above, we can generate a null distribution of how many days were closest to CW 

versus CCW.  The observed difference in days with CW over CCW ordering (10 more CW days than CCW 

ones) lies significantly outside the null distribution (p = 0.042, two-tailed test).  Based on these results, 

we believe both animals were searching the visual array in a fairly consistent clockwise manner.   

 

We also fit several models to the reaction time data for both search and pop-out in order to test 

what was the most parsimonious description of the distribution of responses.  All models were fit using 

a normal generalized linear model (GLM) and the quality of the fit was described using the Akaike 

Information Criterion (corrected for small data size, AICc).  Six different models were tested.  The 

‘Constant’ model assumes that there is no difference in reaction time to when the target was at each of 

the four locations and was used as a baseline (only 1 free parameter).  The ‘Hemi-field’ model allows for 

a hemi-field effect in the reaction time where each hemi-field (either vertical or horizontal) is allowed a 

different reaction time (possibly due to damage to the cortex; model has 3 free parameters).  The 

‘Location’ model makes no assumptions about the ordering of location reaction times (fitting a 

distribution to each location’s reaction times independently; model has 5 free parameters).  The ‘CW’ 

model assumes a clockwise ordering to the animal’s search pattern – the lowest reaction time location is 

taken to be the starting point of the search with other locations being n clockwise steps away from the 

initial stimulus (model has 2 free parameters).  The ‘CCW’ model is the same as the CW model but 

assumes a counter-clockwise ordering to the animal’s search pattern.  The ‘”Pop-out”’ model assumes a 

CW search pattern, but relies on the fact that each visual search array had a “pop-out” stimulus that 

differed from the target and distractors in at least one dimension (this model is really only valid under   
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Table 3 

Table 3.  Reaction times table of target appearing at each location for each day of recording.  The left 4 
columns show the median reaction time for the animal to find the target in each of the 4 possible 
locations.  The next 4 columns show the rank order of these reaction times.  8 out of 25 days showed a 
clockwise rank order.   In order to determine the distance to clockwise (CW) or counter-clockwise (CCW) 
ordering, we estimated the cost (in reaction time) to re-order the observed rank order to a clockwise or 
counter-clockwise one (described in detail in methods).  Whether the rank order is closer to CW or CCW 
ordering is displayed in the far right column.  

 Reaction Times 
(Median, ms) 

Rank Order 
Of Reaction 

Times 

Distance 
to CW 
(in ms) 

Distance 
to CCW 
(in ms) 

CW/CCW 
Closest? 

Upper 
Right 

Lower 
Right 

Lower 
Left 

Upper 
Left 

M
o

n
ke

y 
S 

268.5 261 274.5 276 2 1 3 4 7.5 1.5 CCW 

267.5 258 265 268 2 3 1 4 0.5 5.5 CW 

326 317 313 311.5 4 3 2 1 10.5 0 CCW 

327.5 298.5 309 315 2 3 4 1 0 23 CW 

282 262 270.5 275 2 3 4 1 0 15.5 CW 

283 263.5 277 283 2 3 1 4 0 12 CW 

295.5 289 270.5 278 3 4 2 1 6.5 7.5 CW 

288 266 280 281 2 3 4 1 0 16 CW 

289 259 273 272.5 2 4 3 1 0.5 27.5 CW 

329 290 302 301 2 4 3 1 1 23 CW 

M
o

n
ke

y 
W

 

249 246 240 242 3 4 2 1 3 2 CCW 

252 247 253 258 2 1 3 4 5 5 -- 

261 269 270.5 273.5 1 2 3 4 0 9 CW 

250 252 254.5 265 1 2 3 4 0 9 CW 

255 254 247 240.5 4 3 2 1 7.5 0 CCW 

251 253.5 245.5 254.5 3 1 2 4 4.5 2.5 CCW 

249 249 245.5 249 3 1 2 4 0 0 -- 

250 261.5 257 259 1 3 4 2 7 2 CCW 

243 253 248 260 1 3 2 4 5 15 CW 

256 258 258 269 1 2 3 4 0 4 CW 

258 259 239.5 256 3 4 1 2 0 6 CW 

244 249 247 240 4 1 3 2 2 4 CW 

231 240.5 231 236 1 3 4 2 5 5 -- 

250.5 267 265 279 1 3 2 4 2 26 CW 

262.5 270.5 269 273.5 1 3 2 4 1.5 7.5 CW 
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the visual search condition since it is the same as the Constant model for the pop-out task, but with an 

extra free parameter).  One possible process underlying the animal’s behavior might be that it always 

began its search from the pop-out position and then moved in a clock-wise pattern (model has 2 free 

parameters). 

 

As can be seen in Table 4.1, the best fitting model across all of the behavioral data was the CW 

model for visual search and the Location model for pop-out.  The CW model for visual search is 

consistent with earlier behavioral analyses that suggest the animal’s tended to start their search in a 

fairly consistent location and then shifted their attention around the visual array in a clock-wise manner.  

We can highlight the CW ordering of the search by comparing the CW and CCW models for each 

individual day’s reaction times during both visual search and pop-out (Table 4.2).  There is a significant 

tendency for the CW model to better fit the visual search reaction time data over the CCW model.  

However, during pop-out, the two models fit equally well.  In fact, for visual search, the CW model is the 

best fitting model of all 6 tested on a significant number of recording days, with no other model 

garnering a significant proportion (Table 4.3).  The “Pop-out” model is not a good fit to the behavioral 

data, nor were we able to find any neural effect suggesting such a strategy.  As the ‘pop-out’ stimulus 

was never the target, it might be that the animals learned to ignore it in order to avoid confusion.  The 

much better fitting model is that the animals started at a fairly consistent location and then search in a 

clock-wise manner. 

 

Interestingly, there also appears to be a significant location-based effect during visual pop-out, 

although the majority of that effect is also captured in the hemi-field model.  This suggests that the 

damage with recording (either acute or chronic) tended to increase the animal’s reaction time to pop-

out stimuli in certain hemi-fields.  As the number of electrodes lowered into LIP were slightly higher this 

might have yielded slightly more damage.  Another possibility is that somehow parietal damage is more 

disruptive to the underlying neural processes and therefore is more disruptive to pop-out. 
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Table 4 

  

 
Table 4.1  Comparison of Different Models Averaged Across All Days 

 Constant Hemi-field Location CW CCW "Pop-out" 

Search 2755.1 2751.8 2749.3 2747.7 2753.9 2755.5 

Pop-out 2620.5 2539.7 2531.7 2584.8 2587.8 2622.5 

 
 
Table 4.2  Comparison of CW & CCW Models Across All Recording Days 

 # CW Best # CCW Best p-value 

Search 18 7 0.0073 
Pop-out 14 11 0.2122 

 
Table 4.3  Comparison of All Models Across All Recording Days 

 Days w/ 
Best Fit 

Percent of 
Days w/ Best 
Fit 

p-Value  

Search:    
 Constant 4 16% 0.4063 
 Hemi-field 4 16% 0.4063 
 Location 3 12% 0.6184 
 CW 10 40% 0.0012 
 CCW 2 8% 0.8113 
 “Pop-out” 2 8% 0.8113 
    

Pop-out:    
 Constant 0 0% 0.9895 
 Hemi-field 8 32% 0.0157 
 Location 12 48% 0.0001 
 CW 4 16% 0.4063 
 CCW 1 4% 0.9371 
 “Pop-out” 0 0% 0.9895 

 
 

 
 

Table 4.  Table 4.1 shows the corrected AIC (AICC) for several different models of behavior (models are 
described in text).  Table 4.2 shows a direct comparison of the clockwise (CW) and counter-clockwise 
(CCW) models for each day’s reaction times during both visual search and pop-out.  Table 4.3 shows a 
comparison of the best fitting models for both visual search and pop-out using all of the possible 
models. 
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Neural Evidence for Serial and Parallel Mechanisms in Search 

As noted in the Introduction, the premotor theory of attention states that the neural framework 

that supports the allocation of attention to a particular spatial location is the same framework that 

encodes the motor response during a saccade.  We can leverage this theory by using the post-saccadic 

time period to define a motor field for each neuron.  Based on the premotor theory of attention, a 

neuron should respond when attention is being driven into its motor field.  We can then utilize this fact 

to attempt to decode the location of the ‘spotlight’ of attention during the task.  For all of the analysis 

used in this chapter, the motor field was determined from a post-saccadic time period was taken to be 

the first 75 ms after the saccade.  As the animal was required to maintain fixation for 150 ms after the 

saccade in order to receive a reward, this time period was chosen to capture the majority of the saccadic 

response while avoiding any responses due to reward or post-reward eye movements. 

 

Initially we will take an agnostic view on the exact nature of the search order (although both 

animals showed a tendency to search the visual array in a clockwise manner based on their reaction 

times).  Instead, we will only assume that an ordering to the search did exist and therefore that the 

animal was more likely to ‘visit’ a location near the target before it found the target itself.  So, we will 

investigate the activity of FEF neurons when the target was in its preferred direction, when the target 

fell in either location adjacent to the preferred direction (i.e. either clockwise or counter-clockwise), 

and, finally, when the target fell in the anti-preferred direction.  Figure 55 shows the activity across the 

entire population of location selective neurons in FEF during both search (top) and pop-out (bottom).  

For this analysis the activity from each neuron was binned into independent 40 ms bins relative to the 

saccade (i.e. the first pre-saccadic bin was from 40 ms before the saccade until the time of the saccade).  

In order to facilitate equal representation of each neuron in the population average, the activity of each 

neuron was normalized by converting its response in each bin to a z-score based on the response of that 

neuron, in that time bin, across all target locations.  This also facilitates the determination of 

significance, as we can test our observed population average against that of a standard normal 

distribution with zero mean.  The z-score of this difference is what is plotted in Figure 55.  Significance 

across target locations within each time bin was also determined using an ANOVA.  A significant effect 

across target location was marked with a black circle in each bin (p < 0.05, corrected for multiple 

comparisons across time).  Post-saccadic responses are significant due to the selection procedure. 
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Figure 55 

  

 
 

Figure 55.  Average, normalized firing rate over time for location selective neurons in FEF during search 
(top) and pop-out (bottom).  Trials within each task are sorted by the displacement of the target position 
from that of the neuron’s preferred target location (which is defined in a 75 ms post-saccadic period).  
Activity was analyzed in independent bins of 40 ms.  Color indicates the z-score of the average response 
above chance (which is 0 since the activity is relative to the overall average).  Dots indicate when the 
activity across bins was significant by ANOVA at p < 0.05 after Bonferroni correction for multiple 
comparisons. 
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As can be seen in Figure 55 (top), an interesting pattern of FEF activity emerges before the 

saccade as the animal performs a visual search.  Just prior to the saccade (in the time bin from 40 ms to 

0 ms before the saccade), FEF activity is strongest when the target is located in the neuron’s preferred 

direction.  Presumably this reflects the process of directing attention to, and then making a saccade to, 

the target.  This response carries into the post-saccadic region as this is the time period we use to define 

each neuron’s preferred direction.  This is similar to the effect shown in an earlier chapter using mutual 

information.  Interestingly, the FEF activity in the time period 80 to 40 ms before the saccade is 

strongest for when the target location is adjacent to that neuron’s preferred target location.  As the 

target actually lies adjacent to this location, and the eye movement will be made to the target at a later 

time point, this activity does not reflect a motor response but rather is the allocation of attention into 

that neuron’s receptive field.  As the animal performs an ordered search through the visual array (as 

supported by our behavioral results) attention is directed into the receptive field of different 

populations of neurons.  As the animal makes its way towards the target location, due to the ordered 

search, it is more likely to visit one of the adjacent locations before finding the target.  Therefore, a 

neuron that has a receptive field at one of the adjacent locations must activate in order to direct 

attention into that spatial location.  The response in the 80-40 ms pre-saccade time period reflects this 

direction of attention.  This pattern of an ordered search continues even earlier in the trail, as there is a 

(non-significant) tendency for the population to represent the location opposite to the target location 

approximately 180 ms before the saccade.  Although this effect is weaker and more temporally diffuse 

than the one observed for adjacent target locations, this trend further extends the pattern of the search 

backwards in time.  

 

A different pattern of results is observed for visual pop-out.  Where-as we see an activation for 

adjacent locations earlier in the trial during search, FEF neurons only respond to the target location 

during visual pop-out.  This makes sense as FEF is receiving input from both LIP and dlPFC with 

information about where the target lies.  Therefore attention has already been drawn to that location, 

the target has been identified (and so no more shifts of attention are needed), and the animal is ready 

to make its behavior response. 
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Figure 56 

  

 
 

Figure 56.  Plot of average activity in FEF neurons in two pre-saccadic bins across reaction times.  The 
bins were chosen based on the selectivity from Figure 55.  The orange line shows the effect of reaction 
time on the average FEF activity just prior to the saccade when the target is in the neuron’s preferred 
direction.  In contrast, the blue line plots the average FEF activity in a 40 ms window start 80 ms before 
the saccade when the target is in one of the two locations adjacent to the neuron’s preferred location.  
A significant correlation was observed between the strength of activity in the blue bin and reaction time, 
but not for the orange bin and reaction time. 
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Strength of Serial Search and Reaction Time 

If the pattern of activity observed during visual search reflects a true serial component to visual 

search then we can make a strong prediction – a larger relative response in the 80-40 ms time bin 

should correlate with a longer reaction.  This prediction relies on the fact that the activity in the 80-40 

ms time bin is actually drawing attention away from the target location, and therefore ‘impeding’ the 

animal in finding the target somewhere else.  This is most likely an effect that exists across trials – longer 

reaction time trials will, in general, require a longer serial search, and therefore will, in general, be more 

likely to visit adjacent locations prior to the target location.  However, as reaction times speed up, it 

becomes increasingly likely that the animal will directly find the target location without requiring a serial 

search.  Therefore, shorter reaction time trials should correlate with reduced activity in the 80-40 ms 

bin.  In contrast, as the animal must always attend to, and initiate an eye movement to, the target 

location, the pre-saccadic response of neurons to the target in its preferred location should not vary 

with reaction time. 

 

As shown in Figure 56, this is exactly the pattern of results observed.  The blue line shows the 

(un-normalized) response of FEF neurons in the time period 80 to 40 ms before the saccade when the 

target is adjacent to its preferred location.  The orange line shows the average response of the same FEF 

neurons during the 40ms just before the saccade on trials during which the target was in the neuron’s 

preferred direction.  Both averages are plotted over four reaction time groupings.  Reaction times were 

binned into four percentile groups, 10-30%, 30-50%, 50-70%, and 70-90%.  The fastest and slowest 10% 

of trials were left out in order to avoid outliers. 

 

There was a strong (significant) correlation between reaction time and the strength of the 

relative response in the 80-40 ms time bin (ρ = 0.97, p = 0.02, Figure 56).  Therefore, as the relative 

response increases, drawing attention away from the target location, the reaction time of the animal 

also increases.  In contrast, there is not a significant correlation between the response of neurons 40 ms 

before the saccade (ρ = 0.12, p = 0.87).  This reflects the necessity of attending to, and selecting, the 

target location before deciding and making a behavioral response regardless of the animal’s reaction 

time. 
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Figure 57 

 

  

 
 

Figure 57.  Average, normalized firing rate over time for location selective neurons in FEF during search 
(top) and pop-out (bottom).  Trials within each task are sorted by the location of the target relative to 
the neuron’s preferred target location (which is defined in a 75 ms post-saccadic period).  Color 
indicates the z-score of the average response above chance (which is 0 since the activity is relative to the 
overall average).  Asterisks indicate when the activity across bins was significant by ANOVA at p < 0.05 
after Bonferroni correction for multiple comparisons, while dots indicate an uncorrected p < 0.05. 
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Neural Evidence for Clockwise Search 

Initially, we examined the neural response over time of FEF neurons during both visual search 

and visual pop-out for three conditions: when the target was in the neuron’s preferred direction, when 

the target was adjacent to the neuron’s preferred direction, and when the target was opposite to the 

neuron’s preferred direction.  This made no assumption about the directionality of the order search.  

However, based on the behavioral evidence, during the visual search task both animals not only 

searched the visual array in a organized manner, but they seemed to search in a clockwise manner as 

well.  In order to determine whether the neural response follows with the clockwise nature suggested 

by the behavior we can perform a very similar analysis but now ‘unwrap’ the adjacent condition into two 

conditions – one where the target was clockwise from the preferred location and one where the target 

was counter-clockwise to the target location.  Figures 57, 58, and 59 show the relative response of 

location-selective neurons from FEF, dlPFC, and LIP, respectively, during both the visual search (top) and 

visual pop-out (bottom) tasks.  Similar to previous analyses, these figures show the relative difference 

across target locations (relative to each neuron’s preferred target location).  Bins of 40 ms were used, 

but instead of being taken independently as before, the window was slid in steps of 10 ms across the 

entire time period.  In this way we can more accurately capture the temporal dynamics of the response.  

Significant differences from a zero response is shown in the color of each bin (although the number of 

multiple comparisons is larger in this analysis, so higher z-scores are much more relevant).  Significance 

within each time bin was determined using an ANOVA across the four possible target locations.  Black 

stars indicate significant responses (p < 0.05) after a simple Bonferroni correction for multiple 

comparisons, while black dots now indicate significant responses at an uncorrected level (p < 0.05, 

uncorrected). 

 

As was seen in Figure 55, FEF activity is ordered during visual search even when the adjacent 

locations are unwrapped (Figure 57).  The ordering now follows in a clockwise manner, suggesting that 

the animals were performing a serial, clockwise search and that activity in FEF is involved in the direction 

of attention into that neuron’s receptive field.  Because of the higher temporal resolution, we can see 

that the shift between FEF activity representing the target location or FEF activity maximally 

representing the clockwise position occurs at approximately 50 ms.  The neural activity representing this 

location (presumably directing attention to the clockwise stimulus) lasts for approximately 50 ms.  

Furthermore, now the response of FEF neurons to directing attention opposite to the target location is 
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significant (although at an uncorrected level -- it is still weaker and more temporally diffuse than the 

earlier locations).  It is likely that the weakness of this response is due to the lower probability of the 

animal visiting three possible target locations (as it searches more locations it becomes increasingly 

likely to find the target thereby ending the trial).  During visual pop-out FEF neurons did not show a 

sequential ordering pattern, but rather only showed significant increases in activity when the target lay 

in its preferred direction (Figure 57, bottom).  At the population level significant differences are first 

observed at approximately 140 ms before the saccade and reach significant levels 70 ms before the 

saccade. 

 

Figure 58, top, shows the average activity of dlPFC neurons during the visual search task.  Unlike 

the activity of neurons in FEF, neurons in dlPFC are only responsive when the target stimulus is in its 

preferred location.  This suggests these neurons do not show activity following the ‘spotlight’ of 

attention as do the FEF neurons.  Instead, the dlPFC neurons begin to show activity significantly 

deviating from background at approximately 70 ms before the saccade.  Although this is earlier than the 

relative response of FEF neurons we cannot make a direct comparison in timing using this measure as it 

is only a measure relative to the neuron’s response across all target locations.  As FEF activity is 

obviously stronger in the clockwise position for some time periods, any neural response to the target in 

its receptive field will be reduced when doing relative comparisons.  Therefore, in order to determine 

the order of response, one must do cross-correlations on simultaneously recorded dlPFC and FEF 

neurons with similar preferred locations when the target was in their preferred location (see below).  

Similar to FEF, dlPFC activity during visual pop-out does not show an ordered effect, only significantly 

responding when the target was in the neuron’s preferred location (Figure 58, bottom).  Average activity 

across dlPFC neurons began to significantly diverge at approximately 140 ms before the saccade. 

 

Performing a similar analysis is more difficult on LIP neurons as they were not responsive during 

visual search until very late in the trial (see earlier chapter), making it difficult to reliably determine a 

preferred target location and also making any pre-saccadic inferences difficult.  Figure 59 shows the 

activity of LIP neuron during visual search (top) and visual pop-out (bottom) utilizing the same method 

as was employed for FEF and dlPFC.  Results for both tasks are similar to the results of dlPFC – LIP 

neurons only significantly diverge from baseline levels in the preferred location.  During search LIP  
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Figure 58 

  

 
 

Figure 58.  Average, normalized firing rate over time for location selective neurons in dlPFC during 
search (top) and pop-out (bottom).  Trials within each task are sorted by the location of the target 
relative to the neuron’s preferred target location (which is defined in a 75 ms post-saccadic period).  
Color indicates the z-score of the average response above chance (which is 0 since the activity is relative 
to the overall average).  Asterisks indicate when the activity across bins was significant by ANOVA at p < 
0.05 after Bonferroni correction for multiple comparisons, while dots indicate an uncorrected p < 0.05. 
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Figure 59 

 

 
 

Figure 59.  Average, normalized firing rate over time for location selective neurons in LIP during search 
(top) and pop-out (bottom).  Trials within each task are sorted by the location of the target relative to 
the neuron’s preferred target location (which is defined in a 75 ms post-saccadic period).  Color 
indicates the z-score of the average response above chance (which is 0 since the activity is relative to the 
overall average).  Asterisks indicate when the activity across bins was significant by ANOVA at p < 0.05 
after Bonferroni correction for multiple comparisons, while dots indicate an uncorrected p < 0.05. 
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neurons diverged at approximately 50 ms before the saccade while during pop-out neural activity 

diverged at around 70 ms before saccade.  It is important to reiterate the difficulty in using this analysis 

to determine the relative latency of location selectivity across regions.  The previously used mutual 

information analysis is more appropriate for asking that question.  The relative neural activity highlights 

differences between neuronal responses at different target locations and since it is an average response 

across the entire population it is not good at capturing the exact temporal dynamics of individual 

neurons, especially when they are non-homogeneous.  Another important difference is that the mutual 

information analysis employed earlier makes no assumptions about how a neuron encodes the target 

location, whereas this analysis makes a strong assumption that neurons respond preferentially to a 

single location and do so by increasing their firing rate.  Finally, as this analysis uses larger time windows 

as well as averaging across the entire population, it will tend to under-represent transient selectivity, 

such as was seen in LIP. 

 

Serial Search on a Single Neuron Level 

So far our analysis has been restricted to the population level.  While the effects described are 

strongly suggestive of a role of FEF in serially directing attention to specific locations, one could 

hypothesize that the effects are merely a manifestation of some strange interactions at the population 

level.  To address these concerns and to bolster our results, we can also examine the responses at the 

single neuron level. 

 

In order to accomplish this, we will use the response of individual neurons across the four target 

locations (again relative to the preferred target location) in each time bin to define a ‘vector’ of 

response.  For example, if for a particular time bin the neuron responds only when the target is in its 

preferred direction then the vector of that response will point in the direction of the preferred location.  

Essentially we are using the activity of each individual neuron to define the response vector within each 

time window.  From this we are able to determine whether the population of response vectors is non-

uniform, and therefore has a significant direction, and what that direction is.  Figure 60, shows the 

average angle, relative to a neuron’s preferred direction, across the population of location-selective 

units from FEF (top), dlPFC (middle), and LIP (bottom).  The mean angle direction is plotted in red for 

search and blue for pop-out with the shaded regions indicating the 95% confidence interval about the 
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mean angle when the population shows a significant direction preference (as measured by a Rayleigh 

test, see Methods).  The raw response of each neuron was used to determine the vector of response in 

the same time bins as were used for the ‘unwrapped’ analysis above. 

 

Similar to the results from previously presented, Figure 60 shows that average vector of 

individual FEF neurons shows a clockwise pattern.  There is a significant clustering of vectors during 

search in the direction of the preferred target location until approximately 40 ms before the saccade.  At 

this point the population vector drifts towards the clockwise position, where there is a significant 

clustering of angles in the clockwise direction from about 70 to 90 ms.  This is followed by one last 

significant clustering in the anti-preferred direction.  Again, similar to previous results, individual FEF 

neurons do not show an ordered effect during visual pop-out.  Rather they cluster in the preferred 

direction until about 80 ms before the saccade. 

 

Results from dlPFC and LIP neurons also reflected the population level analysis.  Neither region 

clustered significantly about any direction other than the preferred direction (Figure 60, middle and 

bottom figures).  During visual search, dlPFC neurons showed significant clustering approximately 70 ms 

before the saccade, while LIP neurons were slightly later at 50 ms before the saccade.  During visual 

pop-out, dlPFC neurons showed significant clustering about their preferred location at 130 ms prior to 

the saccade, while LIP neurons were later at 80 ms before the saccade.  Similar to above, latency 

measurements are difficult to interrupt with this method, with previous analyses tailored for that 

question. 

 

One last noteworthy result from this analysis is the success of post-saccadic clustering towards 

the preferred direction despite the fact that neurons were not pre-selected for specific receptive fields 

overlapping the target location.  This bolsters our argument that we recorded from a wide variety of 

neurons each with different response properties and that this diverse sampling provided good coverage 

of the available neuron types. 
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Figure 60 

 
 

Figure 60.  The mean angle of the distribution of individual neuron’s represented location, over time.  
The average angle is plotted for all three regions and for both visual search (red) and pop-out (blue) 
trials.  Shaded regions indicate when the 95% C.I. of the average angle and are only present when the 
distribution of individual angles was significantly clustered. 
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Serial Search on a Single Trial Level 

In addition to looking at the single neuron level for the effect of a serial, clockwise search we can 

leverage our simultaneous recordings to examine the relative spiking activity of simultaneously recorded 

neurons on single trials.  If neurons have preferred target locations offset by one clockwise step from 

one another, and our model of a shifting spotlight of attention is correct, then one could hypothesize 

that we should see an ordering in our neuron pair’s activity – the clockwise neuron should fire after the 

counter-clockwise neuron.  The cross-correlation is used to test for this effect. 

 

Pairs of simultaneously recorded FEF neurons with preferred directions offset by one target 

location step (90o) were compared.  The neuron with the clockwise preferred direction was taken to be 

the primary neuron and only trials in which the target was at the primary neuron’s preferred direction 

were analyzed.  This would ensure the animal ‘visits’ the secondary neuron’s preferred location before 

the primary’s preferred direction (see insent of Figure 61 for diagram).  The spiking activity from a peri-

saccadic period starting 100 ms prior to the saccade and ending 50 ms after the saccade was used.  This 

was chosen to maximally capture the time period during which we have previously found the attention 

shift occurring.  All spiking activity was binned into 5 ms bins, and a shuffle-corrector was used in order 

to remove any saccade-locked covariations in response probability. 

 

The red line in Figure 61 shows the cross-correlation between spiking activity in pair of neurons 

in FEF that have preferred target locations offset by one clockwise step.  There is a significant positive 

correlation at +40 ms. (p = 0.012, two-tailed t-test against no correlation), demonstrating that FEF 

neurons with a preferred direction that is clockwise to the preferred direction of another FEF neuron 

will show neural activity that follows the other neuron.  This supports our previous findings at the 

population and single neuron level.  There is also a significantly negative correlation between these pairs 

of neurons at +65 ms (p = 0.0425, two-tailed t-test against no correlation).  The blue line shows the 

cross-correlation between selective neurons in FEF and dlPFC when, again, those neurons had the same 

preferred target location and for trials in which the target was in that direction.  During visual pop-out, 

no significant correlation between neurons with offset preferred directions were observed.  This 

supports the previous results demonstrating the parallel nature of visual pop-out.  Similar results are 

also observed for time periods relative to visual array onset. 
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Figure 61 

 

  

 
 

Figure 61.  Shuffle-corrected cross-correlelogram between FEF neurons with preferred direction’s offset 
by 90o clockwise.  Correlation was calculated in a 150 ms window starting 100 ms before the saccade for 
both search (red) and pop-out (blue).  Only trials in which the animal correctly found the target in the 
preferred direction of the primary neuron were used.  Temporal offsets > 0 indicate the activity of the 
secondary neuron proceeded the primary neuron, while offsets < 0 suggest the primary neuron leads 
the secondary one.  Significance is indicated with an asterisk and was tested against zero with a two-
sided t-test.  The only significantly higher correlation occurred at +40 ms.  This suggests the activity of a 
neuron follows the activity of counter-clockwise neurons by 40 ms. 
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FEF leads dlPFC during Search 

An interesting question is whether FEF or dlPFC is directing attention during visual search.  In 

our initial analysis of information about the target location, the latency for both regions was at 

approximately 40-50 ms before the saccade (see Figure 8).   Although information about the locus of 

attention was slightly earlier than dlPFC during visual search, the difference was not significant, making 

it difficult to assign a direction of information flow.  In contrast, the work presented in this chapter 

would suggest that dlPFC responds to a target in its preferred location earlier than FEF does.  However, 

as noted above, since the measurement is relative, this is a difficult conclusion to draw from that 

analysis.  In order to accurately determine the latency difference between the two areas, one must 

perform a cross-correlation analysis on simultaneously recorded neurons with shared location 

preferences.  Since dlPFC neurons do not seem to respond reliably unless the target is in its preferred 

direction, only trials for which the target lies in that direction are used.  Figure 62 shows the cross-

correlation between all pairs of simultaneously recorded neurons in FEF and dlPFC on trials in which the 

target lay in their shared preferred direction.  The cross-correlation was done in a 300 ms time window 

from 50 ms after the onset of the visual array in order to capture the entire process of finding the target 

location.  As before, spiking activity was binned into 5 ms bins.  The shuffle-corrector was used in order 

to remove any stimulus-locked covariations in response probability. 

 

The red line in Figure 62 shows the cross-correlation between spiking activity in FEF and spiking 

activity in dlPFC when the target was in their shared preferred direction.  There is a significant 

correlation at approximately -25 ms. (p = 0.031, two-tailed t-test against no correlation), suggesting that 

FEF is leading dlPFC during search.  No other temporal offset show a significant correlation in either a 

positive or negative direction.  The blue line shows the cross-correlation between selective neurons in 

FEF and dlPFC when, again, those neurons had the same preferred target location and for trials in which 

the target was in that direction.  During visual pop-out, the only significant correlation occurred at +80 

ms (p = 0.041, two-tailed t-test against no correlation), suggesting that dlPFC leads FEF by 80 ms.  This 

results fits well with the offset determined by the mutual information analysis (85 ms, see first chapter) 

and with the difference in a significant effect for the normalized population response (70 ms, see 

above). 
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Figure 62 

  

 
 

Figure 62.  Shuffle-corrected cross-correlelogram between FEF and dlPFC neurons with overlapping 
preferred directions.  Correlation was calculated in a 300 ms window starting 50 ms after visual array 
onset for both search (red) and pop-out (blue).  Only trials in which the animal correctly found the target 
in the preferred direction of both neurons were used.  Temporal offsets > 0 indicate the activity of FEF 
neurons follow that of dlPFC neurons, while offsets < 0 suggest FEF activity proceeds dlPFC.  Significance 
is indicated with an asterisk and was tested against zero with a two-sided t-test.  The only significantly 
higher correlation during visual search occurred at -25 ms.  This suggests that during search FEF activity 
representing the target location proceeds that of dlPFC by 25 ms.  However, during visual pop-out a 
significant increase in correlation was observed for +80 ms.  Therefore, during pop-out, the effect 
reverses and dlPFC neurons proceed FEF neurons by 80 ms. 
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Psychophysical Estimate of the Time to Shift Attention 

Using the psychophysically estimated cost of adding a distractor to the search array during visual 

search it is possible to estimate the time to shift the attentional spotlight from one putative target to 

another.  We can model the time to search the visual array as coming from two sources, one fixed and 

one variable.  The fixed component of the reaction time is due to things that stay consistent across the 

task – visual perception, decision making, initiation of eye movement, etc.  The variable reaction time 

component is associated with the cost of actively finding the target – as the target is located randomly in 

the array the animal has a fixed chance of finding the target on each subsequently attended location.  If 

we assume a strong inhibition of return, then we can directly model the observed reaction time as a 

combination of fixed reaction time and the scaled cost of shifting attention when there are n stimuli to 

search through: 

 

The cost of adding a distractor to the search array is therefore: 

 

Using the reaction time cost derived from our psychophysical experiments (22 ms/item), we can 

estimate the time needed for a shift in attention to be roughly 44 ms/item.  This matches well with the 

observed switch time between the representation of the counter-clockwise target to the clockwise 

target across the population (Figures 55 and 57), as well as the observed within-trial cross-correlation 

offset of 40 ms (Figure 61). 

 

Controlling for Eye Movement Differences 

We have presented data suggesting that both of our animals searched the visual search array in 

an ordered, clockwise manner.  Furthermore, we have demonstrated that the neural activity in FEF 

directs the spotlight of attention from locus to locus before finding the target.  However, one potential 

confound with our observance would be if the eye position varied across the task in an ordered manner, 

perhaps following where the animal is currently attending.  For example, the animal’s eye might have a 

tendency to drift towards a particular stimulus as the animal is attending to it.  FEF activity might then  
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Figure 63 

 

  

 
 

Figure 63.  The probability of the eye falling in each quadrant, relative to the target location, over the 
entire trial.  The probability is shown for both visual search (top) and pop-out (bottom).  Unlike with the 
neural activity (Figure 57), the eye position did not show any change in its position based on the target 
location.  The only significant clustering of eye position occurred in the last 40 ms before the saccade 
(for both visual search and pop-out).  This effect captured the initial eye movement towards the target 
location that occurred before the saccade was triggered. 
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reflect this shift in eye position and not the direction of attention itself.  Figure 63 shows the probability 

of the eye position falling in each of the four quadrants (relative to target location) over time.  Unlike 

with the neural activity in FEF, there appears to be no pattern in the eye position over time.  As with the 

neural activity, independent bins of 40 ms were used.  The post-saccadic eye position reflects our sorting 

procedure.  In the time bin just prior to the saccade there is a preference for the eye position to be in 

the target quadrant for both search and pop-out (40% of the time, p < 0.01 by ANOVA, for both tasks).  

This is a result of the eye beginning to move towards the target as the saccade is triggered.  Crucially, 

unlike the neural activity, there is no preference for eye location in the 40 ms from 80 ms to 40 ms pre-

saccade (p = 0.21 for search and p = 0.95 for pop-out, both by ANOVA).  The (unsignificant) maximally 

likely position of the eye in this bin was in target quadrant for search (very slightly above the opposite 

quadrant) and in the quadrant clockwise from the target for pop-out.  The probability of the eye being 

located in any quadrant for any time period prior to 40 ms before the saccade was never significantly 

different from chance.  These results suggest that there is no confounding pattern between eye 

movement and target location over time, supporting the conclusion that the FEF activity reflects the 

shift in the locus of attention. 

 

Conclusions 

In this chapter we hope to have presented data demonstrating the existence of a serial 

component to visual search as well as a parallel component to visual pop-out.  Both animals show 

behavioral evidence that they searched the visual array in an organized manner during visual search 

(with both animals showing a preference to search the visual array in a clockwise manner).  Neural 

activity in FEF shows a distinct clockwise pattern.  This effect was demonstrated on the population level 

(Figures 55 and 57), the individual neuron level (Figure 60), between pairs of FEF neurons 

simultaneously recorded on single trials (Figure 61).  Furthermore, the size of the effect was 

demonstrated to correlate with the reaction time of the animal during search (Figure 56), suggesting 

that the effect is weakest when the animal found the target quickly (as it didn’t have to search for as 

long) and strongest when the animal found the target slowly (presumably due to a more involved search 

process).  Finally, this pattern of results was not observed for either dlPFC or LIP (Figures 58 and 59); nor 

was it observed for any area during visual pop-out (Figures 57-59, bottom). 
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A long-standing discussion within the field of visual search has been over the existence of a 

serial component and, if a serial search does exist, whether or not it is a common occurrence.  There is 

good psychophysical evidence for both a parallel and serial component to visual search tasks (Treisman 

and Gelade, 1980; Treisman and Gormican, 1988).  However, visual search clearly does not fall into two 

mutually exclusive categories, but rather exists across a continuum between purely parallel and 

exclusively serial search.  Although this is well studied in the human psychophysical literature, there is 

limited electrophysiological evidence for a serial component to search.  Our results provide the first 

direct electrophysiological evidence of a truly serial component to visual search and a parallel 

mechanism underlying visual pop-out.  However, previous results suggest FEF carries a mixture of top-

down and bottom-up information (Thompson and Bichot, 2005b; Thompson et al., 2005b).  It is likely 

that the continuum of behavior observed for psychophysical experiments also exists for the neural 

representation of search.  As LIP and FEF appear to have the strongest representations for parallel and 

serial search, respectively, one could hypothesize that the continuum of behavioral results may arise 

from a continuum of relative importance of these two regions. 

 

Our results are also in support of the premotor theory of attention (see General Introduction for 

an overview).  This theory states that the direction of attention to a particular spatial location utilizes 

the same underlying neural framework association with making explicit saccades.  Previous evidence for 

this theory comes from psychophysical studies in humans (Rayner et al., 1978; Deubel and Schneider, 

1996a; Peterson et al., 2004) and through microstimulation of FEF in primates (Moore and Fallah, 2001, 

2004).   Our work provides a complementary result, demonstrating that post-saccadic motor responses 

can be used to follow the spotlight of attention as it moves before the saccade.  Taken together, these 

results provide strong support for the role of the frontal eye fields in the direction of spatial attention. 
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Chapter 7: General Conclusions 
 

The goal of this thesis was to investigate the role of parietal and frontal cortex in the control of 

attention.  Visual attention is believed to fall under the control of two different sources:  external stimuli 

can automatically grab one’s attention, while internal motivations can also direct and maintain 

attention.  Based on previous work it has been suggested that these two competing sources of control 

for attention originate in different manners – external capture is believed to propagate forward through 

the cortex while internal direction originates is thought to be a top-down process originate from frontal 

cortex and directing posterior cortex.  However, although there is a large degree of circumstantial 

evidence there has been no direct evidence for the existence of such a dichotomy (Miller and 

D'Esposito, 2005).   

 

The double dissociation we found in relative timing between frontal and parietal cortex supports 

this model.  As information flows forward from parietal to frontal during pop-out, our data supports the 

theory that external capture of attention is produced through a bottom-up mechanism, one that likely 

relies on lateral inhibition in order to allow for the most salient stimulus to capture attention (Desimone 

and Duncan, 1995).  During visual pop-out, when attention is captured by the saliency of the target 

stimulus, LIP carries a very strong representation of the target location.  However, when a conjunctive 

search was used such that the target stimulus is no longer the most salient object in the visual field, LIP 

is no longer responsive to the target location.  However, it is important to note that although LIP is not 

able to locate the target in the visual search condition, it is still involved in the task and is carrying task 

relevant information.  Our results fit well with proposed models of parietal cortex maintaining a saliency 

map of the visual field (Bisley and Goldberg, 2003; Constantinidis and Steinmetz, 2005). 

 

Prefrontal cortex is well situated anatomically to act as a top-down influence on posterior cortex 

and it has been shown to be carry information about cognitive parameters necessary for executing the 

task at hand (Miller and Cohen, 2001).  Our results are the first direct evidence that regions within 

frontal cortex are the source of internal direction of attention.  Although we only studied one behavior, 

it is likely that frontal cortex acts as the source of top-down influences in many cognitive behaviors.  

However, it is important to note that previous work comparing the relative roles of PFC and the basal 
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ganglia show that prefrontal cortex is not always the primary source of direction for all behaviors 

(Pasupathy and Miller, 2005).  Understanding the distinction between behaviors reliant on prefrontal 

cortex as supposed to other integrative brain regions (such as the basal ganglia or hippocampus) will 

provide a more complete picture of the role each region plays in, and how they interact in order to 

support, behavior. 

 

The synchrony between brain regions varied significantly between our two tasks in a frequency-

dependent manner.  Synchronization in the middle frequency band appears to be increased during 

visual search tasks, while synchronization is increased in the upper frequency band for visual pop-out.  

These differences may reflect differences in the integration of information between these two tasks.  

During pop-out the local information within parietal cortex has solved the task so that information 

should be both locally enhanced as well as passed forward into frontal cortex.  In contrast, during visual 

search, a more integrative approach is needed in order to search the external visual array with the 

remember target identity.  Under these conditions a lower frequency band is enhanced, which some 

have argued may aid in compensating for the larger timing disparities inherent in integrating across 

several regions (von Stein et al., 2000; von Stein and Sarnthein, 2000; Engel et al., 2001). 

 

Synchrony for both frequency bands increases preferentially between electrodes with specific 

location preference relationships.  The upper frequency band synchronizes most strongly with 

electrodes sharing a preferred direction, again supporting a possible role in enhancing the feed-forward 

flow of information.  A different patter was observed for the middle frequency band:  although dlPFC 

and LIP LFPs continue to be preferentially synchronized between areas of shared preferred direction, 

FEF and LIP LFPs are synchronized the strongest when the preferred direction is offset by 90o.  In light of 

our results suggesting a serial mechanisms underlying visual search, this may highlight the passage of 

information from the previously attended location from LIP into FEF.  This may aid in the decision to 

shift attention towards the next location.  Therefore, while the middle-frequency band may play a role 

in integrating information across more diverse brain regions, it is not exclusively used for top-down 

information.  This is evident in the phase relationship between LIP and frontal cortex LFPs – the positive 

phase offset suggests LIP leads frontal cortex.  The importance of the middle frequency band in visual 

search is also reflected in the positive correlation in the degree of coherence on single trials with the 
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reaction time of that trial.  However, the expected result of a decrease in reaction time with increased 

coherence between LIP and frontal cortex is missing, suggesting more research needs to be done to 

further investigate the relationship of coherence to behavior. 

 

The 4-8 Hz frequency band appears to act as a global reference signal to which all of the other 

frequency bands are able to synchronize.  In addition to showing strong cross-band synchrony, it is also 

the frequency band for which the strongest spike-field synchrony was observed.  A global clock may 

provide a very useful function to the brain by allowing it to occasionally resynchronize all of the 

frequency bands across all of the brain regions.  This would reduce the degree of drift between 

frequency bands, something that may be important if neurons carrying different information are 

synchronized to different frequency bands.  Not only must downstream neurons be able to integrate 

this information for processing, but exact temporal relationships may also be necessary for spike-timing 

dependent plasticity 

 

We provide evidence for a serial mechanism underlying visual search and suggest activity in FEF 

directs the attentional spotlight from location to location.  In contrast, visual pop-out appears to rely on 

a more parallel mechanism.  Interestingly, dlPFC neurons are only responsive once the target has been 

attended in their receptive field.  However, the source of this attention does not seem to matter – it can 

either be through top-down, serial mechanisms relying on FEF or bottom-up, parallel mechanisms 

through LIP.  Furthermore, dlPFC was the only area to have significantly overlapping neural mechanisms 

between tasks, suggesting that it may, in part, be providing a common mechanism between the two 

tasks.  One possible mechanism dlPFC may provide is to compare the currently attended target stimulus 

with the remembered sample stimulus in order to identify the target stimulus as correct and allow for a 

behavioral response. 

 

The time to shift the attentional spotlight from location to location was estimated from both the 

behavior and from the neural activity to be approximately 40 ms.  Therefore the animal is able to shift 

its attention at a rate of roughly 25 Hz, a value falling squarely in the middle frequency band found to be  
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Figure 64 

  

 

 
 

Figure 64.  Schematic of Control of Attention.  During bottom-up, external direction of attention, 
selectivity flowed forward from parietal cortex into frontal cortex.  In contrast, when attention was 
directed in a top-down, internal, manner selectivity flowed from the frontal cortex.  These results 
support models of attention with both top-down and bottom-up influences, and suggests that top-down 
direction of behavior originates in the frontal cortex. 
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enhanced during visual search.  The oscillations within the middle frequency band may allow for the 

synchronization of a diverse network of brain areas that work together to serially search the visual array. 

 

Collecting our results, and relying heavily on previous work in the field, we can propose a 

working model of the control of visual attention as outlined in Figure 64.  Salient objects in the visual 

field are able to capture attention as their representations propagate forward through the cortex.  This 

propagation likely relies on lateral inhibition similar to a winner-take-all manner.   During a visual pop-

out task this process automatically selects the target location (reflected in LIP), eventually reaching 

dlPFC and then FEF for a behavioral response.  This process happens quickly and in a fairly consistent 

manner (as indicated by the tighter reaction time distribution).  It has been well documented that high 

frequency synchrony within visual cortex is associated with increase attention and that it can enhance 

downstream representations. In the current work we find similar effects within LIP (reaction time 

decreases as synchrony increases) and between LIP and frontal cortex (which is greater during pop-out).  

However, when internal direction of attention is necessary, either because there is no overtly salient 

objects in the visual field or because one desires to direct our attention in a specific manner, activity in 

frontal cortex is necessary.  In the case of spatial direction of attention, the top-down signal appears to 

originate from the frontal eye fields although other prefrontal regions are likely to be involved in the 

top-down direction of other behaviors.  Furthermore, the brain appears to oscillate at approximately 25 

Hz, both allowing attention to shift from location to location every 40 ms and allowing for the necessary 

information to be integrated within a consistent temporal window. 

 

Completing a search task, whether it relies on internal direction of attention or is automatically 

solved through external stimulus parameters, is a complex behavior.  It requires a host of brain regions 

spanning from the back of the brain to the front and relies on the relationships between these regions 

to be flexible in order to ensure the most useful information is always available at the right time.  This is 

why our work has focused on relative differences, whether they are timing differences between brain 

regions, synchrony differences between tasks, or even the commonality/disparity of networks 

underlying the task.  We believe this is a fundamentally important distinction from the classic approach 

taken by neuroscience.  Much of previous work in neuroscience has focused on a single brain region 

during a single task in order to determine what function is served by a particular brain region.  In this 
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manner we have made great strides in understanding the brain – we have identified visual, auditory, 

somatosensory, motor, and cognitive regions and assigned each brain area a general role for it in 

behavior.  Although this approach has been successful as a first-pass through the brain, there are 

reasons to believe that relationships between brain regions are important.  The existence of strong 

feedback projections between cortical regions makes it difficult to study a brain region in isolation – 

outside of pure sensory areas the information flowing into a brain region is quickly a mix of feedforward 

and feeback projections.  This not only emphasizes the need for capturing the leading edge of selectivity, 

but also demonstrates the need for relative studies across brain regions – when one records from a 

single area it is not clear what information is generated within that region as supposed to being 

reflections of computations done elsewhere.  A common measure of the relative activity between brain 

regions is the study of synchrony across regions.  Both previous work and the work presented here have 

demonstrated a direct relationship between behavior and the degree of synchrony between and within 

brain regions.  These comparisons are not possible without the study of multiple brain regions 

simultaneously.  We believe that the continued expansion of mutli-site recording technology will 

continue to push the field forward, providing greater insight into how individual brain regions interact in 

order to produce behavior. 

 

The goal of this thesis was to better understand the relationships between parietal cortex (LIP) 

and prefrontal cortex (dlPFC and FEF) in the control of behavior.  We believe our results have provided 

important pieces of information about the existence of multiple mechanisms underlying the control of 

attention, the origin of these mechanisms, and how these mechanisms might be implemented within a 

neural network structure by shifting the effective connectivity between regions.  However, there are 

many questions about the control of attention (and more generally the control of behavior) left 

unanswered.  One question of interest is how attention is directed to spatial locations and/or to objects 

and whether a common mechanism supports both forms of attention at some level.  A separate open 

question is about the establishment of synchrony amongst brain regions – despite the apparent 

importance of synchronous relationships it is not clear how these relationships are established, 

maintained, and shifted in order to best suit the current task.  There are several possible ways to 

address this question from both a correlative and causative direction – for example, utilizing the 

estimated coherence from a single trial it may be possible to demonstrate the existence of correlations 

between the neural activity in one brain region to the establishment of synchrony between two regions.  
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Additionally, the manner in the brain learns which synchronous relationships to enhance at which 

frequency bands while learning a new task is an open and interesting question.  The use of multiple site 

recordings will play a major role in providing valuable insights into these, and other, questions of how 

attention is implemented and controlled within the brain.  Answers to these questions are just the 

beginning and will eventually lead to a more complete model of how information is filtered, processed, 

and acted upon by the brain in order to support behavior.
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Chapter 8: Experimental Design and Methods 
 

Subjects 

Two male rhesus monkeys, weighing 6 kg each, were used.  All procedures followed the 

guidelines of the MIT Committee on Animal Care and NIH.  Animals were implanted under general 

anesthesia with a titanium headpost to immobilize the head and titanium recording chambers for 

recording.  Chambers were stereotaxically placed over frontal and parietal cortices (in the same 

hemisphere) using structural MRI scans.  Novel software was developed in Matlab that produced three-

dimensional models of each animal’s skull and brain in stereotaxic coordinates.  This allowed accurate 

placement of electrode penetrations. 

 

Behavioral Task 

The trial was initiated when the animal fixated a point at the center of the screen.  Fixation was 

required within a 3.2 degree window (+/- 1.6 degrees centered on the fixation point).  After a short 

fixation period (500 ms), the animal was presented with a sample, colored, oriented bar for 1000 ms, 

centered on fixation.  The sample stimulus was removed and the monkey then maintained central 

fixation over a 500 ms memory delay, which ended with presentation of a visual search array.  The array 

elements were identical in size and shape to the sample and appeared four degrees from fixation.  One 

of the array items matched the sample in both color and orientation (the target).  Monkeys needed to 

make a direct, linear, saccade from central fixation to the target and hold their gaze at the target for 150 

ms to receive a juice reward.  Any deviations from the correct saccade path, including saccades to non-

target stimuli, were recorded as errors and not rewarded.  

 

The colored, oriented bars were 0.16 degrees of visual angle in width and 1.6 degrees in height.  

Nine target stimuli were constructed each day from all possible combinations of three orientations and 

three different colors.  The orientations and colors were chosen such that the differences between 

search items was consistent in both orientation and color space (stepping was fixed on a given day, but 

could range from 15 to 25 degrees in orientation and 2 to 5% change in hue).  The number of search 

array items was varied from 2 to 4 for the psychophysical experiments that tested reaction time as a 

function of array size.  Four search array items were used for all neurophysiological recording 



162 | E x p e r i m e n t a l  D e s i g n  a n d  M e t h o d s  
 

experiments.  Array items appeared at positions 45, 135, 225, and 315 degrees from the vertical 

meridian (see Figure 1).  In pop-out, the non-targets (distractors) differed from the target by 90 degrees 

and were all the same color, which was opposite the target color on the color circle.  In visual search, 

distractors differed from the target by either color or orientation alone.  The difference in color and 

orientation between the target stimulus and distractors was the same as the difference between target 

stimuli.  This allowed a target stimulus on one trial to be a distractor stimulus on the next. 

 

The search and pop-out tasks were interleaved in blocks of approximately 35 trials each.  The 

animals performed a minimum of 720 correct trials during recording sessions, ensuring at least 10 trials 

for each of the 9 possible targets (3 colors by 3 orientations) at each location and for each task.  Data is 

presented from 25 recording sessions (10 in monkey S, 15 from monkey W).  Behavioral control and the 

display of visual stimuli was done through CORTEX (http://www.cortex.salk.edu).  An infrared based eye-

tracking system monitored eye position at 240 Hz.  As can be seen in Figure 65 there were no 

differences in the overall distribution of eye velocity between visual pop-out and visual search, nor were 

there differences in eye velocity between tasks for any given recording day.  Unfortunately, a detailed 

analysis of micro-saccades is not possible due to the noise level inherent in the infrared based eye-

tracking system.  The eye-tracker does avoid eye coil surgeries and is more than adequate for 

monitoring fixation and normal saccadic eye movements, it is not qualified to study the subtleties of 

microsaccades.  However, based on the overall distribution of eye velocities, we feel certain that while 

we are unable to study microsaccades directly, they do not differ greatly in prevalence between tasks. 
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Figure 65 

  

 
 

Figure 65.  Top figure shows the distribution of eye velocity during the search period for both the visual 
search (red) and pop-out (blue) tasks.  There was no significance different, suggesting that minor eye 
movements were not different between tasks and therefore could not have contributed to any effects.  
The bottom figure shows that the difference in eye velocity was not significantly different from zero for 
any recording session. 
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Recording Locations and Isolation of Neural Activity 

A total of up to 50 electrodes were implanted into parietal and frontal cortex simultaneously, 

with a maximum of 25 in each anatomical area.  A total of 802 neurons were recorded across all three 

anatomical regions in two monkeys (274 from the lateral intraparietal area, LIP, 272 neurons from 

lateral prefrontal cortex, dlPFC, and 243 neurons from the frontal eye fields, FEF; 280 neurons were 

recorded from monkey S and 522 neurons from monkey W). 

 

The lateral intraparietal region (LIP) recording well was placed at approximately -7 mm AP from 

the interaural plane and was placed using structural MRIs.  To identify LIP neurophysiologically, we 

trained the animals on a delayed saccade task.  During central fixation, a brief spot of light was flashed in 

the periphery.  After a memory delay, the fixation point was extinguished and the animal made a 

saccade to the remembered location of the light spot.  This has been used to isolate LIP from 

surrounding regions, as it is the only region in the parietal cortex that shows selectivity for target 

location during the memory delay (Barash et al., 1991).  The animals performed the delayed saccade 

task at the beginning of every recording session.  Electrodes were only considered to be within LIP for 

that session if a neuron isolated from that electrode showed memory delay activity selective for the 

remembered location. 

 

The frontal recording well was placed at approximately 23 mm AP from the interaural plane.  

Microstimulation was used to demarcate the frontal eye fields from dorsolateral prefrontal cortex.  

Stimulation was delivered as a 200 ms train of bi-phasic pulses with a width 400 μs and an inter-pulse 

frequency of 330 Hz using the same electrodes used for recording.  Current level was started at 150 μA 

and reduced to find the threshold at which an eye movement vector was elicited 50% of the time.  Only 

sites that had thresholds of stimulation amplitudes less than 50 μA were classified as belonging to the 

frontal eye fields (Bruce and Goldberg, 1985).  Anterior sites were classified as belonging to the dlPFC.  

In general, stimulation at dlPFC sites did not elicit eye movements even at the highest current amplitude 

tested (150 μA).   
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As noted in the Introduction, we were interested in utilizing simultaneous recordings from all 

three regions for several reasons.  First, and foremost, absolute timing of neural activity can vary across 

time with further training/experience, between tasks, and with the statistical criterion used.  Thus, our 

main interest was in the relative timing differences between areas.  Simultaneous recording from 

multiple electrodes aids in detecting them because it reduces the influence of extraneous variables such 

as differences in performance across sessions.  Furthermore, simultaneously recording from neurons in 

several brain regions allows for the study of relative timing effects between neurons and areas, such as 

synchrony. 

 

In order to record from all three regions simultaneously we used a custom built microdrive 

assembly to lower electrodes in pairs from a single screw.  The microdrive assembly was designed to 

allow for a high density of electrodes in order to maximize the number of simultaneously recorded 

neurons and field potentials.  We used epoxy coated tungsten electrodes for recording as well as for 

microstimulation.  The electrodes were acutely lowered through an intact dura at the beginning of every 

recording session and allowed to settle for a minimum of 2 hours before recording.  This ensured stable 

isolation of single units over the session.  After recording the electrodes were retracted and the 

microdrive assembly was removed from the well. 

 

Spiking activity and local field potentials were recorded for each electrode simultaneously.  Both 

spiking activity and local field potentials were referenced to ground (rather than to one of the 

electrodes).  This eliminated the possibility that coherence was due to the reference itself having 

temporal structure.  However, ground referencing induces a characteristic, condition independent, 

drop-off in coherence with frequency (see Figure 15).  The signal from each electrode was divided into 

spiking activity and a local field potential by filtering between 154 Hz and 8.8 kHz for spikes and between 

3.3 and 88 Hz for the local field potential.  Waveforms from single neurons were sorted from the raw 

spiking activity signal off-line, using a combination of principal component analysis of waveform traces 

along with other properties of the recorded waveforms (amplitude, trough/peak latency, etc). 
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Due to the large number of simultaneously recorded neurons across all three areas there was no 

optimization of the stimulus parameters for recording.  Likewise, neurons were not pre-selected for 

responsiveness.  Rather, we randomly selected neurons for recording as best we could.  Although this 

may yield neural responses that are below their potential maximum, this factor is consistent across all 

three regions and across behavioral tasks, and therefore cannot influence comparative results.  

Furthermore, doing so gives us a more realistic approximation of the way the brain encounters typical 

visual scenes and since no pre-selection occurred we have a more complete sampling of available cell 

types. 

 

Analysis Techniques 

The majority of analysis techniques and statistical tests used in the text are common amongst 

the field and are considered standard.  All statistical tests were used when appropriate, with an attempt 

made to avoid normality assumptions when appropriate.  In addition to the common tests, we used 

several analysis techniques in this study which are not necessarily common in neuroscience, and 

therefore are described in detail here.  These statistics include the mutual information statistic, the 

coherence statistic, and circular statistics.  All analysis code was written in Matlab and/or C. 

 

For all of the analysis presented in this manuscript, we required each neuron to be recorded for 

a minimum of 30 trials for each target location.  This yielded 249 LIP neurons, 248 dlPFC neurons, and 

225 FEF neurons that had enough trials during the pop-out condition.  During the search condition 247 

LIP neurons, 251 dlPFC neurons, and 225 FEF neurons met this criterion.  Similar results were obtained 

from each animal alone, so they are combined for presentation. 

 

Mutual Information Statistic 

Neural selectivity was assessed through the use of the mutual information statistic (Shannon 

and Weaver, 1949).  The mutual information statistic reflects how well one can predict the variable of 

interest when given the neural activity (for example, the spiking activity from a single neuron, the 

spiking activity of multiple neurons, or the potential value from the local field potential).  The amount of 

information carried by the neural activity can be calculated by estimating the reduction in uncertainty 
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about the variable of interest given the neural activity: , where I is the 

mutual information and H is the entropy, or uncertainty.  X is our variable of interest, while R is the 

response of the neural measure.  The entropy can be defined as , where 

 is the probability of observing occurance i out of possible values in X.  For example, if X is the 

possible locations of the target in our visual search display, then i can take the values of upper left, 

upper right, lower right, or lower left.  In order to compute the information about variable X provided by 

the observed values in R, we need to compute both  and .  While  is fairly easy to 

compute (and for our 4 item display, with each location occurring equally, is equal to 2 bits),  

requires us to estimate the probability of observing .  This is not directly observable, however 

through the use of Bayes’ rule we can indirectly estimate it from ,  and  which are 

directly observable.  This is done through the equation . 

 

  The mutual information statistic is ideal for estimating the selectivity of a neural measure for a 

particular variable for several reasons.  First, it requires no assumptions to be made about the 

underlying distributions of either the observed neural response or the variable of interest.  This is an 

improvement over ANOVA tests as there is good evidence that many neural responses are not normal in 

their distributions.  Therefore, by not making assumptions about the normality of the data, we can avoid 

spurious results and capture effects that more typical selectivity measures miss.  A second advantage is 

that mutual information does not require the underlying distributions to be unimodal.  This is an 

important advantage over other possible statistics such as ROC.  Furthermore, mutual information 

handles multiple stimulus possibilities well.  For example, in our 4 target location example, the mutual 

information statistic can calculate the selectivity of a single cell, while other statistical tests that require 

pairs of data such as ROC, would fail.  Finally, the mutual information statistic is very amicable to 

randomization tests, making the determination of significance easily done.  Randomization tests are 

done by shuffling the associations between the observed response, , and the variable of interest, .  

By repeating this process several thousand times, we can generate a null distribution to which we can 

compare the observed mutual information value.  Similar to the mutual information statistic, 

randomization tests are more effective than more classic techniques as it does not require assumptions 

about the underlying distribution, does not require a unimodal distribution, and handles multiple 

comparisons easily. 
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Figure 66 

  

 
 

Figure 66.  Three model distributions created to demonstrate the importance of capturing the leading 
edge of selectivity rather than the average.  The top figure displays the probability density function and 
the bottom figure displays the cumulative density function.  Both distribution A and B are normali 
distributions with a mean at -150 ms but differing variances.  Distribution C is an exponential 
distribution also with a mean of -150 ms.  These results highlight the fact that using the mean as a 
measure of the latency of a distribution will often disguise true differences in the distributions. 
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Comparing the Mean vs. Leading Edge of a Distribution 

A crucial question underlying the results presented in this thesis is the manner in which to 

determine when a population of neurons (for example, like the ones recorded from an anatomical 

region) carries significant information about a variable of interest.  Typically this question has been 

answered in one of two possible ways: through an estimation of the mean of the overall distribution or 

by estimating the leading edge of the distribution.  We believe that the use of an arbitrary criterion to 

determine when significance is reached is fallible regardless of whether this threshold is the mean or a 

leading edge.  In contrast, one should define the latency of response as the point at which a significant 

number of neurons carry (or have carried) a significant amount of information about our parameter of 

interest.  This has the advantage of correcting for multiple comparisons and avoids the arbitrariness 

associated with selecting a threshold. 

 

 A related issue with selecting a threshold lies in the relationship between the shape of the 

distribution and when that distribution reaches the selected threshold.  To demonstrate this point, three 

example distributions of when theoretical neurons carried significant information about our parameter 

of interest are shown in Figure 66.  The top plot shows the probability distribution function, while the 

bottom plot shows the cumulative distribution function.   All three distributions have equal means, but 

either differ in their variance (A and B) or differ in their underlying distribution (A/B and C).  As we can 

see in the cumulative distribution plot, if we were to take the mean of the distribution as our arbitrary 

threshold all three distributions would show the same ‘latency’ even though this is clearly not the case.  

This problem becomes exacerbated when the variance of the distribution becomes large with respect to 

the selected period of interest – the mean will tend towards the middle regardless of the underlying 

distribution.  An improved solution is determine the level at which a significant number of neurons are 

carrying significant information (here modeled as 10%, but this parameter can be set on a per-

population basis to compensate for different N’s and multiple comparisons).  Now the latency 

differences between the populations better reflect the true differences.  Furthermore, it is crucially 

important when investigating the flow of information to characterize a population by its leading edge as 

later-responding neurons may be responding to subsequent information received from other regions. 
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Regardless of the exact method used to determine the latency of a population’s response to a 

particular parameter of interest, this discussion highlights the difficulty in assigning an absolute neural 

latency to an area.  Not only does the manner in determining the latency have a large impact on what 

that latency is (even if we improve this using a less arbitrary method) but many other variables will play 

a direct role – the exact paradigm used, the manner of training, the previous experience of an animal, 

etc.  Many of these parameters are not only unreported, but to a large degree are unknowable.  In order 

to overcome these difficulties, one must report the relative latencies of neuronal responses between 

simultaneously recorded areas, in the same animal, under the same paradigm, and with the same 

latency determination method.  Although this will not completely remove all biases in the data, it will go 

a long way towards mitigating them, allowing one to observe and report latency differences of much 

finer detail. 

 

Coherence Statistic 

The coherence statistic was used to measure the synchrony between local field potentials.  

Coherence is a measure of the co-spectrum between two signals, and is normalized for the power in 

each signal alone.  By normalizing it allows coherence values to be compared across conditions and 

ensures that increases in coherence cannot be the result of an increase in the amplitude of the 

underlying signal. 
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In the above equations, DX is the recorded signal from source X, and SXY is the co-spectrum 

between two signals from sources X and Y.  Spectral estimates were made using a multi-tapered method 

and were averaged across trials.  For our analyses, a smoothing level of 7.5 Hz was used to generate the 

discrete prolate spheroidal sequences used as tapers.  A detailed description of this method of 

calculating coherence can be found in Jarvis and Mitra (Jarvis and Mitra, 2001).  Since we typically used a 
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200 ms window to estimate the spectrum, frequencies below 10 Hz were difficult to estimate, and 

therefore were excluded from the current analysis.  However, we were able to use the filtered LFP 

signals and circular statistics to investigate certain frequency bands of interest below 10 Hz (see below). 

 

Coherence was observed for both the visual search and visual pop-out task, and the difference 

between the two tasks was tested for significance at each frequency independently.  Significance was 

determined through a randomization test similar to the one used for mutual information: the trial 

assignments for each observed signal were randomly shuffled and the coherence level was recalculated 

in order to generate a null distribution.  Significant differences in the coherence between signals were 

determined by calculating the difference in the randomly generated coherence values in order to 

generate a null distribution of the difference in coherence.  This trial-shuffling procedure corrects for 

any trial-invariant differences between visual search and visual pop-out.  Based on the randomly 

generated null distribution, a z-score was determined for the observed coherence by determining how 

far our observed coherence was relative to the null mean in units of the null distribution’s standard 

deviation.  To correct for multiple comparisons across frequencies we increased the significance 

requirement (22 different frequencies were used, therefore significance was measured at p = 0.05/22, 

or ~2*10-3).  The z-score threshold in Figure 16B reflects this adjusted significance level.  Non-parametric 

permutation tests were also used and found the same condition-dependent differences in the same 

frequency bands (similar to Nichols and Holmes, 2002). 

 

Estimating Coherence of Single Trials 

As coherence is a measure of the reliability of the phase relationship between two signals it 

inherently averages across multiple samples (in our case this tends to be trials).  This makes it difficult to 

directly estimate on a single sample (trial) what the degree of coherence was between two signals.  

However there are many interesting questions that can be asked if the coherence on a single trial is 

known, including, but not limited, to those presented in this thesis, such as examining the relationship 

between coherence and reaction time or the relationship between the activity of single neurons and 

large-scale inter-/intra-areal coherence.  Several techniques have been used to attempt to ask these 

questions, but we propose and utilize a new method in this thesis.  One previously used option was to 

bin trials into two or more groups based on the variable of interest (for example, sorting trials into 'fast' 
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and 'slow' reaction time groupings, Womelsdorf et al., 2006b).  However this method is often difficult 

when the number of trials is limited and when the temporal range is restricted, making estimation of the 

underlying spectra difficult to begin with.  Another option is to attempt to leverage multi-site recordings 

to determine the coherence across all pairs of electrodes on a single trial.  This method also suffers from 

difficulties in a large enough sample size (large pairs of electrodes in areas of interest can be difficult to 

acquire) and ignores the non-stationarity of coherence across particular sites (something that we have 

shown to be important with our analysis of coherence by preferred target location). 

 

The method proposed and used in this thesis is to estimate the coherence on a single trial 

through a jackknife procedure.  The jackknife is often used in order to estimate the bias and uncertainty 

of a particular statistic, but here we will use it to estimate the contribution of a single trial to the overall 

coherence.  In general terms this is done by estimating the coherence across all trials and with a single 

trial removed.  The difference between these two coherence statistics can be thought of as the 

‘contribution’ of the removed trial to the overall coherence.  This can be done for each individual trial in 

order to estimate the coherence between two signals across samples.   

We can show this explicitly by following a similar logic to that used in deriving the general 

jackknife: suppose we have a random sample of n values, , then we can calculate the sample 

mean in the typical fashion: 

 

We can also determine the average when a single sample is left out: 

 

These two equations can be combined to solve for : 

 

While this is an obviously trivial result if the sample values are already known, it can become a 

very powerful method of estimating the sample values when they are not known (as is the case with 
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coherence).  This often happens when our statistic is some function of our sample values.  The same 

derivation is applicable, but now our overall estimate of the statistic is  and our 

estimate without the j-th trial is .  Therefore, by analogy with our derivation above, we can estimate 

the value of our function on a single trial: 

 

Typically these values are used to estimate the bias and variability in our statistic in order to 

determine significance.  For our analysis, we will use this method to estimate the coherence on a single 

trial in order to determine co-variations in single-trial coherence with reaction time. 

 

Circular Statistics 

As an extension of the results from the coherence analysis, we were interested in further 

investigating the role of the interesting frequency bands in the local field potential signal.  For example, 

we were interested in the relationship between spiking activity and the frequency bands, as well as the 

relationship between multiple bands.  In order to determine this relationship we wanted to determine if 

there was a significant phase relationship between a particular frequency band in the LFP and either 

spiking activity or another frequency band.  Since the phase relationship by definition fits around a 

circle, we used circular statistics to determine these relationships.   Although linear statistics are well 

developed, circular statistics are less well understood, and therefore only a few statistics are available 

for our use. 

 

We are interested in determining whether the observed relationship between our frequency 

band-limited LFP and another variable deviates from the uniform distribution.  The uniform distribution 

is our null distribution – if there is no specific relationship between the two variables then the phase 

relationship between these variables should fall randomly, therefore generating a uniform distribution 

around the circle.  In order to determine these possible deviations, we used a combination of parametric 

and non-parametric tests.  Similar to linear statistics, the parametric tests provide increased resolution, 

but require the data to fit the underlying assumptions.  We used the Rayleigh test as a parametric test to 

determine whether the observed phase relationship differed from uniform.  The Rayleigh test makes the 

assumption that the distribution is uniform.  While this is a valid assumption for some of our data, it is 
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not always valid (for example, when examining the phase relationship between different frequency 

bands, a higher frequency band must peak several times within a lower frequency band, requiring the 

phase relationship to be multi-modal).  When the unimodal distribution assumption cannot be 

reasonably made, we used a non-parametric test to determine deviation from uniformity. 

 

In addition to determining the deviation from uniformity, it is also informative to investigate the 

average phase relationship between two signals.  In order to determine these changes we used both the 

median and mean angle of deviation and generated confidence intervals. 

 

Filtering Local Field Potentials 

In order to determine LFP-LFP and Spike-LFP phase-locking using circular statistics, it is first 

necessary to filter the local field potentials into our frequency bands of interest.  For the analysis 

presented here we used four main frequency bands: 4-8 Hz, 8-16 Hz, 18-34 Hz, and 35-65 Hz.  Local field 

potentials were filtered using a digital IIR filter, consisting of 13 sections of Chebyshev, Type II filters (see 

Figure 67).  The filter was of order 26 and was attenuated to at least -40 dB in the stop-band regions.  

The Type II Chebyshev filter avoided any rippling within the pass-band but did have a non-linear phase 

offset across frequencies.  In order to compensate for this non-linear phase effect, we filtered the LFP 

signal both forward and backward in time.  This ensures a zero phase shift.  As this increases the 

effective order of the filter we filtered across the entire trial’s signal, ensuring enough data to avoid 

edge effects. 

 

Figure 68 shows a filtered LFP signal from an example trial (top) as well as the filtered LFP signal 

from a single trial averaged across all trials (bottom).  In both figures one can see ‘phase-jumps’ – 

periods of time in which the phase of the filtered signal changed in a non-linear manner (denoted by 

black triangles, outlined in the filtered signal’s color).  Classically these are thought of as being the result 

of either a switch in the source of the signal, a restart of the source, or an interaction between two 

signal sources.  Although it is not possible to determine which of these is the case from our current data, 

this is an interesting future consideration.  This effect also highlights an important reason why the 

phase-locking approach can be more appropriate for synchrony measures than one relying on frequency 
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space (such as coherence).  Since methods in frequency space rely on the signal being stationary, long 

periods of time are often hard to interpret – even from the two examples shown here, it is obvious that 

these signals are not stationary; rather they change over time, likely relating to the processes underlying 

behavior.  These changes are important to capture and using a phase-locking approach allows us to do 

so.  Phase relationships were determined by finding the local maxima and minima across time and fitting 

a linear phase distribution between local extrema.  The phase relationship of any point process could 

then be easily determined, including, but not limited to, other filtered LFP signals, spiking activity, and 

behavioral responses. 
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Figure 67 

 

 

  

 
 

Figure 67.  The amplitude response curve for the four filters used throughout the manuscript.  All filters 
were sectioned Chebyshev, Type II, IIR filter of order 26 (across 13 sections).  They were designed to 
pass with no ripple in the pass-band and stop with at least -40 dB attention in the stop-bands.  The 
phase response was continuous in the pass-band and although it has a non-linear phase distortion, this 
was corrected for using a zero-phase filtering approach. 
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Figure 68 

 

 
 

Figure 68.  Examples of filtered LFP signals from a single dlPFC electrode.  Examples are taken from a 
single visual search trial (top) or averaged across all visual search trials (bottom).  Both traces show non-
linear changes in phase (‘phase-jumps’) as indicated by the black triangles. 
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